>
5

5

L P PR 2 B e i T T —

 AIARCAST

- 3D GRAPHICS
PROGRAMMING

Concepts and Techniques e

Abacus

A Data Becker book published by

gl Software

ATARD

1C

gramming

3-D Graph

Pro

Published by

Abacus i Software

By Uwe Braun
"A Data Becker Book

—a T AN
A s
AT

RTINS
gy

ST

First Printing, Aug. 1986

Printed in U.S.A.
Copyright © 1985 Data Becker GmbH
Merowingerstr.30
4000 Dusseldorf, West Germany
Copyright © 1985 Abacus Software, Inc.
P.O. Box 7219

Grand Rapids, MI 49510

This book is copyrighted. No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of Abacus Software or Data Becker, GmbH.

Every effort has been made to insure complete and accurate information
concerning the material presented in this book. However Abacus Software
can neither guarantee nor be held legally responsible for any mistakes in
printing or faulty instructions contained in this book. The authors will
always appreciate receiving notice of subsequent mistakes.

ATARI, 520S8T, ST, TOS, ST BASIC and ST LOGO are trademarks or
registered trademarks of Atari Corp.

GEM is a registered trademark of Digital Research Inc.

ISBN 0-916439-69-0

Table of Contents

2.1
2.1.1
2.1.2
2.2
23
24
24.1
2.5
2.6

2.7
2.8

3.1
3.2
3.2.1

33
331

Introduction

Mathematical Basis of Graphic Programming
Moving the Coordinate Base

Scaling the Axis

Rotation around one point

Plane conversion with matrix operations
Clipping

Transformations in three dimensional space
Rotation about any desired axis

Projection from space to a two dimensional plane
Perspective transformation

Hidden lines and hidden surfaces

Rembrandt and hidden surfaces

Machine language fundamentals for graphic
programming

Speed Advantages from tables

Assembler routines for screen manipulation
Drawing lines

Operating system functions

Starting a program

10
12
16
19
26
40
36

48

56
65

75
76
79
80

87
38

4, Graphics using assembly language routines 107

4.1 Definition of a data structure of an object in

space 108
4.1.1 Explanation of subroutines used 152
4,12 Description of the Subroutines of the first

Main program 165
4.2 g}giréggtion techniques for creating rotating 160
4.1.2 New subroutines in this program 188
43 Hidden line algorithm for convex bodies 191
4.3.1 Explanation of the newly added subroutines 214
4.3.1.1 Errors with non-convex bodies 215
4.4 The painter algorithm 216
44.1 New things in the main program rotl.s 246
442 Sort algorithm 247
4.5 Entering rotation lines with the mouse 2438
4.5.1 Description of the new subroutines 296
4.6 Handling several objects 298
5. Suggestions for additional development 327
5.1 Light and Shadow 329

52 Animated Cartoons 330

Appendices

A

B

B.1
B.2
C
C.1
C.2
D
Index

Number systems

Analytical geometry of the planes and space
Scalar product

Cross product

Matrix calculations

Adding matrices

Multiplying matrices

Bibliography

333
335
342
342
344
345
346
348
349

Introduction

Abacus Software ST 3D Graphics

1. Introduction

The possibilities of computer graphics are some of the most challenging
reasons for working with a computer today. Dazzling computer-generated
images are showing up almost everywhere--in medicine, engineering,
motion pictures, music videos, television advertising, and even in
newspapers like USA Today. The public is fascinated by the unlimited
forms that computer graphics are taking. Some of the more sophisticated
of these works are the three-dimensional, computer-animated videos used
in television advertisements.

One major application of computer graphics in industry is for CAD
(Computer-Aided Design) systems. The integration of CAD systems into
the manufacturing process is of increasing importance. Known as CAD-
CAM (Computer-Aided Design - Computer-Aided Manufacturing), these
systems are making significant inroads in automating many of the
manufactured, assembled, and processed goods such as machine tools,
automobiles, electronics, and agricultural products. Without advanced
graphic data processing, the latest medical processes such as CAT scans
would be difficult, if not impossible. Furthermore, three-dimensional
graphic data processing has made it possible to visually represent
complicated scientific relationships and to make them comprehensible
(like atomic and molecular models and the DNA helix). Eventually these
graphics will be integrated with advanced teaching and simulation
methods, and are bound to have a profound impact on the way we think
and learn.

The enormous strides made in the production of integrated circuits and
the increase in processing speeds of relatively new microprocessors such
as the Motorola MC68000 has made it possible for the home and personal
computers to enter application areas that were formerly the domain of
large mainframe computers costing several hundred thousand dollars.
Even now, an affordable 32-bit personal computer is just around the
corner. The traditional distinctions between microcomputers,
minicomputers, and mainframes are becoming increasingly blurred.

Of course, even the largest mainframes are getting faster as well. The
fastest computer at this time, the Cray II, has a throughput capacity of
2000 megaflops (200 million floating-point operations per second). Such
high computing speeds are needed to closely simulate natural world
procésses with computer models. Examples are the simulation of

ST 3D Graphics Abacus Software

ecological problems (acid rain), simulation of the human physiology,
weather prediction, nuclear fusion and fission, origin of the solar system,
simulation of star systems, space travel, etc.

This book is intended to explore some of the possibilities of creating two-
and three-dimensional computer graphics on the Atari ST computer
series. To obtain a good understanding of the program sections, you
should have some fundamental knowledge of MC68000 machine
language.

Machine language represents the lowest level of communication with the
computer and contains a small number of rather simple instructions that
are consequently easy to learn. For the hobbyist, knowing machine
language programming makes it easier to understand the data structure of
higher-level languages such as Pascal and C. However, most problems
and algorithms are easier to program in a higher-level language than in
machine language.

For the problem of depicting and representing the 3-D wire models
presented here, maximum processor speed is crucial. Machine language is
clearly superior to any higher-level language in fulfilling this
requirement. With these applications for the Atari ST, real-time three-
dimensional graphics can be achieved. The removal of hidden lines and
the shading of areas requires a considerable amount of processor time.
The Cray 1I requires 8 minutes to create a single picture with a resolution
of 2000 by 3000 pixels, with up to 30 bits of color information per picture
point. In contrast, the ST manages only 640 by 400 pixels and only one
bit of color information. Of course, it is possible to increase the
computational capabilities of the ST with programming tricks, fast mass
storage (hard disk) and large amounts of memory to solve more complex
graphic problems.

This book provides you with help in solving the complex programming
problems of three-dimensional graphics. While the sample programs are
directly tailored for the Atari ST, the techniques can be used without too
much difficulty on other computers. Only the routines for hardware
communication and display control (keyboard input, line drawing, surface
shading (if possible) and switching between two screens) need to be
tailored to another computer using an MC68000 CPU (i.e., the Apple
Macintosh and Commodore’s Amiga). The subroutines for generating
and handling three-dimensional graphic objects can be run on any
computer with an MC68000 microprocessor.

Mathematical Basis of
Graphic Programming

Abacus Software ST 3D Graphics

2. Mathematical Basis of Graphic Programming

This chapter serves as the mathematical foundation of computer-
generated, three-dimensional graphics. As a result, the explanations are
very extensive. For this reason we ask readers who are already familiar
with these topics for a little patience and understanding.

All computer graphic problems can ultimately be reduced to the problem
of drawing points on a graphic output device (monitor screen, plotter, or
printer) and to connect these points with lines. There may also be the task
of shading the area delineated by the lines. For a demonstration, we will
use a two-dimensional plane with one Cartesian coordinate system,
familiar to everybody, whose origin lies in the lower left hand corner of
the screen.

yj Cartesian coordinate system S R S S S

—— T T T~ Y ST display coordinate system

Miomo-c¢ LH"’“’

Fig. 2.1: coordinate system and ST display coordinate system

In Figure 2.1, the first problem of representing graphics becomes clear.
The Cartesian coordinate system and the display coordinate system used
by the ST’s software and hardware are not the same. The directions of the
y-axis are opposite, and the coordinate origin is displaced. Consequently,

ST 3D Graphics Abacus Software

an object defined in the first system is inverted in the system on the right,
and is also displaced on the y-axis.

At first, you might be tempted to define objects to be represented using
the ST’s coordinate system. But doing this does not solve the second
problem--that the display surface of every computer is limited. The ST
can display only 640x400 points at its highest resolution. So, to avoid
defining objects with these limitations of 640x400 points, we must be
able to define an object in any desired coordinate system before
displaying it on the monitor screen. In other words, we must be able to
scale the object in any of the coordinate systems, i.e., change its size. All
points of the defined object can then be transformed using graphics
operations.

This operation is called windowing. We now introduce three coordinate
systems. They are:

1. world coordinate system
2. view coordinate system
3. picture coordinate system

Individual objects are defined in the world coordinate system, where the
calibration of the coordinate axis may be any desired unit of
measurement--for example, millimeters, kilometers, years, etc.

The view coordinate system accepts a portion of the world coordinate
system. This is similar to an observation window in the world coordinate
system.

Finally, the picture coordinate system represents the physical screen
display of the computer, A single point in this system corresponds to an
individual pixel on the screen.

This concept can be explained very simply with an example. Two objects
are defined in a world coordinate system, the outlines of a house and of a
church. The two outlines represent all objects that can be depicted on a
plane. For example, an architect would use the outline of the house in a
world coordinate system to define individual rooms and furniture.

Abacus Software ST 3D Graphics

Our task is to transform the observation window, together with the house
that fills its surface, to the specific picture window for display on the ST’s
screen.

Here’s the preferred solution to the problem, using the view coordinate
system: The origin of the world coordinate system is moved to the lower
left corner of the observation window and scaled by a suitable factor. It
now represents all points in the picture coordinate system. If the points
are in the field of picture coordinates, they can be drawn and connected

with lines.
Cartesian coordinate system Screen system for Atari ST
i -
World system +X
Screen system 1|
|
wymax| Observation window i
1 |
Ao D |
wymin| Cﬂ A ﬂ }
wxm_i_j{ WMNax +y
J"f ’ wmex | 1
f . viewsystem B ‘
& -] b
e I
e |
. | |
**** —= et - |
I L] |
i i ‘
1 x
nl - |
| vymin |
vXmin VXmax

Fig. 2.2: Transformation of world coordinates to picture coordinates

ST 3D Graphics Abacus Scftware

2,1 Moving the coordinate base

Scaling and (as we shall see later) rotation are both related to the
coordinate base. To scale an object in relation to another point, or to
rotate it around an arbitrary point, the coordinate origin must first be
moved to the relative origin. We can illustrate this again using the house
example.

by
4 |
Y o3
— i
1 dp2 PL
nr _| IPENU S
/'(C_, T T T T X'
c’\’ _ T T F T T | T T T —
Nx X
Fig. 2.1.1

One way to describe the house is to list the coordinates of the end points
and to list the points which are connected with lines. For this example,
the two lists are as follows:

10

Abacus Software ST 3D Graphics

End point list:
Point X-coordinate Y-coordinate
Pl 100 50
P2 100 90
P3 120 130
P4 140 80
PS5 140 50
Connection list:
Line from Point A to Point B
Ll: Pl P2
L2: P2 P3
L3: P3 P4
Ld: P4 P5
L5: P5 Pl

This description of a polygon, consists of a sequence of closed lines. It
contains all the information necessary for representing it on the display
screen. To draw the polygon, the lines’ endpoints are passed to a
subroutine for drawing.

As we shall see later, the polygon is also perfectly acceptable for the
description of complex, three-dimensional objects. Any physical object
can be closely approximated by chaining various polygons. Also, natural
asymmetrical bodies such as mountains, forests, lakes and animals can be
represented in a realistic manner with polygons created through fractional
geometry, i.e. fractals. In addition, most man-made objects are
constructed in a symmetrical manner and are easier to represent
graphically.

In Figure 2.1.1 the coordinate origin of the world system is moved to
point P1[100,50] . The new world coordinates (view coordinates) are
obtained by subtracting the coordinates of point P1--the new origin--from
the points that define the object. In general, the new world coordinates
are equal to the old world coordinates, minus the coordinates of the new
origin (in world coordinates). If we describe the old world coordinate axis
with x and vy, the new world coordinate axis with x’ and y”’, the new
origin point with NU[nx,ny) and the point to be moved with
P1[x,y], we can write:

Pl{xl’,yi’] = P1[x1l,yl] - NU[nx,ny]

11

ST 3D Graphics Abacus Software

For example, for point 5--the new origin is located at
P1(100,30) = NU(100,50). The coordinates of the point to be
moved P5(140,50) become in the new world coordinate system
P5x’=140-100 = 40, P5y’=50-50 = 0. The point
P5(140,50) becomes point P5’ (40, 0) . This translation must be
performed for every point of the object. It is possible to move the origin
of the world coordinate system to any point.

2.1.1 Scaling the Axis

As previously mentioned, scaling the axis refers to the coordinate origin.
This can be readily seen in Figure 2.1.2. The points of the house, i.e. the
X and Y coordinates, are scaled by the factor one half in the X and Y
axes. The result is the halving of the length of the edges, but also a
translation in the direction of the origin. If we want to avoid displacing
the direction of the origin, then before scaling the origin must be moved
to a point not affected by the scaling itself. The Figure 2.1.3 is an
example. If we want to leave the left lower corner of the house (the point
P1) in its place. The origin is moved to point P1. The picture is scaled by
multiplying the X and Y values by one half and finally moving the origin
to its original location. In this example this means:

1. Subtract 100 from the X-values of points P1-P5
Subtract 50 from the Y-values of points P1-P5

2. Multiply all X- and Y-values of points P1-P5
with the factor one half.

3. Add 100 to all X-values of points P1-P5
Add 50 to all Y-values of points P1-P5

12

ST 3D Graphics

Abacus Software

Z
2
T

1.2

Figure 2

13

ST 3D Graphics Abacus Software

4 P3

- P2 P

I P5

O__L

Figure 2.1.3

Scaling with factors greater than one enlarges the object. If we select
different scaling factors for the X and Y axes, a distorted picture of the
object results.

At this point let’s briefly return to the example, at Figure 2.1, and alter
the scaling factors for converting to view coordinates. With the maximum
coordinates of the observation:

[wxmin,wymin]; [wxmax,wymax],
and the display window

[vmin,vymin]; [vxmax,vymax]
one can give differing scaling factors for the two axes, Sx and Sy. In our
example:

Sx= (vxmax-vxmin) / (wxmax-wxmin)

Sy=(vymax-vymin) / (wymax-wymin)

14

Abacus Software ST 3D Graphics

Before scaling, the origin of the world system is moved to the left lower
corner of the observation window [wxmin,wymin], since this point is
the data point of the scaling. The result of the conversions is therefore:

1. Move the origin to the point W1 [wxmin,wymin] by
subtracting wxmin from all of the X coordinates and
wymin from all of the Y coordinates.

2. Multiply all X and Y values of the points with the factor :
sx. If the relationship of height to width is equal for both evre~

windows, then Sx=Sy. _Aeia»—"(AsTIT T R

3. Convert to the display system by multiplying the Y values
by -1 and adding of the maximum Y value to these Y
values (for the monochrome ST this is 399). This moves
the origin to the upper left corner of the screen.

The third step of converting the Y values to the screen display of the ST
is always the same. During the description we shall limit ourselves to the
view system. If during subsequent discussions no special reference is
made to this step, you should remember that if it is not performed, all
objects appear inverted on the screen after the drawing is completed.

The location of the picture window in the view system is not fixed to the
origin, but is movable in the total view system. However, the three
conversions must be followed by another conversion--moving the
window to point V1 [vxmin, vymin] . Basically the conversion of an
object is the opposite of the conversion of a coordinate system. Therefore,
when moving the picture window and the object to the point
V1[vxmin,vymin], the coordinates of this point (vxmin and
vymin) must be added to all object coordinates.

Summarizing the conversion of the world system into the view system:

1. Move the origin to the point W1 [wxmin,wymin]} by
subtracting wxmin from all X coordinates, and wymin
from all Y coordinates.

2. Multiply all X values of the points by the factor
Sx= (vxmax-vxmin) / (Wwxmax-wxmin}, the Y
values with the factor Sy=(vymax-vymin) / (wymax-
wymin) .

15

ST 3D Graphics Abacus Software

3. Move the window and the object to the point
V1{vxmin,vymin] by adding vxmin to all X values,
and vymin to all Y values.

4. Convert to the display system by multiplying the Y values
by -1 and adding the maximum Y-value to these Y values
(for the highest resolution this value is always 399).

2.1.2 Rotation around one point

The rotation of an object is related to a single point, just as we found out
in the previous section on scaling. To start the conversion, a single point
is rotated around the origin. Since the rotation occurs around the single
origin point, the data point of the rotation angle is the connecting line
between coordinate source and the point to be rotated. See Figure 2.1.4.

|
Y
P2
y2__ s ‘
P1
y ' C
1 o YQ
o
M
A ?iv -
.:—Xz—.l X1 -J X

Figure. 2.14

The point P1 (x1,y1) is moved by rotation around the angle B of the
origin to the point P2 (x2, y2). We must define the sign of the angles «
and B as + or -. Following the conventions of mathematics, we designate

16

Abacus Software ST 3D Graphics

the angles as positive when the rotation moves the positive X axis to the
positive Y axis. Expressed differently, positive angles are measured in the
counterclockwise direction. For the angle between the connecting line
from 0,0 to P1 and the X-axis, the relationships are:

Y1/C

1) SIN(alpha)

2) COS (alpha)

i

X1l/C
3 SIN (alpha+beta)=Y2/C

4) COS (alphatbeta)=X2/C

with c=v (X12+Y12) =V (X22+Y22) . The addition theorems for the
angle functions SIN and COS are as follow (we won’t derive them here):

5) SIN(Alpha+Beta)=SIN(Alpha) *COS
(Beta) +C0OS (Alpha) *SIN (Beta)

6) COS (Alpha+Beta)=CO0S (Alpha) *COS (Beta) -
SIN(Alpha) *SIN (Beta)

By combining these equations, X2 and Y2 can be calculated quite easily:

7) X2/C=C0S (Alpha) *COS (Beta) -
SIN (Alpha) *SIN (Beta)

gives us

8) X2= COS(Alpha) *C* COS (Beta} -
SIN(Alpha) *C* SIN(Beta)

from 1) follows
9) X2=X1*COS (Beta)-Y1l*SIN (Beta)

10) Y2=Y1*COS(Beta)+X1*SIN (Beta)

17

ST 3D Graphics Abacus Seftware

As an example of rotation, we will rotate the house in Figure 2.1.5 by an
angle of 30 degrees around the origin. The points P1-P5 become points
R1-R5, as can be seen on the example at Point P1.

R1X=P1X*COS (30)-P1Y*SIN(30)

R1Y=P1lY*COS (30) +P1X*SIN(30)

From P1 (100, 50) follows R1 (61.6, 93.3). According to the same
principle, the remaining points are likewise converted.

Figure 2.1.5

18

Abacus Software ST 3D Graphics

2.2 Plane conversion with matrix operations

After learning about the conversions, translations, scaling and rotations
described in the previous chapter, we are now able to draw on the screen
any object previously defined in a two dimensional coordinate system, in
any selected size and viewing angle. One drawback to this method is that
several arithmetic operations are required for each and every point of the
object.

Right now we’ll combine these conversion operations into a single matrix
operation. (Explanations of matrix operations are found in the Appendix).
Therefore it becomes possible to apply the conversions to the array and
then to multiply the resulting array with every point of the object. To
make the array operations usable for the point coordinates of the plane,
the point coordinates are first converted to array form.

There are basically two ways to convert these: with column vectors (2,1),
or with line vector (1,2) arrays. A conversion array (2,2) is used to
multiply a line vector with the transformation array, where the
transformation array must be multiplied with the column vector. (number
of columns A = number of rows B).

In this book we shall write the point coordinates as line vectors P and the
multiply this line vector with the transformation array. This sequence of
multiplication simplifies, purely subjectively, the creation of the
transformation matrices. If you multiply a line vector (1,2) with a
quadratic array (2,2), you will obtain as a result another line vector (1,2),
which represents point coordinates. The individual point operations can
be expressed by a suitable transformation matrix T. For scaling the X axis
by the factor 2, the array S1 is valid. It is also possible to quadruple the Y
values using transformation array S2. The two scaling steps can be by
multiplying S1 and S2 with array S3.

S1 2 0 Sz = 1 0
0 1 0 4
53 = 591 * 89 = 2 0 * 1 0
0 1 0 4
S3=2 0
0 4

19

ST 3D Graphics Abacus Software

For rotation, R, is valid for one counter clockwise rotation; from
trigonometry, a clockwise rotation occurs with R,. From Figure 2.1.5, the
movement of point P1 [x1, y1] topoint P2 [x2, y2], results from
multiplying P1 with R.

Rl = cos (b) sin(b)
-3in(b) cos (b)
Ry = cos(-b} sin(-b) = cos(b) -sin(b)
-sin{-b cos (-b) sin(b) cos (b)
P2[X2,Y2} = [X1,Y1] * cos (30) -8in{30)

s3in (30) cos (30)

Several rotations in succession can be carried out by multiplying the
rotation matrices. Unfortunately, this array form does not permit
translation (origin relocation). For this you can add a dimension to the
vectors. Every n-dimensional object can be represented in a (n+1) space
in innumerable many ways.

In a three dimensional space there are infinite possibilities for laying out
the X-Y plane we have just observed. The additional dimension is known
as Z coordinate of the X-Y plane. For two dimensional objects, its value
is always one. The X and Y coordinates remain unchanged: the line
vector [x,y] becomes the line vector [x,y,1]. The array for the translation
of the source at point D is as follows:

-DX -DX¥ 1

Every point of the object must be multiplied with this array to move the
origin of the world coordinate system to the point (DX, DY). For the point
P[x,vy,1] the result is: new point in world coordinates P’ =P*T

1 0 0
P’ [x’ry’rl] = [prrI] * 0 1 0= [x—dx,y-—dy,l]
-DX -DY 1

20

Abacus Software ST 3D Graphics

You can combine two displacements by using array multiplications. First
the origin is moved to the point [DX,DY,1] and then to the point
[AX,AY, 1] of the new coordinate system. The two translation matrices
T1 and T2 are as follows:

1 0 0 1 0 0
Tl = 0 1 0 Ty = 0 1l 0
DX -DY 1 -A¥ =AY 1

Multiplication of the matrices results in Tj:

1 0 0 1 0 ¢
T3 = Tq * Ty = 4] 1 0 * 0 1 0
-DX -DY 1 ~3AX =AY 1

1 0 0

~-DX-AX -DY-AY 1

Pf[xf,y" ,1)= P(x,y,11*T,4 [x-DX-BX, Y-DY~AY, 1]

The scaling array S can be defined in the new system:

SX 0 0
g = 0 SY 0 and Pf =P * §
0 0 1

and finally the rotation array R

cos (a) sin(a) 0
R{a) = -sin({a) cos (a) 0
0 0 1

21

ST 3D Graphics Abacus Software

Scaling as well as rotation, viewed individually, may be carried out in a
series through array multiplications. The array multiplication is normally
not commutative, i.e. T; * T, is not necessarily identical with T, * T;.
However, the multiplication of the following array types is commutative:

1) Translation * Translation

2) Scaling * Scaling

3 Rotation * Rotation around
the same axis

4) Scaling * Rotating

Type 4 (scaling and rotating) is only valid when both scale factors
(Sx, Sy) are identical.

These fundamentals enable us, through a combination of several array
operations, to rotate an object around a selected point V[vx,vy,1]
using a series of several array operations. The various operations are:

1. Shifting the origin to point V

2. Rotation around point V by an angle of alpha

3. Shifting of the origin to the original point

Three matrices Tq, R; and T, are required:

1 0 0 cos{a) sin{(a) 0
T, = 0 1 Q Ry = -sin(a) cos{a) 0
-vx -vy 1 0 0 1
1 0 0
T, = 0 1 0
vX vy 1

For the multiplication array M, the result is:

My = T; * R; * T, and for every point follows:
P! =P * Ml

22

Abacus Software ST 3D Graphics

The sequence of matrices is decisive in these operations and must occur
from left to right. It is possible however, to first calculate intermediate
results, but these must be used in the "right" sequence. In this example,
there are two possible ways to proceed:
1. First calculate from Z,=T,*R; and then M;=2,*T,
2. First calculate from Z,=R,*T, and then M,=T,*7Z,

The first case is explained in detail. Z,;=T,*R,

1 0 0 cos (a) sin(a) 0
2, = 0 1 0 * -sin(a) ceos(a) 0
-vx =-vy 1 0 0 1
cos(a) sin(a)
Z, = -sin{a) cos (a)
-vx*cos (a}+vy*sin(a) -vx*ain(a)-vy*cos(a)
and now M;=Z7,*T,:
cos{a) sin{a)
M, = -sin{a) cos (a)
-vx*cos (a) +vy*sin(a) -vx*sin(a) -vy*cos(a)
1 0 0
0 1 0 =
vy vy 1
cos (a) sin{a)
-s8in(a) cos (a)
-vx*cos{a)+vy*sin{a) tvx -vx*sin (a)-vy*cos (a)+vy

23

ST 3D Graphics Abacus Software

If point P1 [x,y,1] is multiplied with this array, the result is point
P1’ [x’,y’,1], the point P1 which was rotated around the angle
alpha at point V1 [vx,vy,1]. This connection can be recognized in
Figure 2.2.1 and should be performed as example for point Pl.
Pl([x,y,1] * Ml =

cos{a) sin{a} 0
[x,v,1] * ~sin(a) cos{a)
~vx*cos{a)+vy*sin{a)+vx -vyx*sin{a)-vy*cos(a)tvy 1
Pl[x, Y z]= [[x*cos(a)-y*sin(a)-vx*cos{a)+vy¥*sin(a)+vx],
[x*sin(a)+y*cos{a)-vx*sin{a)-vy*cos(a) +vyl, [1]]

You can see that when the rotation point and the point to be rotated are
identical, therefore x=vx and y=vy, the expression for the line vector of
the point at [vx,vy,1] = [x,y,1] degenerates. That means that the
point coordinates do not change.

Figure 2.2.1

Abacus Software ST 3D Graphics

The house already familiar in Figure 2.2.1 shall be rotated by the angle
alpha=30 degrees around the point V1 {vx,vy,1]1=[120,80,1]. As
an example this is carried out on point P2 [100, 90, 1].

P2x’=100*cos (30)-90*sin (30)-120*%cos (30) +80*sin (a) +120
P2y’=100%sin (30) +90*cos(30)-120*sin{30) -80*cos (30) +80
P2'=[97.68,78.66, 1] and finally for the remaining points P1-P5.

P1/=[117.68,44.02,1]
P2/={97.68,78.66,1]
P3’=[95,123.30,1]
P4'={132,32,98,66,1]
P5'=[143.66,59.02,1]

This procedure also permits you to change the point for scaling to any
location in the coordinate system. In the following, you can see the
buildup of the transformation array. First the coordinate origin is moved
to point K1 [kx, ky, 1] with translation array T, then scaling with array
S1, using scaling factor Sx and Sy, and finally moving the origin to its
original location using translation array T,. For every single point this
means P’ [x’,y’,1] = PIx,y,1]*T;*S,*T,.

1 0 0 Sx 0 0 1 0 0
T;= 0 1 0 5= 0 Sy 0 T,= 0 1 0
-kx -ky 1 0 0 1 kx ky 1
Sx 0 0
Tl* S]_* T2 = 0 Sy 0
kx* (1-Sx) ky*(1l-Sy) 1

Prix,v,1]1=P’ [x*Sx+kx (1-8x),y*Sy+ky(1-Sy),1]

In this example Sx=Sy=0.5.

25

ST 3D Graphics Abacus Software

2.3 Clipping

As we transformed the object coordinates to the display coordinate
system, we assumed that all points in the object can be represented in the
picture coordinate system. When we define a window in the world
system, some objects may be completely pushed out of the view of the
window, or objects are cut in half by the window. This means that one or
several connecting lines of the points cut the corners of the observation
window.

Ay

Wymas R : R 5
f 0
W,y OO DR I—l
[w; T T -
w)cmin wxmclx x
Figure 2.3.1

To avoid these incomplete objects, we can test the coordinates to make
sure they lie within the borders of the window. This method slows down
the drawing procedures considerably. Therefore it is better to determine
before drawing a line if the line is completely visible, partially visible, or
not visible at all. The window is surrounded by eight equally large
surfaces to determine the exact position of the line to the window. Now
the exact location of a line can be determined by comparing its

26

Abacus Software

ST 3D Graphics

coordinates to

the window borders. A code containing four bits can be

used to represent the relative position of a line outside of the window.

1001 1000 1010

G S

0101 0100 0110

In the Figure 2

Bit number 321 0

Figure 2.3.2:Clip-Window

.3.2 the position of a point outside a window is repeated by

a set bit as follows:

bit

position

Point is left of the window
Point is right of the window
Point is below the window

Point is above the window

27

ST 3D Graphics Abacus Software

The code [0,1,0,1] means the following: the point is to the left and below
the window. With this information, it is possible to calculate the points of
intersection of the lines with the window edges by including them in the
equation. This leads to a quadratic equation system whose solution
requires several multiplications and divisions. For our purposes, we want
to limit the number of multiplications and to replace them when possible
with other mathematical operations. We do this for two reasons. The first
is for speed since multiplication requires about eight to ten times the
calculation time of addition. The second is the fact that the result of
multiplication, with the same number of significant positions of the
operands, has a larger relative error.

To get an optimal solution of the line-clipping problem requires a
programming language which permits bit manipulation. This was
developed by Cohen and Sutherland. Since the efficiency of the Cohen-
Sutherland clipping algorithm is so great, it is sometimes implemented in
the hardware of some graphic terminals.

The starting point of the algorithm is to divide the plane into the nine
areas previously illustrated. For every line which is to be "clipped”, you
must determine a center point and on the basis of its position relative to
the window.

The calculation of the center point of a line AB is simple. Just add the X
and Y coordinates of the end points and divide them by two.
Mx= (ax+bx) /2, My=(ay+by) /2. Division by two is performed by
microcomputers easily by a single right shift and this explains the speed
of the algorithm.

The 8 different positions of the end points relative to the window are
illustrated in Figure 2.3.2. Before calling the clip-routine, you must first
test to see if the two end points are visible. If any of the bits are set, then
some portion of the line is not visible. In Figure 2.3.2 both A and B are
above the upper window edge, and therefore the line AB is not visible and
no longer needs to be considered. You can calculate the position of the
points by "ANDing" their codes and then testing for a "not zero"
condition, For lines which have no common position parameter, for
example the line CD, positions are determined with two separate
procedures. First the right and then the left intersecting points with the
clip-window.

28

Abacus Software ST 3D Graphics

First calculate the midpoint M1 of line CD. After determining the position
code of the point M1, it is compared with the code of the right endpoint D.
If a single bit of these codes is the same, then the partial line M1D does
not have to be considered further, and the right endpoint D is replaced
with the point M1 which was just determined. Now the midpoint of line
CM1 (M2), is calculated and tested again with the right endpoint, this
time M1. If both points are not on one side, M2 becomes the new left
endpoint and the right endpoint remains M1. Next search the midpoint of
the line M2M1. This procedure is continued until a new calculated
midpoint is equal to one of the two end points used for calculation.

After completing the algorithm, the last left endpoint is the desired
intersecting point with the window. The intersecting point is stored and
the two starting points C and D are interchanged. With the same
procedure the intersection with the left window edge is determined. At
the start of the routine, if you find that an endpoint is already inside the
window, this endpoint must be stored. The line ST causes a problem. The
two end points S and T are not on the same window side and the line does
not intersect the window. A comparison of the first center point T1 shows
it matching both end points. The points T1 and T are both to ths right of
the window and point $ below the window. You can thus define a new
ending criteria--if a new midpoint lies outside of the window and matches
both end points of the line, then the line is not visible.

29

ST 3D Graphics Abacus Software

2.4 Transformations in three dimensional space

A small warning before we start: Thinking in three dimensions requires a
period of adjustment for the non-mathematically oriented reader. It may
be necessary to read this chapter several times before the concepts can be
fully understood.

Starting with the two dimensional X-Y-coordinate system, there are two
ways to introduce a right angle coordinate system to describe three
dimensional space. They are the right-hand and the left-hand coordinate
system which differ only in the orientation of the negative Z axis.

Figure 2.4.1

A coordinate system is called a right-hand coordinate system when a
screw with a right-handed thread (a normal wood screw) moves in the
direction of the positive Z axis when it is turned from the positive X axis
in the direction of the positive Y axis. See Figure 2.4.2. The right-hand
coordinate system is used extensively in mathematics while some
computer graphic books select the left-hand coordinate system.

30

Abacus Software ST 3D Graphics

Mathematical problems can be solved in either system and one system
can easily be turned into the other. We shall use both systems. The
transformations in three dimensional space will be explained on a right-
hand coordinate system, the perspective transformations on a left-hand
coordinate system.

¥/ Z

N </

X Y Y X
Right-hand Left-hand

Figure 2.4.2

All operations in a two dimensional space are special cases of
corresponding operations in three dimensional space. In the extended
coordinate system, the line vector of a point is expressed as:
P{x,vy,z,1]. To move the origin to the point V[vx,vy,vz, 1], use
the matrix T1:

1 0 0 0
Ty = 0 1 0 0
0 0 1 0
-VX -vy -vz 1

So for every point: [x,y,2,1] * T, = [x-vX,y-Vvy,z-vz,1]

ST 3D Graphics Abacus Software

The scaling matrix is similar. A scaling factor for the Z axis (Sz) is
added:

Sx O 0 0
S1 = 0 Sy 0 0
0 0 Sz 0
0 0 0 1

For every point; [x,y,z,1] * Sq = [x*Sx,y*Sy,z*5z,1]

Rotation is limited to the three rotation axis: X,Y, and Z. We are already
familiar with rotation about the Z axis from the earlier 2D description.
The 3D description is derived by assuming that the positive Z axis
projects from the drawing surface. The coordinates of the axis about
which rotation takes place, does not change, in this case the Z coordinates
retain their values.

cos (zZwW) sin(zw) 0 0

R, = -sin(zw) cos (zw) 0 0
0 0 1 0

0 0 0 1

32

Abacus Software ST 3D Graphics

Figure 2.4.3

We must also allow for setting a positive turning angle for the rotation
about the X and Y axes. A solution which can be applied to both the left-
hand and right-hand coordinate systems uses the following definitions:
Rotation axis positive angles are measured from

Z-axis X- to Y-axis

Y-axis Z- to X-axis

X-axis Y- to Z-axis

From this follow the matrices for rotation around the X and Y axis R, and
Ry.

33

ST 3D Graphics Abacus Software

1 0 0 0 N
Ry= 0 cos (XwW) sin (xw) 0
0 -sin{xw) cos{xw) 0
0 0 0 1
cos (yw) 0 -sin(yw) O
Ry= 0 1 0 0
sin(yw) 0 cos(yw) O
0 0 0 1

For the coordinate system this means that if you look from a positive axis
in the direction of the coordinate origin, a positive angle describes a
counterclockwise rotation. In a left-hand coordinate system a positive
angle describes a rotation in the clockwise direction. This definition
applies to a fixed coordinate system in which the objects are rotated. The
other type of representation would be the fixed placement of the object
and the rotation of the coordinate system. The two types differ only in the
sign of the rotation angles. This means that if the object is rotated about
the angle alpha, or the coordinate system is rotated about angle alpha,
the result in both cases will be the same. In three dimensional space the
point of the rotation, as in the two dimensional plane, is the origin. If you
want to rotate an object around another point, it is first necessary to move
the origin to that point. The required steps are:

1. Change the origin to the point B[bx,by,bz, 1] using
translation matrix T,.

2. Rotate around the Z axis with rotation matrix R;.

3. Retranslate the origin using translation matrix T,

1 0 0 0 cos{a) -sin(a) 0 O
T= 0 1 0 0 Rl= -sin(a) <cos(a) 0 O
0 0 1 0 0 0 1 0
-bx by -bz 1 0 0 0 1

1 0 0 0

T, = 0 1 0 0

0 0 1 0

bx by bz 1

34

Abacus Software ST 3D Graphics

+Y +Y

P
P1=P{" -

+X

A |
B e

7

Figure 2.4.4

Let’s assume that you want to rotate an object about around all three
axes. It is then possible to combine the rotation matrices Rx, Ry and Ry
by multiplying with Rg. In contrast with the combination of rotations
about the same axis in this example the sequence of multiplications is
important, i.e. Rx*Ry*Rz yields a result different from Rz *Ry*Rx. A
point with a positive % value is rotated 90 degrees around both the Z and
X axes. If the rotation is first made about the Z axis, the coordinates do
not change, X- and Y-coordinates are equal to zero, and the subsequent
rotation about the X axis rotates the point to the Z=0 level; which is the
X-Y plane.

If the first rotation is about the X axis, the point is transferred to the Z=0
level and the subsequent rotation about the Z axis rotates the point into
the Y=0 level, which is the level between the X and Z axes. This example
shows why it is necessary to follow the sequence of rotations during
program generation.

35

ST 3D Graphics Abacus Software

Figure 2.4.5

24.1 Rotation about any desired axis

Up to now we have only considered rotation about one of the coordinate
axes; with suitable combinations of various transformations we can turn
an object around any desired line in space. Two points P1 [x1,y1,z1]
and P2 [x2,y2,z2] are sufficient to describe a point in space. The
equation through these two points:

X = x1 + t*({x2-x1)
y =yl + t*(y2-yl) with t elements from R
z = z1 + t*{z2-zl)

36

Abacus Software ST 3D Graphics

Xy

Figure 2.4.6

Since the problem for rotation about one coordinate axis has already been
solved, we want to transform a rotation axis in such a way that it will
coincide with the negative Z axis. The sequence of the transformation
looks like this:

Displacement of the coordinate origin to the point
P1[x1l,y1l,2z1] onthe line.

Rotation about the angle xw on the X axis, so that the
rotation axis lies in the X-Z plane.

Rotation of the angle yw about the Y-axis until the rotation
axis coincides with the negative Z axis.

It is now possible to rotate the desired angle zw about the Z axis since it
matches the rotation axis. If one looks from P1 to P2 a positive angle
will rotate an object in a counterclockwise direction.

37

ST 3D Graphics Abacus Software

To transform back to the original we need:
Rotation of the angle —yw around the Y axis
Rotation of the angle —xw around the X axis
Displacement of the coordinate origin at the starting point.

The only problem is the determination of the angles xw, yw, which can be
derived from the equation. As in Figure 2.4.7 we imagine that the
coordinate origin is already moved to point P1. Then the coordinates of
the point P2’ [x2-x1,y2-yl, z2-21] represent the direction vector
of the lines. This vector is now projected on the Y-Z plane, whereby the
term projection should be taken literally. In addition you should imagine
the vector G[gx,gy,gz] = G[x2-x1,y2-y1,2z2-2z1] illuminated
by light rays, parallel to the X axis and originating from the positive X
axis. The shadow created in the Y-Z plane is the vector L[0, gy, gz]
and the angle alpha between vector L and the positive axis Z is the
desired angle xw.,

In a rotation about the X axis, a positive angle describes the rotation of a
point from the positive Y axis in the direction of the positive Z axis. The
angle alpha is positive and the rotation matrix is as follows:

0 0
cos{a) sinf(a)
-sin{a) cos(a)
0 0

Ry =

oo O
P OOO

38

Abacus Software ST 3D Graphics

Figure 2.4.7

From Figure 2.4.7 we get, with the length of vector L, 1=V (gy2+gz2)
sin(a) = gy/l and cos(a) = gz/1

For the rotation matrix Ry this means:

1 0 0 0
Ry = 0 gz/1l gy/1 0
0 -gy/1 gz/l 0
0 0 0 1

After this transformation, the vector G (P1P2) lies in the plane located
between the positive Y and positive X axis. The angle gamma, which we
defined to be positive, is the desired angle (yw), which rotates the vector
G with one rotation about the Y axis on the negative Z axis. The rotation
matrix Ry:

ST 3D Graphics Abacus Software

cos (qg) 0 -sin(g) 0
Ry = 0 1 0 0
sin (g) 0 cos (g) 0
0 0 0 1
‘Y

Figure 2.4.8

It is possible to divide the angle gamma into the partial angles beta and
the right angle alpha’ (90 degrees), between the positive X and negative Z
axes. Through rotation about the X axis the X coordinate of the point P2
has not changed, whereas the Y coordinate has become zero. The sum of
the vector G[gx,gy,g9z] g =V (gx2+gy2+gz?) is therefore identical
to g =V (gxZ+z’?). From this follows z’=V(g-gx?) and from
1 =V(gy%+gz?2) =+ (g?-gx2) resultsinz’: z’=1.

For the angle beta the following relationships result:
sin(b) = 1/g and cos(b) = gx/g

The rotation angle gamma is composed of beta plus 90 degrees,
ga = b + 90

40

Abacus Software ST 3D Graphics

From tHe addition theorems for sine and cosine we get:
sin(ga)=sin (b+90)=sin (b) *cos (90))+sin (90) *cos (b)
sin(ga) = sin{b+90) = cos(b)

cos (ga) =cos (b+90) =cos (b) *cos (90) -sin{(90) *sin (b)
cos(ga) = cos(b+380) = -sin(b)

Since the rotation angle is measured positive, it is possible to include the
information just acquired directly into the rotation matrix.

-sin (b) 0 -cos (b) 0

Ry = 0 1 0 0
cos (b) 0 -sin(b) 0

0 0 0 1

with the references to the angle functions:

-1/g 0 -gx/g 0

Ry = 0 1 0 0
gx/g 0 -1/g 0

0 0 0 1

After these preparatory transformations, the rotation takes place about the
desired angle za about the rotation axis, which is the connecting line
between P1 to P2. The matrix for this is:

cos{zw) sin(zw) 0 0

Rz =- sin(zw) cos (zw) 0 0
0 0 1 0

0 0 0 1

ST 3D Graphics Abacus Software

The inverse transformation matrices:;

The transformations for one point

-1/g 0 gx/g 0

Ry“l = 0 1 0 0
-gx/g 0 -1/g 0

0 0 0 1

1 0 0 0

Ryl = 0 gz/1 -gy/1 0
| 0 gy/l gz/1 0

0 0 0 1

1 0 0 0

71 = 0 1 0 0
0 0 1 0

x1 yl zl 1

P’ [x',y',2",11=[x,vy,2,1] *T*Rx*Ry*Rz*R _1*Rx_1*T_1

Yy

In these cases the rotation matrices Ry etc. are combined through
multiplication. The translations are performed separately.

42

Abacus Software ST 3D Graphics

2.5 Projections from space to a two dimensional plane

A window can be made for observation in 3D space just as it can on a
2-dimensional plane. The position of the window and its orientation
relative to the world system is purely arbitrary. For definition of this
observation window you should imagine a second coordinate system, the
view system inside the world system. Its origin lies in the left corner of
the observation window.

Figure 2.5.1: Coordinate Systems

As a position parameter which describes the position of the view system
relative to the world system, the two points ORP (Observation reference
point) and ODP (Observation direction point) are sufficient, both of
which are defined in the world coordinate system, as well as perhaps an
inclination angle between positive Y and positive V axis (za), which
describes a rotation of the U-V plane about the Z axis. The view system,
as illustrated in Figure 2.5.1 is a left system. The orientation of the
positive Z axis is opposite to the world coordinate system.

ST 3D Graphics Abacus Software

For clarification: Every scene defined in the world coordinate system,
such as an airport for a flight simulator, can be viewed from any point
inside this scene. The only parameters required are the observation
reference point (ORP), which in comparison with a camera, would
represent the film, and the observation direction point (ODP), which
determines the direction in which the observer (the camera) is looking.
The additional angle used (za) between positive Y and positive V axes
describes a rotation of the camera about the longitudinal axis of the
objective. The focal point of the lens at which all light rays passing the
objective meet, would in this example be on the negative Z axis. Keeping
to the example of the camera, exposing a picture must transform the
entire scene into the view system (U-V-Z’).

This transformation, which appears complicated at first glance, has
already been solved: it is the rotation about an arbitrary axis. The points
P1 and P2 of the axis of rotation are replaced by the points ORP and ODP
and the angle za describes the inclination of the V axis to the Y axis. All
operations relate to the observation reference point
(ORP [orx, ory, orz]), the positive axis of the observation coordinate
system (view-systemn) points to the observation direction point
(ODP [odx, ody, odz]). Both points are described in world coordinates
and the rotation matrix rotates the vector Glodx-orx, ody-ory, odz-
orz] to the negative Z axis of the world coordinate system. After fitting
the V axis, the object, which was subjected to the same operations, is
available in the view coordinates. Not quite, though, since the two
coordinate systems still differ in the orientation of the Z axis. Therefore
after fitting the V axis, all Z values must be multiplied by the factor -1
which corrects the orientation of the Z axis. The last step is a
mathematical cosmetic which is required only because of the starting
model of the positive Z axis of the left-hand coordinate system. If one
views the result of the transformation as a right-hand system, the last step
can be omitted.

Let us combine the steps again, considering the steps necessary for
rotation around any desired axis.

Abacus Software ST 3D Graphics

Figure 2.5.2

Figure 2.5.3

45

ST 3D Graphics Abacus Software

1. Shifting the origin to the observation reference point ORP
via the translation matrix T,

1 0 0 0

T,= 0 1 0 0
0 0 1 0

-0orx -ory -orz 1

2. Rotation around the X axis until the vector G[odx-
orx,ody-ory,odz-orz] = [gx, gy, gz] lies in the

Y-Z-plane.
1 0 0 0
R,= 0 gz/1l gy/1 0
0 -gy/1l gz/1 0
0 0 0 1

with 1 = \}(gy2+gz2)

3. Rotation about the Y axis until the vector G[gx, 0, z"]
meets with the Z axis:

-1/g 0 -gx/qg 0
Ry= 0 1 0 0
gx/g 0 -1/g 0
0 0 0 1
with g = V(gx?+gy2+gz?)
1 = V{(gy?+gz?)
z'=1

4. Rotation of the Z axis around the za angle for adaptation
of the inclination of the V axis:

cos (zw) sin{zw) 0 0

R, = -sin{zw) cos (zw) 0 0
0 0 1 0

0 0 0 1

46

Abacus Software ST 3D Graphics

5. Multiplication of the Z coordinates with -1 to convert from
the right-hand to the left-hand coordinate system.

My =

0
0
1
0

OO
oOCH O
RO OO

The object now lies in the left-hand coordinate system U-V-Z’ and can be
projected on the display, the plane suspended between the U and V axis
via a suitable perspective transformation.

47

ST 3D Graphics Abacus Software

2.6 Perspective transformation

Since the representation of objects on the screen is limited to two
dimensions, we have to simulate the third dimension, the Z coordinate, in
the two-dimensional plane. The method we used, the central projection,
defines a point in space (the focal point of a lens) at which visual rays
emanating from the object meet. The size of the objects represented on
the display screen is directly proportional to their distance from this focal
point. Equal size objects which are farther away are shown smaller than
objects which are closer to the observer.

v

P2

kY
.\
‘\
. A
—————

e ————————

¥

-z Proz 1 +Z

\

Figure 2.6.1: Perspective

The coordinate system from Figure 2.6.1 is, as already indicated, another
coordinate system and the plane suspended between the positive U and
the positive V axis at point z’=0 will represent the screen. The center of
the projection (focal point) is located on the negative Z axis at point
PROZ[prozx,prozy,prozz’]=[0,0,prozz’]. The position of the
point tc be viewed P[pu,pv,pz], appears to be located behind the

48

Abacus Software ST 3D Graphics

observation plane, The line through these two points is described by the
following equation:

u plu + (prozu-plu}*t

v

plv + (prozv-plv)*t

z/ = plz‘ + (prozz’-plz’)*t = 0 , the plane
lies at z'=0 =>

t = -plz’/{prozz'~plz’)

u = plu - (prou-plu)*plz’/(prozz’-plz’)
v = plv - (prozv-plv)*plz’/(prozz’-plz’)
z! =0

with prozu=prozv=0:

u = plu + plu*plz’/(prozz’-plz’)

v plv + plv*plz’/(prozz’-plz’)

z =0

Since prozz'’ is negative and plz’ is positive, the denominator
(prozz’-plz’) becomes negative, and with larger distances between
focal point PROZ and point P1, the point coordinates (in the projection
plane) plu’ or plv’ become smaller. We are now in the position to
project a three-dimensional representation of the object on the screen and
the distance of the projection-center object is comparable to the focal
length of a camera lens. A short length corresponds to a wide-angle lens
and a larger distance to a telephoto lens. The projections described are
valid for the special case of the projection plane at the point z’ =0. The
project plane can be moved freely on the z’ axis and can be behind the
object or also behind the eye.

