

Modern Atari System Software
An Introduction

By HiSoft

© Copyright 1993 HiSoft. All rights reserved.
Portions © Copyright 1993 Atari Corp and Eric R. Smith.

Book:

written and compiled by Tony Racine and Alex Kiernan.

This guide contains proprietary information which is protected by copyright. No part of
the this documentation may be reproduced, transcribed, stored in a retrieval system,
translated into any language or transmitted in any form without express prior written
consent of the publisher and copyright holder(s).

HiSoft shall not be liable for errors contained in this documentation or for incidental or
consequential damages in connection with the furnishing, performance or use of the
software or the documentation.

HiSoft reserves the right to revise this doccumentation from time to time and to make
changes in the content thereof without the obligation to notify any person of such changes.

Throughout this book trademark names are used. Rather than put a trademark symbol in
every occurrence of a trademarked name, we state that we are using the names only in an
editorial fashion with no intention of infringement of the trademark.

HiSoft
High Quality Software

Published by HiSoft
The Old School, Greenfield, Bedford MK45 5DE UK

First Edition, July 1993 - ISBN 0 948517 63 8

Table of Contents

Preface |

Credits !

Chapter 1 - The Falcon030 3

The Video sub-system 3

Software Video Mode Selection 3

The Audio sub-system 5

The CODEC 5

External Expansion 6

The switch matrix [

The DSP sub-system 7

What is a DSP? 8

The DSP56001 architecture 8

Falcon DSP memory map 11

What can the DSP do for me? 12

DSP access 13

DSP program conirol 13

DSP software 13

DSP Ability codes 14

Programming considerations 15

Writing subroutines 15

Writing programs 17
Contents Modern Atari System Software Page i

Chapter 2 - The Operating System 19
GEMDOS and MINT 19
MultiTOS 19
SpeedoGDOS 20

A brief history of Atari GDOS 20
What is Speedo? 2]
FontGDOS 27

Chapter 3 - The Video Sub-system 23

The system calls 23
Montype 23
VgelRGB 24
VgetSize 24
VsetMask 24
Vsetmode 25
VselRGB 26
VsetScreen 26
VsetSync 27

Chapter 4 - The Audio Sub-system 29

The system calls 29
Buffoper 29
Buffptr 30
Devconnect 30
Dsptristate 32
Gpio 32
Locksnd 33
Setbuffer 33

Page ii Modern Atari System Software Contents

Setinterrupt 34
Setmode 34
Setmonitrack 35
Setirack 35
Sndstatus 35
Soundemd 36
Unlocksnd 37
Chapter 5 - The DSP Sub-system 39
The system calls 39
Data transfer control 39
Dsp_BlkBytes 39
Dsp BlkHandShake 40
Dsp_BlkUnpacked 40
Dsp_BlkWords 41
Dsp_DoBlock 41
Dsp_GetWordSize 42
Dsp InStream 43
Dsp_IOStream 43
Dsp_MuliBlocks 44
Dsp OuiStream 45
Dsp_Removeinterrupts 45
Dsp_SetVectors 46
Program conirol calls 47
Dsp_Available 47
Dsp_ExecBoot 48
Dsp_ExecProg 48
Dsp_FlushSubroutines 49
Dsp_GeitProgAbility 49
Dsp_HfO 49
Contents Modern Atari System Software Page iii

Dsp_Hf1 50
Dsp_Hf2 50
Dsp_Hf3 50
Dsp HStat 31
Dsp_InqSubrAbility 51
Dsp_LoadProg 52
Dsp_LoadSubroutine 52
Dsp_Lock 53
Dsp_LodToBinary 53
Dsp_RequestUniqueAbility 54
Dsp Reserve 54
Dsp_RunSubroutine 55
Dsp TriggerHC 55
Dsp_Unlock 56
Chapter 6 - GEMDOS/MiNT 57
What is MiNT? 57
The system calls 57
Dclosedir 57
Dentl 57
Dgetcwd 58
Diock 58
Dopendir 59
Dpathconf 60
Dreaddir 61
Drewinddir 62
Fchmod 62
Fchown 63
Fentl 63
Page iv Modern Atari System Software Contents

Fgeichar 72
Finstat 73
Flink 73
Fmidipipe 74
Foulstai 74
Fpipe 75
Fpuichar 75
Freadlink 76
Fselect 76
Fsymliink 77
Fxaftr 78
Pause 81
Pdomain 81
Pfork 82
Pgetpgrp 82
Pgetpid 82
Pgetppid 83
Pgetuid, Pgetgid, Pgetevid, Pgetegid 83
Pkill 84
Pmsg 85
Pnice 86
Prenice 86
Prusage 87
Psemaphore 87
Psetlimit 89
Psetpgrp 90
Psetuid, Psetgid 90
Psigaction 21
Psigblock, Psigsetmask 93
Psignal 23
Contents Modern Atari System Software Page v

Psigpause 95 .
Psigpending o5
Psigreturn 26 .
Pumask 96
Pusrval 97 l
Pvfork o7
Pwaitpid, Pwait, Pwait3 98 .
Salert 1’44
Syield 100 K
Sysconf 100
Talarm 101 .
Important GEMDOS extensions 101
Dfree 101 '
Flock 102
Fopen 103 .
Mxalloc 104
Pexec 105 .
Chapter 7 - AES Enhancements 107 u
An AES dilemma 107
What's in AES 3.30... 108 B
Hierarchical menu structures 108
Pop-up menus 110 .
Scrolling in pop-ups and sub menus 111
Colour & animated icons 111 .
What's in AES 3.40... 112
3D controls on dialogs and windows 1712 .
What's in AES 4.00... 112
The system calls 112 B
Page vi Modern Atari System Software Contents .

Application library extensions 113
appl_find 113
appl_getinfo 114
appl_read 115
appl_search 116

Event library extensions 117

Graphics library extensions 120
graf_mouse 120

Object library extensions 121
Colour Icons 121
Three Dimensional Objects 122
objc_sysvar 123

Menu library extensions 125
menv_atiach 125
menu_bar 126
menvu_istart 127
menu_popup 128
menu_register 129
menu_seftings 129

Resource library extensions 130
rsrc_rcfix 130

Shell library extensions 130
shel_get 130
shel_put 131
shel write 131

Window library extensions 135

Chapter 8 - SpeedoGDOS 139
Speedo data types 139
Contents Modern Atari System Software Page vii

The system calls 140 N
v_bez 140
v_bex fill 141 .
v_bez_off 142
v_bez_on 142 '
v_bez qual 143
v_flushecache 143 .
v_ftext et al 144
v_getbitmap_info 146 .
v_getoutline 147
v_loadcache 147 .
v_savecache 148
v_set_opp_buff 148 l
vqt_advance, vgt advance32 149
vqt cachesize 150 .
vqt_devinfo 150
vqt_fontheader 151 .
vqt_f_extent 151
vqt_get_toble 152 .
vgt f name 153
vqt_poairkern 154
vgt_frackkern 154 .
vst_arbpt, vst arbpi32 155
vst charmap 156 .
vsi_error 156
vst_kern 157 .
vst_scratch 157
vst_setsize, vst setsize32 158 .
vst_skew 159
|
Page viii Modern Atari System Software Contents .

Appendix A - The Atari Style Guide 161

Application Elements 161
The Menu Bar 162
The File menu 162
The Edit menu 162
Other menus 162
Keyboard equivalents 163
Menvu items 163
Cursor movement inside windows 163
Windows 164
Dialog boxes 164
Aleris 165
Toolbox windows 165
Other general notes 165

Appendix B - Object File Formats 167

Lattice 167
Module directives 167
HUNK_UNIT 167
Section directives 168
HUNK_NAME 168
HUNK_CODE 168
HUNK_BSS 168
HUNK_END 168
HUNK_CHIP 168
Relocation/symbol directives 169
HUNK_RELOCS 169
HUNK_DRELOCS 169
HUNK_EXT 170
Contents Modern Atari System Software Page ix

Debugging directives 171 .
HUNK_SYMBOL 171
HUNK_DEBUG 172 N

Library Format 174
HUNK_LIB 174 |
HUNK_INDEX 174

GST 176 .

Source directives 177
COMMENT 177 .
DEFINE 177
END 177 .
SOURCE 177

Section directives 178 .
COMMON 178
OFFSET 178 | |
ORG 178
SECTION 178 .

Symbol directives 178
XDEF 178 .
XREF 179

Library Format 179 .

DRI 180

Relocatable Format 180 .

Absolute Format 182

Executable Format 182 .

Library Format 184

B
N
Page x Modern Atari System Software Contents '

Appendix C - The Cookie Jar 187
Appendix D - Language Issues 191
Video Sub-system 191
HiSoft BASIC 2 191
Devpac 3 191
Lattice € 5 191
Audio Sub-system 192
HiSoft BASIC 2 192
Devpac 3 192
Lattice C 5 192
DSP Sub-system 193
HiSoft BASIC 2 193
Devpac 3 193
Latice C 5 193
GEMDOS/MiNT 194
HiSoft BASIC 2 194
Devpac 3 194
Lattice € 5 194
AES Enhancements 195
HiSoft BASIC 2 195
Devpac 3 195
Lattice C 5 196
SpeedoGDOS 196
BASIC 2 196
Devpoac 3 196
Speedo and sirings 197
Lattice € 197
Contents Modern Atari System Software Page xi

Appendix E - OS Binding Numbers 199

AES Opcode Numbers 199
VDI Opcode Numbers 200
GEMDOS/MINT Binding Numbers 202

GEMDOS 202

MINT 203
BIOS Binding Numbers 204
XBIOS Binding Numbers 205

Appendix F - Speedo Font Header 207

Appendix G - MultiTOS Config. 211
MINT Commands and Variables 211
GEM Commands and Variables 213

Appendix H - Signals & Error Codes 217

BIOS error codes: 217

GEMDOS/MINT error codes 218

MiNT signals 218
Appendix | - Bibliography 221
Notes 243
Page xii Modern Atari System Software Contents

Preface

With the introduction of a new computer from Atari, a new multitasking
operating system and a radically new replacement for GDOS, much has
changed! This book does not try to be an authoritative guide to all
aspects of the new machine and the updated system software, but it does
contain an outline discussion about many aspects of the improvements,
especially when extra background information is required to help
document the calls printed here.

Whilst this book show shows calling conventions for the functions based
around the HiSoft products HiSoft BASIC 2, Devpac 3 and Lattice C5,
Atari Erogrammers who are not using one of these products should still
find the information contained within this book useful in conjunction
with a language using the standard Atari binding names. At the time of
writing much of this material was not generally available and to our
knowledge is printed here for the first time.

For those users using one of the above HiSoft language products the
language Specific Issves appendix includes information on how the
calls discussed here are made available to a program.

Credits

HiSoft would like to acknowledge the use of material from a variety of
sources in the compilation of this book. Extensive use was made of
documentation produced by Eric Smith in the MiNT section and other
Atari information. Other (unwitting) contributors to this guide were Bill
Rehbock and the member of Atari’s TOS group (USA) and David
Nutkins of HiSoft.

Preface Modern Atari System Software Page 1

Page 2 Modern Atari System Software Preface

Chapter 1
The Falcon030

The Video sub-system

The new Falcon video hardware supports graphics modes which allow
some older ST software to run without modification, however, programs
which are written to run regardless of the given screen resolution or
colour palette size, should be able to take advantage of some quite
spectacular improvements over the older machines.

In terms of the screen sizes, the actual hardware within the machine
would appear to be much more powerful than the new operating system
calls will allow, however at present the maximum screen size which can
be obtained on either a VGA style monitor or TV are 768 pixels across the
screen in overscan mode and 480 lines down. The screen resolution is
fairly programmable and certain options exist within the operating
system to pick and choose certain combinations of features.

The colour modes of the computer can be selected by determining the
number of bits dedicated to representing the colours. At present there are
5 colour depths: 2, 4, 16, 256 and 65536 (or 32768) colour modes. The first 4
modes feature user programmable palettes, the last mode is known as
true colour mode; that is to say that the values placed into memory
literally represent the colours displayed on the screen where as the
former modes only represent a position in a colour look up table.

Software Video Mode Selection

The Falcon OS calls support the old screen and colour resolutions used on
the previous ST computers wherever possible. Historically the ST had
only 3 screen modes, low resolution colour, medium resolution colour and
high resolution monochrome; these were augmented by an additional set
of modes on the TT (note that the TT video XBIOS calls are not
supported on Falcon). An old screen call would simply require a single
digit parameter to determine which screen was currently in use or due to
be set.

Falcon030 Modern Atari System Software Page 3

The complexity of the new Falcon hardware means that such a simple
system is now quite impractical, so the new operating system calls can
accept the old ST style rez code for ST compatibility only, but a more
sophisticated modecode is now used to describe the attributes which
are desired to be set up on the screen for non-ST resolutions.

The modecode takes the form of a 16 bit word, individual bits of which
are used to select the status of different screen functions. The top seven
bits of the high word are reserved for future expansion, the remaining 9
bits take the form:

Hi byte Low byte
XX XXXXXF SOPVBNNN

The bits have the following meanings:

X Reserved for future expansion

F Vertical flag.(Line double/Interlace)

S ST compatibility flag (for ST low, medium & high res)
0

Overscan flag. When set, it multiplies the screen pixel
width and height by 1.2. This should not be set for use on
a VGA monitor.

P PAL flag. PAL mode when set, NTSC when clear.

v VCA flag. VGA mode when set, TV maode when clear.

8 80 column flag. 80 column mode when set, 40 column when
clear.

N Number of Bits Per Pixel (This determines the number of

on-screen colours). 0=1BPP,1=2BPP,2=4BPP,3=8
BPP, 4 = 16 BPP, or 2, 4, 16, 256 or 65536 colours

respectively, The 16 bits per pixel mode is also known as
true colour mode.

Please note that a couple of modecode permutations are not allowed,
these are: 40 column 2 colour mode on TV or VGA and 80 column true
colour on a VGA monitor.

When using the operating system calls to set the video modes, please
note that the calls do not check the validity of the code and it is quite
possible to attempt to sct modes which are either impossible to generate
by the hardware or to display on the current monitor or TV. It is left to
the user to enquire about the display device and to sclect the correct
modes accordingly.

Page 4 Modern Atari System Software Falcon030

The Audio sub-system

The Falcon sound system is massively improved over the older ST range.
A whole new section of the computer is dedicated to the ability to play
multi-track stereo sampled sound as opposed to the single chip sound
generator which the Falcon retains for machine compatibility. All this
in conjunction with the on-board DSP (more on this later), combines to
produce what is probably the most potent sound system currently
available on any home computer today.

For example, the sampling section of the computer features on-board
16-bit sterco sampling device as standard but this can be extended by the
addition of external circuitry to facilitate a full 4 sterco tracks of sound
input and output. An input/output switch matrix located within the
Falcon's circuitrv can connect the input of the Digital to Analogue
converters {DACs) to the computer’s DMA system as it can the output of
the Analogue to Digital Converters (ADCs). This permits direct to disk
recording and playback as a standard feature of the machine which on
its own will place Atari once again at the top of the professional
recording musicians pedestal, an act which has always been difficult to
follow in any case.

In component terms, the sound system features a G.1./Yamaha sound
generator chip (a feature of the older ST computers), a 16-bit stereo
CODEC chip and a digital input/output switch matrix controller which
has full access to the internal DMA structure of the computer and
externally connectable clock source. Another feature of the computer is
the on-board DSP, a complete sub-system in its own right, which can be
used as a stand alone processor within the case of the Falcon, however,
since the DSP and the CODEC can be connected together, the two devices
working with cach other offer formidable possibilities in sound
gencration and processing. The rest of this section will try to outline
each of the component parts of the sound system.

The CODEC

The CODEC (a contraction of enCOder-DECoder) is a 16-bit sterco
analogue to digital and digital to analogue converter all in one compact
chip. The device features sixty four times over-sampling and digital
filtering of the analogue signals flowing both into and out of the device.

Falcon030 Modern Atari System Software Page 5

All of this adds up to a very high quality audio device which is built
into the computer as a standard item. The CODEC is provided with a
high speed clock with the sampling speed is governed by both this
clock, and a series of sub-dividers located within the Falcon circuitry.

The Falcon hardware also allows an external clock source to be
provided. This means that other sampling rates which are not
otherwise possible with the standard machine can be produced ver
casily, most notably the recording industry rates of 44.1kHz (for CD)
and 48kHz (for DAT).

External Expansion

The DSP port, mounted on the rear of the compuler, enables the user to
add a variety of peripherals to the Falcon via a high speed serial
interface. Devices such as fax modems, low cost laser printers and
scanners could all be connected to the machine via this socket. From the
sound system’s point of view probably the most interesting aspect of this
socket is that it allows the expansion of the internal 16 bit stereo sound
facilities by a further 3 sterco channels to 4 tracks of stereo sound or
possibly 8 tracks of mono sound; provision for the control of this
hardware is made in the operating system calls.

The inputs and outputs provided on the DSP port are routed through the

digital switch matrix so the signals can be redirected to any of the
system transmitters or receivers.

The switch matrix

This seemingly simple device controls the routing of inputs and outputs
of the computers DMA, CODEC, DSP and external high speed serial
ports with one another. For example, it is possible to connect the high
speed external serial input to the DMA record channel to facilitate the
input of data into the Falcon from a device such as a scanner. B
re-routing the data input by the switch matrix, it is possible to direct
that input to the DSP instead, where upon the DSP may be requested to
perform some sort of image enhancement or data compression before
passing it on to the Falcon's internal memory, such is the flexibility of
this 1/0O system.

Page 6 Modern Atari System Software Falcon030

All data is transferred around the system using a high spced serial data
stream, capable of speeds of up to 8 million bits of data per second. The
user has the option of selecting a continuous or non-continuous data mode.
In non-continuous mode, the transmitter and receiver implement a full
'sender-receiver' handshaking system, this prevents data overrun and
underrun within the system. Data which is transferred using this mode
is guaranteed to be picked up at the receiving end without loss, since the
receiver will not request the next piece of data until it has
acknowledged acceptance of the first. The non-continuous mode of
transfer is recommended for use when ever an application does not need
to move a maximum amount of data in a minimum or fixed time slot.

By turning off the handshaking transfer mode, it is possible to transfer
data between any two given devices at very high speeds indeed, in
theory, rates of up to 1 Mbyte (8 Mbits) of data per second can be
achieved. The continuous data mode should only be used when a high
speed of data is necessary and that the application can be sure that no
other bus-intensive hardware within the machine is going to be used.
Since the DMA record and play channels are connected to the Falcon
address and data buses, any other bus intensive activity, such as running
the video screen in true colour mode for example, may prevent the DMA
FIFO (First In, First Out) buffer from being filled or cleared before the
next transmission or reception time frame. If the 32 byte buffers are not
completely filled or read out before the next transmission begins, then
either an underrun or overrun situation will occur,

At this point it may be worth noting that the continuous mode of
transmission is probably the most efficient way of feeding the DSP with
data, since the DSP interrupt structure does not seriously affect its
processing speed and the device is quite possibly sitting around waiting
for a whole block of data to be received before it can get on with its
processing task.

The DSP sub-system

Although this part of the Falcon may correctly be considered to be part
of the Falcon's sound system, the truth is that it can be used totally
independently of the sound and is a very useful feature for other
applications in its own right. As may become clear, the DSP is a
significant enough feature of the Falcon that it deserves a very close
inspection.

Falcon(30 Modern Atari System Software Page 7

What is a DSP?

The letters DSP together form an acronym which stand for Digital
Signal Processor. In essence, this is a form of high speed, single chip
microprocessor that is specifically designed to perform very high speed
digital data processing.

Much is made of the Falcon containing the powerful Motorola 68030
microprocessor but with the Motorola 56001 D5P, the Falcon actually
contains two quite separate processors. The Falcon DSP is a special chip
which is in some ways similar to the 68030 in that it has its own RAM,
it can support its own ROM {not present on the Falcon} and it can load
and run programs and receive, process and output data. They are similar
to the extent that even some of the programming instructions are the
same!

The DSP56001 architecture

Internally the 68030 and 56001 are very different; whilst a detailed
description of the DSP56001 is beyond the scope of this manual, other
books are available on this subject anyway, but a brief outline of this
device follows.

Where as a microprocessor is designed to be easy to program and perform
a number of different tasks, everything from word processing and
desktop publishing to controlling washing machines and factory
machining equipment, the newer Digital Signal Processing chips, as
their name implies, are designed to accept high speed digital data
{such as from an analogue to digital converter), process it in some way
and then output the digital result (usually to a digital to analogue
converter). Since the device is designed for maximum data throughput,
many aspects of the way in which the device has been designed
represent a no compromise solution and are not necessarily the most
straight forward or intuitive - just plain fast!

Page 8 Modern Atari System Software Falcon(030

As a result, the DSP architecture may leave a microprocessor
programmer cold at a first and wondering 'What the heck did they do
that for?'. The DSP really is a very efficient number cruncher indeed.
For example the 68030 would take about 28 clock cycles to perform a 16
bit by 16 bit signed multiply and produce a 32 bit result. With a Falcon
running at 16 MHz, this will take about 1.6 micro seconds, that's about
571,000 multiplies per second - not bad. However the Falcon’s DSP runs
at 32 MHz and will take two clock cycles to perform a 24 bit by 24 bit
multiply yielding a 48 bit result. This will therefore take 62.5 nano
seconds to perform which is about 16 million multiplics per second -
Phew! OK, so the chances of running flat out at this speed are slim, but
the DSP really is very rapid at this kind of work since most instructions
are capable of executing in 2 or 4 clock cycles (1 or 2 instruction cycles).

In actual fact, the reason for the slightly odd design of the device is
that it will enable the DSP to do several things in parallel, so it can
actually be much faster than we have already demonstrated, the trick
is knowing what operations the DSP can do in parallel to know how to
get the most out of it. For example, to take our previous demonstration
one step further, the 56001 is actually quoted as being able to perform a
24 bit by 24 bit multiply, with a 56 bit addition onto the result, two data
moves, two address pointer updates and an instruction pre-fetch all in 2
clock cycles (or 1 internal instruction cycle).

Part of the key to this staggering performance is in the fact that the
processor does not support one address bus (like the 68030), but notionally
three! These are known as the P memory (Program} and the X and Y data
memories. This type of configuration is known as a Harvard
architecture, after the university in America that pioneered this type of
technology. This form of addressing is fast because it contains three
separate sections of circuitry which can each pick up data and
instructions simultaneously and process that data in a couple of cycles. In
contrast a more conventional device, such as the 68000 processor, would
need to pick up the next instruction to be executed followed by the one or
two lumps of data to be processed, one after the other. This sequential
series of memory accesses clearly must be slower than the parallel
technique.

Falcon(030 Modern Atari System Software Page 9

Since the DSP is designed as a fast mathematical processing device,
another consideration is that of numerical accuracy. On the 56001 DSP,
the memory (and word) width is 24 bits. In a strictly analogue sense, this
enables the processor to handle single word digital integer values with
an accuracy of up to 144 dBs. Put into perspective, the best accuracy
which can be held by a 16 bit value (or a 16 bit D-A or A-D converter} is
96 dBs. A dB, or decibel as it correctly known, is a way of measuring noise
ratios. The higher this value is, then the least significant value (or
error) becomes a smaller proportion of the overall result. If a 16 bit result
is required on the output of a calculation, then up to 8 bits of noise can be
accumulated before it starts to creep into the output value!

The Falcon DSP is provided with 96 kbytes of RAM on board, organised
as 24 bit words. All of this can be used to store programs and sub-routines
in the P memory arca. To add a little confusion to the set up, the data
memory, the X and Y areas, are split into two 16,000 word areas which
actually overlap the lower and upper halves of the program space.

Page 10 Modern Atari System Software Falcon(30

Falcon DSP memory map

From the programmer’s point of view the model of the DSP looks
something like this:

: — P:7FFF — _
X:3FFF X
Ext. RAM Ext. RAM
X:MEM
X Memory P Memory
(DATA) {(Program)
X:01FF —
- Int. X:ROM
X:00FF —
x:oobo_ Int. X:RAM P:4000 L |y
Y:3FFF P:3FFF A
Ext. RAM Y:MEM
P Memory
(Program)
Y:01FF — P:O1FF — Y
) Int. Y:ROM
Y:00FF — Int. P:RAM
. Int. Y:RAM
Y:0000 — P:0000 —

Falcon DSP - programmer’s memory model

Falcon(30 Modern Atari System Software Page 11

By looking carefully at the diagram above, it will be possible to sce
that there is one program area and two separate data areas, all of
which start their virtual existence from an address of zero. What the
diagram also tries to show is that despite the fact that the DSP has
three memory areas, they do in fact share the same physical RAM. This
is proved by the fact that writing a value into Y:0200 and reading from
P:0200 would act on the same data, as would X:0200 and P:4200.

One final point to note is that the DSP features some on chip RAM and
ROM. The lower 512 words of the program memory are in fact on board
the chip itself and are not part of the 32k of external memory. This is all
RAM. The first 40 words of which are reserved for use by the chip itself
as interrupt and exception vectors of some type. The rest of the space is
freely available for use by the DSP for program storage and execution.

The X: and Y: data areas share 512 words of RAM and a further 512
words of ROM split evenly between them. Each is configured as having
its first 256 words as RAM and the next 256 words as ROM. These two
areas of ROM contain pre-programmed maths tables, featuring full four
quadrant sine wave and signal compression/decompression data.

What can the DSP do for me?

These chips find their way into all sorts of equipment nowadays,
probably the most notable of these being the portable cellular
telephone, the miniaturisation of which is due largely to the
incorporation of DSPs where they are used to digitally encode/decode,
analyse, filter and enhance the voice signal. Now, powerful as it is, it's
pretty unlikely that you will find a Falcon built into a telephone but the
principle is the same. With the Falcon’s CODEC chip bailt in, speech
analysis or compression/de-compression does become a possibility, as do
real-time sound effects and equalisation. Since the switch matrix exists
within the machine, then it is possible that the device could be used to
perform JPEG or cven MPEG picture compression or decompression. This
may be achicved by the DSP receiving compressed data from the 68030
which it then processes and sends back as packets of decompressed data.

Page 12 Modern Atari System Software Falcon030

DSP access

There is no direct method of access to the DSP. For example, it cannot
examine data on the Falcon screen directly, process and place it straight
back, neither can the Falcon processor read from, or write directly into
the DSP's memory. All data must be transferred into or out of the DSP
via its SSI port (accessible only through the external DSP socket), or its
host port which is mapped into the Falcon’s memory space. The Falcon
does not have direct program support for the contro! of data flowing
between the DSP and the SSI, but extensive control for the transfer of
programs into the DSP and the flow of data across the host port are
provided, these are described in closer detail in the DSP sub-system
section.

DSP program control

Unlike the Falcon’s microprocessor, the DSP does not have any program
or operating system ROM. In this respect it is a fairly daft device. After
power-on, the DSP will do nothing initially, it will just sit around
waiting for a user program to down load a piece of DSP program code,
where upon the Falcon’s operating system will reset the DSP and re-boot
it into life. From this point onwards the two devices can get on with
gretty much whatever they like. Any program or data communication
etween the two must be made via the DSP host port, the Falcon’s
operating system has a variety of routines built into it which allow this
sort of thing to occur in a number of ways. It would make sense to read
through the list of calls carefully to determine which should be used.

DSP software

Since the arrival of a multitasking kernel for the Falcon, it is quite
possible that a number of Falcon applications may wish to use the
resources of the DSP at once. The DSP is not that sort of device, its speed
and efficiency are compromised by such activitics. For this reason the
DSP should only be accessed via the Falcon operating sysiem; an
application that wishes to use the DSP must first see if the DSP is
already locked by another application, if so it must wait until such time
that it has become unlocked. When the DSP becomes available for use,
the application should lock the device for itself, preventing another
application from stealing it.

Falcon(030 Modern Atari System Software Page 13

When an application has made a successful bid for and sccured the DSP,
it may then download its own operating program or subroutine into the
DSP program memory. For obvious reasons, a DSP program must not be
larger than the total free memory as returned by the Dsp_Available
command. This value is returned as two separate amounts, one each for
the X: and Y: data areas. Programmers should be made aware that this
is all program space but a program which is to use both areas must
appreciate that there will be an unusable area of memory at the top of
the Y: memory area, the implication here is that this effectively cuts
the P: memory area in half! Within the reserved subroutine area,
individual DSP subroutines are limited to an absolute maximum size of
1024 words, this must include all program, relocation, fixed data and
initialised workspace! Additionally however, each subroutine may
make use of the 256 words of reserved BSS space in both of the X: and Y:
data spaces, this should be used only for uninitialised data storage.

DSP Ability codes

Atari are promoting the concept of a system where code which is to be
executed within the DSP is not owned by any one host process (because of
the possibility of multi-tasking applications), indeed there is no reason
in principle why routines to do specific tasks can not be shared between
applications. In an attempt to provide an efficient code sharing system
it is necessary to develop an effective code identification system.

Close inspection of the DSP support routines will reveal that some of the
calls provide, or use, an ability code. this is basically a number which
allows the Falcon to monitor the programs and subroutines which are
currently being held within the DSP system and to try and prevent
duplication of application code. This should reduce the amount of code
transfer which occurs, whilst increasing the data throughput potential
and minimising the latency between an application requesting the use of
the DSP and getting some meaningful response from it.

Page 14 Modern Atari System Software Falcon030

Since the DSP is a very fast and efficient data processing device, its
total performance is degraded by having to upload executable code each
time an application requires some form of processing. For this reason the
program and the stacked subroutines can each own, or apply for, an
ability code. Before any effort is made to download some code into the
DSP, the current Falcon application should pass an ability code (after
having first requested one, if necessary, using the
Dsp_RequestUniqueAbility routine) to the DSP support call
Dsp _InqSubrAbility (or Dsp_GetProgAbility). If a routine which
matches this code already exists within the DSP, then it will not be
necessary to download another, the one with the returned handle will
do the job!

Programming considerations

Writing subroutines
Some important points should be born in mind when writing subroutines:

First of all, the DSP does not support the program relocation features of
the standard main processor. It is necessary therefore to write all
subroutines with a small relocater program at the start of it {(if needed).
When using an assembler to generate a subroutine, it is necessary to
generate code which is either entirely position independent (practically
impossible given its architecture and instruction set) or position
dependent starting from memory location zero ($0000). The code shouild
then relocate itself into an executable form using an address which is
passed to it at execution time.

Since multiple subroutines can exist within the DSP, the Falcon’s
operating system may selectively remove routines to free up some space
and then move the remaining ones around (usually closer to the top of
the subroutine space). It is essential therefore, for the subroutine to
check its current position against the execution address each time it is
invoked, if the routine has been moved, then it will be nccessary to
relocate itself again.

The absolute maximum size of a subroutine is 1024 words, this includes
all code (including the relocater) and all fixed data. Subroutines should
not use more space than is absolutely necessary for its dynamic storage
requirements.

Falcon(030 Modern Atari System Software Page 15

Due to the nature of the mapping of the shared data and program
spaces, any Y: area usage will causc a fragmentation of the P: space. It
can be all to casy for the unwary subroutine programmer to overwrite
space which is currently in use by a program, or even worse, to corrupt
the program itself, thus causing it to crash the DSP at some later time.
For this reason, two small reserved BSS areas exist within the memory
map of the Falcons DSP. These total 256 words of data for each area (X:
and Y:). This space is reserved for use by the subroutines and is intended
for storing uninitialised data. It is important therefore, to note that
after a subroutine has finished running, that another subroutine may
choose to use the same BS5 memory and overwrite previously held
information. Since subroutines must check their relocation status when
invoked, they must also re-establish their BSS data, otherwise it is
likely to be meaningless!

Page 16 Modern Atari System Software Falcon030

Writing programs

The following considerations should be born in mind whilst writing
programs which are to be launched into the area of RAM reserved for
program use: due to the nature of the shared data and program spaces,
careless use of X: or Y: data storage could prove to be disastrous to the
execution of code within the DSP system. The following diagram shows
how DSP memory is allocated on the Falcon:

B S AN
Subroutine BSS({X:)
xiaF00 | T P:7F00
X:3EFF [~ - N P:7EFF
Subroutines
x L _______--- } % — Value set by
DSP_RESERVE
Extended
Program
X:0200 |
X:01FF Int.
RAM/ROM _1
v:aFgp | Subroutine BSS(¥:) P:3F00
Y:3EFF 4\ P:3EFF
Program
Y:0200 _ 1
Y:01FF [“TInt.
Y:0000 — Y:RAM/ROM Int. RAM P:0000
Data Space Program Space
Falcon DSP - Memory Map
Falcon(30 Modern Atari System Software Page 17

Particular attention should be paid to the Y: area usage, since any
attempt to write into this area will, in some way, causc a fragmentation
of the P: space. Likewise, careless use of memory in the X: area could
cause code or data within the subroutine area to become corrupted. As
with writing subroutines, it can be all to easy for the unwary
programmer to overwrite space which is currently in usc by other code,
with potentially disastrous consequences.

Programs should always be assembled into absolute format code. The
DSP will always start a program by executing the instruction stored in
the first location of the DSP vector table, location P:0000 (note that
unlike the 680x0 processors, this is not an address; on the DSP these
tables actually consist of a series of JMP instructions). Since the last
element of this table is at location P:003F, then the first word of
program space is location P:0040. Normally, when downloading code
into the DSP, the Falcons main processor will automatically place the
instruction JMP P :$0040 into location P:0000 for you, thus assuming
that the program is to start execution from here. Such code would need to
start off with a code fragment similar to the following:

ORG P:%$0040
start CLR A #37F,N0O * Code starts here..

It is possible however to force execution of code from a completely
different address by writing your own start instruction into location
P:0000. Such a program may start something like this:

start equ P:%0200
org p:0
jmp p:start * Jump to code

org P:start
CLR A #$7F,NO * Code starts here..

This code would load to, and start execution from address P:0200.

Page 18 Modern Atari System Software Falcon030

Chapter 2
The Operating System

GEMDOS and MINT

MiNT implements the low level kernel for a multi-tasking operating
system. The new calls for MiNT are made as additions to the GEMDOS
part of the operating system. Programmers who are already familiar
with UNIX and/or the POSIX.1 standard will find that MiNT provides

the Atari range of machines with a very familiar (and portable)
programming environment.

MultuTOS

The additions to the AES allow for a full multi window, multi tasking
environment. It is now possible for many well written applications to
work under MultiTOS with little or no modification. Atari have made
other improvements to the GEM operating interface which will require
at least some minor modifications to take advantage. These include a
new 3D style user interface (including buttons, window slider bars and
alert/dialog boxes) and a new popup menu system.,

TOS Modern Atari System Software Page 19

SpeedoGDOS

GDOS is the acronym used to describe the Graphics Device Operating
System. This is the part of the operating system which, amongst other
things, manages the use of fonts within the computer. This aspect of the
system does much more than simply print the characters on the screen, it
controls the memory usage for storing or caching the fonts, it decides
which fonts are being used most frequently and most recently in order to
keep the speed of font usage to an optimum and it is almost entirely
responsible for all device independent output. This covers everything
from printing fonts on the screen, to outputting the fonts and graphics to a
dot matrix printer (at say 180 dots per inch), a laser printer (at 300 dots
per inch) or maybe even to a Linotronic (a professional, very high
resolution printing device) at 1270 or 2540 dots per inch. SpeedoGDOS is
the name given to the latest incarnation of GDOS for Atari machines.

A brief history of Atari GDOS

The first font manager system that was introduced by Atari was a
bitmap font manager simply called GDOS. This systermn was used by
many development houses, but for one reason or another, some of them
implemented fonts of different aspect ratios to those recommended by
Atari. As a result, many applications could use GDOS, but some required
a separate GDOS installation for the text to appear to be formatted
correctly on screen, or to be printed correctly on an output device. This
meant that the common resources of fonts (which as bitmaps could take
large amounts of disk space), were never really common at all and were
in fact unique to cach application, worse still, the user had to
reconfigure the ASSIGN.SYS file and re-boot the machine each time the
graphics, DTP or word-processing application was changed. Another
problem with GDOS was that since it used bitmap fonts exclusively,
each font required different definitions for every point size required by
the user, so not only were the individual fonts very large, but a full font
set was potentially massive. This resulted in a very inefficient use of
the hard disk space, compounded by the fact that the font set was
ultimately limited to the number of point sizes which it could contain.
The final blow was that not only was one font required for use on the
screen, but another may be required for use by each different output
device (wherc a dot matrix printer may be 180 to 360 DPI and a laser
printer 300 DPI). Needless to say, the higher the resolution of the
device, the larger the font set required to support it.

Page 20 Modern Atari System Software TOS

4

Technically speaking, GDOS is now dead and it has been replaced by a
new system which not only supports the old bitmap fonts but also
performs font scaling with a new type of font set. This new system is
known as SpeedoGDOS. Speedo has been designed by a company called
Bitstrcam which has a long history of using this sort of software
technology and has established a massive range of Bitstream fonts, all
of which are ready for use on the Atari range of computers.

What is Speedo?

At its lowest level, Speedo is a nice replacement to GDOS. Well written
GDOS applications should be 100% compatible with Speedo. At its
highest level, Speedo offers extra features which were never really
available before such as the ability to select any point size from within
a suitably written application, including sizes such as 10.25 point for
example. Another advantage of this font scaling technique is that the
same font definition can be used for each output device, gone is the
requirement for a scparate definition of each Swiss 10, 12, 14, 18, 24 and
36 point sizes for the screen and another set for an Epson LQ80 and
another set for an HP Laserjet etc., one file suits all.

Speedo also provides the ability to draw true bézier curves so
programmers of graphics programs can take advantage of this new
facility which has the advantage of being 100% compatible with the
Speedo device drivers, relieving the programmer of the otherwise
tedious task of having to form the image in the computer manually
before sending it to an output device of some type.

FontGDOS

As a final point, it is worth knowing that another version of GDOS
exists, this is simply called FontGDOS. This GDOS is in fact Speedo,
with all its Bézier drawing and bitmap facilities, but with all of the
outline font manager removed. So strictly speaking then, FontGDOS
comes in between the old GDOS and Speedo in terms of its functionality.
The previous section described some of the superior features of an outline
font system, what it did not point out however is that outline font
managers can become less efficient and far less visually effective than
standard bitmap fonts when dealing with small printer or screen
character sets.

TOS Modern Atari System Software Page 21

The reasons for this become evident when a scaleable font becomes so
small that it is in effect reduced to little more than a blob on the screen.
Bitmap fonts become very much more attractive at this point since each
point size is individually tailored to show the required detail for the
screen resolution in which they are currently running. It is also fair to
say that they are faster to use too, since the individual characters do not
require any form of calculation, they can simply be held in a modestly
sized font cache within the machine and blasted onto the screen at the
highest speed that the processor can manage.

So FontGDOS then is an update to the old GDOS system with the
addition of bézier drawing facilities, but with the advantage of an
outline font manager removed. FontGDOS may be more compatible with
some older style applications than Speedo where the outline
management may be of little or no use.

Page 22 Modern Atari System Software TOS

Chapter 3
The Video Sub-system

The video hardware in Falcon030 is supported by a complementary set of
XBIOS system calls. These allow the user to control virtually any aspect
of the display hardware configuration.

The system calls

Montype Inquire attached monitor type
BASIC 2 FUNCTION Montype%

Devpac 3 montype.W
(stack 2 bytes)

Lattice C int Montype(void);

This system inquiry will return the type of display device which is
currently connected to the computer. The following returns are possible:

H ST monochrome monitor
1 ST colour monitor
2 VGA monitor
3 Television.
Video Sub-system Modem Atari System Software Page 23

VgetRGB Inquire palette entries

BASIC 2 SUB VgetRGB(BYVAL index%, BYVAL count%,
BYVAL array&)

Devpac 3 array.L, countW, index.W, vgetrgb.W
(stack 10 bytes)

Lattice C void VgetRGB(int index, int count, long *array);

This call reads a range of values from the current palette, starting at
index, with count values into array. array is then a block of jong
words which contain bytes of X-R-G-B data; applications which want to
examine a single colour at a time are better off using the VDI call
vq_color.

VgetSize Inquire video mode memory size
BASIC 2 FUNCTION VgetSize&(BYVAL modecode%)

Devpac 3 modecode.W, vgetsize. W
(stack 4 bytes)

Lattice C long VgetSize(int modecode);

Given a modecode (as discussed above), this call returns the amount of
video RAM necessary to accommodate that screen. The returned size is in
bytes and may be used directly in an appropriate Mxalloc call.

VsetMask Get/Set VDI mask/overlay mode

BASIC 2 SUB VsetMask(BYVAL or_mask&, BYVAL and_maské&,
BYVAL overlay%)

Devpac 3 overlay.L, and_mask.L, or_mask.W, vsetmask.W
(stack 8 bytes)

Lattice C void VsctMask(long or_mask, long and_mask, int overlay);

This call is used exclusively in true colour screen modes; its purpose is to
set the AND and OR masks used by the VDI in the calculation of
vs_color. In practice, this enables or disables the usec of the X or
overlay bit in true colour graphic modes.

Page 24 Modern Atari System Software Video Sub-system

The default values for the masks are $FFFFFFFF (and_mask) and
$00000000 {or_mask), forcing the X bit to zero in drawing operations.
Values of $FFFFFFFF (and_mask) and $00000020 (or_mask) will set
the X in drawing operations thus making the colour transparent to
suitably connected external hardware. Finally, to clear the overlay , use
masks $FFFFFFDF (and_mask) and $00000000 (or_mask).

If overlay is non-zero, then the system will operate in overlay
graphics mode. If this value is zero, then the graphics system will be
taken out of overlay mode.

Vsetmode Set video mode
BASIC 2 FUNCTION Vsetmode%(BYVAL modecode%)

Devpac 3 modecode. W, vsetmode. W
(stack 4 bytes)

Lattice C int Vsetmode(int modecode);

This call is used to set a screen mode directly using a modecode as
described in the video sub-system overview of this guide. This call is for
use only by the experienced programmer since it does not automatically
reallocate or request memory to cope with changes in the physical size
of screen. Worse still, the VDI will not be informed of the screen
modifications, in which case any attempt to use the VDI will appear as
rubbish on the display.

One final point to note is that a call with an argument of -1 is treated by
the OS as an inquiry as to the current screen’s modecode. This can be
called prior to a VsetScreen which will change parameters in some
way. The returned value can then be used in a subsequent VsetScreen to
restore the screen to its initial settings.

Video Sub-system Modern Atari System Software Page 25

VsetRGB Set palette entries

BASIC 2 SUB VsetRGB(BYVAL index%, BYVAL count%,
BYVAL array&)

Devpac 3 array.l, count.W, index.W, vsetrgb.W
(stack 10 bytes}

Lattice C void VsetRGB(int index, int count, long *array);

This call allows a range of values within the current palette to be
changed, starting at index, with count values from the data array.
The array is a block of long words which contain bytes of X-R-G-B data;
applications which require to set a single colour at a time are better off
using the VDI call vs_color.

VsetScreen Set video mode

BASIC 2 FUNCTION VsetScreen%(BYVAL log&, BYVAL phys&,
BYVAL res%, BYVAL modecode%)

Devpac 3 modecode.W, res.W, phys.L, log.L, setscreen. W
(stack 14 bytes)

Lattice C int VsetScreen(void *log, void *phys, int res, int modecode);

This system call has been added to HiSoft languages as an updated
version of the Setscreen call (note that assembly language
programmers need no new ‘binding’}. It is now enhanced on the Falcon to
be compatible with the old ST style call and yet be powerful enough to
be useful with the new screen modes. The difference is that a fourth
parameter has been added to the parameter list so that if res is set to 3
(an illegal screen mode on the ST and TT) then a fourth parameter is
expected in the list. This value must be a word length bit mask or
modecode which is described in the video sub-system overview.

Another feature of this call is that if a value of zero (NULL) is passed in
both the 10g and phys parameter fields, then the operating system will
automatically perform the relevant Malloc to request the appropriate
amount of memory from the GEMDOS.

Programmers should note that careless use of this call can be dangerous.
Changes made with this call will be recognised by the VDI but not the
AES. Any attempt to use the AES in an application after having
changed the screen in this way, will almost inevitably cause the
program to crash. Only the VDI should be used for graphical output in
such circumstances.

Page 26 Modern Atari System Software Video Sub-system

VsetSync Set external/internal sync mode
BASIC 2 SUB VsetSync(BYVAL code%)

Devpac 3 code.W, vsetsync.W
(stack 4 bytes)

Lattice C void VsetSync(int code);

The computer contains a piece of circuitry which generates the required
video timing signals which determine the total number of pixels on the
screen. This is called the dot clock. By injecting a different signal into
the appropriate socket on the rear of the machine, and in conjunction
with the appropriate video programming, it is possible to customise the
screen modes. This call switches the influence of the external pulses on or
off as required. The bits used are as follows:

00000000 OCO00HVC

C external Clock enable
v external Vertical sync enable
H external Horizontal sync enable
Video Sub-system Modemn Atari System Software Page 27

Page 28

Modern Atari System Software Video Sub-system

Chapter 4
The Audio Sub-system

The Falcon’s audio subsystem has a series of comprehensive support
subroutines which allow control of practically every aspect of sound
recording/playback and CODEC, DSP and DMA device connection. Much
of the power of the new Falcon hardware is hidden in these new calls.