49

ST 3D Graphics Abacus Software

AP v d)

$ 2"

PZ'EV:;/ PROZ[0,0,z d=0\ - o : d‘h
1 ._ \

u
Figure 2.6.2

In this illustration the projection center is at the point PROZ, while the
object to be projected is the connecting line between the points P1 P2,
d designates the location of the projection plane on the Z’-axis, which
can be moved arbitrarily in either direction, If the projection center and
projection plane (d=PR0Z) match, all objects degenerate to a single
point, the center of the projection. The size of the projection can be
changed by moving the projection plane. For the line between projection
center PROZ and object point P1 the two point equation holds:

u = plu + (prozu-plu)*t

v Plv + (prozv-plv) *t

z'! = plz’ + (prozz’'-plz’)*t = d

50

Abacus Software ST 3D Graphics

The Z’-coordinate of the projection plane is d, and from the equation for
the Z’-coordinate it follows:

t = (d-plz’)/(prozz’-plz’) inserted into the linear equation
results in the projection coordinates:

u’ plx + [{prozu-plu) * {d-plz*)]) / (prozz'-plz’)

v’ plv + [{prozv-plv} * (d-plz’)] / (prozz’=-plz'}

z' =d
Every point P [u, v, 2z, 1] is transformed into the display coordinates P

" [u’,v’,d,1]. The coordinates u’ and v’ represent a point on the
P
screcn.

The equation derived from Figure 2.6.1 comes from the special case
where the projection center lies on the Z axis prozu=prozv=0 and
when the projection plane is on the z/ =0 plane, d=0. The following
illustrations show how the selection of the various observation parameters
(ORP, PROZ, d) influence the appearance of the projection. The
coordinate origin of the display is in the lower left corner of the screen.

ST 3D Graphics Abacus Software

resulting projection

. projection center

resulting projection

W
w4

* projection center

Figure 2.6.3

52

ST 3D Graphics

Abacus Software
t +z
resulting projection
g ﬁ; o > e PR P ——
ORP .\ |/ + X projection plane
e projection center
A + Z L] L] L]
resulting projection
A —
- AR >
T ORP ‘\ |‘ 'l ‘1 + x
[,,,Qrgl_ e e
vy projection plane

r

6 projection center

Figure 2.6.4

53

ST 3D Graphics

Abacus Software
t +z
resulting projection
ORP ‘ﬁ ff + X projection plane
1 projection center
T +7Z

resulting projection

.._..7,“.‘..,_.._..__.._.. e i e —
+X projection plane
projection center
Figure 2.6.5

54

Abacus Software ST 3D Graphics

Figure 2.6.6

55

ST 3D Graphics Abacus Software

2.7 Hidden lines and hidden surfaces

Up to now we have been in the position to project wire models of objects
on the screen. The action sequence of most any computer animation is set
up with the help of 3-D wire models. Wire models can be handled in real-
time and thus shorten the development of the animation sequence
considerably. Once the sequence is set, the computer calculates the
visible surface and color nuances and light reflections of the objects for
every intermediate point of the movement, according to the illumination.
Generally the scan line algorithm is used. Seen from the eye, the vision
rays are tracked through each pixel of the display (= projection plane) to
the individual objects. The visual ray is either reflected, absorbed, or
wholly or partially transmitted by various objects with differing surface
characteristics. Under certain conditions the visual ray splits, such as on a
glass surface, into a reflected and a second visual ray which passes
through the object, naturally both must be tracked. This explains the
computation time of about 10 minutes which even super-computers like
the Cray II require for a picture.

Since by conservative estimate the throughput of the Cray 11 is superior to
that of the Atari ST by a factor of about 10,000 to 15,000, it should be
clear that the ST is somewhat "under powered" for such calculations.
Therefore we will limit ourselves to the "surface algorithms" and will not
determine the visibility of every point, but just for each surface of the
object. These algorithms are fast. To be accurate, they are valid only for
convex bodies, and in the version presented here the surfaces of the
bodies must also be convex.

56

Abacus Software ST 3D Graphics

Figure 2.7.1: Convex and Concave Surfaces

With convex polygons the line connecting two points on the polygon lies
within the polygon, whereas in convex bodies the connecting line
between two points on the surface passes through the body or runs along
the surface. Formulated differently, convex polygons have at least one
inner angle which is larger than 180 degrees.

For these surface algorithms we must expand the object definition, which
up to now consisted of the point and line list, to include a surface list. The
surface list contains a description of each surface by the lines which
border the surface.

ST 3D Graphics Abacus Software

by

-
X
Figure 2.7.2

The two surfaces I and II would be described in the surface list as
follows:

Surface Line from point to point

1 P1,P4 P4,P3 P3,P2 P2,P1
II P5,P6 P6,P7 P7,P8 P8,Pl

You probably noticed that the line direction is reversed in the description
of the surfaces. The line vectors of surface I describe the surface as seen
from the negative Z axis in a clockwise direction, while surface IT is
described in a counterclockwise direction. This small difference contains
the solution to the hidden-line-problem. If you imagine the surfaces I and
1T as outer surfaces of a block, then ST is the front surface and SII the
rear surface of the block. The observation point is still on the negative Z
axis. SII is not visible from the observation point since it is hidden by
the other surfaces.

58

Abacus Software ST 3D Graphics

You can see that the description of the surface is always done in the
clockwise direction from outside the cube and looking toward the current
surface center. For the definition of the surface one wanders around the
object to be described and determines the direction of the connection
lines of the points belonging to the surface. As one can see in the next
illustration, the visibility of the surfaces can be determined through the
direction of the connection lines with a little vector algebra.

To do this, start from any point on the surface and form the vector to the
next point

P=[px,py,pzl=[p2x-plx,p2y-ply,p2z-plz],

and the vector to the next point

Qlax,qy,qzl=[p3x-plx,p3y-ply,p3z-plz],

as well as the projection vector from a point on the surface to observation
point A. An appropriate selection is the point

P1l,S[sx,svy,sz] = [ax~plx,ay-ply.,az-plz].

As explained in the appendix, the product of two vectors (a\b) (see
App. B) forms a vertical vector

R=[rx,ry,rz]=[py*qz-pz*qy, pz*gx-px*qgz, px*qy-
py*gx].

The direction of this vector results from the system in which the vector
product was performed. In the left coordinate system used here, the
vector d points in the same direction in which a screw with a left-handed
thread would move from P to Q¢ when turned, that is, it points with
surface I in the direction of the positive Z axis and with surface II in the
direction of the negative Z axis.

Now we can say this about the visibility of surface I: if the vectors S and
R are pointing in the same direction, the surface is visible from the
observation point. If the vectors S and R point in different directions, the
surface is not visible. As mentioned earlier, this process is limited to
closed convex bodies, but the error is not very large with concave bodies.

59

ST 3D Graphics Abacus Software

Figure 2.7.3-4: Hardcopy of bodies before and after
Hidden-Line-Algorithm

y s
R= P _

Figure 2.7.3

Abacus Software ST 3D Graphics

‘|

Figure 2.7.4

Figure 2.7.5
61

ST 3D Graphics

Abacus Software

H

Figure 2.7.6

|

Figure 2.7.7
62

Abacus Software ST 3D Graphics

The error with concave bodies is that surfaces which are visible from the
observation point are hidden by other surfaces but are not recognized.
Now only the "direction comparison criterium” between two vectors is
missing. This is accomplished by the scalar product of two vectors
(S*R) which is defined as follows:

c = |S|*|Rl*cos (Phi) = sx*rx+sy*ry+sz*rz
A
A
alpha alpha
B B '
cos(atpha) > 0 cos(alpha) < 0
Figure 2.7.8

¢ is a real number and phi is the angle enclosed by S and R. From
Figure 2.7.8 we can see that the vectors a and b point in the same
direction when cos (phi) is positive. The recognition of hidden
surfaces can be summarized as follows.

1. Creation of a surface list in which the points are listed in a
clockwise direction.

2. Finding the vectors P and Q from three successive points
for each surface.

63

ST 3D Graphics Abacus Software

3. Determination of the vector S [sx, sy, sz] from a point
on the surface to the observation point.

4. Determination of the vector perpendicular to P and Q
R[rx,ry,rz) through the vector product (P\Q).

5. Comparison of the direction of the vectors S and R by
checking the sign of the scalar product (S*R) through
multiplication of the single components from S and R
(Scalar product = Sx*rx+sy*ry+sz*rz)

6. Marking of surfaces which have positive scalar products as
visible surfaces. (Applies to left coordinate systems. In
right coordinate systems the surfaces with negative scalar
products are visible surfaces.)

7. Drawing the visible surfaces.

Abacus Software ST 3D Graphics

2.8 Rembrandt and hidden surfaces

You probably want to know what computer graphics and a painter who
died in 1669 have in common. An oil painting is created from back to the
front, that is to say, the painter first draws the background and then
objects are placed further to the front simply by covering the background
with oil paint. This method, carried over to the computer, is another
solution of the hidden surface problem. A middle Z coordinate is
calculated for each surface and, as an example, all Z coordinates of the
corner points can be added and divided by the number of comner points
which are stored for the surface. Then the surfaces are sorted according to
size and drawn from the largest to the smallest Z coordinates.

To insure that the surfaces which are painted over have really been
covered, we can’t just to draw the outer lines of the surface. It is
necessary to fill the surfaces with color. The surface construction from
the back to the front is shown in the following illustrations.

Figures 2.8.1-5: Hardcopy of the surface construction

\

N

Figure 2.8.1
65

Abacus Software

ST 3D Graphics

2.8.2

igure

F

i

3

»

8

2

igure

F

66

Abacus Software ST 3D Graphics

Figure 2.8.5

67

ST 3D Graphics

Abacus Software

Figure 2.8.6

Figure 2.8.7

68

Abacus Software ST 3D Graphics

Figure 2.8.8

Of course, the two methods for the removal of hidden surfaces can be
combined. First the visible surfaces can be determined through scalar
products. Followed by sorting the surfaces according to descending Z
coordinates, and then drawing them.

ST 3D Graphics Abacus Software

2.8.1 Light and Shadow

In general, there are two types of illumination, direct and indirect. With
indirect illumination the intensity of the light is equal on all places in
space. The indirect light is created through diffuse reflection from other
objects, such as walls and ceilings. The appearance of an object in space
under this illumination is dependent only on the reflection coefficient of
the object. This reflection coefficient is the relationship of reflected light
rays to the total striking the surface. Its value runs from zero for a black
body (all light rays which strike are absorbed) and one for a white body
(all light rays which strike are reflected). A body whose reflection
coefficients are between zero and one is designated as a gray body. A
reflection coefficient R can be given for every surface which determines
the intensity of the surface.

Intensity = R * IL with IL = Intensity of available indirect
light.

A more realistic representation results from the definition of one or more
point light sources in the space. These point light sources, for example
lamp, candle, or sunshine, have a certain position in the space and shine
in the direction of the object. In this case, the orientation of the
illuminated surface to the light source is of great importance. More light
rays fall on a surface which is perpendicular to the light source than an
equally large surface which is not perpendicular to the light source.

The orientation of the surface to the light source can be determined by
comparing the normal vector of the surface (the vector perpendicular to
it) with the vector to surface from the light source. If I, and N are two
vectors of length 1, the relation for the angle between L and N is:

L*N = lx*nx+ly*ny+lz*nz = cos(w)
For the gray value of the surface the result is then:

Intensity = R*TIL + R* (L*N) *DL

with the reflection coefficient R and the intensity of the direct light source
DL, which is between zero and one.

70

Abacus Software ST 3D Graphics

Figure 2.8.9: Surfaces with Light Rays

71

Machine Language Fundamentals
for Graphic Programming

Abacus Software ST 3D Graphics

3. Machine Language Fundamentals for Graphic Programming

All programs described in this book may be run on various ST
computer/monitor combinations. To simplify the compatibility, all
drawing functions for the 3-D graphics project were done with operating
systems functions (line-A). To introduce you to machine language
programming on the ST, we first have an explanation of some of the basic
principles (sine) and then a small program for drawing random lines. This
program illustrates the program interface to the operating system and a
simple line-drawing algorithm which writes directly to the screen. The
line-drawing algorithm is not necessary for the 3-D project coming later
and is intended only as an example. The use of the algorithm is limited to
monochrome monitors. Owners of color monitors can replace the call
drawl with ddrawl (indicated in the listing) if they want to run the
program mainl. s.

75

ST 3D Graphics Abacus Software

3.1 Speed Advantages from tables

Before starting a project in machine language, you should think about the
number format to be used. For all the following applications we can
perform all calculations with 16-bit integers. Another problem is the sine
function, whose function values can range from -1 and +1. The function
values can be approximated on computers using the Taylor series, which
approximates the exact function value through repeated summation of the
terms of a sequence. In practice, the summation can be terminated after 3
or 4 terms. As an example, we have here the Taylor series for the sine
function.

sin(x) = x - x3/3! + x5/5! - x7/7! +...

The angle x is given in radians, and 3! means 3 factorial = 1*¥2%3 = 6.
This method is not suitable for quick calculation of sine and cosine values
because several multiplications must be performed for each function
value. A rather unelegant but simple and common solution is to store all
the necessary function values in a table in memory, which can then be
accessed very quickly.

The accuracy can be set as desired since the function values are
calculated before the actual program application and the time factor does
not play a role. In our example, all sine values between 0 and 360 degrees
are entered in steps of one degree. This is quite adequate for almost all
applications which require trigonometric functions. Should an
intermediate value be required, it can be interpolated from the table.
Since the cosine function is the same as the sine function shifted by 90
degrees, the cosine functions can also be taken from the sine table.

The function values of the angle functions are real numbers which are
floating point numbers with several places after the decimal point. Since
all our calculations involve only integers, it is necessary to transform the
values of the sine function. This is done by multiplying by a sufficiently
large number--in our example with 214 = 16384,

76

Abacus Software ST 3D Graphics

y
> B
A |
<
& a
Figure 3.1.1: Triangle

The length of the line c and the angle alpha are already known, and we
want to find the length of b. According to the definition of the angle
function, the length of the distance =c*sin(a) = 20*sin(43). The
sine of 45 degrees is 0.707106781 with nine-place precision. In our table
we have the value 0.707106781 * 16384 = 11585 for 45 degrees. After
multiplying by 20 we got the number 231700 as a result. We don’t have
to worry that this number will exceed the value range of 16-bit integer
arithmetic because the processor always produces a 32-bit product as the
result of a 16-bit multiplication. This 32-bit result, the number 231700,
can now be adapted to the original value range by dividing by 16334, and
we get 14 as the result.

You may ask yourself why 16384 was used for the multiplication: first of
all the number is large enough to extend the range of the sine function.
Numbers between -1 and 1 become numbers between -16384 and
+16384. Second, the multiplication can be performed with two very fast
commands of the processor. Multiplications by a multiple of two can be
replaced in all microprocessors with shift commands which don’t take
much more time than an addition.

ST 3D Graphics Abacus Software

At this point T would like to briefly discuss the possibilities of the table
representation in the computer. The sine table is the simplest form of a
table, a linear list. The individual table values are stored sequentially in
memory. Qur sine table for the first values looks like this:

sintab: .dec.w 0,286,572,857,1143,1428,1713,1987,2280
.de.w 2563,2845,3126,3406,3686,3964,4240,4516
.dc.w 4790,5063,5334,5604,5872,6138,6402,6664

Since the gradations of the angles are in 1 degree steps, the first table
value gives the sine of O degrees, the second the sine of one degree, the
third the sine of two degrees, etc. The 91st table value is the sine of 90.
table value and the sine of 360 degrees is represented by the 361st value.
Zero is chosen as the start to match the table numbers to the
corresponding angle. This means that table value zero represents the sine
of zero degrees. Value number 90 corresponds to 90 degrees and 180 to
180 degrees. The 68000 computer makes access to this table very easy
through its excellent addressing capabilities. The initial address of the
table is loaded into the address register. This is the address where the zero
clement is stored. With the number of the desired table value in a data
register it is possible to access the location using the addressing mode
"address register indirect with index." In this table format it is absolutely
necessary to pay attention to the data length of individual entries. The
address of the zero value is equal to the beginning address of the table
plus zero, but the address of the first value is the beginning address of the
table plus two, since each value occupies two bytes. This means that the
index number in the data register must be multiplied by the number of
bytes for one entry. In this case it is two bytes. This multiplication by two
is very fast with one left shift of the bits in the index number.

78

Abacus Software ST 3D Graphics

3.2 Assembler routines for screen manipulation

The screen of the Atari ST is organized using what is called bit-mapped
graphics. This means that bits which are set in the screen storage
correspond directly to dots on the monitor and therefore there is no
difference between text and graphics. Since the screen memory is part of
the main memory of the CPU, it can be manipulated quickly, i.e. without
waiting cycles. For monochrome display the resolution is 640400 points,
which are represented by 400 times 640 bits in RAM.

Address: $78000 $78001 $78002 W$7804F X O»= X 5= 639
$78000 76543210 76543210
$78050 Bit number
$780A0
$780F0 $780F1
Y 0>=Y »= 399
$7ECBO
v
Figure 3.2.1

The only routines required for screen manipulation are those for
displaying a point and for drawing and erasing lines. A line of the video
picture is formed from 80 bytes and the total picture is made up of 400
lines. The address of a picture point can be calculated as follows:

address = screen start + Y*80 + INT(X/8)

79

ST 3D Graphics Abacus Software

The bit number of the byte can be obtained with the following formula:
number = 7 - (X MOD 8)

The function INT truncates the positions after the decimal point of a real
number, while the function MOD retumns the remainder of the operand by
the second. For example, 9 MOD 2 returns 1 as the result. Screen start is
the starting address of the screen memory, which is $78000 on the 520 ST
and 8F8000 on the 1040 ST

It may appear to be somewhat unusual to have the coordinate origin in the
upper left corner, but it is easy to change to the lower left corner and this
is accomplished by negating the Y values and adding 399. The X
coordinates remain unchanged of course , since the zero point is already
in the left corner of the display. The Y coordinate 370 in a normal left
system becomes (-370+399) = 29 in the screen system. This conversion
need be made only immediately before points are drawn. Some
calculations are required to draw a single point. The speed advantage of
tables for the calculation of the address of a point should also be
considered here. This table holds the RAM address for every possible Y
coordinate. This saves a multiplication for every calculation of the screen
address. Since the plot-point routine is used very often for drawing lines,
the speed advantage gained by using this table is correspondingly great.

3.2.1 Drawing lines

Since the size of a point on the screen is dependent on the resolution of
the computer, it is not possible to represent a line in the mathematical
sense. A line which connects two points P1 and P 3, actually takes a more
or less jagged path.

80

Abacus Software ST 3D Graphics

y
Y31 bt
fonT
® -1
=
¥y 1 P1ay i
T -
x1 X3 X
Figure 3.2.2

Starting from point P1, you have the problem of deciding which points
must be set, in order to reach point P3. Note that it is possible to set the
points only at the intersections of the raster lines. The ling is formed when
either the X coordinate is retained and a point drawn with an incremented
Y coordinate or you can increment the X coordinate while the Y
coordinate retains its value.

In mathematics, a line which connects two points is described through its
slope m. m is a measure of the "steepness” of the line and the larger m
becomes, the steeper the line becomes. With a positive m, the line rises
from left to right, while with a negative m it slopes down from left to
right. For a line parallel to the Y axis, the slope is infinite. The expression
for the slope:

m=dy / dx

ST 3D Graphics | Abacus Software

O
9

Figure 3.2.3

See Figure 3.2.4 for an explanation of the algorithm for drawing of lines.

82

Abacus Software ST 3D Graphics

I
Y5
Y2 |
Yi
6IIIIFTIITIIII—
x1 XZ >(3 X
Figure 3.2.4

Let us assume that in drawing the line from P1 to P3 that we have
already reached the point P2 already and now have to decide the direction
in which to draw. In our example, the point P2 is "over” the ideal line
from P1 to P3. Expressed mathematically, the slope of the connecting
line from Point P1 to P2 ml=(p2y-ply)/ (p2x-plx) = wy/wxis
greater than the rise of the line which connects the points P1 and P3
m2=(p3y-ply)/ (p3x-plx)=dy/dx. As the illustration shows, the
next step in drawing must be made in the X direction.

With the comparison of the two slopes, we have found a decision
criterion for the direction of drawing: If the slope of the connecting line
between the starting point of the drawing P1 and an intermediate point
P2 is greater than the slope of the line between the beginning and end
points (P1, P3),a drawing step should be made in the X direction . If
the slope is smaller, the next point should be drawn in the Y direction.
For the purpose of programming this criterion we shall define a decision
variable D, which is assigned the difference between the desired and the
actual slope.

ST 3D Graphics Abacus Software

D = (dy/dx)-(wy/wx)

If D is larger than zero ==> Step in Y direction

If D is smaller than zero ==> Step in X direction
After a small conversion we get:

D*dx*wx = (wx*dy) - (wy*dx)
Multiplications slow down calculations, so we should try to eliminate
them from the calculation. The exact value of D is of no interest. It is only
important to know how D changes with a step in the X or Y direction so
that an eventual change in the sign of D can be recognized. For this
reason it is also possible to replace the expression D*dx*dy with D
again.

D = {wx*dy) - (wy*dx)
During a step in the X direction, wx is increased by one while we retain
the old value of wx. For our D which we call new D or ND to distinguish it
from D, the following results:

ND = (wx+1l)*dy - wy#*dx

ND = wx*dy + dy - wy*dx
The last expression is equal to old D + dy, where old D comresponds to
the value of D before the step in the X direction. Analogous to this for a
step in the Y direction:

ND = wx*dy - (wy+1l)*dx

ND = wx*dy - wy*dx - dx

As you can seg, D is reduced by dx with a step in the Y direction. For ND
can be written:

Step in Y direction ND
Step in X direction ND

D - dx
D + dy

84

Abacus Software ST 3D Graphics

The multiplications have been replaced according to our desires by
additions. To formulate the algorithm, we must still decide in what
direction we will draw if D is zero. This can be decided at random and in
our example ND=0 results in a step in the Y direction. Another special
case which has not been mentioned is when dy is zero. In this case, steps
can be made only in the X direction since the resulting line must be a
parallel to the X axis. This case can only be determined with a test at the
beginning of the routine.

Furthermore, we have only considered lines with a positive slope, that is,
those where py3 is smaller than pyl. To retain the decision method in
this form, it is necessary to make negative dx and dy values positive
through multiplication with -1, and to decrease the X and Y coordinates
by one instead of increasing them for every step in the X or Y direction.
The algorithm for drawing a line between the points P1(x1,yl] and
P3[x3,y3) appears like this in a structogram:

ST 3D Graphics

Abacus Software

Dx = X3 - X1
Dy = Y3 - Y1
X2 = X1
Y2 = Y1
Dx¢ 07
Yes No
Dx = -Dx
Xstep = -1 Xstep = 1
Dy ¢ 07
Yes No
Dy = -Dy
Ystep = -1 Ystep = 1
Dy = ¢ 7
Yes No
E = 21 E =20

Repeat if X2 = X3 AND ¥2 = ¥Y3

PLOT X2,¥2

Ey O
Yes No

Y2 = Y2+¥step | X2 = X2+Xstep

E = E-Dx E = E+Dy

Figure 3.2,5: Structogram Draw line

86

Abacus Software ST 3D Graphics

3.3 Operating system functions

Since we will use only operating system functions for the 3-D graphics
programming, some should be explained before they are used. One of
these functions is the routine for switching the beginning address for the
video controller. All computers which which can display animated
graphics quickly and flicker free have the ability to work with two logical
screen pages internally.

Fast drawing and erasing of objects on the screen and the rapid accesses
to the screen RAM by the computer and the video controller, causes the
monitor picture to be unstable and to flicker. If the hardware has the
ability to tell the video controller where in RAM the screen memory
starts, the strategy for the creation of flicker free graphic is very simple.

We define two logical screen pages. We will use the Atatri ST as a
concrete example: in the Atari ST with 512K RAM the standard screen
page is stored between $78000 to $7FFFF and it is possible to define a
second screen page from $70000 to $77FFF. In the initial state, both
screen pages are erased and the video controller shows the page starting
at $78000. Now the first picture can be drawn in the RAM starting at
address $70000. After drawing the picture, the video controller is
informed at a suitable time of the new beginning address for the screen
RAM ($70000). A suitable time for switching is the time period in which
the electronic beam which draws the video picture returns, without being
seen, from the lower right comer of the screen to the upper left corner.

This moment is even recognized by the operating system and the
switching of the screen pages can be solved without any major
programming effort. If the page starting at $70000 is being displayed by
the video controller, the CPU can draw another picture, such as the object
in another position, in the page starting at $78000 without disturbing the
picture construction. After the new picture is completed, pages are
switched again and you can erase the old picture in the storage area which
is not being displayed. In general, the page which is being displayed is
considered to be the physical page in which the drawing is taking place is
the logical page. Only when both are identical do you see the progress of
the drawing on the screen.

ST 3D Graphics Abacus Software

3.3.1 Starting a Program

To start a machine language program on the Atari ST you have to know
what happens when a program icon is clicked with the mouse. The
operating system loads the appropriate program and passes control to the
program once it is loaded. After loading a program, the operating system
declares the entire memory as occupied so that it is not possible to move
data or program sections. To avoid this disadvantage, the called program
must determine its actual memory requirements, declare this area as
occupied, and leave the rest of the memory free. The Atari operating
system simplifies this task by passing a pointer on the stack to the called
program indicating the memory area occupied by the program and data.

The called program can calculate the memory actually required and
declare the unused area as vacant to the operating system. Note:
sufficient space must be reserved for the processor stack. From the
Digital Research documentation, it is not clear how much stack space is
required for the GEM functions, but the 4K bytes reserved for this
purpose in the example should be sufficient for all purposes. To make it
possible to use all GEM functions, it is recommended that the program
call the functions Application-Init and then Open-Virtual-
Workstation when it starts. After these two calls, GEM-DOS, the
BIOS, Extended-BIOS and the AES and VDI functions are available to
the program. An overview of these functions are available in the two
Abacus Software books Azari ST Internals and the large Atari ST GEM
Programmer’s Reference.

All programs in this book were written using the assembler from Digital
Research. For users of other home computers the assembler is probably
new, and so I want to discuss it briefly. The assembler is completely disk
oriented, i.e. all input and output comes from and goes to the diskette.
First you create the source text of the program with an editor, store it on a
diskette and call the assembler with name of the source text. The
assembler processes the source text by creating several auxiliary files on
the diskette. Finally it writes the desired object file on the diskette.

The object file which was created, recognizable by the extension .o, is
not executable since it was assembled at the absolute address zero. To
generate an executable program the absolute addresses must be replaced
with relative addresses to make it possible to load the program into any
memory area. For this purpose, you call the program RELMOD.PRG

88

Abacus Software . ST 3D Graphics

which then creates the desired run-time program file, In this you can
write manner machine language programs whose length is limited only by
the storage capacity of the computer and the floppy disk. It is impossible
to combine two programs which are already object files with this method,
however.

For this reason, one usually adds an intermediate step, as is also done
with higher level languages, called linking. The linker permits several
separately-assembled object files to be combined into one single file.

Large assembly language programs quickly become difficult to
understand and it is recommended that they be divided into at least two
modules. The first module initializes the program and contains all of the
error-free and tested subroutines, while the second module contains the
latest main program. This can reduce the assembly time considerably
since the large basic module must be assembled only once and afterwards
only linked to the main program. The use of the linker also permits the
use of assembler directives which would otherwise not be possible. The
assembler in conjunction with the linker can manage three separate
program areas: text, data, bss. The text area contains the actual program,
i.e. the program text, and the data area contains the initialized data. These
are variables to which values were assigned already before the start of the
program. In the bss area there is storage space reserved for the data which
has not been initialized.

Each of the programs; assembler, linker and relocator require parameters,
which are passed during the start. To assemble the basic module, first
select AS68.PRG and then INSTALL APPLICATION from the
OPTIONS menu as TOS-takes parameters. Then enter the following line
into the dialog box which appears:

-p -1 -u basicl.s > basicl.lst

where basicl. s is the name of the text file to be assembled. The ~p
and > basicl.lst statements create a listing to the disk of the
assembly process which can later be printed for examination. The
assembler creates a file with the name basicl.o. This object file
contains the tested subroutines and will be linked to the current main
program,

ST 3D Graphics Abacus Software

To assemble and link the main program, it is best to create a batch file,
which contains the individual command sequences. The batch file could
look like this:

as68 -1 -u %2.s

wait.prg

link68 [u] %2.68k=%1.0,%2.0
relmod %2.68k %2.prg

rm %2.68k

rm %2.0

wait.prg

This batch file might be stored under the name aslink.bat on the
diskette. The batch file is made very flexible through the use of two place
holders, %1 and %2. To assemble the main program with the name
maini.s and the subsequent linking with the basic module basicl.o
You call the program batch.ttp and pass the command sequence in
the dialog box:

aslink basicl mainl

After the assembly process the desired program file mainl.prg is
finally on the diskette. This creation of modules makes working with the
disk drive more bearable and the coffee breaks during assembly shorter.

As a practical test of all this, we have here the first version of the
basicl.s program and the first demo program. The basic program
contains only the initialization of the program and the basic routines for
screen manipulation such as screen erasing, and drawing of points and
lines. Assembly is done with:

as68 -1 -u basicl.s
The first main program demonstrates the speed of the computer by
drawing random lines and demonstrates how to call the operating system.
The steps for the creation of the ready-to-run program file mainl.prg,
without using a batch file are as follows:

1. Assemble MAIN1.S with the AS68.PRG.

90

Abacus Software

ST 3D Graphics

2.
Linker.
link68

[u] mainl. &8k

relmod mainl. 68k mainl.prg

Link the two object files with the
basicl.o,mainl.o

Create a relocatable program with

The file mainl.prg can be started by clicking with the mouse after the
file Relmod, the two files mainl.o and mainl. 68k, which are no
longer needed, are erased with the program RM.

The listing should be self-explanatory with all of its comments. It should
offer an easy introduction to graphics programming in machine language.
More detailed explanations of the routines used can be found with the
explanation of the link files grlinkl.s in section 4.1. Starting with
Chapter 4 we will really start to program.

Desk Flle View

B [oilimEs D4\ mamiEiEd I

14477236 bytes used
BASICICO S)
BILD DAT
[BAT Ei
(1] PRG
(W | BAT E
Cl68 PRG [
COLOR BAK |
COLOR PRG
COLOR S
COLORL BAK
COLIRL O 3
coLpRL S o
COMMAND PRG if

¢ >R

Options

Ft\IOWORK. DIRY

333356 bytes used

=

R CHAP_Z DIR
N CHRP_4 DIR
ASLINKL BAT
BASICL S
OPEN APPLICATION
Name: BATCH .TTP
4| Parameters:
i as1ink basicl maini|
{ ok | [Cancel |
— —

Prostans Lanpuape s

I

Data Bechker Opt. Diske

ST 3D Graphics Abacus Software

*************************t***ﬁ*

* Link file basicl.s, is linked with the main program whose entry *
* reutine must have the name main. *
* U.B. 11.85 *

********t***tt*

.globl wait,waitl,drawl,ddrawl, inlinea

.globl grafhand

.globl grhandie

.globl global,contrl,intin,intout,ptsin,ptsout,addrin,addrout
.glebl apinit, openwork, clwork, aes, vdi

.globl inkey

.globl mouse_on,mouse_off,printf

.text

**********t*****************i*******t*******i**************************

* Entry to the program, initializatien of all operating system *
* functions and creation of the Y-tables (For computers with color ¥
* monitors, replace "jsr startl"™ with "jsr start2". *
* Furthermore when using a color moniter, replace all *
* wisr drawl" calls in the main program with vysr ddrawl". *
w* *

*i**i***********t

sstart: * initialize the program
move.l a’,ab * Base page address 1s on the stack
move.l 4 (a5),as * hase page address = program start - $100
move.l $c{a5),dd * Program length
add.l 514{a5),d0 * Length of initialized data area
add.l $1c(a5),d0 * Length of data area not initialized

add.l #51100,d0 * 4 K-Byte user stack=sufficient space

move.l a5,dl * Starting address of the program

add.l d0,dl * Plus number of reserved bytes = space required
and.l $-2,d1 * gven address for stack

move.l dl,a’7 * User stackpoeinter to last 4K- byte

move.l d0, - {sp) * Length of reserved area

move .l a5, - (sp) * Beginning address of reserved area

move . w do, - {sp) * Dummy-Word

move.w #54a,-(sp) * GEM DOS function SETBLQCK

92

Abacus Software ST 3D Graphics

trap #1

add.l #12,sp * old stack address restored again

jsr startl * Create Y-table

jsr main * Jump to main program. (User-created)
move.l #0,-(am * Terminate program running

trap #1 * Back to Gem-Desktop

3 e A e sk e de g ok e e ok ok e de ok ok vk o e o e vk ok vk o o ok ke o e ol ok W R o R e e sk o o e T ok i T ke ok ok kol e e Ok e e ok o e

* Call a AES-Routine, where the parameters are passed to *
* to the various arrays (contrl,ete.) *

Ak Rk kAR A A Ak kR ke kA ATk khh ko dekk bk hhdkkrhkkkkdhnk

aes: move.l #aespb,dl * call the AES routines
move.w #5c8,d0 |
trap #2 &
rts i

d Fe % K 3k v Jr e de 3 3k ok o e o ok e de sk ok ok ok o ok W e e sk o e ek o T de e 3 ok ol ol ok ok e ke i e e i ol ol e ok ke e ok o ok e ok ok o e e e ke ok ke ok

* Call a VDI-Routine *

Ak kTR I I AR ARk T Rk H AR TR R AT ARR KA h Ik dk ko ko khhhh ke kd N ww

vdi: move.l #vdipb,dl * call the VDI routines i
move .w #573,d0
trap #2
rts

dekk kR k kR A A Tk kAR ok kR ko kAN IR NI T AT h Nk hdkkddkhkdrdkkkkhhhhs

* Announce the program *

KR AT KA AR Ik Ak ko kAR A F xRk AR kkhkk ke kdedkdhrdrdekhhhhhdrkd

apinit: clr.l do * Announce the program as
move.l d0, aplresv * Application
move.l d0, ap2resv
move.l d0, ap3resv
move.l d0,apdresv
move . w #10, opcode
move.w #0,sintin
move.w $#1, sintout
move . w #0, saddrout
move .w #0, saddrin
isr aes
rts

93

ST 3D Graphics Abacus Software

g WA AT R ok K K e dr ke e e sk b e A b o ek ok ok R W e o stk ko o e e o o i e e ke ke i o ol ol ok ok ok ok ok ke v v ke e e e kR

* Check on screen handler and store for other functions *
P L e R R R R R 2R A 22 R 2222222032222 2 dd 2t dst it ialadnd sl

grafhand: move.w #77,contrl * et the screen handler
move . w #0,contrl+2 * and store it in the global
move . w $5,contrl+4 * Variable grhandle
move . w #0,contri+é
move.w #0,contrl+8
jsr aes
move .w intout, grhandle
rts

AR R AN AR R A RN TR NN AT E vk ko ko kAW R d R I o i Aok dr o de 3 3 ok ok ek ok o W o e e e o o ok ok o ok ok e o i ke

* Open a Virtual Screen Work Station where all GEM drawing functions *
* will occur. *

R KR KA AN AR IR R A RN AN TR AT A AR AR R AR AN RN ARG I AR AT T I AR A A RN IRk hd sk

openwork: move.w #100, opcede * open a workstatien
move . w #1,d0
move . w #0,contrl+2
move . w #11,contrl+6
move . W grhandle, contrl+l2 * goreen handler
move .w d0, intin
move .w d0,intin+2
move.w d0, intin+4
move.w d0, intin+é
move . W d0, intin+8
move.Ww d0, intin+10
move . W d0, intin+l2
move.w d0, intin+14
move.w d0, intin+leé
move . w d0,intin+l8
move .w #2,intin+20
isr vdi
rts

94

Abacus Software ST 3D Graphics

IR A RSS2SRt s it ittt il a ittt inl s s s]

* (Clear the workstation *

Ihkhkkhkkhkhkdkdkkkhhhhkkktkhhhk kA kR kR AR R Ak Ak ARk kR kRN Rk kA h

clwork: move.w $3,contrl * Clear workstation
move . w #0, contrl+2 * clear the screen
move .w #1,contrl+é
move . w grhandle, contrl+l2
isr vdi
rts

Wy e o ok ok ol W IR e e W R e e e s e o R e e R o o W ke e e e I o o T e ki ok T o e ok ok o ik ok e e ok ok

* Turn on the mouse and its control. *

IE S22 aattas s tiats s ittt s ittt sttt i h s l]

mouse_on: move . w $#122,contrl * turn on the mouse and
move .w #0,contrl+2 * its control
move.w #1,contri+6
move . w grhandle,contrl+i2
move.w #0,intin
isr vdi
rts

Yo %k e e ok 7 o de ek ok e ok e o o e e ok o o i i e ke 3k ok ol oy ok ok ol sle sk sk o ol e ok o e e ok ok o o o e ok ok ok o o ok e ok e ok o

* Turn off the mouse and control. *

ek dod ek F Rk R R R Tk e o e I o e e ok o ok o e %k ok i ok ok ke sk e ok 3 ok e ol v ok ke e e ok ok e ok ok ok o e ok ok ol e o ok e ke ok ok e ke

mouse_off: move.w #123,contrl * turn off the mouse and
move .w #0,contrl+2 * its control
move .w #0,contrl+é
move.w grhandle,contrl+12
jsr vdi
rts

95

ST 3D Graphics Abacus Software

t**************

* Write a string on the screen *

**************t*************t*********t************t***********t*******

printf: move.l al,-(a7) * yrite the string, whose
move .w #9,-(a7) * baeginning address is in
trap $1 * register A0, on the screen.
addg.1l #6,a7 * Sstring must terminate with
rts * zero.

waitl dbra a0, waitl * Time lecop, counts the d0-Register
rts * down to -1

walt: move .w $1,-(a?) * wait for a key strcke
trap #1 * GEM-DOS-Call
addg.1l #2,a7
rts

t********t*********tt********

* Sense keyboard status (does not wait for keypress) and return key *

* code and alsc the scan code. ¥

inkey: move .w #2,-(a7) * Sense keybcard, does not wait for key
move . W #1,-(a7) * activation and return an ASCII-code
trap #13 * of an activated key in the lower half
addg.l $4,a7 * of the long word of DO, and the scan code
tst.w d0 * in the upper half of the long word of
bpl endkey * DO.
move.w #7,-(a?)
trap #1

addg.l #2,a7
endkey: rts

96

Abacus Software

ST 3D Graphics

2k e e o e e e e ke 3k gk ol i o ok o J ok ok o o ok Tk ke ke sk 9k 9k o k3 T vl e de Sk ok o e o e ok ol e S ke ok ol ol i ok e d ke ok ok ok ol ok ok ok e e ok e ke

* Draw-line-routine, draws directly into the sc¢reen storage and is *
* used only for the high resolution mode (640%400 Points). For color *

* monltor use ddrawl

*

LA A2 SRR R AR RS RRd Rt R a i s st as s it s iRt s S

drawl: move,]l d7,-{a7)
move.l #ytab, al
clr.l d4
move . w #1,a4
move.w ad,ab
move.w a2,dé
sub.w d2,dé
bge dxispos
neg.w dé
move .w #-1,a4

dxlispos: move.w al,d?
sub.w d3,d7
bgt plotit
beq dyis 0
neg.w d7
move.w ¥-1,a5
bra plotit

dyis_0: not.w d4

plotit: tst.w d2

bmi draw_it
tst.w d3

bmi draw_it
cmp.w #639,d2
bhi draw_it
cmp.w #399,d3
kbhi draw_it

move ,w d3,do0

lsl.w #2,d0
0{ald,d0.w),al
Move .w dz2,dl

lsr.w $#3,d1

move.w d2,do

not.w d0

move.l

Save reglster
Address of the Y-table

+1
+1

X atep

Y step

DX in dbé = X2 - X1

If DX is negative, then

make positive through negaticn

DY in d7

I1f DY is larger than zerc draw then
first point

DY is negative, make peositive
Y-Step is then -1

If DY = 0 then parallel to X-Axis

Test if drawing area was
exceeded

Y-value times two for access to
Plot table

Screen address

X-value

INT (X/8)

X-value

-X

97

ST 3D Graphics Abacus Software

L2223 328222222 s 0 sl st as il

* Here the point is drawn *

ke v ke s ok Wk e s ok ok i Tk ak ok ok ok ok ok ok ok ok ke ke ke

bset d0, 0tal,dl.w) * 7—({X MCD 8) with the bset-command

draw_it: ecmp.w dZ,a2 * End X reached?
bne notend * ne
cmp . W d3,a3 * End Y reached?
beq endit * no

notend: tst.w d4 *D > 0 =>Y step
bge ystep

xstep: add.w a4,d2 * else X step X=X+-1
add.w d7,d4 * ND = D + DY
bra plotit

ystep: add.w a5,d3 * Y=Y +- 1
sub.w d6,d4 * ND = D - DX
bra plotit

drawend:

endit: movem.l {a7)+,d7 * restore register
rts * Return to calling program

B S 2 2222 T2 2222222222222 2R a s st ittt il

* This Draw-line-routine is universal for all moniter types and *

* can be used with all resclutions. *
***********t***********************************t***************t******

ddrawl: move .l d7,-({aT)

move.l #lineavar, a0l

move.w d2,38{al) * W1

move . W d3, 40 (al) * Yl

move . w a2,42(a0) * X2

move . w a3, 44 (a0) * Y2

.dc.w 5a003 * draw line
move .l (a7)+,d7?

rts

98

Abacus Software ST 3D Graphics

kR E AR AR TR T I A AR AR E AN NN R LKA E I AR A AN AR RRAAANNTHR Ik dhkhkdk kR AR Kh

* Tnitialize the Line-A variables and store the address of the *
* Variable block in lineavar. *

dede otk K T d e e vk ok e ik ok e v ok o T I e 3 T e b v i i ok sk ok ok e i e i i e 3k 3k o o A o ok i o ok ok ok ke o ke ke ke ok

inlinea: .dec.w $a000 * initialize the Line A variable.
move.l al, lineavar
move.w $0,32(al)
move.w #3ffff,34(al) * Sample of the line

move .w #0, 36 (al) * Writing mode
move .w #1,24 (a0} * drawing color
rts

***********************i*t**

* Creation of the Y table for the highest graphic mode (640*400) *
**********t***

startl:
move .w #2,-(a7) * checks the screen address of the
trap ¥14 * System, recognizes which computer
addg.1 $2,a7
move.l d0,physbase * Display start minus 32 K-Byte
move.l $399,d1 * Number of lines minus one
move.l #ytab, al * Physical address

stloopl: move.l d0, (a0)+ * New address equals old address
add.l #80,d0 * plus 80
dbra dl, stloopl
rts

t*******

* Line-A initialization *

[P T 2 1 2222 222222222 22222 TR 28 s 2222 s bttty

start2: jsr inlinea * Tnitialize line A

rts

99

ST 3D Graphics Abacus Software

L2 2223 2222ttt ss ittt Rl st E LS

* Variables of the basic program *

Je Je d 3 Jr % de de ok g dr A e ke ok ok e e v o o 3k ol vl e ok e e ko ok ok i i ok ok T ol o e e e ok o T R T o e e ok e ok ok o

.even

.bss
lineavar: .ds.l 1 * Storage for address of Line-A variable
physbase: .ds.l 1 * Storage for screen address.
ytab: .ds.1 400 * Storage for the Y table
contrl: * Arrays for AES and VDI functions
opcode: .ds.w 1
sintin: .ds.w 1
sintout: .ds.w 1
saddrin: .ds.w 1
gaddrout: .ds.w 1

.ds.w 6
global:
apversion: .ds.w 1
apcount : .ds.w 1
apid: .ds.w 1
apprivate: .ds.1 1
apptree: .ds.1 1
aplresv: .ds.1l 1
ap2resv: .as.1l 1
ap3resv: .ds.l 1
apdresv: .ds.l 1
intin: .ds.w 128
ptsin: .ds.w 2586
intout: .ds.w 128
ptsout: .ds.w 128
addrin: .ds.w 128
addrout: .ds.w 128

grhandle: .ds.w 1

.data

vdipb: .de.l contrl, intin,ptsain, intout, ptscut

aespb: .dec.l contrl,globkal, intin, intout, addrin, addrout
cend

100

Abacus Software ST 3D Graphics

***********************t******************************ti**************t

* Main program for link file basicl.o , runs only in connecticn with *

* this link file . U.B. 11.85 *
* Draws random line in coordinate area 0-255. The value area *
* is valid for both axis *

****i************************t***

.glokl main
.text

i*********************tti**********t*****************************

* Entry point from the linkfile *
tit********t***

main: jsr apinit * Anncounce application
jsr grafhand *
isr openwork * Qpen screen work station
jsr mouse_off * Hide the Mouse
jsr clwork * Clear Display
* jsr inlinea * Color version only
loopl: ijsr clwork
move .l #textl, al * Address of text after A0
jsr printf * Write text
move .1l loopec,d?
loop2: jsr random * Generate random number
and.w bporder, d0 * bring to area 0-255
move .w a0, x0 * through masking out of the upper
jsr random * 8§ Bits of the lower word in DO
and.w berder,d0
moeve . w do, yo
jsr random
and.-w border,d0
move .w do, x1
isr random
and.w border,d0
move.w do, vyl
move .w x0,d2 * transfer the two points to the
move.w x1l,a2 * Wright" registers

move .w y0,d3

ST 3D Graphics Abacus Software

move . w yl,a3

jsr drawl * Draw line from X0,Y0 to X1,Y1l sketch
dbra d?7, loop2 * Repeat loopc

isr inkey * Sense keyboard, do not walt for key
swap d0 * activation, scancode in L0

cmp . W #544,d0 * compare with code in F10

bne loopl * If not : loop again

rts * otherwlse terminate program

o e e e ok kot e ke e e de ak vk e o ok de ok 3k ol e e o ok Tk vk s 3k o o ok ke vk T e T de e 3k 3k ok ok e o e e e e gt ke 3k 9 i i i e e e e ok ok ok ok ok ok ok ok

* Call the operating system function for creation of a 4-byte integer®

* random number, the number is returned to DO. *
kA Rk Rk KR A AR AR AR RN T KRR IR RR IR RN IANIARA AN I AN RR KK

random: move . w ¥17,-({aT) * generate a 4-Byte Integer-
trap #14 * Random Number in DO. Use only
addq.l $#2,a7 * the lower 2-Bytes
res
.data
.even

W % e sk 3 b K Yo % do 3k o o A o e s ok e v ok ok e ke sk ok o ok e ok o e e e e e gk gk gk ok o ek K W I I e ke ke e 9 e e e o o ok ok ok ok o o

* Variables for the Maln program *
w *

HHAH KA T IR AT A R A AR AT AR A A AR RN AR R R AR TR KA de kR ko W Rk kb wow v oo e e e ok

Fr e o e % e ik ok A K o o e X ok o 0 o o e e o o i e o 3k vl e e sk ok ok o T o i ok ok o v v ke e S o ol e e R ok o o ok o o o e ok ok ok ke ok

* Text for the printf function, 27 ¥ 34 96 positions the cursor *
* Sequence is column, line, both with an offset of 32 *

tEE SRR SRR ARt Rttt s Rttt ssd s

textl: de.b 27,'%",40,42,' Random lines ',0
loope: .de.l 60 * Number of lines
border: .dc.w $£f * 255 as display limit, with the high-
* * resolution B-W monitor the $ff
* * can be replaced with $1ff = 511
102

Abacus Software ST 3D Graphics

ook T d g e K R % ok e e o T e 3 v e ok Je o e ok v o ok W e e ok e e ok e o ok e e ok o e i ok e e ol e ok e e e e e ke ok ke ek e ok

.bss

.even
x0: ds.w 1 * Temporary storage for the two
y0: .ds.w 1 * Points, the program runs with small
x1: .ds.w 1 * changes even without the intermediate
yils .ds.w 1 * gtorage; what changes ?

.end

Graphics using assembly-
language routines

Abacus Software ST 3D Graphics

4. Graphics using assembly-language routines

The programs presented in the following part of the book can be used
with monochrome as well as color monitors, since the line drawing is
performed by the operating system, or to be more accurate, by the LINE-
A-routines. Of course it would be possible to convert the draw-line-
algorithm from the first link file for the various picture formats, but this
process has the disadvantage of requiring a subroutine for every picture
format. The programs described here can be executed on all kinds of
computer-monitor combinations. During program start, the main program
recognizes what type of monitor is attached and what resolution is desired
and on the basis of this information provides some variables with the
required data. For example, the coordinate origin of the picture system is
placed in the middle of the display. The larger memory capacity of the ST
permits it to handle significantly larger quantities of data. Once the
operating system of the smaller models is placed in ROM, the area
released in RAM will be sufficient even for the largest applications.
When calling the Metacombco Editor for input of the larger source files
(grlinkl, menul, rotatel, paintl) you have to specify
more memory space for listing to be entered along with the filename. To
do this, enter grlinkl.s 23000 in the dialog box that appears. This
reserves about 80k for the source text. If you enter source text without
comments the space reserved in the basic version of the editor should be
sufficient.

ST 3D Graphics Abacus Software

4.1 Definition of a data structure for an object in space

The program modules presented here have the ability to represent on the
screen any object in a user defined world in any position, as seen from
various positions. The single disadvantage is the limitation of the valid
value range to 1£32000; this means that for the definition of the world a
right angle three dimensional Cartesian coordinate system (right system)
is available whose three coordinate axes (X-Y-Z) are labeled with values
between +32000 and -32000. Whether these values are in meters,
kilometers or the number of corrupt politicians in the Senate depends on
the individual user and the application. For example, using the number of
corrupt politicians is a questionable value, since it changes from moment
to moment, and is far from constant.

Joking aside, a very simple object should suffice to describe the data
structure. We will use simple house as in Figure 4.1.1,

/

/

Figure 4.1.1: House as Wire Model

108

Abacus Software ST 3D Graphics

Every object in the coordinate system is described through a finite
number of points and the lines which connect these points. To represent
the object, these points in the world system must be specified by
declaring of their coordinates. It has proved to be useful to define the
object, in this case the house, in its own coordinate system and to
transform it during the construction of the world coordinate system. To
gain an advantage, the coordinate origin of the object system is located
inside the house, if possible at a "rotationally neutral” point, i.e. during a
rotation of the object around this point, the maximum changes of the
individual points resulting from the rotation should be minimized. The
object should not be distorted.

by

e

Figure 4.1.2: House with coordinate system included

The individual steps during the “construction” of the house therefore are:

1. Draw a total view of the object (on a piece of paper) and
arbitrarily number of the individual points.

109

ST 3D Graphics

Abacus Software

. 4 <
|‘ 1 14

r

.
|

20
21
5

2

2 2

Figure 4.1.3: House with numbered points

2. Draw the object in the various possible aspects with the current
coordinate axis for accurate specification of the points.

110

Abacus Software ST 3D Graphics

Figure 4.1.4 - Figure 4.1.9: six views of the house

ty

L) 1 k1B N I
- X
4 " | % 3
Figure 4.1.4
1
10
I_
6 5
J N 1 1 Il 1 1 | | -
- X
7 i 8
-
Figure 4.1.5

i

ST 3D Graphics

Abacus Software

LY
9 i 10
‘ WT_I‘!G 118 20
‘WB — 17 22 - 2 :)
23 2% -z
3 26, 25 8
Figure 4.1.6
Ly
a 10
1 8
- -z
a I 7
7
Figure 4.1.7
112

Abacus Software ST 3D Graphics

-2
6 | 5
X
1 g 2
|._
Figure 4.1.8
-Z
7 i 8
1 A1 1 1 r- 1
- X
4] 3
Figure 4.1.9

3. Set up a coordinate list of the individual points.

4. Create a line list, i.e. state which points are connected by
lines.

5. Indicate the number of points and lines in the object.

113

ST 3D Graphics Abacus Software

Coordinate list of the house:

Point No. X-coord. Y -coord. Z-coord.

1. -30 30 60
2. 30 30 60
3. 30 -30 60
4, -30 -30 60
5. 30 30 -60
6. -30 30 -60
7. -30 -30 -60
8. 30 -30 -60
9. 0 70 60
10. 0 70 -60
11. -10 -30 60
12. -10 0 60
13. 10 0 60
14. 10 -30 60
15. 30 20 40
16. 30 20 10
17 30 0 10
18 30 0 40
19 30 20 -10
20 30 20 -40
21 30 0 -40
22 30 0 -10
23 30 -10 0
24 30 -10 -20
25 30 -30 -20
26 30 -30 0

Total of 26 points.

114

Abacus Software ST 3D Graphics

Line list:

Line No. from point to point

L. 1 2
2. 2 3
3, 3 4
4. 4 1
5. 2 5 |
6. 5 8 |
7. 8 3
8. 8 7
9, 7 6

10. 6 5

11. 6 1

12. 7 4

13. 9 10

14, 1 9

15. 9 2

16. 5 10

17. 6 10

18. 11 12

19, 12 13

20. 13 14

21. 15 16

22, 16 17

23. 17 18

24, 18 15

25 19 20

26 20 21

27 21 22

28 22 19

29 23 24

30 24 25

31 25 26

32 26 23

Total of 32 lines.

115

ST 3D Graphics Abacus Software

Additional information on the object is required for the transformation of
the house into the world coorinate system: the angles housxw, housyw,
houszw, which describe a rotation of the house about one of the three
axes in regard to the coordinate origin, and the location of the house in
the world coordinate system. The location is the point to which the
coordinate origin (rotationally neutral point) of the house system is
displaced in the world system, housx0, housy0, housz0. In our first
example program the coordinate origin of the house system is moved to
the coordinate origin of the world system, housx0 etc. and therefore
ZEro.

For further information, we need an observation point and a projection
center, where both points naturally are described in world coordinates. In
the simplest case the observation point is the coordinate origin point of
the world system, and the projection center [prox,proy,proz] is
located on the positive Z axis of the world system. The system of the
observer (view system) is a right system in our programs and it is not
necessary to transform to a left system, to multiply all Z values by -1. For
our case this means that after transformation the view system a point with
the coordinates [10,10,-300] is farther from the observer than a
point with the coordinates [10,10,-200].

Furthermore, we need the normal vector (direction vector) of the
projection plane. For simplification we assume that it is pointed from the
projection center toward the coordinate origin of the world system and
points toward the negative Z axis. The projection center lies on the Z axis
and therefore has the coordinates [0, 0, proz], since the normal vector
of the projection plane points in the direction of the negative Z axis, the
rotation of the observation direction vector to the negative Z axis is not
necessary.

To help explain the coordinate systems and viewing points, we have here

Figure 4.1.10 with the world system and the observation factors defined
in it

116

Abacus Software ST 3D Graphics

+X

Vector normal to
projection plane

Figure 4.1.10

Summary:

To represent the house on the screen we need a total of four coordinate
systems, where the various coordinate systems exist only in theory and all
transformations occur in a single system. The defined points are stored in
arrays in which the various coordinate systems are then reflected so they
do not disappear after a transformation. The following coordinate systems
are used:

1. The data system {(housdatx, housdaty,
housdatz), in which the house is defined at
construction.

2. The world system (wrldx,wrldy,wrldz), in which,
for example, a village is represented by several houses,
where the houses are all created by transformation at
various places in the world system from the one single
house defined in the data system.

117

ST 3D Graphics Abacus Software

3. The view system (viewx,viewy,viewz), which is
used for the description of the view transformation. The
view transformation is the transformation into the observer
system, which is described through the observation
reference point and projection center as well as the vectors
from projection center to the observation reference. The
vector from the projection center to the observation
reference point is therefore the normal vector of the
projection plane.

4. The screen system has only two dimensions. The only
transformation which occurs in this system is shifting the
coordinate origin to any desired location with reversal of
the Y axis. Something we also used in our example is the
displacement to the screen center but other locations are
also possible depending on the application.

After this simplified observation situation, now an example for the
general view-transformation of a more complicated model. As a fictional
example we will use a world system which represents an airplane
standing on a runway. The observation point of the system should be in
the middle of the cockpit window, which is therefore the projection plane,
and the eye of the pilot should be the projection center. Let us also
imagine a tanker truck and an airplane hangar at some distance from the
airplane. Two types of transformations are possible.

1. A transformation of the object, which might mean that the
tanker truck moves and approaches the airplane, for
example. In this case the movement must occur in the
world system and only the coordinates of the tanker truck
need be recalculated in the world system.

118

Abacus Software ST 3D Graphics

2. A movement of the observer, in this example the airplane.
Let’s go back to the starting position and assume that the
tanker truck remains in its original position. Now the
airplane should move, and for simulation of this
movement all objects in the world system, the tanker truck
and the hangar, must be transformed. The entire world
system would be rotated about the center of the cockpit
window. For a left rotation of the airplane, everything
must be rotated to the right. This connection can be easily
verified: If you move your head to the left, the observed
objects move to the right out of our field of view. When
the airplane is moved without rotation the observer gets
the impression of movement through the displacement of
the coordinate origin of the world system before the
projection.

3. A movement of the observer and the object, which means
first a transformation of the truck in the world system and
subsequent transformation of the total world system into
the view system.

Only after completion of these various cases do we get to the perspective
transformation, i.e the projection from space to the projection plane, or
more precisely into the screen. This was an example of a more complex
observation model.

You will probably ask why things have to be complicated by using an
additional coordinate system, the view system, when we could do
everything in the world system. This is true, but the addition of the view
system improves the accuracy and provides for a better overview of the
total system. Because of the rounding errors from the many
transformations, our world of the tanker truck and the hangar, would
according to the law of increasing entropy, degenerate to a chaotic mess
after a few hundred transformations. The aspect of the better overview is
at least as significant as the accuracy and I want to try to demonstrate this
fact again .

As you will see, all transformations can be carried out with a single
routine. Our application combines almost all of the rotations with matrix
multiplication and performs displacements before and after these
multiplications. The displacements are not included in the matrix
multiplications and our point coordinates are therefore not extended

119

i TGRS

ST 3D Graphics Abacus Software

coordinates but consist only of the three coordinates [x,y,z] of the
current point. The only routine used is the rotation around any selected
point. As a reminder, during the rotation around any point, the coordinate
origin must first be moved to this point, then rotated by the desired angle
and finally the coordinate origin moved inverse to its original place by
back transformation. For the sequence of our routine this means that the
point about which rotation should occur is passed, also the rotation angles
around the corresponding axes (xw, yw, zw). The rotation routine first
calculates a multiplication matrix through multiplication of the rotation
matrixes belonging to the various angles. Then all points belonging to the
desired object [x, v, z] are manipulated in the following sequence:

1. The point [x,y,z] is moved to the rotation point. This is
achieved through subtraction of the coordinates of the
rotation point from the object coordinates. The result of
this operation is the point [x’,y",2"].

2. The point [x’,y’,z’] is multiplied by the previously
calculated total rotation matrix.

Result: [x'7,y’",z"'].

3. The point [x’’,y’’,z'’] is transformed back to the
"old" coordinate system by adding of the coordinates of
the rotation point.

In this model the axes are not scaled. The size manipulation of the
objects, i.e. their pictured size on the screen, is performed during the
projection through movement of the projection plane. If different values
are selected for the subtraction occurring at the beginning and the
concluding addition, the movement of an observer in the world system 18
simulated. If the angles of the normal surface vector in relation to the
' world system are provided (in section 2.5 we calculated the angles
i through projection on the various surfaces) the position of the observer
! can be determined in space through one point and three angles.

j‘ Let us assume that a person is moving our world system, where the house
: discussed in the first example is located at the coordinate origin. The eye
of this person, or actually the retina of the eye, is the projection plane. It
is irrelevant that the projection center in the human eye is in front of the
projection plane, since the reversed picture resulting from this is turned
around by the brain. For the simulation of this moving observer the

120

Abacus Software ST 3D Graphics

coordinate origin of the world system must be moved to the center of the
retina, but we are limiting ourselves to a single eye. The coordinates of
the eye in the world system must be known; furthermore the head of the
observer can be moved through three different axis. You can easily
determine the axis yourself. The rotation about the first axis in our
coordinate system corresponds to the X axis, described by the observer
nodding his head up and down. The Y axis rotation is shaking his head.
The head rotates on the Z axis when the observer attempts to touch his ear
to his shoulder. If the three rotaion angles are known, the coordinate
origin will be rotated about this angle and the observed object lies in the
coordinate system of the observer. It is not necessary to reverse the
movement of the coordinate origin which is similar to the example of the

airplane.

In principle, an unlimited number of displacements, rotations, and
observer situations are possible: rotation of the house, rotation of the total
system around one point, or any axis, and also the displacement with
rotation into the observer system. To bring some order into this flood of
rotations, our programming examples are limited to one fixed observer
location point. This is no limitation on the observed effects on the screen
however, i.e. in principle it is the same whether one assumes that an
object rotated around a point, or the observer moved his head, provided
the size relationships are suitably adjusted. Finally, the programmer must
know the desired effect. There are many ways to achieve the same
effects.

And now, the description of the transformations of our data structure for
the first, fairly simple transformation program. The concrete object
(house) is defined in a coordinate system (housdatx, housdaty,
housdatz). During the initialization of the program, the subroutine
makewr1ld moves the house to any desired location in the world system
(wrldx,wrldy, wrldz), with possible rotation. In the first program it
is moved to the point [0, 0, 0] without rotation.

All further operations concerning the house relate only to the world
system. For example, the house can be rotated around any point of this
world system, or only the position of the house can be changed by
displacement. But now the initial scenario of our model changes through
these transformations, so we store the data for the rotation of the world
system in a new coordinate system (viewx,viewy,viewz}, where
the initial scene (in wrldx, wrldy, wrldz) is available at any time
and can be reproduced at any time.

ST 3D Graphics Abacus Software

After each operation in this world system, the coordinates of the
displaced house are stored in the view system. The object should also be
displayed on the screen. To do this, it must be adapted to the perspective
of the viewer situation. In our example, the projection center is at the
coordinates [0, 0, 1500]--therefore on the positive z axis of the right
handed coordinate system. Through the perspective transformation, the
coordinates of the view storage are transformed into screen coordinates
(screenx, screeny) whereby the desired location of the coordinate
origin and the orientation of the Y axis are considered during the
calculations. The screen coordinates are transferred with the aid of the
line list of the drawing routine, which, through the built-in "Cohen-
Sutherland clipper" draws only the desired screen area using the border
points clipule and cliplri (clip upper left, clip lower right). To
create some movement in this house, the rotation origin point or its
rotation angle can be changed slightly after each drawing and the whole
process can be programmed into a large loop for repeated execution.

In case you did not understand a few details, you can relax while typing
in the following program listings. You should consider that the material
discussed here corresponds to about a half a semester of lectures for
upper-class computer science students and therefore requires intense
consideration, even with the aid of the additional literature cited in the
beginning.

Just as in the first small program (random lines) this program is also
divided into a link file and main program. The new link file has the name
grlinkl.s and was enhanced with the sine and cosine routines, the
clip algorithm, the screen switch routine, the matrix operations and the
perspective transform routine. The main program housel.s contains
the data of the house and the main loop in which the rotation angles of the
house are changed in cycle and can be altered by the user. The steps for
creating a ready-to-run program are the same as in the third chapter. You
need only to replace basicl.s with grlinkl.s and mainl.s with
housel.s in the command sequences. You should start typing in the
first program since the following programs build on the first two files.
That way you only have to type in the additional subroutines and data
sections. The link file grlinkl.s is the same for all following main
programs and does not have to be changed.

122

Abacus Software ST 3D Graphics

E2 222222 LEEE SRR AASEE AL SRS 2R R Rttt s st sl
* grlinkl.s Graphic Driver Version 4.0 *

* The main program must begin with the label "™ main ". *

ok e i e e e v ok e e ke e v ok R e e e e Y e o e o W ok T ok o ol 0 e e T ok ok ok ok ol oy e T i g ok ok R e R i ke ok e e e ke ok ok e e ok e ek

Yok T ok e st o gk W e T o T 3k ok o 0 ok vk e e ok ok ok e ok ke e e b e e e ok Sk o e ke vk ok ok ok ke e ok ok e o o ok ok e e ok e e ok ok o ok ke ke e

* Global variables in the 1link files *

AR AR E T H A AT TR AR KRR AR R R AT TR A AT T IR AR R AA Ak hdkdkhkdokdddrdkddhhhdki

.globl drawl, sin, sincos, physbase

.globl logbase

.globl sinx, siny, sinz,cosx, cosy,cosz,wait

.globl waitl,drawnl

.globl pers,grafhand

.globkl nummark, xangle, vangle, zangle, numliine, datx, daty,datz
.globl peintx,pointy

.globl peintz, xplot,yplot,x0,y0,20,z1, linxy, sincos
.glokl grhandle, global, contrl, intin, intout,ptsin,ptsout
.globl addrin, addrout

.glocbl apinit,openwork,clwork, aes, vdi

.glebl rotate,dist, zobs

.globl matrixll, matrixl2, matrixl3

.globl matrix2l,matrix22, matrix23

.glaobl matrix3l,matrix32,matrix33

.glebl xrotate,yrotate, zrotate,matinit, inkey

.glebl mouse_on,mouse_off,printf

.globl clipxule,clipyule,clipxlri,clipylri

.globl filstyle,filindex,filform,filcolor, filmede, yrot
.globkl lineavar, pageup, pagedown, plotpt

ST 3D Graphics Abacus Software

LEER TSR AT SRS At s st st ettt ittt ittt d
* Program initialization and storage requirement calculations *

% %tk ook K K de ok o W K R e ok o ok T ke 3 ok ok o o ok e e ok ok Y e R A ok i e gk gk gk ke e o o ok v v 3k o sk ok ok ok ol ol ol e o o ek ke R
.Lext
sstart:
move.l al,ab * Base page address on the stack

move,l 4(a5),a5 * basepage address = program start - $100
move.l S$c{a5),d0 * Program lendgth

add.l $14(a5),d0 * Length of initialized data area

add.1 $1lc{a5),d0 * Data area not initialized

add.1l #51100,40 * 4 K-byte user stack

move.l a5,dl * Start address cof the program

add.l do,dl * Plus number of occupied bytes = space regquirement
and.l $=-2,d1 * Even address for stack

move . 1 dl, a7 * User stack poinkter to last 4K- byte
move.l d0,-{sp) * Length of reserved area

move.l ad,-{sp) * Beginning address of reserved area
move . w d0, - {sp) * Dummy-word

move .. w #54a,-{sp) * GEM DOS function SETBLOCK

trap #1

add.l #12,sp * Restore old stack address

jsr startl * Check on display address

jsr inlinea * Initialize Line-A routines

jsr main * Jump to main program (user-created)
move.l #0,-(a7) * End current program ,
trap #1 * Back to Gem desktop

Tk R R AR d KA KT Rk I Ak T KA AR kAT A A A A AR AR AR E AR AN R TR AN A AT AR AR Ik KK

* Pass upper screen page to video controller *
* while drawing the other *

(I 222222222 TSR 222 222 2R s Rt sttt sl Rt R Rl

pageup: move .w $-1,-(am)
move.l physbase,—-(a7) * Page displayed
move.l logbase,—-(a7) * Draw on this page
move .w #5,-(a7)
trap
add.l #12,a7
rts

124

Abacus Software ST 3D Graphics

Tk kA kWA AR R Ik kA kA Rk h Ak kA kA h kAR AR RR R IR A AAR R ARk Ak h ek k

* Display screen page at lower address, while all drawing *

* operations after the call go to the higher display *
I 222 2ZZ22RS LSRR RS RSSSE SRR SS R RS R Rl RR sttt d R Eld s n

pagedown: move.w t-1,-(a?)
move.l logbase, -{a7) * display logical page
move.l physbase,-{a7) * draw in the other one
move .w #5,-(aT)
trap #14
add.1l #12, a7
rts

ek sk ke ok WK Wk W I W T e e ok i W e e sk ok o W e 0 ok vk o ok o T e e e s ok o o W W o ok 3k o i o e e e ek ok e ek R e ek

* This subroutine calls AES functions, the user must *
x save the Registers D0-D2 and AO0O-A2 before the aes call, *
* which are used by VDI and AES *

AR R KKK KA KRR R R A A AN AR AR AR A KRR AN KA N AN AR AT AR RRRNNK KA I Xk kkkdkdkdkkkkkhkdhd

aes: move.l #aespb,dl * call the AES functions
move .w #5c8,d0
trap $#2
rts

KR TR KRN AN A AR AR TR AN TR R r KAk ko dek Nk w ok dkdeddkdedodkddedr kot

* call the vDI functicns *

e v v vk W W e I W R e 36 ok ok o W W o e e ok ok e e ok T 7 ok ok ok ok ok ok v o e e ok Sk o ok o I e ok ok e ok e e ok ok ok ok e e ok ok Sk e sk kR

vdi: move.l #vdipb,dl * call the VDI functions
move.w #573,40

trap <:j>

rts

~——— T EI.T

ST 3D Graphics

Abacus Software

e e e s g e ok W e e o ok e I 3 e o ok i e T ok o ol ok ok e e o ok ot ok Tk ok e o g ok ok vk e o 3 ok e e ok o ol ok e o ok e o e ke e e e ko

* initialize the Line-A functions, pass the address of *
* Line-A variable area in A0, which is then stored *
* in lineavar *

P R R R R AR 2 222220 SRR 222222 s 2222 it ittty tn

inlinea: .de.w
move.l
move.w
move . W
move . W
move .w

rts

$a000

al, lineavar

$#G,32(a0)

#$£Ef£, 34 (a0)

#0,36{a0)
#1,24(al)

P22 R R e T2 322232 24222222222 Rt sttt hih s

* announces application

*

ok Ak d AR T AR EKNKR KRR RN ARk Ak dddddrdrddkrk kR kR AR RN KR X K KNk drkkkkkd

apinit: clr.l

move.l
move.l
move.l
move.l
move .w
move.w
move . w
move .w
move . w
isr

rts

dd

a0, aplresv
d0, ap2resv
d0,ap3resv
d0, apdresv
#10, opcode
#0,s8intin
#1,sintout
#0, saddrout
#0, saddrin

aes

* announces an application

d e de sk ke e dede e skt e g e o gtk d o Ve e sk ok ok o o v e o ok Wi R e e e e e dk ok e ek e ek R A WO W T I ek ok kb ke

* Transfers desktop sc¢reen handler to caller *

R R e R 222322222 2R XS 22222222 2 st ittt b bRl

grafhand: move.w
move . W
move . w
move .w

move . W

#77,contrl

#0,contrl+2
#5,contrl+d
#0,contrl+6
#0,contrl+8

* Transfer screen handler

126

Abacus Software

> ST 3D Graphics

isr
move.w

rts

aes

intout,grhandle

P S L R e R R 2 2222322322222 2222 a2 sttt bl thl

* open a workstation *

e dede v T o B Rk e T % 3 7 oo v v e e ok ek T e ok T W W ok I e ok ok ok ke vk e e ok kK I e e ok o o o e i ko ok ek

openwork: move.w
move . w
move.w
move.w
move . w
move .w
move.w
move.w
move.w
move.w
move .w
move.w
move . W
move.w
move . W
move . w
jsr

rts

#100, opcode * opens a workstation
$#1,d0

#0,contrl+2
#11,contrl+é
grhandle, contrl+l2
40, intin

dl, intin+2

do, intin+4

d0, intin+6

d0, intin+8

df, intin+10

d0, intin+12

d0, intin+l4

40, intin+l1é

d0, intin+18
#2,intin+20

vdi

t************W**

* Clear the screen *

t*****

clwork: move .w
move . w
move . w
move .w
jsr

rts

#3,contrl * glear screen VDI function
#0,contrl+2

#1,contrl+é

grhandle, contrl+l?2

vdi

ST 3D Graphics Abacus Software

e % % kA I K i Ik ok K R e e 9 ok e ok e 0 ok ok ok o e ok ko o s o ok e v e e S o ok o Y o o T T e T 3 i i ok e ek e Tk R R ek

* Enable mouse *

Ak kKA kAR kA A AR kA AR AR AR KKK ERE A AR AT I T TR R TR IR T I * ok drdd

mouse on: move.w $122,contrl * enakle mouse
move.w #0,contrl+2 * and control with
move.w #1,contrl+é * pperating system
move.w grhandle,contrl+12
move.w #0,intin
jsr vdi
rts

AR KRR KRR AR AR A KA AR RN A A AR A AR AR AR AR AR T AT IR AN AR AT A I AR R RN RRANRA RN kA kh®

* Disable mouse *

Fkkhkhdek ko ke k Ak kA Ak kR k kAR Ak kA Ak ko ko drdhh ko rdrddkdhkkokkkkww

mouse_off: move.w #123,contrl * Disable mouse
move . w #0,contrl+2 * and control
move . w #0,contrl+é
move . W grhandle, contrl+12
isr vdi
rts

Kk kdk ok de ke de Ak kA Ak kR kAR TR TR A AR R ARk T Tk kkkhkh ok dk¥

® write string on screen *
Kk Ak kR A kR kh AR Ik hkhkkkk kR AR AR AR TRk dddk ko dkhhhhdkododoh ok okododok

printf: move.l al,-(a?) * write a string
move .w #9,-{al) * whose starting
trap $1 * ig in AQ, on the
addg.1 #6,a7 * ggreen. String
rts * must end with a zero.

dkkkkk ko ko ko k ok ko kR kR kAR d sk w Rk A drde ko drdrded e d ok dedodk b koo

* Determine screen address *
R I I I I I I T I I T I T T T T T Ty

startl:
move . w #2,-(a?) * Determine the screen
trap #14 * address of the system
addg.1 #2,a7 * which computer ?

128

Abacus Software ST 3D Graphics

move .1 d0, physbase * screen start minus 32 K-byte
sub.l $$8000,d0

move.l d0, logbase * equals logical display page
rts

hhkhh kK kkdekd kel kb h kAR AR AR R R TR R A AR AA R TR A ARk

* Plot routine x—c¢oordinate in d2, y-coordinate in d3 *
KKK KR T AR KA AAAA T AAAA A AR KRR AN NAA TR IR A RARA R AR XA ARk b kde ko ke wwkk

plotpt: movem.l d0-d2/al0-a2,-{a7)

tst.w d2 * X-value less than zero =>
bmi stop2

tst.w a3 * Y-value less zero

bmi stop2

cmp.w #639,4d2 * X-value greater than 6397
bhi stop2 * Display limit

cmp . W 4#399,d3 * Y-value greater than 3997
bhi stop2

move.w d2,ptsin

move .w d3,ptsin+2

move . w #1l,1intin

.dc.w 5a001

movem.l (a7)+,d0-d2/a0-a2
stop2: rts

AR KK TR F KRNI A R ddr Tk ko kR k Ak kv e r ek k kX khkdhkdkkkkkkk

* draw-line routine with Cohen-Sutherland clipping. The points are *
* passed in d2, d3 {start point) and aZ, a3 (end point) *

222222 F RS RS 22 2SR RS XTSRS SRS R SRS SRRttt e Rl f Rl

drawl: movem.l d0-d7/a0-a6,-{a7) * Save registers
move .w d2,dé6 * Determine positiocn
move .w d3,d7? * of start point and
jsr rel pos * store
move . w dl, codel
move .w a2,d6 * Position of second
move .w a3,d? * point and store
jsr rel pos
move.w dl, code2
tst.w dl * if points are not in

bne testwl * drawing area continue

ST 3D Graphics Abacus Software
tst.w codel test. Otherwise test
beq drawit2 first point. When visible,
* draw both points
testwl: move . w dl,d0 If both peints on the same
and.w codel,dD ‘page’ outside the viewing
bne drawend windew, then do not draw,
move.w d2,al else store starting pecints and
move . w d3,al calculate intersecting pocints
move . w az,ad
move.w a3, ab
tst.w codel is point 2 visible ?
bne testw2 if not, find intersecticn peoint
move.wW aZ,rightx if yes, store
move.w al,righty
bra testw3 find left intersect point
testwZ2: move.w codel,plecode right intersect point
move .w code?2, p2code
jsr fndpeint find intersect peoint
tst.w plcode if ’intersect point’not
bne drawend visible, then end
move . w d2, rightx if visible, then store
move .w d3, righty
testw3: move.w a4d,d2 and the left intersect point
move . w a5,d3 with switched points
move .w al, a2 determine with the same routine
move.w al,al
move.w code?Z, plcode
move.w codel, p2code
tst.w p2code Point visible?
bne testwd if not, continue test
move . w a2, leftx if yes, store and
move . w a3, lefty connect both wvisible
bra drawitl points with a line

130

Abacus Software ST 3D Graphics

testwid: jsr fndpoint * Find intersect point
move . w d2, leftx * and store,
move.w a3, lefty
drawitl: move.w leftx,d2 * connect both points with
move.w lefty,d3 * a line
clr.l a2
clr.l al
move . w rightx, a2
move.w righty,al
drawit2: move.l iineavar, a0
move .w dz2,38(al) * X1
move . w d3, 40 (a0) * Yl
move .w a2,42{al) * X2
move.w a3,44(al) * Y2
deo.w 5a003 * Draw line
drawend:
endit: movem.l (a7)+,d0-d7/al-aé * Restore registers
rts * Return teo calling program

ttt*************************i***********************************

* recognizes the position of a point passed in D6 and D7 relative *

to the c¢lip window defined in the variables clipoli and clipure ¥
******t*t***

*

rel pos: clr.l dl #* determines the position
move .w d7,4dl * of the point passed in
sub.w clipyule,dl . * d6 and d7 relative to
1sl.1 #1,d1 * the drawing window
move . W d7,d1 * defined by ¢lipure
sub.w clipylri,dl * and c¢lipoli
neg.w dl
1s1.1 #1,d1
move .w de,dl
sub.w clipxlri,dl
neg.w dl
1s1.1 #1,d1
move .w de,dl
sub.w clipxule,dl

1sl.1 #1,d1

ST 3D Graphics

Abacus Software

swap

res

dl

T ROR R W R R e v e Wk e A ok ok e okt e ok e o ok gk e Y gk ok ok e o ke ok o e e ok sk ok e o b ok vk o e de e ke e sk ok ek e ok ke ok

* Finds the intersect pecint,

1f present,

*

* of the the connecting line from Pl to P2 with the clip window *

* the points are passed in D2,

LR AR AR SRR RSNttt stttz iRt l RS S

fndpoint: move.w

findwl:

move.w
add.w
ext.l

lsr.l
add.w
ext.l

lsr.1
move.w
move .w

jsr

move.w
and.w

bne

cmp . W
bne
cmp.w
beq

cmp.w
bne
cmp . W
bne

bra

d2,d4
d3,d5
a2,dd
d4

#1,d4
ad,db
ds

$1,d5
d4,dé
ds,d7

rel pos

p2cecde, dé
dl,deé
fother

d4,d2
findwl
d5,d3
fendit

dd,az
findw2
d5,a3
findw?2
fendit

*

*

D3 and AZ,

Find the center polnt of
the line P1 P2

(X1 + X2) / 2

(Yl + Y2) / 2
= center point of line P1 P2

Store center pecint coord.

Y middle

A3 as in drawl

*

where is the intersect point ?

Code of center pt. to D6
are the points on the same

page outside the screen

points coincide

if yes => stop

Do middle point and second

poeint match 2

if yes

= stop

132

2

Abacus Software ST 3D Graphics

findw2: move.w dd,d2 * else exchange middle and

move . w d5,d3 * first point and start again

move.w dl,plcode

bra fndpoint
fother: cmp .- w d4,a2 * middle point and P2 match ?

bne fotherl

cmp - w d5, a3

beg fendit * if yes, then end
fotherl: cmp.w dd,d2 * middle point and Pl match ?

bne fother2

Cmp . W d5,d3

beqg fendit * if yes, then end
fotherZ: tst.w plcode * ig Pl in c¢lip window

beq fother3

move .w di,d? * if not, and Pl and P2 lie

and.w plcode,d7 * both on one side of the

bne fexit * Clip-window then none of line is visible
fother3: move.w d4,a2 * otherwise take middle point

move .w d5,a3 * as new P2 and start again

move.w dl,p2code * until the intersect point

bra frndpoint * is found
fexit: move . w $#1,plcode * Inform ¢alling preg. of terminaticn.
fendit: rts * aither in d2,d3 middle point, cor
* * in plcode terminatiocn notice

***********‘k*t**t***********

* sine and cosine Function, angle is passed in DO and *

* the sine and cosine are returned in D1 and D2 *

*'k**************t***********‘k***********t*************************

sincos: tst.w do * Angle negative, add 360 degrees
bpl noaddi
add.w #360,40
noaddi: move.l #sintab,al * Beginning address of sine table
move.l d0,d2 * Angle in d0 and d2
1sl.w #1,d0 * Angle times two as index for access

move.w 0(al,d0.w),dl * sine to dl

ST 3D Graphics Abacus Software
CMmp.wW #270,d2 * Caleculate cosine through
blt plus? * displacement of sine values
sub.w #270,d2 * by 90 degrees
bra sendsin
plus9: add.w #90,d2
sendsin: lsl.w #1,d2

move .w

rts

Q(al,d2.w),d2

*

cosine to d2

4
and back to calling program

o e o e 3k ok W e 3 3 v A e 3 A e o W v e vk ok ol e vk sl e ok ol ol e e e e i ok ok o o vk o gk o o e o o e e e e ok ok ko o ek o

* sine function

w

* Angle 1is passed in d0 and the sine returned in dl *
LA 22 3R S L R L e T L e L Y

sin: move.l
tst.w
bpl
add.w

sinl: 1sl.w
move.w

rts

#$sintab,al

dd

sinl

#360,d0

1,40
0{al,d0.w),dl

Kk ddk ko koA Ak A ARk e AR AR R AR A AR AR T XTI ARK LI RAELRRA N K AR, kKR

* Initjalize the main diagnenal of the result matrix with *
* ones which were multiplied by 2714. This subroutine must *
* be called at least once before the call by rotate, or the *
* result matrix will only consist of zeros. *

R R AR AR AR A A Ak A A A A Ak A A AT Ak A AR AR A AR AR A AT AT AR A RARAR N AR RN RN RN AN

matinit: move.w
move . w
move.w
move . W
move . W
move . W
move . w
move . w
move .w

move .w

#0,d1
#16384,d2
d2, matrixll
dl, matrixl2
dl, matrixl3
dl, matrix2l
d2,matrix22
dl,matri=x23
dl,matrix3l
dl, matrix32

* The initial value for
* the main diagonal of
* the result matrix

* all other elements

* at zero

134

Abacus Software ST 3D Graphics

move . w d2,matrix33

rts

**

* Multiplication of the rotation matrix by the rotation *

* matrix for rotation about the X-axis *

**

xrotate: move . W xangle, d0 * multiply matrixli-matrix33
isr sincos * with the rotation matrix for a
move . W dl,sinx * rotation about the X-axis
move .w d2,cosx
move . w dl,d3
move . W d2,d4
move . w matrixll, rotxll * The first column of the matrix
move.w matrix2l, rotx2l * does not change with X rotation
move . w matrix31l, rotx3l
muls matrixl12,d2
muls matrixi3,dl
sub.l dl,d2
1sl.1 $2,d2
swap d2
move . w d2, rotxl2
move . w d3,dl
move . w d4,d2
muls matrix22,d2
muls matrix23,dl
sub.l dl,d2
1s1.1 42,d2
swap dz
move . w d2, rotx22
move.w d3,dl
move . w d4,d2
muls matrix32,d2
muls matrix33,dl
sub.1l dl,d2
1s1.1 $2,d2
swap dz2
move.w d2, rotx32

move.w d3,dl

135

ST 3D Graphics

Abacus Software

move.w
muls
muls
add.1
1sl.1
swap
move.w
move .w
move . W
muls
muls
add.l
1sl.1
swap
move . w
muls
mals
add.l
1s1.1
swWwap
move.w
move.l
move.l
move.l

subqg.1

rotxlopl: move.w
dbra

rts

d4,d2
matrixli2,dl
matrix13,d2
dl,d2

$2,d2

daz

d2, rotx13
d3,dl

dd,d2
matrix2z,dl
matrix23,d2
dl,d2

#2,d2

dz2

d2, rotx23
matrix32,d3
matrix33, dd
d3,d4

#2,d4

dd

d4, rotx33
#rotxll,al

#matrixll, a2

#9,4d7
#1,d7

fal)+, (a2)+
d7,rotxlopl

* Number of matrix elements

* Copy result matrix, which
* is still in ROTXnn, to MATRIXnn

KKK A AR KA T LT AR T R RN R H R KRR R AN AAR T ALk Arhk ke h kA hdkx ok

* multiply the general rotation matrix by the Y-axis *

* rotation matrix. Results are stored in the general *

* rotation matrix

*

KK HE LA AR AN N RN A KA IR A R I Ak r ke drkdk ko dede ek h e w ke dede sk ok b ok d o ok ok 3 o e o

yrotate: move.w
jsr
move . w
move .w
move . w

move.w

yvangle,dld
sincos
dl, siny
d2,cosy
dl,d3
d2,d4

* Angle around which rotation 1s made

* Sine of Y-angle

* Cosine of Y-angle

136

Abacus Software

ST 3D Graphics

muls
muls
add.l
1s1.1
swap
move .w
move.w
move . W
muls
muls
add.1l
1si.1
swap
move .w
rove . w
move.w
muls
mals
add.l
1sl.1
swap
move .w
neg.w
move .w
move . W
move .w
move . w
move.w
muls
muls
add.1l
1s1.1
swap
move.W
move . w
move.w
muals
muls
add.1l
1s1.1
swap

move . w

matrixll,d2
matrixl3,dl
dl,d2

$#2,d2

dz2

d2, rotxll
d3,dl

dd,d2
matrix2l,d2
matrix23,dl
dl,dz

#2,d2

daz

d2, rotx21
d3,dl

dd4,d2
matrix3l,d2
matrix33,dl
dl,d2

%#2,d2

d2

d2, rotx3l
d3

d3,dl

d4,d2
matrixl2, rotxle
matrix22,rotx22
matrix32, rotx32
matrixll,dl
matrixl3,d2
dl,d2

$#2,d2

dz

d2, rotx13
d3,dl

dd,d2
matrix21,dl
matrix23,d2
dl,d2

#2,d2

dz

d2, rotx23

~siny in the rotation matrix

The second column

of the starting
matrix does not
change

137

ST 3D Graphics Abacus Software

mals matrix3l,d3

muls matrix33,d4

add.l d3,d4

1s1.1 $#2.d4

swap d4

move.w d4, rotx33

move .l #8,d7

move .1l #rotxll,al * Address of result matrix

move .l #matrixll, a2 * Address of original matrix
yrotlopl: move.w {al)+, (a2)+ * Copy result matrix

dbra d7,yrotlopl * to the original matrix

rts

* Z-axis - Rotation matrix multiplications

*

t*t*t**

zZrotate: move.w
isr
move .
move .

move.

£ £ £ %

move.
muls
muls
sub.l
1sl.1
swWap
move .w
move .w
move . w
muls
mals
sub.1
1s1.1
swap
move.w
move.w
move.w
muls
muls
sub.l

zangle,d0
sincos

dl, sinz
d2,cosz
di,d3

d2,d4
matrixll,d2
matrixl2,dl
di,d2

#2,d2

d2

d2, rotxll
d3,d1l

d4,d2
matrix2l,d2
matrix22,dl
dl,d2

#2,d2

dz2

d2, rotx21
d3,d:

d4,dz2
matrix3l, d2
matrix32,d1l
dl,d2

138

Abacus Software ST 3D Graphics

1sl.1 #2,d2
swap d2
move .w d2, retx3l
move .w d3,d1
move.w d4,d2
muls matrixll,dl
muls matrixl2,d2
add.1l dl,d2
1s1.1 #2,d2
swap d2
move .w d2, rotxl12
move . w d3,dl
move .w d4,d?2
mils matrix21,dl
muls matrix22,d2
add.l dl,dz2
1si.1 #2,d2
swap dz
move . w d2, rotx22
muls matrix31,d3
mals matrix32,d4
add.l d3,d4
1s1.1 $2,4d4
swap ad
move . w d4, rotx32
move.w matrixl3, rotx1l3 * the third column
move .w matrix23,rotx23 * remains
move .w matrix33, rotx33 * unchanged
move .l 48,d7
move .l frotxll,al
move.l #matrixll,aZ2
zrotlopl: move.w (al)+, {(a2)+ * copy to general
dbra d7,zrotlopl * rotation matrix

rts

ST 3D Graphics Abacus Software

HHEK KA I A IR T ALK IR RE KR A AR F K d sk hodok ok hdd & ok ke ok ok %0 3 3 o % e A e W o e 3 7 o 0 s o e ok Sk

* Multiply every point whose Array address is in datx etc. *
* by previous translation of the coordinate source to *
* point [offx,cffy,offz], with the general rotation matrix. *
* The coordinate source of the result coordinates is then *
* moved to point [xoffs,yoffs,zoffs] *

LRSS AR S SRS SR TSR eE s R LR L R R R R R R R R L R R R g

rotate: move . w nummark, d0 * Number of points to be
ext.] dd * transformed as counter
subg. 1 #1,d0
move.l datx,al
move.l daty, a2
move.l datz,a3
move.l peintx, a4

o move.l pointy, a5

move.l peintz,aé

rotatel: move.w {al) +,d1 * X-coordinate
add.w offx,dl

move ,w dl,d4

move.w (a2} +,d2 * Y-coordinate

add.w offy,d2 * Translation to point [offx,cffy,offz]
move.w d2,d5

move.w (a3)+,d3 * Z-coordinate

add.w offz,d3

move . w d3,deé

muls matrixll,dl
muls matrix2l,d2
muls matrix31,d3
add.l di,d2
add.l d2,d3
1s1.1 #2,d3
swap d3
. add.w xoffs,d3
! move.w d3, (ad) + * rotated ¥-coordinate
g move.w d4,dl1
ﬁ meve.w d5,d2
} move.w d6,d3
muls matrixl2,dl

140

Abacus Software

ST 3D Graphics

muls
muls
add.l
add.l
1s1.1
swap
add.w

move . w
muls
muls
muls
add.1l
add.1l
1s1.1
swap
add.w

move . w
dbra
reLs

matrix22,d2
matrix32,d3
dl,d2

d2,d3

#2,d3

d3

yoffs,d3

d3, (ad)+
matrixl3,d4
matrix23,d5
matrix33,de6
d4,d5

d5,d6

#2,d6

de

zoffs,deé

dé, (a6) +
d0, rotatel

* rotated Y-ccordinate

* rotated Z-coordinate

dk kAR A KKK KRR I KT TR ARR A IR T AR AR R bR R AR KAk kdrkk ke hkhdkhkkkkkkhkk*

* Perspective, calculated from the transformed points in the arrays *

* pointx, pointy and pocintz the screen cocordinates, which *
mgp—

* 3 *
are then stored in the arrays xplot and gplot .

KA KR KA AR N A AT AR A AR A I A A I AREFTARNN TR KA AR AR AR TRk bk Ak Ak kR k kR kR ek kAR kK

pers: move.
move.
move .
move .

move.,

£ ~ H F =~

move.
ext.l
subg.l

perlop: move . w
move.w
move.w

sub.w

pointx,al
pointy,a2
peintz,al3
xplot, a4
yplot,ad
nummark, 40
do

#1,d0

(a3) +,d5
d5,dé
dist,d4
a5, d4

* Beginning address of

* Point arrays

* xplot contains start address cf the
* display ccordinate array

* Number of points to be transformed
* as counter

* z-coordinate of object

* Enlargement factor

* dist minus Z-cocrdinate of Obj.coord

i41

ST 3D Graphics

Abacus Software

persl:

perendl:

ext.l
1sl.1
move .w

ext.l

sub.1

bne

move .
addq.
addq.

move .

£ £ -+ £

move.

bra

divs
move . W
move.w
move.w
neg.w
muls
lsr.1l

add.w
add.w
move.w
move.w
move.w
neg.w
muls
lsr.l

add.w
neg.w
add.w
move . w
dbra

rts

d4
#8,d4
zobs,d3
d3

d6,d3
persl

#0,d1
$#2,al
#2,a2
dl, (ad)+
di, {(a5)+
perendl

d3,d4
d4,d3
(al)+,dl
dl,d2

dl

dl,d3
#8,d3

d3,d2
x0,d2
dz2, (ad) +
{a2)+,dl
dl,d2

dl

dl,d4
#8,d4

d4,dz2

d2

y0,d2

dz, {a5)+
d0, perlop

* times 256 for value fitting

* Projection center Z=-coordinates

* minus Z-cocordinate of object

* Catch division by zero
* Not really required since
* computer catches this

* with an interrupt

X~coordinate of obiect

multiplied by perspective factor

/256 save value range fitting

add to X-coordinate
add screen offset (center point)
Display X-ccordinate

Y~coordinates of obkject

/256

Display offset, mirror of Y-axis
Source at [X0,Y0]

Display Y-coordinate

All points transformed ?