The system calls

Buffoper Set sound play/record enable/disable
BASIC 2 FUNCTION Buffoper&(BYVAL mode%)

Devpac 3 mode.W, buffoper.W
(stack 4 bytes)

Lattice C long Buffoper(int mode);

This bitmap mode value is used to set or read the status of the record or
play buffers. If mode is set to -1 then the value returned is the current
bitmap status. In the bitmap, a value of 0 = OFF, 1 = ON. The bits are;

7 6 5 4 3 2 1 0
0 ¥] 0 0 RR RE PR PE

Where: RR=Record Repeat, RE=Record Enable, PR=Play Repeat and
PE=Play Enable.

The sound system contains a 32 byte FIFO. When transferring data to the
record buffer, software must look to see if the RE bit has been cleared by
the hardware. If the bit was cleared then the FIFO has been flushed
otherwise it must be flushed manually by clearing the RE bit.

Audio Sub-system Modern Atari System Software Page 29

Buffptr Find sound system status structure
BASIC 2 FUNCTION Buffptr&(BYVAL pointer&)

Devpac 3 pointer.L, buffptr. W
(stack 6 bytes)

Lattice C long Buffptr(long *pointer);

This function returns the current position of the play and record data
buffer pointers in the 4 longwords pointed to by pointer. These show
the current status of the record and play buffer pointers; this can also be
used to determine how much of a record buffer has been used (see
Buffoper). The offsets from pointer are:

Offset Function
$00 Play buffer pointer
$04 Record buffer pointer
$08 Reserved
$0C Reserved
Devconnect Configure switch matrix

BASIC 2 FUNCTION Devconnect&(BYVAL source%, BYVAL dest%,
BYVAL srcclk%, BYVAL prescale%, BYVAL protocol %)

Devpac 3 protcol.W, prescale.W, srcclk.W, dest.W, source.W,
devconnect. W
(stack 10 bytes)

Lattice C long Devconnect(int source, int dest, int srccik, int prescale,
int protocol);

This call is used to determine the connection of a source device to at least
one destination device on the audio system switch matrix. Setting of the
source clock prescaler and transmission protocol is also achieved.
source determines the input device:

source Input device
0 DMA playback
1 DSP transmit
2 External input
3 ADC (Microphone input or PSG)
Page 30 Modern Atari System Software Audio Sub-system

The (potentially multiple) output devices are determined by the dest
bitmap:

dest Mask

$01 DMA record
$02 DSP receive
$04 External output
$08 DAC

srcclk determines the clock which used by the audio sub-system:

srcclk Device clock speed

0 Internal 25.175MHz clock
1 Externally supplied clock
2 Internal 32.0MHz

prescale is used to determine the sample rate; the actual sample rate
is calculated as ‘the selected clock speed divided by 256, divided by the
prescaler’. The prescale value is N-1, where N can be between 1 and 12.
A value of N>12 will mute the CODEC in which case the Sndstatus
command can be used to reset the CODEC. A value of 0 will cause the
systern to use the /1280, /640, /320, /160 prescale values mentioned in
the Soundcmd documentation.

The following table is a list of all of the device clock frequencies which
can be generated using the 25.175MHz system clock, given a particular
prescale value:

Prescale Division ratios Resultin
25.175MHz/(98340) Clock (Hz)

1 +512 / (+2) 49170

2 +768 / (+3) 32780

3 +1024 / (+4) 24585

4 +1280 / (+5) 19668

5 +1536 / (+6) 16390

6 +1792 / (+7) 14049*

7 +2048 / (+8) 12292

8 +2304 / (+9) 10927+

9 +2560 / (+10) 0834

10 +2816 / (+11) 8940

n +3072 / (+12) 8195

12 +3328 / (+13) 7565*
Audio Sub-system Modern Atari System Software Page 31

Note that the frequencies marked * are not valid for use with the
CODEC. A similar table of frequencies would have to drawn up using the
given division ratios if an external clock source were connected to the
DSP port and selected using the srrcclk = 1 parameter.

protocol enables or disables the handshaking mode; it should be 0 to
enable handshaking or 1 to disable it.

Dsptristate Set DSP fristate mode

BASIC 2 FUNCTION Dsptristate&(BYVAL dspxmit%,
BYVAL dsprec%)

Devpac 3 dsprec.W, dspxmit.W, dsptristate. W
(stack 2 bytes)

Lattice C long Dsptristate(int dspxmit, int dsprec);

This function removes the DSP's SSI transmit and receive ports from the
sound systems data matrix. The arguments passed to the call are status
flags in both cases, where a value of 0 means tristate (isolated) mode
and 1 means enable (on the bus) mode.

Gpio Program GP output pins
BASIC 2 FUNCTION Gpic&{(BYVAL mode%, BYVAL data%)

Devpac 3 data.W, mode.W, gpio.W
(stack 2 bytes)

Lattice C long Gpiofint mode, int data);

The Falcon's external DSP port contains three user programmable
general purpose (GP) input/output pins. This system call allows the
programmer access to these pins in order to be able to set their direction
as either input or output and to actually read or write the pins status.
mode values arc:

0 Set the [/O direction; data gives
the 1/0 direction for each of the
three pins: 1 for output, 0 for input

1 Read the pins status
2 Set the pins status to data

The function returns the current status of the pins for mode = 1 or zero
otherwise,

Page 32 Modern Atari System Software Audio Sub-system

Locksnd Lock sound system
BASIC 2 FUNCTION Locksnd&()

Devpac 3 locksnd. W
(stack 2 bytes)

Lattice C long Locksnd(void);

Since MultiTOS will allow muitiple sound utilities to run concurrently,
an application which requires use of the sound system must not simply
assume that the hardware is available for use at any given time. This
system call enables an application to attempt to claim the hardware for
its own use and will be given a return of 1 if successful. If the call failed
to claim the hardware because it is already in use, then an error code of
-129 (SNDLOCKED) will be returned.

Setbuffer Set sound play/record buffers

BASIC 2 FUNCTION Setbuffer&(BYVAL rec%, BYVAL begaddré&,
BYVAL endaddr&)

Devpac 3 endaddr.L, begaddr.L, rec.W, setbuffer. W
(stack 12 bytes)

Lattice C long Setbuffer(int rec, void *begaddr, void *endaddr);

This function is used to set-up the sample play/record buffers. rec
determines if the buffer is to be set to record or play, 0 sets playback, 1
sets record. begaddr is the start address of the butfer, endaddr is the
first location after the end of the buffer.

Audio Sub-system Modern Atari System Software Page 33

Setinterrupt Set sound end interrupt
BASIC 2 FUNCTION Setinterrupt&(BYVAL source%,
BYVAL cause%)

Devpac 3 cause.W, source.W, setinterrupt. W
(stack 6 bytes)

Lattice C long Setinterrupt(int source, int cause);

It is possible for the system to generate an interrupt at the end of a
sample record or playback frame. Used in conjunction with the frame
repeat bit, seamless joins between double buffered sounds become
possible. The interrupt source can be programmed to be either the MFP
timer A (source = 0) or MFP interrupt 7 (source = 1). The cause of the
interrupt can be: no interrupt (cause = 0), the end of a play buffer (1),
the end of a record buffer (2) or the end of a play or record buffer (3).

Setmode Set sample playback resolution
BASIC 2 FUNCTION Setmode&(BYVAL mode%)

Devpac 3 mode.W, setmode. W
(stack 2 bytes)

Lattice C long Setmode(int mode);

The sample playback resolution can be determined using this call; note
that 16 bit mono is not a legal operation. Legal mode values are:

Value Mode

0 8 bit stereo
1 16 bit stereo
2 8 bit mono.

Note that this call sets playback mode; recording can only be achieved
in 16 bit stereo.

Page 34 Modern Atari System Software Audio Sub-system

Setmontrack Set internal track
BASIC 2 FUNCTION Setmontrack&(BYV AL montrack%)

Devpac 3 montrack.W, setmontrack. W
(stack 4 bytes)

Lattice C long Setmontrack{int montrack);

The Falcon's internal speaker can be made to play any one of the four
possible sound tracks. The value montrack can be any value between 0
and 3.

Settrack Set play/record tracks
BASIC 2 FUNCTION Settrack&(BYVAL playtracks%, BYVAL
rectracks%)

Devpac 3 rectracks.W, playtracks%, settrack. W
(stack 6 bytes)

Lattice C long Settrack(int rectracks, int playtracks);
Fal

This function is used to set the number of record and playback tracks.
Please note that a track is considered to be stereo, for this reason when
the hardware is working in 8 bit stereo mode, two samples are read in at
a time.

Sndstatus Inquire sound system status
BASIC 2 FUNCTION Sndstatus&(BYVAL resct%)

Devpac 3 reset.W, sndstatus.W
(stack 4 bytes)

Lattice C long Sndstatus(int reset);

If reset = 0 then this call returns a bitmap which presents the current
status of the CODEC, which is returned in the lower nybble. The L & R
bits show if an overflow of some form has occurred in either the analogue
to digital or filtering processes. The bits are as follows;

7 6 5 4 3 2 1 0
0 0 L R S S S S

Audio Sub-system Modern Atari System Software Page 35

These bits are:

0 No error

1 Invalid control field (data stil] assumed to be valid)

2 Invalid sync format. This will cause a MUTE condition.
3 Serial clock is out of range. A MUTE condition will oceur,
R If set - Right channel clipping has occurred.

L If set - Left channel clipping has occurred.

If reset is 1, then after making this call the sound sub-system is forced
into the following state:

The DSP is tristated, gain and attenuation are set to zero, matrix
connections are resct, adderin is disabled, mode is set to 8 bit stereo,
play/record tracks are set to track 0, monitor track is set to zero,
interrupts are disabled, buffer operation is disabled (0).

Soundemd Issue command to sound system
BASIC 2 FUNCTION Soundcmd&(BYVAL mode%, BYVAL data%)

Devpac 3 data. W, mode.W, soundemd W
(stack 6 bytes)

Lattice C long Soundcmd(int mode, int data);

This call can be used to set, or enquire about the current settings of, a
range of different aspects of the sound hardware. For example, mode
tells the call which parameter is to be changed and data is what itis to
be changed to. If mode is a negative number then the current settings are
returned instead. The legal mode and data values are as follows:

Mode Operation Description

0 LTATTEN Sets the left channel output attenuation
which is measured in -1.5 dB increments.

Bit format: xxxx xxxx LLLL xxxx

1 ATATTEN Sets the right channel output attenuation
which is measured in -1.5 dB increments

BIT format: xxxx xxxx RRRR xxxx

2 LTGAIN Scts the left channel input gain in 1.5 dB
SthS

Bit format: xxxx xxxx LLLL xxxx

Page 36 Modern Atari System Software Audio Sub-system

3 RTGAIN Sets the right channel input gain in 1.5 dB
steps
Bit format: xxxx xxxx RRRR xxxx

4 ADDERIN Set the 16 bit signed adder to receive its
input from the ADC, matrix or both. The
input to this function is a bitmap:
76543210
XXX XN XMA
where:
M = matrix
A = ADC

5 ADCINPUT The input to the ADC can be set to be the
left and right channels of the PSG or the
microphone inputs. AQina bit sets
microphone input, a 1 will set the input to
be from the PSG.
76543210
XXxxxxLR
where:
L = left input
R = right input

6 SETPRESCALE The value set by this call will act as the
clock pre-scale value when the
Devconnect pre-scale value is set to 0.
Values are”
0 Invalid
1 divide by 640
2 divide by 320
3 divided by 160

Unlocksnd Unlock sound system

BASIC 2 FUNCTION Unlocksndé:()

Devpac 3 unlocksnd. W
(stack 2 bytes)

Lattice C long Unlocksnd(void);

This call must be made to release the hardware back to the system at
some stage. An error code of -128 (SNDNOTLOCK) will be returncd if the

hardware was not already locked out, otherwise it will return 0.

Audio Sub-system Modern Atari System Software

Page 37

Page 38

Modern Atari System Software Audio Sub-system

Chapter 5
The DSP Sub-system

The DSP sub-system features a number of special operating system
support calls. These fall into two areas, those used for the control of
data which is passed between the DSP and the host and those used for
the control of programs and subroutines which are run on the DSP.

The system calls

Data transfer control

Dsp_BlkBytes Send bytes from/to DSP

BASIC 2 SUB Dsp_BlkBytes(BYVAL data_in&, BYVAL size_in,
BYVAL data_outé&, BYVAL size_outé)

Devpac 3 size_out.L, data_out.L, size_in.L, data_in.L,
dsp_blkbytes. W
(stack 18 bytes)

Lattice C void Dsp_BlkByies(unsigned const char *data_in,
long size_in, unsigned char *data_out, long size_out);

This call handshakes a block of bytes to the DSP; the data is not sign
extended before transmission. On receipt of data from the DSP, only the
low byte of the transfer register is read. data_in and data_out arc 8
bit byte arrays. size_in and size_out are limited to a maximum
length of 64 kbytes each.

DSP Sub-system Modern Atari System Software Page 39

Dsp_BikHandShake Handshake data from/to DSP

BASIC 2 SUB Dsp_BlkHandShake(BYVAL data_iné,
BYVAL size_in&, BYVAL data_out&, BYVAL size outé&)

Devpac 3 size_out.L, data_out.L, size_in.L, data_in.L,
dsp_blkhandshake W
(stack 18 bytes)

Lattice C void Dsp_BlkHandShake(const void *data_in, long size_in,
void *data_out, long size_out);

This call handshakes a block of DSP word to/from the DSP. To initiate
a transfer, simply point data_in and data_out to the start addresses
of their respective transmit or receive buffers, provide the length of the
send and receive buffers and then make the call; by making one of the
length values zero, it is possible to use this call to transfer data in one
direction onily.

Despite the fact that size_in and size_out are long word values, you
should be aware of the fact that a 64k limit is imposed on the size of
transferred data blocks.

Dsp_BlkUnpacked Send longs from/to DSP

BASIC 2 SUB Dsp BlkUnpacked(BYVAL data_ink,
BYVAL size_in&, BYVAL data_outé&, BYVAL size out)

Devpac 3 size_out.L, data_out.L, size_in.L, data_in.L,
dsp_blkunpacked. W
(stack 18 bytes)

Lattice C void Dsp_BlkUnpacked(const long *data_in, long size_in,
long *data_out, long sizc_out);

Once again, this routine is a block transfer call. The input format of the
data is always assumed to be a 32 bit word, however, depending on the
result from the call Dsp_GetWordSize, only the correct number of the
least significant bytes are transmitted from storage. For this reason, this
call can only be made on machines which return a word size value of 4 or
less! For example, if the word size is declared to be 3 bytes (the 56001
DSP chip is a 24 bit device) then only the least significant 3 bytes of
data are transmitted from each of the 4 byte data packets. The same
principles apply to data received back from the DSP. An array of 4 byte
values will be filled with data from the DSP with all the bits right
justified (or forced into the least significant bytes).

Page 40 Modern Atari System Software DSP Sub-system

It must be noted, however, that any redundant bits at the most
significant end of the long word will not necessarily be cleared and will
probably contain meaningless data. For this reason it is very much the
responsibility of the calling program to decide how to treat the returned
packets i.e. to mask off the redundancy in the most significant bits if
required. size_inand size_out arelimited to a maximum length of 64
kbytes each.

Dsp_BlkWords Send words from/to DSP

BASIC 2 SUB Dsp_BlkWords(BYVAL data_in&, BYVAL size_ink,
BYVAL data_out&, BYVAL size_out&)

Devpac 3 size_out.L, data_out.L, size_in.L, data_in.L,
dsp_blkwords.W
(stack 18 bytes)

Lattice C void Dsp_BlkWords(const short *data_in, long size_in,
short *data_out, long size_out);

This command is used to send a block of 16 bit words to the DSP. As each
word is taken from the buffer, it is sign extended from 16 bits to the word
length of the receiving device (usually 24 bit) before being passed onto
the DSP itself. Data which is reccived back from the DSP is truncated
to the two least significant bytes before being placed into the receive
buffer. size_in and size_out are limited to a maximum length of 64
kbytes each.

Dsp_DoBlock Stream data from/to DSP

BASIC 2 SUB Dsp_DoBlock(BYVAL data_in&, BYVAL size_in&,
BYVAL data_out&, BYVAL size_outé)

Devpac 3 size_out.L, data_out.L, size_in.L, data_in.L,
dsp_doblock.W
(stack 18 bytes)

Lattice C void Dsp_DoBlock(const void *data_in, long size_in,
void *data_out, long size_out);

This routine offers a relatively fast and flexible way to transfer data
backwards and forwards between the host and the DSP. Please note that
the size inand size_out values are expressed in DSP words and not
necessarily in the word size of the host. The number of bytes which
constitute a DSP word can be obtained using the Dsp_GetWordSize call.

DSP Sub-system Modern Atari System Software Page 41

To initiate a transfer, simply point data_in and data_out to the start
addresses of their respective transmit or receive buffers, provide the
length of the send and receive buffers and then make the call. The host
will then sit and wait for the DSP to collect the first item of data from
the data_in buffer, where upon it will then proceed to feed data to the
DSP, assuming that the DSP is collecting it! There is no handshaking
using this call so it is possible for data to go missing if the DSP is too
heavily burdened to cope with the input data rate. When finished, the
routine will then wait for the DSP to start sending data back. The
routine will read out the requested number of data words into the buffer
even if the DSP does not send the full amount! Finally, by making one of
the length values zero, it is possible to use this call to transfer data in
one direction only.

Despite the fact that size_in and size_out are long word values, you
should be aware of the fact that a 64k limit is imposcd on the size of
transferred data blocks.

Dsp_GetWordSize Obtain DSP word size
BASIC 2 FUNCTION Dsp_GetWordSize%()

Devpac 3 dsp_getwordsize W
(stack 2 bytes)

Lattice C int Dsp_GetWordSize(void);

This call returns a value which represents the size of a word of data for
the DSP currently connected to the system. A value of three represents 3
bytes or more precisely 24 bits of data per DSP word. This value must be
used by applications which use the DSP, to ascertain the size of data
blocks which are transferred back and forth between the two devices.
Buffer sizes must be modulo this value. The value which is returned
could change at a later date, especially if the type or nature of the DSP
were to change in future Falcon'esque’ machines.

Page 42 Modern Atari System Software ~ DSP Sub-system

Dsp _InStream Submit data to DSP input daemon

BASIC 2 SUB Dsp_InStream(BYVAL data_in&, BYVAL
block_size&, BYVAL num_blocksé&, VARPTR
blocks_doneé&)

Devpac 3 blocks_done.L, num_blocks.L, block_size.L, data_in.L,
dsp_instream.W
(stack 18 bytes)

Lattice C void Dsp_InStream(const void *data_in, long block_size,
long num_blocks, long *blocks_done);

This routine is primarily designed to allow the transmission of multiple
blocks of data without the repeated use of a Dsp_DoBlock call
Operation of the transfer is largely transparent to the calling routine,
allowing it to get on with other work in the mean time. The transfer of
the next block in the queue is triggered by an interrupt from the DSP, but
the actual block transfer itself is executed without handshaking. When
all the blocks have been sent, the routine will tell the DSP not to send
any more data request interrupts. The calling routine can check the
progress of the transmission of the data blocks by examining the
variable blocks_done at any time. The job is finished when
blocks_done becomes egual to num_blocks.

Dsp 10Stream Transfer DSP data via I/O daemons

BASIC 2 SUB Dsp_lOStream(BYVAL data_in&,
BYVAL data_out&, BYVAL block _insize%,
BYVAL block_outsize&, BYVAL num_blocksé,
VARPTR blocks_doneé)

Devpac 3 blocks_done.L, num_blocks.L, block_outsize.L,
block_insize.L, data_out.L, data_in.L, dsp_iostrcam.W
{stack 26 bytes)

Lattice C void Dsp_IOStream(const void *data_in, void *data_out,
long block_insize, long block_outsize, long num_blocks,
long *blocks_done);

Dsp_IOStream is similar to a combination of Dsp_InStream and
Dsp_OutStream, but it does make one very important assumption and
that is that as soon as the DSP is ready to transfer one block of data, it
will also be ready to accept another as input.

DSP Sub-system Modern Atari System Software Page 43

To initiate a transfer, simply point data_in and data_out to the start
addresses of their respective transmit or receive buffers, block_insize
gives the size of blocks sent to the DSP, block_outsize gives the size
of block which will be received from the DSP. num_blocks is the total
number of blocks to be transferred, blocks_done tracks the blocks as
they are transferred.

Dsp_MultBlocks
Transfer struct dspblocks from/to DSP

BASIC 2 SUB Dsp_MultBlocks(BYVAL numsendé&, BYVAL
numreccive&, BYVAL sendblocksé&, BYVAL
receiveblocksér)

Devpac 3 receiveblocks.L, sendblocks.L, numreceive.L, numsend.L,
dsp_multblocks. W
(stack 18 bytes)

Lattice C void Dsp_MultBlocks(long numsend, long numreceive,
const void *sendblocks, void *receiveblocks);

This call provides the programmer with the ability to send and/or
receive multiple packets of data between the DSP and the host with a
single operating system call. The number of blocks to be sent or received
are declared in numsend and numreceive. The blocks of data to be sent
are listed in two arrays or lists called sendblocks and
receiveblocks. For C programmers these are structures of the type:

struct dspblock {

short blocktype, 0 = 32 hit longs
1 signed 16 bit words

unsigned 8 bit bytes

H N

long blocksize;
void *bloackaddr;

}

In each case, the array is a list of the blocks to be sent or received. The
first element of each array is the type of data which the block
represents, i.e. longs, signed words or bytes. Second, the number of
elements in the block and finally, the address where the block to be sent
or into which the data is to be placed, can be found in the computer’s
memory.

Page 44 Modern Atari System Software ~ DSP Sub-system

Dsp_OutStream Get data from DSP output deemon

BASIC 2 SUB Dsp_OutStream(BYVAL data_outé&, BYVAL
block_size&, BYVAL num_blocks&, VARPTR
blocks_done&)

Devpac 3 blocks_done.L, num_blocks.L, block_size.L, data_out.L,
dsp_outstream.W
(stack 18 bytes)

Lattice C void Dsp_QutStream(void *data_out, long block_size,
long num_blocks, long *blocks_done);

This routine is primarily designed to allow the reception of multiple
blocks of data without the repeated use of a Dsp_DoBlock call
Operation of the transfer is largely transparent to the calling routine,
allowing it to get on with other work in the mean time. The transfer of
the next block in the queue is triggered by an interrupt from the DSP, but
the actual block transfer itself is executed without handshaking. When
all the blocks have been received, the routine will tell the DSP not to
send any more data request interrupts. The calling routine can check the
progress of the transmission of the data blocks by examining the
variable blocks_done at any time. The job is finished when
blocks_done becomes equal to num_blocks.

Dsp Removelnterrupts Remove DSP vectors
BASIC 2 SUB Dsp_Removelnterrupts(BYVAL mask%)

Devpac 3 mask.W, dsp_removeinterrupts.W
(stack 4 bytes)

Lattice C void Dsp_Removelnterrupts(int mask);

Dsp_RemoveInterrupts stops the DSP from generating ready to
receive or ready to send interrupts to the host. mask is an 8 bit mask
which represents the interrupt to turn off, where the bits are:

1 Do not generate interrupts when there is
data ready for the host
2 Do not generate interrupts when the DSP
requires data from the host
3 Disable generation of interrupts of both
types.
DSP Sub-system Modern Atari System Software Page 45

The primary use of this call is to terminate one or other of the receive or
transmit interrupts which were originally set up by a Dsp_SetVectors
where a number of data elements were expected by the host but fewer
transactions actually occurred,

Dsp SetVectors Set DSP interrupt vectors

BASIC 2 SUB Dsp_SetVectors(BYVAL receiveré,
BYVAL transmitteré)

Devpac 3 transmitter.L, receiver.L, dsp_setvectors.W
(stack 10 bytes)

Lattice C void Dsp_SetVectors(void (*__stdargs receiver)(long),
long (*transmitter)(void));

Dsp_SetVectors allows the host process to install a pair of functions
which are called when an interrupt is received from the DSP. receiver
should point to a function that the user wishes to be called when the
DSP has data to be sent to the host process. The datum received from the
DSP is passed to the receiver routine is as a longword on the stack, the
lower three bytes of which are valid.

transmitter should point to a routine which is to be called when the
DSP requests data. If the transmitter function returns a non-zero long
value, the XBIOS portion of the interrupt handler will send the low
three bytes of the longword to the DSP. No data will be sent if the 32 bit
long word which is returned is a 0; to send back a zero DSP word, OR in a
value into the high byte of the returned value.

If either receiver or transmitter are 0 (NULL), the corresponding
interrupt will not be enabled. The host must remove its interrupts by
using the Dsp_Removelnterrupts call

Page 46 Modern Atari System Software DSP Sub-system

Program control calls

Dsp_Available Inquire available DSP memory

BASIC 2 SUB Dsp_Available(VARPTR xavailable&,
VARPTR yavailable&)

Devpac 3 yavailable.L, xavailable.L, dsp_available. W
(stack 10 bytes)

Lattice C void Dsp_Available{long *xavailable, long *yavailable);

The amount of free ram available from within the DSP system is
returned in the xavailable and yavailable variables (X: memory
and Y: memory respectively). The free memory will start at physical
address 0 in both address spaces but note that program space overlaps
both the X: and Y: areas and that the low 64 words of space in the Y:
area are used as interrupt vectors. This call would normally be used to
determine the amount of free memory which is available for use by
either a DSP program or a DSP resident subroutine in the following
manner:

DSP subroutines are always loaded into and executed within the area of
RAM which is known as X: memory (X:0 = P:16k). Each time a subroutine
is launched within the DSP, the subroutine manager will place the new
routine underneath the previous one. Therefore the value returned in
xavailable is the size of the unused area of X: memory or the memory
address immediately beneath the lowest stacked subroutine.

The major area of program space is that which is overlapped by the Y:
memory space (Y:0 = P:0). Since only one program can be resident within
the DSP at a time, current versions of the operating system will always
return the same value in yavailable. This is always the length of the
Y: memory less the decimal value of 256 which is the length of the
subroutine BSS arca located at the top of Y: memory, $3EFF. This BSS
space is significant because programs actually run in 'program’ memory
which is both X: and Y: memory together, so in principle there is little
to stop a real DSP hack from making a program use all of the Y: memory
and extend it up into the bottom of the X: memory space. Care would be
required here however since any subroutine activity may cause
corruption of the program or its data by writing into its legitimate BSS
memory.

DSP Sub-system Modemn Atari System Software Page 47

Dsp_ExecBoot Execute DSP boot program

BASIC 2 SUB Dsp_ExecBoot(BYVAL codeptré, BYVAL codesize&,
BYVAL ability%)

Devpac 3 ability.W, codesize.L, codeptr.L, dsp_execboot.W
(stack 12 bytes)

Lattice C Dsp_ExecBoot{const void *codeptr, long codesize,
int ability);

This routine will reset the DSP and download a boot program into the
512 words of internal DSP RAM. If the code is larger than the internal
memory then the rest of the program will be ignored. The types of
program which arc downloaded using this call should be restricted to
those whose intention is to entirely take over the DSP or to act as a
debugger of some form. Applications which share the DSP as a resource
with other programs must use the Dsp_LoadProg or Dsp_ExecProg
calls instead. codeptr must point to the address of the block to be
transferred within the host memory while codesize is the length of
the file in DSP words.

Dsp ExecProg Execute loaded DSP program

BASIC 2 SUB Dsp_ExecProg(BYVAL codeptr&, BYVAL codesizeé,
BYVAL ability%)

Devpac 3 ability.W, codesize.L, codeptr.L, dsp_exccprog. W
(stack 12 bytes)

Lattice C void Dsp_ExecProg(const void *codeptr, long codesize,
int ability);

This call will launch a DSP program into the DSP from a binary code
block contained within the host memory which is pointed to by
codeptr. The length of the program transferred is set by the variable
codesize and should not exceed that set by a previous Dsp_Reserve
call. The value of codesize is measured in DSP words.

Page 48 Modern Atari System Software DSP Sub-system

Dsp_FlushSubroutines Flush DSP subroufines
BASIC 2 SUB Dsp_FlushSubroutines()

Devpac 3 dsp_flushsubroutines. W
{stack 2 bytes)

Lattice C wvoid Dsp_FlushSubroutincs(void);

In cases where X: memory appears to be too small to run another
subroutine, this call can be used to clear out all of the subroutines and
return the memory to the pool. This call should only be used as a last
resort since frequent flushing of often used subroutines will degrade the
performance of the DSP.

Dsp_GetProgAbility ~Get current program ability
BASIC 2 FUNCTION Dsp_GetProgAbility%()

Devpac 3 dsp_getprogability. W
(stack 2 bytes)

Lattice C int Dsp_GetProgAbility(void);

This call will provide the host with the ability code of the program
which is currently residing and/or running in the DSP. If the returned
code is not recognised by the caller, then the program is unlikely to do
anything useful for it. In this instance the host has to assess whether or
not it needs to remove the current program and replace it with another
which will do the job.

Dsp_Hf0 Read/Write HSR bit 3
BASIC 2 FUNCTION Dsp_Hf0%(BYVAL flag%)

Devpac3 flagW, dsp_hf0.W
(stack 4 bytes)

Lattice C int Dsp_Hf0(int flag);

This call will cither read from or write to bit #3 of the Host Status
Register (HSR). If T1ag is 0 or 1 then the relevant status will be written
into the bit. If flag = $FFFF, then the current status of the flag will be
returned without affecting its value.

DSP Sub-system Modem Atari System Software Page 49

Dsp_Hf1 Read/Write HSR bit 4
BASIC 2 FUNCTION Dsp_Hf1%(BYVAL flag%)

Devpac 3 flag.W, dsp_hfl.W
(stack 4 bytes)

Lattice C int Dsp_Hf1(int flag);

Functionally identical to Dsp_HTO only this call will operate on bit #4
of the HSR.

Dsp Hf2 Read HCR bit 3
BASIC 2 FUNCTION Dsp_Hf2%()

Devpac3 dsp_hf2. W
(stack 2 bytes)

Lattice C int Dsp_Hf2(void);
This call returns the status of bit #3 of the Host Control Register (HCR).

Note that this is a read only register and that the bit in question can
only be set by the DSP.

Dsp Hf3 Read HCR bit 4
BASIC 2 FUNCTION Dsp_Hf3%()

Devpac3 dsp_hf3.W
(stack 2 bytes)

Lattice C int Dsp_Hf3(void);
Similar to Dsp_Hf2 except that bit #4 of the HCR is returned.

Page 50 Modern Atari System Software DSP Sub-system

Dsp_HStat Read interrupt status register
BASIC 2 FUNCTION Dsp_HStat%()

Devpac3 dsp_hstat.W
(stack 2 bytes)

Lattice C int Dsp_HStat(void);

This call will return the status of the read only, byte wide DSP register,
called the Interrupt Status Register (ISR). By reading the status of
various bits contained within this register, it is possible to tell if the
DSP host port is ready to transmit or receive data.

Bit Name Function

L RXDF Receive Data Register Full

1 TXDE Transmit Data Register Empty
2 TRDY Transmitter Ready

3 HF2 Host Flag 2

4 HF3 Host Flag 3

5 N/A Reserved for later expansion

6 DMA DMA Status

7 HREQ Host Request

Dsp_InqSubrAbility
Locate resident DSP subroutine

BASIC 2 FUNCTION Dsp_InqSubrAbility%(BYVAL ability%)

Devpac 3 ability.W, dsp_ingsubrability. W
(stack 4 bytes)

Lattice C int Dsp_InqSubrAbility(int ability);

In an effort to see if a subroutine already exists within the DSP which
has a specific ability, the host only needs to make this call. An attempt
is made to match the ability code requested by the host with those
already inside the DSP. If the handle which is returned is 0 then no
routine currently exists, in which case the host will have to download
one itself. However, if a routine does exist within the machine, then it
may be called using the returned handle.

DSP Sub-system Modern Atari System Software Page 51

Dsp LoadProg Load & Execute DSP program

BASIC 2 FUNCTION Dsp_LoadProg%(BYVAL file$,
BYVAL ability%, BYVAL buffer&)

Devpac 3 buffer.L, ability.W, file.L, dsp_loadprog.W
(stack 12 bytes)

Lattice C int Dsp_LoadProg(const char *ile, int ability, void *buffer);

This call will load a DSP routine from disk and execute the program
automatically. The program must be stored as an ASCII .LOD format
file and the length of the executable code must not be larger than that
reserved for it using the Dsp_Reserve call. File should point to the file
name (and where necessary, the path) of the file to be executed.
ability is the 16 bit code which describes the functionality of the call
(refer to the chapter on the DSP sub-system for further details). buffer
must point to an address within the host where it can process the .LOD
file and the DSP code which it generates. The size of this buffer is
calculated as "3*(Length of program/data words + (3 * number of blocks
in the program))". The return from this function indicates what
happened during the call. A value of 0 means that the application was
launched without problem. A return of -1 indicates that an error occurred
sometime before the DSP file could be executed.

Dsp_LoadSubroutine Load DSP subroutine

BASIC 2 FUNCTION Dsp_LoadSubroutine%(BYVAL ptré&, BYVAL
size&, BYVAL ability%)

Devpac 3 ability.W, size.L, ptr.L, dsp_loadsubroutine. W
(stack 12 bytes)

Lattice C int Dsp_LoadSubroutine(const void *ptr, long size,
int ability);

This call will install a subroutine into the DSP memory for use at a later
stage. ptr must point to the first location of a block of DSP subroutine
code which is to be downloaded. The size of the subroutine in DSP words
is sent in the variable size and the ability code of the routine is also
sent as the third parameter. The handle returned by the routine will be
a positive value if the subroutine was installed without any problems.
This handle must be used in any future communication betwecen the
subroutine and the host. A handle return of 0 indicates that the
subroutine was not installed. Subroutines which are installed will
remain in the DSP until either they are overwritten by the subroutine
manager or flushed out using the Dsp_FlushSubroutines call.

Page 52 Modern Atari System Software DSP Sub-system

Dsp Lock Obtain exclusive lock on DSP
BASIC 2 FUNCTION Dsp_Lock%()

Devpac 3 dsp_lock.W
(stack 2 bytes)

Lattice C int Dsp_Lock(void);

This call should be made by a host application before attempting to use
the DSP. This is because Falcon supports a multi-tasking operating
system. Since a number of applications may now potentially be vying for
the DSP at any given time, Dsp_Lock provides a useful mechanism for
preventing those applications from accidentally hijacking the DSP from
each other. The call returns a value of 0 if the application has made a
successful bid to hire the use of the DSP and will remain the owner of
the DSP until a Dsp_Unlock call is made at some later point. A return
value of -1 indicates that the DSP is currently in use by some other
process and that for the time being at least, the caller must either sit
and wait its turn (presumably calling Dsp_Lock periodically) or if
possible, it should go away do the processing itself.

Dsp_LodToBinary Load .LOD file as binary

BASIC 2 FUNCTION Dsp_LodToBinary&(BYVAL file$,
BYVAL codeptr&)

Devpac 3 codeptr.L, file.L, dsp_lodtobinary.W
(stack 10 bytes)

Lattice C long Dsp_LodToBinary(const char *file, void *codeptr);

This routine will load a DSP .LOD program into memory and convert it
into the binary format required for transmission to the DSP using the
Dsp_ExecProg routine. The function will return the size of the program
in DSP words. A negative value will indicate that an error occurred
during execution of the call. Once again, codeptr should point to the
first location of the block of memory into which the binary data is to be
placed.

DSP Sub-system Modern Atari System Software Page 53

Dsp_RequestUniqueAbility = Request ability code
BASIC 2 FUNCTION Dsp_RequestUniqueAbility%(}

Devpac 3 dsp_requestuniqueability. W
(stack 2 bytes}

Lattice C int Dsp_RequestUniqueAbility(void);

This call provides a mechanism by which a host process may request an
identifier for a piece of code which is about to be downloaded. Any
future inquiry about this routine must be made by referring to it by its
ability code.

Dsp Reserve Reserve DSP memory

BASIC 2 FUNCTION Dsp_Reserve%(BYVAL xreserveé,
BYVAL yreserve&)

Devpac 3 yreservel, xreserve.L, dsp_reserve. W
(stack 10 bytes})

Lattice C int Dsp_Reserve(long xreserve, long yreserve);

Before downloading and running a program within the DSP system, it is
first necessary to reserve sufficient space to contain the code. The size of
the request must not be larger than that returned by the preceding
Dsp_Available call. Please note that despite having made a
reservation, the amount returned by Dsp_Available will not have
changed. This is because the value returned is that which is not being
used by subroutines. Programs are all deemed to use the same space
where as a number of sub-routines can remain resident along side one
another and must therefore be protected and allocated somehow. A
return of 0 means that the request for memory has been granted, a -1
returned means that the request failed for some reason.

Page 54 Modern Atari System Software DSP Sub-system

Dsp_RunSubroutine Run resident DSP subroutine
BASIC 2 FUNCTION Dsp_RunSubroutine%(BYVAL handle%)

Devpac 3 handle.W, dsp_runsubroutine. W
(stack 4 bytes)

Lattice C int Dsp_RunSubroutine(int handle);

This call will execute a subroutine resident within the DSP. Before the
call is made however, it must have first been identified using either the
Dsp_InqSubrAhility orDsp_LoadSubroutine calls to obtain a
handle. A negative status return indicates that the routine was not
successfully launched, a status of 0 indicates that everything is fine.

Dsp_TriggerHC Trigger host command interrupt
BASIC 2 SUB Dsp_TriggerHC(BYVAL vector%)

Devpac 3 vector.W, dsp_triggerhc. W
(stack 4 bytes)

Lattice C void Dsp_TriggerHC(int vector);

The DSP features a number of special interrupts which are dedicated to
communicating between the host processor and the DSP itself. Most of
these interrupts are reserved by the computer for its own use (many of
the XBIOS routines already discussed use them), or for the initiation of
a downloaded DSP subroutine by the host. These are all directed
through a number of reserved vectors within the DSP interrupt structure.
There are however, two vectors which Atari have set aside for use by
host programs (which by their nature are usually transient) as opposed
to host subroutines {(which usually remain resident). The relevant call is
made by referring to the actual vector number, the hexadecimal value of
$13 or $14. As far as the DSP program is concerned, the commands from
the host can not be made until the relevant code has first been installed
in the vectors within the DSP. This it does by placing the relevant JMP
instruction at locations P:26 and P:28, which must point to the code
somewhere within the body of the program. Finally, each time a
program is downloaded into the DSP, the DSP vector table is overlaid
by the Falcon's system vector table. All vectors may be overwritten
except those at $13 and $14.

DSP Sub-system Modern Atari System Software Page 55

Dsp_Unlock Relinquish DSP lock
BASIC 2 SUB Dsp_Unlock()

Devpac 3 dsp_unlock.W
(stack bytes)

Lattice C void Dsp_Unlock(void);

Any host process which has managed to claim the DSP for its own use
must call this routine at some stage. Any process which terminates itself
without first calling Dsp_Unlock will prevent any other process from
using the DSP, including any further incarnations of the current process
which may be launched in the future.

Page 56 Modern Atari System Software ~ DSP Sub-system

Chapter 6
GEMDOS/MiNT

What is MiNT?

The Atari GEMDOS system has been extended, chiefly for the
implementation of the new multi tasking kernel within GEM called
MiNT. These new calls allow systems programmers access to the low
level control of multi tasking applications.

The system calls

Dclosedir Close directory read
BASIC 2 FUNCTION Dclosedir&(BYVAL dirhandle&)

Devpac 3 dirhandle.L, d_closedir.W
(stack 6 bytes)

Lattice C long Dclosedir(long dirhandle);

Dclosedir will close the directory whose handle (returned from
Dopendir)isdirhandle. The return is 0 if successful or ETHNDL if
dirhandle is not valid.

Dcntl Directory control operations

BASIC 2 FUNCTION Dentlé&(BYVAL ¢md%, BYVAL nameé&,
BYVAL arg&)

Devpac 3 arg.L, name.L, cmd. W, d_centl W
(stack 12 bytes)

Lattice C long Dentl(int cmd, const char *name, long arg);

Dcntl performs a file system specific command, given by cmd, upon the
file or directory specified by name.

GEMDOS/MINT Modern Atari System Software Page 57

The exact nature of the operation performed depends upon the file
system on which name resides. The interpretation of the third argument
arg depends upon the specific command. The only built-in file system
which supports Dcntl operations is the device file system U: \DEV.

The value returned by the call depends on the specific operation
requested and the file system involved; a description of the detailed use
of this call is beyond the scope of this book. Generally, a 0 or positive
return value should mean success, -1 represents a failure.

Dgetcwd Get current working directory
BASIC 2 FUNCTION Dgetewd&(BYVAL path&, BYVAL drv%,
BYVAL size%)

Devpac 3 size.W, drv.W, path.L, d_getcewd W
(stack 10 bytes)

Lattice C long Dgetcwd(char *path, int drv, int size);

This call returns with the current working directory for a given drv in
the area pointed to by path. In effect this is a replacement for the
GEMDOS call Dgetpath, however, the length of the return is limited
by size. This prevents the returned string from being longer than that of
the allotted buffer, unlike Dgetpath which has the nasty side effect of
running off the end of the buffer into other storage space if the string is
too long to fit into the buffer pointed to by path.

Dlock Lock BIOS device
BASIC 2 FUNCTION Diock&(BYVAL mode%, BYVAL drv%)

Devpac 3 drv.W, mode.W, d_lock. W
(stack 6 bytes)

Lattice C long Dlock(int mode, int drv);

Dlock is used to lock or unlock the BIOS device indicated by drv. No
GEMDOS file operations are permitted on a locked drive. Thus, the
Dlock call provides a mechanism for disk formatters or re-organisers to
lock out other processes while low-level BIOS or XBIOS operations are
in progress on the device. If mode is 1, the drive is locked; if it is 0 then
the drive is unlocked and may be used again by other programs. If a
process terminates while holding a lock on a drive, that drive is
automatically unlocked. A lock operation followed immediately by an
unlock is very similar to a media change, except that the lock operation
will fail if there are open files that refer to the indicated drive.

Page 58 Modern Atari System Software GEMDOS/MiNT

The call will return 0 if the lock/unlock operation was successful,
EACCDN if mode is 1 and either open files exist on the drive or another
process is searching a directory on the drive, ELOCKED if mode is 1 and
another process has locked the drive, ENSLOCK if mode is 0 and the
drive was not locked by this process, EDRIVE if drv is not a valid BIOS
device number.

Note that Dlock operates on BIOS devices, which may not always be in
1-1 correspondence with GEMDOS drive letters. For this reason, to lock
GEMDOS drive A: (for example), the programmer should cali Fxattr
on the root directory of A: (Fxattr(0, "A:\", ..)}and then use the
dev field of the structure returned in order to determine the BIOS device
corresponding to the GEMDOS drive.

Dopendir Open directory for reading
BASIC 2 FUNCTION Dopendir&(BYVAL name&, BYVAL flag%)

Devpac 3 flag.W, name.L, d_opendir.W
(stack 8 bytes)

Lattice C long Dopendir{const char *name, int flag);

Dopendir opens the directory whose name is pointed to by name for
reading. A 32 bit directory handle is returned which may be passed to
Dreaddir to actually read the directory. flag controls the way
directory operations are performed. If flag is 1, then the directory is
read in compatibility mode, if flag is 0 then directory operations are
performed in normal mode. In compatibility mode, file systems act as if
the Fsfirst and Fsnext functions were being used; in particular, if it is
possible file names will be restricted to the DOS 8.3 convention, and will
be in upper case. In normal mode, file systems do not attempt to restrict
the range of names. Moreover, in this mode the Dreaddir system call
will also return a file index number (similar to the Unix inode number)
along with the file name. New programs should generally use normal
mode where possible.

This call will return a 32 bit directory handle, on success. Note that this
handle may be negative, but will never contain the pattern 0xFF in the
upper byte, whereas all errors do contain this pattern in the upper byte.
Alternatively, one of the following error codes may be returned; EPTHNF
if name is not a valid directory, EACCDN if the direclory is not accessible
by this program or ENSMEM if the kernel is unable to allocate memory
needed for the directory operations.

GEMDOS/MINT Modemn Atari System Software Page 59

Dpathconf Get configurable pathname variables
BASIC 2 FUNCTION Dpathconf&(BYVAL nameé, BYVAL mode%)

Devpac 3 mode.W, name.L, d_pathconf W
(stack 8 bytes)

Lattice C long Dpathconf(const char *name, int mode);

Dpathconf returns information about various limits or capabilities of
the file system containing the file named name. The variable mode
controls which limit or capability is being queried, as follows:

Value Value Returned

-1 return max. legai value for nin Dpathconf{n)
return internal limit on the number of open files
return max. number of links to a file

return max. length of a full path name

return max. length of an individual file name

return number of bytes that can be written atomically

return information about file name truncation

[«) I+ BN R S R\ B -]

return information about case sensitivity

If any of these items are unlimited, then Ox7{ffffffL is returned.