If yes, return

142

Abacus Software ST 3D Graphics

2222222232322 23 32 2322232 a2 i s sttt et sl sy

* Draw number of lines from array from lines in linxy *

o o de d g e v g o ok ok o vk ok ok ok ok ok ol ok e e o 9 e g i e 3 ok e i e e e ok ok ke ke e e sk b e ok e ok ok ok ke kR ok

drawnl: move.l =xplot,ad * Display X-ceoordinate
move.l yplot,as * " Y-coordinate
move.w numline,d0 * Number of lines
ext.l d0
subg.l #1,dC * as counter
move.l linxy,ab * Address of line array
drlop: move.l (a6)+,dl * first line , (P1,P2)
subg.w #1,d1 * fit to list structure
I1sl.w #1,d1 * times list element length (2)
move.w 0Otad,dl.w),d2 * X-coordinate of second pecint
move.w 0{a5,dl.w),d3 * Y-coordinate of second point
swap d1 * gsame procedure for first point

subg.w #1,dl
1sl.w #1,d1

move.w ({ad,dl.w),a2 * ¥-coordinate of first point
move.w 0(ab,dl.w),a3 * Y-coordinate of first point
isr drawl * draw line from P2 to P2

dbra d0,drlop * All lines drawn 2

rts

drdede A vk dede e sk T vk A ok e R W W R R W U e sk U W o 3k o ol e e v e de e ok ok e e e ke de e Sk o R R R e R R W ek e

* simple counting loop *

KA AR R NIRRT A A AT A AR A AN AR R RN AR R T ARRAA ko wwrdek sk ek drd ok hk kb kwkk

waitl dbra db,waitl * delay loop, counts d0 register

rts * down to -1

g Tk ok ke o e e Wk de % ok e g e de do ok ok ek ok e e ek el ok Yo e g ok e ol i e e ke e e ok ok ok ek ok ki k k o e e kR KR Rk

* wait for key press, for Test and Error detection *

I e A2 2R TS S L RS RSS2 222 R 2t il sd s st sttt ittt hns

wait: move .w #1,-(am) * wait for key activation
trap #1 * GEM DCS call
addg.1l $2,a7
rts

143

ST 3D Graphics Abacus Software

% % 9 % e 3 % gk gk de 3 7 o %k ok ok ok ek e e e ok vk e vk e e vk ok e Yok T ok e T sk sk ok ol ok ok o ok R e e Rk W Ik ok Rk ok e T e e ok e ok

* Key sensing, ASCII code returned in lower byte word of DO *
* Scan code in upper sord lecwer byte of DO *
* Returns zerc if nc input *

R KRR HRHE TR AR A RA A AAA IR R AR AN AR AR R AR AR A T Ir ok hoh kxR k kv bk ke kkdkdkd

inkey: move . W #2,-(al) * Key sensing, does not
move.w #1,-(a’l) * wait for a key
trap #13 * press
addg.l #4,a7
Lst.w do
. bpl endkey
. move.w #7,-{a™h)
| trap #1
addg.l $#2,a7

endkey: rts

Ak A A AR A A KA A A A I AR A AR AR A AR A R AT AT AL R R I AR K Ak koA kR Ak hkk Tk dxdd ok

AR A AR AT KA A AR IR AR IR KA AR ARk kAR kAR Ak Ak hkk kA drdkkkkdhdk R wx

** The six fcllowing subroutines are only required *x
! ** for the second main program and do not have to be **
** entered for linking to the first main pregram *x

KR KA KK IR I A NIRRT R KK A ARk Rk kdkdohddekkkdrarobdrdddkk ko ddo sl drrr ke ke ke e ok ko ok ok &

IR T e P S s e 2SS R E RS Rl Rttt sttt l s

filstyle: move.w #23,contrl * YyDI function, set
move . w #0,contrl+2 * fill style passed
move . w #l,contrl+6 * in DO
move . W grhandle, contrl+12
move.w d0, intin
isr vdi
rts

filindex: movem.l d0-d2/al-a2,~(a7) * set fill pattern

| move . w #24,contrl * also passed in DO
move.w #0,contrl+2

L move.w $#1,contrl+6

‘ move.w grhandle, contrl+l2

! move.w d0,intin

144

Abacus Software

ST 3D Graphics

jsr
movem. 1

rts

filcolor: move.w
move . w
move . w
move.w
move.w
isr

rts

filmode: move.w
move.w
move.w
move.w
move .w
jsr

rts

filform: move.w
move .w
move . w
move . w
move .w
jsr

rts

vdi

{a7) +,d0-d2/a0-a2

#25,contrl
#0,contrl+2
#1,contrl+é

* gset fill color teo

grhandle, contrl+12

#1,intin
vdi

#32,contrl
#0,contrl+2
#l,contrl+é

* one

* set write mode

grhandle,contrl+l2 * passed in DC

d0,intin

vdi

$104, contrl
#0,contrl+2
#l,contrl+é

* switch on border

* around area

grhandle, contrl+12

#1,intin

vdi

KR E K AR KA AR Rk Rk dde kA A A AR AR R AR KRN A AR AR AN AN ATk ANk

* Rotation of a number of points {(nummark) in array datx etc. around*

* angle yangle around Y-axis to array peintx = address of array *
Kok kA Rk kR kT kAR kAT R N LA RK KAk dekkkdrdex bk drdhkdkdhhhhkkkx

yrot: move . W
jsr
move.w
move.w
move.l
move.l
move .l

move.l

yangle, dl

sincos

dl,siny
d2, cosy
datx,al
daty,a2
datz,al

pointx, a4

rotate the definition line

of a rotation body nummark

times about the Y-axis

Rotation is done without

matrix multiplication,

but directly, from arrays datx

in which the address of the definition
line was stored intc the array

145

ST 3D Graphics Abacus Software
move . | peinty,ab * whose address 1s stored
move.l peintz, ab * in pointx etc.
move .w nummark, d0
ext.l do * the rotation is about
subg.l #1,d0 * angle -y, i.e. from direction

ylop: move.w {al)+,dl * positive Y-axis
move . w dl,d3 * counterclockwise
move . w (a3)+,d2
move . w dz2,d4 * z' = x*siny + z*cosy
muls cosy,d?2
1sl1.1 #2, d2 * retract area extension
swap d2 * sine values
muls siny,dl
1s1.1 $2,d1
swap dl
add.w dl,dz
move.w dz, {a6) + * store z’
muls siny,d4 * calculate x’
1s1.1 #2,d4 * % = x¥cosy =~ z¥*siny
swap d4
neg.w dé
muls cosy,d3
isl.1 #2,d3
swap a3
add.w d3,d4
move . w dd, (ad) + * store x'
move.w {a2)+, (ad)+ * y’ =y, since rotation is
dbra dd, ylop * around Y-axis
rts

A KA KA ALK AR KA AR AR A A KA A A A AT A A A AR A TR R AN A AR AN RAAR AN AT AT A Ao

* Variables for the basic program *

Ak kAR A A A A A AT AR AR AR AT AR R AR AT AN RRERKRKNKN KRR A& i 3 i o oir ol o ok e e e & e s de e x ke e

.even
.data

sintak: .dec.w
de.w

do.w

* Sine table starts here
0,286,572,857,1143,1428,1713,1997,2280

2563,2845,3126,3406,3686,3964,4240,451¢6
4790,5003,5334,5604,5872,6138, 6402, 6664

146

Abacus Software

ST 3D Graphics

de.w
.do.w
.de.w
.dc.w
de.w
.dc.w
de.w
.de,w

.dc.w

.de.w
.dc.w
.de.w
.de.w
.dc.w
.de.w
.dc.w
de.w
de.w
.de.w
de.w

.dc.w

.dec.w
.de.w
de.w
.de.w
.de.w
.dc.w
de.w
.de.w
dec.w
.dc.w
.de.w
.dec.w
.de.w
.de.w
dec.w
.dc.w

de.w

6924,7182,7438,7692,7943,819%2,8438, 8682
B923,9162,9397,9630, 9860,10087,10311, 10531
10749,10963,11174,11381,11585,11786,11982,1217¢
12365,12551,12733,12911,13085,13255,13421,13583
13741,13894,14044,14189,14330,14466,14598,14726
14849,14962,15082,15191,152%6,15396,15491, 15582
15668,15749,15826,15897, 15964, 16026,16083, 16135
16182,16225,16262,16294,16322,16344,16362,16374
16382,16384 ’

16382,16374,16362,16344,16322,16254,16262,16225
16182
16135,16083,16026,15964,15897,15826,15749, 15668
15582,15491,15396,15296,15191,15082,14962,14849
14726,14598,14466,14330,14189,14044,13894,13741
13583,13421,13255,13085,12911,12733,12551,12365
12176,11982,11786,11585,11381,11174,10963,10749
10531,10311,10087,9860,9630, 9397,9162,8923
8682,8438,8192,7943,7692,7438,7182,6924
6664,6402,6138,5872,5604,5334,5063,4790
4516,4240,3964,3686,3406,3126,2845,2563
2280,1997,1713,1428,1143,857,572,286,0

-286,-572,-857,-1143,-1428,-1713,-1997,~2280

-2563,-2845,-3126,-3406,~3686,-3964,-4240,-4516
-4790,-5063,-5334,~-5604,-5872,-6138,-6402,-6664
-6924,-7182,-7438,-7692,-7943,-8192,-8438,-8682

-8923,-9162,-9397,-9630,-9860,~-10087,-10311,-10531

-10749,-10963,-11174,-11381,-11585,-11786,-11982
-12176
-12365,-12551,~-12733,-12911,-13085,-13255,-13421
-13583
-13741,-13894,-14044,-14189,-14330,-14466,-14598
-14726
~-14849,-14962,-15082,-15191,-15296,-15396,-15491
-15582
-15668,-15749,-15826,-15897,-15964,-16026,-16083
-16135
-16182,-16225,-16262,-16294,-16322,-16344,-16362
-16374,-16382,-16384

147

ST 3D Graphics

Abacus Software

x0:
y0:
20:
zl:

linxy

nummark :

numline:

pointx:
pointy:
peintz:

xplot
yplot

datx:
daty:
datez:

.dc.w
.dc.w
.de.w
.dc.w
.da.w
.dc.w
.de.w
.de.w
de.w
.dc.w
.de.wW
.de.w
.de.w
de.w
.dc.w
GC..w

.dc.w

even

.bss

T xoxox

.ds.l

.ds.w

.ds.w

.ds.l
.ds.l
.ds.1l

.ds.1l
.ds.l

.ds.l
.ds.1
ds.1

-16382,-16374,-16362,-16344,-16322,-16294,-186262
-16225,-16182
-16135,-16083,-16026,-15964,-15897,-15826,-15749
-15668
-15582,-15491,-15396,-15296,-15191,-15082,-14962
-14849
-14726,-14598,-14466,-14330,-14189,-14044,-13894
-13741
-13583,-13421,-13255,-13085,-12911,~312733,-12551
-123865
-12176,-11982,-11786,-11585,-11381,-11174,-109¢&3
-10749

-10533,-10311,-10087,-9860,-9630,-9397,-9162,-8923

-8682,-8438,-8192,-7943,-7692,-7438,-7182,-6924
-6664,-6402,-6138,-5872,-5604,-5334, -5063,-4790
-4516,-4240,-3964,-3686,-3406,-3126,-2845,-2563
-2280,-1997,-1713,-1428,-1143,-857,-572,-286,0

1 * Position of the coordinate origin on

1 * the screen

1

1

1 * This is the address of the line array
* Number of points
* Number of lines:

1 * Variables of point arrays for world,

1 * view, and screen coordinates

1

1

1

1

1

1

143

Abacus Software ST 3D Graphics
sinx: .ds.w 1 * Temporary storage for sine and
sinz: .ds.wW 1 * cosine values
siny: .ds.w 1
COSX: .ds.wW 1
cosz: .G8.W 1
cosy: .ds.w 1
varl: ds.w 1 * general varilakles
varl: .ds.w 1
var3: .ds.w 1
xangle: .ds.w * Variables for passing angles
yangle: .ds.w * to the rotation subroutine
zangle: .ds.w
physbase: .ds.1l 1 * Address of first screen page
logbase: .ds.l 1 * Address of second screen page
contrl: * Arrays for AES and VDI functions
opcode: ds.w 1 * for passing parameters
sintin: .ds.w 1
sintout: .ds.w 1
saddrin: ds.w 1
saddrout: .ds.w 1
.ds.w 6
global:
apversion: .ds.w 1
apcount: ds.w 1
apid: .ds.w 1
apprivate: .ds.l 1
apptree: .ds.1 1
aplresv: ds.l 1
aplresv: .ds.1 1
ap3resv: .ds.l 1
apiresv: .ds.l 1
intin: .ds.w 128
ptsin: ds.w 256
intout: .ds.w 128

149

ST 3D Graphics

Abacus Software

ptsout: .ds.w
addrin: ds.w
addrout: ds.w

grhandle: .ds.w

lineavar: .ds.l

.data
vdipbk: de.l
aespb: .de.l
leftx: da.w
lefty: .dc.w
rightx: .dc.w
righty: de.w
plcede: .de.w
p2code: .de.w
codel: .do.w
codel: dc.w

mid_code: .dc.w

clipxule: .dc.w
clipyule: .dc.w
clipxlri: .dc.w

clipylri: .dc.w
dist: dc.w
zobs: dc.w
rotxli: .do.w
rotxl2: de.w
rotxl3: dc.w
rotx2l: de.w
rotx22: .dc.w
rotx23: dc.w
rotx3l: .de.w
rotx32: de.w
rotx33: .de.w
.bss

128
128
128

o D o O

contrl, intin,ptsin, intout, ptsout
contrl,global, intin, intout, addrin, addrout

o o O O O

639
399

0
1500

16384
0

16384

* sStarting address of Line-A var

* Clip window variables

* Space here for the result matrix of

* matrix multiplication

150

Abacus Software ST 3D Graphics

matrixll: .ds.w 1 * Space here for the general i
matrixl2: .ds.w 1 * rotation matrix .

matrixl3: .ds.w 1 ‘
matrix2l: .ds.w 1

matrix22: .ds.w 1

matrix23: .ds.w 1

matrix3l: .ds.w 1

matrix32: .ds.w 1

matrix33: .ds.w 1

.end

Desk File WView 0

tion

Az i Ft\SDUIRR., DIRS
251882 bytes used 1 s, 333956 bytes used in
B PRINTERS SRSIC. RS ~93Tg| ASLINKL BAT
% TUTORIAL BASTC RSt 1322:: ii-ga BASICL S
¢ FRY BASIC WRK 346 11-20 GRLINK BAT
CoNY TP BASICL BAK 14883 11-26+- BRLINKL O
RL18 PRG | — GRLINKL S
ODUTPUT PRO N GROUNDL §
SPLIT TP OPEK APPLICATIO HIDEL PRE
STARDARD PRT Name: BATCH .TTP HIDEL Y
TEXTPRD PRG Parameters; HOUSEL PR6
TUTORIAL TXT aslink griinkl h:?seii HOUSEL S
{TTUTORI TOC MAIN1 PRG
MRINL S
MAINICD PRG
MATHICO

151

ST 3D Graphics Abacus Software

4.1.1 Explanation of the subroutines used

grlinkl.s

The transfer of addresses of all data, coordinates, number of corners and
lines is not made directly, but through global variables. This increases
flexibility and makes it possible to use just one rotation routine. For
example, the perspective transformation routine (pers) transforms the data
whose beginning addresses are passed in the variables pointx,
pointy, pointz and the number of which is passed in the variable
nummark, in an array, whose starting address is also passed
(xplot, yplot). Because of this it does not matter where data is stored
in memory and the amount is irrelevant. For example, the transformation
can be carried out for all defined points or only for a few. The brief
overview which follows on the subroutines of the link file grlinkl.s
should be supplemented with the comments in the program.

/

sstart: Initialize the program. WV-
aes: Call a function from the AES library.

vdi: Calls a function from the VDI library.

apinit: Announce an application.

openwork: Open alogical display.
grafhand: Returns the number of this logical display.

mouse on: Enables the mouse and its controller through the
operating system.,

Switches off mouse and controller.

Returns the sine (D1) and cosine value (D2) of an
angle (-360,+360) passed in DO.

Asks for the display address of the system and
recognizes what screen resolution is being used;
this serves to determine the two screen pages.

152

Abacus Software ST 3D 'Graphics

|
clwork: VDI-Function, clears the current logical display. F
|

plotpt: Plots a point, X-coordinate in D2, Y-coordinate in
D3.
drawl: Draws a line from X1, Y1 to X2,Y2 ta:king the

Clip window specified by the variables clipule,
cliplre into account using the line-A routine.

rel pos: Recognizes the area in which the point passed in
D6 (X-coord.) and D7 (Y-coord.) lies relative to
the clip window. The result is returned in D1 (4-bit
code).

end point: Finds, if present, an intersection point of the line
with the border of the clip window.

matinit: Initializes the main diagonal of the rotation matrix
(matrixll-matrix33) with 16384 which
corresponds to a sine value of one.

xrotate: Multiplies the rotation matrix by the matrix for
one rotation about the X-axis,

yrotate: Multiplies matrix with the matrix for rotation
about the Y-axis.

zrotate: Same for Z-axis.

mtate: This is the general rotation routine. Here every
point from the point array (passed in pointx etc.)
is rotated around the angles xw, yw, zw, and then is
moved to point [xoffs,yvoffs,zoffs] after a
preliminary displacement of the coordinate origin
to point [of£x, 0ffy,0ffz],

pers: Calculates the perspective screen coordinates and
stores them at addresses passed in xplot,
yplot.

ST 3D Graphics

Abacus Software

symbol:

pagedown:

page up:

waitl:

wait:

inkey:

printf:

yrot:

filstyle:

filindex:

filcolor:

filmode:

filform:

Connects the points in the screen coordinate array
with lines. The address of the line array is in
linxy, and the number of lines in numlin.

Turns on the logical screen page. After the call
drawing is done on the other page.

Turns on the physical (higher) display page.
Subsequent drawing is done on the logical page
(toggle).

A timer loop which only counts the DO-register
down to -1.

Waits for a key press and then returns.

Senses the keyboard without waiting. The ASCIL
and key codes are returned in register DO.

Writes a string on the display which must be
terminated with a zero. The address is passed in
A0.

This routine, and the five following routines are
not used by the first main program. It rotates a
number of points around the Y-axis directly and
without use of matrix multiplication.

The VDI function sets the fill style which is passed
in DO (O=no fill, 1=fill with color, 2=fill with dots,
3=shade, 4=user-defined fill pattern).

Sets the various fill patterns according to style

Determines the fill color (for monochrome display
only black or white, 1=black).

Sets the write mode, 1 = replace.

Subsequent filied surfaces will be surrounded with
a border after calling this routine.

154

Abacus Software ST 3D Graphics

KA KKK KA AR Ak A A A Ak ko kA A A AR A NI A A AR R KRR AR AR AR AR A RN Rk ke kA hdodk

* heousel.s 14.1.1986 *
* Display a wire-mode]l house Uwe Braun 1985 Versicn 1.1 *
* *

FREXE LA AA TR A AL A AR KA AAAANK LA AARKN AR AANN A kwkh ko kkkh Ak kkkkhhhhhkhkdk

.globl main, xoffs,ycffs,zoffs,offx,0ffy,0ffz
.globl viewx,viewy,viewz
.globl wlinxy,setrotdp, inp chan,pointrot
-text
main:
isr apinit * Announce program
isr grafhand * Get screen handler
jsr openwork * Announce screen
isr mouse off * Turn off mouse
jsr getresc * which monitor is connected ?
isr setcocli * Set clip window
jsr makewrld * Create the world system
jsr worldset * Pass the world parameters
isr setrotdp * initjalize obs. ref. point
jsr clwork * erase both screen pages <
jsr CE%EEEEEE:) * Display logical screen page .UL iﬂ;gyg—’;)
jsr clwork !JJJM=““' s
J 4K
isr inp chan * Input and change parameteps L
mainlopl: U

jsr pointrot * rotate around obs. ref. point

jsr pers * perspective transformation

jsr drawnl * Draw lines in linxy array - }

jsr * Display physical screen page
e

jsr inp_chan * Input new parameters

jsr clwork * erase(iggigéi)screen page

jsr pointreot * Rotate around Roct. ref. point

jsr pers * Transfecrm. of new points t

Isr drawnl _ * draw in logical page, then ——"

jsr Jripagedowa) * display this ;ogiggi‘baqe

jsr inp chan- * Input and change parameters

155

ST 3D Graphics Abacus Software

jsr clwork * erase physical page
jmp mainlopl * to main leoop
mainend: move.l physbase, lcgbase
rs
jsr Kéggggg) * switch to normal display page
rts * pack to linkfile, and end

A K KA NI KA KA KRR AN KT AR R AR KRR KA AKARRA NN T ARk dkhkkdox Rk ok w Wk d ok & drooe sk ok ek

* Remove all accumulated characters in the keybocard buffer *
KKK ERK RN AR R AR I I ok o e g o sk ok sk ok o & o W Ak ke ok o ok ek W T de e ok ok ke T o i R R ok ok e e e

clearbuf: move.w #$b,={a) * Gemdos funct. Character in buffer?
trap $#1
addg.1l #2,a71
tst.w do * If yes, get character
beq clearend * If no, terminate
move .. W 41,~-(a7) * Cemdos funct .CONIN
trap #1 * repeat‘until all characters are
addg. 1l $2,a7 * removed from the buffer
bra clearbuf

clearend: rts

wek K ek e T e ok e d e ok e s kTt vk ok ok W% e ok ok v o ok i o i s e o e e ok ke i o ok ok W W e T T Tk o A ke ok ok s R ok

* Change observaticn parameters with keyboard sensing *
* Angle increments, location of the projection plane, etec. *

PP R R R R R R R 32 EE 2222232222222 R sttt s bR i

inp_chan: jsr inkey * Read keyboard, code in DO
cmp.b #/D',d0 * shift D = print
bne inpwait
jsr scrdmp * make hardcopy
inpwait: swap dd * test DO, 1if
cnp.b #54d,d0 * Cursor-right
bne inpl
addg.w #1,ywplus * if yes, add eone to Y-angle
bra inpendl * increment and continue
inpl: cmp.b $54b,d0 * Cursor-left, if yes, then
bne inp2 * gubtract one from Y-angle
156

Abacus Software

ST 3D Graphics

inp2:

inp3:

inp3a:

inp3b:

inp4:

inp5:

inp6:

inp7:

subqg.w
bra

c¢mp.b
bne
addqg.w

bra

cmp.b
bne
subqg.w

bra

cmp.b
bne
subg.w

bra

cmp.b
bne
addqg.w
bra

cmp.b
bne
sub.w
bra
cmp.b
bne
add.w

bra

cmp.b
bne
sub.w

bra

cmp .k
bne
add.w

bra

#1l,ywplus
inpendl

#550,d0
inp3

41, xwplus
inpendl

#548,d0
inpla

41, xwplus
inpendl

#561,d0
inp3b

#1, zwplus
inpendl

#362,d0
inpd
#1,zwplus
inpendl

$#54e,d0
inp5
$#25,dist
inpendl
#54a,do
inpé6
#25,dist
inpendl

#566,d0
inp7

#15, rotdpz
inpendl

#%$65,d0
inpl0

#15, rotdpz
inpendl

increment

Cursor-down, if yes

then add cne to X-angle increment

Cursor-up

subtract one

Undo key

Help key

plus key on numerical keypad
if yes, subtract 25 from location

Projection plane {Z-coordinate)
N

minus key on the numerical keypad
if yes, add 25

astersisk key on numerical keypad
if yes, subtract 15 from rotation
peint Z-coordinate

Make changes

Division key on num.keypad

add 15

157

ST 3D Graphics

Abacus Software

inpl0:

inpendl:

inpend2:

inpendd:

inpend4:

inpend5:

inpendé6:

inpend?:

inpendB:

inpend9:

cmp.b
bne
addqg.l
bra

move .w
add.w
cmp.W
bge
cmp . W
ble
bra
sub.w
bra
add.w

move.w

move .W
add.w
cmp.W
bge
cmp.w
ble
bra
sub.w
bra
add.w

move.w

move . w
add.w
cmp . W
byge
cmp.w
kble
bra
sub.w
bra
add.w

#544,d0
inpendl
#4,a7

mainend

hyangle,dl
ywplus,dl
#360,d1
inpend?2
#-360,d1
inpend3d
inpend4
#360,d1
inpend4d
#360,d1

dl, hyangle

hxangle,dl
xwplus,dl
$360,d1
inpend5
#-360,d1
inpendb
inpend?
#360,d1
inpend?
#360,d1

dl, hxangle

hzangle,dl
zwplus,dl
#360,41
inpend8
$-360,d1
inpend9
inpendl0
#360,d1
inpendl0
$#360,d1

* P10 activated ?

* if yes, jump to
* program end

* Rotation angle about Y-axis
* add increment
* {f larger than 360, then
* gubtract 360
* is smaller than 360, then
* add 360

* proceed in the same manner
* with the rotation angle about
* the X-axis

* store angle

158

Abacus Software ST 3D Graphics

inpendl0: move.w dl,hzangle

rts

(322SR LRSS RS SRS RS S ER s R s REttRtlattat s R Rat RS &k

* Initialize the rotation reference point to [0,0,0] *

A AR A AR AR AN AT R AR A AT AR AR A TR A A I I A Ak A AT Rk A AR IR R AR AR AR K

setrotdp: move.w #0,d1 * set the start-rotation-
move .w dl, rotdpx * datum-pcint
move.w dl, rotdpy
move .w dl, rotdpz
move . w #0,hyangle * Start-rotation angle
move.w #0,hzangle
move . w #0, hxangle
rts

TR E 2SS RS EE SR EELSSERELS SRR RSS2 2SR sttt Rttt st oS

* Rotaticn around one peint, the rotation reference point *

TR TR IR T T AKX AR A I KA A A A AT R R AENARNRATRRRR A AA KK ok dkddddroks k& &k %ok sk ok

pointrot: move.w hxangle, xangle * rotate the world around the angle
move . w hyangle, yangle * hxangle, hyangle, hzangle about the
move . w hzangle, zangle
move .w rotdpx,dl * rotation reference pecint
move . w rotdpy,dl
move . w rotdpz,d2
move . w d0, xoffs * add for back transformation.
move.w dl,yoffs
move.w dz,zoffs
neqg.w do
neqg.w dl
neg.w dz2
move.w db,offx * subtract for transformaticn.
move.w dl,offy
move .w d2,cffz
jsr matinit * Matrix initialization
Jjsr zrotate * first rotate around Z-axis
jsr yrotate * rotate "matrix’ around Y-axis
jsr xrotate * then rotate around X-axis
jsr rotate * Multiply points with the matrix.

rts

ST 3D Graphics Abacus Software

AR A A AT AR AR A AT AT AR AT ATk d ke ks ko ko ddekdkkdrwr ko w kA e & ok o s ok ke ok ook ok o

* Creation of the world system from the object data *

KRR I KK AN AR E AR AR KA KA A AR AR AR A AR AT R T ARk A Rk ok khkd ki dhwrkkkkkwkwk ko

makewrld: move.l thousdatx,al * create the world system by
move.l #housdaty, a2
move.l #housdatz, a3
move.l #worldx, ad
move.l #worldy, ab
move.l #worldz, a6
move .w hnummark, d0
ext.l d0
subg.l #1,d0
makewll: move.w {al)+, {ad)+ * copying the house data into the
move . w (a2) +, (ad8)+ * world data
move . w (a3)+, {ab) +
dbra d0, makewll
move.w hnumline, dO
ext.l do
subg.l $1,d0
move.l #houslin,al
move.l #wlinxy, a2
makewl2: move.l (al) +, {(a2) +
dbra d0,makewl?2
rts

KKK WK AR RN N A AR H R AR R IR R IR R kKRR TR H Kk kI hhr kR kAR AT R KRR IR TRk ke x ok xk ok kok ok

* Pass the world parameters to the link file variables *
AR A KK A RN AR KA A AR TR R T AR KR RE AR AR AL AR A AT R IR A A AR AT R R A AR R R R R ANk ddF

worldset: move.l #worldx,datx * Pass variables for
move .1 #worldy,daty * the rotation routine
move.l $worldz,datz
move.l #viewx,pointx
move.l $viewy,pointy
move.l $viewz,pointz
move.l #wlinxy, linxy
move .w picturex, x0
move .w picturey,y0
move . w proz,zobs
move.w rlzl,dist
move.l $screenx, xplot
160

Abacus Software

ST 3D Graphics

move.l
move.w
move.w

rts

#screeny, yplot
hnumline, numline

hnummark, nummark

o % ok o ok o e sk vk ok e vk v ke e o e o e e Sk W e K e g o T I i e e ok ok ok e vk ke e s ok e e e ok ke ok ok e e ok ke ek ek

* sense current display resolution and set coordinate origin of the *

* screen system to the center of the screen *

22T ERRRE SRR3R et s st sl i sttt ittt iRl st g

getreso: move.w
Lrap
addg.l
cmp .. W
bne
move .w
move .w
bra

getrl: cmp . W
bne
move.w
move.w
bra

getr2: move . w
move . w

getrend: rts

#4,-{am)

#14

$2,a7

$2,d0

getrl
$#320,picturex
#200,picturey
getrend

#1,d0

getr2
#320,picturex
#100,picturey
getrend

#160, picturex
#100,picturey

* for monochrome monitor

* medium resolution {640%*200)

* low resolultion (320%200)

A KK TR AR T I Ik A Hhhh Ik kA AR KRR RK RN HN N KK K% e e ok o ook s o e de ok

* Hardcopy of the display after activating Shift d on keyboard *
[L 2 R 2 e R AR AR A2 R2 RS SRREX3 2R Rt 222222 At a st b R ittt sl

scrdmp: move.w
trap
addg.1

jsr

$20,-(a7)
$14
$2,a7

clearbuf

* prevent another hardcepy

ST 3D Graphics Abacus Software

Yo % A T e o i ok e T e e T ok o W e e Sk e ok ok e e et ok ok b R s i ok ok o ke e ke ok S e g o ok ol ol o S o e ok e ok ok ok kK ok ol e e ke e e

* Sets the limit of the display window for the draw-line algorithm *

* built inte the Cohen-Sutherland c¢lip algorithm *
* The limits are freely selectable by the user, making the draw- *
* line algorithm very flexible. *

A KE TN TR I I AT KK AR h AR A K AR R K RAKKNAN KA I IA R AT h Ak Ak ke ke dH AR AN WKk kdkododxkk

1 setcocli: move.w #0,clipxule =* Clip left X-Coord.
! move . w #¥0,clipyule * " Y=Coord
l move . W picturex,dl
‘ Isl.w #1,d1 * times two
subg.w #1,d1 * minus one equal
move.w dl,clipxlri * 639 for monochrom
move . W picturey,dl
1sl.w #1,d1 * fimes two minus one egual
subg.w $#1,d1 * 399 for monochrom
move .w dl,clipylri * Clip right Y-Coord
rt.s
- .even

B 2 X 2 2 2222222222324 222322 R 22222 i sttt bt bl

* Here begins the variable area for the program module *

* *

A A KA AR KT R A AR AN H AR AR E AR TR R EA AR TR AR AR AR T H R KN KKK K &9 d ok k koo d bk v

e o e e ok A i T g R R W R % o e e e T e o e W T ok o e R R R R T T T ok ok o e O ok ok o e ok ok ok ok o ok ok T e ek o e

; Fede sk d gk ek A A ek sk e v i ke Bk Ak ek R ek ke ok 36 ok ok o R W R R K R o A o e ok ok ok ok v etk e e e e ok ok ol ok ok o

* *
* Definition of the house *
* *

EE KA LA KA AN A TR K I A T kA AR R E TR AR AT TL R LI KA A I I AR I ANKNAIRA A A AT KRR I I A *hx ok

.data

housdatx: .dc.w -30, 30,30,-30,30,-30,-30,30,0,0,-10,-10,10, 10
dc.w 30,30, 30,30,30,30,30,30,30,30,30,30

housdaty: .dc.w 30,30, -30,-30,30,3¢,-30,-30,70,70,-30,0,0,-30
.dc.w 20,20,0,0,20,20,0,0
de.w -10,~-10,-30,-30

162

Abacus Software ST 3D Graphics

housdatz: .dec.w 60,60, 60,60,~-6C,-60,-60,-60,60,-60,60, 60,60, 60
.dc.w 40,10,10,40,-10,-40,-40,-10
.do.w 0,-29,-20,0
houslin: Go.w 1,2,2,3,3,4,4,1,2.5;5;8,8'3;8:7171606!51'6:1.!7!4
.dc.w 9,10,1,9,9,2,5,10,6,10,11,12,12,13,13,14
.do.w 15,16,16,17,17,18,18,15,19,20,20,21,21,22,22,19
de.w 23,24,24,25,25,26,26,23
hnummark: .dc.w 26 * Number of corner points of the house
hnumline: .dec.w 32 * Number of lines cf the house
hxangle: .do.w Q * Rotation angle of the house around X-axis
hyangle: doe.w 0 * " " " Y-axis
hzangle: do.ow 0 * " " " Z-axis
xwplus: de.w a * Angle increment around the X-axis
ywplus: .dec.w * Angle increment around the Y-axis
zwplus: .de.w * Angle increment arcund the Z-axis

picturex: .dec.w 320 * Definition of zero point of display
picturey: .dc.w 200 * here it is in the display center
rotdpx: .de.w o} * Rotation datum point
rotdpy: .do.w 0
rotdpz: dc.w 0
rizl: de.w o]
normz: .dc.w 1500
.bss
plusrot: .ds.l 1
first: ds.1 1
second: .ds.w 1
deltal: .ds.w 1
.data

163

ST 3D Graphics

Abacus Software

flag:

diffz:

dx:
dy:
dz:

worldx:
worldy:
worldz:

viewx:
viewy:

viewz:

S5creenx:

screeny:

wlinxy:

pProx:
proy:
proz:

offx:
offy:
affz:
xoffs:
yoffs:
zoffs:

loopc:

de.b

even

.bss

.ds.w

.ds.w
.ds.w

.ds.w

.ds.w
.ds.w

.ds.w

.ds.1

.data

do.w
de.w

dc.w

.data

.de.w
do.w
de.w
.dec.w
de.w
.de.w
.bss

.ds.l
.end

=

1600
1600
1600

1600

1600

1600

1600

1600

3200

1500

o o O o Cc o

World coordinate array
View coordinate array
Display coordinate array
Line array

Coordinates of the Projection-
center, on the positive

Z-axis

Transformation during Rotation
teo point [offx,offy,offz]

Back transformaticn to Point
[xof%yoffs, zoffs]

164

Abacus Software ST 3D Graphics

4.1.2 Description of the Subroutines of the first Main program:

<___ main: This is the entry point to the program module. The
program announces itself and initializes the AES
and VDI functions and senses the current screen
resolution. The window size and the screen are
determined from the resolution. The program
section between the labels mainopl: and mainend:
is the main loop, which is repeated until the F10
key is pressed.

makewrld: Creates a world in the world coordinate system by
simple copying of the house data into the world
system. These are the coordinates of the house
(housdatx, housdaty, housdatz) in the
world coordinate system (wrldx, wrldy,
wrldz), the lines of the house in houslin in the
world line storage area (wlinxy), the number of
corner points the house (hnummark) in the total-
number variable of the world system (nummark)
and finally the number of house lines (hnumline)
in numline. This subroutine need only be called
once unless you want to add objects to the world
system which we will do in a later program.

wrldset: After creating the world system the array addresses
(wrldx etc.) must be passed to the global
variables of the rotation subroutine (datx etc.).
Furthermore the coordinate origin of the display is
determined in the Variables X0 and Y0, and the
presets for the perspective paramefers
(zobs,dist).

setrotdp: Initializes the rotation reference point to [0, 0, 0]
and the rotation angles to 0 degrees.

ST 3D Graphics

Abacus Software

pointrot:

inp chan:

getreso:

This subroutines provides the rotation routine with
the current data and then performs the rotation
around the point [rotdpx, rotdp, rotdpz]of
all three axes with a call to the proper routines of
the link file. in the sequence Z-axis, Y-axis, X-axis.
A change in the sequence also changes the results.

Input and change the parameters, rotation angle,
rotation reference point and position of the projec-
tion plane.

Checks the current display resolution and from this
determines the data for the screen center and the
clip window, which in this case is the whole visible

. display.

scrdmp:

setcocli:

clearbuf:

Hardcopy routine, is called form inp chan by
pressing shift 'D’ and replaces the key combination
Alternate/Help, which the operating system uses to
make a hardcopy of the screen. Since in this
program the displayed page is never the same as
the page in which the drawing occurs, a hardcopy
through Alternate/Help would not correspond to
the displayed picture -but would print the picture
under construction or the just-erased display. The
trick is to call the scrdmp routine before the
displayed page is erased.

Set the clip-window for the Cohen-Sutherland clip
algorithm on the whole display, 0,0 to 639,399 hi-
res, 639,199 med-res, or 319,199 lo-res.

Remove characters that may be in the keyboard
buffer. Is used only by the hardcopy routine, since
several hardcopies could otherwise be made in
succession (Key repeat).

166

Abacus Software ST 3D Graphics

4.1.3 General comments on the program

The specific explanations of the variables can be found in the remarks in
the program listing. In each iteration of the main loop the program adds
an angle increment (xwplus, ywplus, zwplus) to the rotation angle
(hxangle, hyangle, hzangle) of the house. The input routine
changes the angle increments which causes the house to rofate faster on
the screen, though this is really an optical illusion. The end points of the
house have to travel a longer distance between each drawing operation,
which causes this effect. The cursor keys, the <Help> and <Undo> keys
control the rotation, the '+’ and ’-’keys change the display size by
moving the projection plane, and the ’/* and **’ keys move the rotation
reference point on the Z-axis. Pressing of the shift and "D’ keys at the
same time produces hardcopy if a printer is attached.

The best thing to do is to try out the various changes possible, preferably
by changing the constants in the listing. You can, for example move the
rotation reference point on the X and Y axis, or the variable proz, which
changes the position of the projection center. The closer you move the
projection center in the direction of the house, the greater the perspective
distortion. You should also define an object yourself, and you should start
with a simple object, like a pyramid. You only have to enter the points of
the pyramid (in a pyramid with a quadratic base there are five) in place of
the house coordinates in the arrays (housdatx etc.). Furthermore, the
number of points (5) must be entered in houslin in hnummark, the
number of lines (8) in hnumline and then the information regarding
which points are connected by lines. You only have to change the storage
area and you can represent any defined object with the same program.

Here 1 want to provide some additional information about the storage
space required. The arrays (wrldx efc., viewx, screenx,
wlinxy) are already dimensioned quite generously for future expansion.
You can define objects with 1600 comers and connect these corners with
3200 lines. About 40 KByte of storage space is needed for this array
dimensioning. Even though 1600 corners appear to be sufficient at first
glance, we shall reach this number in the next chapter without too much
effort. But first of all stop for a while and play around with this program.
You can also add a window on the other side of the house by simply
entering the new coordinates.

Abacus Software

ST 3D Graphics

Figure 4.1.11: House with various projection centers

168

Abacus Software ST 3D Graphics

4.2 Generation techniques for creating rotating objects < Lew)
\ a2

If you have experimented with the construction of new objects, you
probably also noticed the considerable effort involved in construction,
especially for regularly-formed bodies with many corners. Imagine if you
had to input the end points of the ball approximated by polygons (See
figure 4.2.1).

Figure 4.2.1: Hardcopy of the rotation ball

The drudgery of input can be performed by the computer for all axis-
symmetrical objects. As an example, consider the "chess piece" from
Figure 4.2.2. This figure can be created by rotating a line (the definition
line) around any axis, in this case the Y-axis. The programmer must

169

ST 3D Graphics Abacus Software

define the one line and indicate how many times it should be rotated. You
can follow the construction of the figure easily on the following
hardcopies. The rotation number must be a division of 360 for
programming reasons or a portion of the figure will be missing. From two
to four to three hundred sixty rotations are available. More than 180 just
produces a heap of points on the display (the screen resolution is too
low). Now the space requirement will become obvious. If you rotate the
12 points 360 times it results in 4,332 points not to mention the 8,291
lines created by the rotation. The number of points is calculated as
follows: nummark : =numpt * (rotations+1). The lines include the
connecting lines of the points in the rotating definition line as well as the
horizontal connecting lines of the points in the rotation line.

The routines for the creation of the rotation body are contained in the
listing of the file rotatel.s. The rotation body is described by a line,
i.e. a number of points (r1numpt), whose coordinates are in rlxdat,
rlydat, rlzdat and the number of rotations about the Y-axis which
this line should perform. The different bodies are created by varying the
number of rotations. The maximum number of rotations in our case is
120, which is predetermined by the dimensioning of the array to 1600 etc,
and of course could be changed. The number of points of the rotation
body is contained in the variable rlnumpt. The link file remains the
same as in the first program. You only have to assemble the first file and
link it to the link file: aslink grlinkl rotatel.

Desk File View Dptions

HAY % e D\ il & Fi\IDHORK.DIRS
253882 bytes used i @ 1442236 bytes used in 179 items 133956 bytes used fn
B PRINTERS BASIC PRG 138944 11-2¢¢ HOUSEL PRG
% TUTORIAL BRSIC RSC 4648 11-2¢ HOUSEL S
L FKY BASIC WRK 46 11-2¢ MAINL PRG
CONV TP BASICL BAK 14881 11-26 HAINL S
NLiB PRG | [— — s =SS0 MAINICD PR
QUTPUT PRG OFEN APPLICATION MAINICD S
SPLIT TTP HENUA PRG
STRNDARD PRT Mame: BATCH .TTP HERU1 s
TEXTPRO PRG Parametars: MULTIL PRG
TUTORIAL TXT aslink grlinkl rutatelL_.__,__-_._____ MULTIL S
ZTTUTORI TOC PAINTL PRG
k AL €
‘ ROTATEL PRG
: el ROTATEL S

Abacus Software ST 3D Graphics

Figure 4.2.2: Hardcopy of the rotation body construction

171

ST 3D Graphics Abacus Software

LA AL S R e R R e L L L R R R R L E T L L urur

* rotatel.s 16.1.1986 *
* Creation of rotation bodies Uwe Braun 1985 Version 2.0 *
* *

LAEEEAS AR SRR RS R T R R LR R R L L B p prnpnapr
.text

.globl main,xoffs,yoffs, zoffs,offx,offy,0ffz

.globl viewx,viewy,viewz

.globl wlinxy, mcuse_off, setrotdp,inp chan,pecintrot
main:

jsr apinit * Announce program

jsr grafhand * Get screen handle

jsr openwork * Display

isr mouse_off * Turn off mouse

isr getreso * Which monitor is connected ?

jsr setcocli * Set clip window

jsr makerotl

jsr makewrld * Create world system

jsr wrld2set * Pass world parameters

jsr setrotdp * initialize cbservation ref. point

jsr clwork

jsr pagedown * Display logical screen page

isr clwork

jsr inp_chan * Input and change parameters
mainlopl:

jsr pointrot * rotate around observation ref. point

jsr pers * Perspective transformation

sr drawnl

jsr pageup * Display physical page

isr inp chan * Input new parameters

jsr clwork * Erase logical page

isr pointrot * Rotate around rotation ref. point

jsr pers * Transform, new points

jsr drawnl

jsr pagedown * Display this logical page

jsr inp_chan * Input and change

‘ 172

U

Abacus Software ST 3D Graphics

jsr clwork * clear physical page
imp mainlopl * £to main loop
mainend: move.l physbase, logbase
jsr pageup * gwitch to normal display page
rts * back to link file, and end

************************kt**

* remove all characters from the keyboard buffer *

*****t***********************tt*********t************************t**

clearbuf: move.w #5b, -~ (a?} * Gemdos funct. char in buffer?
trap #1
addg.1 $2,a7
tet.w al * if yes, get character
beg clearend * if no, terminate
move .w #1,~(a’l) * Gemdos funct. CONIN
trap #1 * repeat until all characters
addg.l #2,a7 * are removed from the buffer
bra clearbuf

clearend: rts

t***********************

* Create the rotation body rl *

********tt*********t**

makerotl: jsr riset * Create the rotation bkody
jsr rotstart * first the coordinates,
jsr rotlin * then the lines

rts

ST 3D Graphics Abacus Software

tt*t*************

* Input and change observation parameters *
* the angles hxangle,hyangle,hzangle, are rotation angles of *
* world system *

******t**t*****

inp chan: jsr inkey * Sense keyboard, code in
emp.b #'D’,d0
bne inpwait
jsr gscrdmp * make hardcopy
inpwait: swap d0 * test DO if
cmp.b #34d,de * Cursor-right
bne inpl
addg.w #1, ywplus * if yes, add one to Y-angle increment
bra inpendl * and continue
inpl: cmp.b #54b,d0 * Cursor-left, if yes
bne inp2 * subtract one from Y-angle
subg.w #1, ywplus * increment
bra inpendl
inp2: cmp.b #550,d0 * Cursor~down, if yes
bne inp3
addg.w #1, xwplus * add one to X-angle increment
bra inpendl
inp3: cmp.b #548,d0 * Cursor-up
bne inp3a
subg.w #1, xwplus * subtract one
bra inpendl
inp3a: cmp.b #361,40 * Undo-key
bne inpib
subg.w #1,zwplus * lower Z-increment
bra inpendl
inp3b: cmp.b #562,d0 * Help-key
bne inp4
addg.w #1, zwplus * add to Z-increment
bra inpendl
174

Abacus Software

ST 3D Graphics

inp4d:

inph:

inp6:

inp7:

inpl0:

inpendl:

inpend2:

inpend3:

inpend4:

cmp.b
bne
sub.w
bra
cmp . b
bne
add.w

bra

cmp.b
bne
sub.w

bra

cmp.b
bne
add.w

bra

cmp.b
bne
addg.l

bra

move . W
add.w
cmp . W
bge
cmp . W
ble
bra
sub.w
bra
add.w

move . w

move.w
add.w
cmp . W

bge

cmp . W

#54e,40
inp5
#25,dist
inpendl
#54a,d0
inpé
#25,dist
inpendl

#566,40
inp?

#15, rotdpz
inpendl

#565,d0
inpl0

#15, rotdpz
inpendl

#344,d0
inpendl
$#4,a7

mainend

hyangle,dl
ywplus,dl
#360,d1
inpend2
#-360,d1
inpend3
inpend4
#360C,d1
inpend4
#360,d1

dl,hyangle

hxangle,dl
xwplus,dl
#360,d1
inpendd
$#-360,d1

*

*

plus key on keypad
if yes, subtract 25 from
position of projection

plane (Z-coordinate)
minus key on keypad

if yes, add 25

times-key on the keypad
then subtract 15
from the rotation ref. point Z-coord.

if yes,

make changes

division-key on keypad

add 15

F10 activated 7
if yes, jump to
Program end

* rotation angle, Y-axis
* add increment
* if larger than 360, then subtract 360

* {f smaller than 360,
* add 360

* proceeed in the same
* manner with rotation

* angle, X-axis

ST 3D Graphics

Abacus Software

inpend5:

inpendé:
inpend?:

inpend8:

inpend9:

inpendl0:

ble
bra
sub.w
bra
add.w
move.w
move.w
add.w
cmp . wW
bge
Cmp.W
ble
bra
sub.w
bra
add.w

move.w

rts

inpendé
inpend?
#360,d1
inpend?
#360,d1l
dl, hxangle
hzangle, dl
zwplus,dl
#360,d1
inpend8
¥-360,d1
inpend9
inpendl0
#360,d1
inpendl0
#360,d1

dl,hzangle

************‘k*********'kt***

* Initialize the rotation reference point to [0,0,0] *
*********************t***t*

setrotdp:

move.w
move.w
move.w
move . w
move .w
move.w
move .w

rts

#0,d1

dl, rotdpx

dl, rotdpy

dl, rotdpz

#0,hyangle
#0,hzangle
#0,hxangle

* set the start-rotation

* reference point

* Start rotation angle

LER AR RS LR RER RS RS RS RS L R R R B R S gy g

* Rotation of the total world system around the rotation *

* reference point

*

LA LRSS SRRl e L R R R R R

pointrot:

move.w
move . w
move.w

move . w

hxangle, xangle * rotate the world around

hyangle, yangle

hzangle, zangle

rotdpx, d0

* the rotation reference point

176

Abacus Software

ST 3D Graphics

*

makewrld:

makewll:

makewl2:

move.
move .
move .

move.

£ £ % E Z

move .
neg.w
neqg.w
neg.w
move.w
move.w
move.w
isr
isr
jsr
jsr
jsr

rts

move.l
move.l
move.l
move.l
move.l
move.l
move.Ww
ext .1

subg.l
move . W
move ., w
move.w
dbra

move.w
ext.l

subg.l
move.l

move.l

move. 1
dbra

rts

rotdpy,dl
rotdpz,d2
d0, xoffs
dl,yoffs
dz2, zoffs
d0

dl

a2
dl0,cffx
di,offy
d2,offz
matinit
zrotate
yretate
xrotate

rotate

#ridatx,al
#rldaty,a2
#rldatz,al
$worldx,ad
f#worldy, a5
#worldz, a6
rlnummark,d0
do

#1,d0
(al) +, {ad)+
{a2)+, (ad} +
{a3)+, (ab) +
d0, makewll

rlnumline,d0
do

#1,d0
#r1llin,al
#wlinxy,a2
(al)+, (a2) +
d0, makewl2

*

*

*

*

*

w

*

*

add for inverse transformaticn

subtract for transformation

matrix initializaticn

rotate around Z-axis first

rotate ‘matrix’ around Y-axis

then rotate around X-axis

multiply points with the

matrix. The Z-axis ls not taken into
account

create the world system

by copying data of rotation body
into world system

number of corners repeated

Copy coordinates
Y-coords.
Z-coords.

Copy the line arrays
of the rotation body
inte the world system

Number of lines as counter

copy lines

ST 3D Graphics Abacus Software

LA AR A E R SRR R sl a R R R R R R R R R R R R R R U TR U U g grpeipe g

* Pass world parameters to variables of link files *

EERK ko de ke kxR Rk dr ke kb v e R r kAR A AR kAR RHR R Tk k ek h kR kR RN kTR K

worldset: move.l

#worldx,datx

Passing house variables

move.l #worldy, daty for the rotation routine
move.l #worldz,datz and the global subroutine
move.l #viewx,pointx of the link module

move.l #viewy,pointy

move.l #viewz,pointz

move.l #wlinxy, linxy

move.w pleturex, x0

move . w picturey, y0

move.w proz, temp Projection center Z-coordinate
move.w rlzl,dist Location of projection plane on
move .l #screenx, xplot the Z-axis

move.l #screeny, yplot

move.w hnumline, numline Number of house lines

move.w hnummark, nummark Number of house corners

rts

Hk Rk A A A A A AN H AR KRR kA kAT A AN AL H KRR RN R E A kkk ko kA ko dok ko kb ko r ke Wk &k k% x

®

* is passed in the wvariables rctdatx,

Creation of rotation body in the array, the address of which *

rotdaty, rotdatz *

LA ES R R iRt R R AR R RS

rlset:
move.l #rlxdat, rotxdat Transmit
move.l #rlydat, rotydat parameters of this
move.l #rlzdat, rotzdat rotation body to
move.l #rldatx, rotdatx the routine for
move.l #rldaty, rotdaty creaticn of the
move.l #rldatz, rotdatz rotaticn body
move.l rotdatx, datx
move.l rotdaty,daty
mave .l rotdatz,date
move . w rloumro, humro Number of desired
move .w rlnumpt, numpt rotaticns. Number
move.l #rllin, linxy of points in def.line.
rts Address of line array

178

Abacus Software

ST 3D Graphics

rotstart:

rloopl:

move .w
1sl.w
ext.l
move . 1
move.w
move.l
move.l
move.l
move .w
move.w
divs
move . w
move .w
ext.l

move.l
move.l
move .1l
maove.l
jsr
move.l
add.l
move.l
move.l
add.l
move .l
move.l
add.1l
move.l
move . W
add.w
move.w
move.l
dbra

move . W

move .w

numpt., 40
#1,d0

a0
d0,plusrot

numpt, nummark

rotdatx,pointx
rotdaty,pointy
rotdatz,pointz

#0,vangle
#360,d0
numro, d0
d0, plusagle
numro, d0

de

d0, loope
rotxdat,datx
rotydat,daty
rotzdat,datz
yrot
pointx,dl
plusrot,dl
dl,pointx
pointy,dl
plusrot,dl
dl,pointy
peintz,dl
plusrot,dl
dl,pointz
yangle,d?
plusagle,d?
d7, yangle
loope, d0

dC, rloopl

rlnumro, numro

rlnumpt, numpt

Rotate def line

numro+l about Y-axis

Pass data array

to subroutine yrot

360 / numro = angle increment

per rotation

numro +1 times

as loop counter
for passing to yrot

rotate
add offset to
address

add angle increment
to rotatien angle
and rotate line
again until all

end peints are generated.

store for following

routines for line generation

ST 3D Graphics Abacus Software
rotlin: * Create the line array of the
move.w #1,d7 * rotation body
move . w numro,d4 * Number of rotations repeated
ext.l d4
subg.l #1,d4
move . w numpt,dl
subg.w #1,d1
lsl.w #2,d1
ext.1l dl
move.] dl,plusrot
rotlopl: meove.w numpt ,d5 Number of points =
ext.l ds repeat once
subqg.l $#2,d5
move.l linxy,al Lines created stored
move . w d7,de here
rotlep2: move.w de6, (al) + The first line goes from
addg.w #1,d6 polnt one to point two
move .w d6, (al)+ {1,2) then (2,3) etc.
dbra d5, rotlop2
move.l linxy,dl generate cross connections
add.l plusrot,dl of individual lines
move .l di, linxy
mnove . w numpt , 40
add.w do,d?
dbra d4, rotlopl
move . w numpt,d?
move ,w d?7,deltal
lsl.w #2,d7
ext.l a7
move.l d7,plusrot
move.w #1,de
move.w numpt, d0
ext.1 d0
subg.1 #1,d0
rotlop3: move.w numro,dl
ext.l dl
subg.l #1,dl
rove .w de,d5s

180

Abacus Software

ST 3D Graphics

rotlopd: move.w
add.w
move .w
dbra

add.w
dbra
move.w
add.w

muls

move . w
move . w
muls
move.w
subg.w
muls
add.w
move.w

rts

d5, (al) +
deltal,d5
ds, (al)+
dl, rotlopd

#1,d6

d0, rotlop3
numro,dl
#1,dl

nummark, dl

dl, rinummark
numpt ,dl
numro,dl
numpt , d2
#1,d2
numro, d2
dl,d2

dZ2, rlnumline

*

*

*

Store total number of

corners created

Total of lines created

A de K % K 9k g e e e b okt kR o K K R Sk R ke ke sk ok ok ok e i o i e o o i ok ok ok o R ke ok ok o o ok i ok ok o o O R e e ke e

* Pass parameters of the world system to variables *

* of the link file for the rotation body *
B L L A L A I R T T T

wrld2set: move.l
move.l
move.l
move.l
move.l
move .l
move.l
move . W
move.w
move . w
move . w
move.l

move.l

#worldx,datx
#worldy,daty
#worldz,datz
#viewx,pointx
$viewy,pointy
#viewz,pointe
#wlinxy, linxy
picturex, x0
picturey,y0
proz,temp
rlzl,dist

#screenx, xplot

#screeny, yplot

*

Pass parameter of
rotation body to the
subroutines in the link

module

ST 3D Graphics Abacus Software

move.w rlnumline, numline * Number of lines
move .w rlnummark, nummark * Number of corners
rts

A RS A E RS sRsRRtiestia st st it st sttt st S

* Sense current display resclution and set the coordinate *

*¥ origin of the screen system to the screen center *

2SR SRS SRR SRR Rl b sttt st sttt tlan st nd sl

getreso: move.w #4,-{al)
trap #14
addqg.l $2,a7
cmp . w #2,d0
bne getrl
move . w #320,picturex * monochrome monitor
move.w #200, picturey
bra getrend
getrl: cmp . W #1,d0
bne getr2
move .w $#320, picturex * medium resolution (640%200)
move . w #100, picturey
bra getrend
getr2: move.w #160,picturex * low resolutiecn (320*200)
move . w #10C,picturey

getrend: rts

Ahkhkkkhhhdrh kb h IRk Rk kdrdedksbrdkhddkdedorkkddk kb ke kbbb kb khkkkkkkdkhhkhkrkkrkk

* Hardcopy after inp chan call *

3k ok e sk e de gk e A sk e e vk ok e we e e e s ok ok ke sk e e sk ok ol I v ok e e e ok ok ol I e R i e e ok ok i ok e i e ok e e ok e o e e

scrdmp: move . w #20,-{a7)
trap #14
addq.l #2,a7
jsr clearbuf
rts

182

Abacus Software ST 3D Graphics

WA H I I I I AR T AN ATk Tk TRk Nk KT EH A RAAF AR AT A A I TR R K ododkhhdk ko hhk

* Set the limit of the window for the Cohen-Sutherland *
* clip algorithm built into the draw-line algorithm *
* The user can choose the limits freely, which makes the *
* draw-line algorithm very flexible. *

HAAKRRE KT KT LR KT Wk dedekwdh ko ke dddok ke w ke kA dr A Ak kk ok kdkk kst

setcocli: move.w #0,clipxule

move.w #0,clipyule

move.w plcturex,dl

1sl.w #1,d1 * times two

subq.w #1,4d1 * minus one eguals

move .w dl,clipxlri * 639 for monochrom

move . w picturey,dl

1sl.w #1,d1 * times two minus one
subg.w #1,d1 * aquals 399 for monochrom
move . w dl,clipylri

rts

.even

2 R RS 2222222032222 2222 ias sl sl dd sttt an il

% de & % % ok o ok e o ok I ek ok o e 3 e s ok ok v s ok e ke S T W T o Y Tk ok ol e o e o ke e o ok ok ok ol o ok O e ke o o e ok e ok ke

* Begin variable area for Program module *

* *

% % W ok e de ok 3 ok o e de ok J de sk 3k ok e e ok ok e e s ok i e e o e e de s o ol ol ok ke ok ok S ke ok ok ok e o i ok S e ok ok ok o e e W ke ke W ke ok

SRR KK E AR KRR A ek AN Rl kAR hde kAT A ko ke rdhhh ke kkdhhkkdn

* Data area for the rotation body *
2 2 R 22222 2322222 a2 ot i i s R iRt it hs s hds)
.bss * Space for the variables

numrc : .ds.w 1

numpt : .ds.w 1

worldfla: .ds.l 1

rotxdat: .ds.l 1

rotydat: .ds.l

rotzdat: .ds.l

183

ST 3D Graphics Abacus Software

rotdatx: .ds.l
rotdaty: .ds.l
rotdatz: .ds.l

rlnumline: .ds.w

rinummark: .ds.w 1

rlnumfla: .ds.w 1

plusagle: .ds.w 1

rldatx: .a5.w 1540

rldaty: .ds.w 1540

ridatz: .ds.w 1540

rllin: .ds.1l 3200 * for every line 4-Bytes
.data

R E KRR R AR E AR T r R A TR AR IRk kR AR RN AR NI TR AR A Ak kAR hhrhh ki

* These are the coordinates of the definition line which *
* generates the rotation bedy through rotation about *
* the Y-axis. By changing coordinates the body to be *
* created can be changed. Of course, the number of points in *
* rlpumpt must be adapted to the new situation. By changing *
i s
* rlnumro the current body can be changed as well. *
- smr——arien
* Storage reserved here is encugh for a maximum 120 rotations *
* of 12 points. This means that for a user-defined *
* rotation line, the product of the number of points and *
* number of desired rotations plus one, cannot be greater *
* than 1500. *

%k & g e o ok ok g g o ok ok o ok e e ok ok e e o e vk ok e W o o e 0 a3 e e 3 3 i e ok ok o e Wk vk e ok e e e ke ek ok ok ok ke

rlxdat: .de.w 0, 40,50,50,20,30,20,30,70,80,80,C

rlydat: .de.w 100,100,80,60,40,30,30,-70,-80,-90,-100,-100

rlzdat: .de.w 0,0,0,0,0,0,0,0,0,0,0,0

rlnumpt: .dc.w 12

rlnumro: .dc.w 8 * Number of rotations for creation

184

Abacus Software

ST 3D Graphics

e 2 e R R e R R R 222222222 SRRRES 222202222ttt ha sl

*

¥

*

*

*

*

Definition of the house *

*

e % % v e v e o B T g R o MR R R R Tk ok ok e ok ok e ok o e 3k o e e sk ok v v e o o e e e ok ok ok oir ol ol ke i s ok ok ol ok ol ok e e gk ok 3 o ok o o e

housdatx:

housdaty:

housdatz:

houslin:

hnummark:

hnumline:

hxangle:
hyangle:
hzangle:

xwplus:
ywplus:

zwplus:

pilcturex:

picturey:

.data

.dc.w

de.w

.do.w
.de.w

de.w

LGC.W
dc.w
.dc.w

de.w
.dec.w
.de.w

de.w

de.w

.dc.w

do.w
.dc.w

do.w

.dc.w
de.w
de.w

.dc.w

.de.w

-30, 30, 30, -30, 30,-30,-30,30,0,0,-10,-10,10,10
30,30, 30,30,30,30,30,30,30,30,30,30

30, 30, -30,-30, 30, 30,-30,-30,70,70,-30,0,0,-30
20,20,0,0,20,20,0,0
-10,-10,-30,-30

60, 60, 60, 60,-60,-60,-60,-60,60,-60,60,60,60,60
40,10,10,40,-10,-40,-40,-10
0,-20,-20,0

1,2,2,3,3,4,4,1,2,5,5,8,8,3,8,7,7,6,6,5,6,1,7,4
9,10,1,8%,9,2,5,10,6,10,11,12,12,13, 13,14
15,16,16,17,17,18,18,15,19,20,20,21,21,22,22,19
23,24,24,25,25,26,26,23

26 * Number of corners in the house
32 * Number of lines in the house
0 * Rotation angle of house about X-axis
- " n (1] Y_axis
* " " n Z—axis
0 * Angle increment around X-axis
0 * Angle increment around Y-axis

[
*

Angle increment around Z-axis

0 * Definition of zerc point of the screen

o
*

provided with values from subroutine getreso

ST 3D Graphics

Abacus Software

rotdpx:
rotdpy:
rotdpz:

rlzl:

normz.:

plusrot:
first:
second:
deltal:

flag:

diffz:

dx:
dy:
dz:

worldx:
worldy:

worldz:

viewx:
viewy:

viewz:

sCcreenx:

sCreeny:

doe.w
.de.w

do.w

de.w

.de.w

.bss

.ds.1
.ds.w
.ds.w

.ds.w

.data

.de.b

even

.bss

.ds.w

.ds.w
ds.w

.ds.w

.ds.w
Ldsow

.ds.w

.ds.w
.ds.w

.ds.w

.ds.w

.ds.w

[=]

1500

o

1600 * World cocordinate array
1600
1600

1600 * View coordinate array
1600
1600

1600 * Screen coordinate array
1600

186

Abacus Software

ST 3D Graphics

wlinxy: .ds.1

.data
prox: .dc.w
proy: .dc.w
proz: .dec.w

.data
offx: .de.w
offy: .dc.w
offz: .de.w
xoffs: .dec.w
yoffs: .de.w

zoffs: .dc.w

3200

1500

*

Line array

Coordinates for projection-
center here on the positive

Z-axis

Transformation for rotatiocn
to point [offx,offy,offz]

Inverse transformation for point
[{xoff,voffs,zoffs]

ST 3D Graphics Abacus Software

4.2,1 New subroutines in this program:

rlset: Supplies the rotation body creation routine with the
parameters of the specific rotation body, i.e. with
the address of its definition line, with the number
of the points forming this line and the desired
number of rotations.

makerotl: Creates the rotation body rotl in the array
rldatx, rldaty, rldatz, and the lines
(r1lin) and passes the total number of points and
lines created.

rotstart: Creates the points of the rotation body and is called
by makerotl asis:

rotlin: Creates the lines of the rotation body.

wrld2set: Passes the parameters of the world system and the
rotation body to the link file variables. The
variables for storing of the rotation angle
hxangle remain the same, nothing in inp chan
needs to be changed.

In contrast to the first program where the house was already explicitly
provided, the object to be represented must first be created. This is the
task of the subroutine makerot1, which generates the rotation body in
the array rldatx, rldaty, rldatz. This array corresponds to the
house array housdatx, housdaty, housdatz. The rotation body is
transferred to the world system and its position parameters in the main
loop are modified in a loop. You should experiment freely with this
program and change the definition line for the rotation body and the
number of rotations. The only limitation is in the maximum number of
points and lines where the total number of lines rlnumline is calculated
as follows:

rlnummark: Total number of corners in the rotation body
rlnumline: Total number of lines in the rotation body

rlnumpt: Number of points in the definition line

188

Abacus Software ST 3D Graphics

rinumro: Number of desired rotations of the definition line

rilnumline:= {{rlnumpt - 1) * {(rlnumro)} +
(rinumpt * rlnumro))

rlnummark:= (rlnumpt * (rlnumro + 1))

The number of points can not exceed 1600 and the number of lines
cannot be greater than 3200.

The expression (rlnumro+1) results from the programming trick, of
rotating the definition line one time more than necessary. The definition
line, which is the first line in the array, is created a second time at the end
of the array. This simplifies the construction of the line array. And now
you can try the various rotation lines such as the following:

Definition of a Ball :

Fok Kk Kk ok ke ok ok ok ok ok Rk Kk Kk Kk ok ok sk ks ok ok s ok kR ok ok ok ok ok kK ok ke ok kg ok ok ok e ok ok ke ok

* Definition line and parameter of the ball *
* from Fig. 4.2.1 *
A KR AR AR AR TR A A Ak ARA Rk kAR Ak k kA ks kkkkkkhkkhkhkhkhhxk
rlxdat: .dec.w 0,40,70,90,100,90,70,40,0

rleatI .dC.W I.OO; 90,70’40,01—40'-'70’_90"100

rlzdat: .dc.w 0,0,0,0,0,0,0,0,0
rlnumpt : dc.w 9
rlnumro: dec.w 60 * Number of rotations

for creation
You need only exchange the corresponding lines in the listing for these.
The operation parameters of the program are the same as in housel:

cursor left and right:
Change the Y-rotation angle increment

cursor up and down:
Change the X-rotation angle increment

undo and help:
Change the Z-rotation angle increment

189

ST 3D Graphics Abacus Software

+ and - on the keypad:
Move the projection plane on the Z-axis (increase or decrease the size of
object).

* and / on the keypad:
Move the rotation reference point on the Z-axis

Shift ’'D’:
Hardcopy on the printer

190

Abacus Software ST 3D Graphics

4.3 Hidden line algorithm for convex bodies

If you are familiar with real time 3-D graphics on other computers, you
were probably surprised by the speed of the display of the wire frame
drawings on the Atari ST. On the other hand some game freaks may
remark that "I’ve seen the fastest 3-D games on my 8-bit C-64 and these
wire models just don’t compare.” For game programming, the main
emphasis is on the desired effect. Therefore the active figures for these 3-
D-Games are mostly space ships and landscapes which are pre-calculated
and their point coordinates are already stored in the computer. For the
display which follows on the screen, the object is simply drawn, which
naturally can be done quickly, even with 8-bit computers. A disadvantage
of this method is the enormous storage requirement, since every possible
position of the object must be available in memory, meaning that this
procedure cannot be used with complex bodies. In this case only the
rotation matrices for the rotation around three axes are calculated ahead
of time and stored in a table. Even with this method the limits of the
storage are reached quickly. An extreme example: If you want to
calculate the rotation matrices of all possible values for subsequent
rotation about three axes, with an angle increment of one degree
previously calculated, the result will be more than 46 million possibilities
(variations of three rotations around 360 possible angles). If this method
is used, the degree of freedom of the objects must be limited to one or
two possible axes, and/or the gradations of the angle values must be
raised so that the table is calculated, for example, only in ten degree
steps, or only rotations from zero to to ninety degrees are permitted.
Another common method consists of defining the objects as picture
shapes, quasi-sprites, in various positions and to switch back and forth
between the various shapes and to move the whole shape over the
display. Of course the last procedure is the fastest since nothing has to be
calculated and the only operation is moving data into the screen memory.

Now back to the Atari ST, which, because of its enormous computing
power, can not only calculate the wire frame drawing in real time, but as
you will see also offers the ability to display simple convex bodies in real
time without the hidden lines. The method used corresponds to the
surface method used in chapter 2.7. To use this method you must specify
every surface of the object precisely. For the example of our house, we
need two new variables. First the number of surfaces of the house
(hnumpla=13), and second the storage space for the description of
these surfaces (houspla). Every surface is described by the number of

ST 3D Graphics Abacus Software

lines pertaining to it, followed by the lines themselves. The description:
4,1,2,2,3,3,4,4,1 would mean:

Four lines belong to this surface and appear as follows:

Line #. connects Point # with Point #
1 1 2
2 2 3
3 3 4
4 4 1

To return to the example of our house, it will be necessary to describe all
of the surfaces of this house in the same manner. For this reason we draw
the various views of the house and number the surfaces in any desired
sequence as in Figures 4.3.1 to 4.3.6. In these illustrations the desired
result is already achieved, i.e. the hidden lines are already removed to
prevent confusion.

Figure 4.3.1 - 4.3.6: Hardcopy of House Views

192

Abacus Software ST 3D Graphics

1

Figure 4.3.1
6
3
2
&

Figure 4.3.2
163

6
2

ST 3D Graphics Abacus Software

Figure 4.3.3

Figure 4.3.4

194

Abacus Software ST 3D Graphics

Figure 4.3.5

Figure 4.3.6

To assign connecting lines to every surface, view the object from the
outside as in the illustration and start with the assignment at any desired

ST 3D Graphics Abacus Software

point. To make it possible for the algorithm to recognize the hidden
surfaces, the sequence of the line points (the direction of the individual
lines) is not arbitrary but must be done in the clockwise direction. This is
the procedure:

1. Number the surfaces.

2. Create a surface array containing the number of lines
(counted clockwise) of each surface as well as the lines of
each surface, as viewed from the outside.

3. When all surfaces have been taken care of the number of
surfaces are stored in a variable (numpla).

Here is the surface list for the thirteen surfaces of the house from Figure
4.3.1. You can get the point indices from Figure 4.1.3.

Surface # Number Lines Lines from Point #
to Point #
1 il 1, 2 2; 3 3, 4 4, 1
2 4 2, 5 5, 8 8, 3 3, 2
3 4 5, 6 6, 7 7, 8 8, 5
4 4 7, 6 6,1 1, 4 4, 7
5 4 4, 3 3, 8 B, 7 7, 4
6 4 2, 9 $,10 10, 5 5, 2
7 4 10, 8 g9, 1 1, 6 6,10
8 3 1, 9 9, 2 2, 1
9 3 5,10 10, 6 6, 5
10 4 11,12 12,13 13,14 14,11
11 4 15,16 16,17 17,18 18,15
12 4 9,20 20,21 21,22 22,19
13 4 23,24 24,25 25,26 26,23

Number of surfaces: 13

With this method of surface definition you can describe up to 32,000
lines which can be the connecting lines for 16,000 different points,
though only if you have enough memory, of course. The actual main
program hidel.s corresponds to the first main program housel.s.
Two subroutines have been added: hideit: and surfdraw: and two

196

Abacus Software ST 3D Graphics

other changes were made in the main loop. The subroutine hideit
determines which surfaces are visible from the projection center with the
help of the information in the surface arrary (wplane). The information
on the visible surfaces, which correspond to the normal surfaces in the
structure, first the number of lines followed by individual lines, is entered
into a second array (vplane) and the total number of visible surfaces is
stored in the surface counter surfcnt. All visible surfaces are
subsequently drawn on the display by the subroutine surfdraw:
whereby many lines are drawn twice since the subroutine surfdraw:
takes the lines to be drawn directly from the surface array (vplane).
Figure 4.3.1 and the connecting lines of points 2 and 3 show a concrete
illustration. This connecting line belongs to the visible surface 1 and the
visible surface 2. Naturally all the lines in the surface array (vplane)
could be sorted before drawing and double lines removed. My experience
shows that the time saved in drawing is lost in the additional sorting and
testing, at least for less complicated bodies. Furthermore, the surface
information is lost by the separation of the lines, which is needed in the
following program sections. Again to run this program you must first
compile and link it to grlinkl.s using the batch.ttp file and
entering: aslink grlinkl hidel

Desk File WView Options

:H R El F:\IDHORK.DIRY .
1353633 hytes used EEEEEES NS B bytes used | 311956 butes used in 2
BASICLCO S ' L ® ASSH_PRO HIDEL S
----------- ¥ FILE_PRO HOUSEL PRG

R B & FORTH_MY HOUSEL S

S K GEMDRAW MAINL PRG
068 PRG ' — — IS
(1 BAT £ ppEX APPLICATION IRICO PRG
168 PRG INLCD §
€2 BAT | Name: BATCH .TTP NIL PRG
COLOR BAK] Parameters: UL S
COLOR PRG [aslink grlinky hideil LTI1 PRG
COLOR S [LTIL S
COLORL BAK | INTL PRG
COLORL O 7L S
COLORL S ROTATEL PRG
aMMoun 10 ROTATEL S

Flopow DL SK

ST 3D Graphics Abacus Software

A KKK A I ARk A AT RN A A ARk dedekd ok ke kkde ko h ko krddrdd ek

* hidel.s 19.1.86 Version 3.0 *
* House with hidden-line algorithm *
* *

e ok o e e e e de vk ok I e ok ok ok o ok Sk ol ok e e e e e sk ok i i v e e e e ok ok ke i o e e e gk e o e R R e e e sk sk ek ok ek o

.globl ° main,xoffs,yoffs,zoffs,offx,cffy,offz

-globl viewx, viewy, viewz

.globl wlinxy,mouse_off, setrotdp, inp chan,pointrot

.tLext
main:

jsr apinit * Announce program

jsr grafhand * Get screen handler

jsr openwork ¥ Display

jsr mouse off * Turn cff mouse

jsr getreso * what resolution ?

jsr setcocli * Prepare clip window

move.l #houspla,worldpla * Address of surface array

jsr makewrld * Create world system

jsr wrldset * Pass world parameters

jsr setrotdp * initialize observer ref. point

jsr clwork

jsr pagedown * Display logical page

jsr clwork

jsr inp_chan * Input and change parameters
mainlopl:

jsr pointrot * rotate about observer ref. point

isr pers * Perspective transformation

jsr hideit

isr surfdraw

isr pageup * Display physical page

isr inp_chan * Input new parameters

isr clwork

jsr pointrot * Rotate arcund rotaticn ref. point

jsr pers * Transform new points

jsr hideit

jsr surfdraw

198

Abacus Software ST 3D Graphics

jsr pagedown * Display this logical page
jsr inp_chan * Input and change parameters
jsr clwork * erase physical page
imp mainlopl * to main loop

mainend: move.l physbase, logbase
isr pageup * gwitch to normal display page
rts * back to link file, and end

*****t********t***i***

* Input and change parameters such as angle inecrements and *
* 7-coordinate of the projection plane *

*********************t****************************t*****************

inp_chan: jsr inkey * Sense keyboard, keyboard code in
cmp.b $'D",d0
bne inpwait
jsr scrdmp * Make harcopy
inpwait: swap d0 * Test DO for
cmp.b $#54d,d0 * Cursor-right
bne inpl
addg.w #1,ywplus * if yes, then add one to
bra inpendl * Y-angle increment and continue
inpl: cmp.b #54b,d0 * Cursor-left, if yes
bne inp2 * then subtract one frem
subq.w #1, ywplus * Y-angle increment
bra inpendl
inpd: cmp .b #550,4d0 * Cursor-down, if yes
bne inp3
addqg.w $1, xwplus * then add one to ¥X-angle increment
bra inpendl
inp3: cmp.b #548,4d0 * Cursor-up i
bne inp3a
subg.w #1,xwplus * gsubtract one
bra inpendl

199 ;

ST 3D Graphics Abacus Software

inp3a: cmp.b #561,4d0 * Undo key
bne inp3b
subg.w $1,zwplus
bra inpendl
inp3b: cmp.b #562,d0 * Help key
bhe inpd
addg.w #1, zwplus
bra inpendl
inpd: cmp.b #54e,d0 * + key on keypad
bne inp5 * if yes then subtract 25 from
sub.w #25,dist * lecation of projection plane
bra inpendl * (Z-coordinate)
inp5: cmp .b #54a,d0 * - key on keypad
bne inpé *
add.w #25,dist * if yes then add 25
bra inpendl
inpé: cmp .b $566,d0 * * key on keypad
bne inp7? * if yes, subtract 15 from the
sub.w #15, rotdpz * rotation point Z-coordinate
bra inpendl * Make change
inp7: cmp.b #565,4d0 * / key of keypad
bne inpl0
add.w #15, rotdpz * add 15
bra inpendl
inpl0: crp.b #544,dC * F10 pressed ?
bne inpendl
addqg.1 #4,a7 * if yes, jump to
bra mainend * program end
‘ inpendl: move.w hyangle,dl * Rotation angle about Y-axis
add.w ywplus, dl * add increment
? cmp . W #360,d1 * if larger than 360, subtract 360
bge inpend?2
‘ cmp . w #-360,d1 * if smaller than 360
i ble inpend3 * add 360
bra inpendéd

200

Abacus Software ST 3D Graphics

inpendZ: sub.w #360,d1
bra inpendd
inpend3d: add.w #360,d1
inpend4: move.w dl,hyangle
move . W hxangle,dl * Treat
add.w xwplus,dl * rotation angle about X-axis
cmp . W #360,d1 * in the same manner
bge inpend3
cmp.w #-360,d1
ble inpendé
bra inpend7
inpend5: sub.w #360,d1
bra inpend?
inpendé: add.w #360,d1
inpend?: move.w dl, hxangle *
move.w hzangle,dl
add.w zwplus,dl
cmp . W #360,dl
bge inpend8
CMp . W #-360,d1
ble inpend$
bra inpendl0
inpend8: sub.w #360,d1
bra inpendld
inpend9: add.w #360,d1
inpendl0: move.w dl,hzangle
rts

************t*****t********tt**t

* Tnitialize the rotation reference point to [0,0,0] and the *
* rotation angle also to 0,0,0 *

*******************************t*****************t********************

setrotdp: move.w #0,d1 * set the start rotation-
move .w dl, rotdpx * datum point
move.w dl, rotdpy

move .w dl, rotdpz

ST 3D Graphics Abacus Software
move . w #0,hyangle * Start rotation angle
move . w #0,hzangle
move . w #0, hxangle
rts

Wk ok ke k kR KRRk Rk Rk h ok ok Wk Rk KR R Kk R kA ok ko o o ek e s ke e ok ok ok

* Rotate the total world system around one point, the rotation *
* reference point *

ek dedk ok Rk ek kKA kR R kAR K R e R Wk e R ok ok A e i e e e ok e A e Wk e R ek ok ek ko e e e ek ok

pointrot: move.w hxangle, xangle * rotate the world around the
move.w hyangle, yangle
move .w hzangle, zangle
move.w rotdpx,d0 * rotation reference point
move . w rotdpy,dl
move ,w rotdpz,d2
move.w d0, xoffs * add for inverse transformation
move.w dl,yoffs
move . w d2,zoffs
neg.w do
neg.w dl
neqg.w d2
move . w d0, offx * gubtract for transformation

move . w dl,offy

move . w d2,0ffz

; isr matinit * Matrix initialization

| jsr zrotate * first rotate about Z-axis

’ isr yrotate * rotate ‘matrix’ about Y-axis
jsr Xrotate * then about X-axis

: jsr rotate * Multiply points with matrix
rts

LA SRS S S SRRttty e el TR R R R R

* Generate world system from object data. All peints, lines, *

* and surfaces are transferred to the world system *

LEEE RS SRR RS S aE it sd T ey EEEE RS Ry Ry R R R R R R R B B L T g

makewrld: move.l #housdatx, al * Generate world system by
move, 1 thousdaty, a2
move.l #housdatz, al
move.l #wrldx, ad
move ., 1 #wrldy, a5

202

Abacus Software

ST 3D Graphics

move.l #wrldz,ab
move.w hnummark, d0
ext.l de
subq.l $#1,4d0
makewll: move.w {al)+, (ad)+ Copying point coordinates
meve . w (aZ)+, (a5)+ to world system
move .w {a3) +, (a6) +
dbra d0, makewll
move.w hnuml ine, d0 Number of house lines
ext.l 40
subq.l 4#1,d0
move .1l #houslin,al
move., 1 #wlinxy,a2
makewl2: move.l {al)+, (a2) + Copy all lines into
dbra di, makewl?Z world system
move .l worldpla, a0
move . 1 #wplane, al
move.w hnumsurf,d0 * Number of surfaces on house
ext.l do
subqg.l $1,40
makewl3: move.w {al)+,dl Copy all surface
move . w dl, (al)+ definiticns intc the
ext .l dl world system
subqg.l #1,d1
makewld: move.l {ab)+, (al) + Copy every line of this
dbra dl, makewl4 surface intc the world array
dbra d0, makewl3 until all surfaces are processed
rts

*******ttt******‘k*t**********i**********tt********‘kt*********t*********

* Passing the world parameters to the link file variabkles *

ttX******

wrldset: move.l #wrldx,datx ¥ Pass variables for
move.l #wrldy,daty * the rotaticn routine
move.l #wrldz,datz
move . 1 fviewx,pointx

ST 3D Graphics

Abacus Software

move .l
move.1l
move.l
move.w
move.w
move.w
move .w
move.l
move .1
move.w
move . w
move .w

rts

#viewy,pointy
f#viewz,pointz
#wlinxy, linxy
picturex, x0
picturey, y0
proz, zobs
rlzl,dist
#screenx, xplot
#screeny, yplot
hnumline, numline
hnummark, nummark

hnumsurf, numsurf

LEA SRS SRR R R R iRt E TR R R e LR L L g R g R R R R B R U R RN AP Arrgv g

* remove all characters from the keyboard buffer *

LA AL R RS R RS E Rl e Ry e Y R R R R R

clearbuf: move.w
trap
addg. 1
tst.w
beqg
move . w
trap
addq.1l
bra

clearnd: rts

#$b, — (a7}
#1

#2,a7

d0
clearnd
#¥1,-(a7)
#1

#2,a7
clearbuf

LR AR AR EA SRR RS RS R RS E AR TRy R R R R L B R e L X X]

*

* to screen center

Sense display resolution and set coordinate origin of screen *

*

e SRR bR ettty Y R R R R R AR TS

getreso: move.w
trap
addqg.1l
CHp. W
bne

move.w

*#4,-{a7)

#14

#2,a7

#2,d0

getrl
$#320,picturex

* Sense screen resolution

* Monochrcme monitor

204

Abacus Software ST 3D Graphics
move . w #200, picturey
bra getrend
getrl: cmp . W #1,40
bne getr2
move .w #320, picturex * medium resolution (640%200)
move.w #100,picturey
bra getrend
getr: move.w #160, picturex * low resclution (320*%200)
move . W #100,picturey

getrend: rts

******tt********t**************************************t********tt*****

* Hardcopy routine, called by inp_chan
t******************

scrdmp: move.w
trap
addg.1
jsr
rts

*************t*************************************

#20,-lam)
#14

#2,a7
clearbuf

*

we ok ke k% Kk ok K e ek kok

* Sets the limits of the display window for the Cohen-3utherland *

* ¢lip algorithm built into the draw-line algorithm.
* The limits can be freely selected by the user, which makes the *

* draw-line algorithm very flexible.

e e % % o ok o & de % 3k sk ok ok i ok de e ok ok ok ok ok

setcocli: move.w
move .w
move.w
lsl.w
subg.w
move.w
move.w
isl.w
subg.w
move.w

rts

#0,clipxule
#0,clipyule
picturex,dl
#1,dl
#1,d1
dl,clipxlri
picturey,dl
#1,dl
#1,d1
dl,clipylri

times two
minus one egual

639 for monochrome

times two minus cne

399 for monochrome

205

®

*

**

equal

ST 3D Graphics

Abacus Software

e e e e v v e vk vk ek ok e ok o o o ke o e ok ok ok o e e R Rk o e R T W e ke sk sk e ok e ok ok ok g e e ok ok o ok ok ok o o ok e e e o ok

*

*

*

Reccgnition of hidden surfaces and entry of these into the
vplane array, the surface information is in the surface array
* wplane, as well as in view system, viewx, viewy, viewz,

alsc the total number of surfaces must be passed in numsurf

"

*

*

*

e e o e e vk e e sk ok A dr ok ok e e ke ok e o ok i e ok o A T T R T Tk ke s sk ok ok ok o ok ke e e 3k 3k ok o o ok R e e e e ek ok e

hideit:

visible:

move .w
ext.l

subg. 1l
move . 1
move .1l
move, 1l
move.l
move .1l

move .w

move.w
ext.l
move.w
move.w
move.w
subg.w
subg.w
subg.w
1sl.w
lsl.w
i1sl.w
move . w
cmp . W
bne
move . w
cmp.w
bne
move.w
Cmp . W
bne
move . w
subqg.w
1lsl.w

numsurf, d0
do

#1,d0
#viewx,al
fviewy, a2
#viewz,al
#wplane, a0
#vplane, ab
#0, surfcount

{a0),dl

dl

2(a0},d2

4 (a0),d3
8(al0),d4
#1,d2

#1,d3

#1,d4

#1,d2

#1,d3

#1,d4
{al,d3.w),d6
{al,dd.w),d6
doitl
{a2,d3.w),dé
(a2,dd4.w),dé
doitl
{a3,d4.w),dé
{a3,d3.w},ds
deoitl

12 {a0),d4
#1,d4

#1,d4

* Number of surfaces as counter

* Store point coordinates here

* Information for every surface
* here.

* counts the known visible surfaces.

* start with first surface, number

* of pelints of this surface in D1.

* Offset of first point of this surf.
* Offset of second point

* Offset of third point

* for access to point arrays subtract
* one from current point offset

* multiply by two

* and finally access current point

* coordinates

comparison recognizes two points

* with same coordinates which can

* result during construction of

* rotation bodies., During recognition
* of two points in which all point

* coordinates match (x,y.,2z) the

* program selects a third point for

* determination of the two vectors

206

Abacus Software

ST 3D Graphics

doitl:

move . W
move .w
sub.w

move.w
move .w
move.w
sub.w

move.w
move . w
move .w
sub.w

move . W

move . w
sub.w
move.w
sub.w
move.w
sub.w
move .w
move .w

move.w

muls
muls
sub.w
move.w
muls
muls
sub.w
move .w
muls
muls
sub.w

move.w

move .w
sub.w
move.w
sub.w

move . w

(al,d3.w),d5
d5, kx
{al,d2.w),d5
d5,px
(a2,d3.w),db
d5, ky
{a2,d2.w),db
ds, py
{a3,d3.w),d5
d5,kz
(ald,d2.w),db
ds, pz

{al,dd.w),d5
{al,d2.w),dS
(a2,dd.w),d6
(a2,d2.w),d6
{al,d4.w),d?
{a3,d2.w),d7
d5,d1
d6,d2
4a7,d3

py,d3
pz,d2
dZ,d3
d3, rx
pz,dl
px,d7
d7,d1
dl,ry
px,d6
py.d5
d5,d6
dé, rz

prox,dl
kx,dl
proy,d2
ky,d2
proz,d3

Here the two vectors, which lie
in the surface plane, are
determined by subtracting the
coordinates of two points

from this surface.

The direction coordinates of the
vectors are stored in the

variables gx,qy.,qz and px,py.p2z

Calculate wvector Q

gx
qy
gz

Calculate the cross product
of the vertical vector for the

current surface.

The direction coordinates of the
vertical vector are stored

zobsorarily in rx,ry,rz

The projectien center

is used as the comparison
point for the visibility
of a surface.

Dne can also use the

207

ST 3D Graphics Abacus Software
sub.w xz,d3 * gbservation ref. point
muls rx,dl * as the comparison point. Now comes
muls ry,d2 * the compariscon of wector R with
muls rz,d3 * the vector from a point cn the
add.l dl,d2 * surface to the projection center
add.1l dz2,d3 * for creating the scalar preduct
bmi dosight * of the two vectors.

* If the scalar product is negative,

move.w {a0),dl *
ext.l dl
1s1.1 #2,d1 *
addg.l #2,dl *
add.1l dl, a0 *
sightl: dbra d0,visible ®
bra hideend *
desight: move.w (al),d1 *
ext.l 4l *
1sl.1 #1,d1 *
sight3: move ., w {a0)+, {(a5)+ *
dbra dl, sight3 *
addg.w #1, surfcount *
bra sightl *
hideend: rts

the surface is visibkble
Number of lines of the surface

Number of lines times 4 = space for
lines plus 2 bytes for the number of
lines added to surface array, for
When all

surfaces completed then end.

access to next surface.

Number of lines for this surface,
gives the number of words toc be
transmitted when multiplied by 2.

pass the number of lines and the
the individual lines

the number of surfaces plus cne

and process the next

K I KK ok kg kAR K R kA I A I W RA KRR KT AR KRR R Kk ded ok Kk 7 dr ok v sk e ok o o o o

* Draw visible surfaces passed in vplane *

LEEAES SRRt a Rt E TSR T LR R Ry R R R R R R R R R e g gy

surfdraw: *
move.l xplot, ad *
move .1l yplot, as
move .1 $vplane, a6 *
move ., w surfcount,d0 *

Draws a number of surfaces (passed

in surfcount) whose description

is in the array at address

vplane, and was entered by routine

208

Abacus Software ST 3D Graphics

ext.l d0 * hideit
subq.l #1,d0 * {if no surface is entered in the
bmi surfend * array, then end.

surflopl: move.w (ac)+,dl * Number of lines in this surface as
ext.l dl * counter of lines to be drawn.

subg.l #1,d1

surflop2: move.l ({ab)+,d5 * First line of this surface
subg.w #1,d5 * Access screen array which contains
lsli.w #1,d5 * gcreen coordinates of the points.
move.w (Of{ad,db.w),d2
move.w 0(a5,d5.w),d3 * extract points from routine and
swap d5 * pass.

subg.w #1,4d5
i1sl.w $#1,d5
move.w O0f(ad,d5.w),a2 * second point of line

move.w 0{a5,d5.w),a3

jsr drawl * Draw line until all lines of this

dbra dl, surflop?2 * surface have been drawn and repeat

dbra d0, surflopl * until all surfaces are drawn.
surfend: rts * Return.

*******************i****************t****************t***************t*
***********tt****************‘k***************t**************t**********
* Here begins the variable area of the program module *
* *

*******t***************************************i***********************

************t******************t***************************************

* Y
* Definition cof the house *
* *

***************t***************i***************************************

.data

housdatx: .dc.w -30, 30, 30,-30, 30, -30,-30,30,0,90,-10,-10,10,10
de.w 30,30, 30,30, 30, 30,30,30, 30,30,30,30

ST 3D Graphics Abacus Software

housdaty: .dc.w 30,30,-30,-30,30,30,-30,-30,70,70,-30,0,0,-30
dc.w 20,20,0,0,20,20,0,0
de.w -10,-10,-30,-30

housdatz: .dc.w 60,60,60,60,-60,-60,-60,-60,60,-60,60,60,60,60
de.w 40,10,10,40,-10,-40,-40,-10
de.w 0,-20,-20,0

houslin: do.w 1,2,2,3,3,4,4,1,2,5,5,8,8,3,8,7,7,6,6,5,6,1,7,4
.dc.w 9,10,1,9,9,2,5,10,6,10,11,12,12,13, 13,14
.dec.w 15,16,16,17,17,18,18,15,19,20,20,21,21,22,22,19
.dc.w 23,24,24,25,25,26,26,23

LEA RS LSRR R AR e dd e R A RS R T IR

* here are the definitions of the surfaces belonging toc the house *
KA H AR I AL AT AR AR R AR R AR Ak A A AR A R R EA R A A A AR RTN AR AT RARRARNNKNT AR RN

houspla: .dc.w 4,1,2,2,3,3,4,4,1,4,2,5,5,8,8,3,3,2

.dc.w 4,5,6,6,7,7,8,8,5,4,7,6,6,1,1,4,4,7

.de.,w 4,4,3,3,8,8,7,7,4,4,2,9,9,10,10,5,5,2

.do.w 4,109,9,9,1,1,6,6,10,3,1,9,9,2,2,1

.dc.w 3,5,10,10,6,6,5,4,11,12,12,13,13,14,14,11

.dc.w 4,15,16,16,17,17,18,18,15,4,19,20,20,21,21,22,22,19%

do.w 4,23,24,24,25,25,.26,26,23
hnummark: .dc.w 26 * Number of corner points of the house
hnumline: .de.w 32 * Number of lines of the house
hnumsurf: .de.w 13 * Number of surfaces cf the house
hxangle: de.w 0 * Rotation angle of hcuse about X-axis
hyangle: .dc.w 0 * " n " Y-axis
hzangle: .de.w 0 * " " " Z-axis
xwplus: da.w 0 * Angle increment about X-axis

ywplus: de.w ¢ * Angle increment about Y-axis
zwplus: .dc.w 0 * Angle increment about 2Z-axis
picturex: .dc.w 0 * Definition of zero point of display
plcturey: .dc.w 0 * entered by getreso

210

Abacus Software ST 3D Graphics

rotdpx: dc.w
rotdpy: .dc.w
rotdpz: .do.w
rlzl: .do.w 0
normz: .dc.w 1500
.bss
plusrot: .ds.l 1
first: .ds.w 1
second: .ds.w 1
deltal: .ds.w 1
worldpla: .ds.l 1 * Address of surface array
.data
plag: .de.b 1
.even
-bss
diffz: .ds.w 1
dx: .ds.w 1
dy .ds 1
dz: .ds.w
wrldx: .ds.w 1600 * World coordinate array
wrldy: .ds.w 1600
wrldz: .ds.w 1600
viewx: .ds.w 1600 * View coordinate array
viewy: .ds.w 1600
viewz: .ds.w 1eC0
screenx: .ds.w 1600 * Display coordinate array

screeny: .ds.w 1600

ST 3D Graphics Abacus Software
wlinxy: .ds.l 3200 * Line array
wplane: .ds.1 6600 * Surface array
vplane: .ds.1 6600 * surface array of visible surfaces
surfeount: .ds.w 1
numsurf: .ds.w 1
zcount: .ds.1 1 * Sum of all Z-coordinates
zpla: ds.w 1 * Individual Z-coordinates of surface
sx .ds.w 1
sy: .ds.w 1
szZ: .ds.w 1
pX: .ds.w
py: .ds.w
pz ds.w
rx: .ds.w
ry: ds.w
rez: ds.w
qx: .ds.w 1
qy: .ds.w 1
qz: .ds.w 1
kx: .ds.w 1
ky: .ds.w 1
kz: ds.w
.data
pProx: dc.w 0 * Coordinates of the projection center
proy: .dc.w 0 * on the positive Z-axis
proz: de.w 15090

212

Abacus Software ST 3D Graphics

.data |
§
i
offx: .de.w 0 * Transformation during rotation
offy: .dec.w 0 * to point [offx,offy,0ffz]
offz: .dc.w]]
xcffs: .de.w 0 * Inverse transformation to peint E
yoffs: .dc.w 0 * [xoff,yoffs,zoffs]]
zoffs: .de.w 0 |
|
|
.bss]
!'
loopc .ds.1 1 ﬁ
.end L
|,
i
\
|
}
|
;
[
1
."f"l
|
|
H:
i
i
i
1
3
h

213

ST 3D Graphics

Abacus Software

4.3.1 Explanation of the newly-added subroutines

hideit:

surfdraw:

In contrast to the explanation in the mathematical part, the
view system used by the program is a right system; this
saves the multiplication of the Z-values by -1. The
subroutine hideit forms two vectors within the surface
from the first three points of every surface. These are the
vectors from point one to point two as well as the vector
from point one to point three. These two vectors
correspond to the vectors PI[px,py,pz] and
Qlgx,qgy,qgz] from chapter 2.7. Furthermore, a third
vector R{rx, ry, rz] is generated through the formation
of the cross product of the vectors P and Q. According to
the definition, the cross product is perpendicular to the
vectors P and Q and, in this sequence forms a right-hand
system with them {p, g, r]. Finally, a vector is created
from a point on the surface to the projection center
(S[sx,sy,sz]), and its direction is compared with the
direction of the vector R by creation of the scalar products
of the vectors S and R. All the surfaces which are in front
of the projection center are visible.

Scalar product= sx*ri+sy*ry+sz*rz =
Is|*jr|*cos (Alpha)

Alpha is the angle suspended between the vectors R and S.
If the result of the scalar product is negative, this means an
angle larger than 90 degrees and smaller than 270 degrees
between the two vectors, which point in different
directions (See also Figure 2.7.1), and so this surface is
visible, according to the surface definition (clockwise
direction) and right system used.

Here the visible surfaces are displayed by drawing the
lines of the array vplane. The whole job was done
already by hideit.

The operation parameters of the program are the same as in housel.s,
The rotation point on the Z-axis can be moved with the * and / keys on
the keypad, the projection plane can be moved with the - and + keys on
the keypad, and the angle increments of the rotation angle around the X

214

Abacus Software ST 3D Graphics

and Y-axis can be changed with the cursor keys and the Help and Undo
keys. Of course you can also change all the parameters within the
program (projection center, rotation reference point to X and Y-axis,
etc.).

4.3.1.1 Errors with non-convex bodies

If the rotation creation routine is added to the main program and the chess
figure is created with hideit: and pladraw without hidden lines: you
can see the problem. With concave bodies such as this chess figure there
is the possibility that one of the surfaces recognized by the hideit:
algorithm as visible can be hidden by another visible surface during
viewing. In this case the hideit: algorithm fails and the problem must
be solved with another algorithm.

Figure 4.3.7

ST 3D Graphics Abacus Software

4.4 The painter algorithm

Recall the problem we‘re trying to solve: Surfaces which are seen from
an observation point have their surface normal vector pointed in another
direction from a vector from any point on the surface to the projection
center, are hidden by other surfaces which according to this criterium are
also visible. If you start from the observation point (projection center) on
the positive Z-axis, the middle Z-coordinate of a surface is a possible
description of it and its position in the world system. The middle Z-
coordinate is obtained by defining the arithmetic center of the corner
point coordinates belonging to the surface, i.e. summation of all surface
corner point Z-coordinates and division by the number of comer points
belonging to the surface. The relationship can be made clear with the
simple example with three different surfaces in Figure 4.4.1.

+Y‘

F3

Figure 4.4.1

216

Abacus Software ST 3D Graphics

Viewing the defined world system from one point on the positive Z axis,
we can say: the surface with the largest middle Z-coordinate is visible in
its entire size and is not hidden by any other surface. Note that all
observed surfaces are on the negative Z-axis (-200 > -400). This
completely visible surface covers parts of surfaces with a smaller middle
Z coordinate. Surfaces 2 and 3 are covered by surface 1 and surface 3 is
again covered by surface 2. The surfaces are sorted by their Z-coordinates
and they are drawn starting with the smallest middle z-coordinate, surface
3, and then the surfaces with the larger Z coordinates, and we have found
a possible solution to the problem by covering hidden surfaces with other
surfaces. You must consider that it is not enough just to draw every
surface. The individual surfaces must be filled with "color" or a pattern so
that the surfaces drawn first are really covered. Figure 4.4.2 shows one
possible result.

+YA

Figure 4.4.2

If we think about our rotation body from chapter 4.2, this means first of
all that when the rotation body is created its surfaces must also be

217

ST 3D Graphics Abacus Software

created, second a middle Z coordinate must be calculated and stored
some place for every surface. Another problem is sorting the surfaces. If
one wanted to sort every defined form with its lines, it would require an
enormous movement of data in storage. To avoid this, a new storage area
is created in which the Z-coordinates together with the beginning address
of the surface it pertains to are stored. The individual surfaces are stored
in a simple linear list. The beginning address of every surface is the
storage address at which the number of lines for this surface is stored.
Through storage of this address, it is possible to access every single
surface directly, which previously was not possible because of the
number of lines belonging to each surface.

To better handle the two pieces of information, (Z-coordinates of the
surface and address of the surface) we select a long word as data size for
both, i.e. in the newly constructed array (surfaddr) there are four
successive bytes for the Z-coordinate and four bytes for the address of the
surface. Each description of a surface "occupies” eight bytes of storage
space. This array contains the visible surfaces represented by their middle
Z-coordinates and their beginning addresses in the new addition to the
subroutine hideit: (sight2). In this special case of the rotation body
whose surfaces all consist of four lines, the division by the line number
(4) for calculation of the middle Z-coordinate can be performed by
shifting right by two bit positions. If you want to include surfaces with
more or less than four lines in the paint routine, you must alter the
hideit-routine and divide by the number of surfaces. After the
adaptation of the subroutine hideit: all visible surfaces are in the two
arrays, in vplane: and in surfaddr:. The number of surfaces, like in
the first version of hideit:, goes in the variable placount:.
Fortunately, we do not have to write the shading function since the
operating system offers a function for filling display areas with a shading
pattern (Filled Area). This function fills a polygon whose points are
passed in the ptsin array, with one of a total of 36 different predefined,
and one user-defined shading pattern. Before calling this function with
the opcode 9, we set up the different shading parameters which is done
using the subroutines filmode, filform, filcolor, filstyle
and £ilindex which are contained in the link file (grlink1).