For mode 5, return information about file name truncation, the returned
value has the following meaning:

Value Description

0 File names are never truncated; if the file name in any
system call affecting this directory exceeds the
maximum length (returned by mode 3), then the error
value ERANGE is returned from that system call.

1 File names are automatically truncated to the
maximum length.

2 File names are truncated according to DO5 rules, i.e. to
a maximum 8 character base name and a maximum 3
character extension.

Page 60 Modern Atari System Software ~ GEMDOS/MINT

For mode 6, information about case sensitivity, the returned value has
the following meaning:

Value Description
0 File system is case sensitive.
1 File system is case insensitive, and file case

information is not preserved (e.g. file names are
always converted to upper case).

Dreaddir Read directory entry

BASIC 2 FUNCTION Dreaddir&(BYVAL len%, BYVAL
dirhandle&, BYVAL buf&)

Devpac 3 bufL, dirhandle.L, len.W, d_readdir.W
(stack 12 bytes)

Lattice C long Dreaddir(int len, long dirhandle, void *buf);

Dreaddir returns the next file in the directory whose handle (from the
Dopendir system call) is dirhandle. The file's name and (optionally)
a 4 byte index for the file are placed in the buffer pointed to by buf. The
file index is omitted if the directory was opened in compatibility mode
(see Dopendir for details); otherwise, it is placed first in the buffer,
followed by the (NUL terminated) name. If two names have the same
index, then they refer to the same file; the converse, however, is not
true. 1en is the size of the buffer, in total; it should be large enough to
hold the index (if any), the file name, and the trailing 0. Successive
calls to Dreaddir will return all the names in the directory, one after
another, unless the Drewinddir system call is used to restart the
reading at the beginning of the directory.

The call will return 0 if successful, ERANGE if the buffer was not large
enough to hold the index (if present) and name or ENMFIL if there are no
more file names to be read from the directory.

GEMDOS/MINT Modern Atari System Software Page 61

Drewinddir Rewind directory read
BASIC 2 FUNCTION Drewinddir&(BYVAL handle&)

Devpac 3 handle.L, d_rewinddir. W
(stack 6 bytes)

Lattice C long Drewinddir(long handle);

Drewinddir rewinds the open directory whose handle (returned from
the Dopendir system call} is handle. After the Drewinddir call, the
next call to Dreaddir will read the first file in the directory. The call
will return 0 if successful, EIHNDL if handle does not refer to a valid open
directory or EINVFN if the directory cannot be rewound (for example,
because of the type of file system on which it is located).

Fchmod Modify extended file attributes
BASIC 2 FUNCTION Fchmod&(BYVAL nameé&, BYVAL mode%)

Devpac3 mode.W, name.L, f_chmod. W
(stack 8 bytes)

Lattice C long Fchmod{const char *name, int mode);

Fchmod changes the file access permissions for the file named name. The
new access permissions are given in the word mode, which may be
constructed by ORing together the following symbolic constants:

S_IRUSR,S_IWUSR,S_IXUSR

Read, write, and execute permission (respectively) for the owner of the
file.

S_IRGRP, S_IWGRP, S_IXGRP

Read, write, and execute permission (respectively) for the file's group.
S_IROTH, S_IWOTH,S_IXOTH

Read, write, and execute permission for everybody else.

These constants are defined in the XATTR structure. Please also note that
not all file systems support all of these bits; bits not supported by a file
system will be ignored. Note also that "execute" permission for a
directory means permission to search the directory for a file name or
name component.

Page 62 Modern Atari System Software ~ GEMDOS/MINT

The call will return 0 on success, EACCDN if the calling process has an
effective uid which differs from the owner of the file and which is not
0, EFILNF if the file is not found or EPTHNF if the path to the file is not
found.

Fchown Change file ownership

BASIC 2 FUNCTION Fchown&(BYVAL name&, BYVAL uid%,
BYVAL gid%)

Devpac 3 gid. W, uid.W, name.L, f chown.W
" (stack 10 bytes)

Lattice C long Fchown(const char *name, int uid, int gid);

This call will change a file's user and group ownership to uid and gid
respectively. These ownership’s determine access rights to the file.
Only a process with effective uid 0 or whose effective uid matches the
user ownership of the file may make this call. In the latter case, the
new uid must match the old one, and the calling process must also be a
member of the group specified by gid.

This call will return 0 if successful, EACCDN if the calling process has an
effective uid which differs from the owner of the file and which is not 0,
EINVFN if the file system on which the file is located does not support a
notion of ownership (this is true of the normal TOS file system), EFILNF
if the file is not found or EPTHNF if the path to the file is not found.

Fentl File control

BASIC 2 FUNCTION Fentl&(BYVAL fh%, BYVAL arg&, BYVAL
emd%)

Devpac3 cmd.W, arg.L, fhW, f_cntlW
(stack 10 bytes)

Lattice C long Fentl(int fh, long arg, int cmd);

This call performs various control operations on the open file with
GEMDOS file handle Th. The specific command to perform is given by
cmd; the possible commands are given by symbolic constants and are
listed below. arg is an argument whose meaning depends on the
command.

GEMDOS/MINT Modem Atari System Software Page 63

The following commands are applicable to any file descriptor:

F_DUPFD
$0000

F_GETFD
$0001

F_SETFD
$0002

F_GETFL
$0003

F_SETFL
$0004

FSTAT
$4600

FIONREAD
$4601

Return a duplicate for the file handle. The new
(duplicate) handle will be an integer > argand <32.If
no free handles exist in that range, ENHNDL will be
returned, The Fdup(fh) system call is equivalent to
Fcntl({fh, 6L, F_DUPFD)

Return the noinherit flag for the file descriptor. This
flag is 0 if child processes started by Pexec should
inherit this open file, and 1 if they should not. arg is
ignored.

Set the noinherit flag for the file descriptor from the
low order bit of arg. The default value of the flag is 0
for handles 0-5 (the "standard” handles) and 1 for
other (non-standard) handles. Note that the noinherit
flag applies only to this particular file descriptor;
another descriptor obtained from th by the Fdup
system call or by use of the F_DUPFD option to Fcntl
will have the noinherit flag set to the default. Also
note that these defaults are not the same as for UNIX.

Returns the user-settable file descriptor flags. These
flags are the same as the mode passed to Fopen, unless
they have been further modified by another Fentl
operation. arg is ignored.

Set user-settable file descriptor flags from the
argument arg. Only the user-settable bits in arg are
considered; the settings of other bits are ignored, but
should be 0 for future compatibility. Moreover, it is not
possible to change a file's read-write mode or sharing
modes with this call; attempts to do so will (silently)
fail.

arg points to an XATTR structure, which is filled in
with the appropriate extended file attributes for the
file to which Fh refers just as though the Fxattr
system call had been made on the file. For a more
detailed description of the this structure, please refer
to the Fxattr function later on in this section.

arg points to a 32 bit integer, into which is written the
number of bytes that are currently available to be read
from this descriptor; a read of this number of bytes or
less should not cause the process to block (wait for more
input). Note that for some files only an estimate can be
provided, so the number is not always completely
accurate.

Page 64

Modern Atari System Software GEMDOS/MiNT

FIONWRITE arg points to a 32 bit integer, into which is written the

$4602 number of bytes that may be written to the indicated
file descriptor without causing the process to block.
Note that for some files only an estimate can be
provided, so the number is not always completely
accurate.

The following Fcntl modes are used for file locking and take a structure

of type flock:
struct flock {
short 1_type; />
#define F_RDLCK O
#define F_WRLCK 1
#define F_UNLCK 3
short 1_whence; /*
#define SEEK_SET 0O
#define SEEK_CUR 1
#idefine SEEK_END 2
long 1_start; /*

type of lock */

SEEK_SET, etc, */

start of region */

long 1_len; /* length of lock */
short 1_pid; /* callers pid */
b
F_GETLK arg is a pointer to an Tlock structure. If a lock exists
$0005 which would prevent this lock from being applied to

the file, the existing lock is copied into the structure
and the 1_pid field is set to the process id of the
locking process. Otherwise, 1_type is set to F_UNLCK.
If a conflicting lock is held by a process on a different
machine on a network, then the 1_pid field will be set
to a value defined by the network file system. This
value will be in the range Ox1000 to OxFFFF, and will
therefore not conflict with any process id since process

id's must be less than 0x1000.
F_SETLK Set (if 1_type is F_RDLCK or F_WRLCK) or clear (if
$0006 1 _typeis F_UNLCK) an advisory lock on a file. If the

file is a FIFO, the whole file must be locked or
unlocked at once, i.e. 1_whence, 1_start,and 1_len
must be 0. If this lock would conflict with a lock held
by another process, ELOCKED is returned. If an attempt
is made to clear a non-existent lock, ENSLOCK is
returned. More than one read lock may be placed on the
same region of a file, but no write lock may overlap
with any other sort of lock. If a process holds lockson a
file, then the locks are automatically released
whenever the process closes an open file handle
referring to that file, or when the process terminates.

GEMDOS/MINT Modern Atari System Software Page 65

F_SETLKW Like F_SETLK, but if the lock requested would conflict
$0007 with a lock held by another process, the calling process
is suspended until all conflicting locks are released.

The following commands are valid for any terminal device, e.g. the
console or a pseudo-terminal:

TIOCGETP Get terminal parameters. arg is a pointer to a block of
$5400 memory of type struct sgttyb.
TIOCSETP Set terminal parameters from the struct sgttyb
$5401 pointed to by arg.
struct sgttyb {
char sg_ispeed; [* reserved */
char sg_ospeed; {* reserved */
char sg_erase; {* erase character */
char sg_kill; /* line kill character */
short sg_flags; /* terminal control flags */
}
TIOCGETC Get terminal control characters. arg is a pointer to a
$5402 struct tchars.
TIOCSETC Set terminal control characters from the struct
$5403 tchars pointed to by arg. Setting any character to
the value 0 causes the corresponding function to
become unavailable.

struct tchars {

char t_intrc; /* raises SIGINT */
char t_quitc; /* raises SIGQUIT */
char t_startc; /* starts terminal output */
char t_stopc; /* stops terminal ocutput */
char t_eofc; /* marks end of file */
char t_brkc; /* marks end of line */
};
TIOCSLTC Set extended terminal control characters from the
$5405 struct ltchars pointed to by arg. Setting any of

the characters to 0 causes the corresponding function to
become unavailable.

TIOGGLTC Get extended terminal control characters, and put
$5404 them in the structure pointed to by arg:
Page 66 Modern Atari System Software ~ GEMDOS/MiNT

struct ltchars {

char t_suspc; /* raises SIGTSTP now */
char t_dsuspc; /* raises SIGTSTP when read */
char t_rprntc; /* redraws the input line */
char t_flushc; {* flushes output */
char t_werasc, /* erases a word */
char t_lnextc; /* quotes a character */
};
TIOCSWINSZ arg has type struct winsize *. This
$540C structure contains the sizes for the current

window. Note that the kernel maintains the
information but does not act upon it in any way;

it is up to window managers to perform whatever
physical changes are necessary to alter the
window size, and to raise the SIGWINCH signal
if necessary.

TIOCGWINSZ arg has type struct winsize *. The current
$5408 window size for this window is placed in the
structure pointed to by arg.

If any fields in the structure are 0, this means that the corresponding
value is unknown.

struct winsize {

short ws_row; /* # of rows of text in window*/
short ws_col; /* # of columns of text */
short ws_xpixel; /* width of window in pixels */

short ws_ypixel; /* height of window in pixels */
}s

TIOCGPGRP arg is a long word pointer ; the process group for

$5406 the terminal is placed into the long pointed to by
it.

TIOCSPGRP arg has type long *; the process group for the

$5407 terminal is set from the long pointed to by it.

Processes in any other process group will be sent
job control signals if they attempt input or output
to the terminal.

TIOCSTART Restart output to the terminal (as though the
$540A user typed control-Q) if it was stopped by a
control-5 or TIOCSTOP command. arg is ignored.
TIOCSTOP Stop output to the terminal (as though the user
$5409 typed control-S). arg is ignored.
GEMDOS/MINT Modern Atari System Software Page 67

TIOCGXKEY Get the definition of a function or cursor key. arg
$540D is a pointer to a struct xkey.

TIOCSXKEY Set the definition of a function or cursor key. arg
$540E is a pointer to a structure of type struct xkey.

struct xkey {
short xk_num; /* function key number */
char xk_def[8]; /* associated string */

e

The string currently associated with the indicated key is in xk_def;
this string is always null-terminated The xk_num field is the number of
the desired key:

xk_num Key

0-9 F1-F10

10-19 F11-F20 (shift Fl-shift F10)
cursor up

cursor down
cursor right
cursor left

help

undo

insert

clr/home
shift+cursor up
shift+cursor down
shift+cursor right

28BN

shift+cursor left

TIOCIBAUD and TIOCOBAUD are used to select the input and output
speeds for terminals. For these calls arg is a pointer to a long which the
new rate is read from and the old rate written to. If the value pointed to
by arg on entry is less than zero the rate is merely read, if the rate is
zero DTR is dropped on those terminals which support it. If the terminal
does not support split rates both input and output rates are set.

TIOCIBAUD Get /Set the input rate for the terminal given by
$5412 fh.
TIOCOBAUD Cet /Set the output rate for the terminal given by
§5413 th.

Page 68 Modern Atari System Software ~ GEMDOS/MINT

TIOCCBRK Clear break condition on terminal; argis
$5414 ignored.
TIOCSBRK Assert break condition on terminal; argis
$5415 ignored.

TIOCGFLAGS and TIOCSFLAGS are used to get and set, respectively,
attributes of terminals such as number of data bits and number of stop

bits.

TIOCGFLAGS Get the stop/data bits for the terminal

$5416 referenced by fh into the 16 bit word value
pointed to by arg.

TIOCSFLAGS Set the stop/data bits for the terminal

$5417 referenced by fh from the 16 bit word value
pointed to by arg.

The following definitions are used for the arg value:

Name Value Meaning
TF_1STOP 0x0001 One stop bit
TF_158TOP 0x0002 1.5 stop bits
TF_2STOP 0x0003 2 stop bits
TF_8BIT 0x0000 8 data bits
TF_7BIT 0x0004 7 data bits
TF_6BIT 0x0008 6 data bits
TF_5BIT 0x000C 5 data bits

The TCURS... family of Fcnil calls duplicate the standard XBIOS
Cursconf functionality for generic terminals.

TCURSOFF Hide cursor; arg is ignored.
$6300
TCURSON Show cursor; arg is ignored.
$6301
TCURSBLINK Enable blinking; arg is ignored.
$6302
TCURSSTEADY Disable blinking; arg is ignored.
$6303
TCURSSRATE Set blink rate from the 16 bit word pointed to by
$6304 arg.
TCURSGRATE Get blink rate into the 16 bit word pointed to by
$6305 arg.
GEMDOS/MINT Modern Atari System Software Page 69

The following commands are valid only for processes opened as files (i.e.
U:\PROC files):

PBASEADDR arg is a pointer to a 32 bit integer, into which

$5002 the address of the process basepage for the
process to which fh refers is written.

PPROCADDR arg is a pointer to a 32 bit integer, into which

$5001 the address of the process control structure for
the process is written.

PCTXTSIZE arg is a pointer to a 32 bit integer, into which the

$5003 length of a process context structure is written,

There are two of these structures located in
memory just before the process control structure
whose address is returned by the PPROCADDR
command. The first is the current process context;
the second is the saved context from the last
systemn call.

PGETFLAGS arg is a pointer to a 32 bit integer, into which

$5005 the process memory allocation flags are copied.
These flags are the same ones found in the
prgflags field of GEMDOS executable programs,
or as the first parameter to Pexec mode?7,

PSETFLAGS arg is a pointer to a 32 bit integer, from which

$5004 the process memory flags for the target process
will be set. Note that only the low order 16 bits
are actually used right now, and not all of these
are valid. See the documentation for GEMDCS
executable programs for details on the meanings

of the flags.
PTRACEGFLAGS arg is a pointer to a 16 bit integer, into which
$5007 the current trace flags of the target process are

copied. If the process is not being traced, the
flags will be 0.

Page 70 Modern Atari System Software ~ GEMDOS/MINT

PTRACESFLAGS
$5007

PTRACEGC
$5008

PTRACESTEP
$500A

PTRACEFLOW
$5009

arg is a pointer to a 16 bit integer, the bits of
which determine how the target process will
respond to signals.

If bit #0 is set, the target process will respond to
signals and other exceptions by stopping, and the
process which set the flags will receive a
SIGCHLD signal informing it of this fact; it may
then use the Pwaitpid system call to retrieve
information about why the process stopped, and
may use Fread and Fwrite to interrogate and
possibly change the state of the process before
causing it to continue (see below).

if bit #0 is clear, then all process tracing will
cease, and the process will respond to signals in
the normal way. All other bits are reserved and
should be set to 0 for now. If some other process
has already used PTRACESFLAGS to set process
tracing for the target process, then the call will
fail,

Restarts a process that was being traced by the
caller and which stopped because of a signal.
arg is a pointer to a 16 bit integer which is
either 0 (in which case all pending signals for
the stopped process are cleared before it is
restarted) or the number of a signal which is to
be delivered to the process after it restarts.
Typically, this will be the same as the signal
that stopped it.

Like PTRACEGO, except that the trace bit will be
set in the status register of the restarted process;
thus, a SIGTRAP signal will be generated in that
process after 1 user instruction has been executed.
Note that it is not possible to trace processes
that are executing in the kernel; if the process
was stopped while executing in the kernel the
trace bit will be set only when the process returns
from the kernel.

Again, this is similar to PTRACEGC except that
it will run code until a change in the flow of
instructions occurs. This is valid on 68020
processors and above. Any attempt to use this
function on a 68000, for example, will return an
error.

GEMDOS/MINT Modern Atari System Software

Page 71

The following commands are valid only for files which represent shared
memory:

SHMSETBLK argis a pointer to a block of memory previously

$4001 allocated by Mxalloc. The memory will be
offered for sharing under the name of the file
represented by fh (which must be a file in the
U: \SHM subdirectory).

SHMGETBLK arg must be 0, for future compatibility. Returns

$4000 the address of the block of memory previously
associated with the file via SHMSETBLK ora
NULL pointer if an error occurs. Note that
different processes may see the shared memory
block at different addresses in their address
spaces. Therefore, the shared memory block
should not contain any absolute pointers to data.

The call will return 0 or a positive number if successful (for most
commands; but see the specific descriptions above), EIHNDL if fh is not a
valid GEMDOS open handle and EINVFN if the specified command is
not valid for this file handle. Some other (long) negative error number
may be generated if an error occurs and some of the different commands
may recognise different possible errors.

Fgetchar Get character from file
BASIC 2 FUNCTION Fgetchar&(BYVAL fh%, BYVAL mode%)

Devpac 3 mode.W, fh.W, f_getchar W
(stack 6 bytes)

Lattice C long Fgetchar(int fh, int mode);

Fgetchar reads a character from the open file whose handle is fh. The
parameter mode has an effect only if the open file is a terminal or
pseudo-terminal, in which case the bits of mode have the following
meanings:

0x0001 Cooked mode; special control characters (control-C and
control-Z) arc checked for and interpreted if found (they cause
SIGINT and SIGTSTP, respectively, to be raised); also, flow
control with control-S and control-QQ is activated.

0002 Echo mode; characters read are echoed back to the terminal.

Page 72 Modern Atari System Software ~ GEMDOS/MINT

The ASCII value of the character read is put in the low byte of the long
word that is returned. If the file is a terminal or pseudo-terminal, the
scan code of the character pressed and (possibly) the shift key status are
also returned in the long word, just as with the BIOS Bconin system
call. The function returns the character read, if successful. 0xC000FF1A if
end of file is detected. EIHNDL if Th is not a valid handle for an open
file.

Finstat Get file input status
BASIC 2 FUNCTION Finstat&(BYVAL fh%)

Devpac 3 fh.W, f_instatW
(stack 4 bytes)

Lattice C long Finstat(int fh);

Finstat returns the number of bytes of input waiting on the file whose
GEMDOS handle is fh, or 0 if no input is available on that handle. The
return will be 0 or a positive number if successful It may also return
EIHNDL if fh is not a valid handle for an open file.

Flink Create ‘hard’ link

BASIC 2 FUNCTION Flink&(BYVAL oldnameé,
BYVAL newnameé&)

Devpac 3 newname.L, oldname.L, f_link.W
(stack 10 bytes)

Lattice C long Flink{const char *oldname, const char fnewname};

Flink creates a new name (a “hard link”) for the file currently named
oldname. If the F1ink call is successful, then after the call the file may
be referred to by either name, and a call to Fdelete on cither name will
not affect access to the file through the other name. oldname and
newname must both refer to files on the same physical device. Note also
that not all file systems allow links.

This call will return 0 if successful, EXDEV if oldname and newname
refer to files on different physical devices, EINVFN if the file system
does not allow hard links or EFILNF if the file named 0ldname does not
currently exist.

GEMDOS/MINT Modern Atari System Software Page 73

Fmidipipe Manipulate MIDI file handles

BASIC 2 FUNCTION Fmidipipe&(BYVAL pid%, BYVAL in%,
BYVAL out%)

Devpac 3 out.W, in.W, pid.W, f_midipipe. W
(stack 8 bytes)

Lattice C long Fmidipipe(int pid, int in, int out);

Fmidipipe changes the MIDI input and output file handles (GEMDOS
file handles 4 and -5 respectively) for process pid. in is the GEMDOS
handle (for the calling process} which will become the MIDI input for
the receiving process, and out is the GEMDOS handle which is to
become the MIDI output.

If pid is 0, then the call affects the current process; in this case, it is
roughly equivalent to the sequence; Fforce(-4, in);Fforce(-5,
out).

The call will return a value of 0 on success, EFILNF if the indicated
process is not found, ETHNDL if either in or out is not a valid open handle
or EACCDN if in is not open for reading or if out is not open for writing.

Foutstat Get file output status
BASIC 2 FUNCTION Foutstat&(BYVAL fh%)

Devpac 3 fh.W, f_outstat W
(stack 4 bytes)

Lattice C long Foutstat(int fh);

Foutstat returns the number of bytes of output that may be written to
the file whose GEMDOS handle is fh, without blocking. The function
returns 0 or a positive number if successful, EIHNDL if Th is not a valid
handle for an open file.

Page 74 Modern Atari System Software GEMDOS/MINT

Fpipe Create anonymous pipe
BASIC 2 FUNCTION Fpipe%{BYVAL usrhé&)

Devpac 3 usrh.L, f_pipe.W
(stack 6 bytes)

Lattice C int Fpipe(short usrh[2]);

Fpipe creates a pipe that may be used for interprocess communication. If
it is successful, two GEMDOS handles are returned in usrh[0] and
usrh[1].usrh[0] will contain a handle for the read end of the pipe,
(opened for reading only), and usrh[1] will contain a handle for the
write end of the pipe (opened for writing only). The created pipe has
the name sys$pipe.xxx, where xxx is a three digit integer. This call
is typically used by shells; the shell redirects its standard input (or
standard output) to the read (or write) end of the pipe using Fdup and
Fforce before launching a child; the child will then read from (or
write to) the pipe by default. The call will return 0 if successful, ENHNDL
if there are not 2 free handles to allocate for the pipe, ENSMEM if there
is not enough free memory to create the pipe, EACCDN if too many pipes
already exist in the system. There cannot be more than 999 open pipes in
the system at one time.

Fputchar Put character to file

BASIC 2 FUNCTION Fputchar&(BYVAL fh%, BYVAL ch&, BYVAL
mode%)

Devpac 3 mode.W, ch.L, fhW, f_putcharW
(stack 10 bytes)

Lattice C long Fputchar(int fh, long ch, int mode);

Fputchar outputs a character to the GEMDOS file whose handle is Th.
The parameter mode has an effect only if the open file is a terminal or
pseudo-terminal, in which case the bits of mode have the following
meanings:

0x0001 Cooked mode; special control characters (control-C and
control-Z) are checked for and interpreted if found (they cause
SIGINT and SIGTSTP, respectively, to be raised); also, flow
control with control-S and control-Q is activated.

GEMDOS/MINT Modern Atari System Software Page 75

If the file receiving output is a pscudo-terminal, then all 4 bytes of ch
are recorded in the write, and may be retrieved by an Fgetchar call on
the other side of the pseudo-terminal; this allows programs to pass
simulated BIOS scan codes and shift key status through the pseudo-
terminal. If the file receiving output is not a terminal, then only the low
order byte of ch is written to the file. The function will return 4 (the
number of bytes of data transferred) if the write was to a terminal, 1 if
the write was not to a terminal and was successful, 0 if the bytes could
not be output (for example, because of flow control) or EIHNDL if fh is not
a valid handile for an open file. A (long) negative BIOS error code may
appear if an error occurred during physical I/O.

Freadlink Read ‘soft’ link

BASIC 2 FUNCTION Freadlink&(BYVAL bufsize%, BYVAL bufé,
BYVAL nameé)

Devpac 3 name.L, bufL, bufsize.W, f_readlink. W
{stack 12 bytes)

Lattice C long Freadlink(int bufsiz, char *buf, const char *name);

Freadlink determines what file the symbolic link name points to, i.e.
what the first argument to the Fsymlink call that created name was.
This null terminated string is placed in the memory region pointed to by
but. The total size of this region is given by bufsiz; this must be enough
to hold the terminating 0.

The call will return 0 on success, ERANGE if the symbolic link contents
could not fit in buf, EFILNF if name is not found, EACCDN if name is not
the name of a symbolic link or EINVFN if the file system containing the
name does not support symbolic links.

Fselect Suspend process awaiting file 1/0

BASIC 2 FUNCTION Fselect%(BYV AL timeout%, BYVAL rfdsé&,
BYVAL wfds&, 0&)

Devpac 3 $0.L, wifds.L, rfds.L, timeout.W, f_select W
(stack 16 bytes)

Lattice C int Fselect(int timeout, long *rfds, long *wfds, NULL);

Fselect checks two sets of open file descriptors and determines which
have data rcady to read, and/or which are ready to be written to. If
none are ready yet, the process goes to sleep until some member of the
sets are ready or until a specified amount of time has elapsed.

Page 76 Modern Atari System Software ~ GEMDOS/MINT

rfds points to a long word which represents a set of GEMDOS file
descriptors; bit n of this long word is set if file descriptor n is to be
checked for input data. An empty set may optionally be represented by a
NULL pointer instead of a pointer to 0. Similarly, wTds points to a 32 bit
long word which indicates which file descriptors are to be checked for
output status. When Fselect returns, the old values pointed to by rfds
and wfds (if non-NULL) are overwritten by new long words indicating
which file descriptors are actually ready for reading or writing; these
will always form subsets of the file descriptors originally specified as
being of interest.

timeout is a 16 bit unsigned integer specifying a maximum number of
milliseconds to wait before returning; if this number is 0, no maximum is
set and the call will block until one of the file descriptors specified is
ready for reading or writing, as appropriate. Thus, Fselect(0, 0, O,
NULL) will block forever, whereas Fselect(1, 0, 0, NULL) will
pause for 1 millisecond.

The final argument, a long word, must always be 0 (it is reserved for
future enhancements).

The call will return the sum of the numbers of bits set in the long words
pointed to by rfds and wfds. This will be 0 if the timeout expires
without any of the specified file descriptors becoming ready for reading
or writing, as appropriate, and non zero otherwise. The error code
EIHNDL may be generated if any handle specified by the long words
pointed to by rfds or wfds is not a valid (open) GEMDOS handle.

Fsymlink Create ‘soft’ link

BASIC 2 FUNCTION Fsymlink&(BYVAL oldnameé, BYVAL
newnamedc}

Devpac 3 newname.L, oldname.L, f_symlink. W
(stack 10 bytes)

Lattice C long Fsymlink(const char *oldname, const char *newname);

Fsymlink creates a new symbolic link {a “soft link”) for the file
currently named oldname. If the Fsymlink call is successful, then after
the call the file may be referred to by either name. A call to Fdelete on
the new name will not affect the existence of the file, just of the
symbolic link. A call to Fdelete with the name oldname will actually
delete the file, and future references with newname will fail.

GEMDOS/MINT Modern Atari System Software Page 77

Unlike hard links, symbolic links may be made between files on
different devices or even different types of file systems. The call will
return { if successful, EINVFN if the file system does not allow symbolic
links or another appropriate error code if the new symbolic link cannot
be created.

Fxattr Obtain extended file attributes

BASIC 2 FUNCTION Fxattr&(BYVAL flag%, BYVAL namek,
BYVAL xattr&)

Devpac 3 xattr.L, name.L, flag.W, f xattr.W
(stack 12 bytes)

Lattice C long Fxattr(int flag, const char *name, void *xattr);

Fxattr gets file attributes for the file named name and stores them in
the structure pointed to by xattr. The following is the definition for the
XATTR structure. Please note that this segment of C listing shows the
numeric constants expressed in octal:

typedef struct xattr {

unsigned short mode; /* file types */
#define S IFMT 0170000 /* file type mask */
#define S_IFCHR 0020000 /* BIOS file */
#define S_IFDIR 0040000 /* directory file */
#define S_IFREG 0100000 /* regular file */
#define S_IFIFO 0120000 /* FIFO */
#define S_IMEM 0140000 /* memory/process */
#define S_IFLNK 0180000 /* symbolic link */
/* special bits: setuid, setgid, sticky bit */
#define S ISUID 04000 f* set user ID */
#define S_ISGID 02000 /* set group ID */
#define S ISVTX 01000 /*retain text
segment */
{* file access modes for user, group, and other*/
#define S_IRUSR 0400
#define S_IWUSR 0200
#define S_IXUSR 0100
#idefine S IRGRP 0040
#define S_IWGRP 0020
#define S_IXGRP 0010
#define S IROTH 0004
#define S_IWOTH 0002
#define S_IXOTH 0001
Page 78 Modern Atari System Software GEMDOS/MINT

long index;

unsigned short dev;
unsigned short reservedl;
unsigned short nlink;
unsigned short uidg;
unsigned short gid;
long size;

long blksize, nblocks;
short mtime, mdate;
short atime, adate;
short ctime, cdate;
short attr;

short reserved2;

long reserved3[2];

} XATTR,

This structure contains the following ficlds of interest:

unsigned short mode This field gives the file type and access
permissions: (mode & S_IEMT) gives the
file type (one of S_IFCHR, 5§_IFDIR,
5_IFREG, S_IFIFO, S_IMEM, or S_IFLNK);
{mode & ~S_IFMT) gives the file access
mode according to the POSIX standard.

long index An index for the file. Together with the
dev field, this is intended to give a unique
way of identifying the file. Note, however,
that not all file systems are able to support
this meaning, so it is best not to use this
field unless absolutely necessary.

unsigned short dev The device number for the file. This may be
a BIOS device number as passed to the
Rwabs function, or it may be a device
number concocted by the file system to
represent a remote device.

unsigned short nlink Number of hard links to the file. Normally
this field will be 1.

unsigned short uid The user id of the owner of the file.

unsigned short gid The group id of the owner of the file.

long size The length of the file, in bytes.

long blksize The size of blocks on this file system.
GEMDOS/MINT Modern Atari System Software Page 79

long nblocks

short mtime
short mdate

short atime, adate

short c¢time, cdate

short attr

The flag parameter controls whether or not symbolic links should be
followed. If it is 0, then symbolic links are followed (like the Unix stat
function). If flag is 1, then links are not followed and the information
returned is for the symbolic link itself (if the named file is a symbolic

The number of physical blocks occupied by
the file on the disk; this count includes any
blocks that have been reserved for the file
but do not yet have data in them, and any
blocks that the file system uses internally
to keep track of file data (e.g. Unix indirect
blocks).

The time of the last modification to the
file, in standard GEMDOS format.

The date of the last modification, in
standard GEMDOS format.

The time and date of the last access to the
file, in GEMDOS format. Filesystems that
do not keep this time will return the values
givenin mtime and mdate for these fields
as well.

The time and date of the file's creation, in
GEMDOS format, Filesystems that do not
keep this time will return the values given
in mtime and mdate for these ficlds as
well.

The standard TOS attributes for the file, as
returned by Fattriband/or Fsfirst,

link); this behaviour is like that of the Unix 1stat system call.

This call will return 0 on success, EFILNF if the file is not found or

EPTHNF if the path to the file is not found.

Page 80 Modern Atari System Software

GEMDOS/MINT

Pause Suspend process awaiting signal
BASIC 2 SUB Pausc()

Devpac 3 p_pause.W
(stack 2 bytes)

Lattice C void Pause({void);

Pause causes the calling process to go to sleep until a signal that is not
being ignored or masked is received. If a signal handler has been
established for that signal with the Psignal system call, then the
handler is invoked before Pause returns; if the handler does a longjmp
to a different point in the program, if it exits the program, or if the
signal handler was set to SIG_DFL and the default action for the signal
is to terminate the process, then Pause will never return.

Pdomain Get/Set current process domain
BASIC 2 FUNCTION Pdomain%(BYVAL dom%)

Devpac 3 domW, p_domain.W
(stack 4 bytes)

Lattice C int Pdomain(int dom);

Pdomain gets or sets the process execution domain. This is a number
which controls the behaviour of a process. The default domain is 0,
which is the TOS compatibility domain and in which all system calls
behave exactly as they do under TOS. Domain 1 is the MiNT domain; in
this domain, the behaviour of the Fread and Fwrite system calls when
applied to terminals are controlled by the current terminal settings as
established by the Fcntl system call. Moreover, file names returned
from Fsfirst and Fsnext may be treated differently; MiNT domain
processes are expected to be able to deal with file names that are not
standard 8 character name + 3 character extension, all upper case, DOS
file names.

If dom is greater than or equal to 0, the process domain is set to its value.
Note that only domains 0 and 1 are currently defined, and the result of
using a different (positive} number for dom is unpredictable. If dom is
negative, no change is made to the process domain.

This call will return the process domain at the time of the Pdomain call
(i.e. before any change).

GEMDOS/MINT Modern Atari System Software Page 81

Pfork Clone current process
BASIC 2 FUNCTION Pfork%()

Devpac3 p_fork.W
(stack 2 bytes)

Lattice C int Pfork(void);

Pfork creates a copy of the current process. The child (the new process
created) inherits a copy of the parent's address space, not the parent's
original memory, and so changes to variables in the child do not affect
the parent in any way. The new process begins execution with an
apparent return from the Pfork call. The call will return 0 if it was in
the child, the new process id (a positive number), if it was in the parent.
An ENSMEM may be generated if there was not enough memory to create
the new process.

Pgetpgrp Get process group of current process
BASIC 2 FUNCTION Pgetpgrp%()

Devpac 3 p_getpgrp.W
(stack 2 bytes)

Lattice C int Pgetpgrp(void);

Pgetpgrp returns the process group number of the currently running
process. Process groups are commonly used for job control and other
signalling purposes; processes that share the same process group are
assumed to be closely related, and are usually stopped all together
rather than one at a time.

Pgetpid Get current process ID
BASIC 2 FUNCTION Pgetpid%()

Devpac 3 p_getpid.W
(stack 2 bytes)

Lattice C int Pgetpid(void);

This returns the process id of the currently running process. This is a
positive 16 bit integer which is unique among all processes currently in
the system; the call is always successful.

Page 82 Modern Atari System Software GEMDOS/MINT

Pgetppid Get parent process ID
BASIC 2 FUNCTION Pgetppid%()

Devpac3 p_getppid. W
(stack 2 bytes)

Lattice C int Pgetppid(void);

Pgetppid returns the process id of the parent of the currently running
process. The process id is a positive 16 bit integer. The call is always
successful. If the current process was started directly by the kernel, then
Pgetppid will return 0.

Pgetuid, Pgetgid, Pgeteuid, Pgetegid
Get real/effective user/group ID

BASIC 2 FUNCTION Pgetuid%
FUNCTION Pgetgid %
FUNCTION Pgeteuid %
FUNCTION Pgetegid%

Devpac 3 p_getuid W
p_getgid. W
p_geteuid W
p_getegid.W
(stack 2 bytes)

Lattice C int Pgetuid(void);
int Pgetgid(void);
int Pgeteuid(void);
int Pgetegid(void);

Pgetuid returns the real user id of the currently running process. This is
a number between 0 and 255 which determines the access permissions of
the process, and which may be used in multi-user systems to distinguish
different users of the system.

GEMDOS/MINT Modern Atari System Software Page 83

Similarly, Pgetgid returns the real group id of the currently running
process; this will also be a number between 0 and 255. Pgeteuid and
Pgetegid are similar to Pgetuid and Pgetgid respectively, except
that they return the effective user or group id. This is normally the same
as the real user or group id, except that if a program is run which has
the setuid or setgid bit set, it will run with an effective user or group
id equal to the owner of the program file. Access to files is based upon
the effective user or group id, so the setuid (and setgid) mechanism
allows users (in particular the super user) to grant permissions fo other
users. This mechanism also exists in the Unix operating system.

Pkill Send signal fo process
BASIC 2 FUNCTION Pkill%(BYVAL pid%, BYVAL sig%)

Devpac 3 sig.W, pid.W, p_killW
{stack 6 bytes)

Lattice C int Pkill{int pid, int sig);

Pkill sends the signal described by sig to one or more processes, as
follows:

If pid is a positive number, then the signal is sent to the process with
that process id. If pid is 0, the signal is sent to all members of the
process group of the calling process (i.e. all processes which have the
same process group number). This includes, of course, the calling process
itself. If pid is less than 0, the signal is sent to all processes with process
group number -pid.

The call will return 0 if successful. Note that if the current process is a
recipient of the signal, the Pkill call may not return at all if the
process is killed. ERANGE if sig is not a valid signal, EFILNF if pid >0
and the indicated process has terminated or does not exist, or if pid <0
and there are no processes in the corresponding process group. EACCDN if
pid > 0, the sending process does not have an effective user id of 0, and
the recipient process has a different user id from the sending process.

Page 84 Modern Atari System Software ~ GEMDOS/MINT

Pmsg Mailbox message passing

BASIC 2 FUNCTION Pmsgé&(BYV AL mode%, BYVAL mboxidé,
BYVAL msg&)

Devpac 3 msg.L, mboxid.L, mode. W, p_msg.W
(stack 12 bytes)

Lattice C long Pmsg(int mode, long mboxid, void *msgptr);

This call is used for short messages and as a way to perform interprocess
communication with little overhead. For more complicated messages or
more general inter process communication, use FIFOs or pseudo-
terminals.

Pmsg sends or receives a message to a specified message box. What sort
of operation is performed depends on the bits in mode as follows:

Mode Operation

0x0000 read

0x0001 write

0x0002 write, then read from mboxid OxFFFFxxxx where xxxx
is the process id of the current process

0x8000 OR with this bit to make the operation non-blocking.

The messages are five words long: two longs and a short, in that order.
The values of the first two longs are totally up to the processes in
question. The value of the short is the PID of the sender. On return from
writes, the short is the PID of the process that read your message. On
return from reads, it's the PID of the writer.

If the 0x8000 bit is set in the mode, and there is not a reader/writer for
the mboxid already, this call returns -1. Otherwise, a read operation
waits until a message is written and a write operation waits for a reader
to receive the message.

In mode 2, the writer is declaring that it wants to wait for a reply to the
message. What happens is that the reader gets put on the ready queue,
but the writer is atomically turned into a reader on a mailbox whose
mboxid is (OxFFFFO000 | pid). The idea is that this process will sleep
until awoken at a later time by the process that read the message. The
process reading the original request is guaranteed not to block when
writing the reply.

This call will return 0 if successful, -1 if bit 0x8000 is set and the Pmsg
call would have to block or EINVFN if mode is invalid.

GEMDOS/MIiNT Modern Atari System Software Page 85

Pnice Adjust current process ‘niceness’
BASIC 2 FUNCTION Pnice%(BYVAL delta%)

Devpac 3 delta.W, p_nice W
(stack 4 bytes}

Lattice C int Pnice(int delta);

Pnice changes the priority of the base process by the amount delta.
Higher levels of niceness correspond to decreased priority in scheduling,
so positive values for delta cause the corresponding process to be
scheduled less often, thus making the process 'nicer’. Conversely,
negative values for delta cause the process priority to be increased. The
adjusted process priority is returned as a 16 bit signed integer. 0 is the
default priority; values greater than 0 are for higher priority processes
{ones that are scheduled more often), and values less than 0 are lower
priority processes.

Prenice Adjust arbitrary process ‘niceness’
BASIC 2 FUNCTION Prenice&(BYVAL pid%, BYVAL delta%)

Devpac 3 delta.W, pid.W, p_renice. W
(stack 6 bytes)

Lattice C long Prenice(int pid, int delta);

Prenice changes the base process niceness for the process number pid,
by the amount delta. Higher levels of niceness correspond to decreased
priority in scheduling, so positive values for delta cause the
corresponding process to be scheduled less often. Conversely, negative
values for delta cause the process priority to be increased.

The call will return the current priority for the process, if successful.
This is a 16 bit signed quantity. The default priority is 0; higher
priority processes have larger priority values, lower priority ones have
smaller values. Alternatively, EFILNF will indicate that the specified
process does not exist {note that since this is a 32 bit negative number it
can be distinguished from the word negative numbers returned for low
priority processes) or EACCDN if the process has a different user id.

Page 86 Modern Atari System Software ~ GEMDOS/MINT

Prusage Obtain resource usage information
BASIC 2 SUB Prusage(BYVAL info&)

Devpac3 info.L, p_rusage W
(stack 6 bytes)

Lattice C void Prusage(long *info);

Prusage puts information on resources used by the current process into
the memory pointed to by info, as follows:

info[0] time spent by process in MiNT kernel

info[1) time spent by process in its own code

info[2] total kernel time spent by children of this process
info[3] total user code time spent by children of this process
info[4) memory allocated to this process (in bytes),
info[5} reserved for future use,

info[6] reserved for future use.

info[7] reserved for future use.

Please note that all times returned as a result of this call are measured
in milliseconds.

Psemaphore Use uncounted semaphores

BASIC 2 FUNCTION Psemaphore&(BYVAL mode%, BYVAL idé&,
BYVAL timeouté)

Devpac 3 timeout.L, id.L, mode.W, p_semaphore.W
(stack 12 bytes)

Lattice C long Psemaphore(int mode, long id, long timeout);

Psemaphore is a call that implements uncounted semaphores. A
semaphore is used for mutual exclusion: only one process at a time may
own a given semaphore. For example, a semaphore may be used to
protect access to data structures which are in shared memory and which
are used by multiple threads in a process: before using the memory a
thread must gain ownership of the guarding semaphore, and when
finished the thread must release the semaphore. The semaphore would
be created during initialisation and destroyed during shutdown.

GEMDOS/MINT Modern Atari System Software Page 87

Semaphores are identified by an ID, which is an arbitrary longword.
This is the semaphore’s name. The ID used to create the semaphore is
the name of that semaphore from then on. When using semaphores, you
should strive to use a longword that is unique. Using four ASCII
characters which spell out something is common: Ox4b4f444f ("MODM")
for instance might be the id of a semaphore that controls access to a
modem. (Actually, this would be a poor choice, since there can be more
than one modem in a system and this semaphore ID isn't flexible enough
to handle that. "MDM1" might be better.) Please note that semaphore
id's beginning with 0x5f (the underscore character) are reserved for
operating system use.

The timeout argument is only used in mode 2. It is ignored in other
modes. A timeout of zero means return immediately. A value of -1
means forever - that is, never time out. Other values are a number of
milliseconds to wait for the semaphore before timing out. The mode
argument is used to tell what operation the caller desires:

Mode Action

0 Create and "get" a semaphore with the given ID.

1 Destroy the indicated semaphore. The caller must own
the semaphore prior to making this call.

2 Request ownership of the semaphore. Blocks until the
semaphore is free or until the timeout expires. See
below.

3 Release the semaphore. The caller must own the

semaphore prior to making this call.

This call may return any of the following codes; 0 = Success, ERROR = A
request for a semaphore which the caller already owns, ERANGE = The
semaphore does not exist, EACCDN = Failure. The semaphore already
exists (mode 0}, you don't own it (modes 1 and 3}, or the request timed out
{mode 2).

Page 88 Modern Atari System Software ~ GEMDOS/MiINT

Psetlimit Set process resource limit
BASIC 2 FUNCTION Psetlimit&(BYVAL lim%, BYVAL value&)

Devpac3 valuell, im.W, p_setlimit.W
(stack 8 bytes)

Lattice C long Psetlimit(int lim, long value);

Psetlimit gets or sets a resource limit for a process. The limit which is
affected is governed by the value of 1im, as follows:

1 get/set maximum CPU time for process (milliseconds)
2 get/set total maximum memory allowed for process
3 get/set limit on Malloc'd memory for process.

If the data passed in value is negative, then the limit is unchanged; if
value is 0, the corresponding resource is unlimited; otherwise, the
resource limit is set to value.