The shading routine is called by the subroutine paintit, which first
sorts all surfaces contained in surfaddr: according to ascending Z-
coordinates. Next you must pass the individual surfaces, i.e. their end
point coordinates, to the function "Filled Area". This begins with the
surface which has the smallest middle Z-coordinate. The function "Filled

218

Abacus Software ST 3D Graphics

Area" can, in connection with the function "Set Clipping Rectangle”,
Opcode 129, fill surfaces limited to a display window. It is necessary to
call the function "Set Clipping Rectangle”" when the display window is
the total screen area, bordered by the coordinates 0,0 and 639,399 (for
BW monitors). if this is not done, "Filled Area" may draw parts of the
polygon sticking beyond the display frame on the neighboring display
page (wrapping). You could fill all surfaces with the same pattern, which
could also be white. You can assign a shading pattern for every surface
corresponding to its Z-coordinates. We will limit ourselves to only six of
the 36 possible fill patterns. This is done purely for optical reasons since
shaded surfaces, and even completely filled color surfaces, can have a
negative effect on the picture. You can influence this choice or omit it
entirely. Simply set the desired pattern on entry to the subroutine. With a
color monitor, a various fill colors can be used instead of a shading
pattern. The choice of colors is completely up to you. The visual effect of
these three-dimensional graphics can best be appreciated with a high-
resolution monitor. Doubling the resolution in both directions increases
the quality of the picture four times.

If you have a color monitor, you can choose between filling with color or
patterns. If you want to try filling with color you must call the function
filstyle with the value one in the DO register when entering the
paintit routine. The subroutine £ilcolor: makes it possible to use
different colors. Owners of monochrome monitors don’t have to change
anything in the program. To run this program call the batch file batch.ttp
then enter: aslink grlinkl paintl

Desk File View Options

T e TR I F:\IDMORK.DIRY
253882 bytes used 1 W 1442276 bytes used in 129 items. W 311956 bytes used in
¥ PRINTERS BASIC PR6 138944 11-24< P HOUSEL PRG
% TUTORIAL BRSIC RSC 4648 11-26 HOUSEL §
t FKY BASIC HRK 346 1i-26--R MAINL PRG
CORY TTP BRSICL BAK 14881 11-26 HAINL S
NL1D PRG : == == st se———1 MAIKICO PREG
0UTPUT PRO OPEN APPLICATION MAINICD §
SPLIT TTP ' ‘ HENUL PRG
STANDARD PRY Name: BATCH . TTP MENUL S
TEXTPRO PRG Parameters! MULTI! PRG
TUTORIAL TXT ||| aslink grlink1 painti] MULTIL S
XTTUTORI TOC PAINTL PRG
PAINTL S
ROTATEL PRG
ROTRTEY S

< A = VA A - A
niCEZ T e e R R

Abacus Software

ST 3D Graphics

ATt A AT,
Tyt et
T e T L et
RIS
ety

Sireraely

aret et

05
SR
atebetad e

2R

4.3

4

igure

F

for the link file
ting parameters again

s. The opera

alled paintl.

is ¢
correspond to the previous program.

ting of the fourth main program

the lis
It

18
grlinkl.s.

Here

220

Abacus Software ST 3D Graphics

TR AKX KK AT IR I T W N A K&k ki i ok 3k ok ok o e e gk e o 3 o o T e e e e e sk o o A o e ok g e Kk kR o Ok I e ok ok ok

]
* paintl.s 9.2.1986 * ,
* Display a shaded rotatien body *]
* *

TR EH KA KT A AR AN AR AR AR AT AN T RAK A AAAA N AN R AANTN A AR AT A AR AT Ak kA hdk

.text
.globl main, xoffs,yoffs,zoffs,cffx,0ffy,o0ffz
.globl viewx,viewy,viewz !
.globl wlinxy,mouse_off, setrotdp, inp_chan,pointrot
. |
main:
jsr apinit * Announce program I
jsr grafhand * Get screen handler f
jsr openwork * open workstation
jsr mouse off * Turn off mouse !
jsr getreso ¥ Display resolution ? j
jsr setcocli * Set clip window |
jsr makerotl * Create rotation body i
isr makewrld * Create world system
jsr wrldZset * Pass world parameters
jsr setrotdp * initialize observation ref. point :
isr clwork i
jsr pagedown * Display logical page i
jsr clwork i
jsr inp chan i
H
mainlopl: %
jsr pointrot * rotate around observ. ref. point
jsr pers * Perspective transformation
jsr hideit * hide hidden surfaces 1
jsr paintit * sort and shade 1
jsr pageup * Display physical page .
jsr inp chan * Input new parameters f
jsr clwork * clear screen page not displayed E
jsr pointrot * Rotate arcund rot. ref. peint :
jsr pers * Transform new points
jsr hideit * hide
jsr paintit * sort and shade

221

ST 3D Graphics Abacus Software

isr pagedown * Display this logical page
isr inp chan * Input and change parameters
jsr clwork * erase physical page
jmp mainlopl * te main loop

mainend: move.l physbase, logbase
jsr pageup * Switch to normal screen page
rts * back to link file and end

Kk kKK KKK RN KRR KA A LR AR KRR T IR T AR AT T TR AT AR A AR R A AL RA A HARART NI I kb drdrdedexkhkhk

* Creation of rotation body by passing parameters *

* and calling rotation routine *

ook K e d ke ok ok ek e K AW T K Fe A ke ke vk o ok ok ok e e e e sk ok e ke Rk Rk T kY 0 o o ok e e de e o ok ok ok ok ok ok e e e i e ok

makerotl: jsr rlset * Set parameters of rot. body
jsr rotstart * and create rot. body
rts

de v v 3 o de Y vk dr de 3k g o o o o ko R N ok ko R ke kR R T T o o e o e e ke vk ok ol e e ok ok Y e e T ok ok e ol e ok ko e o T R R e e

* Input and change parameters with the keyboard *

% gk W Kk Kk R R K K Kk Kk ok de %k % ok ok ok d ke vk sk ko vk e e 3 ok ok ok o ok o ke R ok T e e ok o e o o o Tk o ok o e e s e ek ok ok

inp chan: Jjsr inkey * Read keyboard, code in
cmp.b #'D7,d0
bne inpwait
isr scrdmp * Make hardcopy
inpwait: swap d0 * Test DO for
crp.b #544d,d0 * Cursor-right
bne inpl
addg.w #1, ywplus * if yes, add one to
bra inpendl * Y-angle increment and continue
inpl: cmp.b #54b,d0 * Cursor-left, 1f yes
bne inp2 * subtract one from
subg.w #1, ywplus * Y-angle increment
bra inpendl

222

Abacus Software

ST 3D Graphics

inp2:

inp3:

inp3a:

inp3bk:

inp4:

inpd:

inp6:

inp7:

cmp.b
bne
addg.w

bra

cmp.b
bne
subg.w
bra

cmp.b
bne
subqg.w

bra

cmp . b
bne
addqg.w
bra

cmp.b
bne
sub.w
bra
cmp.b
bne
add.w

bra

cmp.b
bne
sub.w

bra

cmp .
bne
add.w
bra

#550,4d40
inp3

#1, xwplus
inpendl

#548,d0
inp3a

#1, xwplus
inpendl

#361,d0
inp3b
#1,zwplus
inpendl

#3562,d0
inpd
#1,zwplus
inpendl

#34e,d0
inpb
#25,dist
inpendl
#54a,d0
inp6
#25,dist
inpendl

#566,40
inp?

#15, rotdpez
inpendl

#565,d0
inpl0

#15, rotdpz
inpendl

Cursor-down, 1if yes

add one to X-angle
increment

Cursor-up

subtract one

Undo key

decrease Z-increment

Help key

increase Z-increment

+ key on keypad

if yes, subtract 25 from
location of projection
plane (Z-coordinate)
minus key on keypad

if yes, add 25

* key on keypad

if yes, subtract 15 from
rotation point Z-ccordinate
Make change

/ key on keypad

add 15

223

ST 3D Graphics

Abacus Software

inplQ:

inpendl:

inpend?2:

inpend3:

inpend4:

inpend5:

inpendé6:

inpend?:

inpend8:

inpend9:

cmp .

bne

addqg.l

bra

move.w
add.

cmp.

bge

Cmp .

ble

bra

sub.

bra

add.

move.w

move . w

add.

cmp.

bge

cmp .

ble
bra

sub.

bra

add.

move.w

move.w

add.

cmp .

bge

cmp.

ble
bra

sub.

bra

add.

b

w

W

W

W

W

W

W

W

w

W

W

L

W

w

#544,d0 * F10 pressed ?
inpendl

44, a7 * if yes, then jump tc
mainend * program end

hyangle,dl * Rotat.angle about Y-axis

ywplus,dl * add increment

#360,d1 * if larger than 360, then
inpend2 * subtract 360

$-360,d1 * if smaller than 360, then
inpend3 * add 360

inpend4

#360,d1

inpend4

#360,d1

dl,hyangle

hxangle,dl * do the same for
xwplus,dl * the rotatien angle
#360,d1 * about X~axis
inpend5

#-360,d1

inpendé

inpend?

#360,d1

inpend?

#360,d1

dl,hxangle *

hzangle,dl
zwplus,dl
#360,d1
inpend8
#-360,d1
inpend?
inpendl0
#360,d1
inpendl0
#360,d1

224

Abacus Software ST 3D Graphics

inpendl0: move.w dl,hzangle

rts

(TS 22T LSS E R SRS S R RS s R R RN LRSS aR sttt d s &Rl

* Initialize the rotation reference point to [0,0,0] *
22322 R R 22222 2SR EEE 0SS AERES SRttt iis b R Rt Rttt &

setrotdp: move.w #0,dl * set the Initial rotatien
move . W dl, rotdpx * ref. point
move . w dl, rotdpy
move . w dl, rotdpz
move . w #0, hyangle * initial rotation angle
move . w #0,hzangle
move.w #0,hxangle
rts

I 22222232 223223223 R 22 SR X2 2 s R R 2 S SRR ARttt

* Rotatien around the rotation reference point about all *
* three axes *

KR ARKK KRR RN R KT KRN K W T e 5 ok ok ek g ok o o 2 R R R sk e e e ok i 3 o e ok sk ok o ok e o e i e e sk e e ok ok ok

pointrot: move.w hxangle, xangle * rotate the world around
move.w hyangle, yangle
move.w hzangle, zangle
move .w rotdpx,dl * rotation reference peint
move . w rotdpy,dl
move .w rotdpz,d?
move . w d0, xcffs * add for inverse transform
move .w dl,yoffs
move .w d2,zoffs
neg.w df
neqg.w dl
neg.w dz2
move .w d0,offx * subtract for transform
move . w dl,offy
move .w d2,offz
jsr matinit * initialize matrix
jsr zrotate * rotate first about Z-axis
jsr yrotate * rotate *matrix’ about Y-axis
jsr xrotate * then rotate about X-axis
jsr rotate * Multiply peints with matrix.
rts

225

ST 3D Graphics Abacus Software

Foh K IR R AR T Ik ko Rk R RN AR AR A r kb dddkhkdrkk ko dhkkdhkkddedkxnnk

* Create world system by copying the object data into world system *

KA TR I KX AN I AR ARk kA kAR ek AN K A AT kb h ek kb nddkkkhwd

makewrld: move.l #rldatx,al * Create world system by
move.l $rldaty,a2
move.l #rldatz,a3
move.l #wrldx, ad
move .l #wrldy, ab
move . 1 #wrldz, aé
move.w rlnummark,d0
ext.1l d0
subg.l $#1,d0
makewll: move.w (al)+, {ad) + * copying pcint coordinates
move ., w {a2)+, (ad) + * into the world system
move . w {ad) +, (ab) +
dbra d0, makewll
move.w rlnumline, d0
ext.l do
subqg.1 #1,d0
move.l #rllin,al
move.l #wlinxy,a2
makewl2: move.l {(al)+, (a2)+ * Copy lines into world
dbra d0, makewl2 * gystem
move .1 worldpla, al
move.l #wplane,al
meve .w rlnumsurf,d0
ext.1l d0

subq.l #1,d0

makewl3: move.w (af)+,d} * Copy surfaces into
move . w dl, (al)+ * world system
ext.l dl

subg.l #1,d1

makewld: move.l {(a)+, (al) + * Copy every line of
dbra dl, makewld * this surface intec
dbra d0, makewl3 * world array until all
rts * gsurfaces are completed

226

Abacus Software ST 3D Graphics

**************i****************************‘k*************************

* Pass the world parameters to the variables in the *

* Jlink files *
T L 2 L L Rt i s R L LR RS AR A S AR Rt n

wrldset: move.l #wrldx,datx * Pass the variables
move.l $wrldy,daty * for the rotation i
move.l fwrldz, datz * routine ;
move .1l #viewx,pointx ;
move.l #viewy,pointy E
move .l #viewz,pointz :
move. 1l #wlinxy, linxy
move . w picturex, x0
move .w picturey, y@ 1
move . w proz, zobs j:
moeve . w rlzl,dist i
move.l $screenx, xplot P
move.l #screeny, yplot E
move .w hnumline, numline]
move . w hnummark, nummark |
move.w hnumsurf, numsurf
res

**********************************tt***********************k**‘k** [
H

* Remove all characters from keybeard buffer * j
*******'ﬂct*i***********t*********‘k**‘k************t*****‘k********t*

clearbuf: move.w #3b,~(a?)
trap ¥1
addg.-1 $2,a7
tst.w a0
beqg clearnd
move . w #1,-(a7)
trap #1
addqg.l #2,a7
bra clearbuf

|
g
i
clearnd: rts !
[
!
¢
]
|

227

ST 3D Graphics Abacus Software

AR EEASEEEE AR LRI SRR TR R R Rl LR T R T T R B R R RPN g e

* Sense display resolution and set coordinate *

* crigin to screen center *

LA RS AR R EE RS R R TR EE Rl R R R R R R TR TR T U e ug A

getresc: move.w #4,-(a7) * Sense display resolution
trap #14
addg.1 #2,a7%
cmp . W #2,d0
bne getrl
move.w #320,picturex * Monochrome monitor
move.w #200, picturey
bra getrend

getrl: cmp . w #1,d0
bne getr2
move.w #320,picturex * medium resolution {(640%200)
move.w #100,picturey
bra getrend

getr2: move . W #¥160,picturex * low resolution {320%200)
move.w #100, picturey

getrend: rts

LAEE AR RS R SRS SRR sy L h R R R R B B R R R R (R S S U

* Hardcopy of screen, called by inp_chan *
L *

LE RS ARt R ARttt Tl LR R R R R R R R R R R R R T A

scrdmp: move .w #20,-{a7)
trap #14
addg.1 $#2,a7
jsr clearbuf
Its

228

Abacus Software ST 3D Graphics

************t*i*************************t*************************ti*

* Sets the limits of the display window for the x
* Cohen-Sutherland clipping algorithm built into the *
* draw-line algorithm *
* The limits can be freely selected by the user which makes *
* the draw-line algorithm very flexible. *

******i*************************************tt**********t************

setcocli: move.w #0,clipxule
move .w #0,clipyule
move .w picturex,dl
1sl.w #1,d1 * times two
subg.w #1,d1 * minus one eguals
Mmove . W dl,clipxlri * 639 for monochrom
move . w picturey,dl
1sl.w $#1,d1 * times two minus one
subg.w #1,d1 * equals 399 for monochrome
move . w dl,clipylri
rts

********************t***

* Fass visible surfaces into vplane array and *
* into pladress array for subsequent sorting *
* of surfaces *

********************t*********i********************************t******

hideit:

move .w numsurf, dl * Number of surfaces as

ext.l a0 * counter

subg.l #1,d0

move.l #viewx,al * The point

move.l #viewy,a * coordinates are stored here

move.l #viewz, a3

move.l #wplane, al * Here is the information

move .l $vplane, ad * for every surface

move.w #0, surfcount * Counts the known visible surfaces.

move .l $¢pladress,aé * Address of surface storage
visible: move.w {a0),dl * Start with first surface

ext.l dl * Number of points on this surface in D1

move.w 2{al),d2 * Offset of first point of this surface

ST 3D Graphics Abacus Software
moeve . W 4{a0},d3 * Offset of second point
move . w 8({a0),dd * Offset of third point
subg.w #1,d2 * For access to point array
subg.w #1,d3 * subtract one from current
subg.w #1,d4 * point offset.
1sl.w #1,d2 * Multiply by two
1sl.w #1,d3
1sl.w $1,d4 * and access current
move . w (al,d3.w),dé * point cococrdinates
cmp . W (al,dd.w),dé * Comparison recognizes two points
bne doit] * with the same coordinates
* * created through
move . w {a2,d3.w),d6é * construction of
cmp.w {a2,dd.w),dé * rotaticn bodies. When
bne doitl * two points are found
move . w (ad,dd4.w),d6 * where all point coordinates (x,vy,z)
cmp . W {a3,d3.w),d6 * match, the program selects the
bne doitl * third point to find
move . w 12 (a0),d4 * both vectors
subq.w ¥1,a4d
1sl.w #1,d4
doitl:
move.w (al,d3.w},d5 * 'the two vectars which
move . w d5, kx * lie in the surface plane
sub.w (al,d2.w),d5 * are found by subtracting the
move.w d5, px * cocrdinates of two points
move .w {a2,d3.w),d5 * in this surface
move .w d3,ky * the direction coord. of the
sub.w {(a2,d2.w),d5 * vectors is stored in
move .w d5, py * variables gx,qy,qz and
move.w {a3,d3.w),d5 * DX, DY.PZ
move .w d5, kz
sub,w (a3,d2.w),d5
move . w d5, pz
move . w (al,dd.w),d5 * Calculate vector
sub.w (al,d2.w),d5
move.w (a2,d4.w),ds6
sub.w {az2,d42.w),d6
move.w {(ad,d4.w),d7
sub.w {(a3,d2.w),d?

230

Abacus Software ST 3D Graphics

move . w d5,dl *ogx

move .w de,d2 * qy

move.w d7,d3 ¥ gz

muls py,d3 * Compute cross product

muls pz,d2 * of the vector perpendicular
sub.w d2,d3 * to the current surface

move.w d3,rx

muls pz,dl

muls px,d?

sub.w d7,dl * The direction coordinates of
move . w dl, ry * the vector perpendicular to

muls px,dé * the surface are stored

muls py.d5 * in rX,ry,rz

sub.w d5,dé

move . w d6, rz

move .w prox,dl * The projection center serves as
sub.w kx,dl * comparison point for the visibility
move . w proy,d2 * of a surface which seems

sub.w ky,d2 * adquate for the viewing

move.w proz,d3 * situation. The observation

sub.w kz,d3 * ref. point can alsc

muls rx,dl * be used as the comparison peint.
muls ry,dz2 * Compare vector R and

mals rz,d3 * the vector from cone

add.l dl,d2 * point of the surface to

add.1 d2,d3 * the projection center by forming
bmi dosight * the scalar product of the two vectors

* If the scalar product is negative, surface is visible

move.w {al),dl * Number of lines in surface
ext.l dl
1sl.1 #2,d1 * Number of lines times 4 = space for lines
addg.l #2,d1 * plus 2 bytes for number of lines
add.l dl,al * add te surface array for
sightl: dbra de,visible * access to next surface

bra hideend * pll surfaces processed ? End

ST 3D Graphics

Abacus Software

dosight:
ext.l

mnove.w

(a0),dl

* Number of lines for this surface

dl * multiplied by two results in

LA E RS AL EEE SRR SRS SRS TR T LR R R R R R B S R R R e AR

** Changes from the program rotl.s

* *

* R

* %

KR I kKA Ak A A KRR KRR Kk kA ok kAN R I N KRR A kA A Ak ek kKA h TN IR REE R %)

move .1l
1s1.1
move .l
addg.l
move . w
sight2: move.l
swap
subg.w
1sl.w

move.w
add.w
dbra

move . w

ext.l
lsr.1
ext .l
move., 1l
move.l
sight3: move . w
dbra
addg.w

bra
hideend: rts

dl,d2
#1,d1
al, a4
#2,a4
#0, zsurf

{ad)+,d6
dé

#1,de
#1.d6

(a3,d6.w),d6
d6,zsurf
dz,sight2

zsurf,dé

dé

$#2,d6

ds

dé, {ab)+
a0, {ad)+

(aC)+, (ad) +
di,sight3

#1, surfcount
sightl

Number of words to be passed

Access to first line of the surface

Clear addition storage

first line of surface
first point in lower half of DO
fit index

fit operand size (2-Byte)

Z-coordinate of this point
add all Z-coordinates

until all lines are computed

Divide sum of all Z-coordinates
for this

surface by the number of lines
Surfaces created by rotation
always have four lines.

Store middle Z-Coordinate
followed by address of surface

pass number of lines
and individual lines

increase number of surfaces by one

and work on next surface

232

Abacus Software

ST 3D Graphics

tt***

* Create rotation body by passing parameters, *

* rotating the definitien line, and creating the line and *

* surface arrays

w

rlset:
move .1 #rixdat, rotxdat *
move.l #rlydat, rotydat *
move.l #rlzdat, rotzdat *
move.l #rldatx, rotdatx *
move.l #rldaty, rotdaty *
move .l #rldatz, rotdatz *
move.l rotdatx,datx *
move.l rotdaty,daty *
move.l rotdatz,datz
move.w rlnumro, numro *
move . w rlnumpt, numpt *
move.l #rllin, linxy *
move . 1 #riplane,worldpla *
rts

rotstart: move.w numpt , d0 *
1sl.w #1,d0 *
ext.l do
move.l dd,plusrot *
move.w numpt , nummark *
move.l rotdatx,pointx *
move.l rotdaty,pointy
move.l rotdatz,pointz
move.w #0, yangle
move . w #360,d0 *
divs numro,d0 *
move . W d0, plusagle *
move . W numroc, d0 *
ext.l do

rloopl: move.l dl, leopc *
move.l rotxdat,datx
move.l rotydat,daty
move. 1 rotzdat,datz
isr yrot *

Pass the
parameters for
rotation body to
routine for
creating the
retation body
array addresses of
the points

Number of desired rotations
Number of points to be roctated
Address of line array

hAddress of surface array

Rotation of def line

numro+l times about Y-axis

Storage for one line
Number of points
rotated

360 / numro = angle increment
per rotation
store

numro +1 times

as loop counter

rotate

ST 3D Graphics Abacus Software
move.l pointx,dl * add offset
add.l plusrot,dl
move.l dl,peintx
move.l pointy,dl
add.l plusrot,dl
move .l dl,pointy
move .l pointz,dl
add .1l plusrot,dl
move.l dl,pointz
move . w vangle,d?
add.w plusagle,d’
move . w d7,yangle
move .1 loopc, dl
dbra dlb, rloepl
move.w rlnumre, numroe
move .w rlnumpt , numpt
jsr rotlin * Create line array
jsr rotsurf * Create surface array
rts
rotlin:
move.w 1,47
move . w numro, dd * Number of rctations
ext.l d4
subq.l #1,d4
move . w numpt ,dl * Number of points in def. lin.
subqg.w #1,d1 * both as counters
1sl.w #2,d1 * times two
ext.]l di
move.l dl,plusrot
rotleopl: move.w numpt, d5s * Number of pcints minus cnce
ext.]l ds * repeat, last line
subqg.l #2,d5 * connect peints (n-1,n)
move.l linxy,al
move . w d7,dé
rotlop2: move.w de, (al) + * first line connects
addq.w #1,d6 * points (1,2) then (2,3) etc.
move .w dé, (al)+
dbra d5, rotlep2

234

Abacus Software ST 3D Graphics

move . 1 linxy,dl
add.1l plusrot,dl
move .l dl, linxy
move.w numpt, d0
add.w de,d7

dbra d4, rotlopl
move .w numpt,d?
move.w d7,deltal
1sl.w #2,47
ext.l d7

move .l d7,plusrot
move .wW #1,d6

move ., w numpt, dC
ext.l do

subg.l $#1,d0

rotlop3: move.w numro,dl
ext.l dl
subg.l #1,d1
move . w d6,d5s
rotlopd: move.wWw d5, {(al)+ * generate Cross
add.w deltal,d5b * connection lines which
move.w ds, (al)+ * connect lines created
dbra dl, rotlop4d * by rotation
add.w #1,d6
dbra d0, rotlop3
move.w numro, dl
add.w #1,d1
muls nummark,dl
move .. w dl, rlnummark
move . w numpt , dl
muls numro,dl
move . w numpt,d2
subg.w #1,d2
muls numro, d2

add.w dl,d2

ST 3D Graphics Abacus Software
move,wW d2,rlnumline * store number of lines
rts

rotsurf: move . w numro, dl * Create surfaces of
ext,l d0 * rotation body
subgq. 1l #1,4d0
move .w numpt, d? * Number of points minus one
ext.l d? * repeat
subg.1 #2,d7
move .l d7,plusrct
move.l worldpla,al * Address of surface array
mnove . w #1,d1
move . w numpt, d2 * Number of points
addg.w #1,d2

rotfll: move .1l plusrot,d? * Offset

rotfla: move.w dl,d4
move.w dz,d5s
addqg.w #1,d4
addg.w #1,d5
move . w #4, (al) + * Number of lines/surfaces
move . w dl, {aD)+ * first surface created here
move . W d4, (al)+
move .w d4, (a0)+
move . w d5, (a0)+
move . w dbh, (a0)+
move . w d2, (ad)+
move .w d2, (a0} +
move .w dl, (a0)+
addqg.w #1,d1
addqg.w #1,d2
dbra d7, rotfl2
addg.w #1,d1
addg.w $1,d2
dbra d0, rotfll
move.w numpt,dl
subqg.w #1,d1
muls numro,dl

236

Abacus Software ST 3D Graphics

move .w dl, rlnumsurf

rts

*w************t************t*******‘kttt*********kt*********tt*****

* Pass data and parameters to the link file routines *

****t**********i*******************1{**********************‘k*******

wrid2set: move.l #wrldx,datx

move.l #wrldy,daty {
move.l $wrldz,datz !
move .l #viewx,pointx .
move.l #viewy, pointy]
move.l #viewz,pointz T
move.l #wlinxy, linxy !
move . w picturex,x0 |
move . w picturey, y0 (
move .w proz,zobs “
move.w rlzl,dist F
move .1 #screenx, xplot !
move.l #screeny, yplot
move . w rlnumline, numline
move .w rlnummark, nummark

k!
rts

move.w rlnumsurf,numsurf .
]
i

*tt********t*********t***

* Sort surfaces stored in pladress * k

‘kirt********************t********t**********i***************************

sortit: move , 1 #pladress, al
move .w surfecount,d?
ext.l d? * for 1 = 2 to n cerresponds to i
subg.l #2,47
bmi serror * for i = 1 to n-1 because of |
move.l #1,d1 * different array structure

sortmain: move.l dl,d2 |
subq.1 #1,d2 ¥ § =i -1
move.l dl,d3 * i i
1s1.1 #3,d3

237 |

ST 3D Graphics Abacus Software
move .1 (a0,d3.1),d5 * Comparison value x = a[i]
move .l 4{a0,d3.1),ds6 * Address of surface
move.l d5,plate * a[0] = x = a[~1] in
move.l dé,platz+4 * this array
sortlopl: move.l dz2,d4 * 9
1sl.1 #3,d4 * j times 8 for access to array
cmp.l (a0,d4.1),d5 * Z~coordinate of surface
bge sortwl * while x < afij] do
move.l (a0,d4.1),8(a0,d4.1) * ali+l] = alj]
move.1l 4(al0,d4.1),12(a0,d4.1) * Address of surface array
subg.l #1,d2 * § = i-1
bra sortlopl
sortwl: move.l d5,8(al,d4.1) * ald+1] = x

move .l
addg.l
dbra

sortend: rts

serrar: rts

dé,12(a0,d4.1)
#1,d1
d7,sortmain

* pass address also
* i =41+ 1

* until all surfaces are sorted

* On error simply return

'k***********tt*************tt****’********tt************tt*********

* Fill surfaces stored in pladress

¥

*************t******************************t'.l'***********tt***********

paintit: Jsr
jsr
move . w
jsr
jsr
jsr
move .w
Jsr
move.l
move.l
move.w
ext.l
subg.l
move. 1
1s1.1

setclip
sortit
#1,d0
filmode
filform
filcolor
#2,d0
filstyle
xplot,al
yplot, a2
surfcount,d?
a7

#1,d7
d7,d0t
#3,d0

* GEM clipping routine for Filled Area
* Sort surfaces according t¢ Z-coords.

* Write mode to replace

* pborder filled surfaces
* FPill coleor is one
¥ Fill style

* Address of screen coordinates

* Number of surfaces to be filled
* as counter
* access to last surface in the array

* multiply by eight

238

Abacus Software

ST 3D Graphics

move .l
move.l
move.l
move.l
neg.l
add.1l
paintl: move.l
move.l
add.l
1sl.1
divs
neqg.w
add.w
bpl
move .w
paint2: move . W
jsr
move.l
move.l
move.w
addg.w
move.w
move.l
swap
subg.w
1sl.w
move.w
move.w
swap
sub.w
1sl.w
move . W
move . w
subg.w
ext .1
paint3: move.l
subg.w
1sl.w
move . w
move . w
dbra

#pladress,al *

{a0,d40.1),d5 *
$#0,d1

{a0,dl.1),de *
dé6 *
d6,d5 *

ds,d0

{a0,d1.1),d2 ~*
deé,dz *

$#3,d2 *

do,d2 *
dz2 *

$6,d2
paint?2
#1,d2

d2,d0

filindex
#ptsin,al
4(a0,dl.1),aé
(a6) +,d4

#1,d4
d4,contrl+2
{ab)+,d3

d3

#1,d3

#1,d3
(al,d3.w), (a3)+
(a2,d3.w), (ad)+
d3

#1,d3

#1,d3
(al,d3.w), (a3d)+
{(a2,d3.w), (a3} +
#3,d4

da

(ag)+,d3

$#1,d3

#1,d3
{al,d3.w), {a3)+
(a2,d3.w), (a3} +
dd,paint3

here are the surfaces

largest 2-coordinate

first surface in array
smallest Z-coordinate

subtract from each other

first surface in array

plus smallest Z-coordinate
times eight, eight different
fill patterns, divide by difference

leave out last pattern

* get fill index

* Enter points here
* Address of surface
* Number of lines

* first point counts deuble

* first line of surface s

* transfer to ptsin array

* transmit Y-coordinate

* transmit next point

* transmit Y-coordinate

* two points already transmitted
* one because of dbra

* next line

* ¥-coordinate

* Y-coocrdinate

until all peoints in ptsin array

ST 3D Graphics Abacus Software
move.w #9,contrl * then call the
move . w #0,contrl+6 * function Filled
move.w grhandle,contrl+l2 * Area
movem., 1l d0-d2/a0-a2,-(a7)
jsr vdi
movem. 1l (a7} +,d0-d2/a0-a2
add.1l #8,d1 * work on next
dbra d7,paintl * surface in pladress
rts

LA SR AR SR LSRR T LR L R R LT R R R R R R R R R R R

* VDI clipping, used only with VDI functions, alsc for *
* filling surfaces. *

LR R AR SRR AR ARt R R R R R R Ry R Ry R R R R R O R R g g

seteclip: move.w $129,contrl
move . w $2,contrl+2
move . w #1,contrl+6
move . w grhandle, contrl+l2
move . w #1,intin
move .w clipxule,ptsin
move .w clipyule,ptsin+2
move.w clipxlri,ptsin+4
move . w clipylri,ptsin+6
jsr vdi
rts
.even

LEREE SRR AR SRR st R R R R T TR E R R R R R R R

LEE A SRS AR AR AL RE SRSttt R R T e R

* Start of variable area *
) *

LEE RS ER AR a el LR AR

LS AR S LSRRttt Rt R T R R IR T R e

* Data area for rotation body *

AR A RS R Rt E sttt et Rt iR R e R PR ETEEEEY

.bss

240

Abacus Software ST 3D Graphics

numro : .ds.w
numpt : .ds.w
rotxdat: .ds.l 1
rotydat: .ds.l

rotzdat: .ds.1

rotdatx: .ds.l
rotdaty: .ds.l
rotdatz: .ds.1

rlnumline: .ds.w

rinummark: .ds.w

rlnumsurf: .ds.w 1

plusagle: .ds.w 1

rldatx: .ds.w 1540

rldaty: .ds.wW 1540

rldatz: .ds.w 1540

rllin: .ds.l 32060 * 4-Bytes for every line
rlplane: .ds.l 6600

.data

rlxdat: .de.w 0,40,50,50,20,30,20,30,70,80,80,0

rlydat: .de.w 100,100, 80,60, 40, 30, 30,-76,-80,-90,-100,-100

rlzdat: .dec.w 0,0,0,0,0,0,0,0,0,0,C,0

rlnumpt: .dc.w 12

rlnumro: .dc.w 8 * Number of rotations for creation

ST 3D Graphics Abacus Software

LA SR el i sttt Yy e T TS LY Y T

* *
x *
* Definition of the house *
* x

AR R R RN AR kA kA A R AR AR RN A AR TR TR AR T A AR A I AR R AR Rk Ak hk* Tk

.data
housdatx: .dc.w -30, 30, 30,-30,30,-30,-30,30,0,0,-10,-10,10,10
dc.w 30,30,30,30,30,30,30,30,30,30,30,30
housdaty: .dc.w 3o, 30,-30,-~30,30,30,-30,-30,70,70,-30,0,0,-30
de.w 20,20,0,0,20,20,0,0
.de.w -10,-10,-30,-30
housdatz: .dc.w 60, 60,60,60,-60,-60,-60,-60C,60,-60,60,60,60, 60
.dec.w 40,10,10,40,-10,-40,-40,-10
.dc.w 0,-20,-20,0
houslin: .dc.w 1,2,2,3,3,4,4,1,2,5,5,8,8,3,8,7,7,6,6,5,6,1,7,4
.de.w 9,10¢,1,9,9,2,5,10,6,10,11,12,12,13,13,14
: de.w 15,16,16,17,17,18;18,15,19,20,20,21,21,22,22,19
| de.w 23,24,24,25,25,26,26,23

3 3 3 T A gk ok o o e ok e o ok o I U 0k o e R e e ok ok e ok o e e ok e ok o ok o o e o ok ol ot gk o o o ok ok T o o e e e ok ok Tk ok o e e

* here are the definitions of the surfaces for the House *
* *

EH A AR NN AR A Ak Ak ARk Ak AT A AN AR A AN AR A AR AN AR AR ERAN AN RN NN R AR

houspla: .dec.w 4,1,2,2,3,3,4,4,1,4,2,5,5,8,8,3,3,2
de.w 4,5,6,6,7,7,8,8,5,4,7,6,6,1,1,4,4,7
.dc.w 4,4,3,3,8,8,7,7,4,4,2,%,9,10,10,5,5,2
de.w 4,10,9,9,1,1,6,6,10,3,1,9,9,2,2,1
de.w 3,5,10,10,6,6,5,4,11,12,12,13,13,14,14,11
.dc.w 4,15,16,16,17,17,18,18,15,4,19,20,20,21,21,22,22,19
.dec.w 4,23,24,24,25,25,26,26,23
hnummark: .de.w 26 * Number of cerner points in the house
hnumline: .dc.w 32 * Number of lines in the house
hnumsurf: .dc.w 13 * Number of surfaces in the house

242

Abacus Software ST 3D Graphics

hxangle: .de.w 0 * Rotation angle of house about X-axis

hyangle: .de.w 0 * 4 " " Y-axis

hzangle: dc.w 0 * " " " Z-axis

xwplus: .dc.w 0 * Angle increment about X-axis

ywplus: dc.w) * Angle increment about Y-axis

zwplus: .dc.w G * BAngle increment about Z-axis

picturex: .dc.w 0 * Definition of zero point of display \
picturey: .dec.w 0 * entered by getreso !

rotdpx: .de.w

rotdpy: de.w o]
rotdpz: .dec.w 0
rlzl: .dc.w o
normz: .dc.w 1500 i
v
.bss

plusrot: .ds.l 1

first: .ds.w 1 t
second: .ds.w 1 ﬁ
deltal: .ds.w 1 B

worldpla: .ds.i 1

ST 3D Graphics Abacus Software
dx: .ds.w 1
dy: .ds.w 1
dz: .ds.w 1
wrldx: ds.w 1600 * World coordinate array
wrldy: .ds.w 1600
wrldz: .ds.w 1600
viewx: .ds.w 160C * View coordinate array
viewy: ds.w 1600
viewz: .ds.w 1600
screenx: .ds.w 1600 * Screen coordinate array
screeny: .ds.w 1600
wlinxy: .ds.1 3200 * Line array
;' wplane: .ds.1l 6600 * Surface array
vplane: .ds.l 6600 * gurface array of visible surfaces
platz: .ds.1l 2
pladress: .ds.l 3000 * Surface array
surfcount: .ds.w 1
numsurf: .ds.w 1
zcount : .ds.1l 1 * Sum of all Z-coord.
zsurf: ds.w 1 * Individual Z-coord.of surface
sX: .ds.w 1
5Y: ds.w 1
Sz .ds.w 1
pX: ds.w 1
pY: .ds.w 1
pZ .ds.w 1
244

Abacus Software ST 3D Graphics

rx: .ds.w
ry: ds.w
rz: .ds.w
qx: .ds.w
qy: .ds.w
qgzZ: .ds.wW
kx: ds.w 1
ky: .ds.w
kz: .ds.w
.data
prox: .dec.w G * Coordinates of projection
proy: .dc.w 0 * center, on the positive
proz: .dc.w 1500 * Z-axis
.data
offx: de.w 0 * Transformation through rotation
offy: de.w 0 * to point [offx,offy,cffz]
offz: de.w
xoffs: .dc.w 0 * Inverse transformation to point

yoffs: dc.w o] * [xoff,yoffs,zoffs]

I

ST 3D Graphics Abacus Software

4.4.1 New things in the main program rotatel.s:

The creation of a surface array during construction of the rotation body is
accomplished through the subroutine rotsurf:. The array (rlplane)
is of course passed from the subroutine makewrld: into the world
system (wplane). Furthermore, the subroutines hideit:, setclip:
and paintit: as well as the sort routine sortit: are new and have
already been explained. This sort routine sorts the array surfaddr,
which contains the Z-coordinates of the visible surfaces as well as the
addresses of the visible surfaces, according to increasing Z-coordinates.
The subroutine sortit: uses the old trick, an additional array index at
the beginning of the array. You can recognize this by the variable
space: in the variable part of the program. The variable space:
reserves additional space for a data record in the surfaddr-arrays. The
additional space is used as a marker during sorting. The actual sort
algorithm is nothing but a simple insert sort. For better understanding,
here is a structogram of the sort algorithm:

Figure 4.4.4: Structogram of the sort algorithm

246

Ahacus Software ST 3D Graphics

4.4.2 Sort algorithm:

In this program too, you should change various parameters to see what
they do. Up to now you had to change all the parameters in the program
text. This meant that you had to do a lot of assembling and linking just to
change a few parameters. The sort algorithm will allow you to change
parameters while the program is running. One method to change these
parameters is through a menu. See the diagram below. More about this in
the next section.

4-Pts 8-Pts 12-Pts 18-Pts 24-Pts 45-Pts 60-Pts

F-1 F-1 F-3 F-4 F-5 F-6 F-7 F-8 F-3 F-18

ST 3D Graphics Abacus Software

4.5 Entering rotation lines with the mouse

We are now ready to combine the subroutines which we have so far used
separately and to construct a little program for creating rotation bodies,
including the removal of hidden lines and shading surfaces. Furthermore,
we also want to be able to enter the creation lines for the rotation body
with the mouse so that we don’t have to reassemble the program when we
want to use a new definition line. Owners of 520ST’s may find
themselves running short of memory. The available storage space permits
the input of 25 points for a definition line of the rotation body which can
then be rotated 60 times about the Y-axis. Thus a maximum of
25*%61 = 1525 points and about 3000 lines and almost 1500 surfaces will
be created. To store this many parameters as well as the program we need
about 190Kbytes of memory, about a third of which is wasted because the
object is defined twice (datx, daty, datz, wrldx, wrldy,
wrldz). This is done to make things easier, but also in consideration of
the next main program which displays several objects at the same time.
We also have to keep in mind the memory require by the two screen
pages--about 64K

The amount of memory reserved in this program is intended for use on
the "smaller" model. Owners of 1 mega byte computers can display larger
objects if they want by reserving more space for the individual arrays.
The following relationships as are used to calculate the memory
requirements:

Number of points:= rlnumpt * (rlnumo+l)

q Number of linesi= ((rlnumpt-1)*rlnumroc) +
| (rinumpt*rlnumro)

Number of surfaces:= (rlnumpt-1) * rlnumro

The number of lines can be estimated by multiplying the number of
points by two. Each point naturally requires two bytes of storage space.
You must also remember that every surface of the rotation body, requires
18 bytes of storage space since it is always constructed of four lines. In
the surfaddr array every surface requires 8 bytes of additional storage
space. With this information you can expand the programs yourself if you
have a 1040ST. The introduction of the operating system in ROM will
ease the lack of storage space. About 200K of RAM will be released by

248

Abacus Software ST 3D Graphics

using the ROM. If you want to generate rotation bodies with more points
without RAM enhancement, whether through ROMs or RAM chips, you
can change the program so that the rotation body is not duplicated in the
arrays rldatx, rldaty, rldatz, but generated only in the world
system wrldx, wrldy, wrldz and the definition of rldatx,
rldaty, rldatz is completely omitted. This will free about 50
Kbytes of storage which includes the savings from the line array
(rl1lin) and surface array (rlplane). This space can be distributed
over the world array and thus used to generate larger bodies. The product
of the number of points and the number of rotations plus one is limited.
You can for example, rotate 16 points 90 times, or 40 points 30 times, etc.
The only limits placed are those of your imagination. The number of
rotation points to be entered is determined by the variable maxpoint and
can be changed there.

The use of this program differs in a few points from the programs
presented thus far. After the program start, a menu appears where you can
determine the desired number of rotations of a rotation line already
defined in the program. After you press one of the function keys F2 to F8,
the familiar chess figure appears in the "wire model mode" with the
desired number of rotations. The actual rotation parameters such as
position of the rotation point and rotation angle increments can be
changed with the cursor-keys. To remove hidden lines in this rotation
body press the H key on the keyboard (H for Hide). After the visible
surfaces have been drawn, you can fill them with a pattern by pressing the
P key (P for Paint). In both cases you can obtain a hardcopy by pressing
the <Alternate> and <Help> keys at the same time since the surfaces are
drawn and in the visible screen page (physical display). The picture
drawn on the display remains until the <Return> key is pressed and
cannot be changed. As a further option you can fill all the surfaces in the
"wire model mode" (P key), not only the visible ones. For hardcopy of a
wire model, press Shift D. By pressing the F10 key you return to the main
menu and you can enter a new rotation line with F1 and the help of the
mouse.

After pressing F1 a small crosshair and a cartesian coordinate system
whose origin is the, middle of the screen appear. By clicking the left
mouse button you can enter up to 25 points for a definition line. The right
mouse button ends the definition after which you must press a key to
return to the menu. You can set the number of rotations with the function
keys. We almost forgot to mention the significance of the F9 function key
which displays a mouse pointer when pressed in the wire model mode

249

ST 3D Graphics Abacus Software

and allows you to set a new coordinate origin on the screen (left mouse
button). Here are some examples of definition lines and the rotation
bodies which result.

Figure 4.5.1

Figure 4.5.2

Abacus Software ST 3D Graphics

Figure 4.5.3

Figure 4.5.4

ST 3D Graphics Abacus Software

Figure 4.5.5

Figure 4.5.6

252

Abacus Software ST 3D Graphics

Figure 4.5.7

Figure 4.5.8

Abacus Software

ST 3D Graphics

254

9

5

»

4

Figure

Abacus Software ST 3D Graphics

Figure 4.5.11

Figure 4.5.12

253

ST 3D Graphics Abacus Software

: Figure 4.5.13

i Don’t let the program listing frighten you. First of all, if you have entered
the previous programs, all you have to do is enter the new subroutines
and change the main loop a bit. Second, you can get a disk containing all
of the programs in the book from Abacus Software or your dealer.