Setting the maximum memory limit means the process is not allowed to
grow bigger than that size overall. Seiting the maximum Malloc’d limit
means that the process may allocate no more than that much memory.
The difference is that the latter limit applies above and beyond the
text+data+bss size of the process.

Using Psetlimit sets the corresponding limit for both the process and
any children it creates thereafter. Note that the limits apply to each
process individually; setting the child CPU limit value to 1000 and then
using Pfork to create three children results in each of those children
getting a CPU limit value of one second. They do not have a collective or
sum total limit of one second.

There is no restriction on increasing a limit. Any process may set any of
its limits or its childrens limits to a value greater than its current limit,
or even to zero (unlimited).

Memory limits do not appiy during execution of Pexec; that is, if a
process is limited to (say} 256KB of memory, it can still exec a child
which uses more. Memory limits are not retroactive: if a process owns
256KB of memory and then calls Psetlimit to restrict itself to 128KB,
it will not be terminated, but no Malloc calls will succeed until its size
drops below 128KB.

CPU limits are retroactive, however: if a process has used three CPU
seconds and calls Psetlimit to restrict itself to one second, it will
immediately receive SIGXCPU and terminate.

GEMDOS/MINT Modern Atari System Software Page 89

As a result of the call the returned value will represent the old limit,
where a value of 0 will mean that there was no limit.

Psetpgrp Set process group of current process
BASIC 2 FUNCTION Psetpgrp%(BYVAL pid%, BYVAL newgrp%)

Devpac3 newgrp.W, pid.W, p_setpgrp.W
(stack 6 bytes)

Lattice C int Psetpgrp(int pid, int newgrp);

Psetpgrp sets the process group of the process with process id pid to
the number newgrp. The process must have the same user id as the
current process, or must be a child of that process. If pid is 0, the process
group of the current process is set. If newgrp is 0, then the process group
is set equal to the id of the process. this call returns the new process
group number if successful, EFILNF if process pid does not exist or
EACCDN if the process has a different user id and is not a child of the
calling process.

Psetuid, Psetgid Set real user/group ID

BASIC 2 FUNCTION Psetuid%(BYVAL uid%)
FUNCTION Psetgid%(BYVAL gid%)

Devpac3 uid.W, p_setuid. W
gid. W, p_setgid. W
(stack 2 bytes)

Lattice C int Psetuid(int uid);
int Psetgid(int gid);

Psetuid sets the user id of the current process to uid, which must be a
number between 0 and 255 inclusive. This function call will fail if the
user id is not already 0, so once a process’ user id is set, it is fixed.
Psetuid returns uid, if the call is successful, and EACCDN if the process
does not have the authority to change its own user id (i.e. if its effective
user id is not 0 at the time of the call).

Similarly, Psetgid sets the group id of the current process to gid, which
again must be between 0 and 255. The new group id is returned if
successful, and EACCDN is returned if permission to change groups is
denied.

Page 90 Modern Atari System Software GEMDOS/MINT

Psigaction Install POSIX.1 style signal handler

BASIC 2 FUNCTION Psigaction&(BYVAL sig%, BYVAL acté,
BYVAL oacté)

Devpac 3 oact.L, act.L, sig.W, p_sigaction.W
(stack 12 bytes)

Lattice C long Psigaction(int sig, const void *act, void *oact);

Psigaction changes the handling of the signal indicated by sig
{which must be between 1 and 31; as defined in the appendix MiNT
signals). If act is non-zero, then it is assumed to point to a structure
describing the signal handling behaviour. This structure has the
following members:

struct sigaction {

void (*__ stdargs sa_handler){iong);
long sa_mask;

short sa_flags;

}

If sa_handler is SIG_DFL, then the default action for the signal will
occur when the signal is delivered to the process.

If sa_handler is SIG_IGN, then the signal will be ignored by the
process, and delivery of the signal will have no noticeable effect (in
particular, the signal will not interrupt the Pause or Psigpause
system calls). If the signal is pending at the time of the Psignal call, it
is discarded.

If sa_handler is some other value, it is assumed to be the address of a
user function that will be called when the signal is delivered to the
process. The user function is called with a single long argument on the
stack, which is the number of the signal being delivered (this is done so
that processes may use the same handler for a number of different
signals). While the signal is being handled, it is blocked from delivery;
thus, signal handling is “reliable” {unlike Version 7 and early System V
Unix implementations, in which delivery of a second signal while it
was being handled could kill the process}. The set of signals specified in
sa_mask are also blocked from delivery while the signal handler is
executing. Note that, unlike in some versions of Unix, the signal
handling is not reset to the default action before the handler is called; it
remains set to the given signal handler.

GEMDOS/MINT Modemn Atari System Software Page 91

The signal handler must either return (via a normal 680x0 RTS
instruction) or call the Psigreturn system call to indicate when signal
handling is complete; in both cases, the signal will be unblocked.
Psigreturn also performs some internal clean-up of the kernel stack
that is necessary if the signal handler is not planning to return (for
example, if the C longjmp () function is to be used to continue execution
at another point in the program).

Signal handlers may make any GEMDOS, BIOS, or XBIOS system calls
freely. GEM AES and VDI calls should not be made in a signal handler.

The sa_flags field specifies additional, signal-specific signal
handling behaviour. If sig is SIGCHLD, and the SA_NOCLDSTOP bit is
set in sa_Tf1lags, then the SIGCHLD signal is sent to this process only
when one of its children terminates (and not when a child is suspended
by a job control signal).

The oact argument to Psigaction, if non-zero, specifies a structure
that will be set to reflect the signal handling for sig that was current at
the time of the Psigaction system call.

Note that calling Psigaction to change the behaviour of a signal has
the side effect of unmasking that signal, so that delivery is possible.
This is done so that processes may, while handling a signal, reset the
behaviour and send themselves another instance of the signal, for
example in order to suspend themselves while handling a job control
signal. Signal handling is preserved across Pfork and Pvfork calls.
Signals that are ignored by the parent are also ignored by the child
after a Pexec call; signals that were being caught for handling in a
function are reset in the child to the default behaviour. The call returns
0 on success, ERANGE if sig is not a legal signal, EACCDN if the signal
may not be caught by the user.

A special note to BASIC 2 users: It is not possible to write handling
routines in BASIC, it is necessary to have written these using an
assembler such as Devpac and then linked them into the code produced
by BASIC at a later stage.

Page 92 Modern Atari System Software ~ GEMDOS/MINT

Psigblock, Psigsetmask Set signal mask

BASIC 2 FUNCTION Psigblock&(BYVAL mask&)
FUNCTION Psigsetmask&(BYVAL maské)

Devpac3 mask.L, p_sigblock.W
mask.L, p_sigsetmask.W
(stack 6 bytes)

Lattice C long Psigblock(long mask);
long Psigsetmask(long mask);

Psigblock adds the set of signals defined by the variable mask to the
set of signals which are blocked from delivery. Each bit of mask
represents a signal; if bit N of mask is set, then signal number N is
blocked. Psigblock returns the set of blocked signals as it was prior to
the new signals being added to it; the old set can thus be restored with
the Psigsetmask call

Psigsetmask replaces the set of blocked signals with the set in mask;
the bits of mask have the same meaning as they do for Psigblock,
except that bits that are set to 0 will cause the corresponding signals to
no longer be blocked. Psigsetmask returns the old set of blocked signals.

Note that certain signals (e.g. SIGKILL) cannot be blocked, and the
kernel will (silently) clear the corresponding bits in mask before
changing the blocked signal set.

Blocked signals remain blocked across Pfork and Pvfork calls. After a
Pexec call, the child process will always start with an empty set of
blocked signals, regardless of which signals were blocked by the parent.

Psignal Install signal handler
BASIC 2 FUNCTION Psignal&{BYVAL sig%, BYVAL handleré)

Devpac 3 handler.L, sig.W, p_signal. W
(stack 6 bytes)

Lattice C void (*__stdargs Psignal(int sig,
void (*__stdargs handler)(long)h(long);

Psignal changes the handling of the signal indicated by sig (which
must be between 1 and 31 inclusive; these are defined in the appendix
MiNT error codes). If handler is SIG_DFL, then the default action for
the signal will occur when the signal is delivered to the process.

GEMDOS/MINT Modem Atari System Software Page 93

If handler is SIG_IGN, then the signal will be ignored by the process,
and delivery of the signal will have no noticeable effect (in particular,
the signal will not interrupt the Pause or Psigpause system calls). If
the signal is pending at the time of the Psignal call, it is discarded.

If handler is some other value, it is assumed to be the address of a user
function that will be called when the signal is delivered to the process.
The user function is called with a single long argument on the stack,
which is the number of the signal being delivered (this is done so that
processes may use the same handler for a number of different signals).
While the signal is being handled, it is blocked from delivery; thus,
signal handling is "reliable” (unlike Version 7 and early System V Unix
implementations, in which delivery of a second signal while it was
being handled could kill the process). Note that, unlike in some versions
of Unix, the signal handling is not reset to the default action before the
handler is called; it remains set to the given signal handler.

The signal handler must either return (via a normal 680x0 RTS
instruction) or call the Psigreturn system call to indicate when signal
handling is complete; in both cases, the signal will be unblocked.
Psigreturn also performs some internal clean-up of the kernel stack
that is necessary if the signal handler is not planning to return {for
example, if the C Tongjmp () function is to be used to continue execution
at another point in the program).

Signal handlers may make any GEMDOS, BIOS, or XBIOS system calls
freely; GEM AES and VDI calls however should not be mixed in a signal
handler.

Please also note that calling Psignal to change behaviour of a signal
has the side effect of unmasking that signal, so that delivery is
possible. This is done so that processes may, while handling a signal,
resct the behaviour and send themselves another instance of the signal,
for example in order to suspend themselves while handling a job control
signal. Signal handling is preserved across Pfork and Pvfork calls.
Signals that are ignored by the parent are also ignored by the child
after a Pexec call; signals that were being caught for handling in a
function are reset in the child to the default behaviour. The call will
return the old value of the signal handler on success; this will be either
SIG_DFL, SIG_IGN, or a function address, ERANGE if sig is not a legal
signal or EACCDN if the signal may not be caught by the user.

A special note to BASIC 2 users: It is not possible to write handling
routines in BASIC, it is necessary to have written these using an
assembler such as Devpac and then linked them into the code produced
by BASIC at a later stage.

Page 94 Modern Atari System Software =~ GEMDOS/MiNT

Psigpause Pause awaiting signal with mask
BASIC 2 SUB Psigpause(BYVAL maské&)

Devpac 3 mask.L, p_sigpause.W
(stack 4 bytes)

Lattice C void Psigpause({long mask);

Psigpause sets a new signal mask and then causes the calling process to
go to sleep until a signal that is not being ignored or masked is received.
If a signal handler has been established for that signal with the
Psignal system call, then the handler is invoked before Psigpause
returns; if the handler does a longjmp to a different point in the
program, if it exits the program, or if the signal handler was set to
SIG_DFL and the default action for the signal is to terminate the
process, then Psigpause will never return.

If Psigpause does return, then the signal mask is restored to that prior
to the Psigpause system call, i.e. the new signal mask specified by
mask is only temporary.

Psigpending Inquire pending signals
BASIC 2 FUNCTION Psigpending&()

Devpac 3 p_sigpending. W
(stack 2 bytes)

Lattice C long Psigpending(void);

Psigpending returns a bit mask containing the signals that have been
sent to the calling process but not yet delivered (probably because they
have been blocked, either directly via Psigblock or Psigsetmask, or
indirectly because of signal handling. The call will return with a long
value in which bits will be set if {(and only if) the relevant signal is

pending,

GEMDOS/MINT Modern Atari System Software Page 95

Psigreturn Prepare kernel for signal exit
BASIC 2 SUB Psigreturn()

Devpac 3 p_sigreturn.W
(stack 2 bytes)

Lattice C void Psigreturn(void);

Psigreturn is used to prepare to exit from a signal handler. This is
done automatically by the kernel when a signal handler returns, so it is
needed only before a program uses the C 1ongjmp function (or some
similar facility) to do a non-local jump. Psigreturn will fail
(harmlessly) if no signal is being processed at the time it is called.

Pumask Set process file creation mask
BASIC 2 FUNCTION Pumask%(BYVAL mode%)

Devpac 3 mode.W, p_umask.W
(stack 4 bytes)

Lattice C int Pumask(int mode);

Pumask changes the file and directory creation mask of the current
process to the unsigned 16 bit quantity specified in mode. The old value
of the creation mask is returned as a result of the call. Child processes
inherit the new value for the mask.

When a new file is created with Fcreate or a new directory created
with Dcreate, the initial access permissions (see Fchmod for a
description of these) for the newly created file or directory are normally
set so that all permissions are granted (except that execute permission is
not normally granted for files). The creation mask set by Pumask
determines which permissions are not to be granted by default. Thus,
files created after a Pumask (S_IWOTH | S_IWGRP | S_IXOTH) call
will be readable by anyone, but writeable only by the owner; moreover,
directories created after this call would be searchable by the owner and
members of the same group, but not by anyone else.

Page 96 Modern Atari System Software ~ GEMDOS/MiNT

|

Pusrval Get/Set user process value
BASIC 2 FUNCTION Pusrval&(BYVAL valk)

Devpac3 valL, p_usrval W
(stack 6 bytes)

Lattice C long Pusrval{long val);

Pusrval may be used to set or retrieve the old process specific user
value. This is a long word which is attached to the process, and is
inherited by child processes. The use and meaning of the value is
entirely up to applications; the kernel only records it. If val is -1, then
no change is made to the user value; otherwise it is set to val. This call
will return the old process specific user value.

Pvfork Clone current process
BASIC 2 FUNCTION Pvfork%()

Devpac3 p_vfork.W
(stack 2 bytes)

Lattice C int Pvfork(void);

Pvfork creates a copy of the current process. Both the child (the new
process created) and the parent (the process which first made the call)
share the same address space, i.e. any changes that the child makes to
variables will also be noticed by the parent. The new process begins
execution with an apparent return from the Pvfork call.

Because the two processes share the same address space, including the
same stack, there could be many problems if they actually were running
at the same time. Therefore, the parent process is suspended until the
child process either exits or uses mode 200 of Pexec to overlay itself
with a new program in a new address space.

This call will return 0 if in the child, the new process id (a positive
number) if in the parent or ENSMEM if there is not enough memory to
create the new process.

GEMDOS/MINT Modemn Atari System Software Page 97

Pwaitpid, Pwait, Pwait3 Collect child exit codes

BASIC 2 FUNCTION Pwait&
FUNCTION Pwait3&(BYVAL flag%, BYVAL rusageé&)
FUNCTION Pwaitpid&(BYVAL pid%, BYVAL flag%,
BYVAL rusageé&)

Devpac3 p_wait.W
(stack 2 bytes)
rusage.L, flagW, p_wait3.W
(stack 8 bytes
rusage.L, flag.W, pid. W, p_waitpid. W
(stack 10 bytes)

Lattice C long Pwait(void);
long Pwait3(int flag, long *rusage);
long Pwaitpid(int pid, int flag, long *rusage);

Pwaitpid attempts to determine the exit code for certain stopped
children or children that have terminated. pid determines which
childrens exit status are of interest. If pid is -1, all children are of
interest. If pid is less than -1, only children whose process group
matches -pid are of interest. If pid is equal to 0, only children with the
same process group ID as the caller are of interest. If pid is greater than
0, only the child with the given process ID is of interest.

If bit 1 of Tlag is set, then children that are stopped due to job control
are reported; otherwise only children that have actually terminated
are reported. A stopped process will be reported only once (unless it is re-
started and stopped again); similarly a terminated process will be
reported only once.

If the process does have children which are of interest to the caller (as
specified by pid), but none are currently stopped or terminated and not
yet waited for, then the behaviour of Pwaitpid is controlled by bit 0 of
flag. If it is clear, the function will wait until some child is stopped or
terminates; if it is set, the function will return immediately.

The rusage parameter, if non-zcro, should point to two long words, into
which information about the child's CPU time usage is placed, as
follows:

rusage{0] milliseconds spent by child in user space
rusage[t] milliseconds spent by child in kernel space
Page 98 Modern Atari System Software ~ GEMDOS/MINT

|

If a child process is found which matches the pid specification given,
its process id is placed in the upper 16 bits of the 32 bit value returned,
and its exit status (as passed to Pterm or Ptermres, as determined
implicitly by PtermO, or as determined by the type of signal that
stopped or killed the process) is placed in the lower 16-bits. If the
process was stopped or terminated by signal n, then its exit status will be
(n<< 8) | x where x is 127 if the process was stopped and 0 if the
process was terminated. 0 if bit 0 of flag is set and the Pwaitpid
system call would have otherwise blocked waiting for a child to exit or
stop. Finally, EFILNF if no unwaited for children exist which are "of
interest” as specified by pid.

The Pwait3() system call is equivalent to Pwaitpid(-1, flag,
rusage), and is provided for backward compatibility. The Pwait ()
system call is equivalent to Pwaitpid(-1, 2, NULL) and is provided
only for compatibility with old applications; new applications should
not use these system calls.

Salert Generate system alert message
BASIC 2 SUB Salert(BYVAL msgé)

Devpac 3 msg.L, s_alertW
(stack 6 bytes}

Lattice C void Salert(const char *msg);

Salert sends a warning or error message to the alert pipe,
U:\PIPE\ALERT. The argument msg is a 0 terminated ASCII string
containing the message to be sent. The message should not contain any
carriage return, line feed, or escape characters; it should be a simple one
line warning or error message which is to be brought to the user's
attention. The Salert call takes whatever steps are necessary to format
this string and send it to the user; the exact form of the output {or even
whether the output is seen at all) depends on the system configuration.

GEMDOS/MINT Modern Atari System Software Page 99

Syield Relinquish processor
BASIC 2 SUB Syield

Devpac 3 s_yield W
(stack 2 bytes)

Lattice C void Syield(void);

Syield gives up control of the processor temporarily. Use of this call in
a tight loop can consume a fair amount of processor time, for this reason
it might be better to consider the use of Fselect, Talarmor Pause
instead if possible.

Sysconf Get configurable system variables
BASIC 2 FUNCTION Sysconf&(BYVAL n%)

Devpac 3 n.W, s_sysconf.W
(stack 4 bytes)

Lattice C long Sysconf(int n);

SysconT returns information about various limits or capabilities of the
currently running version of MiNT. The variable n controls which limit
or capability is being queried, as follows:

n Value Returned

-1 return max. legal value for nin Sysconf(n)

0 return max. number of memory regions per process
1 return max. length of Pexec command line string
2 return max. number of open files per process

3 retiirn number of supplementary group IDs

4 return max. number of processes per user

If any of these items arc unlimited, then Ox7fffffffL is returned.

Page 100 Modern Atari System Software ~ GEMDOS/MINT

Talarm Schedule alarm
BASIC 2 FUNCTION Talarmé&(BYVAL timeé&)

Devpac 3 time.L, t_alarm.W
(stack 6 bytes)

Lattice C long Talarm(long time);

This call will allow a process to set up an alarm which is to occur no
sooner than time seconds in the future. Sometime later (which may
actually be longer than the set value) a SIGALRM will be delivered to
the process. Pleasc note that unless a handler for SIGALRM has been
established by means of the Psignal function, then the arrival of the
SIGALRM will kill the process.

Once an alarm has been setup by the process and while that alarm is
still pending, then the action of a further call will depend on the value
set by time. If time is 0, then the previously scheduled alarm will be
cancelled. If time is a negative number, then it will return the number of
seconds left before the alarm is due. If the value passed in time isa
positive value, then the alarm will be re-scheduled to return the
SIGALRM in a further time seconds and the pending time of the old
alarm will be returned as a result.

Important GEMDOS extensions

The following is a list of standard GEMDOS calls which have been
extended for the new multi-tasking environment. In essence, they should
work as documented else where in your language manuals but please note
how the new extensions affect some of the calls.

Dfree Get free disk space
BASIC 2 SUB Dfree(buf&(), BYVAL d%)

Devpac 3 d.W, buflL, d_free. W
(stack 8 bytes)

Lattice C long Dfree(long *buf, int d);

In most normal circumstances this call would return the amount of free
storage that is available on the currently selected device. The pseudo
device U: under MiINT includes modifies this behaviour so that the call
returns information based on the current path (when requesting U: based
information).

GEMDOS/MINT Modem Atari System Software Page 101

For U:\PIPE the following information is returned:

buf[0] maximum available pipes
buf[1] total pipes available
buf[2] size of pipe

buf (3] 1

For U:\PROC and U: \ SHM the following information is returned:

but[0] number of free pages
buf[1} total number of pages
buf[2] page size

buf[3] 1

Note that the BASIC binding does not return errors.

Flock File locking primitive

BASIC 2 FUNCTION Flock&{(BYVAL handle%, BYVAL mode%,
BYVAL start&, BYVAL length&)

Devpac 3 length.L, start.L, mode.L, handle.L, f_lock.W
(stack 18 bytes)

Lattice C long Flock(int handle, int mode, long start, long length);

The Flock function is designed to lock a specified portion of an open file
to prevent other processes from accessing and /or modifying that part of
the file. This function is may be available for systems which have file
locking extensions, indicated by the _FLK cookie, but without MiNT
present; if MiNT is present the Fentl (F..LK.., ..) should be used in
preference {although MiNT also installs an _FLK cookie indicating the
presence of this call).

handle is the GEMDOS file handle of the open file, mode specifies if
the portion of the file is being locked or unlocked:

Value Meaning

0 Create a lock, starting at start and extending for
length bytes.

1 Remaove a previously set lock; start and 1ength must
match a previous lock.

Page 102 Modern Atari System Software ~ GEMDOS/MiNT

|

The start parameter is the offset from the start of the file, in bytes,
where the lock will begin. The length parameter is the length of the
locked area, in bytes. Once a lock has been set using a certain handle,
other file handles will not be able to read or write the locked area of
the file. If there are outstanding locks when a file handle is closed, the
behaviour is undefined.

Fopen Open a file
BASIC 2 FUNCTION Fopen&(BYVAL name$, BYVAL mode%)

Devpac 3 mode.W, name.L, f_open.W
(stack 8 bytes)

Lattice C long Fopen(const char *name, int mode);

As in previous versions of GEMDOS it is possible to open a file for
reading or writing. This value used to be between 0 and 2 but it has now
been extended considerably to account for file locking and additional
flags:

O_RDONLY 0x00 read from file only

O_WRONLY Ox0o1 write to file only

0_RDWR 0ox02 read or write to file

O_APPEND ox08 all writes go to end of file
0_COMPAT 0x00 compatibility mode

O_DENYRW 0x10 deny both read and write access
O_DENYW 0x20 deny write access to others
O_DENYR 0x30 deny read access to others
O_DENYNONE 0x40 don't deny any access to others
O_NOINHERIT 0x80 private file (not passed to child)
O_NDELAY Ox100 don't block for I/0 on this file

O _CREAT 0x200 create file if it doesn't exist
O_TRUNC 0x400 truncate file to 0 bytes if it does exist
0_EXCL 0x800 fail open if file exists
0_GLOBAL 0x1000 for opening a global file

The extension flags list above are those relevant to MiNT; if you find
that the _FLK cookie has been installed, but no MINT cookie, only a
subset of these are available: 0_RDONLY, O_WRONLY, O0_RDWR, 0_COMPAT,
O_DENYRW, O_DENYW, 0_DENYR, O_DENYNONE , O_NOINHERIT.

GEMDOS/MINT Modern Atari System Software Page 103

Mxalloc Allocate memory from preferred pool
BASIC 2 FUNCTION Mxalloc&(BYVAL size&, BYVAL mode%)

Devpac 3 mode.W, size.L, m_xalloc.W
(stack 8 bytes)

Lattice C long Mxalloc(long size, int mode);

Request memory from the system. The first 2 bits (values 0 to 3) represent
the preference of the memory to be returned. The next 2 bits (values 4, 8
and 9) select the protection of the memory from other applications.

Mode Meaning

$0000 System RAM only

$0001 alternative RAM only

$0002 either, system RAM preferred
$0003 either, alternative preferred.

The protection bits are as follows:

Mode Meaning

$0000 Default (from the program header flags)
$0010 Private

$0020 Global

$0030 Supervisor

$0040 World-readable

The high order bit number 14 ($4000) serves a special function. When set,
this bit means "if the owner of this region terminates, don't free this
region. Instead, let MiNT inherit it, so it'll never be freed."; this is a

special mode meant for the OS5 only.

Page 104 Modern Atari System Software

GEMDOS/MINT

Pexec Create/Execute process

BASIC 2 FUNCTION Pexec&(BYVAL mode%, BYVAL path$,
BYVAL tail$, BYVAL env$)

Devpac 3 env.L, tail.L, path.L, mode.W, p_exec.W
(stack 16 bytes)

Lattice C long Pexec(int mode, const char *path, const char *tail, const
char *env);

Pexec provides facilities for a program to create basepages, load
programs and execute them.

path is a pointer a string giving the filename of the program to exccute.
If path does not specify a drive the current drive is used, similarly if no
pathname is specified the current path is used. Note that any filename
extension must be explicitly specified.

tail is a pointer to a length prefixed string, i.e. tail[0] contains the
length of the string starting at tail[1], the total length of the string
{(including the length byte) may not exceed 126 bytes. Note that when
copying this string GEMDOS copies 126 bytes or up to a NUL character,
which ever is first.

env contains a pointer to the environment to be passed to the child
process. If this pointer is NULL then the child inherits a copy of the
parents environment. GEMDOS obtains a block of memory using Malloc
into which it copies the child processes environment.

The mode parameter determines what function the command performs.
The following mode values are allowed:

Value Meaning

0 Create a bascpage, load program into the basepage,
execute program returning program’s termination code
when the program completes.

3 Create a basepage and load program into it. The value
returned is the address of the base page created.

4 Execute program already loaded. For this mode path
and env are unused (pass NULL for these). tail holds
the address of the program to execute. The value
returned is the program termination code. Note that
the TPA and environment are not freed after running
the program.

GEMDOS/MINT Modern Atari System Software Page 105

5 Create a basepage. For this mode path is unused (pass
MNULL for this), tail and env have there normal
meanings. The value returned is the address of the base
page created.

6 Execute program already loaded. For this mode path
and env are unused, and tail holds the address of the
program to execute. The value returned is the program
termination code. Unlike mode 4, the TPA and
environment are freed after executing the child process.
Note the warning below about this mode.

7 Create a basepage. For this mode path helds the
program load flags as set in the executable file's load
bits. tail and env have their normal meanings. The
value returned is the address of the base page created.
Note the warning below about this mode.

100 As mode 0, 4 and 6, but start program asynchronously.
104 The value returned is the process 1D of the new child.
106

200 As made 0, 4 and 6 but overlay existing program (this is
204 equivalent to the UNIX exec function). This function
206 does not (normally) return.

If bit 15 ($8000) of mode is set process tracing for the new process is
automatically enabled (sce Fcntl (PTRACESFLAGS, ..)).

Page 106 Modern Atari System Software GEMDOS/MINT

Chapter 7
AES Enhancements

This appendix will provide the reader with an overview of the
extensions which have been made to the AES. New features have been
added to support new graphical and control features such as popup menus
and the new multitasking version of TOS known as MultiTOS. It is
outside the scope of this manual to pursue an in-depth discussion of the
new AES calls, but an attempt is made to explain the differences
between the other language documentation provided with this package
and that which has changed or been added to since publication.

An AES dilemma

For all intents and purposes, these extensions have been made in two
major phases. First of all came the extensions for MultiTOS. These new
features were made available from version 4.00 of the AES onwards. At
this point a new version of the AES was split off for development
purposes, the numbering of which started from version 3.30! This
numbering system may seem a little strange but it does in fact make some
sense since the changes made for version 3.30 were for a single tasking
system, but they needed to be developed with future multi tasking
compatibility in mind, since the multi tasking was already at the core of
the code on which 3.30 was based, this could now be taken for granted.

Any application which uses the AES must check to see which version of
the system it is running under. It must now go without saying that a
single tasking application only needs to know if the version is 3.30 or
above to be sure that the new features are available. A multi tasking
application may not require the new pop up menus (for example) but must
know that multi-tasking is available for it to make certain calls, for
this reason an AES version of 4.00 or above will be fine!

AES Enhancements Modern Atari System Software Page 107

What’s in AES 3.30...

The key features of the AES from 3.30 are:

. Hierarchical menus

. Pop-up dialog menus

. Scrolling of information within pop-up menus and sub menus

. 3D controls on dialogs and windows

. Colour resource files which feature colour and animated icons

Hierarchical menu structures

A standard feature of the GEM desktop is the menu bar which appears
at the top of the screen. This feature allows quick and easy access to key
features of the application which is currently running. Traditionally,
selection of extra features would be performed by a range of extra on
screen dialog buttons or controls which may otherwise be available on
the screen or in a window, but not any more...

....a new feature of AES 3.3 is that it is now possible to generate
programs which can produce an attached sub-menu to the side of any of
the menu elements. A sub-menu is activated by simply holding the mouse
pointer on the element for a short period of time or by moving the mouse
off the right hand side of that element, a secondary menu can be made to
appear. Menu items which have a sub menu attached to them should
indicate the fact by using an appropriate ASCII character on the far
right hand side of the menu item thus:

[_Arrange Hindows 9]

An ilem with a sub-menu attachment

Page 108 Modern Atari System Software AES Enhancements

When on the screen, a sub-menu appears as a list of text items, similar in
style to the original menu alongside which the sub-menu is placed thus:

Cut ¢FS
Copy ofd
Paste F5
ASEII Table... ¢Ins
fioto Top P |
Goto Bottom %B
Goto... Kb

fis Is
#orizontally
Overlap

fycle Hindows
Hindow

A typical sub-menu

Movement of the mouse up and down the list will cause a black bar to
follow it in order to show which item will be selected when the mouse is
pressed. To close the sub-menu it is necessary to either select an item by
clicking the mouse on an item or to move off the menu altogether and
click some where outside, where upon it will close both the sub-menu and
its parent (and leave the previous selection unaffected).

In principle it is possible to cascade sub-menus to a maximum depth of
four. In practice however, it is not recommended that too many sub-menus
are accessed from one another. This system is intended to increase the
speed, ease of use and the overall software appeal. Programs which are
poorly designed and use sub-menus to bad effect can produce a contrary
effect by making the software less intuitive and slower to use.
Applications which repeatedly force the user down a blind alley of
menu lists cause great frustration in the user. We recommend that you
don’t use more than one or two levels of sub-menus attached to a single
menu item.

AES Enhancements Modern Atari System Software Page 109

Pop-up menus

Once again, traditional GEM application design would dictate that
when presenting the user with an array of selectable options, the
decisions would be made by placing a dialog of some type on the screen.
It is now possible to replace complex and cluttered user forms with a
more basic range of choices using pop-up menus. This is because it is now
possible to move all of the options for a function onto one neat menu list
of their own. Frequent users of the famous radio button system will
appreciate this feature immediately.

A typical pop up menu will have a picce of text on the screen describing
a function. To the right of it there may be another piece of text
surrounded by a box. This is the currently selected parameter for that
function. For example:

Format |__Lattice linkable]

A function with current status

By moving the mouse over this box and pressing the left mouse button, a
sub-menu will appear:

Atari executable
BRI Finkable
65T linkable
WINTIN Y Lattice linkable
S-record absolute

1T A
Buffer size...

A function with parameter selection

Notice how the currently selected item (which is ticked here) appears
immediately to the right of the function name. It is a feature that the
dialog display will be centred around the currently selected item. As
with the sub-menu system, moving the mouse up and down the list will
cause a highlight to follow it. Selection of an item is made by moving
the mouse over the desired item (turning it black) and clicking the left
mouse button on it. At this point the menu will disappear from the screen
and the display will once again show the function description, but the
contents of the box to its right may have changed, showing the new
operative condition.

Page 110 Modern Atari System Software AES Enhancements

|

Scrolling in pop-ups and sub menus

When the user is presented with a sub-menu or pop-up menu, the number
of items which appear in the list is determined by two factors. These are
quite simply the number of items in the list (which may be only three or
four items) or a limiting value which is passed as a parameter by the
programmer to the call. If the number of items in the list exceeds the
limiting factor, then the display will feature an arrow at the top and/or
the bottom of the display to indicate that there are more items which
can be displayed. The off screen items are revealed by clicking the mouse
on the appropriate indicator, where upon the display within the menu
will scroll up or down as appropriate, one item at a time. Scrolling will
stop when the list of items to be displayed is exhausted or when the
mouse is moved away from the associated arrow (presumably onto one of
the options).

Colour & animated icons

The resource file system used by many applications has been updated by
Atari. It is now possible to produce colour icons which change their
appearance when they are selected (i.e. animated). This is most
graphically demonstrated by the latest versions of the GEM desktop
which feature colour icons in place of the old black and white ones.
When an old icon was selected, it simply turned black, now the whole
icon can be changed for another. For example an icon denoting a floppy
disk may be used to represent drives A: or B:. By clicking on this icon, it
is now possible to make the cover of the disk slide open denoting that it
is in use.

In principle, the icons can be of almost any size and use any number of
colours in their definition. In practice however small icons take less
space (in both the RAM and screen area senses) and more than 16 colours
in the definition are rarely worth while.

AES Enhancements Modern Atari System Software Page 111

What's in AES 3.40...

3D controls on dialogs and windows

The standard appearance of applications can be changed by using new
features of the AES. These pertain to the dialog boxes and standard
GEM windows which are commonly used within programs. Within the
new 3D system, GEM buttons and window sliders appear in a metallic
grey colour and now feature a bevelled edge effect to make them appear
stand proud of their background. This effect is further enhanced with a
darker and lighter grey shade combination around the edges to provide
a shadow. Moving the mouse onto a 3D button or window slider and
clicking the mouse on it will cause the object to move slightly giving an
impression of being pressed down. This feature provides the user with a
more interactive form of response when using an application, as well as
looking smarter than the older style of GEM program.

What’s in AES 4.00...

The key feature of AES version 4.00 onwards is the modification and
addition to the system to cater for multi-tasking applications. These
include improvements to existing calls such as appl_init and the
inclusion of totally new calls such as appl_find. To the end user, AES
4.00 does not provide any real visual indication of its presence within
their machine {unlike AES 3.30 onwards) other than the fact that the
multitasking is available for use.

The system calls

The AES functions all communicate with the OS via several arrays, the
most useful of these to the user is the global array, named _AESglobal
for Lattice C users, global for Devpac 3 users and a pointer to which is
available via the GB function for BASIC users. The elements of this are:

_AESglobal{Q] AES version number in major minor form.

_AESglobal[1] Number of concurrent applications the AES
supports, or -1 if no limit (i.e. MultiTOS)

_AESglobal[2] Application identifier for this application

_AESglobal[3-4] User global, a longword global available for
use by the user.

Page 112 Modern Atari System Software AES Enhancements

--.-.--.--.-‘

_AESglobal[5-6] Pointer to base of resource file loaded as the
result of a rsr¢_load call.

_AESglobal([7-14) Reserved.

Application library extensions

appl_find Find an application’s identifier (4.00)

BASIC 2 FUNCTION appl_find%(BYVAL ap_fpname$)
FUNCTION appl_xfind%(BYVAL ap_fpname&)

Devpac 3 appl_find ap_fpname.L
Output Arguments
ap_id = int_out[0]

Lattice C int appl_find(const char *ap_fpname};

This call will find the ID of another application in the system.
Normally ap_fpname will point to a NUL-terminated string containing
the filename of the application for which the current application is
searching. The string must be 8 characters long; if the filename has
fewer than 8 characters, the programmer must fill out the rest of the
string with blank spaces.

If running on AES = 4.00 several additional features are available:

If the high word of ap_fpname is OxFFFF, then the low word should
contain the MINT ID of that application. The appl_find call will
convert the MiNT ID into the corresponding AES ID. If the high word of
ap_fpname is OxFFFE, then the low word should contain the AES ID of
that application. The appl_find call will convert the AES ID into the
corresponding MiNT ID.

If ap_fpname is a NULL pointer, then the appl_find will return the
AES ID of the current process.

BASIC 2 users should note that two different calls exist, one accepts a
string, the other a long word argument. The latter of these two calls is
provided so that it is easier to access the new features of the call (sce
next paragraph) by masking in the relevant bit patterns into the
argument. This prevents the requirement of lots of heavy siring
manipulation.

If the return is -1 then the AES could not find the requested application.

AES Enhancements Modem Atari System Software Page 113

w

appl_getinfo Get AES information (4.00)

BASIC 2 FUNCTION appl_getinfo%(BYVAL ap_gtype%, VARPTR
ap_goutl%, VARPTR ap_gout2%, VARPTR ap_gout3%,
VARPTR ap_gout4%)

Devpac 3 appl_getinfo ap_gtype. W
Output Arguments
ap_greturn = int_out[0]
ap_goutl = int_out[1]
ap_gout2 = int_out]2]
ap_gout3 = int_out{3]
ap_goutd = int_out[4]

Lattice C int appl_getinfo(int ap_gtype, short *ap_gout],
short *ap_gout2, short *ap_gout3, short *ap_gout4);

This function allows an application access to general information about
the AES. The value passed to the call, ap_gtype, tells the call what
type of return is required. This call returns a value where a value of 0
represents an error and a value of 1 represents no error.

The ap_gout.. parameters take on values based on ap_gtype: for
ap_gtype is 0, get standard AES font information:

ap_gout1 font height in pixels
ap_gout2 font ID
ap_gout3 font type:
0 system font
1 Speedo font
If ap_gtype is 1, information about the small AES font is returned:
ap_gout1 font height in pixels
ap_gout? font ID
ap_gout3 font type:
0 systemn font
1 Speedo font
Page 114 Modern Atari System Software AES Enhancements

ap_gtype is 2 returns the current resolution number and the number of
colours supported by the object library:

ap_gout1 resolution number
ap_gout2 number of colours supported

by AES object library
ap_gout3 colour icons:

0 Not supparted
1 Supported

ap gout4 new resource file format:

0 Not supported
1 Supported

ap_gtype is 3 returns the AES language setting;

ap_gouti currently used language

0 English

1 German

2 French

3 reserved

4 Spanish

5 Italian

6 Swedish

This function requires AES > 4.00.

appl_read Read from message pipe (4.00)

BASIC 2 FUNCTION appl_read%(BYVAL ap_rid%,
BYVAL ap_rlength%, VARPTR ap_rpbuffé&)

Devpac 3 appl_read ap_rid.W, ap_rlength.W, ap_rpbuff.L
Output Arguments
ap_rreturn = int_out[0]

Lattice C int appl_read (int ap_rid, int ap_rlength, void *ap_rpbuff);

This function can be used to read ap_length bytes into the memory
pointed to by ap_rpbuff from an application’s message pipe. The
application’s identifier is supplied in the ap_id parameter; this is
usually obtained from the result of the appl_init call.

Note that it is strongly recommended that you read 16 bytes at a time
because of the way in which the AES works internally.

AES Enhancements Modern Atari System Software Page 115

For AES > 4.00if ap_id is -1 then this function will perform a read only
if there is data in the message pipe. Otherwise, it will return
immediately.

appl_search Search existing AES processes (4.00)

BASIC 2 FUNCTION appl_search%(BYVAL ap_smode%,
ap_sname$, VARPTR ap_stype%, VARPTR ap_sid%)

Devpac 3 appl_search ap_smode.W, ap_sname.L
Output Arguments
ap_sreturn = int_out(0}
ap_stype = int_out{1]
ap_sid = int_out[2]

Lattice C int appl_search{int ap_smode, const char *ap_sname,
short *ap_stype, short *ap_sid);

This function, available in AES > 4.00, searches all existing AES
processes in the system for a process which matches defined criteria.

ap_stype indicates the required operation:

0 search first (all the processes)
1 search next (all the processes)
2 search system shell (only one)

ap_sname is a pointer to a buffer that will hold the name of the AES
process the (which must at least 9 characters long). ap_sid is set to the
AES ID of the process located, whilst ap_stype is set to the type of
process found:

1 System process
2 Application
4 Accessory

The value returned is 0 to indicate no more files are available or non-
zero otherwise.

This function requires AES > 4.00.

Page 116 Modern Atari System Software AES Enhancements

Event library extensions

MultiTOS and the Falcon030 AES include a number of additional
messages which may be returned from evnt_mesag or evnt_multi
calls; these are documented below. These descriptions presume an 8 word
buffer, msg, which has been set up by either evni_mesag or
evnt_multi as part of message being received; msg[0] will contain the
message number of the message being delivered:

WM_UNTOPPED (30) Current window untopped (3.30)

This message is sent when the current top window is being untopped by
another window. Note that by the time the message is received by the
owner of the formerly topped window, that window is unlikely to still
be on top. msg[3] contains the window handle of the window which has
been removed from the topmost position.

WM_ONTOP (31) New window on top {3.30)

This message is sent when an application’s window is placed on top,
generally through no action of its own (i.e. another window closing).
Note that by the time the message is received by the owner of the
formerly topped window, that window is unlikely to still be on top.
msg[3] contains the window handle of the window which has been
removed from the topmost position.

AP_TERM (50) Request application terminate (4.00)

This message is sent when someone has requested that the shell manager
close all active processes; for instance, when the user requests a
resolution change. In response to this message the application should
proceed with a normal termination sequence (such as close and delete all
windows, remove the menu bar then exit).

If the process is unable to terminate it must inform the AES using
shel_write mode 10.

In order for this message to be delivered to a process the application
must have requested delivery of such messages via shel_write mode 9.

msg[5] contains a code indicating the reason that the shutdown was
requested: AP_TERM (50) for a normal shut down, or AP_RESCHG (57).

AP_TFAIL (51) Fail to terminate or close (4.00)

This message should be sent by the receiver of an AP_TERM or AC_CLOSE
message when it decides not to close or terminate.

AES Enhancements Modem Atari System Software Page 117

The message send should have the form:

msg{0] = AP_TFAIL;

msg{1] = <your error code>;

which should be sent to the AES using shel_write(10, ..).
SHUT_COMPLETED (60) System in shutdown state (4.00)

This message is sent to the process which initially requested the system
be put into shutdown mode via shel_write(4, .).msg[3] indicates
whether the shutdown was completed successfully: 1 if successful, 0 if it
failed. If there is an error state msg[4] contains the AES ID of the
process which could not terminate and msg[§] contains the error code
which it returned.

If the shutdown was successful then on receipt of the system has been
shutdown.

RESCH_COMPLETED (61) Resolution changed {4.00)

This message is sent to the process which initially requested the system
be put into resolution change mode via shel_write(5, ..).msp{3]
indicates whether the resolution change was completed successfully: 1 if
successful, {) if it failed. If there is an error state msg[4] contains the
AES ID of the process which could not terminate and msg[5] contains
the error code which it returned.

If there is no error, then the caller must exit the system in order to
complete the resolution change process.

AP_DRAGDROP (63) Deskiop drag ‘n’ drop (4.00)

This message is sent by the desktop (or any other application) to
another application in order to inform that application that the user
has dragged an object to one of its windows, or that the user wishes it to
opcrf\ a new window. The message buffer received by the application has
the form:

msg[0] = AP_DRAGDROP

msg[1] = sender's AES ID

msg[3] = window, or -1 for a request for a new window

msg[4] = mouse x

msg[5] = mouse y

msg[6] = keyboard state

msg[7] = pipe name

Page 118 Modern Atari System Software AES Enhancements

I-.---.--.I-‘

A thorough discussion of the drag and drop protocol is beyond the scope
of this document.

SH WDRAW (72) Request Desktop window redraw (4.00)

This message may be sent by applications to the Desktop to inform it
that it should update its windows for a certain drive. nsg(3] indicates
which drive: 0 for drive A:, 1 for drive B, etc. If msg[3] is -1, then the
desktop will update all of its windows.

CH_EXIT (80) Child termination (4.00)

This message is sent back to a process which created a child via
shel write upon its termination. msg[3] contains the child process’s
AES ID, msg[4] gives the child’s exit code.

AES Enhancements Modern Atari System Software Page 119

Graphics library extensions

graf_mouse Change mouse form (4.00)

BASIC 2 SUB graf_mouse(BYVAL gr_monumber%,
BYVAL gr_mofaddré&)

Devpac 3 graf_mouse gr monumber.W [, gr_mofaddr.L]
Output Arguments
gr_moreturn = int_out[(]

Lattice C int graf_mouse(int gr_monumber, const void *gr_mofaddr);

This call changes the appearance of the mouse on screen to that of one of
a predefined set or to an application defined style. gr_monumber
identifies the form to be used:

0 arrow

1 text cursor

2 busy bee

3 hand with pointing finger
4 flat hand, extended fingers
5 thin cross hair

6 thick cross hair

7 outline cross hair

255 mouse form stored in gr_mofaddr
256 hide mouse form

257 show mouse form

Up until AES 4.00, applications enjoyed free access to the graf_mouse
function to change the mouse form. However, in the new multitasking
environment, many applications may be present in the system at the
same time, this may pose a problem. Once the mouse form has been
changed to something other than the arrow, ownership is transferred to
that application until it changes the mouse back to an arrow. So, as a
courtesy to other applications, the current owner should always change
the mouse back to arrow as soon as it finishes with its work.

Page 120 Modern Atari System Software AES Enhancements

W

However, in some circumstances, an application may want to change
mouse form immediately without any delay. For example, the current
foreground application changes the mouse to a busy bee and user clicks on
the background to do a drag operation on a different application. It is
very logical that the mouse should be changed to a flat hand for the
dragging. In this case, the AES provides a way to force the current mouse
to the next owner in order to deal with this type of situation; the
following additional gr_monumber codes are available:

258 save current mouse form
259 restore to the last saved mouse form
260 restore to previous mouse form

In the event that the application must change the mouse form, it should
set the highest bit (bit 15) of gr_monumber and OR in the desired mouse
form number. After finishing the work, it should then call the
graf_mouse with value 0 to set the mouse back to arrow.

Object library extensions

Colour Icons

AES 3.30 and above include substantial additions to deal with colour
icons and which have the ability to take advantage of all resolutions
and to perform limited animation when an icon is selected. Below is a
description of the actual data structure; the structure itself follows:

typedef struct cicon_data {

short num_planes; /* num of planes */
short *col_data; /* ptr to bitmap */
short *col_mask; {* ptr to mask */
short *sel data; /* ptr to sel icon */
short *sel_mask; /* ptr to sel mask */

struct cicon_data *next_res; /* ptr to nxt icon */
} CICON;

typedef struct cicon_blk {

ICONBLK monoblk; /* default mono icon */
CICON *mainlist; /* list of col icons */
} CICONBLK;
#define G_CICON 33 /* AES obj type */

The AES object library uses the CICONBLK structure to hold the data
that defines colour icons. The object type G_CICON points with its
ob_spec pointer to a CICONBLK structure.

AES Enhancements Modern Atari System Software Page 121

CICONBLK is a colour icon block; a colour icon block contains a
monochrome icon block and a list of colour icons. The list, is a linked list
of colour icons that supports different resolutions. The monochrome icon
block, monoblk, is the default icon displayed when mainlist does not
contain an icon for the current resolution. Furthermore, the monochrome
icon and all of the colour icons in mainlist share the dimensions,
placement, and all textual information contained in monoblk.

CICON is the structure that contains the colour data. A CICON can
contain pointers to two sets of icon data: one for the colour icon,
col_data, and one for the colour icon in its selected state, sel_data. In
both cases, the data is an array of words, and is in device-independent
format. The number of planes of data is determined by num_planes
(note that in mainlist, CICONS must have a unique num_planes.).
Each CICON must have a valid pointer to data in col_data, but
sel_data is optional. In other words, if sel_data is NULL, then when
the icon is selected, the icon will be drawn darkened (i.e. dithered).
Both col_data and sel_data pointers have masks: col_mask and
sel_mask, respectively. Any other CICONs (with a different number of
planes} are pointed to by next_res.

Three Dimensional Objects

Three dimensional objects are implemented in AES > 3.40. Note that the
3D effects were first implemented in AES 3.30 using a different (and
incompatible) method which is no longer supported.

The AES uses 2 new bits in the ob_flags field to indicate what kind of
3D shading effects (if any) should be used on the object. These are bits 9
and 10 of ob_flags. Versions of HiSoft's WERCS resource editor from
version 1.25 onwards can be used to edit these bits directly. If both bits
are clear (FL3DNONE) then no 3D shading effects are applied to the
object.

In Lattice the defines would be as follows (note that these are present in
AES.H):

#define FL3DMASK 0x0600
#define FL3DNONE 0x0000
#define FL3DIND 0x0200
#define FL3DBAK 0x0400
#define FL3DACT 0x0600
Page 122 Modern Atari System Software AES Enhancements

If (ob_flags & FL3DMASK) is FL3DIND, then the object is an
"indicator.” Typically indicators are used in dialog boxes to indicate
some sort of state; for example, whether an option is 'on’ or ‘off'. Radio
buttons should always be indicators.

If {ob_flags & FL3DMASK) is FL3DACT, then the object is an
"activator.” Activators don't have a persistent state, but rather are
usually controls of some sort. For example, the 'OK’ and 'Cancel’ buttons
in dialog boxes should be activators.

If (ob_flags & FL3DMASK) is FL3DBAK, then the object is a
"background" object. Background objects are usually not selectable, and
do not typically display 3D effects other than inheriting the "3D
background object" colour (see below); the only 3D effect applied to
background objects is that "outlined” background objects appear to be
raised above the objects behind them.

The colours (and effects, for indicators and activators) of 3D objects may
be controlled by the objc_sysvar function. Any 3D object which is
colour 0 (white) and has a hollow fill pattern will be drawn in the 3D
default colour set for its object type, instead of in white. 3D objects
which are not white or which have a non-hollow fill pattern will be
drawn in the colour and pattern specified, as usual.

objc_sysvar Get/Set 3D colours and effects (3.40)

BASIC 2 FUNCTION objc_sysvar%(BYVAL ob_smode%,
BYVAL ob_swhich%, BYVAL ob_sivall%,
BYVAL ob_sival2%, VARPTR ob_sovall%,
VARPTR ob_soval2%)

Devpac3 objc_sysvar ob_smode.W, ob_swhich.W, ob_sivall. W,
ob_sival2. W
Output Arguments
ob_sreturn = int_out[0]
ob_sovall = int_out[1]
ob_soval2 = int_out[2]

Lattice C int objc_sysvar(int ob_smode, int ob_swhich, int ob_sivall,
int ob_sival2, short *ob_sovall, short *ob_soval2);

This call allows an application to set or inquire the colours and effects
for 3D objects; applications should not change 3D colours or effects except
at the explicit request of the user, because all such changes are global
(i.e. they affect all processes).

AES Enhancements Modern Atari System Software Page 123

ob_smode should be 0 to get the current attributes, or 1 to set them.
ob_swhich controls which attributes are being set or inquired; this also
affects the meaning of the other values, as follows:

LK3DIND
1

LK3DACT
2

INDBUTCOL
3

ACTBUTCOL
4

BACKGRCOL
5

Get/set attributes for indicator objects.

If ob_smode is 0, then ob_soval{ indicates whether
the text of indicator objects does (1) or does not () move
when the object is selected, and ob_soval2 indicates
whether the object does (1) or does not (0) change colour
when selected.

If ob_smode is 1, then ob_sival1 controls whether
indicator object text will (1) or will not (0) move when
the object is selected, and ob_sival2 controls whether
indicator objects will (1) or will not (0) change colour
when selected.

The defaultis ob_sivali = 1and ob sival2 = 0.
Get /set attributes for activator objects.

The meanings of ob_sovali, ob_soval2,
ob_sivalil,and ob_sival?2 are the same as for

LK3DIND, except that they apply to activator objects
rather than indicator objects.

The defaults for activator objects is ob_sivall = 0
and ob_sivall = 1.

Get /set default colour for indicator objects; this is the
colour which hollow, white indicator objects (e.g.
buttons) will be drawn in instead of white.

If ob_smode is 0, then ob_savali is the current colour
index of the default indicator object colour.

If ob_smede is 1, then ob_sival1 is the new colour
index for indicator objects.

Get/set default colour for activator objects. This call
works in a similar way as the INDBUTCOL call, but
applies to activators rather than indicators.

Get/set default colour for 3D background objects, Same
as INDBUTCOL, but applies only to 3D background
objects.

Page 124

Modern Atari System Software AES Enhancements

AD3DVALUE Get pixel adjustments for 3D indicators and activators.
6 ob_smode must be 0.

ob_sovali is set to the number of pixels by which 3D
indicators and activators are expanded on each side
horizontally (to accommodate 3D effects), and
ob_soval?2 is the number of pixels by which they are
expanded vertically.

Remember that this adjustment is applied to each side
of the object, so the objects width or height is increased
by twice this amount. Background 3D objects never
change in size.

This call will return 0 if the call failed or 1 if it was successful

This function requires AES = 3.40.

Menu library extensions

menu_attach Attach sub-menu (3.30)

BASIC 2 FUNCTION menu_attach%(BYVAL me_flag%,
BYVAL me_tree&, BYVAL me_item%,
BYVAL me_mdata&)

Devpac 3 menu_attach me_flag. W, me_tree. L, me_item.W,
me_mdata.L
Output Arguments
me_return = int_out{0)

Lattice C int menu_attach(int me_flag, OBJECT *me_tree,
int me_item, MENU *me_mdata);

This call allows an application to attach, change, remove or inquire
about a submenu associated with a menu item. me_f1ag is the action to
be performed by menu_attach:

0 Inquire about the submenu that is associated with the menu item.
The data concerning the submenu is returned in me_mdata.
1 Attach or change a submenu associated with a menu item.

me_mdata must be initialised by the application. The data must
consist of the object tree of the submenu, the menu object, the
starting menu item and the scroll field status. Attaching NULL will
remove the submenu associated with the menu item.

2 Remove a submenu associated with a menu item. me_mdata should
be set to NULL.
AES Enhancements Modern Atari System Software Page 125

me_tree is the address of the object tree to which the sub-menu is to be
attached. me_item is the object index of the menu item within the
me_tree object which is to being attached to. me_tree is a pointer to a
MENU structure:

typedef struct menu {

OBJECT *mn_tree; /* object tree of menu */

short mn_menu; /* parent object of menu items */
short mn_item; /* starting menu item */

short mn_scroll; /* scroll field status of menu */
short mn_keystate; /* CTRL, ALT, SHIFT Key states */
IMENU;

Note that there can be a maximum of 64 associations per process. A menu
item with an attached submenu uses the high-byte of its object type
field; values 128 to 192 are used by the submenu menu system.

This call will return 0 if the call failed or 1 if it was successful

Beware that in all versions of the AES available at the time of writing
any attempt to interrogate, change or remove an existing sub-menu {i.e.
any operation other than initial attachment} will crash the machine.

This function requires AES = 3.30.

menu_bar Manage AES menu bar (4.00)
BASIC 2 SUB menu_bar(BYVAL me_btree&, BYVAL me_bshow%)

FUNCTION menu_xbar%(BYVAL me_btreeé:,
BYVAL me_bshow%)

Devpac 3 menu_bar me_btree.L, me_bshow.W
Output Arguments
me_breturn = int_out[0]

Lattice C int menu_bar{OBJECT *me_btree, int me_bshow):

This function informs the AES that it should use the object me_btree as
its menu bar if the me_bshow parameter is 1. If me_bshow is 0 the menu

bar is ‘removed’; note that this does not actually erase the bar from the
screen.

For AES 2 4.00 if me_bshow is -1, the menu_bar will become an inquiry
call in which it will return the current menu owner’s AES process ID. If
the return value is -1, then there is no menu bar owner. BASIC owners
should use the new menu_xbar function for this.

Page 126 Modern Atari System Software AES Enhancements

It is important to point out that the current menu bar can be swapped out
at any time. If the application wants to update or redraw its menu bar, it
is recommended to first check to see if it still own the menu bar and then
proceed to its functions. However, the menu bar owner can still be
changed after menu_bar call.

menu_istart Get/Set starting submenv item (3.30)

BASIC 2 FUNCTION menu_istart%(BYVAL me_flag%,
BYVAL me_treed, BYVAL me_imenu%,
BYVAL me_item%)

Devpac 3 menu_istart me_flag. W, me_tree.L, me_imenu.W,
me_item. W
Output Arguments
me_return = int_out(()

Lattice C int menu_istart{(int me_flag, OBJECT *me_tree,
int me_imenu, int me_item};

This call allows an application to get or set or the starting item of a
submenu. When the mouse is clicked onto a menu to which a submenu is
attached, the submenu is shifted vertically so that the starting item is
aligned with the mouse on the screen. me_f1lag gives the action to be
performed:

0 Inquire which item is the starting item for the submenu
1 Set the starting item for the submenu to be me_item

me_tree is the address of the object tree to which the sub-menu is
attached. me_imenu is the object index of the menu item within the
me_tree object which is attached.

This call will return 0 if the call failed or 1 if it was successful

This function reguires AES > 3.30.

AES Enhancements Modern Atari System Software Page 127

menu_popup Display popup menu (3.30)

BASIC 2 FUNCTION menu_popup%(BYVAL me_menud,
BYVAL me_xpos%, BYVAL me _ypos%,
BYVAL me_mdata&)

Devpac3 menu_popup me_menu.L, me_xpos.W, me_ypos.W,
me_mdata.L
Output Arguments
me_return = int_out(0)

Lattice C int menu_popup(const MENU *me_menu, int me_xpos,
int me_ypos, MENU *me_mdata);

This call is used to display a popup menu and retrieve the user’s
response. me_menu is a pointer to a MENU structure:

typedef struct menu {

OBJECT *mn_tree; /* object tree of menu */
short mn_menu; [/* parent object of menu items */
short mn_item; f* starting menu item */
short mn_scroll; /* scroll field status of menu */

short mn_keystate; /* CTRL, ALT, SHIFT Key states */
}MENU;

Hmn_scroll is not 0, then the menu will scroll if the number of menu
items exceed the menu scroll height. The value is the object at which
scrolling will begin; this will allow one to have a menu in which the
scrollable region is only a part of the whole menu. The value must be a
menu item in the menu.

me_xpos and me_ypos define the top-left edge of the starting menu
item to be displayed. me_mdata is a pointer to a second MENU structure;
if menu_popup returns a non-zero value, me_mdata contains information
about the submenu that the user selected. This includes the object tree of
the submenu, the menu object, the menu item selected and the scroil field
status for this submenu.

The function returns 0 to indicate that the user did not click on an
cnabled menu item, or non-zero otherwise.

This function requires AES > 3.30.

Page 128 Modern Atari System Software AES Enhancements

menu_register Set AES program name (4.00)

BASIC 2 FUNCTION menu_register(BYVAL me_rapid%,
BYVAL me_rpstring$)

Devpac 3 menu_register me_rapid.W, me_rpstring.L
Output Arguments

me_rmenuid = int_out[0]
Lattice C int menu_register(int me_rapid, const char *me_rpstring);

This function is used to insert a menu entry for a desk accessory in the
Desk menu. The text for the menu entry is passed as the me_rpstring
parameter and the application identifier (me_rapid) is as returned
from the appl_init call.

For AES > 4.00 applications may call menu_register to change the
name that appears in the menu bar for that application.

menu_seftings Set menu parameters (3.30)

BASIC 2 SUB menu_settings(BYVAL me_flag%,
BYVAL me_valuesé&)

Devpac 3 menu_settings me_flag. W, me_values.L
Output Arguments
me_return = int_out[0]

Lattice C int menu_settings(int me_flag, MN_SET *me_values);

This call allows an application to set or inquire the sub-menu delay and
scroll height values. me_flag is zero to inquire the current settings or 1
to get the settings into me_values.me_values is a structure of the
form:

typedef struct _mn_set {

long Display; /* submenu display delay */
long Drag; /* submenu drag delay */

long Delay; /* single-click scroll delay */
long Speed; /* continuous scroll delay */
short Height; /* menu scroll height */

} MN_SET;

This function requires AES > 3.30.

AES Enhancements Modern Atari System Software Page 129

Resource library extensions

rsrc_rcfix Fix pre-loaded resource file (4.00)
BASIC 2 SUB rsrc_rcfix(BYVAL rc_header&)

Devpac 3 rsrc_refix, rc_header.L
Output Arguments
rc_return = int_out]0]

Lattice C short rsrc_rcfix(void *rc_header);

rsrc_rcfix fixes up raw resource data that is already loaded into the
memory by the application, pointed to by rc_header. It converts all
the object locations and sizes into pixel co-ordinates. The resource must
be the same as those generated by the resource construction set. If there is
another resource already loaded into the system for the application, the
application is required to do a rsrc_free to free up the memory before
calling this function. The application still needs to perform an
rsrc_free before termination.

This function requires AES 2 4.00.

Shell library extensions

shel _get
Read the AES’s internal shell buffer (4.00)

BASIC 2 FUNCTION shel_get%(BYVAL sh_gbuffé&,
BYVAL sh_glen%)

Devpac 3 shel_get sh_gbuff.L, sh _glen.W
Output Arguments
sh_greturn = int_out[0]

Lattice C int shel_get(char *sh_gbuff, int sh_glen);

This function reads the AES’s internal shell buffer (the RAM version of
the DESKTOP.INF/NEWDESK.INF file) into the buffer at the given
address; sh_glen bytes will be read. The buffer should be at least 4192

bytes long to accommodate for TOS's later than AES version 1.40
(Rainbow TOS).

The function returns { if an error occurred or non-zero otherwise.

Page 130 Modern Atari System Software AES Enhancements

For AES > 4.00 if sh_glen is -1 the value returned by this call is the
amount of RAM required for the current AES shell buffer.

shel put
Write the AES’s internal shell buffer (4.00)

BASIC 2 SUB shel_put(BYVAL sh_pbuff&, BYVAL sh_plen%)

Devpac 3 shel_put sh_pbuff.L, sh_plen W
Output Arguments
sh_preturn = int_out{0]

Lattice C int shel_put{const char *sh_pbulff, int sh_plen);

This function writes into the AES’s internal shell buffer (the RAM
version of the DESKTOP.INF/NEWDESK.INF file) from the buffer at the
given address. sh_glen bytes will be written. The length must not be
greater than 1024 bytes for AES versions prior to 1.40 (Rainbow TOS) or
4192 bytes for later TOS's. If you write a new buffer to the AES, you must
place a single AZ (26 decimal) to indicate the end of the buffer.

The function returns {} if an error occurred or non-zero otherwise.

For AES > 4.00 if sh_glen is larger that the current buffer size the AES
will reallocate the memory for the buffer.

shel write Run another application (4.00)

BASIC 2 FUNCTION shel_write%(BYVAL sh_wdoex%, BYVAL
sh_wisgr%, BYVAL sh_wiscr%, BYVAL sh_wpcmdé&,
BYVAL sh_wptail&)

Devpac 3 sh_wdoex.W, sh_wisgr.W, sh_wiscr.W, sh_wpcmd.L,
sh_wptail.L, shel_write W
Output Arguments
Parameters:
sh_wreturn = int_out(Q)

Lattice C int shel_write(int sh_wdoex, int sh_wisgr, int sh_wiscr,
const char *sh_wpemd, const char *sh_wptail);

This function can be used to run another program when this application
has finished. The sh_wdoex parameter should be 1 to run another
program.

The sh_wisgr parameter specifies whether the program to be run is a
.JOS (or .TTP) program (use 0 for this parameter) or a GEM (i.e. .PRG or
APP) program.

AES Enhancements Modern Atari System Software Page 131

The sh_wpcemd parameter specifies the complete filename (including
extension) of the program to be run. The sh_wptail parameter specifies
the command tail to be used in GEMDOS Pexec format i.e. the first byte
gives the length of the string.

The sh_wiscr parameter should be 1 to run the program when control
returns to the Desktop.

For AES > 4.00 shel_write has a huge number of extensions
implemented as additional sh_wdoex values. For program launching
the following sh_wdoex values are available (note that more values
are described later):

0 Launch program. The GEM /TOS value will be
determined by the AES.

1 Launch a TOS or GEM application.

2 Reserved

3 Launch an accessory.

If sh_wdoex is 0, the AES will determine the actual launching mode by
looking at the file’s extension. What file extensions are considered for
launching is determined by the AES environment variables GEMEXT,
TOSEXT, and ACCEXT.

The sh_wisgr parameter is used as above and indicates whether a GEM
or TOS application is being launched; it is only valid when sh_wdoex is
1.

When a TOS program is launched under MultiTOS (via shel_write)
the AES looks for the TOSRUN environment variable; this should be a
full path of a TOS handler program to which the AES will pass the
program name as the command tail.

sh_wiscr is used to set whether the AES constructs an ARGV style
parameter list as part of the environment of the launched program. This
should be 0 to disable ARGV generation, or 1 otherwise.

Page 132 Modern Atari System Software AES Enhancements

In addition the high byte of sh_wdoex is used to provide a ‘extended’
mode, i.e. a program or accessory may be launched in a customised way.
In extended mode, sh_wpcmd is treated as a pointer to a set of long (32
bit) values. Each value after the first corresponds to one of the bits in
sh_wdoex: if that bit is set then the corresponding value is used,
otherwise it is ignored. The values and their associated bit numbers are
as follows:

Offset Bit Function

LONG[O] Pointer to the program name string (must
be the first element)

LONG[1] 8 Psetlimit value.

LONG[2] g Prenice value.

LONG[3] 10 Default directory string pointer.

LONG[4] 1 Application defined environment string
pointer.

The directory path (LONG[3]) should look something like:
G:\ or C:\FOLDER or C:\FOLDER1\FOLDERZ2 ..

However, if the pointer is zero, then the default directory will be the
directory in which the program itself was found.

The value returned from this function when launching a program is the
AES 1D of the new process, or zero if an error occurred.

In addition to program launching shel_write provides several AES
control mechanisms:

Set shutdown mode

Attempt resolution change
Reserved

Send a message to all processes
Alter AES environment

© M ~N » ;oA

Inform the AES of an applications new message ability
10 Send the AES a message

AES Enhancements Modern Atari System Software Page 133

If sh_wdoex is 4, the system is put intc shutdown or normal mode
depending on the sh_wisgr value; once the AES is in the shutdown
mode, the shel_write launch capability (mode 0-3) is disabled. The
following sh_wisgr values are used:

0 Abort the shutdown sequence; note that only the original caller of
shutdown mode can abort the shutdown sequence.

1 Partial shutdown mode; the AES will check for all applications
excluding the caller to make sure they all recognise AP_TERM
message. If succeeded, AES will then send out AP_TERM to
applications and AC_CLOSE to accessories. Note that the caller
will receive none of the messages.

2 Complete shutdown mode; the AES will check for all
applications and accessories excluding the caller to make sure
they all recognise AP_TERM message. If successful, the AES will
then send out AP_TERM to applications and AC_CLOSE to
accessories. Accessories also receive AP_TERM after the AC_CLOSE
message. Note that the caller will receive none of the messages.

In order for an application to receive AP_TERM messages it must notify
the AES using shel_write mode9.

sh_wdoex set to 5 requests that the AES change resolution, if the
resolution change is accepted by the AES the system is put into shutdown
mode upon which applications can either shut down and exit or deny the
shutdown by sending an AP_TFAIL message to the AES.

If sh_wiscr is zero, then sh_wisgr is the physical device ID of the
VDI workstation which should be opened.

If sh_wiscr is one, then sh_wisgr is the video mode word for use on
Falcon030.

sh_wiscr value from 2 and up are reserved for future use.

sh_wdoex is 7 broadcasts a message to all processes except the AES,
screen manager and the sender, In this mode, sh_wpcmd should pointto a
16 byte message buffer. sh_wisgr and sh_wiscr are ignored.

sh_wdoex is 8 allows applications to manipulate the AES environment
variables. sh_wisgr determines the operation to be performed: if
sh_wisgr is 0 the function returns the environment buffer size in bytes.

For sh_wisgr is 1 the string pointed to by sh_wpcmd is added to the
AES environment; this should have the form ‘NEW=STRING\O’. If the
string has the form 'NEW=\0" then the corresponding environment
variable is removed.

Page 134 Modern Atari System Software AES Enhancemnents

For sh_wisgr is 2 the AES environment is copied into the buffer pointed
to by sh_wpcmd. The output buffer size is specified by sh_wiscr. The
return value indicates the number of bytes not copied.

sh_wdoex is 9 informs the AES of which additional messages the
application can recognise via the sh_wisgr variable; the following bits
are used:

0 AP_TERM
1.-15 Reserved

sh_wdoex is 10 sends a message to the AES; sh_wpcmd is the 16 byte
message buffer. Typically this may be used by an application to send an
AP_TFAIL message to the AES after it finds it is unable to successfully
shutdown upon an AES shutdown request.

Window library extensions

wind_gef Get window attributes {3.30)

BASIC 2 SUB wind_get(BYVAL wi_ghandle%, BYVAL wi_gfield%,
VARPTR wi_gwl%, VARPTR wi_gw2%,
VARPTR wi_gw3%, VARPTR wi_gwd%)

Devpac3 wind_get wi_ghandle.W, wi_gfield. W
wind_get wi_ghandle.W, wi_gfield W, wi_gwl.W,
wi_gw2.W, wi_gw3.W, wi_gwd.W
Output Arguments
wi_gw] = int_out[0]
wi_gw2 = int_out(1]
wi_gw3 = int_out[2]
wi_gw4 = int_out(3]

Lattice C int wind_get(int wi_ghandle, int wi_gfield, short *wi_gwl,
short * wi_gw2, short *wi_gw3, short * wi_gw4);

This function returns information about a window given by wi_ghandle
depending on the value of the parameter wi_gfield. The values
returned, wi_gw1, wi_gw2, wi_gw3, wi_gw4 depend on wi_gfield; the
additional wi_gfields are:

WF_TOP (10) Returns handle in wi_gw1, owner's AES id in
wi_gw?2 and the handle of the window below it
inwi_gw3
This function requires AES > 3.30.

AES Enhancements Modern Atari System Software Page 135

WF_NEWDESK (14)

WF_COLOR (18)

WF_DCOLOR (19)

WF_OWNER (20)

WF_BEVENT (24)

WF_BOTTOM (25}

Get the current system background window's
object pointer. The value is returned in wi_gwl
and wi_gw2.

This function requires AES = 3.30.

Get the window's element colour by handle. The
value are returned in wi_gw?2 and wi_gw3l.
wi_gwi is also used as an input parameter to
this function and should contain the window
element number required.

This function requires AES 2 3.30.

Get the default element colour. The values are
returned in wi_gw2 and wi_gw3. wi_gw1 is also
used as an input parameter to this function and
should contain the window element number
required.

This function requires AES = 3.30,

Get the window owner's AES id, window open
status.:

wi_gwl AES id of the owner

wi_gw2 1 if the window is open, else 0
wi_gw3 handle of the window above
wi_gwi4 handle of the window below

Note that if the window is closed, the wi_gw3
and wi_gw4 values will be meaningless.

This function requires AES = 3.30.

Get special window attributes ; see the
wind_get function for definition of the bits
returned in wi_gwl.

This function requires AES z 3.31.

This function finds the current bottom window
handle.

This function requires AES 2 3.31.

Page 136 Modern Atari System Software AES Enhancements

wind_set Set window otiributes (3.30)

BASIC 2 SUB wind_get(BYVAL wi_shandle%, BYVAL wi_sfield%,
BYVAL wi_swl%, BYVAL wi_sw2%, BYVAL wi_sw3%,
BYVAL wi_sw4%)

Devpac3 wind_set wi_shandle.W, wi_sfield. W, wi_swl.W,
wi_sw2. W, wi_sw3.W, wi_swi. W

Lattice C int wind_get{int wi_shandle, int wi_sfield, int wi_sw1,
int wi_sw2, int wi_sw3, int wi_swd);

This function sets a window atiribute given by wi_sfield for the
window wi_shandle. The values wi_sw1, wi_sw2, wi_sw3 and
wi_swd dependonwi_gfield.

WF_BEVENT (24) This field sets attributes for the window; only
bit 0 is defined at the time of writing which,
if set, a button click in that window’s work
area will not cause a WA_TOPPED message to
be sent to that window. Instead, the button
click will satisfy evnt_button or the button-
click optionof an evnt_multi call. All other
bits should be zero for future compatibility.

This function requires AES = 3.31.

WF_BOTTOM (25) This function mode sets an already opened
window to the bottom of the window stack
(excluding the background window) and brings
the next logical window to top. However, if
the target window is the only open window in
the system, this window will still remain on
top and be active.

This function requires AES > 3.31.

wind_update Manipulate AES semaphores {4.00)
BASIC 2 FUNCTION wind_update%(BYVAL wi_ubegend%)
Devpac 3 wind_update wi_ubegend. W

Lattice C int wind_update(int wi_ubegend);

This function is used to stop the user using menus, moving windows etc.
whilst the application is outputting to the screen or when the
application wants to do its own tracking of the mouse. These routines
must called strictly in pairs; note that they do nest, so that so long as the
calls match there are no problems.

AES Enhancements Modern Atari System Software Page 137

For AES = 4.00 a new check and set mode is defined for BEG_UPDATE and
BEG_MCTRL, obtained by ORing 0x100 into wi_ubegend. The function
returns 0 if the wind_update failed, or a non-zero positive integer on
success.

Page 138 Modern Atari System Software AES Enhancements

-.--.--..--‘

Chapter 8
SpeedoGDOS

SpeedoGDOS provides VDI extensions to allow manipulation of high
quality outline fonts, in addition to device independent output that has
always been part of GDOS; this section documents the new calls
designed to support the Speedo font scaling system.

Speedo data types

In order to represent fractional values, SpeedoGDOS uses a new data
type: a signed 32-bit number with 1-bit sign and 31-bit magnitude; for
example:

$00010000 1.0 pixels
$FFFFO000 -1.0 pixels
$00018000 1.5 pixels

Applications can do all calculations using simple long arithmetic, and
completely avoid using a floating point library. To convert these units to
integers (using C, but with exactly the same principle for Devpac and
BASIC - note that fix31 is a data type of type long):

fix31 big x;
int small_x;

small_x = big_x >> 16;
To round a value you can simply add 32778:
small x = (big_x + 32768) >> 16;

SpeedoGDOS Modern Atari System Software Page 139

The system calls

v_bez Output bézier

BASIC 2 SUB v_bez(BYVAL count%, BYVAL xyarr%(),
BYVAL bezarré&, BYVAL extent%(), VARPTR totpts%,
VARPTR totmoves%)

Devpac 3 v_bez countW

Input Arguments
xyarr = ptsin[0...count*2-1]
bezarr = intin[0...count/2-1]

Output Arguments
totpts = intout[0];
totmoves = intout[1];
extent[0] = ptsout(0];
extent[1] = ptsout[1};
extent[2] = ptsout[2];
extent[3] = ptsout[3];

Lattice C wvoid v_bez(int handle, int count, const short *xyarr,
const char *bezarr, short extent(4], short *totpts,
short *totmoves);

v_bez is used to draw an unfilled bézier curve. xyarr points to a set of
{x, ¥) co-ordinate pairs, whilst bezarr lists the attributes of each of
the corresponding points. The following bits are used in bezarr:

Bit Value Meaning
0 0 Point begins a polyline section.
0 1 Point is the first point of a set of 4 bézier

points in the sequence: first anchor point, first
control paint, second control point, second
anchor point.

1 1 Point is a jump point; the current point is
moved to this point without a joining line

The total number of points in the resulting polygon is returned in
totpts, whilst the total number of moves in the resulting polygon is
returned in totmoves. The bounding box of the polygon is returned in
extent.

Page 140 Modern Atari System Software SpeedoGDOS

---.-.--.-.‘

Machine code programmers should pay particular attention to the
formation of the data held in the block of data pointed to by bezarr.
The data which is stored here must be stored in an Intel byte swapped
form. This means that before making the call, the data held in this
block must have all of the bytes which make the data words swapped,
so that bytes 0 and 1, 2 and 3 {and so forth) become bytes 1 and 0, 3 and 2
etc. BASIC and C programmers do not need to worry about this since the
relevant library routines will handle all of this transparently.

v_bez_fill Output filled bézier

BASIC 2 v_bez_fill(BYVAL count%, BYVAL xyarr%(),
BYVAL bezarrk, extent%(), VARPTR totpts%,
VARPTR totmoves%)

Devpac3 v_bez_fill count.W

Input Arguments
xyarr = ptsin[0...count*2-1]
bezarr = intin[0...count/2-1]

Output Arguments
totpts = intout{0];
totmoves = intout|1];
extent[0] = ptsout[0];
extent[1] = ptsout{1];
extent|2] = ptsout[2];
extent[3] = ptsout(3];

Lattice C v_bez_fill(int handle, int count, const short *xyarr,
const char *bezarr, short extent[4], short *totpts,
short *totmoves);

v_bez_fill is used to draw a filled bézier curve. xyarr points to a set
of (x, y) co-ordinate pairs, whilst bezarr lists the attributes of each of
the corresponding points. The following bits are used in bezarr:

Bit Value Meaning
0 0 Point begins a polyline section.
0 1 Point is the first point of a set of 4 bézier

points in the sequence: first anchor point, first
control point, second control point, second
anchor point.

1 1 Point is a jump point; the current point is
moved to this point without a joining line

SpeedoGDOS Modern Atari System Software Page 141

The total number of points in the resulting polygon is rcturned in
totpts, whilst the total number of moves in the resulting polygon is
returned in totmoves. The bounding box of the polygon is returned in
extent.

Machine code programmers should pay particular attention to the
formation of the data held in the block of data pointed to by bezarr.
The data which is stored here must be stored in an Intel byte swapped
form. This means that before making the call, the data held in this
block must have all of the bytes which make the data words swapped,
so that bytes 0 and 1, 2 and 3 (and so forth) become bytes 1 and 0, 3 and 2
etc. BASIC and C programmers do not need to worry about this since the
relevant library routines will handle all of this transparently.

v_bez_off Disable bézier capabilities
BASIC 2 SUB v_bez_off

Devpac 3 v_bez_off

Lattice C void v_bez_off(int handle);

This call disables the GDOS bézier capabilities. Any memory allocated
by the GDOS for bézier-generated polygons is released at this time (see
v_set_app_buff for memory allocation information).

Note that failure to disable bézier facilities prior to closing the
(virtual) workstation may cause the VDI to crash.

v_bez on Enable bézier capabilities
BASIC 2 FUNCTION v_bez_on%

Devpac3 v_bez_on
Output Arguments
retval = intout[0]

Lattice C int v_bez_on(int handle);

This call enables the GDOS bézier capabilitics; note that while a
handle is provided and the associated device driver is called, the
GDOS bézier extension is enabled for all devices when this call is made.

Page 142 Modern Atari System Software SpeedoGDOS

HE N E EEEEEEEEEEENEN®BN

The value returned from the call represents the maximum bézier depth,
a measure of the smoothness of the curve. The value, which can range
from 0 to 7, is an exponent of 2, giving the number of line segments that
make up the curve. Thus, if retval is 0, the curve is actually a straight
line (one line segment); if retval is 7, the curve is made of 128 line

segments.
v_bez qual Set bézier quality
BASIC 2 SUB v_bez_qual(BYVAL percent%, VARPTR actual%)

Devpac 3 v_bez_qual percentW
Output Arguments
actual = intout[0]

Lattice C void v_bez_qual(int handie, int percent, short *actual);

v_bez_qual sets the bézier speed/quality trade-off parameter as a
percentage of the quality (hence 100% is best quality but slowest). The
quality factor is passed in percent as a value from 0 to 100. The value
selected by GDOS (approximated to the 8 levels available) is returned.

v_flushcache Flush outline font cache
BASIC 2 FUNCTION v_flushcache%

Devpac 3 v_flushcache
Output Arguments
ret_val = intout[0]

Lattice C int v_flushcache(int handle);

This function flushes the contents of the outline font cache. Note that
this onl! flushes the portion of the cache that contains bitmaps of
outline font characters. The function zero normally, or -1 if an error has
occurred.

SpeedoGDOS Modern Atari System Software Page 143

v_fiext et al Ovutline font text

BASIC 2

Devpac 3

Lattice C

SUB v_ftext(tBYVAL x%, BYVAL y%, VARPTR string$)

SUB v_ftext_offset(BYVAL x%, BYVAL y%,
VARPTR string$, VARPTR offset%())

SUB v_wc ftext(tBYVAL x%, BYVAL y%, BYVAL string&)

SUB v_wc_ftext_offset(BYVAL x%, BYVAL y%,
BYVAL string&, VARPTR offsct%())

SUB v_wc_gtext{BYVAL x%, BYVAL y%, BYVAL string&)

SUB v_wc_justified(BYVAL x%, BYVAL y%,
BYVAL string&, BYVAL len%, BYVAL word%,
BYVAL chr%)

v_ftext string.L
v_ftext_offset string.L
Input Arguments
x = ptsin[0]
y = ptsin[1]
ptsin[2] = offset[0]
ptsin[3] = offset[1]

i;t‘sin[n] = offset[n-2];
ptsin[n+1] = offset[n-1];

void v_ftext{int handle, int x, int y, const char *string);

void v_ftext_offset{int handle, int x, int y,
const char *string, const short *offset);

void v_wc_ftext(int handle, int x, int y, const short *string);
void v_wc_gtext(int handle, int x, int y, const short *string);

void v_wc_justified(int handle, int x, int y,
const short *string, int len, int word, int chr);

This family of functions are used to display text on the output device
(either explicitly referenced by handle for C or implicitly for
Devpac/BASIC). The string to write is passed in string and it is
displayed starting at position (x, y).

Page 144

Modern Atari System Software SpeedoGDOS

The v_..ftext_.. family of functions work in exactly the same fashion
as the more familiar v_gtext, but the text generated accounts for the
fractional values of vqt_advance32; i.e. the text spacing is more
accurate.

In addition, for applications that require more control over character
placement, the v_ftext_offset and v_wc_ftext_offset functions
take a custom sct of offset vectors, one for each character in the string
(including the last one for underlining calculations). Each vector consists
of a pair of 16-bit values that are used in place of a character’s advance
vector when outputting text.

To support full 16 bit wide strings the additional v_wc_... bindings exist
which expect a pointer to a string of 16-bit wide characters (i.e. each
character occupies 16 bits rather than 8). For the v_..ftext_.. the
functions perform as above; for the v_wc_justified and v_wc_gtext
functions the string parameter is modified as noted, but the other
parameters are as in the older v_justified and v_gtext bindings.

If you are using the wide character routines you will probably want to
request operation in the BICS mode from vst_charmap thus making all
characters in the set available.

SpeedoGDOS Modern Atari System Software Page 145

v_getbitmap_info
Get character bitmap information

BASIC 2 SUB v_getbitmap_info(BYVAL ch%, VARPTR advancexé&,
VARPTR advancey&, VARPTR xoffseté,
VARPTR yoffsetd, VARPTR width%, VARPTR height%,
VARPTR bitmapé)

Devpac 3 v_getbitmap_info ch.W
Output Arguments

width = intout{0]
height = intout{1]
advancex = intout[2-3]
advancey = intout[4-5)
xoffset = intout[6-7]
yoffset = intout[8-9]
bitmap = intout[10-11}

Lattice C void v_getbitmap_info(int handle, int ch, fix31 *advancex,
fix31 *advancey, fix31 *xoffset, fix31 *yoffset,
short *width, short *height, short **bitmap);

This call provides information to allow the caller to know the exact size
and placement of a given character. This information includes the
character's x and y advance vectors, the x and y offsets, and the bitmap
dimensions of the character. The advance vector represents the amount
to add to the current point to place the following character. The x and y
offsets, when added to the current point, give the caller the location of
the upper left hand corner of the bitmap. The width and height of the
bitmap are returned as 16 bit integers. All other values are returned in
fix31 representation. '

Page 146 Modern Atari System Software SpeedoGDOS

v_getoutline Get character outline

BASIC 2 SUB v_getoutline(BYVAL ch%, VARPTR xyarray%,
BYVAL bezarrayé&, BYVAL maxverts%,
VARPTR numverts%)

Devpac 3 v_getoutline ch.W, xyarray.L, bezarray.L, maxverts. W
Output Arguments
numverts = intout[0]

Lattice C wvoid v_getoutline(int handle, int ch, short *xyarray,
char *bezarray, int maxverts, short *numverts);

This function generates an outline of the character specified by ch, in
the current character set (see vst_charmap), and places the bézier
representation of that character into the buffers provided by the caller.
This bézier information can readily be sent to the GDOS bézier output
call since xyarray and the bezarray are exactly the information

. required by the GDOS bézier primitive. maxverts is the total number of

vertices that the user's buffers will handle. numverts represents the
number of vertices contained in the given bézier.

v_loadcache Load outline font cache
BASIC 2 FUNCTION v_loadcache%{(VARPTR filename$,
BYVAL mode%)

Devpac3 v_loadcache filename.L, mode.W
Output Arguments
ret_val = intout{0]

Lattice C int v_loadcache(int handle, const char *filename, int mode);

This function loads in the contents of a outline font cache from disk. The
function takes a filename and a mode as parameters. The filename
specifies what file to open in the current directory. The mode specifies
whether or not to append or create a new cache. If the mode is 0, the
cache from disk will be appended to the current cache; if it is 1, then the
cache will be flushed, and a new cache will be loaded. The function
returns zero normally, or -1 if an error has occurred.

SpeedoGDOS Modern Atari System Software Page 147

v_savecache Save outline font cache to disk
BASIC 2 FUNCTION v_savecache%{VARPTR filename$)

Devpac 3 v_savecache filename.L
Qutput Arguments
ret_val = intout[0]

Lattice C int v_savecache{int handle, const char *filename);

This function saves the contents of the outline font cache to disk. The
function takes a filename as its parameter, and the cache is saved under
that filename. The file is created in the current directory. The function
returns zero normally, or -1 if an error has occurred.

v_set app_buff Reserve bézier workspace
BASIC 2 SUB v_set_app_buff(VARPTR addressé&, BYVAL
nparagraphs%)

Devpac 3 v_set_app_buff address.L, nparagraphs.W
Lattice C void v_set_app_buff(void *address, int nparagraphs);

This call makes the nominated memory block available for use by the
GDOS bézier extensions. When the application makes bézier calls, the
buffer set aside by this call holds the polygon generated from the bézier
anchor and direction points; if this call is not made, a default 8K buffer
is allocated by GDOS.

address is a pointer to the memory block, and nparagraphs is the
number of paragraphs available in the block (a paragraph is 16 bytes of
memory).

For the C binding note that no workstation handle is passed.

Note that since no workstation handle is passed to this call the buffer is
implicitly available for all applications in the system; if you are
running under MultiTOS then you must nominate the allocation type of
this memory block as supervisor access.

Page 148 Modern Atari System Software SpeedoGDOS

-I-.'-.-.-.-.-.,‘

vqt advance, vqt advance32

BASIC 2

Devpac 3

Lattice C

Inquire outline font text advance vectfor

SUB vqt_advance(BYVAL ch%, VARPTR advx%,
VARPTR advy%, VARPTR xrem%, VARPTR yrem%)

SUB vqt_advance32(BYVAL ch%, VARPTR advxé&,
VARPTR advy&)

vqt_advance ch.W
Output Arguments
advx = ptsout[0]
advy = ptsout(1]
xrem = ptsout[2]
yrem = ptsout[3]
vqt_advance32 ch.W
(Additional output)
advx = ptsout[4-5]
advy = ptsout|[6-7]

void vqt_advance(int handle, int ch, short *advx,
short *advy, short *xrem, short *yrem);

void vqt_advance32(int handle, int ch, fix31 *advx,
fix31 *advy);

This function returns the x and y offsets which are needed to place the
next character of a string in the proper position. This call is necessary
when laying down text at rotations other than 0, 90, and 270 degrees.

Remainder values are returned in two different ways, either in xrem and
yrenm (for vqt_advance), or as Fix31 values for (vqt_advance32).
Note that the f1x31 has greater accuracy and the programmer is urged
to use these values instead.

SpeedoGDOS Modern Atari System Software Page 149

vqt_cachesize Get outline font cache size
BASIC 2 SUB vqt_cachesize(BYVAL which_cache%,
VARPTR size&)

Devpac 3 vqt_cachesize which_cache. W
Output Arguments
size = intout[0-1]

Lattice C void vqt_cachesize(int handle, int which_cache,
long *size);

vqt_cachesize obtains the size of one of the Speedo font caches. The
size of the cache required is dictated by the which_cache parameter;
this is 0 to find the size of the largest space in the bitmap cache, or 1 to
find the size of the largest space in the data structure cache. The size of
the selected cache is returned in size.

vqt_devinfo Inquire device status information

BASIC 2 SUB vqt_devinfo(BYVAL devnum%, VARPTR devexists%,
VARPTR devstr$)

Devpac 3 vqt_devinfo devnum.W
Output Arguments
devexists = ptsout[0];
devstr = intout;

Lattice C void vqt_devinfo(int handle, int devnum, short *devexists,
char *devstr);

vqt_devinfo is used to ascertain whether a particular driver ID has
been installed and what driver is associated with it. handle contains a
workstation handle for the device. On return devexists is non-zero if
the device exists, whilst devstr contains the ASCII name for the
device.

Devpac developers please note: The string returned in devstr takes the
form of the ASCII characters which go to make up the string, one
character in each element of the intout array. That is to say that each
character is passed back in a word format with the most significant byte
of each word padded out with $00. Before use, the programmer will
probably have to unpack the string into a separate storage area or
buffer.

Page 150 Modern Atari System Software SpeedoGDOS

l

vqt_fontheader
Inquire Speedo font header information

BASIC 2 vqt_fontheader(BYVAL buffer&, VARPTR pathname$)

Devpac 3 vqt_fontheader buffer.W
Output Arguments
pathname[0] = intout[0];
pathname[n] = intout[n];

Lattice C vqt_fontheader(int handle, void *buffer, char *pathname);

This function copies the current font’s Speedo font header into a buffer
and returns the full path name for the corresponding TDF file. Note that
the buffer must contain at least 420 bytes. For further information on the
font header, please refer to the Speedo Font Header Appendix.