: Dask File View Uptiun§

Flopow Da sk

P rograms L aPrit & e 8 Ba

ta Becher

256

Opt. Disks

3 A\ o B e SR F3\IDWORK,DIRN
: 251882 bytes used i J 1442236 bytes used in 129 items, J 331956 bytes used in
B PRINTERS BASIC PR6 138944 1if-20¢) HOUSEL PRG
; B TUTORTAL BASIC RSC 4648 11-7¢ HOUSEL S
c FKY BASIC MRK 346 11-2¢ MAINL PR
1 CONY TP BASICL B8AK 14881 11-26f MAINL §
HLi® PRG | — o A HAIRICO PRG
DUTPUT PRG MAINLCD S
SPLIT TP OPEN APPLICATION MENUL PRE
STANDARD PRT Name: BRTCH .TTR MENUL S
TEXTPRO PRG Paramaters: HULTIL PRG
TUTORTAL TXT |[j 2s1ink grlinkl menuil MULTIL S
XTTUTORY TOC PAINTL PRG
R PAINTL S
- === ROTATEL PRE
ROTATEL §

Abacus Software ST 3D Graphics

AR R E A A A A AT TR AT T AT RT AN KRR AAARN KRR A ANAAR R AR AN R IR AR AR kR ARR

* menul.s 2/18/1986 *
* Creation of rotation bodies Uwe Braun 1985 Version 2.2 *
* with hidden line algorithm and painting *
* *

AR R A AT AN A AR T AR A AN TR RN AN R T NN AR AR KRR REAAR IR RN R I R AR R NN KRRk

.globl main, xoffs,yoffs,zoffs,offx,0ffy,0ffz
.globl viewx,viewy,viewz
.globl wlinxy,mcuse off, setrotdp,inp chan,peintrot
Lext
main:
isr apinit * Announce programm
isr grafhand * Get screen handler
jsr openwork * Display
jsr mouse_off * Turn off mouse
jsr getreso * Display resolutien
jsr setcocli * set Cchen sutherland clip.
mainl: jsr clearbuf
jsr menu
jsr makerotl * create rotation body
jsr makewrld * create world system
jsr wrld2set * pass world parameters
jsr pageup
jsr clwork
isr setrotdp * initialize cobserver ref. peint
jisr pagedown * Display leogical screen page
jsr clwork
jsr inp chan
mainlopl:
jsr pointrot * rotate around cbserv. ref. pecint
jsr pers * Perspective transformation
jsr drawnl
jsr pageup * Display physical screen page
isr testhide

257

ST 3D Graphics

Abacus Software

jsr
jsr
jsr
jsr

isr

jsr
isr
isr
jmp

mainend: move.l

jsr

ks

inp chan
clwork
pointrot
pers

drawnl

pagedown
inp_chan
clwork

mainlopl

Input new parameters
clear page not displayed
Rotate arocund rot ref. point

Transform new points

Display this logical page
Input and change parameters
erase physical page

te main loop

physbase, logbase

pageup

* switch to normal screen page
* back to link file and end

***************t*******************************ttt********************

* Display menu and selection of menu points *

************t******************tt**********w**************************

menu ! jsr
move.l
jsr
move .l

isr

menul: jsr
swap
cmp.b
bne
jsr

bra

menul: cmp.b
bne
move . w

bra

switch
#text2,al
printf
#text3, al
printf

inkey
d0
#%3b,d0
menul
inpmous

menu

#53c,db
menu?
#4, rlnumro

menend

Display and draw the same
sCreen page

Disﬁlay menu list

Read keyboard
Fl key pressed 7

if yes, enter a line

F2 key pressed ?

if yes, then initial number of

rotations te four

258

Abacus Software ST 3D Graphics

menu? : cmp.b #534,d0 * F3 key
bne menu3
move .w ¥8, rlnumro
bra menend
menu3: cmp . b #53e,d0 * F4 key
bne menud
move.w #12, rlnumrc
bra menend ;
menud: cmp.b #53£,4d0 * F5 key
bne menub
move . w #18, rlnumro
bra menend
menus emp.b £$40,d0 * F6 key :
bne menub !
move . w #24, rlnumro
bra menend
menué: cmp.b #341,d0 *x F7 key ;
bne menu’ :
move . w #45, rlnumro
bra menend
menu’: cmp.b $#542,d0 * F8 key
kne menuf
move.w #60, rlnumro
bra menend @
|
menud: * Room for additional keybecard commands

menu9: cmp.b #544,d0 * F10 key

ST 3D Graphics Abacus Software

LA SRSt sttt sl sttt R 20T R Y

* Test if removal of hidden surface and shading of surfaces *

* is desired *

% A T W R A e W W e sk e e Sk ok e ok et ok ok i ok e gt ok ok ok e ok e e e ok ok ke e o e e de e sk ke ok ok ok ke ek

testhide: jsr inkey * Read keyboard
swap d0
cmp . b $523,d0 * h key pressed ?
beq dohide * if yes, call hideit
cmp.b $#5$19,d0 * p key pressed ?
beg dopaint * is yes, shade
Tts * if not, return

HEEEK A AR LR EAA KRR A AN A RAA AN R R AR AR TR TN R TRk Ak Pk kAo kkd

* Call hideit routine to remove hidden Surfaces *

HE R AT A kR A A A A A A A KRN KN TR A AKX LA AR TR IR R AL IR R KK X* ok okx

dohide: jsr switch * or you won‘t see anything
jsr clwork * erase display
jsr hideit * ramove
isr surfdraw * and draw
dohidel: dJsr inkey * shade too ?
swap do
cmp.b #3519, 40 * 1f yes, call fill routine
beq dopain2
cmp.b $#$1lc,dl * if not, wait for activation of
bne dohidel * Return key on main keyboard
jsr pageup
rts * and back
dopain2: jsr paintit * Shade surfaces
dopain3d: Jsr inkey
swap do
cmp.b #51c,d0 * wait for return key
bne dopainid
isr pageup
rts

260

Abacus Software ST 3D Graphics

t*********************w**

* Shade all surfaces defined in the world system *
****************‘ktt***********'ktt******************************‘k*******

dopaint: Jsr switch
isr clwork
jsr paintall * shade all
dopaintl: jsr inkey
swap do
cmp.b #%1c,d0 * and wait for Return key on the
bhe dopaintl * main keyboard
jsr pageup
rts

*****i***********************‘k***********************tt***********‘k*t**

* Create the rotation body *

*********‘kt***‘k

makerotl: jsr rlset * Set parameters of this rot. body
jsr rotstart * Create rot., body
rts

*t‘k********'k*************t'k**********t***********************t*********

* Input and change parameters *

***************************************‘k***********************‘kt******

inp_chan: jsr inkey * Read keyboard, key c¢ode in
cmp.b $#'D’,d0
bne inpwait
jsr scrdmp * Make hardcopy
inpwait: swap d0 * Test DO for
cmp.b #%$4d,d0 * Cursor—-right
bne inpl
addg.w 1, ywplus * if yes, add one to Y-angle
bra inpendl * and continue

261

ST 3D Graphics Abacus Software
inpl: cmp.b #34b,d0 Cursor-left, if yes, subtract
bne inp2 one from Y-angle increment
subg.w #1, ywplus
bra inpendl
inp2: cmp.b #$50,4d0 Cursor-down, 1f yes
bne inp3
addq.w #1, xwplus add one to X-angle increment
bra inpendl
inp3: cmp.b #548,d0 Cursor-up
bne inp3a
subg.w #1, xwplus subtract cne
bra inpendl
inp3a: cmp.b #561,d0 Undo key
bhe inp3b
subg.w #1, zwplus
bra inpendl
inp3b: cmp.b #562,d0 Help key
bne inp4
addg.w #1,zwplus
bra inpendl
inpd: cmp.b $%$4e,d0 plus key on the keypad
bne inp5 if yes, subtract 25 from base of
sub.w #25,dist projection plane (2-coocrdinate}
bra inpendl
inpS: cmp.b #54a,d0 minus key on the keypad
bne inpé
add.w #25,dist if yes, add 25
bra inpendl
inp6: cmp.b #566,d0 * key on keypad
bne inp? if yes, subtract 15 from rotaticn
sub.w #15, rotdpz point Z-coordinate
bra inpendl make changes

262

Abacus Software ST 3D Graphics
inp7: cmp.b #565,d0 * Division key on keypad
bne inp8
add.w #15, rotdpez * add 15
bra inpendl
inp8: cmp.b #543,40 * % pressed 2?2, if yes,
bne inpl0
jsr newmidd * display new screen center
bra inpendl
inpl0: cmp.b #544,d0 * F10 pressed ?
bne inpendl
addqg.l #4,a7 * 1if yes, jump to new input
bra mainl
inpendl: move.w hyangle,dl * Rotation angle about the Y-axis
add.w ywplus,dil * add increment
cmp . w #300,dL * if larger than 360, subtract 360
bge inpend?2
cmp . W #-360,d1 * if smaller than 380,
ble inpend3 * add 350
bra inpend4
inpend2: sub.w #360,dl
bra inpendd
inpend3: add.w #360,d1
inpendd: move.w dl,hyangle
move.w hxangle,dl * proceed in the same manner with the
add.w xwplus,dl * rotation angle about the X-axis
cmp.wW #360,d1
bge inpend5
cmp . W #-360,d1
ble inpend6
bra inpend?
inpend%: sub.w #360,d1
bra inpend?
inpend6: add.w #360,dl
inpend7: move.w dl,hxangle *

263

'—7'

ST 3D Graphics Abacus Software
move . w hzangle,dl
add.w zwplus,dl
cmp . W #360,d1
bge inpend8
cmp.w #-360,d1
ble inpend9
bra inpendl0

inpend8: sub.w #360,d1
bra inpendll

inpend?: add.w #360,d1
inpendl0: move.w dl,hzangle
rts

hkdkkkhk ko d Ak ke kA ko kA kA kA Ak kA A A Ak kR A AR AR KT AR KRR A NK

* Set the location of the coordinate origin of the screen *

* gystem with the mouse *

KHE R AR I AR AT KRN AR R T RAARAAANRIRA AN T IR AN AR A A AR AR A Ak bk hxdx

newmidd: Jjsr switch
jsr mousform * change mouse form

newmiddl: move.w w0, d2
move . w y0,d3
jsr mouspes * wait for mouse input
move . w x0,d2 * must be called for unknown reasons
move.w v0,d3 * twice for one input of the
isr mouspos * Position
cmp.b #520,d1 * left button ? if not, then
bne newmiddl * once more from the beginning
move . w d2, x0 * store new coordinates
move . W d3, ye
rts

KAk A Ak kA A R A A AR A A A A A AT AT A A A A RAERNAR R R R R A FNAN N IR AA AR A AR A Ak k&

* Determine the current screen resolution *
EF TSRS A LRSS L SESESELSSEZ S LS SRS ES RS SRR LRttt a RS DSl

getreso: move.w #4,-(a7)
trap #14
addg.l #2,a7

264

Abacus Software ST 3D Graphics

cmp . W #2,d0
bne getrl
move . W #320, picturex * Monochrome monitor
move . w #200, picturey
bra getrend
getrl: cmp.wW #1,d0
bne getr?2
move . W #320,picturex * medium resclution (640%200)
move .w #1000, picturey
bra getrend
getr2: move .w $160,picturex * low resolution (320%200)
move .w #100,picturey

getrend: rts

*************************t*****************tt********t****************

* Hardcopy of screen, called by inp_chan *

**

scrdmp: move . w #20,~(am)
trap #14
addg.l $2,a7
jsr clearbuf
rts

tt*****t*****************************t***************************

* Initialize the rotation reference point te [0,0,0] *

W*t******t***

setrotdp: move.w #0,dl * get the initial rotation
move . w dl, rotdpx * ref. point
move.w dl, rotdpy
move.w dl, rotdpz
move.w #0,hyangle * jinitial rotation angle
move . w #0,hzangle
move . W #0,hxangle
move .w #0, ywplus
move . w #0, xwplus
move.w #0, zwplus

rts

ST 3D Graphics Abacus Software

LEE AR RS SRS SRRt R R R R R R R R R I R g g g g X X

* Rotation around the rot. ref. point about all three axes *

Kok de ok ok ek Aok ek Rk ek kR e e sk e R gk ek ok e e e e ok ke e W e e ok ok ko gk o Tk ke ke ok e ok e ok

pointrot: move.w hxangle, xangle * rotate the world around the
move . w hyangle, yangle
move .w hzangle, zangle
move . w rotdpx,d0 * rotation ref. point
move .w rotdpy,dl
move ,w retdpz,d2
move .w d0, xoffs * add for inverse transformaticn
move .w dl,yoffs
move.w d2,zoffs
| neg.w do
; neg.w dl
neg.w dz2
ﬂ move.w d0,offx * subtract for tranformation

move.w dl,cffy

move . w d2,o0ffz

jsr matinit * initialize matrix
! jsr zrotate * rotate 'matrix’ about Z-axis
: jsr yrotate * rotate 'matrix’ about Y-axis
! isr wrotate * then rotate about X-axis
| jsr rotate * riultiply point with matrix
} rts
'

W ek ok ok ol e e gk e e e e ok ok I K Tk ok e R e sk ok ok e e v e e T 3k ok ko e e ek e ok ok ok T T Tk ok o ok ok ok ok ok

1 * Set the limit of display window for the Cohen-Sutherland clip *
| * algorithm built into the draw-line algorithm *
i * The limits are freely selectable by the user which makes the *
I * draw-line algorithm very flexible. *

Fh kAo kR K KK d ko k ok kR kot kR Ak ko kA Ak ke kA Ak h kK k

setcocli: move.w #0,clipxule
move . w #0,clipyule
move.w picturex,dl
1sl.w #1,d1 * Limes two
subg.w #1,d1 * minus cone equals
move.w dl,clipxlri * 639 feor monochrome
move ,w picturey,dl
1sl.w #1,d1 * times two minus one equals
subg.w #1,d1 * 399 for monochrome

266

Abacus Software ST 3D Graphics

move . w dl,clipylri
rts

'k*********************

* Transfer object data into the world system . *

W*‘k*t***********

makewrld: move.l #rldatx,al * create the world system through
move.l #rldaty,a2
move.l #rldatez, a3
move.l #wrldx, a4 * copying the point coordinates
move .l #wrldy,ad * into the world system
move.l $wrldz,aé
move.w rlnummark,d0
ext.1l d0
subqg.l 41,40
makewll: move.w {al)+, (ad) +
move .w {a2)+, (ad)+
move . W {a3)+, (ab)+
dbra 40, makewll
move .w rlnumline, d0 * Number of lines
ext.l a0
subg.l #1,d0
move . 1 #rllin,al
move.l #wlinxy,a2
makewl2: move.l {al)+, (a2) + * Copy lines into world Line
dbra d0,makewl2 * array
move.l worldpla, a0 * Adress of surface definition
move.l twplane, al * of the body,
move . W rlnumsurf,d0 * Number of surfaces cn the body
ext.l d0 * as counter
subg.l #1,d0
makewl3: move.w (a0) +,dl * pl]l lines in this surface,
meve . w dl, {(al)+ * and of course the number of
ext.l dl * surfaces copied to world surface
subg.l 41,d1 * array
makewld: move.l (a0)+, (al)+ * copy every line of this surface
dbra dl, makewld * to the world array

267

QR

ST 3D Graphics Abacus Software
E dbra d0, makewl3 * until all surfaces are completed
; rts

wrldset: move.l
move.l
move.1l
move.l
move.l
move.l
move.l
move . W
move .w
move . w
move .w
move.1l

move.l

move.w
move.w
move .w

rts

#wrldx,datx
#wrldy,daty
#wrldz,datz
#viewx,pointx
#viewy,pointy
#viewz,pointz
#wlinxy, linxy
picturex, x0
picturey, y0
proz, zobs
rlzl,dist
#screenx, xplot
#screeny, yplot
hAnumline, numline
hnummark, nurmmark
hnumsurf, numsurf

*

Pass variables for
the rotation routine

Coordinate source for the
screen system
projection center

position of projection plane

268

Abacus Software ST 3D Graphics

tt************ic****************************‘k*************‘k**t********

*x Enter visible surface into the vplane array *

*********************i***********t*************t*********************

hideit:
move.w numsurf, dl * Number of surfaces as counter
ext.l d0
subq.l #1,4d0
move.l fviewx,al * point coordinates stored here
move . 1 ¥viewy, a2 1
move.l fviewz,a3 !
move .1 #wplane, a0 * here is information for every
move.l $vplane, abd * surface
move.w #0, surfcount * counts the known visible surfaces
move.l #pladress,aé * Address of the surface storage

visible: move.w (a0}, dl * start with first surface, number i
ext.l dl * of points in this surface in D1 é
move . w 2(af),dz2 * offset of first point of this surface 4
move . w 4 (a0),d3 * Offset of second point |
move.w 8(a0),dd * Offset of third point 3
subg.w #1,d2 * subtract one from current point offset f
subg.-w #1,d3 * for access to point srray
subg.w #1,d4
1sl.w $#1,d2 * then multiply by two 1
1sl.w #1,d3 ‘
1sl.w ¥1,ad4 * and finally access the current
move .. w (al,d3.w),d6 * point coordinates l
cmp . W {al,d4.w),d6 * comparison reccgnizes two points
bne deitl * with some coordinates which can occur
move.w {a2,d3.w),d6 * during construction of rotatien
cmp.w (a2,dd.w),d6 * bodies. If two h
bne doitl * points where all point coordinates E
move.w (a3,d4.w),d6 * (%,v,z) match, the program selects
cmp.w {a3,d3.w),d6 * a third point to determine the two
bne deoitl * yectors

move .w 12 (a0) ,d4
subg.w $#1,d4
1sl.w #1,d4

ST 3D Graphics Abacus Software
doitl:
move . w (al,d3.w),d5 here the two vectors which lie in the
move.w d5, kx surface plane are detemined by
* subtraction
sub.w (al,d2.w),d5 of coordinates from two peints of the
move.w d5, px points in this surface
move . W (a2,d3.w},d>5
move .w do, ky the direction coordinates of the
.i ' sub.w {a2,d2.w},d5 vector are stored in the variables
;1 move .w d5, py ax.dqy.qz and px,py,pz
3 move .w {a3,d3.w),d5
! move .w d5, kz
sub.w (a3,d2.w},dd
move . w d5,pz
move.w {al,d4.w},d5 calculation of vecter Q
sub.w (al,d2.w),d5
move . w (a2,dd.w),d6
sub.w {a2,d2.w),ds
nove .w {a3,d4.w),d7
sub.w {a3d,d2.w),d7
move . w d5,dl g%
move ., w d6,d2 ay
move . w d7,d3 qz
muls py,d3 calculation of the cross product
muls pz.d2 of the vector perpendicular to
* the surface
sub.w d2,d3
move.w d3, rx
muls pz,dl
muls px,d7
sub.w d7,d1 the direction coordinates of
* the vector
move.w dl, ry which is perpendicular to the
muls px,d6 surface area stored temporarily in
muls py.d5s rX,ry,rz
sub.w d5,de
move . w dé, rz
move.w prox,dl * The projection center is used as
sub.w kx,dl * the comparison point for the

270

Abacus Software ST 3D Graphics

move . w proy,d2 * yisibility of a surface, which is
sub.w ky,d2 * adequate for this viewing

move.w proz,d3 * gituation. One can also use

sub.w kz,d3 * the chservation ref. point

muls rx,dl * ag the comparison peint.

muls ry,d2 * Now follows the comparison of the
muls rz,d3 * yector R and the vector from
add.l dl,d2 * pne point on the surface to the
add.l d2,d3 * projection center by creating the
bmi dosight * gcalar preduct of the two vectors.

* the surface is visible, otherwise continue with next surface.

move .w (a0),dl * Number of lines in surface
ext.1 dal
1s1.1 42,dl * Number of lines times 4 = space for lines
addg.l #2,d1 * plus 2 bytes for the number of lines
add.l dli, a0 * add to surface array, for access to
sightl: dbra d0,visible * next surface. If all surfaces
bra hideend * completed, go to end.
dosight: move.w {al},dl * Number of lines in this surface
ext.l dl * multiplied by two gives result of

move.l dl,d2

1s1.1 ¥1,d1 * number of words to be transmitted
move.l al,ad
addg.l ¥#2,ad * Access to first line of surface
move.w #0,zsurf * Erase addition storage

sight2: move.l {ad) +,dé * first line of surface
swap dab * first point in lower half of DU
subg.w #1,d6 * adapt Index
lsl.w #1,d6 * adapt Operand size {2-byte}
move . w {a3,d6.w),d6 * Z-coordinate of this peint
add.w d6, zsurf * add all Z-Ccordinates
dbra d2,sight2 * until all lines have been processed

21

ST 3D Graphics Abacus Software
move . w zsurf,dé * Divide sum of all Z-coordinates of
ext.l d6 * this surface by the number of lines in
lsr.l 42,46 * the surface. Surfaces created by
ext.,l deé * rotation always have four lines
move .1 de, {ab)+ * store middle Z-coordinates
move .1 al, (a6)+ * followed by address of surface

sight3: move .w {al)+, (ab)+ * transmit the number of lines
dbra dl,sight3 * and the individual lines
addqg.w #1,surfecount * add one to the number of surfaces
bra sightl * and work on next one

hideend: rts

2 R AR R s a2 AE2 2222 2R 2282 0 a2 R R i il Rl ittt tts i h

* Draw all surfaces contained in vplane *

AR AR R R R AR IR RN AR AN RN AR AL A A AR AR F ket hk ks kA hkkk R ks wk kb koari

surfdraw: * Draws the number of surfaces passed
move .l xplot,ad * in surfcount whose descriptions
move .1 yplot,ab
move. 1 ¥vplane,ab * were entered by hideit in the array
move .wW surfcount,d0 * at address vplane
ext.l 40
subq.1l #1,4d0 * if there are no surfaces in the array
bmi surfend * then end.

surflepl: move.w {ab) +,dl * Number of lines in this surface
ext.l dl * as counter of lines to be drawn.
subg.1l #1,d1

surflop2: move.l (a6)+,d5 * first line of this surface
subg.w #1,d5 * Access to screen array where
1sl.w #1,d5 * screen cocrdinates of points are.
move.w ({ad,d5.w),d2
move.w 0{ab,d5.w)},d3 * extract points
swap ds * pass routine.

272

Abacus Software

ST 3D Graphics

subg.w
lsl.w
mave . w
move . w
jsr
dbra
dbra

surfend: rts

#1,d5

$#1,d5

C{a4,d5.w),a2 * second point belonging to
0(a5,d5.w),a3 * line

drawl * draw line, until all lines in this
dl, surflop2 * gurface are drawn and repeat
al,surflopl * until all surfaces are drawn.

* finally return.

**

* Set parameters of this rotation body *

***************t************t*******************************t*********

rlset:
move.l
move .l
move .1
move.l
move.l
move.l
move.l
move .l
move.l
move . w
move.w
move .l
move.l

res

#rlxdat, rotxdat * Pass parameters of this
#rlydat, rotydat * rotation body to reutine
#$rlzdat, rotzdat * for generating the

#ridatx, rotdatx

#rldaty, rotdaty * rotation body

¥rldatz, rotdatz

rotdatx,datx * Array addresses of points
rotdaty,daty

retdatz,datz

rlnumro, numro * Number of desired rotatations.
rlnumpt, numpt * Number of points to be rotated
#rllin, linxy * Address of line array

#riplane,worldpla * Address of surface array

*k*t**tt*************************

* and create rotation body *

****************i*************************t**************t*************

rotstart: move.w
lsl.w
ext.,l

move.l

numpt , d0 * Rotate the def line
#1,d0 * mumro+tl times about the Y-axis
d0

d0,plusrot * Storage space for one line

ST 3D Graphics Abacus Software
move . w numpt, nummark * Number of points
move.l rotdatx, pointx * rotate to here
move.l rotdaty, pointy
move.l rotdatz,pointze
move . W #0, yangle
move.w #360,d0 * 360 / numro = angle increment
divs numre, d0 * per rotaticn
move . w do, plusagle * gtore
move . w numro, d0 * npumro +1 times
ext.l d0

rloopl: move.l d0, locpe * as loop counter
move.,l rotxdat,datx
move.l rotydat,daty
move .l rotzdat, datz
jsr yrot * rotate
move.l pointx,dl * add offset
add.1l plusrot, dl
move.l dl,pointx
move.l pointy,dl
add.l plusrot,dl
move ., 1 dl, pointy
move.l peinte,dl
add.l plusrot,dl
move.l dl,pointz
move.w vangle, d7
add.w plusagle,d?
move .w d7,yangle
move .l loope, dO
dbra d0, rloopl
move . w rinumro, numro
move.w rlnumpt, numpt
isr rotlin * Create line array
jsr rotsurf * Create surface array
rts

rotlin:
move .w #1,d7
move . w numro, d4 * Number of rotations
ext.l d4
subqg.l #1,d4

274

Abacus Software ST 3D Graphics

move.w numpt , dl * Number of points in the def. line.
subqg.w #1,d1 * both as counter
1sl.w #2,d1l * times two
ext.l dl
move .l dl,plusrot
rotlopl: move.w numpt., d5 * Number of points minus one
ext.l ds * repeat, last line
subg.l #2,d5 * connects the points (n-1,n)
move .1l linxy,al
move .w 4d7,d6
rotlop2: move.w dé, {al)+ * the first line connects the
addg.w #1,d6 * points (1,2) then (2,3) etc.
move .w de, (al)+
dbra d5, rotlop?2
move.l linxy,dl
add.l plusrot,dl
move.l dl,linxy
move .w numpt, d0
add.w d0,d7
dbra d4, rotlopl
move .w numpt, d? !
move . W d7,deltal
1sl.w $2,4d7 :
ext.l d7]
move.l d7,plusrot
move . W #1,d6
move .w numpt, d0
ext.l do

subg.1l #1,d0

rotlop3: move.w numro,dl
ext.l dl
subqg.l #1,dl
move .w deé,d5

rotlopd: move.w a5, {al)+ * now generate the cross connections
add.w deltal,d5 * which connect the individual lines
move . w d5, (al) + * created by rotation

dbra dl, rotlopé

ST 3D Graphics Abacus Software
add.w #1,de6
abra dd, rotlopld
move .w numro,dl
add.w #1,d1
mals nummark,dl
move .w dl, rlnummark
: move . w numpt ,dl
H muls numro,dl
| move.w numpt,d2
subg.w #1,d42
muls numro,d2
add.w dl,dz
move .w d2,rlnumline * Number of lines stored
rts
rotsurf: nove . w numro, dl * create surfaces of the
ext.l do * rotation body
subg.l #1,40
move . w numpt,d? * Number of peoints minus cne
ext.l d7 * repeat
subg.l t2,d7
move.l d7,plusrot
move.l worldpla,a0 * Address of surface array
move . w #1,d1
move .w numpt , d2 * Number of points
addqg.w #1,d2

276

Abacus Software ST 3D Graphics
rotfll: move. 1l plusrot,d? * Offset
rotfl2: move .w dl,d4
move . w d2,d5
addg.w #l,d4
addg.w #1,d5
move.w #4, (al)+ * Number of lines / surfaces
move.w dl, (a0} + * the first surface is
move .w d4, (a0} + * created here
move.w dd, (al)+
move .w dh, {al) +
MoVe . W d5, {al) +
move .w a2, (a0) +
move.w d2, (a0)+
move . W dl, (al) +
addqg.w #1,d1
addg.w #1,d2
dbra d7,rotfl?2
addg.w $1,d1
addg.w $#1,d2
dbra d0, rotfll
move . w numpt, dl .
subg.w #1,d1 ‘
muls numro,dl
move . w dl, rinumsurf

rts

e

ST 3D Graphics Abacus Software

******t**t**

* Transfer the world parameters and the variables to the link file *

ek s ok e g ok kT T T T vk e ok ok ok e ok sk W 3 e ok ok o ok ok ok vk ke ok e o sl e ok ok ok ok kR e e

wrld2set: move.l #wrldx,datx * rransfer the world parameters
move,l fwrldy,daty * and the variables to the
move .1l $wrldz,datz * routines in the link file
move.l #viewx, pointx
move.l #viewy,pointy
move.l #viewz,pointz
move.l #wlinxy, linxy
move.w picturex, x0
move . w picturey, y0
move .w proz, zobs
move . w rlzl,dist
move.l ¥screenx, xplot
move.l #screeny, yplot
move . w rinumline, numline
move.wW rlnummark, nummark
move.w rlnumsurf, numsurf
rts

******************************tt*******************************it*****

* gSort all surfaces entered in pladress *

***************t********************************t*********************

sortit: move.l #pladress, a0
move . w surfeount,d?
ext.l d7 * for 1 = 2 to n corresponds to
subg.l #2.d7 * number of runs
bmi serror * for i = 1 to n-1 because of
move .l #1,d1 * different array structure
sortmain: move.l di,d2
subg.l #1,d2 * =1 -1
move.l dl,d3 * i
1s1.1 #3,d3
move.l (a0,d3.1),d5 * Comparison value x = a[i]
move.l 4{al,d3.1),dé * sddress of the surface
move .l d5, space * a[0] = x = a[=1] in this
move.l d6, space+4 * array

278

Abacus Software ST 3D Graphics

sortlopl: move.l dz2,d4 Ll |
1s1.1 #3,d4 * §J times 8 for access to array
crp .l {a0,d4.1),d5 * Z-coordinate of surface
bge sortwl * while x < al[j] de
move .l {(a0,d4.1),8(al,d4.1) * afj+l] = a[]]
move.l 4{al,d4.1),12(a0,d4.1) * Address of surface array
subqg.1l #1,d2 ¥ 4 = 4-1
bra sortlopl
sortwl: move.l d5,8(ad,d4.1) * al[j+1] = x
move .l d6,12(al0,dd.1) * Pass address also
addg.1 #1,dl1 * 4 =14 + 1
dbra d7, sortmain * Until all surfaces have been sorted

sortend: rts

serror: rts * On error simply return

ok ko kb kk ok kdh ko h Ak kAR r AR R Rk kv Ak kAR A Ak kA kdex

* paintall draws all surfaces in world array wplane independent of *
* their visibility; all surface addresses and middle Z-coordinates *
* are entered into the pladress array. *

Tk kkE AKX KTk dhhk kot h kAR R AR R R AR Rk vk kA ddekkbrkk

paintall:

move .w numsurf,do * Number of surfaces

ext.l do

subg.1l #1,d0 * if no surface present

bmi pquit * then terminate

move.l $viewz, al

move,l #wplane, a0

move .w #0, surfcount * Surface ccunter for surfdraw

move.l #pladress,ab * surfaces are entered here
svisible:

move . w {a0),dl * all surfaces are visible

ext.l dl

subg.l #1,d1

move.w #0, zsurf * middle Z-coordinate

move.1l al,ad

addqg. 1 #2,ad

279

ST 3D Graphics Abacus Software
ssightbl: move.l (ad)+,d2 * first line of surface
swap d2
subg.w #1,d2
1sl.w #1,d2
ddoitl: move .w (a3, d2.w},db * add all Z-ccordinates of this
add.w d6, zsurf * surface
dbra dl, ssightbl
move .w zsurf,dé
ext.l de * then divide by four, shifting
1sr.l #2,d6 * is possible only with rotation
ext.l dé * bodies since each surface has
move.l d6, {ab)+ * exactly four lines otherwise divide
move.l al, {a6)+ * by number of lines
addg.w #1, surfcount * increment surface counter for surfdraw
move . w (al),dl * A0 still points to number of lines
ext.l dl * in this surface
1sl1.1 $2,d1 * Number of lines times four (1 leong)
addg.1l $2,d1 * 2 bytes for the number of lines
add.l dl, a0 * A0 points to next surface
dbra dl,svisible
move.w numsurf, surfcount
jsr paintic * Fill surfaces in pladress
pquit: rts
paintit: Jsr seteclip * GEM clipping routine for filled area
isr sortitc * Sort surfaces accerding to Z-cocrdinates
move.w #1,d0 * Write mode to replace
jsr filmode
isr filform * frame filled surface
isr filcolor * Shading ceclor is one
move . w $2,d0 * Fill style
jsr filstyle
move.l xplot,al * Address of screen cocrdinates
move .l yplot,a2
move .w surfecunt,d? * Number of surface to be filled
ext.l a7t * as counter
subg.l #1,47 * gccess last surface in array
move.l d7,dt * multiply by eight

280

Abacus Software

ST 3D Graphics

paintl:

paint2:

paint3:

1s1.1
move.l
move.l
move.l
move.l
neg.-1l
add.l
move.l
move.l
add.l
1sl.l
divs
neg.w
add.w
bpl

move . w

move .w
isrc
move.l
move.l
move .w
addqg.w
move .w
move.l
swap
subg.w
1sl.w
move.w
move.w
swap
sub.w
1sl.w
move.w
move .w
subg.w
ext.l
move .l
subg.w
1sl.w
move .w

move.w

#3,d0
#pladress,al
{a0,d0.1},4d5
#0,d1
(a0,d1.1),de
dé

d6,d5

d5,d0
{a0,d1.1),d2
d6,d2

#3,d2

d0,dz2

d2

#6,d2

paint?2

#1,d2

d2,d0

filindex
#ptsin, a3
4(a0,d1.1),ab6
(ab) +,d4

#1,d4
d4,contrl+2
{ag)+,d3

d3

#1,d3

#1,d3
(al,d3.w}, (a3} +
(a2,d3.w), {ad)+
d3

#1,d3

#1,d3
(al,d3.w), (a3)+
(a2,d3.w), (ad3) +
#3,d4

d4

{ab)+,d3

#1,d3

$#1,d3
{al,d3.w), (a3} +
(a2,d3.w), (a3) +

281

here are largest Z-ccordinate

surfaces

first surface in array
smallest Z-coordinate

subtract from one another

first surface in array

plus smallest 2Z-ccoerdinate
times eight, eight different
shading patterns, divide by
difference leave out last
pattern.

set fill index

enter points here

Address of surface

Number of lines

first point counted twice

first line of surface

transfer to ptsin array
pass Y-coordinate

transmit next point

transmit Y-cocordinate

already two points transmitted
and one because of dbra

next line

X~coordinate
Y-coordinate

F'-_—-----------__

ST 3D Graphics Abacus Software
dbra d4,paint3 * yntil all points in Ptsin-Array
move .. W #9,contrl * then call the fill area function
move . w $0, contrl+ée
move .w grhandle,contrl+12
movem.l d0-d2/al-a2,~{a7)
isr vdi
movem. 1 {(a7)+,d0-d2/a0-a2
add.1l #8,d1 * work on next surface in pladress
dbra d7,.paintl
rts

setclip: move.w
move . W
move . W
move . W
move . w
move.w
move . W
move . w
move .w
jsr

rts

inpmous:
jsr
meve . w
jsr
move .w
move.w

jsr

*****t*t**************************t*************tt***********it********

* VDI clipping, only needed when VDI functions are used, *
* for surface filling. *

******tt**********‘kt*************‘k**************i**********************

#129,contrl
#2,contrl+2
#1,contrl+é
grhandle, contrl+l2
#1,intin
clipxule,ptsin
clipyule,ptsin+2
clipxlri,ptsin+d
clipylri,ptsin+é
vdi

************************************‘ktt*************************tt*

* this subroutine allows coordinates to entered with the Mouse *
* The maximum number of points is in the variable maxpoint, and *
* ig limited only by storage space *

‘k*****'!l***************"I*t************************************

switeh

#5,d0

setform

#1,d0 * set input mode to mouse-request
#1,d1 * wait for mouse input which is
setmode * terminated by key activation and

282

Abacus Software ST 3D Graphics

jsr coord * mouse clicking
move, 1l #0,adressx
move . w #5,d0 * set polymarker to diagonal cross
isr marktype
mouslepl: Jsr mousSpos * For unknown reasons function must
move .w plcturex,d2 * be called twice teo work once.
add.w #15,d2
move.w picturey,d3
sub.w #40,d3
jsr mouspos
cmp.b #520,d1 * walt until the left mouse button is
bne mouslopl * pressed
move.l #rixdat,ad * arrays in which input
move.l #rlydat,a5 * coordinates are entered; enocugh
move.l #rlzdat,ab * storage must have been reserved
move . w d2,newx * store mouse X and Y positions
move.w d3, newy
jsr saveit * and pass line array
move.w newx, d2
move .w newy,d3
jsr markit * set a polymarker
add.l #1,adressx * increment counter
mousl: nop
move.w newx,attx
move . w newy,alty
mousiop2: move.w altx,d2 * pass old position of the mouse
move . w alty,d3
isr mouspos * and call again
isr mouspos
cmp.b #521,d1 * if right mouse button, then
beqg mousend * end of mouse input
cmp.b #520,d1
bne mouslop2
move . w d2, newx * store mouse coordinates
move.w d3, newy
jsr savelit * store in array

283

R

ST 3D Graphics Abacus Software
move . w newx,d2 * draw line from {n-1) n"th point
| move . W newy,d3
| move.w altx,a2
maove . w alty,a3
isr drawl
move.w newx,d2
move . w newy, d3
isr markit * and mark point with marker
add.l #1,adressx * increment counter
move .l adressx, d7
I cmp.l maxpoint,d7 * and cempare with maximum point count
: bne mousl © * if not egqual, continue
!
' move.l adressx,d0
move . w d0, rlnumpt * Number of points input
rts
mousend: move.w d2, newx
move .w d3, newy
move . w altx,a?
move . w alty,a3
isr markit
jer drawl * draw last line
isr wait * and wait for keypress
jsr saveit
add.l #1,adressx * also add last point
move.l adressx, dl
move . w d0, rlnumpt * now store total number of points
rts * finally back to caller

*******************************t*************wt************************

* Wait for mouse input, returns also on keyboard input *
*****************************t*******************************i*********

mouspos: move.w #28,contrl * Mouse input, the desired coordinates
move ,w #1,contrl+2 * where the mouse should appear,
move.w #0,contrl+é * are passed in

284

Abacus Software . 8T 3D Graphics

move .w grhandle, contrl+12

move.w d2,ptsin * D2 and D3

move . w d3,ptsin+2

jsr vdi

move .w intout,dl * the result - ccordinates
move.w ptscut,d2 * are also returned in D2 and
move . w ptsout+2,d3 * D3

rts

Yo s de g g o W v o o S e gk ok ok o e e ke s ok o R e o ok i T R ok ok ol o ok e o e Tk ok ok T o ke ok Sk ok ok ok e e o 3k e e o e i R R R

* Set the pclymarker type *

e R SRR 2SR s S FERSRLEEESSLS RS2 sttt s bl et sl s s

marktype: move.w #18,contrl * determines the appearance of
move .w #0,contrl+2 * the polymarker, desired
move.w #1,contrl+6 * type is passed in DO
move .w grhandle, contrl+l2
move.w d0,intin
isr vdi
rts

ek R KRR W AR K Kk ke d Rk R R Rk R gk kT A g R kR R W R R R KR K 3 ok R ok e o ok i o i ok S T o ok ok ol ke W e e ok ko ok

* Set a polymarker, number in contrl+2 *
Ak kRN A AR KA R KA AR AR AR AR T IR ART KRR I ARNR T IR R AN AT R ATk hhkh kxR kA ke khx

markit: move .« #7,contrl
move.w #1,contrl+2 * Number of points, in this
move.w #0,contrl+é * case only one
move .w grhandle,contrl+l?2
move .w d2,ptsin
move .w d3,ptsin+2
movem.l d0-d2/a0-a2,-(a™)
jsr vdi * draw marker

movem.l {a7)+,d0-d2/al-az }
rts

.o

ST 3D Graphics Abacus Scoftware

********************************t****************************tt********

* Set input mode ' *

************************************t**************i*************t*****

setmode: move.w #33, contrl * Set input mode
move.w #0,contrl+2
move . w #2,contrl+e
move.w grhandle,contrl+12
mave.w d0, intin
move . w dl, intin+2 * Parameters in DO and D1
isr vdi
rts

ti*********tt**********

* Store coordinates entered in peint array *
t*****************************t***********t****************************
saveit: sub.w picturex,d2 * Pass mouse coordinates to

move.w dz, (ad) + * rotation line array, with

sub.w picturey,d3 * adaptation to coordinate system

neg.w d3

move.w d3, (ab) +

move . w #0, {ab) +

res

286

Abacus Software _ ST 3D Graphics

AR EHHHA KA AR A TR A AR R H KA A AT RA A AN AT A XTI TA AR A TR bk kb ko ks khhhdkx

* Display and describe the same screen page ¥

W e v e ok W o A I o ok e e e o e ok e ok A dr ke ok e g e de T ok ok ok i ok o e e e e W e ok e Y e v o R o e e e o o e ok ke e ke ok

switch: move.w #-1,~(a?) * Display of Display Page,
move.l physbase, - {a7) * where drawing is made
move.l physbase, - {a7)
move.w #5,-(a7)
trap #14
add.l #12,a7
rts

e e Yo P T A de g Tk T e A e e e ke ok o e ok o e s e o e e ok o ke ke T e e e ok o o R Ok o sk 3 i o 3 3 T 3 3k ok o e ok e e o ok ok o e

* Change the mouse form *

0 d % ok ok T ke ok Sk e e ok Yk g e gk ok o ol ok e vk e W ok ok e 3 ok ok ol o o ok ok ok e sk gk ke e o ok Sk s sk Yk sk e Yk e gk o e e T R e e o o ok

setform: move.w #78,contrl * Set mouse form, desired shape
move .w #1,contrl+2
move.w #1,contrl+d * passed in DO
move.w #1,contrl+e
move . W $0,contrl+8
move . w d0, intin
jsr aes
rts

AR EEARARRT AR AKE AR R IRk bk dededdk ke vtk drddrdekkdrd ok dede ke d ek bk whrk

* Drawing a coordinate system for mouse input * 1
2 3 % d o e W R e e W W e e o o e ok o e ok Ok Sl e 3k e e o e v 3k ok ok sk o o e v i sk 3 i e e v i e ol o ol o o o e e ok e ok ok e e ok ok ke e ‘

coord: jsr clwork * draw coordinate system
move .w #0,d2 * for mouse input
move.w picturey,d3
move.w picturex,ds
1sl.w #1,d5 !

move .w d5, a2

P—-—-———-————*

ST 3D Graphics Abacus Software

move . W d3,al3

jsr drawl
move.w picturex,d2
move.w #0,d3
move.w d?,az2

move .w picturey,d5
lsl.w #1,db

move . w d5,a3

isr drawl

rts

K AR AR A A AR AR AR R AR AN AR KA kR AR T AR E TRk kT itk ko drde ke k Ak w

* remove all characters present in the keyboard buffer *
ok g dode %k Tk kI e o e ok W v g ok dr ok o ok ok ok ok e ok 3k e ok W ke gk gk ki e T Tk e e ok o o e ok o ket ok e e ok ke o R

clearbuf: move.w #5b,-(a?) * Gemdos fnct. character in Buffer ?
trap #1
addqg.1l #2,a7
tst.w do * if yes, get character
beqg clearnd * if no, terminate
move . w #1,-(a7) * Gemdos fnct. CONIN
trap #1 * repeat, until all characters
addg.l $2,a7 * are removed from the buffer
bra clearbuf

clearnd: rts

N .2 2 R 2 2222222222223 23322 22222 s sttt b i b i

* Definition of a custom mouse form - Data in mousforl *
*************************tt*****************tt********t*****w***ttt**

mousform: move.l #15,d0 * permits the definition of a
move.l #mousforl,al * new mouse form, data is
move . w #111,contrl * in mousfeorl
move .w #0,contrl+2
move . w #37,contrl+é
move.w grhandle, contrl+l12
move .. w #8,intin
move .w #8, intin+2

288

Abacus Software

ST 3D Graphics

move . w #1,intin+4

move .w #0, intin+6

move .w #1,intin+8

moeve .1l #intin+1G, a5
forlop: move.l {al)y+, (aB)+

dbra d0, ferlop

jsr vdi

rts

.even

B R 2 2 L 2222 22220232232 2222 2 X322 222222 22ttt bt thnhl b bnhl

tt*********W****t**

* Beginning of the Variable area *
* *
*t**********************************t*******************tt*************
**************************!*********************t**********************

* Data area for the rotation body *

****************tt***

numro.:

numpt :

rotxdat:
rotydat:
retzdat:

rotdatx:
rotdaty:
rotdatz:

rinumline:
rlnummark:

rlnumsurf:

plusagle:

rldatx:
rldaty:
rldatz:

.bss

ds.w

.ds.w

.ds.1l
ds.l
.ds.l

.ds.1
.ds.l

.ds.l

.ds.w

.ds.w

.ds.w

.ds.w

.ds.w
.ds.w

.ds.w

1600
1600
1600

LSS

ST 3D Graphics Abacus Software
rllin: .ds.1l 3200 * 4-Bytes for every line e

: rlplane: .ds.l 6600

! .data
rlxdat: .dc.w 0,40,50,50,20,30,20,30,70,80,80,0

.de.w 0,0,9,0,0,0,¢0,0,0,0,0,0,0,0,0,0,¢,0,0,0

rlydat: .de.w 100,100,890, 60, 40, 30,30,-70,-80,-90,-100,-1C0C
.de.w 0,0,0,0,0,0,0,0,90,0,0,0,0,0,0,0,0,0,0,0

rlzdat: .de¢.w 0,0,0,0,0,0,0,0,0,0,0,0
.dC.H’ 0,0,0,0,0, 0.0;0,0,0,0,090;0; UrolotDrDJO

rlnumpt: .dc.w 12

rlnumroc: dec.w 8

Je oo ok ok K e ke s ok W v ok b e e i e A ok o R ok o e ok ok ko e e o o T S e e s ok ok o W W o ke ok o e e ok ok ok ol T e e e o

* *
* *
* Definition of the house *
* *

dededeook vk ok e e o W R R e s ok Y W T ok Y Ak e ko ok ol ok v o o e e gk vk ke o Ak e e R Rk Wk ke o ok ok ok o o ok e e

.data

housdatx: .de.w -30,30,30,-30,30,-30,-30,30,0,0,-10,-10,10,10
de.w 30, 30,30,30,30,30,30,30,30,30,30,30

housdaty: .dc.w i0,30,-30,~30,30,30,-30,-30,70,70,-30,0,0,=30
dc.w 20,20,0,0,20,20,0,0
dc.w -10,-10,-30,-30

housdatz: .dc.w 60, 60,60,60,-60,-60C,-60,-60,60,-60,60,60,60,60
.dec.w 40,10,10,40,-10,-40,-40,-10
de.w 0,-20,-20,0

290

Abacus Software

ST 3D Graphics

houslin:

.dc.w
.de.w
de.w
.dc.w

1,2,2,3,3,4,4,1,2,5,5,8,8,3,8,7,7,6,6,5,6,1,7,4
9,10,1,9,9,2,5,10,6,10,11,12,12,13,13,14
15,16,16,17,17,18,18,15,19,20,20,21,21,22,22,19
23,24,24,25,25,26,26,23

Ak kKR EEE AR R Fhde ok ko dde kWA R Rk ke ek kR hd ek W ok dok ok ko de ko

* Here is the definition of the surfaces belonging to the house *
*********tt**************************************tt********************

houspla:

hnummark :
hnumline:

hnumsurf:

hxangle:
hyangle:
hzangle:

Xwplus:
ywplus:
zwplus:

picturex:
picturey:

de.w
.dc.w
.dc.w
.de.w
de.w
de.w

.dc.w

de.w
dc.w

do.w

.dc.w
de.w

de.w

.dc.w
de.w

dec.w

de.w
.do.w

4,1,2,2,3,3,4,4,1,4,2,5,5,8,8,3,3,2
4,5,6,6,7,7,8,8,5,4,7,6,6,1,1,4,4,7
4,4,3,3,8,8,7,7,4,4,2,9,9,10,10,5,5,2
4,10,9,9,1,1,6,6,10,3,1,9,9,2,2,1
3,5,10,10,6,6,5,4,11,12,12,13,13,14, 14,11
4,15,16,16,17,17,18,18,15,4,19,20,20,21,21,22,22,19
4,23,24,24,25,25,26,26,23

26 * Number of corner peints in the house
32 * Number of Lines in the Hecuse
13 * Number of Surfaces in the House
0 * Rotation angle of House about the X-axis
W L] " " n Y_axi s
* " " " " Z-—Axis
0 * Angle increment about the X-axis
0 * Angle increment about the Y-axis
0 * Angle increment about the Z-axis
G * Definition of zero point of screen

0 * entered by getreso

Lol e

ST 3D Graphics Abacus Software
rizl: de.w 0
normz: .de.w 1500

.bss

plusrot: .ds.l 1
first: .ds.w 1
second: .ds.w 1
|' deltal: .ds.w 1
L' worldpla: .ds.l 1
i
! .data
i
plag: .de.b 1
.even
'
it
i bss
§
’ diffz: .ds.w 1
l.
i
ll dx: .ds.w
lﬁ dy: ds.w
I-= dz: .ds.w
f: wrldx: ds.w 1600 * World coordinate array
'i wrldy: .ds.w 1600
; wrldz: .ds.w 1600
il‘
3 viewx: .ds.w 1600 * View cocrdinate array
: viewy: .ds.w 1600
viewz: .ds.w 1600
i
:t screenx: .ds.w 1600 * Screen coordinate array
ii screeny: .ds.w 16040
t

292

Abacus Software ST 3D Graphics
wlinxy: .ds.1 3200 * Line array

wplane: .ds.l 6600 * Surface array

vplane: .ds.1l 6600 * Surface array of visible surface
space: .ds.l 2

pladress: .ds.l 3000 * Surface array

surfcount: .ds.w 1

numsurf: .ds.w 1

zoount @ .ds.1l 1 * Sum of all Z-coord.

zsurf: ds.w * Individual 2-c¢coord. of surface
sX:3 ds.w 1

sy: .ds.w 1

521 .ds.w 1

px .ds.w 1

pY: .ds.w 1

pz: .ds.w 1

rx: .ds.w 1

ry: .ds.w 1

rz: .ds.w 1

gx: .ds.w 1

qy: .ds.w

gz: .ds.w

kx: .ds.w 1

ky: .ds.w 1

kz: .ds.w 1

293

ol LTRSS

ST 3D Graphics Abacus Software

o e ok e v de ok ok e e g ok e b o e e vk e e o sk i ok ok e sk ok ok e o o ok o ok e e o

.data

i .aven

maxpoint: .de.l 25

Mmousx: dc.w 0

mousy: de.w 0

mousbut: .dc.w 0

kybdatat: .dc.w 0

altx: de.w 0

alty: .de.w [y}

newx: .dc.w G

newy: Jde.w 0

adressx: .dc.l 1
.data

prox: de.w 0 * Coordinates cf the projections

proy: dc.w 0 * center on the positive

proz: de.w 1500 * Z-axis
.data

offx: .de.w 0 * Transformation during rotation

offy: dc.w 0 ¥ to point ([offx,offy,offz)

offz: de.w

xoffs: .dc.w 0 * Inverse transformation to point

yoffs: de.w 0 * [xoff,yoffs,zoffs]

zoffs: .dc.w

textl: .de.b 27,Y¥',56,61,' {c) Uwe Braun 1985 *,0

text2: .de.b 27,'E',27,’p",13," Input ', 4-Pts ',' 8-Pts *
.de.b * 12-Pts *
.dec.b ! 18-Pts *,’ 24-Pts *,’ 45-Pts ’,* 60-Pts '
.de.b M POS ’r' QUit';27r'q'-0

text3: .de.b 13, 10,* F-1 .t F-2 r,t F-3 f," F-4 ’
.de.b ' P-5 f,! F-6 .t r-1 t," F-8 !
.de.b * F-9 f,* F-10 r,13,0

294

Abacus Software

ST 3D Graphics

mousforl:

mousdatl:

loopc:

.de.w
.dc.w
de.w
.de.w
.dec.w
de.w
.dc.w
dc.w
.dc.w
.dc.w
de.w
.de.w
.dc.w
de.w
.dc.w

.dc.w

de.w
.dc.w
de.w
.dc.w
.de.w
.dc.w
de.w
dc.w
.dc.w
de.w
do.w
.dc.w
.de.w
.de.w
.dc.w

dc.w

.bss

.ds.1l

.end

£1111111111111111
$11111111111311117
$1111111111111111
$1111111111111111
$11111131111111111
$1111131111111111
$1111311111111111
$11111111131111111
$1111111111111111
$1111111111111111
$%1111111111111113%
$1111111111111111
$1111111111111111
%11111111111131111
$1111111111111111
$11111121111111111

%0000001111100000
%0000110000010000
%¥0001001111001000
%00100100001001CC
%010010000001C010
£1001000000010100
%¥1001000000010100Q
£100010C000100101
%0100C011111001001
£0010000000010010
$0001111111100101
%0011111111111001
%0111111111111111
%01311111111131111
%1111111111111110
¥0000000000000000

295

ST 3D Graphics

«~

Abacus Software

4.5.1 Description of the new subroutines:

menu:

testhide:

dohide:

dopaint:

paintall:

inpmous:

mouspos:

marktype:

markit:
setmode:

saveit:

Display a small menu and wait for a function key
to be pressed. (F10 returns to Desktop
immediately)

Test if H or P key pressed, branch accordingly to
dohide or dopaint.