Devpac developers: please read the specific information at the start of
this section regarding the format of returned strings.

vgt _f extent Inquire outline font text extent
BASIC 2 SUB vqt_f_extent(VARPTR string$, VARPTR extent%())

Devpac3 vqt_f extent string.L
Output Arguments
extent{0] = ptsout{0]

é;tent[ﬂ = ptsout[7]

Lattice C void vqt_f_extent(int handle, const char *string,
char extent[8]);

This function returns the screen area needed to display a string of
graphics text using the current text attributes, taking info account any
fractional information from vqt_advance32. This gives how much
screen area will be used if v_ftext is used to display that string.

SpeedoGDOS Modern Atari System Software Page 151

The diagram below shows how the points that mark the boundary of the
string are numbered:

Hello John
1 2

The extent information is returned in extent, which should be large
enough to hold 8 words, will be returned as follows:

extent[0] x co-ordinate of point 1.
extent[1] y co-ordinate of point 1.
extent[2] x co-ordinate of point 2.
extent[3] y co-ordinate of point 2,
extent[4] x co-ordinate of point 3.
extent[5] ¥ co-ordinate of point 3.
extent[6] x co-ordinate of point 4.
extent[7] y co-ordinate of point 4.
vqt_get table Get character mapping tables

BASIC 2 SUB vqt_get_table(VARPTR mapé)

Devpac3 vqt_get_table
Output Arguments
map = intout[0-1]

Lattice C void vqt_get_table(int handle, short **map);

This call returns the address of a series of contiguous tables used
internally by SpeedoGDOS. The tables are used to map the Atari
character set to the equivalent Bitstream character indexes. Depending
on the font file, a Speedo font's indexes have six different formats: the
Bitstream International Character Set, the Bitstream International
Symbol Set, the Bitstream Dingbats Set, the PostScript text set, the
PostScript symbol set, and the PostScript Dingbats set. There are a total
of seven tables which map the Atari character set to Bitstream
character indexes, one master mapping, and one table for each of the
aforementioned character sets (in the order presented). Applications can
find out which character set corresponds to the current font by checking
the Speedo font file hcader.

Page 152 Modern Atari System Software SpeedoGDOS

Each individual table contains 224 word-sized entries with the first
entry being the translation for character 32, the second for character
33.. etc. Therefore, with the address of the table, applications can
change the mappings so that any Bitstream character index may be
substituted.

vqt f name Inquire face name and index
BASIC 2 FUNCTION vqt_name%(BYVAL element_num%,
VARPTR name$)

Devpac 3 vqt_name element_num.W
Output Arguments
index = intout{0]
namel[0] = intout]{1]

'r';a;me[31] = intout[32]
name|32] = intout{33]
name[33] = fsmflag

Lattice C int vqt_f_name(int handle, int element_num, char name[32},
short *isfsm);

This function returns the name of a font and its font index. The function
that changes the current font, vst_font, requires a font index which
should be obtained using vqt_name/vqt_f_name.

The font numbers that are passed in the element_num parameter start
at 1 and are followed by 2, 3, etc. until the number of loaded fonts. The
number of loaded fonts is returned by the vst_load_fonts call. Font
number 1 is the system font.

In addition this call returns an additional parameter (when running
under Speedo GDOS) which indicates whether the sclected font is an
outline font or an old-style bitmap font. The manner in which this
parameter is accessed differs for all three languages. :

For Devpac intout[33] set to 0 will signify a bitmap font, and 1 will
indicate an outline font. Devpac developers should also read the
specific information at the start of this section regarding the format of
returned strings.

BASIC users should note that this function is part of the normal
GEMVDI library and that mid$ (name$,33,1) will give the outline
flag.

SpeedoGDOS Modern Atari System Software Page 153

For the C binding, vqt_f_name (cf. vqt_name for Devpac/BASIC) the
final parameter, isfsm, is set to 1 by the binding to indicate that the
selected font is an outline font. If the font is a bitmap font then 0 is
returned. Note that Lattice C preserves the old binding vqt_name for
backward compatibility.

vqt pairkern Inquire pair kerning information

BASIC 2 SUB vqt_pairkern(BYVAL ch1%, BYVAL ch2%,
VARPTR x&, VARPTR y&)

Devpac 3 vqt_pairkern chl.W, ch2.W
Output Arguments
x = ptsout[0-1]
y = ptsout[2-3]

Lattice C void vqt_pairkern{int handle, int chl, int ch2, fix31 *x,
fix31 *y);

This function allows the application to inquire the adjustment vector for
pair kerning. The vqt_pairkern function returns the vector {x-direction
and y-direction) that indicates the spacing adjustment made between
the character pair specified in fix31 pixel units.

vqt_trackkern Inquire track kerning information
BASIC 2 SUB vqt_trackkern(VARPTR x&, VARPTR yé&)

Devpac 3 vqt_trackkern
Output Arguments
x = ptsout[0-1]
y = ptsout(2-3]

Lattice C void vqt_trackkern(int handle, fix31 *x, fix31 *y);

This function allows the application to inquire the adjustment vector for
track kerning. The vqt_trackkern function returns the vector
(x-direction and y-direction) that indicates the spacing adjustment
made between characters specified in fix31 pixel units.

Page 154 Modern Atari System Software SpeedoGDOS

-.II.-I--.---1

vst_arbpt, vst_arbpt32
et character cell height by arbitrary points

BASIC 2 FUNCTION vst_arbpt%{BYVAL point%, VARPTR chwd%,
VARPTR chht%, VARPTR cellwd%, VARPTR cellht%)

FUNCTION vst_arbpt32&(BYVAL point&, VARPTR
chwd%, VARPTR chht%, VARPTR cellwd%, VARPTR
cellht%)

Devpac 3 vst_arbpt point.W (integer point sizes)
vst_arbpt int_pnt.W, frac_pnt.W {fractional point sizes)
Qutput Arguments
set_point = intout[0][1]
chwd = ptsout[0]
chht = ptsout(1]
cellwd = ptsout[2]
cellht = ptsout([3]

Lattice C int vst_arbpt(int handle, int point, short *chwd,
short *chht, short *cellwd, short *cellht);

fix31 vst_arbpt32(int handle, fix31 point, short *chwd,
short *chht, short *cellwd, short *cellht);

This function selects an arbitrary point size for an Speedo font. This
differs from the vst_point call which will only allow the sizes
mentioned in the EXTEND.SYS file to be selected; note that this call will
only work with outline fonts.

Two bindings are provided for C and BASIC; vst_arbpt which sets an
exact integer point size, and vst_arbpt32 which uses the Speedo
fix31 format to permit any fractional point size.

The value returned by the function indicates the point size which was
actually selected, chwd and chht indicate the character size selected in
raster co-ordinate units. cellwd and cellht indicate the cell size in
raster co-ordinate units.

In the case of Devpac, note that the fractional size is expected in two
separate words, the first being the integer part and the second being the
fraction; if only one word is passed the macro will arrange for only the
integer part to be used.

SpeedoGDOS Modern' Atari System Software Page 155

vst_charmap Set character mapping mode
BASIC 2 S5UB vst_charmap(BYVAL mode%)

Devpac 3 vst_charmap mode.W

Lattice C void vst_charmap(int handle, int mode);

This function allows the application to switch from using the Atari
character set to the Bitstream International Character Set (BICS). The
vst_charmap function will set a flag so that all subsequent calls to text
calls will use words that are equivalent to Bitstream character indexes
instead of Atari ASCII bytes. The mode flag requires the value of 0 for
Bitstream mode and 1 for ASCH mode.

vst_error Set SpeedoGDOS error mode
BASIC 2 SUB vst_error(BYVAL mode%, VARPTR errorcode%)
Devpac 3 vst_error mode.W, errorcode.L

Lattice C void vst_error(int handle, int mode, short *errorcode);

vst_error configures the way in which Speedo errors are reported. The
default, mode is 1, places Speedo error messages on the screen. If
vst_error is called with mode set to O then future errors are placed in
the errorcode variable. The following error codes are used:

Value Meaning

0 No error

1 Character not found in font
8 Error reading file

9 Error opening file

10 Bad file format

n Out of memory /cache full
-1 Miscellaneous error

A SpeedoGDOS error may be generated by any of the following calls:

v_ftext, v_ftext_offset, v_wc_ftext, v_wec_ftext_offset,
v_gtext, v_justified, v_wc_gtext, v_wc_justified, v_opnvwk,
v_opnwk, vqt_advance, vqt_advance32, vgt extent,
vat_f_extent, vqt_f_name, vqt_fontinfo, vqt_name, vgt_width,
vst_arbpt, vst_font, vst_height, vst_load_fonts, vst_point,
vst_setsize, vst_unload fonts

Page 156 Modern Atari System Software SpeedoGDOS

vst kern Set kerning mode

BASIC 2 SUB vst_kern(BYVAL tmode%, BYVAL pmode%,
VARPTR tracks%, VARPTR pairs%)

Devpac 3 vst_kern tmode.W, pmode.W
Cutput Arguments
tracks = intout[0]
pairs = intout{1]

Lattice C void vst_kern(int handle, int tmode, int pmode,
short *tracks, short *pairs);

This function allows the application to set the difterent kerning modes.
Track kerning can have 0-3 tracks: 0 is no kerning, 1 is normal, 2 is tight,
and 3 is very tight. The vst_kern function passes in a track kern value
and it returns the track to which the current font is set. Pair kerning is
set to be on or off.

tracks indicates the track kern mode set, whilst pairs gives the
number of kerning pairs in the font.

vst_scratch Set scratch buffer allocation mode
BASIC 2 SUB vst_scratch(BYVAL mode%)

Devpac 3 vst_scratch mode. W

Lattice C void vst_scratch(int handle, int mode);

This function sets the method of memory allocation for the scratch
buffer. The scratch buffer is memory used to create text with special
effects, and its size is determined by the maximum dimensions of a font.
Since Speedo fonts can be scaled to any size, the scratch buffer size will
not have limits.

Furthermore, many Speedo fonts don't need special effects {or a scratch
buffer), because some of the fonts will actually be defined with certain

effects already applied. By default, the allocation mode is 0, which

takes Speedo fonts into account when calculating the scratch buffer size.

If the mode is 1, the size will not be affected by Speedo fonts, and will

take only bitmap fonts into account. In this case, special effects should

not be used for Speedo fonts. If set to 2, no scratch buffer will be

allocated, and special effects should not be used at all.

SpeedoGDOS Modern Atari System Software Page 157

Also note that some VDI screen drivers (such as replacement video card
drivers) may not support on-screen effects with Speedo fonts; for this
reason, and the ones noted above, it is strongly recommended that you do
not use algorithmic effects on Speedo fonts.

vst_setsize, vst_setsize32
Set character cell width by arbitrary points

BASIC 2 FUNCTION vst_setsize%(BYVAL point%,
VARPTR chwd%, VARPTR chht%, VARPTR cellwd%,
VARPTR cellht%)

FUNCTION vst_setsize32&(BYVAL pointé,
VARPTR chwd%, VARPTR chht%, VARFPTR cellwd%,
VARPTR cellht%)

Devpac 3 vst_setsize point.W (integer point sizes) or
vst_setsize int_pnt.W, frac_pnt.W (fractional point sizes)
Output Arguments

set_width = intout[0-1]
chwd = ptsout[0]

chht = ptsout[1]

cellwd = ptsout[2]
cellht = ptsout(3]

Lattice C int vst_setsize(int handle, int point, short *chwd,
short *chht, short *cellwd, short *cellht);

fix31 vst_setsize32(int handle, fix31 point, short *chwd,
short *chht, short *cellwd, short *cellht):

vst_setsize sets the graphic text character width in points. This
allows an arbitrary set size to be used for the character width. Note
that the next call to vst_point,vst_arbpt orvst_height will
override any set size set by this call. This call will only work with
SpeedoGDOS outline fonts. The set size may be specified in either 16-bit
integer format (vst_setsize) or 32-bit fix31 format (vst_setsize32).

The value returned by the function indicates the set size which was
actually selected, chwd and chht indicate the character size selected in
raster co-ordinate units. cellwd and cellht indicate the cell size in
raster co-ordinate units.

Page 158 Modern Atari System Software SpeedoGDOS

--.--.-.-.-,‘

vst skew Set outline font skew
BASIC 2 FUNCTION vst_skew%(BYVAL skew%)

Devpac 3 vst_skew skew.W
Output Arguments
set_skew = intout[0)

Lattice C int vst skew(int handle, int skew);

vst_skew sets the skew used when generating characters, note that this
is independent of the skewing generated using vst_effects. The skew
value (between -900 and 900) represents the number of 10th% of a degree
by which the characters are to be skewed. Negative values produce
skews to the left, positive values skews to the right. Note that
characters will degenerate badly when their skew approaches 90
degrees. This call only works with outline fonts.

The function returns the skew value actually set.

SpeedoGDOS Modern Atari System Software Page 159

Page 160

Modern Atari System Software

SpeedoGDOS

" B B Bl EEEEEEEEEEBE

Appendix A
The Atari Style Guide

Since the announcement of the new multi-tasking environment for the
Atari range of computers, Atari have published some useful software
design guide lines for programmers. It is highly recommended that these
comments should be read, understood and strictly adhered to for all
future software and where possible, they should be implemented
retrospectively into current available software. Programmers who do not
heed the recommendations of the primary hardware manufacturers do so
at their own peril since good software should be 'Future Proof, designing
software to the following specifications will go part of the way towards
that goal.

Finally, it is perhaps fair to say that some of the following
documentation will appear to be a little pointless or just a matter of fine
detail, especially when a program is being developed within a non
multi-tasking environment. Please be advised that some of the guide
lines only become apparent when working in a multi-application, multi-
window environment.

Application Elements

User-friendly GEM applications should provide the user with a
consistent, predictable means of interacting with the computer. The most
popular applications to-date have always been those that the user feels
at home with, because of general familiarity with other applications
that they have previously used. User interface design is a critical
consideration during product development and should be well thought
out before actually sitting down and laying out and coding the interface.

The basic elements of a GEM application are the menu bar, the
application's window (or windows), dialog boxes, alert boxes, and if the
application warrants them, toolbox windows. GEM applications may
optionally install their own desktop background, which is swapped out
by the AES to reflect the active application.

Atari Style Guide Modern Atari System Software Page 161

The Menu Bar

Applications should normally consist of a MENU BAR, which will
generally have the titles from left to right, "Prgname”, "File”, "Edit",
and then the additional application-specific main menu titles.
"Prgname" should be replaced with the application name so that users
can quickly identify which application's menu bar they are looking at.

The File menu

For user convenience, the standard entries under "File" should start with
"New", "Open...", followed by other load-oriented operations, then in
the next section of the menu, “Close", "Save”, "Save as...", and the other
application-specific save-oriented functions. The next section down
should be used for other file operations such as "Import..." and
"Export...". This should be followed by the menu items for printing,
usually "Page Setup...", then "Print...". The last item under "File"
should always be "Quit".

Note: A menu item must be followed by an ellipsis to indicate that
additional action or input will be required by the user to carry
out the requested task. For instance, "Save” indicates that the
file will be saved directly, using the current name, whereas
"Save as..." will require the additional input of a filename.

The Edit menu

The "Edit" menu should start with "Undo”, then in the next section,
"Cut”, "Copy”, "Paste”, and "Delete”. The rest of the "Edit" menu is
usually application-specific, but the next menu item, if used should be
"Select all".

Other menus

If applicable, the fourth main menu title should be "Options”, where
menu items such as "Document defaults...”, or "Preferences...” should
appear.

Note: Menu titles and items should never be displayed in all uppercase
letters. Menu titles should have one space before and after each
title. There should be two spaces to the left of menu items.

Page 162 Modern Atari System Software Atari Style Guide

-.I-......I....I‘

Keyboard equivalents

Menu items

The standard keyboard equivalents that should be used system-wide for
no other purpose other than those listed are:

[Control-N]
[Control-O]
[Control-W]
[Control-S]
[Control-P]
[Control-Q)]
[Control-X]
[Control-C]
[Control-V]
[Control-A]
[Control-F]
[Control-H]
[Control-G]
[Delete]
[Undo)
[Helpl

New
Open
Close
Save
Print
Quit

Cut

Copy
Paste
Select all
Find
Replace
Find next
Delete
Undo
Invoke help

Note: The [Alternate] key is used as a character modifier on non-U.S.
keyboards to access the necessary extended characters in
applicable countries, and should not be used for keyboard

equivalents in most cases.

Cursor movement inside windows

The system-wide standard for keyboard cursor manipulation is as

follows:
[Control-Left /Right Arrow]

[Control-Backspace]

[Control-Delete}

Move cursor to beginning of word to
the left/right

Delete from cursor position to start of
next word to the left

Delete from cursor position to start of
next word to the right

Atari Style Guide Modern Atari System Software Page 163

[CirHome] Move cursor to beginning of document
[Shift-ClrHomel Move cursor to end of document
[Shift-Delete] Delete line
L]
Windows

The primary stage for user interaction with the application is the
window. Most of the user input, whether typing, drawing, or editing, is
performed in the confines of windows. All of an application’s output
should be constrained to the application's own windows only. See the
VDI and AES manuals for further information regarding window work
areas and clipping rectangles.

Document windows should have, at a minimum, a mover/title bar so
that even if the window is not resizable, the user can move the window
off to the side of the desktop to have access to other items. The other
window clements are the Info bar, Closer, Sizer, Full box, Sliders, and
Arrows. The general use of these is apparent in the GEM Desktop. It
should be noted that GEM sliders are always proportional so that the
user has constant feedback as to the percentage of the document that is
being, viewed.

Operating system calls allow every element of windows to be set to any
colour and fill pattern. The user generally selects these attributes using
the Window Colours CPX in the Control Panel and they should not be
altered by an application. In videco modes with greater than 16 colours,
other than True Colour, the first 16 colour entries should be reserved for
use by the system for drawing clements for which the uscr has set
preferences.

Dialog boxes

Dialog boxes are used for modal input. That is, input that the user must
provide before any further processing may be done. They are generally
used for parameter setting and other selections that require the
undivided attention of the user. They should never be used for on-going
informational or status output, as it would interfere with the normal
real-time user interaction with the system.

Page 164 Modern Atari System Software Atari Style Guide

Alerts

Alerts should be used to call the user's attention to conditions that
develop that require immediate user knowledge. The simplest and most
common would be an alert notifying the user that he is about to exit an
application without having saved the open document. Alerts should
also be used to notify the user that a time-consuming or unalterable
function is about to be performed.

Alerts usually have two or three buttons that allow the user to make
some sort of decision based on the information provided. Alerts with
only onec button are very frustrating to the user, as it implies a lack of
control over what is about to happen. The general rule for alerts is to
have the "OK" button to the left of the "Cancel” button. "Cancel”
should always be capitalised, and "OK" is uppercase.

Note: In general, text within buttons should use capitalised words and
should not all be in uppercase.

Toolbox windows

Toolbox Windows are a special class of window that are used for
providing the user with non-modal control or information. The most
common use would be for drawing tool selection in a paint program, or
colour selection. The tools are usually shown as logical groups of icons
that the user can casily associate with their functions. Another use of
this type of window is continual status output, such as the progress of a
file download or recalculation time.

Other general notes

Applications should make no assumptions about the type of system the
user will have. They should be able to deal with any screen size and
colour resolution. To achieve this the programmer should use the
operating system calls to determine the screen dimensions and system
capabilities to provide the user with the greatest flexibility possible.

Atari Style Guide Modern Atari System Software Page 165

Appendix B
Object File Formats

This section describes several of the object file formats (“linker
formats”) which are in common use under Atari’s TOS.

Lattice

This section describes the Lattice linkable file format. A Lattice object
file is a tag based file format, thus allowing particular fields to be
present or absent from the file as required by the application. This also
has the major advantage of (almost) limitless expandability.

Each tag is formed by a longword giving the type of the tag, followed by
zero or more longwords giving additional information about the tag.
Note that all items within a Lattice format file are longword sized
unless noted otherwise.

A string in a Lattice format file is represented by a longword prefix

giving the length in longwords, followed by the characters forming the
string; as such the string may or may not be NUL terminated.

Module directives

The module directives are used to start and terminate object files with a
file. A simple object file will have only one HUNK_UNIT, whereas an
uncompressed library may have many.

HUNK_UNIT 0x3e7 string

A HUNK_UNIT is used to introduce the start of a module within the
relocatable file. It is followed by a string giving the name of the module.
If there is more than one section within a module then HUNK_UNIT
terminates the previous module.

Lattice File Format Modern Atari System Software Page 167

Section directives

The section directives are used to start and end sections within a module.
Each section (HUNK_CODE, HUNK_DATA and HUNK_BSS) may have a
HUNK_NAME associated with it, followed by one or more relocation
and/or debugging directives, terminated by a HUNK_END.

HUNK _NAME Ox3e8 string

HUNK_NAME is used to associate a name with the next HUNK_CODE,
HUNK_DATA or HUNK_BSS directive. 1t is followed by a string giving the
name of the section. Note that section names are optional, although if
present are used by the linker to coalesce sections of the same name.
Unnamed sections are always coalesced.

HUNK CODE 0x3e9 long
HUNK DATA Ox3ea long

HUNK_CODE and HUNK_DATA define a block of code, and a block of data
respectively. They have a long giving the number of longwords of
code/data which follow the tag.

HUNK_BSS 0x3eb long

HUNK_BSS defines a BSS block, containing long longwords of data.
Note, however, that none of the data is actually present, and is
implicitly zero.

HUNK_END Ox3f2

A HUNK_END is used to mark the end of the current section. Note however
that the smallest legal module is HUNK_UNIT, HUNK_END.

HUNK_CHIP 0x40000000
HUNK_FAST 0x80000000

HUNK_CHIP and HUNK_FAST are not section directives but section
modifiers. They are bits which may be set in the HUNK_CODE,
HUNK_DATA and HUNK_BSS section types to indicate that the respective
section should be exclusively loaded into system (chip) or alternative
(fast) memory respectively. Note that neither of these bits is supported
by Lattice format linkers at the time of writing.

Page 168 Modern Atari System Software Lattice File Format

T N EEEEEREEEEEREEEEERE

Relocation/symbol directives

The relocation directives are used to specify fixups which are to be
performed in the current section. These may either be anonymous (i.e. not
relative to any variable) in the case of the HUNK_RELOCS,
HUNK_RELOC16, HUNK_RELOC32, HUNK_DRELOCS, HUNK_DRELOC16 and
HUNK_DRELOQOC32 directives, or symbol relative in the case of the
HUNK_EXT directive. Note that the HUNK_EXT directive is also used to
generate exports of symbols.

HUNK RELOCS Ox3ee {long section offsets}
HUNK_RELOCI6 0x3ed {long section offsets}
HUNK_RELOC32 (0x3ec {long section offsets}

HUNK_RELOCS8, HUNK_RELOC16 and HUNK_RELOC32 directives specify 8,
16 and 32 bit relocations, respectively, which are to be performed in the
current section. Each of these directives are followed by a relocation
block consisting of a count of the number of relocations to be performed,
which section the relocations are relative to and finally the relocation
offsets. The list is terminated by a block indicating a zero count.

Each relocation blocks consist of a 1ong giving the number of items to be
fixed up relative to the section number. Note that the sections
within the module are numbered starting from zero. Following section
are a list of 1ong longword offsets which are to be fixed up.

For HUNK_RELOC32 the relocation is performed by adding the base of the
nominated section to the longwords located at the offsets. Note that
there is no way to perform a 32 bit PC-relative fixup.

For HUNK_RELOC16 and HUNK_RELOCS8 a PC-relative fixup is performed
by adding the start of the section, minus the offset of the relocation
point.

HUNK_DRELOCS 0x379
HUNK_DRELOC16 0x3f8
HUNK_DRELOC32 Ox3f7

HUNK_DRELOC8, HUNK_DRELOC16 and HUNK_DRELOC32 directives
specify 8, 16 and 32 bit near data section relocations, respectively,
which are to be performed in the current section. Each of these directives
are followed by a relocation block in the same format as for
HUNK_RELOC32.

Lattice File Format Modern Atari System Software Page 169

For all of these directives the relocation is performed by adding the
base of the specified section {i.e. the number of bytes from the base of the
___MERGED section to the base of the specified section).

Note the lack of symmetry between the HUNK_RELOC16, HUNK_RELOC8
and HUNK_DRELOC 186, HUNK_DRELOQCS directives respectively.

HUNK_EXT ox3ef { .. }

The HUNK_EXT directive is used to introduce a block specifying both
definitions for symbols (exports) and references to declared symbols
(imports).

Each symbol block within a HUNK_EXT block consists of an initial
longword giving the length of the symbol which follows. The top 8 bits
of the longword are ignored for the length purpose and instead hold a
type. Immediately following this longword there are length longwords
of name, giving the name of the symbol to which this symbol data unit
refers.

EXT ABS 2
EXT_DEF 1

The EXT_ABS and EXT_DEF types are used to enter absolute and
relocatable definitions, respectively, into the linkers symbol table.
Following the symbol name is a longword value. For an EXT_ABS this is
the absolute value of the symbol. For an EXT_DEF it is an offset from the
base of the current section to the symbol location.

EXT_REF8 132
EXT _REF16 131
EXT_REF32 129

The types EXT_REF8, EXT_REF16 and EXT_REF32 perform 8, 16 and 32
bit relocations, respectively, in the current section. Each of these is
followed by a count of the number of references and a list of the offsets to
these references.

EXT_REF32 references have the value of the symbol added to the
longwords located at the offsets.

For EXT_REF16 and EXT_REF8 a PC-relative fixup is performed by
adding the value of the symbol, minus the offset of the relocation point.

Page 170 Modern Atari System Software Lattice File Format

EXT_DREF8 135
EXT_DREF16 134
EXT_DREF32 133

The types EXT_DREF8, EXT_DREF 16 and EXT_DREF32 perform 8, 16 and
32 bit near data section relocations, respectively, which are to be
performed in the current section. Each of these is followed by a count of
the number of references and a list of the offsets to these references.

For all of these types the relocation is performed by adding the offset of
the symbol within the _ MERGED.

Note the lack of symmetry between the EXT_REF32 and EXT_DREF32.
EXT_COMMON 130

The EXT_COMMON type is used to enter a reference to a common block.
Following the symbol there is a longword length for the common block.
Note that this gives the length of the common block in longwords.

A list of references to the common symbol for fixup then follow in the
same manner as used by EXT_REF32. Note that common references are
always 32 bit.

Debugging directives

The debugging directives supply information which is not directly
processed by the linker, but instead passed on to the final executable
program for use by a symbolic or source level debugger.

HUNK_SYMBOL 0x310

HUNK_SYMBOL is used to provide symbol information in the executable
for use by a symbolic debugger.

Each symbol block within a HUNK_SYMBOL block consists of an initial
longword giving the length of the symbol which follows. The top 8 bits
of this longword are ignored for the length purpose and are always zero.
Immediately following this longword there are length longwords of
name, giving the name of the symbol to be placed in the executable
symbol tabie. The longword offset from the start of the section
immediately follows the name.

There may be as many of these symbol blocks as required, terminated by
a longword 0 (indicating a zero length string).

Lattice File Format Modemn Atari System Software Page 171

HUNK_DEBUG 0x3F1

HUNK_DEBUG is used to provide source level debugging information about
the current section. 1t consists of the HUNK_DEBUG directive followed by
a longword count of the number of longwords in the remainder of the
HUNK_DEBUG section. The first longword in the debug block is filled in by
the linker, by adding the offset of the start of this section within the
entire coalesced scction. The second longword is a type value, indicating
the type of the debugging information contained in this block.

Note that there will typically be as many HUNK_DEBUG blocks within a
section as there are source files which make up the module.

‘HEAD’ 0x48454144

The HEAD chunk is generated by the linker as the very first HUNK_DEBUG
directive in an executable file (see below for the location of
HUNK_DEBUG information in an executable).

The first longword is the value ‘DBGV’ (0x44424756), followed by the
HEAD chunk version number. This section describes version ‘017 (0x3031).

The word following the version number gives the linker option flags.
Only two of these bits are committed at present: bit 0 indicates that the
executable is an overlaid program (not supported by current linkers), bit
1 indicates that the file was linked in a case-insensitive manner.

The next two longwords give the number of symbols found in HUNK_DATA
{or HUNK_BSS) sections and HUNK_CODE sections respectively.

The next longword indicates how many HUNK_DEBUG directives were
encountered during linking {and hence how many follow the HEAD
chunk), to improve the performance of locating these HUNK_DEBUG
directives the linker writes an index of these immediately after the
count of them. This consists of a longword, the high byte of which gives
the number of the section which the HUNK_DEBUG refers to and the
remainder of which gives an offset within the executable file to the
start of the relevant HUNK_DEBUG directive. Note that this places a
theoretical limit of 16Mb on the size of an executable plus debugging
information.

‘HBPR’ 0x48425052

The HBPR chunk is generated by HiSoft BASIC for use by the profiler.
The information contained within this chunk is confidential and
proprietary.

Page 172 Modern Atari System Software Lattice File Format

|

‘HCLN’ 0x48434c4e

The HCLN chunk gives information about the line numbers of a file from
which the module was generated. The first longword gives the length of
a string giving the name of the file from which the module was
generated, followed by length longwords of the name. Note that up to
this point the format is identical to the LINE chunk.

The next longword gives the number of line number and offset pairs
which are to follow. The remainder of the chunk then consists of signed
line number and offset delta pairs, giving the changes in line numbers
and code offsets, so that line numbers and code offsets may be matched.
The encoding of the deltas is identical to that of the 680x0 BSR in its
short, word and long forms. If a non zero byte (note a byte) is read then
this is gives the delta, otherwise a word is read which, if non-zero,
gives the delta, finally a longword may be read to give the delta. Note
that the only way of generating a zero delta is via a byte, a word and
finally a longword of zero (i.c. these should be avoided where possible).

‘LINE’ Ox4c494e45

The LINE chunk gives information about the line numbers of a file from
which the module was generated. The first longword gives the length of
a string giving the name of the file from which the module was
generated, foilowed by length longwords of the name.

The remainder of the chunk consists of line number and offset pairs,
giving which offsets within the local code section correspond to which
line numbers.

Note that there is no explicit terminator, instead the section ends when
the length longword in the HUNK_DEBUG directive is used up.

‘SRC 0x53524320

The SRC chunk is used by Lattice C for source level debugging
information. The first 8 longwords in the SRC chunk give the module
name to which this HUNK_DEBUG refers (note that this is only the stem
of the filename, not the entire file name). The next three longwords give
(in bytes): the size of the code generated for this module, the size of the
line number/offset pair table and the size of the source level debugging
information table.

Next in the chunk a LINE format chunk is generated, comprising a
longword giving the length of a string giving the name of the file from
which the module was generated, followed by length longwords of the
name. A line number/offset pair table then follows, of length given by
value retrieved earlier from the chunk.

Lattice File Format Modern Atari System Software Page 173

The next part of the chunk contains the source level debugging
information table, of a size given earlier in the chunk. The contents of
this part of the chunk are confidential and proprietary.

The final 5 longwords in the hunk are used to hold offsets to the near
data, far data, near BSS, far BSS and chip data (not used under TOS).
The values of these fields are modified by the linker to give the correct
offsets after coalescing.

Library Format

The Lattice object format supports two library formats. The simple,
uncompressed version is simply the concatenation of ordinary object
modules (in an identical manner to that done in the GST format). There
is a second, compressed, format recognised by CLink which allows a
massive linker performance improvement.

HUNK_LIB Ox3fa

An HUNK_LIB directive is the first part of a compressed library. It is
followed by a longword giving a count of the total number of longwords in
the remainder of the block.

The data contained within a HUNK_L 1B is simply the concatenation of
all the modules which form the library, however all HUNK_UNIT and
HUNK_NAME directives are removed completely whilst EXT_DEFs and
EXT_ABSs are removed from HUNK_EXTs. Note that EXT_COMMONSs (the
other “definition” type) are not removed, but never-the-less appear
within the HUNK_INDEX block.

Because of a restriction in the HUNK_INDEX directive, no section
(HUNK_CODE, HUNK_DATA, or HUNK_BSS) in a HUNK_L IB may begin
beyond a longword offset of 65535 (byte offset 262140). If this is required
then a library may be enlarged by concatenating two or more compressed
format libraries in the same manner as an uncompressed library.

Within the library file, the next directive, following a HUNK_LIB must
be a HUNK_INDEX.

HUNK_INDEX 0x3fb

An HUNK_INDEX directive gives the module index for the preceding
HUNK_LIB. It is followed by a longword giving a count of the total
number of longwords in the remainder of the block.

Page 174 Modern Atari System Software Lattice File Format

l

The first item in the HUNK_INDEX is a string table, prefixed by an
unsigned short word giving the number of bytes in the string table. The
entries in the string table are module names (HUNK_UNIT), section names
(HUNK_NAME) and external names (HUNK_EXT). Within the string table
the strings are NUL-terminated {C-style} strings, concatenated end-to-
end. Note that the first string in the table must be the NULL string. The
string table is always padded so that it is an even number of words,
although each string within the table is not padded.

Following the string table are one or more module entries. These give
details of the modules contained within the HUNK_L IB. A module entry
consists of an unsigned short offset to the HUNK_UNIT name within the
string block, an unsigned short longword offset to the start of the module
within the preceding HUNK_LIB, and an unsigned short count of the
number of sections in the module (HUNK_CODE, HUNK_DATA and
HUNK_BSS).

For each of the sections in the module, there is a section entry consisting
of an unsigned short offset to the name of the section within the string
block (note that 0 will indicate the NULL string), an unsigned short
count of the number of longwords in the section within the HUNK_LIB and
a short type of the section (HUNK_CODE, HUNK_DATA or HUNK_BSS).

The next unsigned short value indicates the number of references to
external symbols (EXT_REF16, EXT_REF32, EXT_DREF16, EXT_DREF32
and EXT_COMMON), followed by a list of unsigned short offscts to the
strings referenced within the string block. Note that a 16 bit reference is
indicated by pointing to the zero preceding the string within the block,
whereas a 32 bit reference points at the string itself (an EXT_COMMON is
treated as an EXT_REF32). Note that EXT_REF8 and EXT_DREF8 are not
supported.

The next unsigned short value indicates the number of external
definitions {(EXT_DEF, EXT_ABS and EXT_COMMON) within the section.
Note that EXT_DEF and EXT_ABS definitions are deleted from the
HUNK_EXT, whereas EXT_COMMONSs are not (and indeed appear both as
references and definitions). Following the count of references are a series
of 6 bytes records.

The first unsigned short value gives an offset into the string block for the
name of the symbol, followed by two unsigned shorts encoding the value
and type of the symbol.

The encoding used for the value and type of the symbol is rather
convoluted, but permits 25 bits of resolution for values and allows all
current HUNK_EXT types.

Lattice File Format Modern Atari System Software Page 175

The first unsigned short gives the bottom 16 bits of the value of the
symbol. The bottom byte of the next unsigned short excluding bit &
encodes the type byte (EXT_DEF, EXT_ABS or EXT_COMMON). The top 8
bits of this short then encode bits 16-23 of the value. Finally bit 6 is used
to denote the state of the top 8 bits of the value, 0 if they are 0x00, or 1
to indicate Oxff. Thus the type and value of a definition may be
decoded in the following manner:

unsigned short *buffer;
long value;
int type;

value = buffer[0] | ({buffer[1] & OxDO00OFfOOL) << B};
if (buffer[1] & (i << 6)}

value = value | Oxff000000;
type = buffer[1] & ~(1 << 6}

Note that there is no explicit terminator, instead the section ends when
the length longword in the HUNK_INDEX directive is used up.

GST

This section describes the GST linkable file format. A GST object file is
based around a byte stream which is copied by the linker to the final
output file. Interspersed with the byte stream are directives, introduced
using the code $FB which allow relocation, symbol definition, section
and module definition. If a $FB code is required in the file then one is
included using the sequence $FB $FB.

Within this file symbols and section names are referred to using an
word-sized 1d number. These numbers are +ve and non-zero for symbols,
whilst -ve values refer to SECTION and COMMON names. The value 0 is
reserved for absolute section references.

A string in GST terminology is a sequence of bytes comprising the
string, prefixed by the length of the string excluding the length byte
(a.k.a. a Pascal string).

FPage 176 Modern Atari System Software Lattice File Format

|

Source directives

Source directives are used to specify the start and end of modules within
a single file. A GST format object module will have only one such pair of
SOURCE and END directives; a library may have many appearing
sequentially in the file. Note that a SOURCE directive must be the very
first item in a GST format file.

COMMENT FB 02 string

The COMMENT directive is used to include a comment within the
relocatable file; it has no effect on the exccutable generated. Many
linkers use this field type in conjunction with a librarian to improve
performance of library scanning for GST format files.

DEFINE FB 10 id string

The DEFINE directive is used to introduce id numbers for use by the other
directives. It defines that the string given is associated with the id.

Remember that +ve (non-zero) id values are used for symbols, whilst -ve
values refer to SECTION and COMMON names. The id value 0 is reserved
for absolute section references.

END FB 13

The END directive marks the end of the current module. If there are
further modules in the file then these are introduced using a SOURCE
directive.

SOURCE FB 01 string

The SOURCE directive is used to indicate which source file the object file
was derived from. and as such should only appear at the start of a
module.

GST File Format Modern Atari System Software Page 177

Section directives

The section directives allow the specification of various sections within
a single module, e.g. a text, data and BSS section.

COMMON FB 12 id

The COMMON directive is similar to the SECTION directive (see below)
but instead switches to a section which rather than concatenating from
module to module (as with a SECTION) overlay each other. The size of
the resulting section is then the size of the largest one encountered.

Note that most existing linker implementations permit only non-
initialised COMMON sections, i.e. the only valid output directive is
OFFSET.

OFFSET FB 05 long

The OFFSET directive moves the current location pointer within the
section. The parameter gives the absolute offset within the section for
the location pointer. Note that this may cause the section to be
expanded as a result.

ORG FB 03 long

The ORG directive indicates that the bytes following the directive are to
start at the absolute address given in the 1ong parameter. This applies
until the next ORG, SECTION or COMMON directive.

SECTION FB 04 id

The section directive switches the current section to that specified by
id. The section should already have been defined via a DEFINE
directive. this applies until the next ORG, SECTION or COMMON directive.

Symbol directives

The symbol directives are used to specify symbol definitions and fixups
which should be performed for the relocatable file.

XDEF FB 06 string long id

The XDEF directive marks symbol as an export. The value of the symbol
is given by 1ong, and is relative to the section defined by id.

Page 178 Modern Atari System Software GST File Format

l

XREF FB 07 long trunc-rule {op id} FB

The XREF is the most complex directive. It is used to include fixup
information in the final file. The final value output is constructed from
the sum of the 1ong parameter and the op id terms.

The trunc-rule parameter is a byte which defines the characteristics
of the item finally written to the file. Six bits of it are used as follows:

Bit Meaning

0 The result is byte sized
1 The result is word sized
2 The result is long sized
Note that only one of these bits may be set.
3 The result is signed
4 The result is unsigned

Unlike the size bits neither or both if these may be set in
order to decide the range checking information.

5 The reference is PC relative, i.e. the location counter prior
to the output of the result is subtracted from the running
total.

6 The result should be relocated at runtime. This is only
supported in TOS for longs.

The op 1d terms are a list of symbols which should be added/subtracted
from the value. op is the character + for addition or - for subtraction.
The following id (previously defined via an id directive) is then
add/subtracted from the running total. The list is terminated by a single
$FB byte.

Library Format

A GST format library is a relocatable object file as described above, but
rather than containing only one SOURCE and END directive it will
contain several. A library is therefore simply the concatenation of
several object files.

GST File Format Modern Atari System Software Page 179

DRI

This section describes the DRI linkable file format. A DRI object file
consists of two images of the text and data segments (hence their
voluminous size), the first giving the code, and the second the relocation
information. The format is extremely similar to the GEMDOS
executable format, with the sole difference occurring in the format of the
relocation information. It should be noted that the format is incomplete
since byte fixups are not possible.

Relocatable Format

A DRI relocatable file starts with a file header in the following format:

struct oheader {

shart magic; Ox601a

long tsize; length of text segment
long dsize; length of data segment
long bsize; length of BSS segment
long ssize; length of symbol table
char reserved[i10]; must be zero

b

Immediately after the header an image of the text section occurs, with
length tsize and then the data section of length dsize. The symbol
table then follows. This is an stream of symbols in the following format:

struct symbol {

char name(8]; B character name of symbol
unsigned short type; type of the symbol
long value; value assigned to symbol

b

Within these structures, name gives the 8 character name of the symbol.
If the original name required more than 8 characters it will be truncated
to 8 characters. value gives a value which is associated with the
symbol. The type word is a used gives a bitmap of the types associated
with the symbol as follows:

Bit Meaning

15 defined, i«. the value field gives the value the value of
the to be associated with the symbol. Note that any of
the other bits may be sct to indicate a definition relative
to that type.

Page 180 Modern Atari System Software DRI File Format

14 equated label
13 global label
12 register equate, i.e. a symbol acting as a register synonym.

The value field is used to indicate which register the
symbol refers to; 0-7 indicate DO-D7, 8-15 indicate AQ-A7
and 16-23 indicate FPO-FP7.

11 external symbol, i.e. a symbol imported from another
module. Note that this means the value field would be
unused. Because of this the format uses this symbol type to
indicate a common symbol when the value field is non-
zero. value then gives the length of the common block to

be created.
10 value relative to start of DATA
9 value relative to start of TEXT
8 value relative to start of BSS

The relocation tables follow the symbol table. These are the same size
as the section to which they refer and consist of words giving the
relocation which is to be performed on the data. The top 13 bits of the
relocation word give a symbol index number (note that this gives an 8192
symbol limit per-module), whilst the bottom 3 bits give the relocation

type:

Type Meaning

o Absolute reference, no fixup required. Symbeol ignored.

1 DATA segment relative, add address of local data
segment. Symbol ignored.

2 TEXT segment relative, add address of local text scgment.
Symbol ignored.

3 BSS segment relative, add address of local BSS segment.
Symbol ignored.

4 Absolute address of undefined symbol, add value of the
symbol.

5 References the upper word of a long word to be relocated.
Symbol ignored. Next word determines type of relocation
and symbol.

6 PC relative, add symbol-PC.

7 References word which is never to be relocated (e.g. an
instruction). Symbol ignored.

Within this scheme it is possible to generate all 16 and 32 bit relocation
types, although most linkers will not permit a short absolute fixup
{relocation type 4 without a preceding 6). This type of relocation is used
by Lattice C to indicate an near data section reference.

DRI File Format ~ Modern Atari System Software Page 181

Absolute Format

A DRI absolute file is identical to the relocatable format, with the
exception of the header. For the absolute format it has the following
structure:

struct abshdr {

short magic; 0Ox601b

long tsize; length of text section
long dsize; length of data section
long bsize; length of BSS section
long ssize; length of symbol table
long reserved; z2ero

absolute base of text section
zero if relocation present
absolute base of data section
absoclute base of BSS section

long textbase;
short relocflag;
long database;
long bsshase;

b

Following the header the format is identical to the relocatable format.

Note that GEMDOS cannot execute absolute format programs.

Executable Format

A GEMDOS executable file starts with a file header in the following
format (note the similarity to the DRI relocatable module format):

struct prgheader {

short magic; 0x601a
long tsize; length of text segment
long dsize; length of data segment

long bsize; length of BSS segment
long ssize; length of symbol table
long reserved; zero
long flags; program load flags
short relocflag; zero if relocation present
IH
Page 182 Modern Atari System Software DRI File Format

The bottom 28 bits of the flags longword are used to control the loading
characteristics of the program. The bits are assigned as follows.

Bit Meaning when set

0 Only clear the BSS of the program cf. the entire TPA.

1 Load the program into alternative RAM,

2 Allow Mallog () to take memory from alternative RAM.

4-5 Memory protection mode (MiNT):
$00 Private (no reads or writes)
$10 Global (any reads or writes)
$20 Supervisor (supervisor mode reads and writes)
$30 Shared (any reads, no writes)

i1 Shared text segment (MiNT)

The top 4 bits of the flags longword are used in conjunction with the
alternative RAM load bit. If this bit is set then TOS checks the amount
of alternative memory against the value in the top 4 bits of
flags*128+128, if more alternative RAM is available than this-
minimum TPA size then the program is loaded into alternative RAM,
otherwise it is loaded into system RAM.

Note that prior to TOS 1.04, setting the relocflag word causes
Pexec () to leave the file open after loading it; this behaviour usually
results in two or more files with the same name appearing.

Immediately after the header an image of the text section occurs, with
length tsize and then the data section of length dsize. The symbol
table then follows, in almost the same format as the relocatable symbol
format.

Note that within the symbol table all symbols are considered relative
to the text section regardless of the type field.

As extensions to the standard format some utilities allow various
extensions to the symbol types present in the executable symbol table:

Value Meaning

Ox?748 HiSoft extended symbol. This symbol type indicates
that the next symbol record in the file is not a symbol,
but instead an additional 14 characters to be added to
the 8 characters from the name in the symbol record.
The normal type information is in the top 8 bits.

DRI File Format Modern Atari System Software Page 183

0x0280 file symbol. A file symbol appears at the start of each
object module in the symbol table, the name of which is
the name of the module, and the value of which is the
start of the text segment of that module. Immediately
following the file symbol are all the symbols defined
within the module.

0x02¢c0 library symbol. A library symbol is used to mark the
start and end of libraries in the executable. At the start
of the modules drawn from the library a library symbol
occurs with the name giving the name of the library.
After the end of the last symbol drawn from the
archive another archive symbol is written with a
blank name.

The relocation information differs completely from the DRI relocatable
format. The relocation starts with a long word giving the first longword
to be relocated. The byte stream that follows gives the offset to the next
longword to be fixed. The values used are:

Value Meaning
(¥ end of relocation information.
1 add 254 to the current location counter and then decode

the next fixup byte

2..255 add value to location counter and fixup longword at
that location.

Beyond the end of the rclocation information there may be additional
debugging information for use by symbol and source level debuggers.
There is no standard representation for this information, although for
HiSoft products this information (if present) is in the format of Lattice
HUNK_DEBUG hunks, aligned to a word boundary.

Library Format

A DRI format library is formed by concatenating several DRI format
object modules together with a header added at the front of each
module. The initial word in the file is the magic number Oxff65 to
indicate that the file is a library file. The header pre-pended to each
module is as follows:

struct arheader {

char a_fname[t4]; module's file name
long a_modtim; last modified time of module
char a_userid; user ID (not used)
char a_gid; group ID (not used)
short a_fimode; file mode of module
Page 184 Modern Atari System Software DRI File Format

long a_fsize; size of module in bytes
short reserved; Zero

I H

Within this structure, a_fname gives the name of the module, with any
directory information removed. a_modtim gives the UNIX® format
time stamp of the module (i.e. seconds since 00:00:00 GMT, January 1,
1970). a_fimode gives the UNIX® file mode bits; under TOS only one of
these bits is used; bit 7 is set if write permission is available for the file,
cleared otherwise. a_fsize gives the size of the module which follows
in bytes. Note that this size includes the header pre-pended to the DRI
format module, but excludes the archive header size.

DRI File Format Modern Atari System Software Page 185

Page 186

Modern Atari System Software

DRI File Format

{

Appendix C
The Cookie Jar

The Cookie Jar is a convention, introduced in STE TOS, whereby the
system (and third party suppliers) can indicate the capabilities of an
Atari TOS machine.

Each cookie has a 4 character name and a long integer value; cookies
beginning with _ are reserved for Atari’s system cookies. The long word
at address $5A0 points to list of longword pairs. The first longword in a
pair is a 4 character name; the second word is a value corresponding to
that name. The list is terminated by a 0 long word as the name; note that
cookies beginning with _ are reserved for Atari’s system cookies.

Although the cookie jar was introduced with STE TOS it can be retro-
fitted to earlier STs so don’t assume that if there is a Cookie Jar then you
are running on at least and STE.

For Falcon TOS and MiNT a number of additional cookies are available;
below is a list of all Atari supplied cookies at the time of writing.

_AKP Atari keyboard preference; this indicates the
preferred keyboard layout and language preferences:
Uusa 0 USA
FRG 1 Germany
FRA 2 France
UK 3 United Kingdom
SPA 4 Spain
ITA 5 Italy
SWE 6 Sweden
SWF 7 Switzerland (French)

SWG 8 Switzerland (German)

TUR ¢ Turkey

FIN 10 Finland

NOR 11 Norway

DEN 12 Denmark

SAU 13 Saudi Arabia

HOL M Holland

CZE 15 Czechoslovakia

HUN 16 Hungary

This cookie is used by any machine using AES > 3.30.

Cookie Jar Modern Atari System Software Page 187

_CPU

_FD¢G

_FLK

_FPU

_FRB

_I0T

the bottom 2 digits of the main processor number (e.g.
$0 for 68000, $1E for 68030)

This gives an indication of the highest density floppy
urit installed in the machine. The high byte of its
value indicates the highest density floppy present:

0 360KDb /720Kb (double-density)
1 1.44Mb (high-density)
2 2.88Mb (extra-high-density)

The low three bytes give an indication of the origin of
the unit, the value 0x415443 ('ATC’) indicates an Atari
line-fit or retro-fitted umnit.

the version number of file sharing extensions. This
cookie is installed by a GEMDOS extension which
supports the Atari file locking extensions (i.e. the
additional Fopen modes and the Flock call). If the
cookie cannot be found file sharing is not available.

This gives an indication of any floating point unit
installed in the machine. Only the high word is used
at the time of writing. The bits are used as foliows
{(when set):

0 1/0 mapped 68881 (e.g. Atari’s SFP004)
1 68881 /68882 {(unsure which)

2 If bit 1 == 0 then 68881, else 68882

3 68040 internal floating point support

"Fast RAM Buffer'’. This is used on the TT to give the
address of a 64K buffer in ST RAM that all ACSI
devices performing DMA can use, when transfers to TT
RAM are requested. It is not present if there is no fast
RAM.

preferred international time and date display mode.
The high word is currently unused and is reserved. The
low word is broken up into three sections.

Bits 15...12 (Time)
012 hour clock
1 24 hour clock

Bits 11...8 {(Date)
0 MM-DD-YY
1 DD-MM-YY
2 means YY-MM-DD
3 means YY-DD MM

Bits 7...0 are the ASCII value to be used as a separator,
eg. /.
This coolde is used by any AES = 3.30.

Page 188

Modern Atari Systern Software Cookie Jar

_MCH

_NET

_SND

_SWI

VDO

This gives the machine type; it consists of a minor
number {low word} and a major number (high word) as
follows:

Major Minor Machine

0 520/1040 or Mega ST
0 STe

16 Mega STe

0 TT

0 Falcon(030

Normally you should use the more specific cookies
given above, in casc some one has added a 68030
processor to an STe, for example.

LIS 0 R e}

One possible use for this cookie is to detect the presence
of the extra TT serial ports.

Networking software is available; the value is a
pointer to a structure of the following form:

struct netinfo
long publisher_id;
long version;
i
At the time of writing the following publisher_ids
had been assigned:

Application Design Software ‘A&D\0’
Pams Software 'PAMS'
Itos Software 'ITOS'

This is bit oriented as follows (when the bits are set):

bit) ST style GI/Yamaha chip
bit1 8-bit TT/5Te style DMA sound
bit2 16-bit Falcon030 style CODEC
bit3 56001 DSP

bitd Switch (connection) matrix

The 5Te, TT and Falcon030 have internal configuration
switches; this gives their value.

the part number of the video shifter:

0x00000000 ST
0x00010000 STe
0x00020000 T
Ox00030000 Falcon030

Cookie Jar

Modern Atari System Software Page 189

FSMC

MiNT

PMMU

this cookie is inserted by font scaling versions of GDOS;
the value is 2 pointer to a structure of the type:

struct {
long id; I* '_SPD' *f
short ver; /* major/minor rev */

short qual; /* quality setting */
I H
the presence of the MiNT cookie indicates that MiNT
is active and that the MiNT extensions are available,
At present the high word is unused; the high byte of

the low word contains the major version, the low byte
the minor version number.

if present this cookie indicates that a program has
claimed sole access to the machines memory
management unit; this occurs for example when using
virtual memory managers and MiNT to indicate to
MiNT that an MMU table manager is already
instailed and that memory protection should not be
installed, :

Note that the absence of a cookie indicates nothing about the state of a
resource; the host machine may have a 68030, 68882 and high-density

floppy fitted with no indication from the cookie jar.

For both Lattice C 5.5 and HiSoft BASIC 2 a ready-made function,
getcookie, is available for interrogating the cookie jar, for Devpac 3
an example of scanning this list is printed in the manual; you should

refer to this, or other, documentation on who to access the cookies.

Page 190

Modern Atari System Software Cookie Jar

Appendix D
Language Specific Issues

This section includes details of how the relevant libraries, definitions
and declarations for HiSoft BASIC 2, Devpac 3 and Lattice C 5, are
included when accessing the functions discussed in this book.

Video Sub-system

HiSoft BASIC 2

When compiling a program which contains operating system calls
documented as part of the video sub-system, ensure that the program
contains the following line before any of the XBIOS routines are called:

LIBRARY "FALCON"

Devpac 3

When assembling a program which contains operating system calls
documented as part of the video sub-system, ensure that the program
containg the following line somewhere within your program:

INCLUDE XBIOS.I

This file contains the necessary equates to enable the machine code
programmer to use the calls by name rather than by its less obvious call
number.

Lattice C 5

When compiling a program which contains operating system calls
documented as part of the video sub-system, ensure that the program
contains the following lines somewhere near the top of your program:

#include <oshind.h>

Language Specifics Modemn Atari System Software Page 191

These files contain the necessary bindings required by Lattice C to
compile correctly. In addition the header file mode.h includes
definitions of many of the constants which can be passed to calls in the
video subsystem.

Audio Sub-system

HiSoft BASIC 2

When compiling a program which contains operating system calls
documented as part of the audio sub-system, ensure that the program
contains the following line somewhere near the top of your program:

LIBRARY "FALCON"

Devpac 3

When assembling a program which contains operating system calls
documented as part of the audio sub-system, ¢nsure that the program
contains the following line somewhere within your program:

INCLUDE XBIOS.I

This file contains the necessary equates which allow the programmer to
access the calls by name rather than by their operating system numbers.

Lattice C 5

When compiling a program which contains operating system calls
documented as part of the audio sub-system, ensure that the program
contains the following line somewhere near the top of your program:

#include <osbind.h>

This file contains the definitions and code required by Lattice C to
compile correctly. In addition the header file sndbind.h includes
definitions of many of the constants which can be passed to calls in the
sound subsystem.

Page 192 Modern Atari System Software Language Specifics

DSP Sub-system

HiSoft BASIC 2

When compiling a program which contains operating system calls
documented as part of the DSP sub-system, ensure that the program
contains the following line somewhere near the top of your program:

LIBRARY "FALCON"

Devpac 3

When assembling a program which contains operating system calls
documented as part of the DSP sub-system, ensure that the program
contains the following line somewhere within your program:

INCLUDE XBIOS.I

This file contains the necessary definitions, macros and machine code to
execute the calls.

Lattice C 5

When compiling a program which contains operating system calls
documented as part of the DSP sub-system, ensure that the program
contains the following line somewhere near the top of your program:

#include <osbind.h>

This file contains the definitions and code required by Lattice C to
compile correctly. In addition the header file dspbind.h includes
definitions of constants and structures which can be passed to calls in the
DSP subsystem.

Language Specifics Modern Atari System Software Page 193

GEMDOS/MIiNT

HiSoft BASIC 2

When compiling a program which contains operating system calls
documented as part of the MiNT scction, ensure that the program
contains the following line somewhere near the top of your program:

LIBRARY "MINT*
Note that BASIC routines which require a string parameter a$ should
be passed as SADD(a$ + chr$(0)).

Devpac 3

When assembling a program which contains operating system calls
documented as part of the MiINT section, ensure that the program
contains the following line somewhere within your program:

INCLUDE GEMDOS . 1

This file contains the necessary definitions, macros and machine code to
make calls into MiNT via TRAP #1.

Lattice C 5

When compiling a program which contains operating system calls
documented as part of the MiNT section, ensure that the program
contains the following line somewhere near the top of your program:

#include <mintbind.h>

This file contains the definitions and code required by Lattice C to
compile correctly.

Page 194 Modern Atari System Software Language Specifics

AES Enhancements

HiSoft BASIC 2

When compiling a program which contains operating system calls
documented in the AES enhancements section, ensure that the program
contains the following line somewhere near the top of your program:

LIBRARY "GEMAES"

This will ensure that the relevant BASIC command extensions will be
parsed at compile time and that the necessary code is linked in to the
final executable program.

Devpac 3

When assembling a program which contains operating system calls
documented in the AES enhancements section, ensure that the program
contains the following line somewhere near the start of your program:

INCLUDE GEMMACRO . I

This file contains the necessary definitions, macros and machine code to
execute the calls in both executable or linkable assembly code. In the
case of executable assembly, it will be further necessary to include the
following line into the code, usually near the end of the program:

INCLUDE AESLIB.S

For any further AES linking and assembly details, please refer to the
GEM LIBRARIES section of the Devpac user manual.

Note that in this section the Devpac calling syntax provides a list of
the parameters which must be passed to the call. The command must be
typed into a machine code listing as it is written here, but omitting the
size specifications (W and .L, which are include for reference only). The
assembler's macro facilities automatically expand the command name
and any relevant parameters into the full AES calling code. Any data
which is passed back out of the call as a result will be placed in the
relevant AES output arrays, these are documented where necessary. In
the case of an input parameter being a pointer to some data, it is of course
quite possible that a result may also be passed back at this address.

Language Specifics Modern Atari System Software Page 195

Lattice C 5

When compiling a program which contains operating system calls
documented in the AES enhancements section, ensure that the program
contains the following line somewhere near the top of your program:

#include <aes.h>

This file contains the definitions required by Lattice C to compile
correctly. When linking code which includes some AES calls, it may be
necessary to instruct the compiler (cither integrated or stand-alone) to
build a GEM application, either by use of the Build GEM Application
box when integrated or by the -Lg when stand-alone.

SpeedoGDOS

BASIC 2

When compiling a program which contains operating system calls
documented as part of the SpeedoGDOS section, ensure that the program
contains the following line somewhere near the top of your program:

LIBRARY "SPEEDO*

Devpac 3

When assembling a program which contains operating system calls
documented as part of the SpecdoGDOS section, ensure that the program
contains the following line somewhere near the start of your program:

INCLUDE GEMMACRO.I

This file contains the necessary definitions, macros and machine code to
execute the calls in both executable or linkable assembly code. In the
case of exccutable assembly, it will be further necessary to include the
following line into the code, usually ncar the end of the program:

INCLUDE VDILIB.S

For any further VDI linking and assembly details, please refer to the
GEM libraries section of the Devpac user manual.

Page 196 Modern Atari System Software Language Specifics

Note that in this section the Devpac calling syntax provides a list of
the parameters which must be passed to the call. The command must be
typed into a machine code listing as it is written here. The assemblers
macro facilitics automatically expand the command name and any
relevant parameters into the full VDI calling code. Any data which is
passed back out of the call as a result will be placed in the relevant VDI
output arrays, these are documented where necessary. In the case of an
input parameter being a pointer to some data, it is of course quite
possible that a result may also be passed back at this address.

Speedo and strings

Some of the Speedo calls return a device string in a buffer. This string
takes the form of the ASCII characters which go to make up the device
name, one character in each clement of the intout array. That is to say
that each character is passed back in a word format with the most
significant byte of each word padded out with $00. Before use, the
programmer will probably have to unpack the string into a separate
storage area or buffer.

Lattice C

When compiling a program which contains operating system calls
documented as part of the SpeedoGDOS section, ensure that the program
contains the following linec somewhere near the top of your program:

#include <vdi.h>

This file contains the definitions required by Lattice C to compile
correctly. When linking code which includes some VDI calls, it may be
necessary to instruct the compiler (cither integrated or stand-alone) to
build a GEM application, either by usc of the Build GEM Application
box when integrated or by the -Lg when stand-alone.

For all C bindings the VDI workstation handle is explicitly passed to
every call (unlike for Devpac/BASIC which use an implicit internal
handle); this handle is obtained in the normal way via
v_opnvwk/v_opnwk.

Language Specifics Modern Atari System Software Page 197

Page 198

Modern Atari System Software Language Specifics

l

Appendix E
OS Binding Numbers

For those readers using an older language which does not yet have
support for the newer OS functions, or those attempting to ‘roll their
own’ bindings, a complete list of OS binding ‘numbers’ are show below:

AES Opcode Numbers

The following table shows the opcodes which the AES uses for its
functions:

appl_init $0a form_center $36
appl_read $0b form_keybd $37
appl _write $0c form_button $38
appl_find $od graf_rubberbox $46
appl_tplay $0e graf_dragbox $47
appl trecord $of graf_movebox $48
appl_search $12 graf_growbox $49
appl_exit $13 graf_shrinkbox $4a
appl_getinfo $a2 graf_watchbox $4b
evnt_keybd $14 graf_slidebox $4c
evnt_button $15 graf_handle $4d
evnt mouse $16 graf_mouse $4e
evnt_mesag $17 graf_mkstate $4af
evnt_timer $18 scrp_read $50
evnt_multi $19 scrp_write - §51
evnt_dclick $1a fsel_input $5a
menu_bar $tle fsel_exinput $5b
menu_icheck $1f wind_create $64
menu_ienable $20 wind_open $65
menu_tnormal $21 wind_close $66
menu_text $22 wind_delete $67
OS Binding Codes Modern Atari System Software Page 199

menu_register

menu_popup
menu_attach
menu_istart

menu_settings

objc_add
objc_delete
objc_draw
cbjc_find
cbjc_offset
cbjc_order
objc_edit
objc_change
objc_sysvar
form_do
form_dial
form_alert
form_error

$23
$24
$25
$26
$27
$28
$29
$2a
$2b
$2c
$2d
$2e
$2f
$30
$32
$33
$34
$35

wind_get
wind_set
wind_find
wind_update
wind_calc
wind_new
rsrc_load
rsrc_free
rsrc_gaddr
rsrc_saddr
rsrc_obfix
rsrc_rcfix
shel read
shel_write
shel_get
shel put
shel_find
shel _envrn

$68
$69
$6a
$6b
$6¢c
$6d
$6e
$6f
$70
$71
§72
$73
$78
$79
$7a
$7b
$7c
$7d

VDI Opcode Numbers

The following table shows the opcodes which the VDI uses for its
functions; where two numbers are show scparated by a dash the second
number is the VDI sub-opcode (placed in control[5]):

v_opnwk 1 vsT_style 24
v_clswk 2 vsf_color 25
v_clrwk a vg_color 26
v_updwk 4 vq_cellarray 27
vg_chcells 5-1 vrg_locator 28
v_eeol 5-10 vsm_locator 28
vm_filename 5-100 vrg_valuator 29
vs_curaddress 5-11 vsm_valuator 29
v_curtext 5-12 vrg_choice 30
v_rvon 5-13 vsm choice 30
v_rvoff 5-14 vrg_string 3
vg_curaddress 5-15 vsm_string K]
Page 200 Modern Atari System Software OS Binding Codes

vq_tabstatus 5-16 vswr_mode 32

v_hardcopy 5-17 vsin_mode 33

v_dspcur 5-18 vql attributes 3B

v_rmcur 5-19 vam_attributes 36

v_exit_cur 5-2 vqf_attributes 37

v_form adv 5-20 vqt_attributes 38

v_pgcount 5-2000 vst_alignment 39

v_output_window 5-21 v_opnvwk 100
v_clear disp list 5-22 v_clsvwk 101
v_bit image 5-23 vq_extnd 102
vqg_scan 5-24 v_get pixel 105
v_alpha_text 5-25 vst_effects 106
v_enter cur 5-3 vst_point 107
v_curup 5-4 vsl_ends 108
v_curdown 5-5 vro_cpyfm 109
v_curright 5-6 vr_trn_fm 110
vs_palette 5-60 vsc_form 111
v_curleft 5-7 vsf_udpat 112
v_curheome 5-8 vsl udsty 113
vV_eeos 5-9 vr_recfl 114
vgp_films 5-91 vqin_mode 115
vgp_state 5-92 vqt_extent 116
vsp_state 5-93 vqt_width 117
vsp_save 5-84 vex_timv 118
vsp_message 5-95 vst_load_fonts 119
vgp_error 5-96 vst_unload fonts 120
v_meta_extents 5-98 virt_cpyfm 121
vm_coords 5-89 v_show_c 122
v_bez_qual 5-69 v_hide_c 123
v_bez 6-13 vg_mouse 124
v_pline 6 vex_butv 125
v_pmarker 7 vex_motv 126
v_gtext 8 vex_curv 127
v_bez_fill 9-13 vq_key_s 128
v_fillarea 9 vs_clip 129
v_cellarray 10 vqt_name 130

OS Binding Codes Modern Atari System Software Page 201

v_bar 111 vgt_font_info 131
v_arc 11-2 vqt_fontheader 232
v_pieslice 11-3 vqt_trackkern 234
v_circle 11-4 vqt_pairkern 235
v_ellipse 11-5 vst_charmap 236
v_ellarc 11-6 vst_kern 237
v_ellpie 11-7 v_getbitmap_info 239
v_rbox 11-8 vqt_f_extent 240
v_rfbox 11-9 v_ftext 241
v_justified 11-10 v_getoutline 243
v_pbez_con 11-13 vst_scratch 244
vst height 12 vst_error 245
vst_rotation 13 vst_arbpt 246
vs_color 14 vqt_advance 247
vsl_type 15 vqt_devinfo 248
vsl_width 16 v_savecache 249
vsl_color 17 v_loadcache 250
vsm_type 18 v_flushcache 251
vsm height 19 vet_setsize 252
vsm color 20 vst_skew 253
vst_font 21 vqt_get_table 254
vst color 22 vqt_cachesize 255
vsf_interior 23 v_set_app_buff -1

GEMDOS/MiNT Binding
Numbers

The following tables show the binding numbers when interfacing to
GEMDOGS or MINT via TRAP #1.

Ptermd $0 Ptermres $31
Cconin $1 Dfree $36
Cconout $2 Dcreate $39
Cauxin $3 Ddelete $3a
Page 202 Modern Atari System Software OS Binding Codes

Cauxout $4 Dsetpath $3b
Cprnout §5 Fcreate $3c
Crawio $6 Fopen $3d
Crawcin $7 Fclose $3e
Cnecin $8 Fread $3f
Cconws $0 Fwrite $40
Cconrs $a Fdelete $41
Cconis b Fseek $42
Dsetdrv $e Fattrib $43
Cconos $10 Mxalloc $44
Cprnes $i1 Fdup $45
Cauxis $12 Fforce $46
Cauxas $13 Bgetpath $47
Maddalt $14 Malloc $48
Srealloc $15 Mfree $49
Dgetdry $19 Mshrink $4a
Fsetdta $1a Pexec $4b
Super $20 Pterm $4c
Tgetdate $2a Fsfirst $4de
Tsetdate $2b Fsnext $af
Tgettime $2c Frename $56
Tsettime $2d Fdatime $57
Fopetdta $2f Flock $5¢
Sversion $30
.

MINT
Syield $ff Talarm $120
Fpipe $100 Pause $121
Fentl $104 Sysconf $122
Finstat $105 Psigpending $123
Foutstat $106 Dpathconf $124
Fgetchar $107 Pmsg $125
Fputchar $108 Fmidipipe $126
Pwait $109 Prenice $127v
Pnice $10a Dopendir $128
Pgetpid $10b Oreaddir $129

OS Binding Codes Modern Atari System Software Page 203

Pgetppid $10c Drewinddir $12a
Pgetpgrp $10d Dclosedir $12b
Psetpgrp $10e Fxattr $12¢
Pgetuid $10f Flink $12d
Psetuid $110 Fsymlink $t2e
Pkill $1114 Freadlink $12f
Psignal $112 Dentl $130
Pvfork $113 Fchown $131
Pgetgid $114 Fchmod $132
Psetgid §115 Pumask $133
Psigblock $116 Psemaphore $134
Psigsetmask $117 Dlock $135
Pusrval $118 Psigpause $136
Pdomain $119 Psigaction $137
Psigreturn $i1a Pgeteuid $138
Pfork $11b Pgetegid $139
Pwait3d $i1c Pwaitpid $13a
Fselect $11d Dgetcwd $13b
Prusage $11e Salert $13c
Psetlimit $11f

BIOS Binding Numbers

The following tables show the binding numbers when interfacing to the
Atari BIOS via TRAP #13:

Getmpb 0 Tickcal 6
Bconstat 1 Getbpb 7
Beconin 2 Bcostat 8
Bconout 3 Mediach 9
Rwabs 4 Drvmap 10
Setexc 5 Khshift 11
Page 204 Modern Atari System Software OS Binding Codes

XBIOS Binding Numbers

The following tables show the binding numbers when interfacing to the
Atari XBIOS via TRAP #14:

Initmous 0 EsetBank 82
Ssbrk 1 EsetColor 83
Physbase 2 EsetPalette 84
Logbase 3 EgetPalette 85
Getrez 4 EsetGray 86
Setscreen 5 EsetSmear 87
Setpalette 6 Vsetmode 8e
Setcolor 7 Montype 89
Floprd 8 VsetSync 80
Flopwr 9 VgetSize 9
Flopfmt 10 VsetRGB 93
Midiws 12 VgetRGB 94
Mfpint 13 Dsp_DoBlock 96
Iorec 14 Dsp_BlkHandShake 97
Rsconf 15 Dsp_BlkUnpacked 98
Keytbl 16 Dsp_InStream o9
Random 17 Dsp_OutStream 100
Protobt 18 Dsp_IOStream 101
Flopver 19 Dsp_RemoveInterrupts 102
Scrdmp 20 Dsp_GetWordSize 103
Cursconf 21 Dsp_Lock 104
Settime 22 Dsp_Unlock 105
Gettime 23 Dsp_Available 106
Bioskeys 24 Dsp_Reserve 107
Ikbdws 25 Dsp_LoadProg 108
Jdisint 26 Dsp_ExecPraog 109
Jenabint 27 Dsp_ExecBoot 110
Giaccess 28 Dsp_LodToBinary 111
Offgibit 29 Dsp_TriggerHC 112
Ongibit 30 Dsp_RequestUniqueAbility 113
Xbtimer 3 Dsp_GetProgAbility 114
OS Binding Codes Modern Atari System Software Page 205

Dosound 32 Dsp_FlushSubroutines 115
Setprt 33 Dsp_LoadSubroutine 116
Kbdvbase 34 Dsp_IngSubrAbility 117
Kbrate 35 Dsp_RunSubroutine 118
Prtblk 36 Dsp HfC 118
Vsync 37 Dsp_Hf1 120
Supexec 38 Dsp_Hf2 121
Puntaes 39 Dsp_Hf3 122
Floprate 41 Dsp_BlkWords 123
DMAread 42 Dsp_BlkBytes 124
DMAwrite 43 Dsp_HStat 125
Bconmap 44 Dsp_SetVectors 126
NVMaccess 45 Dsp_MultBlocks 127
Minit 48 Locksnd 128
Mopen 49 Unlocksnd 129
Mclose 50 Soundcmd 130
Mread) Setbuffer 131
Mwrite 51 Setmode 132
Mseek 53 Settrack 133
Mstatus 54 Setmontrack 134
COread_aud 58 Setinterrupt 135
CDstart_aud 58 Buffoper 136
CDstop_aud 60 Dsptristate 137
CDset_songtime 61 Gpio 138
CDget_toc 62 Devconnect 138
CDhdisc_info 63 Sndstatus 140
Blitmode 64 Buffptr 144
EsetShift 80 VsetMask 150
EgetShift 81
Page 206 Modern Atari System Software OS Binding Codes

The SpeedoGDOS

Appendix F

Font Header

Every SpeedoGDOS font includes a header which gives information
about the font; this information may be retrieved by the
vqt _fontheader call. The following is a list of offsets, names
{contained in SPEEDOHD . H for Lattice C) and meanings for this data:

Name
FH_FMVER

FH_FNTSZ
FH_FBFSZ
FH_CBFSZ
FH_HEDSZ
FH_FNTID
FH_SFVNR
FH_FNTNM
FH_MDATE
FH_LAYNM
FH_CPYRT
FH_NCHRL
FH_NCHRF
FH_FCHRF
FH_NKTKS
FH_NKPRS

offset Description
0 ASCII font manager version code
‘D4.0' + CR + LF + NULL + NULL - 8 bytes
8 Font size (bytes) - 4 bytes
12 Min font buffer size (bytes) - 4 bytes
16 Min char buffer size (bytes) - 2 bytes
18 Header size (bytes) - 2 bytes
20 Source Font ID - 2 bytes
22 Source Font Version Number - 2 bytes
24 Source Font Name - 70 bytes
94 Manufacturing Date - 10 bytes
104 Layout Name - 70 bytes
174 Copyright Notice - 78 bytes
252 Number of Chars in Layout - 2 bytes
254 Total Number of Chars in Font - 2 bytes
256 Index of first char in Font - 2 bytes
258 Number of kerning tracks in font - 2 bytes
260 Number of kerning pairs in font - 2 bytes

Speedo Header

Modern Atari System Software

Page 207

FH_FLAGS

FH_CLFGS

FH_FAMCL

262

263

264

Font flags - 1 byte:

Bit 0 Extended font
Bit 1 notused
Bit 2 notused
Bit 3 not used
Bit 4 notused
Bit 5 notused
Bit 6 notused
Bit 7 notused

Classification flags - 1 byte:

Bit 0 [talic
Bit1 Monospace
Bit 2 Serif

Bit 3 Display
Bit 4 notused
Bit 5 notused
Bit 6 notused
Bit 7 notusad

Family Classification value - 1 byte:

Don't care
Serif
Sans serif
Monospace
Script or calligraphic
Decorative
-255 not used

LA R ™

Page 208

Modern Atari System Software

Specdo Header

FH_FRMCL

FH_SFNTN
FH_SFACN
FH_FNTFM
FH_ITANG
FH_ORUPM
FH_WOWTH
FH_EMWTH
FH_ENWTH
FH_TNWTH
FH_FGWTH
FH_FXMIN
FH_FYMIN
FH_FXMAX
FH_FYMAX

265 Font form Classification - 1 byte:

Bits 0-3 (width type):

0-3 not used

4 Condensed

5 not used

6 Semi-condensed

7 not used

8 Normal

9 not used

10 Semi-expanded

u not used

2 Expanded

13-15 not used

Bits 4-7 (Weight):

0 not used

1 Thin

2 Ultralight

3 Extralight

4 Light

5 Book

6 Normal

7 Medium

8: Semibold

9: Demibold

10 Bold

11 Extrabold

12 Ultrabeld

13 Heavy

14 Black

1B not used
266 Short Font Name - 32 bytes
298 Short Face Name - 16 bytes
314 Font form - 14 bytes
328 Italic angle - 2 bytes (1/256th degree)
330 Number of ORUs per em - 2 bytes
332 Width of Wordspace - 2 bytes
334 Width of Emspace - 2 bytes
336 Width of Enspace - 2 bytes
338 Width of Thinspace - 2 bytes
340 Width of Figspace - 2 bytes
342 Font-wide min X value - 2 bytes
344 Font-wide min Y value - 2 bytes
346 Font-wide max X value - 2 bytes
348 Font-wide max Y value - 2 bytes

Speedo Header

Modern Atari System Software

Page 209

FH_ULPOS
FH_ULTHK
FH_SMCTR
FH_DPSTR
FH_FNSTR
FH_ALSTR
FH_CMITR
FH_SNMTR
FH_SONTR
FH_MNMTR
FH_MDNTR
FH_LNMTR
FH_LONTR

350
352
354
360
366
372
378
384
390
396
402
408
414

Underline position - 2 bytes

Underline thickness - 2 bytes

Small caps transformation - 6 bytes
Display sups transformation - 6 bytes
Footnote sups transformation - 6 bytes
Alpha sups transformation - 6 bytes
Chemical infs transformation -~ 6 bytes
Small nums transformation - 6 bytes
Small denoms transformation - 6 bytes
Medium nums transformation - 6 bytes
Medium denoms transformation - 6 bytes
Large nums transformation - 6 bytes
Large denoms transformation - 6 bytes

The transformation data format is as follows:

Y position 2 bytes
X scale 2 bytes (1/4096ths)
Y scale 2 bytes (1/4096ths)
Page 210 Modern Atari System Software Speedo Header

Appendix G
MultiTOS Configuration

MINT.CNF and GEM.CNF are control files used by MiNT and the
multitasking AES respectively, together they allow you to control many
aspects of MultiTOS’s behaviour. Each file is a plain text file (i.e. they
can be edited with a normal text editor), with one command per-line and
comments indicated by lines starting with a #.

MINT Commands and Variables

Variables

The following variables can be set in the MINT.CNF file, the variable
names must be all upper case and the = and value must be concatenated
with no intervening spaces:

GEM=<file> <tail> set the full path+name of the file that

INIT=<file> <tail> contains the version of GEM to execute. A
command tail may optionally be used
with this variable which is also passed to
the program executed.

The difference between the GEM= and the
INIT= varieties are that when specified
via the GEM= method the program is
started as if via the exec_os vector; this
can help certain GEM patching programs
to install correctly.

MAXMEM=<kbytes> gives the maximum amount of memory
that any process may use (in kilobytes).
The default is to make this unlimited, but
if you have a lot of memory and for
programs that grab more memory than
they should, try sctting this.

Configuration Modern Atari System Software Page 211

SLICES=<n>

CON=<file>

PRN=<file>
BIOSBUF=[yn]

DEBUG_LEVEL=<n>

DEBUG_DEVNO=<n>

controls how long a process may run before
being interrupted. 'Fhe default value (2) is
usually best, but if you tend to run very
processor intensive applications in the
foreground, you might want to put
SLICES=3 (this makes CPU hogs get more
time than they otherwise would).

specify initial file/device for handles -1,
0,1

specify initial file for handle 3

if nor N then turn off the BIOS buffering;
by default MiNT buffers up BIOS output
(to improve performance); BIOSBUF=n
disables this feature.

set debug level to (decimal number) n; this
controls output of debugging information,
the higher the level, the more stuff MiNT
will generate about what it's doing. The
average user doesn’t want to hear about
this stuff, so the default is 0.

set debug device number to (decimal
number) n; this is the BIOS device number
to which the debug info should be sent.

Note that the BIOSBUF, DEBUG_LEVEL and DEBUG_DEVNO variables
should be considered as ‘development’ settings and so may not be
available in future versions of the kernel.

Commands

The following commands can be used in the MINT.CNF file, command
names must be all lower case with a single space between any command

and its argument:

echo message
alias drive path
cd dir

exec cmd args
setenv name val
sln file1 file2
ren filel file2

print a message on the screen

make a fake drive pointing at a path
change directory/drive

execute a program

set up environment

create a symbolic link

rename a file

Page 212 Modern Atari System Software Configuration

GEM Commands and Variables

Variables

The following variables can be set in the GEM.CNF file, the variable
names must be all upper case and the = and value must be concatenated
with no intervening spaces:

AE_FONTID= The font 1D of the font which is to be used as
the system font; if this is not specified the
default system font (1) is used.

AE_PNTSIZE= The point size of the font which is to be used as
the system font; if this is not specified the
default point size (13) is used.

AE_SREDRAW= The AES normally sends a full-screen redraw
message when a GEM program starts up (calls
appl_init); if this variable is set to zero
then this message is not sent.

AE_TREDRAW= The AES normally sends a full-screen redraw
message when a GEM program finishes {calls
appl_exit); if this variable is set to zero
then this message is not sent.

Commands

The following commands can be used in the GEM.CNF file, command
names must be all Jower case with a single space between any command
and its argument:

run cmd execute a program
setenv name=val set up environment

Environment Variables

The following environment variables, which can be set either in the
MINT.CNF or the GEM.CNF file, are used by the AES to control its
behaviour:

ACCEXT a comma-separated list of extensions which
are to be considered accessories.

Configuration Modern Atari System Software Page 213

ACCPATH a comma-separated list of directories which
will be searched for accessories at startup
time. When an accessory is found in a given
directory, that directory will be the
accessory’s default directory when it starts.
The root directory of the boot device is always
searched in addition to any directories
appearing in ACCPATH.

DESKCOPY the full pathname of the program which is run
by the Desktop for file copies, moves and
renames; a discussion of the command tail
passed by the Desktop is shown below.

DESKFMT the full pathname of the program which is run
by the Desktop for disk copies and formats; a
discussion of the command tail passed by the
Desktop is shown below.

GEMEXT a comma-separated list of extensions which
are to be considered GEM programs.

PATH a comima-separated list of directories which
will be searched for programs when
shel_write is called in mode 0, 1 or 3. In
addition, shel_find and rsrc¢_load will
lock in all directories in this path when
searching for files.

SHPRINT the full pathname of the program which is run
by the Desktop for printing files; the
pathname of the file to be printed is passed in
the command tail to the program.

SHSHOW the full pathname of the program which is run
by the Desktop for showing files; the
pathname of the file to be displayed is passed
in the command tail to the program.

TOSEXT a comma-separated list of extensions which
are to be considered TOS programs.
TOSRUN when starting a program the AES looks for the

environment variable TOSRUN which should
contain the full path of a TOS handler
program, to which the AES will pass the TOS
program name into the command tail.

When launching the program specified by DESKFMT, a command tail of
the form shown below is used, if a format operation is required:

-f A

Page 214 Modern Atari System Software Configuration

If a disk-copy operation is being performed the command tail is of the
form:

-C A! B
indicating a copy from the disk in drive A: to drive B:.

When launching the program specified by DESKCOPY, a command tail of
the form shown below is used, if a copy operation is required:

-¢ [-options ..] [files names ..] [destination path]
for a file deletion:

-d [-options ..] [files names ..]

for a file move:

-m [-options ..] [files names ..] [destination path]

The following option letters may also be generated by the Desktop to
indicate the current Desktop preferences:

File copy confirmation: A Yes
-B No
File deletion confirmation -C Yes
-D No
File overwrite confirmation -E Yes
-F No
Destination renaming R
Configuration Modern Atari System Software Page 215

Page 216

Modern Atari System Software

Configuration

Appendix H
Signals and Error Codes

This appendix outlines various handles defined by Atari within the
MINT system. These break down into the error codes which are returned
by MiNT calls and the signals which are passed back and forth between
concurrent applications. Extensive use of these abbreviations are made in
the relevant documentation elsewhere in this manual.

BIOS error codes:

ERROR -1 generic error

EDRVNR -2 drive not ready

EUNCMD -3 unknown command

E_CRC -4 CRC error

EBADRQ -5 bad request

E_SEEK -6 seek error

EMEDIA -7 unknown media

ESECNF -8 sector not found

EPAPER -8 out of paper

EWRITF -10 write fault

EREADF -1 read fault

EWRPRO -13 device write protected

E_CHNG -14 media change detected

EUNDEY -15 unknown device

EBADSF -16 bad sectors on format

EOTHER -17 insert other disk request
Signals & Errors ~ Modern Atari System Software Page 217

GEMDOS/MINT error codes

EINVFN -32 invalid function
EFILNF -33 file not found
EPTHNF -34 path not found
ENHNDL -35 no more handles
EACCDN -36 access denied
EIHNDL -37 invalid handle
ENSMEM -39 insufficient memory
EIMBA -40 invalid memory block address
EDRIVE -46 invalid drive specification
EXDEV -48 cross device rename
ENMFIL -49 no more files (from Fsnext)
ELOCKED -58 record is locked already
ENSLOCK -59 invalid lock removal request
ERANGE -64 range error
ENAMETOOLONG -64 a filename component is too long
EINTRN -65 internal error
EPLFMT -66 invalid program load format
ENOEXEC -66 as above
EGSBF -67 memory block growth failure
ELOOP -80 too many symbolic links
MINT signals
SIGNULL 0 not really a signal
SIGHUP 1 hangup signal
SIGINT 2 sent by ~C
SIGQUIT 3 quit signal
SIGILL 4 illegal instruction
SIGTRAP 5 trace trap
SIGABRT 6 abort signal
SIGPRIV 7 privilege violation
SIGFPE 8 divide by zero
SIGKILL. 9 cannot be ignored
Page 218 Modern Atari System Software Signals & Errors

SIGBUS 10 bus error
SIGSEGV 1 illegal memory reference
SIGSYS 12 bad argument to a system call
SIGPIPE 13 broken pipe
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16 urgent condition on 1/0 channel
SIGSTOP 17 stop signal not from terminal
SIGTSTP 18 stop signal from terminal
SIGCONT 19 continue stopped process
STGCHLD 2 child stopped or exited
SIGTTIN 2 read by background process
SIGTTOU 2 write by background process
SIGIO 23 1/0 possible on a descriptor
SIGXCPU 24 CPU time exhausted
SIGXFSZ 25 file size limited exceeded
SIGVTALRM 26 virtual timer alarm
SIGPROF & profiling timer expired
SIGWINCH 28 window size changed
SIGUSR1 29 user signal 1
SIGUSR2 30 user signal 2
Handler names:
SIG_DFL o default signal action
SIG_IGN 1 ignore signal action

Signals & Errors Modern Atari System Software Page 219

Appendix |
Bibliography

This bibliography contains our suggestions for further reading on the
subject of the Atari’s operating system extensions and 680x0 and
assembly language. The views expressed are our own and as with all
reference books there is no substitute for looking at the books in a good
bookshop before making a decision.

Atari Falcon030 Developer Documentation
Atari Corp. [1992]

Atari Corp., 1196 Borregas Avenue, Sunnyvale, CA 94086, USA.

DSP56000/DSP56001 Digital Signal Processor User’s
Manual Motorola Inc. [1990]

DSP56000UM/AD Rev.2, Motorola Literature Distribution, P.O. Box
20912 Phoenix, AZ 85036, USA.

M68000 Family Programmer’s Reference Manual
Motorola Inc. [1992]

M68000PM /AD Rev.1, Motorola Literature Distribution, P.O. Box 20912
Phoenix, AZ 85036, USA.

MC68030 32-Bit Microprocessors User’s Manual
Motorola Inc. [1987]

Motorola Literature Distribution, P.O. Box 20912 Phoenix, AZ 85036,
USA.

MC68040 Microprocessors User’s Manual
Motorola Inc. [1992]

Motorola Literature Distribution, P.O. Box 20912 Phoenix, AZ 85036,
USA.

Bibliography Modern Atari System Software Page 221

MC68881/MC68882 FPU User’'s Manual
Motorola Inc. [1987]

ISBN 0-13-566936-7, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632,
USA.

MC68851 PMMU User’s Manual Motorola Inc. [1989]

ISBN 0-13-566993-6, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632,
USA.

Page 222 Modern Atari System Software Bibliography

Index

3D buttons 19, 112, 122

3D colours and effects, obje_sysvar 123

3D ob_flags mask, FL3ADMASK 122

3D pixel adjustments, ADSDVALUE
124

40 column, Falcon030 video 4

80 column, Falcon(030 video 4

HA

ability codes, DSP 14

access permissions, file 62, 78, 96

accessing, DSP 13

ACTBUTCOL, get/set default colour
124

activator , 3D, FL3DACT 122

activator objects, get/set attributes
124
AC CLOSE 117
AD3DVALUE, get 3D pixel
adjustments 124
ADC (Analogue to Digital Converter)
ADC, switch matrix 30
advance vector, outline font text,
vqt_advance 149
AES
3D buttons 122
AC CLOSEN7
appl_find 113
appl_getinfo 114
appl_read 115
appl_search 116
AP DRAGDROP 118
AP _TERM 117
AP_TFAIL 117
CH_EXIT 119
colour icons 121
Devpac 3 195
evnt_mesag 117
evnt_multi 117
graf_mouse 120
HiSoft BASIC 2 195
Lattice C5 196
menu_attach 125
menu_bar 126
menu _istart 127

menu_popup 128
menu_register 129

menu_settings 129
obje_sysvar 123
RESCH_COMPLETED 118
rsre_rcfix 130
shel_get 130
shel_put 131
shel _write 131
SHUT_COMPLETED 118
SH_WDRAW 119
wind get 135
wind_set 137
wind_update 137
WM_ONTOP 117
WM_UNTOPPED 117
AES font height 114
AES font ID 114
_AESglobal, Lattice C 112
AES information, get, appl_getinfo
114
AES, Falcon030 107-138
_AKP, Atari keyboard
preferencecookie 187
alarm, schedule, Talarm 101
alerts, Atari style guide 165
alternate RAM, allocate 104
alternate RAM, Lattice file format
168
anonymous pipe, create, Fpipe 75
append open mede, O_APPEND 103
application elements 161
application identifier 112
application identifier, find,
appl_find 113
application limit, concurrent 112
application termination request,
AP_TERM 117
applications, DSP 12
appl_find, find an application’s
identifier 113
appl_getinfo, get AES information
114
appl_read, read from message pipe
115

Index Modern Atari System Software

Page 223

appl_search, search existing AES
116
appl_xfind, HiSoft BASIC 113
AP_DRAGDROP, desktop drag 'n’
drop 118
AP_RESCHG 117
AP _TERM 134, 135
AP_TERM, request application
terminate 117
AP_TFAIL 134, 135
AP_TFAIL, fail to terminate or close
117
architecture, Falcon030 DSP 8
ASSIGN.SYS file 20
asynchronous mode, switch matrix 32
Atari style guide 161-165
alerts 165
application elements 161
colours 164
cursor keys 163
dialog boxes 164
Edit menu 162
File menu 162
keyboard equivalents 163
menu bar 162
resolution independence 165

toolboxes 165
windows 164

atomic write limit, Dpathconf 60

audio sub-system, Falcon030 5-7, 29-
¥

available bytes for 1/0 64

BACKGRCOL, get/set default colour
124

background, 3D, FL3DBAK 122

basepage address, get, PBASEADDR
.\

baud rate, terminal 68

bézier output, v_bez 140

bézier quality, set, v_bez_qual 143

bézier support, GDOS 22

bézier workspace, v_set_app_buff
148

BICS 145, (Bitstream Internationai
Character Set)

BIOS file, S IFCHR 78

bit rate, terminal 68

bitmap fonts, GDXOS 20

bits per pixel, Falcon030 video 4

blinking, terminal cursor 69

break condition, terminal 68

broadcast message 134

broadcast monitor, Falcon030 video 4

BSS section, Lattice file format 168

buffering, switch matrix 7

Buffoper, set sound play/record
enabile/disable 29

Buffptr, find sound system status
structure 30

bus bandwidth, Falcon030 7

HC

case sensitivity, Dpathconf 60

CD (Compact Disc)

CD rate, Falcon030 audio 6

change file ownership, Fchown 63

character bitmap information,
v_getbitmap_info 146

character cell width 158

character from file, get, Fgetchar 72

character mapping mode,
vst_charmap 156

character mapping tables,
vqt_get_table 152

character outline, get, v_getoutline
147

character quote, t_Inextc 66

character to file, put, Fputchar 75

child exit codes, collect, Pwaitpid,
Pwait, Pwait3 98

CH_EXIT, child termination 119

CICON 121

CICONBLK 121

cicon_data, struct 121

clock rate, switch matrix 31

clone current process, Pfork 82

clone current process, Pvfork 97

close directory read, Dclosedir 57

Close menu item, Atari style guide
162

CLUT (colour lockup table}

CODEC (enCOder DECoder)

Page 224

Modern Atari System Software Index

CODEC prescaler 31
CODEC, Falcon030 audio 5
coding, DSP 12
colour icons 121
colour icons, AES 115
colour lookup table (see palette)
colour palette 3
colour resource files 111
colour, Atari style guide 164
colours, number colours, AES 115
columns of text, ws_col 67
command line string, max. length,
Sysconf 100
COMMENT, GST file comment 177
COMMON, GST common section 178
compatibility, open mode,
O_COMPAT 103
concurrent application limit 112
configuration switch setting, _SWI
cookie 189
context structure length, get,
PCTXTSIZE 70
continuous mode, switch matrix 7
cookie jar 187-190
FSMC 190
getcookie 190
MiINT 190
PMMU 190
_AKP 187
_CPU 188
_FDC 188
_FLK 188
_FPU 188
_FRB 188
_IDT 188
"MCH 189
_NET 189
“SND 189
_SWI 189
“VDO 189

Copy menu item, Atari style guide
162

_CPU, CPU fitted 188

create application, shel_write 131

create file, open mode, O_CREAT 103

create process, Pexec 105

current process 1D, get, Pgetpid 82

Cursconf, control terminal cursor 69

cursor control, terminal 69

cursor key, terminal definition 68
cursor keys, Atari style guide 163
Cut menu item, Atari style guide 162

DAC (Digital to Analogue Converter)

DAC, switch matrix 31

DAT (Digital Audio Tape)

DAT rate, Falcon030 audio 6

data bits, terminal 69

data section, Lattice file format 168

date mode, IDT cookie 188

dB (decibel)

Delosedir, close directory read 57

Dcntl, directory contrel operations 57

decibel 10

DEFINE, GST ID definition 177

DEFINE, GST module end 177

Delete menu item, Atari style guide
162

deny read / write open modes 103

Devconnect, configure switch matrix
30

device independent output,
SpeedoGDOS 20

device status information,
vqt devinfo 150

Dfree, get free disk space 101

Dgetcwd, get current working
directory 38

dialog boxes, Atari style guide 164

digital filtering, DSP 12

DIP switch setting, _SWI cookie 189

direct to disk recording 5

directory control operations, Dentl 57

directory file, S_IFDIR 78

disable bézier capabilities,
v_bez_off 142

dividers, Falcon(30 audio 6

Dlock, lock BIOS device 58

DMA (Direct Memory Access)

DMA playback, switch matrix 30

DMA record, switch matrix 31

DMA, Falcon030 audic 5,7

Dopendir, open directory for reading
5

Index Modern Atari System Software

Page 225

dot clock, Falcon030 video 27

Dpathconf, get configurable
pathname variables 60

drag ‘n’ drop, AP DRAGDROP 118

Dreaddir, read directory entry 61

Drewinddir, rewind directory read &

DSP (Digital Signal Processor)

DSP port, Falcon030 6

DSP receive, switch matrix 31

DSP sub-system, Falcon(30 7-18, 39-56

DSP transmit, switch matrix 3

D5SP tristate mode 32

DSP, applications 12

DSP, Falcon030 audio 5

dspblock, struct 44

Dsptristate, set DSP tristate mode 32

Dsp_Available 14

Dsp_Available, inquire available
DSP memory &

Dsp_BlkBytes, send bytes from/to
DsP 3

Dsp_BlkHandShake, handshake
data from /to DSP 40

Dsp_BlkUnpacked, send longs
from /to DSP 40

Dsp_BlkWords, send words from /to
DSP &1

Dsp_DoBlock, stream data from/to
DsP 41

Dsp_ExecBoot, execute DSP boot
program 48

Dsp_ExecProg, execute loaded DSP

program
Dsp_FlushSubroutines, flush DSP
subroutines 4
Dsp_GetProgAbility 15
Dsp_GetProgAbility, get current
program ability 49
Dsp_GetWordSize, obtain DSP word
size &2
Dsp_Hf0, read /write HSR bit 3 49
Dsp_Hf1, read /write HSR bit 4 50
Dsp_Hf2, read HCR bit 3 50
Dsp_Hf3, read HCR bit 4 50
Dsp_Hb5tat, read interrupt status
register 51
Dsp_InqSubrAbility 15

Dsp_IngSubrAbility, locate resident
DSP subroutine 51

Dsp_InStream, submit data to DSP
input deemon 8

Dsp_IOStream, transfer DSP data
via [/O daemons 43

Dsp_LoadProg, load & execute DSP
program %2

Dsp_LoadSubroutine, load DSP
subroutine 52

Dsp_Lock 13

Dsp_Lock, obtain exclusive lock on
DSP 3

Dsp_LodToBinary, load .LOD file as
binary 8

Dsp_MultBlocks, transfer struct
dspblocks from/to DSP 44

Dsp_OutStream, get data from DSP
cutput daemon 45

Dsp_Removelnterrupts, remove DSP
vectors 45

Dsp_RequestUniqueAbility 15

Dsp_RequestUniqueAbility, request
ability code 54

Dsp_Reserve 14

Dsp_Reserve, reserve DSP memory 54

Dsp_RunSubroutine, run resident DSP
subroutine 55

Dsp_SetVectors, set DSP interrupt
vectors 46

Dsp_TriggerHC, trigger host
command interrupt 55

Dsp_Unlock 13

Dsp_Unlock, relinquish DSP lock 56

DTR (Data Terminal Ready}

duplicate file handle, F_DUPFD 64

Edit menu 162

effective group ID, get, Pgetegid 83

effective user ID, get, Pgeteuid 83

enable bézier capabilities, v_bez on
142

end of file, t_eofc 66

end of line, t_brkc 66

environment, AES 134

erase character, sg_erase 66

Page 226

Modern Atari System Software Index

erase word, t_werasc 66

executable file format, GEMDOS 182

execute process, Pexec 105

Export... menu item, Atari style guide
162

extended file attributes 62, 64, 78

extended file attributes, obtain,
Fxattr 78

external clock, Falcon030 audio 6

external expansion, Falcon030 audio 6

external input, switch matrix 30

external output, switch matrix 31

external sync mode, Falcon030 video
z

EXT_ABS, Lattice absolute symbol
170

EXT_COMMON, 32 bit common data
symbol fixup 171

EXT_DEF, Lattice relative symbol
170

EXT_DREF16, 16 bit _ MERGED
data symbol fixup 171

EXT DREF32, 32 bit _ MERGED
data symbol fixup 171

EXT_DREFS, 8 bit _ MERGED data
symbol fixup 171

EXT_REF16, 16 bit Lattice symbol
fixup 170

EXT_REF32, 32 bit Lattice symbol
fixup 170

EXT_REFB, 8 bit Lattice symbol fixup
170

HF

face name and index, inquire,
vqt_f_name 153
Falcon030 3
AES107-138

3D buttons 122
colour icons 121
Bevpac3 195
HiSoft BASIC 2 195
Lattice C 5 196
menu_attach 125
menu_istart 127
menu,_popup 128

WM_CNTOP 117
WM_UNTOPPED 117
audio 5-7, 29-37
buffering 29
Buffoper 29
Buffptr 30
CD compatibility 6
CODECS
configure switch matrix 30
DAT compatibility &
Devconnect 30
Devpac3 192
dividers 6
DMAS, 7
DSP5
DSP port 6
Dsptristate 32
external clock 6
external expansion &
filtering 5
find 30
Gpie 32
hardware 5
HiSoft BASIC 2 192
input gain 36
inquire sound system status 35
issue command to sound system 36
Lattice C5 192
left channel input gain 36
left channe] output attenuation 36
lock sound system 33
Locksnd 33
matrix/ADC adder 36
microphone input 36
output attenuation 36
oversampling 5
prescaler, CODEC 36
program GP gutput pins 32
PSG input 36
reset sound system status 35
right channel input gain 36
right channel output attenuation 36
sampling rate 6
set DSP tristate mode 32
set internal track 35
set play /record tracks 35
set samiple playback resolution 34
set sound end interrupt 34
set sound play/record buffers 33
Setbuffer 33
Setinterrupt 34
Setmode 34
Setmontrack 35
Settrack 35
Sndstatus 35
sound play/record enable/disable 29
Soundcmd 36

ST compatibility 5
switch matrix &

menu_settings 129 unlock sound system: 37
objc_sysvar 123 Unlacksnd 37
wind_get 135 bus bandwidth 7
wind_set 137 DSP 7-18, 39-56
Index Modern Atari System Software Page 227

ability codes 14

accessing 13

applications 12

architecture 8

Devpac 3193

Dsp_Available 14, 47
Dsp_BlkBytes 39
Dsp_BlkHandShake 40
Dsp_BlkUnpacked 40
Dsp_BlkWords 41
Dsp_DoBlock 41
Dsp_ExecBoot 48
Dsp_ExecProg 48
Dsp_FlushSubroutines 49
Dsp_GetProgAbility 15, 49
Dsp_GetWordSize 42
Dsp_HID 49

Dsp_Hf150

Dsp_Hf2 50

Dsp_Hf3 50

Dsp_HStat 51
Dsp_IngSubrAbility 15, 51
Dsp_InStream 43
Dsp_lOStream 43
Dsp_LoadProg 52
Dsp_LoadSubroutine 52
Dsp_Lock 13,53
Dsp_LodToBinary 53
Dsp_MultBlocks 44
Dsp_OutStream 45
Dsp_Removelnterrupts 45
Dsp_RequestUniqueAbility 15, 54
Dsp_Reserve 14, 54
Dsp_RunSubroutine 55
Dsp_SetVectors 46

Dsp TriggerHC 55
Dsp_Unlock 13, 56

execute DSP boot program 48
execute loaded DSP program 48
external expansion &

flush DSP subroutines 49
fragmentation, memory 17

get current program ability 49
get data from DSP output deemon 45
handshake data from/to D5P 40
harvard architecture 9

HiSoft BASIC 2 193

host port 13

inquire available DSP memory 47
Lattice C5 193

load & execute DSP program 52
load .LOD file as binary 53
load DSP subroutine 52

locate resident DSP subroutine 51
memory allocation 14

memory fragmentation 17
memory map 11

Motorola DSP56001 8
multitasking 13

programming 15

programs 17

RAM 10

read HCR bit 350

read HCR bit 4 50

read interrupt status register 51
read /write HSR bit 3 49

read /write HSR bit 4 50

relinquish DSP lock 56

relocation 15

remove DSP vectors 45

request ability code 54

reserve DSP memory 54

run resident DSP subroutine 55

send bytes from/to DSI” 39

send longs from /o DSP 40

send words from/to DSP” 41

set DSP interrupt vectors 46

SSI port 13

streamn data from/to DSP 41

submit data to DSP input dzmon 43
subroutines 14, 15

fimings 9

transfer DSP data via I/O demons 43
transfer struct dspblocks from/to DSP 44
trigger host command interrupt 55

Motorola MCo8(030 8
TOS 19-22
video 3-4, 23-27

40 colunm 4

80 column 4

bits per pixel 4

broadcast monitor 4

colour depth 3

colour palette 3

Devpac 3191

dot clock 27

external sync 27

get/set VDf mask /overlay mode 24
hardware 3

HiSoft BASIC 2 191

inquire attached monitor type 23
inquire palette entries 24

inquire video mode memory size 24
interlace 4

internal sync 27

Lattice C5 191

line doubling 4

made selection 3

maodecode 4

Montype 23

NTSC 4

overlay mode 24

overscan 4

PAL 4

set external/internal sync mode 27
set palette entries 26

set video mode 25, 26

N) Setscreen 26
obtain DSP word size 42 ST compatibility 4
obtain exclusive lock on DSP 53 ST modes 3
program conirol 13 true colour 3. 4
program format 18 v4 ‘
program memory map 17
Page 228 Modern Atari System Software Index

VGA 4
VgetRGB 24
VgetSize 24
VsetMask 24
Vsetmode 25
VsetRGB 26
VsetScreen 26
VsetSync 27
fast RAM buffer address, FRB
cookie 188
Fchmeod, modify extended file
attributes 62
Fchown, change file ownership 63
Fentl, file contrel 63
_FDC, floppy disk type 188
Fdup, duplicate file handle 64
Fgetchar, get character from file 22
FIFO (First In, First Out buffer)
FIFO file, S_IFIFO 78
file control, Fcntl 63
file creation mask, Pumask 96
file descriptor flags 64
file formats, object (see object file
formats}
file handle, duplicate, F_DUPFD 64
file input status, get, Finstat 73
file links, max, Dpathconf 60
file locking extensions, _FLK cookie
188
file locking primitive, Flock 102
File menu 162
file name truncation, Dpathconf 60
file name, max, Dpathconf 60
file open, Fopen 103
file output status, get, Foutstat 74
file region locking 65
file type mask, S_IFMT 78
files, open limit, Dpathconf 60
files, per-process open limit, Sysconf
100
filled bézier output, v bez fill 141
filtering, Falcon030 audio 5
Finstat, get file input status 73
FIONREAD, available bytes for
reading 64
FIONREAD, available bytes for
writing 65
fix31 data type 139
FL3DACT, 3D activator effect 122

FL3DBAK, 3D background effect 122

FL3DIND, 3D indicator effect 122

FL3DMASK, 3D ob_flags mask 122

FL3DNONE, 3D non-effect 122

_FLK cogkie 103

_FLK, file locking extensions 188

Flink, create ‘hard’ link 73

Flock, file locking primitive 102

flock, struct 65

floppy disk type, _FDC cookie 188

flow change, traced process run until
71

flush outline font cache,
v_flushcache 143

flushes output, t_flushc 66

Fmidipipe, manipulate MIDI file
handles 74

font height, AES 114

font ID, AES 114

font management, GDOS 20

font scaling GDOS cookie, FSMC
cookie 190

FontGDOS 21

Fopen, open a file 103

Foutstat, get file output status 74

Fpipe, create anonymous pipe 75

_FPU, FPU fitted 188

Fputchar, put character to file 75

fragmentation, DSP memory 17

_FRB, fast RAM buffer address 188

Freadlink, read ‘soft’ link 7%

free disk space, get, Dfree 101

Fselect, suspend process awaiting file
1/O07

FSMC, font scaling GDOS cookie 190

FSTAT, get extended file attributes
&4

Fsymlink, create ‘soft’ link 77
function key, terminal definition 68
Fxattr, obtain extended file
attributes 64, 78
F_DUPFD, duplicate file handle 64
F_GETFD, get noinherit flag 64
F_GETFL, get file descriptor flags 64
F_GETLK, get record locking 65
F_RDLCK, set read lock 65
F_SETFD, set noinherit flag 64

Index Modern Atari System Software

Page 229

F SETFL, set file descriptor flags 64

F_SETLK, set record locking 65

F_SETLKW, set record locking (wait
if blocked) 65

F_UNLCK, remove previous lock 6

F WRLCK, set write lock 65

GB function, BASIC 112
GDOS (Graphics Device Operating
System)
bézier support 22
FontGDO5 21
history 20
GDOS, Speedo (see SpeedoGDOS)
get configurable pathname variables,
Dpathconf 60
get configurable system variables,
Sysconf, 100
get current working directory,
Dgetcwd 58
getcookie 190
global array, AES 112
global file, open, O_GLOBAL 103
global RAM, allocate 104
GP output pins 32
Gpio, program GP output pins 32
graf_mouse, change mouse form 120
group 1D, real, set 90
group ID, real/effective, get 83
group ID, set on execution, S_ISGID 78
G_CICON 121
hard link, create, Flink 73

hardware, Falcon030 video 3

harvard architecture, DSP56001 9

HC (Host Command)

HCLN, Lattice debug hunk
compressed line numbers 173

HCLN, Lattice debug hunk line
numbers 173

HCR (Host Control Register)

HEAD, Lattice debug hunk header
172

HEAD, Lattice debug hunk HiSoft
BASIC profiler chunk 172

height of window in pixels,
ws_ypixel 67

hierarchical menus 19, 108

host port, DSP 13

HSR (Host Status Register)

HUNK_BSS, Lattice BSS section 168

HUNK_CHIP, Lattice section system
RAM marker 168

HUNK_CODE, Lattice code section
168

HUNK_DATA, Lattice data section
168

HUNK_DEBUG, external symbol
information 172

HUNK_DRELOCI16, 16 bit
__MERGED data relocation 169

HUNK_DRELOC32, 32 bit
_ MERGED data relocation 169

HUNK_DRELOCS, 8 bit _ MERGED
data relocation 169

HUNK_END, Lattice section end 168

HUNK_EXT, Lattice symbol
import/export block 170

HUNK_FAST, Lattice section
alternate RAM marker 168

HUNK_INDEX, Lattice library
index hunk 174

HUNK_LIB, Lattice library hunk
174

HUNK_NAME, Lattice module name
168

HUNK_RELOCI16, 16 bit Lattice
relocation 169

HUNK_RELOC32, 32 bit Lattice
relocation 169

HUNK_RELOCS, 8 bit Lattice
relocation 169

HUNK_SYMBOL, external symbol
information 171

HUNK_UNIT, Lattice module start
167

ICONBLK 121
icons colour 121

Page 230

Modern Atari System Software

Index

_IDT, international time and date
mode 188

Import... menu item, Atari style guide

162

INDBUTCOL, get/set default colour

124
indicator objects, get/set attributes
124
indicator, 3D, FL3DIND 122
input gain 36
input line, redraw, t_rprntc 66
interlace, Falcon030 video 4

internal sync mode, Falcon030 video

internal track, set 35

international time and date mode,
_IDT cookie 188

interrupt, set sound end 34

nJ

JPEG (Joint Photographic Experts
Group)
JPEG, DSP 12

kemning mode, vst_kern 157

kerning, pair, vqt_pairkern 154

kerning, track, vqt_trackkern 154

keyboard equivalents, Atari style
guide 163

keyboard preference, _AKP cookie
187

HL

language setting, AES 115
language specific issues 191-197
left channel input gain 36

left channel output attenuation 36
library format, Lattice file format

link, create hard, Flink 73

link, create soft, Fsymlink 77

links to a file, max, Dpathconf 60

Linotronic 20

LK3DACT, get/set attributes for
activator objects 124

LK3DIND, get/set attributes for
indicator objects 124

load outline font cache, v_loadcache

147
lock BIOS device, Dlock 58
lock sound system 33
locking, file 65
Locksnd, lock sound system 33
ltchars, struct 66

machine type, MCH cookie 189

mailbox message passing, Pmsg 85

mask mode, set VDI 24

matrix/ADC adder 36

_MCH, machine type 189

memory allocation from preferred
pool, Mxalloc 104

memory allocation, DSP 14

memory flags 70

memory fragmentation, DSP 17

memory map, DSP 11

memory regions per process, limit,
Sysconf 100

memory, available, Dfree 101

memory /process file, 5_IMEM 78

menu bar 162

menu parameters, set, menu_settings
129

MENU structure 126

menus, hierarchical 108

menus, popup 110

menus, scrofling 111

menu_attach, attach sub-menu 125

174 menu_bar, manage AES menu bar 126
limit, open files per-process, Sysconf menu_istart, get/set starting submenu
100 itern 127

limit, open files, Dpathconf 60 menu_popup, display popup menu 128
line doubling, Falcon030 video 4 menu_register, set AES program name
line kill character , sg kill 66 129

Index Modern Atari System Software Page 231

menu_settings, set menu parameters Pgetuid 83
129 Pkill 84
_ MERGED data 169, 171 Pmsg 85
- Price 86
message ability 135 Prenice 56
message pipe, read from, appl read Prusage 87
115 Psemaphore 87
message, send to AES 135 Psetgid 90
microphone input 36 Psetlimit 89
. . . . Psetpgrp 90
microphone input, switch matrix 30 Psetuld 90
MIDI file handies, manipulate, Psigaction 91
Fmidipipe 74 Psigblock 93
MiNT 1, 19, (MiNT is Now TOS), 57 - Psignal 93
106 Ps@gpause 95
configuration file 211-213 Ps%greturn %
Delosedir 57 Psigsetmask 93
Dentl 57 gl”lsm“‘l‘gg
Devpac3194 iy
Diree 101 fork 97
otewd 58 Pwait 98
Dlock 58 Pwait3 98
Dopendir 59 Pwaitpid 98
Dpathconf 60 gale::l 91900
Dreaddir 61 SY e onf
Drewinddir 62 ysconf 100
Fehmod 62 Talarm 101
Echown 63 MMU usage cookie, PMMU cookie 190
Fentl 63 MN_SET structure 129
Fgetchar 72 modecode, Falcon030 video 4
;;,“51?;373 modes, ST video 3
Fl;‘:k 102 modes, TT video 3
Fmidipipe 74 modify extended file attributes,
Fopen 103 Fchmod 62
Foutstat 74 modules, Lattice file format 167
Egiﬁechii 75 monitor type, inquire attached 23
Freadlink 76 Montype, inquire attached monitor
Fselect 76 type B
Fsymlink 77 Motorola DSP56001, Falcon030 DSP
Fxattr 78 sub-system 8
HiSoft BASIC 2 194 Motorola MC68030 8
Lﬁim;ecgosk:::% mouse form, graf_mouse 120
Myxalloc 104 MPEG (Moving Pictures Experts
Pause 81 Group)
Pdomain 81 MPEG, DSP 12
Pexec 105 multitasking 19
l‘:“;‘é B.i 83 multitasking, DSP 13
Poctonid 83 MultiTOS 107-138
Pgetgid 83 3D buttons 19
Pgetpgrp 82 appl_find 113
Pgetpid 82 appl_getinfo 114
Pgetppid 83 appl_read 115
Page 232 Modern Atari System Software Index

appl search 116

AP_DRAGDROP 118

AP TERM 117

AP_TFAIL 117

CH_EXIT 119

configuration file 213-215

Devpac 3 195

evnt_mesag 117

evnt_multi 117

graf_mouse 120

hierarchical menus 19

HiSoft BASIC 2 195

Lattice C5 196

menu_bar 126

menu_register 129

popup menus 19

RESCH_COMPLETED 118

rsre_rcfix 130

shel_gat 130

shel _put 131

shel_write 131

SHUT_COMPLETED 118

SH WDRAW 119

wind_get 135

wind_set 137

wind_update 137

WM_ONTOP 117

WM_UNTOPPED 117

Mxalloc, allocate memory from

preferred pool 104

names, section, Lattice file format 168
network, file locking 65
_NET, networking software installed
189
New menu item, Atari style guide 162
noinherit flag 64
noinherit flag, open mode,
O NOINHERIT 103
non-blocking 1/0, open mode,
O NDELAY 103
non-continuous mode, switch matrix 7
NTSC (National Television
Standards Committee)
NTSC, Faleon030 video 4

RO

objc_sysvar, get/set 123
object file formats 167-185
DRI 180-185

absolute format 182

executable format 182

library format 184

relocatable format 180
GST 176-179

END 177
library format 179
OFFSET 178
ORG 178
SECTION 178
section directives 178
SOURCE 177
source directives 177
symbol directives 178
XDEF 178
XREF 179
Lattice 167-176
debugging 171-174
HUNK_BSS 168
HUNK_CHIP 168
HUNK_CODE 168
HUNK_DATA 168
HUNK_DEBUG 172
HBPR 172
HCLN 173
HEAD 172
LINE 173
SRC 173
HUNK_DRELOC16 169
HUNK_DRELOCS 169
HUNK_END 168
HUNK_EXT 170
EXT_ABS 170
EXT_COMMON 171
EXT_DEF 170
EXT_DREF16 171
EXT_DREF32 171
EXT_DREFS 171
EXT_REF16 170
EXT_REF32 170
EXT_REFB 170
HUNK_FAST 168
HUNK_INDEX 174
HUNK_LIB 174
HUNK_NAME 168
HUNK_RELOC16 169
HUNK_RELOC32 169
HUNK_RELOCS 169
HUNK_SYMBOL 171
HUNK_UNIT 167
library format 174
modules 167
sections 168
QFFSET, GST section offset 178
oheader, struct 180

open directory for reading, Dopendir
»

Index Modem Atari System Software

Page 233

open files, internal limit, Dpathconf
[:1)

open files, per-process limit, Sysconf
1

Open...menu item, Atari style guide
162

ORG, GST section origin 178

OS5 binding numbers 199-206

outline font cache size, vqt_cachesize
150

outline font scaler, SpeedoGDOS 20

outline font text advance vector,
vqt_advance 149

outline font text extent, vqt_f_extent
151

outline font, detection 153

outline, get character, v_getoutline
147

output attenuation 36

overlay mode, set VDI 24

oversampling, Falcon030 audio 5

overscan, Falcon(030 video 4

ownership, change file, Fchown 63

O_APPENSD, all writes go to end of
file 103

O_COMPAT, compatibility mode 103

O CREAT, create file if it doesn’t
exist' 103

O_DENYNONE, don't deny any
access to others' 103

O _DENYR, deny read access to
others 103

O_DENYRW, deny both read and
write access 103

O_DENYW, deny write access to
others 103

O_EXCL, fail open if file exists 103

O_GLOBAL, open a global file 118

O_NDELAY, don't block for 1/Oon
this file' 103

O_NOINHERIT, private file (not
passed to child) 103

O_RDONLY, read from file only 103

O_RDWR, read or write to file 103

O_TRUNC, truncate file to 0 bytes if
it does exist 103

O_WRONLY, write to file only 103

Page Setup... menu item, Atari style
guide 162

pair kerning 157

pair kerning, vqt_pairkern 154

PAL (Phase Alternate by Line)

PAL, Falcon030 video 4

palette entries, inquire 24

palette entries, set 26

palette, colour 3

parent process 1D, get, Pgetppid 83

Paste menu item, Atari style guide
162

path name, max, Dpathconf 60

pause awaiting signal with mask,
Psigpause 95

Pause, suspend process awaiting
signal 81

PBASEADDR, get process basepage
address 70

PCTXTSIZE, get process context
structure length 7

Pdomain, get/set current process
domain 81

pending signals, inquire, Psigpending
%

Pexec, create/execute process 105
Pfork, clone current process 8
Pgetegid, get effective group 1D 83
Pgeteuid, get effective user ID &
PGETFLAGS, get process memory
flags 70
Pgetgid, get real group ID 83
Pgetpgrp, get process group of current
2

Pgetpid, get current process ID &
Pgetppid, get parent process ID 83
Pgetuid, get real user ID 8

Pkill, send signal to process 84
play buffers, set 33

play tracks, set 35

playback sample resolution, set 34
PMMU, MMU usage cockie 190
Pmsg, mailbox message passing 85

Page 234

Modern Atari System Software

Index

Pnice, adjust current process ‘niceness’

point size, arbitrary 155

popup menus 19,110

POSIX.1 19

PPROCADDR, get process control
structure address 70

Prenice 133

Prenice, adjust arbitrary process
‘niceness’ 86

prescaler, CODEC 31, 36

printing, SpeedoGDOS 20

Print... menu item, Atari style guide
162

private RAM, allocate 104

process control 70

process control structure address,
PPROCADDR 70

process domain, get/set current,
Pdomain 81

process group, get current, Pgetpgrp 82

Pprocess group, set current, Psetpgrp 90

process ID, get current, Pgetpid 82

process ID, get parent, Pgetppid 83

process priority, adjust arbitrary,
Prenice 86

process priority, adjust current, Pnice
8

process termination, CH_EXIT 119

process tracing 70, 106

processes per user, Sysconf 100

program control, DSP 13

program format, DSP 18

program memory map, DSP 17

program name, set, menu_register 129

programming, DSP 15

programs, DSP 17

Prusage, obtain resource usage
information 87

Psemaphore, use uncounted
semaphores 87

PSETFLAGS, set process memory
flags 70

Psetgid, set real group 1D 90

Psetlimit 133

Psetlimit, set process resource limit 8

Psetpgrp, set process group of current
process 90

Psetuid, set real user [D 90

PSG input 36

PSG input, switch matrix 30

Psigaction, install POSIX.1 style
signal handler 91

Psigblock, add signals to signal mask
]

Psignal, install signal handler %

Psigpause, pause awaiting signal
with mask 95

Psigpending, inquire pending signals
%

Psigreturn, prepare kernel for signal
exit 9%
Psigsetmask, set signal mask 93
PTRACEFLOW, run traced process
until flow change 71
PTRACEGFLAGS, get trace flags A
PTRACEGO, restart traced process 71
PTRACESFLAGS 106
PTRACESFLAGS, set trace flags 71
PTRACESTEP, single-step traced
process 71
Pumask, set process file creation mask
%
Pusrval, get/set user process value 97
Pvfork, clone current process 97
Pwait, collect child exit codes 98
Pwait3, collect child exit codes 98
Pwaitpid, collect child exit codes 98

HQ

Quit menu item, Atari style guide 162
quote character, t_lnextc 66

read deny , open mode, O_DENYR
103

read directory entry, Dreaddir 61

read lock, set 65

read only, open mode, O_RDONLY
103

read / write deny, open mode,
O_DENYRW 103

Index Modern Atari System Software

Page 235

read /write open mode, O RDWR 103

readable RAM, allocate 104

real group ID, get, Pgetgid 83

real group ID, set, Psetgid 90

real user 1D, get, Pgetuid 83

real user ID, set, Psetuid 90

record buffers, set 33

record locking 65

record tracks, set 35

recording, direct to disk 5

redraw Desktop windows,
SH_WDRAW 119

redraw input line, t rprntc 66

regular file, S_IFREG 78

Rehbock, Bill 1

relinquish processor, Syield 100

relocation, DSP 15

remove previous lock 65

RESCH_COMPLETED, resolution
changed 118

reset sound system status 35

resolution change 134

resolution changed,
RESCH_COMPLETED 118

resolution independence, Atari style
guide 165

resolution, AES 115

resolution, Falcon030 video 3

resource file, AES 115

resource file, fixup, rsrc_rcfix 130

resource files, colour 111

resource usage, Prusage 87

resource, set process limit, Psetlimit

restart terminal output 67

restart traced process, PTRACEGO 71
retain text segment, S_ISVTX 78
rewind directory read, Drewinddir 62
right channel input gain 36

right channel output attenuation 36
rows of text, ws_row 67

rsrc_rcfix, fix pre-loaded 130

HS

sample rate, switch matrix 31

sampled sound 5

sampling rate, Falcon030 audio 6

Save as... menu item, Atari style
guide 162

Save menu item, Atari style guide 162

save outline font cache, v_savecache
148

schedule alarm, Talarm 101

scratch buffer allocation mode,
vst_scratch 157

scrolling menus 111

search existing AES processes,
appl_search 116

SECTION, GST section 178

sections, Lattice file format 168

Select all menu item, Atari style
guide 162

semaphores, AES, wind update 137

semaphores, Psemaphore 87

sensitivity, case, Dpathconf 60

Setbutfer, set sound play/record
buffers B3

Setinterrupt, set sound end interrupt
K3

Setmode, set sample playback
resolution 34

Setmontrack, set internal track 35

Setscreen 3

Setscreen, set video mode 26

Settrack, set play/record tracks 35

sgttyb, struct 66

shared memory 72

shell buffer, read, shel get 130

shell buffer, write, shel_put 131

shel_get, read the AES’s internal
shell buffer 130

shel put, write the AES’s internal
shell butfer 131

shel_write 117, 118

shel write, run another application
131

SHMGETBLK, get address of shared
memory block 72

SHMSETBLK, offer memory for

Salert, generate system alert message sharing 72
shutdown mode 134
Page 236 Modern Atari System Software Index

shutdown state, system,
SHUT_COMPLETED 118

SHUT_COMPLETED, system in
shutdown state 118

SH_WDRAW, request Desktop
window redraw 119

sigaction, struct 91

SIGALRM 101

SIGINT 66, 72

signal exit, prepare kernel for,
Psigreturn 96

signal handler, install POSIX.1
style, Psigaction 91

signal handler, install, Psignai 93

signal mask 93

signal mask, pause on, Psigpause 95

signal, send to process, Pkill 84

signal-noise ratio 10

si%nals, inquire pending, Psigpending

SIGQUIT 66
SIGTRAP 71
SIGTSTP 66, 72
single-step traced process,
PTRACESTEP 71
skewing, font, vst_skew 159
Smith, Eric 1
_SND, sound hardware 189
SNDLOCKED 33
SNDNOTLOCK 37
Sndstatus, inquire sound system status
35

soft link, create, Fsymlink 77
soft link, read, Freadlink 76
sound hardware, _SND cookie 189
sound interrupt, set end 34
sound play/record enable/disable 29
sound system

defaults 35

issue command 36

lock 33
uniock 37

sound system status structure, locate

sound system status, inquire 35

sound system status, reset 35

Soundemd, issue command to sound
system 36

SOURCE, GST module start 177
SpeedoGDOS 20-22, 139-159
device independent output 20
Devpac3 196
fix31 data type 139
font header 151, 207
FSMC cookie 190
HiSoft BASIC 2 196
Lattice C5197
outline font scaler 20
printing 20
vqt_advance 149
vqt_advance32 149
vqt_cachesize 150
vqt_devinfo 150
vqt_fontheader 151
vqt_f extent 151
vqt_f_name 153
vqt_get_table 152
vqt_pairkern 154
vgt_trackkern 154
vst_arbpt 155
vst_charmap 156
vst_error 156
vst_kern 157
vst_scratch 157
vst_setsize 158
vst_setsize32 158
vst_skew 159
v_bez 140
v_bez_fill 141
v_bez_off 142
v _bez_on 142
v_bez_qual 143
v_flushcache 143
v_ftext 144
v_ftext_offset 144
v_getbitmap_info 146
v_getoutline 147
v_loadcache 147
v_savecache 148
v_set_app_buff 148
v_we_ftext 144
v_wec_ftext_offset 144
v_we_gtext 144
v_we_justified 144
SRC, Lattice debug hunk C source
information 173
551 (Synchronous Serial Interface)
SSI port, DSP 13
ST compatibility, Falcon030 audio 5
ST compatibility, Falcon030 video 4
ST modes 3

start application, shel_write 131

Index Modern Atari System Software

Page 237

start terminal output, t_startc 66
sticky bit, S ISVTX 78
stop bits, terminal 69
stop terminal output 67
stop terminal output, t_stope 66
style guide (see Atari style guide)
sub-menu, attach, menu_attach 125
submenu starting item, menu_jstart
127,128
subroutines, DSP 14, 15
supervisor RAM, allocate 104
supplementary group IDs, Sysconf 100
suspend process 66
suspend process awaiting file 1/0O,
Fselect 76
suspend process awaiting signal,
Pause 81
_SWI, configuration switch setting
189
switch matrix 5
ADC30
asynchronous mode 32
buffering 7
dock rate 31
CODEC prescaler 31
configure 30
DAC 31
DMA playback 30
DMA record 31
DSP receive 31
DSP transmit 30
external input 30
external output 31
Faleon030 audio 6
sample rate 31
synchronous mode 32
Syield, relinquish processor 100
symbolic link, S_IFLNK 78
synchronous mode, switch matrix 32
Sysconf, get configurable system
variables 100
system alert message, generate,
Salert 99
system RAM, allocate 104
systern RAM. Lattice file format 168
S_IFCHR, BICOS file 78
S_IFDIR, directory file 78
S_IFIFO, FIFO 78
S_IFLNK, symbolic link 78
S_IFMT, file type mask 78

S_IFREG, regular file 78

5 IMEM, memory/process 78
5_IRGRP, group read access 78
S_IROTH, others read access 78
S_IRUSR, user read access
5_ISGID, set group ID on execution 78
S_ISUID, set user ID on execution 78
S_ISVTX, retain text segment 78
5_IWGRP, group write access 78
S_IWOTH, others write access 78
S_IWUBSR, user write access 78
5_IXGRP, group execute access 78
S_IXOTH, others execute access 78
S_IXUSR, user execute access 78

BT

Talarm, schedule alarm 101

tchars, struct 66

TCURSBLINK, enable blinking 69

TCURSGRATE, get blink rate 69

TCURSOFF, hide cursor 69

TCURSON, show cursor 6

TCURSSRATE, set blink rate 69

TCURSSTEADY, disable blinking 69

terminal control 66

terminal control flags, sg_flags 66

terminal output, start, stop 66

terminal window size 67

termination failure, AP_TFAIL 117

termination reguest, application,
AP_TERM 11

text section, Lattice file format 168

text segment, retain, S_ISYTX 78

text, outline font, v_ftext et al 144

TF_155TOP, 1.5 stop bits 69

TF_1STOP, one stop bit €9

TF_2STOP, 2 stop bits &

TF_5BIT, 5 data bits 69

TF_6BIT, 6 data bits 69

TF_7BIT, 7 data bits 69

TF_8BIT, 8 data bits 69

time mode, IDT cookie 188

TIOCCBRK, clear terminal break
condition 68

TIOCGETC, get terminatl control
characters 66

Page 238

Modern Atari System Software Index

TIOCGETP, get terminal parameters
66

TIOCGFLAGS, get terminal
stop/data bits 69

TIOCGLTC, get extended terminal
control characters 66

TIOCGPGRP, get terminal process
group 67

TIOCGWINSZ, get terminal window
size 67

TIOCGXKEY, get definition of
function or cursor key 68

TICCIBAUD, get/set terminal input
rate 68

TIOCOBAUD, get/set terminal
output rate 68

TIOCSBRK, assert terminal break
condition 68

TIOCSETC, set terminal control
characters 6

TIOCSETP, set terminal parameters
73

TIOCSFLAGS, set terminal
stop/data bits 69

TIOCSLTC, set extended terminal
control characters 66

TIOCSPGRP, set terminal process
group 67

TIOCSTART, restart terminal output
67

TIOCSTOP, stop terminal output 67

TIOCSWINSZ, set terminal window
size 67

TIOCSXKEY, set definition of
function or cursor key 68

toolboxes, Atari style guide 165

TOS 19-22

TOS, Falcon030 1%

tracing, process 70

track kerning 157

track kerning, vqt_trackkern 154

tristate mode, DSP 32

true colour, Falcon030 video 4

truncate file, open mode, O TRUNC
103

truncation, file name, Dpathconf 60

TT modes 3

TV, Falcon030 video 4

Undo menu item, Atari style guide
162
UNIX 19
unlock lock 65
Unlocksnd, unlock sound systemn 37
unrestricted open mode,
O DENYNONE 103
user ID, real, set 90
user 1D, real/effective, get 83
user 1D, set on execution, S_ISUID 78
user process value, get/set, Pusrval 97

L'

_VDO, video shifter part 189

VDI 139-159

version number, AES112

VGA (Video Graphics Array)

VGA, Falcon030 video 4

VgetRGB, inquire palette entries 24

VgetSize, inquire video mode memory
size M

video mode selection, Falcon030 3

video mode, set 25, 26

video shifter part, _VDO cookie 189

video sub-system, Falcon(30 34, 23-
Z

vqt_advance, inquire outline font text
advance vector 149

vqt_advance32, inquire outline font
text advance vector 149

vqt_cachesize, get outline font cache
size 150

vqt_devinfo, inquire device status
information 150

vqt_fontheader, inquire Speedo font
header information 151

vqt_f_extent, inquire outline font text
extent 151

vqt_f_name, inquire face name and
index 153

vqt_get_table, get character
mapping tables 152

vqt_pairkern, inquire pair kerning
information 154

Index Modern Atari System Software

Page 239

vat_trackkern, inquire track kerning
information 154

vq_color 24

VsetMask, get/set VDI
mask/overlay mode M

Vsetmode, set video mode 25

VsetRGB, set palette entries 26

VsetScreen, set video mode 26

VsetSync, set external/internal sync
mode 27

vst_arbpt, set character cell height
by arbitrary points 155

vst_arbpt32, set character cell
height by arbitrary points 155

vst_charmap 147

vst_charmap, set character mapping
mode 156

vst_error, set SpeedoGDOS error
mode 156

vst_kern, set kerning mode 157

vst_point 155

vst_scratch, set scratch buffer
allocation mode 157

vst_setsize, set character cell width
by arbitrary points 158

vst_setsize32, set character cell
width by arbitrary points 158

vst_skew, set outline font skew 159

vs_color 24, 26

v_bez, output bézier 140

v_bez fill, output filled bézier 141

v_bez_off, disable bézier
capabilities 142

v_bez_on, enable bézier capabilities
142

v_bez_qual, set bézier quality 143

v_flushcache, flush outline font
cache 143

v_{text, outline font text 144

v_ftext offset, outline font text with
custom vector 144

v_getbitmap info, get character
bitmap information 146

v_getoutline, get character outline
147

v _loadcache, load outline font cache
147

v_savecache, save outline font cache
148

v_set_app_buff, reserve bézier
workspace 148

v_wc_ftext, wide character outline
font text 144

v_wc_ftext_offset, wide character
font text with custom vector 144

v_wc_gtext, wide character graphics
text 144

v_wc_justified, wide character
justified text 144

BW

WF_BEVENT, get special window
attributes 135

WF_BEVENT, set special window
attributes 137

WF_BOTTOM, find current bottom
window handle 135

WF_BOTTOM, set window to bottom
137

WEF_COLOR, get window's element
colour 135

WF DCOLOR, get default window
element colour 135

WF_NEWDESK, get system
background object pointer 135

WF_OWNER, get window owner’s
AESID 135

WE_TOP, get current top window 135

wide character 145

width of window in pixels, ws_xpixel
&

window attributes, get, wind get 135

window attributes, set, wind_set 137

window size, terminal 67

window untopped, WM_UNTOPPED
117

window, new on top, WM_ONTOP
117

windows, Atari style guide 164

wind_get, get window attributes 135

wind_set, set window attributes 137

wind_update, manipulate AES
semaphores 137

winsize, struct 67

Page 240

Modern Atari System Software Index

WM_ONTOP, new window on top 117

WM_UNTOPPED, current window
untopped 117

word erase, t_werasc 66

write deny , open mode, O_DENYW
103

write lock, set 65

write only, open mode, O_WRONLY
103

B X

XATTR, struct 64, 78

XDEF, GST symbol export 178
xkey, struct 68

XREF, GST symbol import 179

Index Modern Atari System Software

Page 241

Noftes

"_Jf_-J Jum ~J uu
/'Wm 20 jr JJI

e Tms‘refemnce gmde IS an invaluable source of c‘mcumentahon for any i
| serious programmer on the Atari 680x0 platform, It contains a wealth 110
~ of information on using the newer Atari TOS-based operating systema i
 from within C, BASIC and assembly hngtlage m add:hon to many
i gezneral programmmg hmts and tlp'% ki : :

i ’I‘aplcs r:overed 1nciude

o ' -An overview, of the Atzm FalconOSU Lomputer mcluding ﬁs '. Ly e
. 'wideo, audio and DSP sub-systems and the new -aystem Lalls Po e
needed tu handle this excmng hardware : il

i * - Details of how to program with MLNT“‘ MuthOSW and ‘
o eewer o

e ; __‘_'Informatmn on usmg the new feature% Qf "IOS 40, mc]udmg
o ._.-aB the AES enhancements, the Coakxe jat, 319 dmlcgs etc.

o ' - ..The Atari btyle (}mde is mcluded which gwes advn:e on
| programming a consistent user mterface 50 as to Improve
the look and easeﬂf-use of yr.aur programs ' j

.',”Tec:hmcal Appendlces cover the SpeedoGDOSm header‘ G
- MultiTOS™ configuration, operating system bmdmgs and the LA
g vanous a,rror cadesf mgnals that can bedetected i

s -';f'-'Mode'nz Aﬁm .System Saftware detaﬂs the mterface ccdé for calimg aﬂ el
| thesé new functions from Lattice C 5.60, HiSoft BASIC 2:10 and Ht%ft “ s ‘
DevPac 3. lﬁ and is an essentlai buy fm' all Atan deveiopers ' il

Modem Atari System Software is wﬂtten and s !
: published by HiSoft i Greenﬂeld. UK, '