Calculate visible surfaces and draw. Then check if
filling is required, if not, wait for <Return>.

Fill all surfaces of rotation body and wait for
<Return>.

Enter all surfaces of rotation body into surfaddr
array, sort and fill.

Enter up to 25 points (maxpoint) with the left
mouse button. These points are entered through
saveit into the point array of the rotation body.
Enough space must be reserved in the point array
by entering zeros here. For entering fewer than
maxpoint points end input with the right mouse
button.

Wait for mouse input, also returns after keypress.
Therefore it checks to see which event occured.
This GEM function must be called twice for
unknown reasons in order to wait once for an input.

Determines the appearance of the marker set by
function polymarker.

Call the function polymarker to set a marker.
Set input mode.
Stores the coordinates entered with the mouse in

the point array of the definition line for the rotation
body.

296

Abacus Software ST 3D Graphics

saveit: Stores the coordinates entered with the mouse in
the point array of the definition line for the rotation
body.

switch: Switches the logical page to the displayed page so
that the page being drawn is the page being
displayed. Otherwise the filling will not be seen
and the hardcopy with <Alternate> and <Help>
will not function either.

setform: Change mouse form.

coord: Draw a coordinate system.

mousform: Permits the definition of a user-defined mouse
form whose data follows after mousforl. This
new mouse form appears after F9 is pressed and

looks like a snail. You can change the data in the
program according to your own taste.

297

ST 3D Graphics Abacus Software

4.6 Handling several objects

All subroutines discussed up to now really allow the simultaneous display
of several objects. The only changes required are limited to the
construction of an object definition block for each object, as well as an
exchange of the makewrld routine. Let us consider the concrete
example of the house from hidel.s and the changes that would be
required, to construct a world system with two houses using the existing
definition.

The most promising approach appears to be to copy all of the house
definitions (housdatx, houslin, houspla, etc.) into the
corresponding arrays of the world system several times. The point
coordinate arrays housdatx etc. do not present problems. They can be
simply appended to the world system. A world system containing two
houses would contain 52 points. More difficult is the creation of the
world line array since the line definition of the individual objects, here
the two houses, always starts at point offset one; the first line of every
object starts at point 1 and runs to point 2 for the houses. If the world
point array is extended by another house, it becomes apparent that the
first line of the second house starts at point 27 of the world point array
and runs to point 28, since the first 26 points belong to the first object.
The necessary procedure is simple: when constructing the line array from
the individual object line arrays, add the total number of points in the first
object to each line definition of the second object. Analagously, with
three objects the sum of the points of the first two objects is added to the
line definitions of the third object during construction of the world line
array.

The principle of the construction of the world line array is also used

during construction of the world surface array, for example the first

surface definition of the second house within the world surface array:
4,27,28,28,29,29,30,30,27

Furthermore, the total number of all points, lines and surfaces must be
calculated and recorded.

If we start with a realistic world description, the positions of the objects

in this world system can change continuously--recall the airplane and the
tanker truck from Section 4.1. As a consequence of this, it is necessary to

298

Abacus Software ST 3D Graphics

objects belonging to it. The recreation is limited to the coordinate arrays
however, since only they change. The line and surface arrays are not
affected by the position change. The line and surface world arrays are
created only once at the beginning of the program. The coordinate array
is created twice in every main loop pass.

Now to the object definition block, which contains all the information
describing the individual object. The idea was to extend the available
world system by one object through addition of the definition block to the
existing blocks and incrementing the "object counter." Here for
clarification is an object definition block in which N is replaced with the
index of the current object:

objectN:

objNxda: .dc.l Address of the X-coordinate
array of the obj.

obiNyda: .dc.l Address of the Y-coordinate
array of the obj.

objNzda: .dc.l Address of the Z-coordinate
array of the obj.

obiNlin: .dc.l Address of the object 1line

array

objNpla: .dc.l Address of the object surface
array

objmrk: .dc.w Number of points in this
object

objNali: .dc.w Number of lines in this
object

objpln: .dc.w Number of surfaces on this
object

objNx0: .dc.w X-position of object in world
system

objNy0: .dc.w Y-position of object in world
system

objNz0: .dc.w Z-position of object in world
system

objNxw: .dc.w Rotation angle of obj. about
X-axis

objNyw: .dc.w Rotation angle about Y-axis

objNzw: .dc.w Rotation angle aboutZ-axis

299

ST 3D Graphics Abacus Software

The angles and also the position in the world system relate to the
"rotationally neutral” point of the current object, the origin of the object
definition coordinate system. As a whole, the block consists of 38 bytes,
but can easily be extended with additional information, such as scale
factors, etc. If two identical objects are to be created, you write two
object definition blocks this is important since the creation routine finds
the next block using the distance of 38 bytes between two blocks. Since
two identical objects are to be created, the addresses for the two blocks
are the same and only the position of the objects and perhaps the rotation
angles differ. After the definition has been completed, the total number of
objects, in this case two, is placed in the variable numob j: and now the
total world system can be generated with a single subroutine call.

Examine the definition blocks in the following listing of multil.s, in
which four identical objects are already created through concatenation of
four object definition blocks. Naturally, you are not limited to the
creation of identical objects. You can define a new object, such as a
church, and enter its definition array address and desired position into an
object block. Three houses and your church will be displayed.

Description of the new subroutines in multil.s:

The main loop is easily changed. Here the total number of the desired
objects, four, is passed and the new subroutines new wrld and
new_mark are called.

new wrld: The one-time call to the subroutine first creates the
entire world system consisting of coordinate, line
and surface arrays with corresponding parameter
passing of the lines created, etc. Furthermore, the
world parameters are passed to the variables of the
link file. This assignment was previously
performed by subroutine wrldset.

new mark: Change the position of an object in the world
system this subroutine recreates the total
coordinate system with the aid of the modified
parameters and at the same time passes the world
parameters to the variables of the link file.

300

Abacus Software ST 3D Graphics

new it: surf lin:, surf arr:
These three subroutines are called by new wrid
and new ,mark and handle the actual creation of
the world system from the individual object
definitions.

change: Change the object parameters of the individual
objects. For simplification, modification is passed
to all four objects.

General comments on the program:

Beside being able to display multiple objects, this program offers another
novelty: two successive transformations of the same object. First, the four
objects are "set” into the world system with new_mark: after they have
first been rotated about three axes. After all objects have been "rotated” in
the world system you can, through control with the keyboard, rotate the
entire system consisting of the four houses around a point in the world
system, or move the projection plane similar to previous programs. The
four houses of the system rotate around c:fferent axes of their
"rotationally neutral” points at various places in the world system. The
display on the screen occurs after the removal of the hidden lines with the
familiar subroutine hideit :, which is used on the complete world array
so that the four houses are not created through mirroring or something
similar, but the hidden surfaces of all four objects are calculated in real-
time. The hideit algorithm of this program does not recognize
covering by other visible surfaces so that a house covered by other houses
will be drawn.

Control keys are again the cursor, help and undo keys, as well as the / * -
+ keys on the keypad.

The speed is quite impressive. One enhancement, besides the addition of
user-defined objects, is the ability to change an object’s parameters in the
subroutine change: by keyboard input, for example, and to change the
position of single objects in the system.

301

. auu

ST 3D Graphics Abacus Software

R R R s 322222322 22 SRS st sttt lld

* multil.s 22.2.19886 *
* Multiple objects, four houses *
* with hidden line algorithm *

* ¥

ook ek ek kTR R W R K Tk R T ot T ok ke o ok ke g 9k ok e o o e e e e e ok ok ok e e ok o e ok ok ok o o ok W ok ok o ok e e e e e

.glebl main,xoffs,yoffs, zoffs,offx,cffy,offz

-globl viewx, viewy, viewz

.globl wlinxy,mouse off, setrotdp,inp chan,pointrot
.globl wrldx, wrldy, wrldz, gnummark, gnumline, gnumpla
.globl viewx, viewy, viewz,wplane

.globl new it,new_wrld,obj2mrk,obj2pln

.Lext

P A R R e R R e R R R R e R R RS RS S R AT A st R Attt l sl sl

* The program starts here--called by link-file *

Kk EF I AT KRk k ko Rk ko d s R w W s ko de e de ok ok W Ak R W ek i ok ke A R ok ok ok ok

main:
jsr apinit * Announce program
jsr grafhand * Get screen handle
isr openwork * Announce screen
jsr mouse off * Switch off mouse
jsr getreso * Screen resolution
jsr setcocli * set Cchen-Sutherland clip.
mainl: jsr clearbuf
move . w #4, gnumech j * announce four objects
isr pageup
jsr clwork * Screen resolution
jsr setrotdp * initialize obs. ref. point.
jsr pagedown * Display logical screen page
jsr clwork
jsr inp_chan * Input and change world parameters
jsr change * Change cbject parameters
jsr new_wrld * greate lines and surfaces

302

Abacus Software ST 3D Graphics

mainlopl:

isr pointrot ¥ rotate arocund observ. ref. point
isr pers * Perspective transformation
jsr hideit * calculate hidden surface
jsr surfdraw * and draw
jsr pageup * Display physical screenpage
jsr change * change object parameters and
jsr new_mark * calculate new coordinates
jsr inp chan * Input new parameters
isr clwork * erase page nct displayed
jsr peintrot * Rotate around rot. ref. point
isr pers * Transform new points
jsr hideit * Calculate hidden surfaces
isr surfdraw * and draw them
jsr pagedown * Display this logical page
jsr change * Change object parameters
jsr new_mark * Calculate new peoint coordinates
isr inp_chan * Input and change parameters
jsr clwork * erase physical page
jmp mainlopl * to main loop

mainend: move.l physbase, logbase
jsr pageup * switch to normal display page
rts * back to 1link file, and end

AR RS SRR SRR A SRR R Rttt ittt Rt sttt nl S Sl b

* Create the point coordinates of the world array with the *

* information from the object parameter block (objectl) x

B ok ok ok ol ok W ok e de s ok ok ok ol A gk ok ok o o e T ok ok o ol e T o e ok ok o ol o e T v e e ok ok e i O e i o ok ok o i o ke ok e ok ok ol ok ok ok e ok

new mark: move.w $0,0ffx
move . w #0,cffy
move . w #0,0ffz
jsr new_it
move.l #viewx,pointx
move.l #viewy,pointy
move.l #viewz,pointz
move.l ¥wrldx,datx
move .1 ¥wrldy,daty
move .l ¥wrldz,datz
move.l #wlinxy, linxy

303

ST 3D Graphics Abacus Software
move.w gnummark, nummark
move . W gnumline, numline
move . w gnumpla, numsurf
rts

F *‘k9(****'.i:*************‘k**i***************************tt*t***********‘k*t

* Change the object parameter, in this case the rotation angle *

* in the object parameter block, which is then taken into account *

* when calculating point coordinates with rnew mark *

********t*************\k*t**************************i‘k*****************

change: move . W objlyw,d0
add.w #4,d0
Cmp.w #360,d0
blt changwil
sub.w #360,d0

changwl:
move . w di,obijlyw
meve . w d0, obj2xw
move . w d0,objlzw
move .w dd, obidxw
move.w d0, obidyw
move . w d0,objdzw
rts

******:dc****************‘k**********‘k*************‘k‘k*t***********tt******

* Set all world parameters for the link file variables and *

* create the point, line, and surface arrays of the world system *
************t*t***************'k**************************i*************

new_wrld: move.w #0,d0
move .w d0,offx

move.w d0,o0ffy

move . w do,offz

move .w proz,zobs

move . w #0,dist * Location of projection plane
move.l #screenx, xplot * Address of screen array
move.l #screeny, yplot

move . W picturex, xC * Screen center

move . w picturey,y0

304

Abacus Software - ST 3D Graphics

jsr new it * Pass coordlnates

isr surf lin * Pass lines

jsr surf_arr * Pass surfaces of

move .w gnummark, nummark * all cbjects toc world system
move.w gnumline,numline * Total number of corners, lines
move.w gnumpla, humsurf * and surfaces of world system
move.l #wrldx, datx * Pass parameters of world system to
move .1 #wrldy,daty * link file variables

move.l $wrldz,datz

move .l #viewx, pointx

move.l #viewy,pointy

move .l #viewz,pointz

move . 1 #wlinxy, linxy

rts

hdd ok kAR A AT A R KA TR A A AT R A E A AR R KRR AR R AR R AAN N AR AW ARA R T X *

* Subroutine for creating the world system coordinate array *
KA EE kAR d kA Ak IR R AT AR A AR R AR AR A AN AA AN RN A AL AN AR A AT LN

new_it: move.l #0,mark_it * Pointer in wrldx,wrldy,wrldz
move .w gnumobj, dl * Total number of cbjects
ext.l d0 * as counter
subqg.l #1,40 * Address of first object parameter
move.l #objectl, al * block after AO.
new_lopl: move.l {a0) ,datx * Objectldatx, daty,datz, pass
move.l 4(al) ,daty * addresses of point array of
move.l 8(al),datz * first object.
move . 1 mark_it,d? * Offset in point array
1s1.1 #1,d7 * times two bytes per entry
move .l d7,d6
add.l #wrldx,d7 * equals offset in world system array
move.l d7,pointx ¥ Target of transmission
move.l de,d?
add. 1 #wrldy,d?
move.l d7,pointy
add.1l #wrldz,dé
move.l dé,pointz * Array of world cocrdinates
move.w 20(a0), nummark * Number of corners in the object
move .w 26{al),xoffs * X-offset
move.w 28 (al) ,yoffs * Y-gffset in the world system
move.w 30 (al),zoffs * Z-offset
305

s

; ST 3D Graphics . Abacus Software
j
moeve . W 32 (a0),xangle * Rotation angle of sobject around
move . W 34{al),yangle * the three ccordinate axes
move .w 36tal), zangle
movem. 1 d0-d?/al-ab,-(a?) * Save registers
isr matinit * Tnitialize rotation matrix
jsr zrotate * rotate first about the Z-axis, then
jsr yrotate * around Y-axls, and finally
jsr xrotate * around the X-axis (matrix).
jsr rotate * rotate in world coordinate system
movem. 1l {a7)+,d0-d7/a0-a6
meve.w 20{a0),d? * Number of corners in the object
ext.l a7
add.l d7,mark_ it * as offset in point array for
add.l #38,a0 * the next ocbject
dbra d0, new_lopl * repeat, until all cbjects
move.l mark it,d? * have been pased. After end in
move . w d7,gnummark * mark it the total number of
rts * points in the world system

Ak kA kKR AR AR AN AR AR AT AR AR KR IR KR RR AR A TR IRk R*kh A RN h kg rdskkkkokkkddkdk

* Pass all lines to world system, one-time call at *

* program start since nething changes in the lines *

*it********************‘k***

surf lin: move.w gnumobi, d0 * Total of all objects
ext.l ~de
subg.l $1,d0 * as counter
move .l #obijectl, al * Address of first Object par. blk.
move.l #0, linpntr * Pointer to line array
move.w #0,mark it * Pointer to point array

sflnlopl: move.l linpntr,d? * Line pointer times four,
1s1.1 #2,d7 * one lines requires four
move.l d7,dé * bytes.
add.1l #wlinxy,d? * Start address of line array, add
move.l d7,a2 * to line pointer
move.l 12(a0),al * Address of line array of object
move .w 22 (a0),dl * Number of lines in this cobject
ext.l a1l
1s1.1 #1,d1 * Number of lines times two equals
subg.l #1,d1 * Loop counter for word transmission

306

Abacus Software

ST 3D Graphics

sflnlop2:

move.w
add.w
move . w
dbra

move .w
add.w
move .w
ext.l
add.1l
add.1l
dbra

move.l
move.w

rts

{al)+,d7
mark_it,d7
d7, (a2} +
dl,sflnlep2

20 (a0),d?
d?,mark_ it
22 ta0y,d7
d7

d7, linpntr
#38, a0
d0,sflnlopl

linpntr,d?
d7,gnumline

* first point cf first line
* add the offsets of current
* objects, and store in world lines
* array, until all lines of this

object

* Number of corners of last object
add to corner pointer
¥ Number of lines

* Total number of lines

* Object offset, distance to next

* gbject. When all objects are
completed

* then store total number of lines

* in the world system and

* back

Kok kddhhkkkkkhkhhkhkrx ko hhdedkdkdrhhhddokhkkwdrddk bk krdekkdbdkbk kA rhr ek iy

* Create surface array of the world system,

one-time call *

KhkKkHH A AR AR KTk E AR AR XA XA A AR T TR R KN A TNN WU odeook ok Wk wd & i Rk o ok ok ok o ok ok o o e

surf arr:

sfarlopl:

sfarlop2:

move . w
move.l
move.w
move.w
ext.l

subg.1l

move .l

move . 1
add.l
move.l
move.w
ext.l
subg.l

move .l

move . w
ext.l
1sl.1

#0, mark_it
#0,plapntr
#0,gnumpla
gnumobj, d0
do

#1,d0
#cbjectl, al

plapntr,d?
#wplane,d?
d7,a2
24(al),dl
dl

#1,d1
16(a0),al

{al),d2
d2
#1,d2

* Create the array of surfaces
* Counter of surfaces

* Number of objects

* as loop counter

* Address of first object param. blk

* Pointer to surface array

* World surface array

Number of surfaces on this object
as loop counter

Address of surface array of the object
Number of lines of this surface

times four (one line = four bytes)

307

e

ST 3D Graphics Abacus Software
| move.l dz,ds
i 1sl.1 #1,d6 complete the mult. by 4
addq. 1 #2,d6 plus 2 bytes for number of lines
subg.l #1,d2 counter
add.1l dé,plapntr
move . W {al)+, {a2) + Number of lines in this surface
sfarlop3: move.w {al)+,47 From the object surface array
add.w mark_it,d7 Bdd point offset of the object
move . W d7, {a2)+ to world surface array
dbra d2,sfarlop3 until all lines of this surface
dbra dl,sfarlop2 until all surfaces on this object
move .w 20{aC},d? Number of corners
add.w d7,mark it add to point offset
move .W 24 {a0),a”7
add.-w d7,gnumpla add to total number
add.l #38,a0 Object offset to next object
dbra d0,sfarlopl until all obiects of the world
rts and return

inp chan: jsr
cmp.b
bne
jsr
inpwait: swap
cmp.b
bne
addg.w
bra
inpl: cmp.b
bne
subg.w
bra

* Input and change parameters
************************t**********t*****************************t*****

inkey
#'D7,d0
inpwait
scrdmp

d0
#54d,4d0
inpl

#1, ywplus
inpendl

#54b,d0
inp2
#1,ywplus
inpendl

***********************k***

*

* Read keyboard, key code in

make hardcopy

DO , test if
Cursor-right
if yes, add one to Y-angle
increment and continue
Cursor-left, if yes then
subtract one from Y-angle

increment

308

Abacus Software

ST 3D Graphics

inp2:

inp3:

inp3a:

inp3b:

inp4:

inp5:

inp6:

inp7:

cmp.b
bne
addqg.w
bra

cmp.b
bhe
subqg.w
bra

cmp.b
bne
subg.w

bra

cmp.b
bne
addg.w

bra

cmp.b
bne
sub.w
bra
cmp.b
bne
add.w

bra

cmp .b
bne

sub.w

bra

cmp.b
bne
add.w
bra

#$50,d0
inp3
#1,xwplus
inpendl

#548,d0
inp3a
#1,xwplus
inpendl

$#561,d0
inp3b

#1, zwplus
inpendl

#562,d0
inpd
#1,zwplus
inpendl

#54de,dl
inp3
#25,dist
inpendl
#54a,d0
inpé
#25,dist
inpendl

#566,d0
inp7

#15, rotdpz
inpendl

#$65,d0
inp8

#15, rotdpz
inpendl

Cursor-down, if yes then

add one to X-angle increment

Cursor-up

subtract one

Undo key

Help key

plus key on the keypad
if yes, subtract 25 from position of
projection plane (Z-coordinate}

minus key on the keypad

if yes, add 25

times key on keypad

if yes, then subtract 15 from the
rotation

point Z-coordinate

Make change

Divisien key on keypad

add 15

r_———-——i
ST 3D Graphics Abacus Software
inpl0: cmp.b #544,d0 * P10 pressed ?

bne inpendl
addg. 1 #4,a7 * if yes, jump to
bra mainend * new input
inpendl: move.w hyangle,dl * Rotation angle about Y-axis
add.w ywplus,dl * add increment
cmp . W #360,d1 * when larger than 360, then subtract 360
bge inpend2
cmp.w #-3860,dl * if smaller then 360, then
ble inpend3 * add 360
bra inpend4
inpend2: sub.w #360,d1
bra inpendd
inpend3: add.w #360,d1
inpend4: move.w dl, hyangle
move .w hxangle, dl * proceed in the same manner with
add.w xwplus,di * Rotation angle about the X-axis
cmp.w #360,d1
byge inpend5
cmp . W #-360,d1
ble inpend6
bra inpend?
inpend5: sub.w #360,d1
bra inpend?
inpendé: add.w #360,d1
inpend7: move.w dl, hxangle
move . w hzangle,dl
add.w zwplus,dl
crp.w #360,d1
bge inpend8
cmp.w #-360,d1
ble inpend9
bra inpendl0
inpend8: sub.w #360,d1
bra inpendlQ
inpend%: add.w #360,d1

310

Abacus Software ST 3D Graphics

inpendl0: move.w dl,hzangle

rts

e e ¥ v ok % e do o gk e e e ok sk e o e e e sk ot ok o ek i A ok ke ke ok ke ke o ok o ok ol e e e e ok e ok e e ke e ok ke e sk ke R ke ke

* Determine the current screen resolutien *

% % %k A M A ok o de de vk ok T o ok e e e ok o ok o e T e sk o e o etk T i o gk ko o o ke i vk e e o ok i e e ok o e ok sk ok ok o o e ke ok

getreso: move.w $#4,-(a™)
. trap #14
" addg.l $2,a7
cmp . W #2,d0
bne getrl
move.w #320,picturex * Monochrome monitor
move . W #200,picturey
bra getrend
getrl: cmp.w #1,d0
bne getr2
move.w #320,picturex * medium resclution (640%*200)
move.w $#100,picturey
bra getrend
getr2: move ., w #160,picturex * low resolution (320%200)
move .w #100, picturey
getrend: rts

222 R R 222222 R SRS L SR SSELRL LSS Rttt e bl b bl

* Hardcopy of screen, called by inp chan *

gk ok ik e gt de ok e i ok ok e e s ok o o e i e e 9k ok S o o ok ok Sk e e o o i o e ok o ke i ok ok e e ok o ke ok o ok ol ol e e ok e ke o

scrdmp: move .w #20,-(a7)
trap #14
addqg.1l #2,a7
jsr clearbuf

rts

e

; ST 3D Graphics Abacus Software

AR A AR I A AL AR KR AR A IR T AR AT AL AR AT RARE AR ARR R R TR T TN AR AR AT AT oA hxkkdddkk

* Initialize the rotation reference point to [0,0,0] *

HRA KRR E A A AR R A A AR R AR A RN R R AT AR Rk dk ke k ko wr ke w bk hkkk

setrotdp: move.w #0,d1 * set the initial rotation
move .w dl, rotdpx * reference point
move .w dl, rotdpy
move .w dl, rotdpz
move . w #0,hyangle * initial rotation angle
move .w #0,hzangle
move.w #0, hxangle
move.w #0, ywplus
move.w #0, xwplus
move.w #0, zwplus
rts

ddddeddkhh kAR AR AR KRRk SRk Rk "W kAR T kR Aok dkhrkkkkddrrkkhh Ak kkkdkdhdr ki

* Rotatlon around the rot. ref. point around all three axes *
deve de gk de ks ok A gk e e ok ke ke ok R R et o V0T I o R e ok o ok e ke o ok e o ok ok i o e R Rl ke e e e ok Rk ok

pointrot: move.w hxangle,xangle * rotate the world around
move . W hyangle, yangle
move . W hzangle, zangle
move . W rotdpx,d0 * rotation ref. point
move.w rotdpy,dl
move . w rotdpz,d2
move.w db, xoffs * add for inverse transformation
move.w dl,yoffs
move.w d2,zoffs
neg.w dg
neg.w dl
neg.w d2
move .w d0,offx * gubtract for transformatien
move.w dl,offy
move.w dz,offz
jsr matinit * matrix initlalization
jsr zrotate * rotate ‘matrix’ aboutZ-axis
isr yrotate * rotate 'matrix’ about Y-axis
jsr xrotate * then rotate arocund X-axis
jsr rotate * Multiply points with the matrix
rta

312

Abacus Software

ST 3D Graphics

P R R e e R AR AT F RS SRS ERARERS 2RSSR Rt Rttt bbbl

* Set the limits of screen window for the Cohen-Sutherland *
* clip algorithm built into the draw-line algorithm *
* The limits can be freely selected by the user, which makes the *
* draw-line algerithm very flexible. *

T H KKK KK N RARIRKREE KRR KRR N TR A K hde % ok ok o d A o s e o ok o i ok e o do 3 3 o ol o ol e e ok o e S ok ok ok ok

setcocli: move.w
move.w
move .w
1sl.w
subg.w
move .w
move.w
1sl.w
subg.w
move . w

rts

#0,clipxule
#0,clipyule
picturex,dl
#1,dl
#1,d1
dl,clipxlri
picturey,dl
#1,d1
#1,dl
dl,clipylri

dedk kW g e s W W A e 3 Tk o e A ok e e ok o ok ok e ke ek ok ok R W W o ok ke i ok ok ok ol A A o ok e ok ok ok o e e ok ok e e o ok ok e e ke

* Entry of visible surfaces into the vplane array *

Ak KRR KRR K IR dde ok drd Tk Ak kR R ok T v ek o ok o e e ok e e s ok ok e e ok ok ok v e ok o ok e ok e o e ke ok

hideit:
move .w
ext.l
subqg.1l
move.l
move.l
move .l
move.l
move.l
move.w
visikble: move.w
ext.l
move .w
move .w
move . w
subqg.w
subg.w

numsurf, do
do

#1,d0C
#viewx,al
$viewy, a2
$viewz,ald
#$wplane, a0l
#vplane, a5

0, surfcount

(a0),dl
dl
2{a0),dz
4{al),d3
8 (al),d4
%#1,d2
#1,d3

* Number of surfaces as counter

The point coordinates are stored

here

here is the information for
every surface

counts the known visible surfaces.

start with first surface. Number of
points on this surface in D1.

Offset of first peoint on this surface
QOffset of second peoint

Offset of third peint

subtract one for access to point array
from current point offset.

313

ST 3D Graphics

é——f

Abacus Software

doitl:

subg.w
1sl.w
1sl.w
1sl.w
move.w
CHp . W
bne
move .w
CmMp . W
bne
move,w
cmp.w
bne
move .w
subg.w
l1sl.w

move .w
move.w
sub.w

move . w
move.w
move . w
sub.w

move .w
move . w
move . w
sub.w

move.w

move.wW
sub.w
move.w
sub.w
move.w
sub.w
move.w
move ., w

move . w

#1,44

#1,d2

#1,d3

#1,d4
(al,d3.w),dé6
{al,d4.w),db
doitl
{a2,d3.w),dé6
(a2,d4.w),d6
doitl
(a3,dd.w),d6
{a3,d3.w),d6
doitl
12(al),d4
#1,84

#1,d4

(al,d3.w),d5s
d5,kx
(al,d2.w),d5
ds, px
{a2,d3.w),d5
a5, ky
{a2,dZ2.w),d5
d5,py
(a3,d3.w),d5
d5,kz
(a3,dz2.w).,d5
d5, p=z

(al,d4.w),d5
(al,d2.w),d5
(a2,dd.w),d6
(a2,d2.w),dé
(a3,d4.w),d7
{ald,d2.w),d?
d5,dl
de,d2
d?,d3

continue to multiply with two

and then access current

point coordinates

Comparison recognizes two points

with matching cecordinates, which can
occur during construction of rotation
bodies. When tweo identical points

are found, the program

selects a third point for determination
of the two vectors.

* here the twe vectors which lie in the
* surface plane are determined through
subtraction of the ccordinates from

¥ two points of the surface

* The direction coordinates of the
* vectors are stored in the variables
gx,qy.qz and px,py.Dpz.

* Calculate vector Q

* qy
* gz

314

Abacus Software

ST 3D Graphics

muls
mals
sub.w
move . w
muls
muls
sub.w
vector

move . w
muls
muls
sub.w

move.w

move.w

sub.w
move . W
sub.w
move.w
sub.w
muls
muls
muls
add.l
add.l
bmi

* the surface is visible,

move . w
ext.l
1s1.1
addg. 1

add.l
dbra
bra

sightl:

py.d3
pz,d2
d2,d3
d3, rx
pz,dl
px,d?
d7,dl

dl, ry
px,d6
py.db
d5,deé
a6, rz

prox,dl

ka,dl
proy,d2
ky,d2
proz,d3
kz,d3
rx,dl
ry,d2
rz,da3
dl,d2
d2,d3
dosight

{al),dl
dl
$2,dl
#2,d1

dl, a0
dl,visible
hideend

*

*

*

*

*,

*

*

*

*

* Calculate of the cross product
* of the vector perpendicular

* tg the current surface

the direction coordinates of the

* gtanding vertically to the surface

are temporarily stored in rx,ry,rz

The
the

projection center serves as
comparison

peint for the visikbility of a surface,
which is acceptable for the viewing
situation chosen here. OCne can alsc
use the observation ref. point as
comparison point.

Now follows the comparison of vector

R and the vector from one point of the
surface to the projecticn center

by creation of the scalar product

of the twe vectors.

otherwise continue with next surface.

Number of lines of the surface
Number of lines times 4 = space for Lines
plus 2 bytes for the number of lines.

add to surface array for access
If all surfaces
then end.

to next surface.

are completed,

315

ST 3D Graphics

Abacus Software

dosight: move.w
ext.l

move.l
1sl1.1
move.l
addg.l
sight3: move .w

dbra

addg.w

bra

hideend: rts

{a0}),dl *

dl *
dl1,d2
#1,d1 *
al,ad
#2,a4 *

{a0})+, (a5) +

dl, sight3

%1, surfcount
sightl

Number of lines in this surface,

multiplied by two equals the

number of words to be passed

Access to first line of the Surface

*

*

J

Pass the number of the lines

and the individual lines

* the number of surfaces plus

one, and work on next cne

% o Kk de kW K e e R A e ok v e vk ok o o v dle ok e W e S ok W e e e o o S d Yt de e e e g ok Tk ok ke ok sk ok ok ok ke ke ek ke ke ke ke

* Draw surfaces entered in vplane

*

e 9 d de vk ok e A i ek ak e s e ke e ok ok dk e e ok ok ok e e ok e gk o o e e ok o T T ok e ot ok ok ok e e Tk e ok o ok ok ol ke ok ok ok ke o e ke e

surfdraw:
move.l
move.l

move.l
move.w
ext.l
subg.1
bmi
surflopl: move.w
ext.l
subg.l

surflop2: move.l

subg.w #1
1sl.w #1
move.w 0f
move.w 0O

swap ds

xplot,ad
yplot,as

#vplane, a6

surfcount,dl

do

#1,d0

surfend
{a6)+,dl

dl

$#1,d1

{a€)+,d5

,dS
, a5
ad,d5.w),d2
a5,d5.w),d3

*

*

*

*

*

*

draw surfaces with the count

of surfaces passed in surfcount

Description in array at address

vplane, was entered by routine hideit

if no surface was entered in array,
then end.

Number of lines on this surface

as counter of lines to be drawn.

* first line ¢f this surface

Access to screen array, which contains
display coordinates of the

points.

extract points, pass from

the routine.

316

Abacus Software ST 3D Graphics
subg.w #1,d5
lsl.w #1,d5
move,.w 0{a4,d5.w),a2 * second point belonging to the the line
move.w 0(a5,d5.w),ald
jsr drawl * draw line, until all lines of this
abra dl, surflop2 surface have been drawn and repeat
dbra do, surflopl unt il all surface have been drawn.
surfend: rts finally return.

ke ot 9 e ¥ ¥ ot e e g 3 9 ol o e A v o A e s ok ok o 0 e R 0k o ok o e T v e e 3 ok ok e ke ok ok T e sk ok ok o o o e ok e e ke e o

K e ke e A 3k ok i i ke o e e e ok e ke o i e ke e ok e ke i S ok ok o ol o ok o e ok e e e ok ok ok o ol R ok ok e e ke ok ok R o e ok ok e e s ke ok

* Display and description of the same screen page *

2 2 g e sk e e ok sk ok vl ke vk e e o T o o e ok o i e o e Yo B ok ok o o ol e sl e ok ok ok ok ok ol e e e e g ok o R i e K e e ok kR ke

switch: move .w #-1,-{a7) * show display page in which
move, 1 physbase, - (a7) * drawing is being made
move.l physbase, - {a7)
move.w #5,-(a7)
trap #14
add.1l #12, a7
rts

ok & dde 2 ok ok Wk I ok v ek ok ok e ok v ol e ek ak o e e ok e e gk o e e o ok T i T e gk o o W R W sk R RO W R R e e o

* remove all characters present in the keyboard buffer *
WR KRR TR NN AR N TRk dkh R w &k ok e o o e e ok ol ok o ok T vk o T e gk ok o ke e ok o e e ok ok ok o e e e e e ok ok ke o

clearbuf: move.w #5b,-(a7) * Gemdos function. character in buffer ?

trap #1
addqg.1l #2,a7
tst.w do * 1f yes, get character
beq clearnd * if no, terminate
move.w $1,-(a?) * Gemdos function CONIN
trap #1 * repeat until all characters have
addqg.1l $2,a7 * been removed from the buffer
bra clearbuf
clearnd: rts

'r-------------———-----————————-—————————————————————————————————

' ST 3D Graphics Abacus Software

Fek kA kAR AR AR A AR RN A TR T L RN R IR LI R TR Ak bk dherexxk ke hhwdhdkddddd

WA WK KK KK WA R W K i o o e g ok v e ol kv e gt ok ke e e vk ke ke o ke Tk ok ok ok o g ke e Tk ok e ok R R kW W Rk ok ok o e o e e e

* Start of variable area *

* *

HRERERN AN RN KA NH K A&k i d v de i ok ool de dkde o s v ok o e e vk S ok e ok s e sk ok ok e ke e R e e R R Rk kb i o

A KA KR A AR AT AN AR T AR N ARk A AR ATk kA kAR AR A IR A AR I H ok kkkkdd ke hax*x

* *
* +*
* Definition of the house *
* *

e J K Fe de % K K e sk ok ol e e o sk sk ok o e e e ok ok R A ol ok ok e e ok ok ik e e ok e R e ok ok K i ok g e e e ek etk ok R R ke e e

.data

housdatx: .dc¢.w -30, 30, 30,-30,30,-30,-30,30,0,0,-10,-10,10,10
.de.w 30,30,30,30,30,30,30,30,30,30,30,30

housdaty: .de.w 3o, 30,-30,-30,30,30,-30,-30,70,70,-30,0,0,=30
.de.w 20,20,0,0,20,20,0,0
dc.w -10,-1C¢,-30,-3C

housdatz: .dc.w 60, 60, 60, 60,-60,-60,-60,-60,60,-60,60,60,60,60
de.w 40,10,10,40,~-10,-40,-40C,-10
.dc.w 9,-20,-20,0

houslin: .de.w 1,2,2,3,3,4,4,1,2,5,5,8,8,3,8,7,7,6,6,5,6,1,7,4
dc.w 9,10,1,9,9,2,5,10,6,10,11,12,12,13,13, 14
de.w 15,16,16,17,17,18,18,15,19,20¢,20,21,21,22,22,19
do.w 23,24,24,25,25,26,26,23

318

Abacus Software ST 3D Graphics

LSS RS RERER ARt E R ARl Rttt 2L R R RS SRR S RS KRS

* here is the definition of the surfaces belonging to the house *
NRK KRR R Ak kA kA AR A AR A A AR AR AR R T A I AR A AT AR A AR A AT AR R KRN R Rk R

houspla: .dc.w 4,1,2,2,3,3,4,4,1,4,2,5,5,8,8,3,3,2
.dec.w 4,5,6,6,7,7,8,8,5,4,7,6,6,1,1,4,4,7
.de.w 4,4,3,2,8,8,7,7,4,4,2,9,9,10,10,5,5,2
.do.w 4,10,9,9,1,1,6,6,10,3,1,9,9,2,2,1
.de.w 3,5,10,10,6,6,5,4,11,12,12,13,13,14,14,11
.dc.w 4,15,16,16,17,17,18,18,15,4,19,20,20,21,21,22,22,19
.de.w 4,23,24,24,25,25,26,26,23
hnummark: .deo.w 26 * Number of corner points of the house
hnumiine: .dec.w 32 * Number of lines of the house
hnumpla: .dc.w 13 * Number cof surfaces of the house
hxangle: .da.w 0 * Rotaticn angle of house about X-axis
hyangle: .do.w o] * " " " Y-axis
hzangle: do.w 0 * " " " Z-axis
xwplus: .dc.w 0 * BAngle increment about X-axis
ywplus: Ldeow 0 * Angle increment about Y-axis
zwplus: .do.w 0 * Angle increment about Z-axls
picturex: .de.w 0 * Definition of zero peint on the screen
picturey: .dc.w 0 * entered by getreso
rotdpx: .dc.w o]
rotdpy: .de.w o]
rotdpez: .de.w
rlzl: de.w 0
normz: .dc.w 1500
.bss

319

ST 3D Graphics

‘Abacus Software

plusrot: .ds.l
first: .ds.w
. second: .ds.w
i deltal: .d5.w

worldpla: .ds.l

.data
plag: .de.b

.even

.bss
diffz: .ds.w
ax: .ds.w
dy: ds.w
dz: ds.w
wrldx: ds.w
wrldy: ds.w
wrldez: ds.w
viewx: ds.w
viewy: .ds.w
viewz: .gds.w
screenx: .ds.w

screeny: .ds.w

wlinxy: .ds.l

wplane: .ds.l

[e

1600
1600
1600

1600
1600
1600
1600
1600

3200

6600

* world coordinate array

* yiew coordinate array

* gcreen soordinate array

* line array

* gsurface array

surface array of visible surfaces

Abacus Software ST 3D Graphics

space: .ds.l 2

pladress: .ds.l 3000 * gurface array

surfcount: .ds.w 1

numsuri: .ds.w i

zcount : .ds.1 1 * sum of all Z-coordinates

zsurf: .ds.w 1 * Individual Z-coordinates of the surface

2SR SRR RS RS Rs sttt i st st s st R i i s ittt sl R T

.data
gnumobj: .dc.w 2
gnummark: .dc.w 0
gnumline: .dc,w
gnumpla: .dc.w

mark_it: .de.l
limpntr: .dc.l

plapntr: .dec.l 0
objectl:

objlxda: .dec.l housdatx
objlyda: .dc.l housdaty
obijlzda: .dc.l housdatz
objllin: .de.l houslin
objlpla: .dc.l houspla
objlmrk: .dc.w 26
objlali: .dc.w 32
cbijlpln: .dc.w i3
objlx0: .de.w 150
objly0: doe.w 100
objlz0: dc.w o]
objlxw: .de.w 20
objlyw: .de.w

objlzw: .dc.w

object2:

obj2xda: .dc.l housdatx
obj2yda: .dc.l housdaty

obij2zda: .dec.l housdatz

ST 3D Graphics

Abacus Software

obj2lin: .de.l
cbij2pla: .dc.l
obj2mrk: .de.w
obj2ali: .dc.w
objZpln: .dc.w
obj2x0: de.w
obj2y0: dc.w
obi2z0: .dc.w
obj2xw: .dc.w
cbj2yw: .dc.w
objZ2zw: .de.w

object3:

obj3xda: .de.l
obj3yda: .de.l
obij3zda: .de.l
obj3lin: .de.l
objdpla: .de.l
cbjdmrk: .dc.w
obj3ali: .dc.w
obj3pln: .dc.w
cbij3x0: dc.w
obj3y0: .dc.w
ob3j3z0: .dc.w
obidxw: do.w
obj3yw: .dc.w
objlzw: de.w

object4:

obidxda: .de.1l
objdyda: .de.l
objdzda: .dc.l
obj4lin: .dec.l
obidpla: .de.l
objdmrk: .dc.w
cbjdali: .dc.w
obidpln: .dc.w
obj4x0: do.w
objdy0: de.w
obj4z0: .dc.w

houslin
hcuspla
26

32

13

-150
io0

20

housdatx
housdaty
housdatz
houslin
houspla
26

32

13

-150
-100

20

housdatx
housdaty
housdatz
houslin
houspla
26

32

13

150

-100

e

Abacus Software

ST 3D Graphics

objdxw:
objdyw:
cbjdzw:

sX:
sy:
5zt

py:
pz:

rx:
ry:
rz:

.de.w
de.w
do.w
.bss

.ds.w
.ds.w
ds.w

.ds.w
.ds.w
ds.w

.ds.w
.ds.w

.ds.w

WA e e i e ok sk ok o ke d e do ok i 3k e e o v e e ok e e e e ke e e ok ok ok e e

maxpoint:
mousSX:
mousy:
mousbut :
kybdstat:

altx:
alty:
newx:

newy:

.data

~even

.de.

o
kel
£ £ £ E

.dc.w
.dc.w
.de.w
.de.w

o o O 0

o o o o

323

|

ST 3D Graphics Abacus Software
addrssx: .dc.l 1
.data
prox: de.w 0 * Coordinates of Prejection
proy: .dc.w 0 * Center on the positive
proz: .dc.w 1500 * Z-axis
.data
offx: .de.w 0 * transformation during Rotation
offy: de.w o] * to Point [offx,offy,ocffz]
offz: do.w
xoffs: .de.w 0 * Inverse transformation te point
yoffs: dc.w 0 * [xoff,yoffs,zoffs]
zoffs: de.w 0
.bss
loopc: .ds.l 1
.end

Desk File View O tions
AL\ ; ‘ F1\JDNORK.DIRY
253882 bytes used { 333356 bytes used in

B PRINTERS BASIC PRG : HOUSEL PRG

® TUTORIAL BASIC RSC 4648 11'2: HOUSEL S
c FKY BRSIC HRK 346 11-26 MAIKL PRG

coWy TP : BASICL BAK 148081 11-26 MAINL s
NL18 PRG { [—— msnii=n MAINLCO PRE

BUTPUT PRG MAINICO §
SPLIT 7 OPEX APPLICATION MENDL PRG

STANDRRD PRT Mame: BATCH .TIP MENUL S
TEXTPRO PRG Parameters: MULTIL PRG

TUTORIAL TXT ||| asiink griinkl multiyl WULTIL S
XTTUTORI TEGC PAIRTL PRE

R PAINTL S
— ROTATEL PRG

ROTATEL S

= = =2 =

Floppw D3k L Il Laripusss § Data Sachar Opt. O10Ms Ga rbase

324

\.

Suggestions for
additional development

Abacus Software ST 3D Graphics

5. Suggestions for additional development

One application of this program module for manipulating three-
dimensional objects that will occur to almost everyone is a flight
simulator. The last program can in fact be used as a basis for a flight
simulator. We are missing the description of the position of the airplane
in the world system as well as a modified pointrot routine. The
modified pointrot routine, after rotation around the reference point,
should not transform all of the world coordinates back to the old
coordinate origin, which occurred in the old pointrot routine by
adding the reference point coordinates after the rotation. Furthermore,
houses do not change position in the world system of a flight simulator
and for an airport other structures must be developed (hangar, tower). In
addition, fields, forests, and landing strips can be simulated with simple
rectangular surfaces.

The position of the airplane, or to be exact, the center of its cockpit
windshield, in the the reference point in the world system for all
transformations to follow, especially that of the creation of the view
system. For simulation of airplane movement, the reference point must be
manipulated with keyboard input. This input must affect both the point
coordinates as well as the orientation of the plane in space. The
orientation of the airplane in space is described with the three angles
(hxangle, hyangle,hzangle) so that even adventurous flight
situations (spins) can be simulated. For adjustment of the world system to
the airplane system the following operations are required:

1. Move the coordinate origin of the world system to the
cockpit center by subtracting the cockpit windshield
center-coordinates from all point coordinates.

2. Rotate of the displaced world system about the three

rotation angles which describe the position of the airplane
in relation to its three axes.

327

ST 3D Graphics Abacus Software

3. Remove hidden surfaces with hideit, noting that the
reference point for the calculation of the vector S through
point [0,0,0], the cockpit center-point (coordinate origin of
the view system) is chosen and not the projection center,
which of course can also be freely selected in this
observation model. From the endpoint of vector S the
direct result: all objects outside the cockpit window are, if
they satisfy the criteria for visibility, visible.

4. Projection on the screen through the perspective transform
routine.

After the observed world is displayed, the parameters such as the position
of the airplane in the world system or the position of other objects in the
world system, such as a second airplane, can be changed. Now the
procedure described above is called again and this cycle repeated
continually.

328

Abacus Software ST 3D Graphics

5.1 Light and Shadow

To enhance the program module to correctly define a light source, as in
section 2.8, it is necessary to have the vectors L, i.e. the vector, which
points from each surface to the observation reference point as well as the
vector N, which points from the light source to the current surface, as unit
vectors of length one. One should divide the vector coordinates (x, v, z)
by the root of the sum of its squares V(x2+y2+z2). Furthermore, the
data structure of the objects must be changed since you want to shade the
surfaces according to the light intensity and not according to their Z-
coordinates. It is possible to enter the intensity of every surface in the
extended surfaddr array and give each surface an individual shading
pattern, either through comparison of the light source vectors or
completely at random.

329

ST 3D Graphics Abacus Software

5.2 Animated Cartoons

In principle even this application has already been realized in program
multi.s. You simply create more objects in a world system and then
changes their position and place in the system continuously. The world
line and surface arrays, as we have seen, need be created only once while
the coordinate array is created with every pass through the main loop.
After the line surface array has been constructed, you have free choice in
the number of displayed objects, i.e. you can define, for example, ten
objects through object definition blocks but at the creation of the corners
you could only actually create and display. One possible application is
moving text where the letters are three dimensional objects. You could
have several letters "fly" together from various directions and assemble
them on the screen into a word. The complete word could then be rotated
around some point. The individual letters could even be constructed with
the mouse.

330

[Appendices]

Abacus Software ST 3D Graphics

Appendix A: Number systems

Every number, in any number system, is represented by a sequence of
digits. This sequence may be interrupted by a decimal point. We can
write the following for the digit sequence:

(...a4a3a2ajap.a-1a-2a-3a-4...)b =
+ a4*b4 + a3*b3 + a2*b2 + a1*bl + ag*b0 + a.1*b-1 + ...

Here the coefficients a-4 to a4 represent the individual digits of the
number and b is the number base. Here is an example of the most
commonly used number system, the decimal system:

(3423.87)10 =
3%103 + 4*%102 + 2*101 + 3*100 + 8*10-1 + 7*10-2 =
3000 + 400 + 20 + 3 + 0.8 + 0.07 = 3423.87

Two number systems often encountered, in computer programming, are
the binary (base 2) and the hexadecimal systems (base 16). Binary uses
only the two numbers 0 and 1 as digits. An example:

1110010010010 = 1*21241%21141%21041%27+1%244+1*21 =
4096 + 2048 + 1024 + 128 + 16 + 2=7314

Numbers in the hexadecimal system with base 16 are generally indicated
by a leading dollar sign ($). For representation of numbers in this format,
the standard ten digits from O to 9 are not enough. For this reason the first
six characters of the alphabet are added (A through F). A has the value of
10, and F means 15. It is especially easy to convert between binary and
hexadecimal. Four binary digits (4 bits) are grouped together, starting
from the decimal point, to form one hexadecimal digit.

333

ST 3D Graphics Abacus Software

The unwieldy binary number 1110010010010 becomes the hexadecimal
number $1C92. The conversion into the Decimal system is done in the
same manner as for the binary system. $1C92 means therefore:

1¥163 + 12%162 + 9*161 + 2*160 =
1*¥4096 + 12*256 + 9*16 + 2*1 = 7314

334

Abacus Software ST 3D Graphics

Appendix B: Analytical geometry of planes and space

The cartesian coordinate system is defined as a system of perpendicular
lines in which the horizontal line is designated as the X-axis (abscissa)
and the line perpendicular to it is called the Y-axis (ordinate). The
intersection of the two lines is the origin of the system. Now all points
within the system can be defined unambiguously by specifying their
coordinate values (x,y).

A line in such a system is defined by two points which belong on the line.
All points on the line can be ascertained with the following equation.

_____ = N for (x2-x1) <> 0

In this two point format, the expression (y2-y1)/(x2-x1) gives the slope m
of the straight line, which simultaneously represents the tangent of the
angle between the line and the X-axis (phi).

335

ST 3D Graphics Ahacus Software

+Y 4
2 .. T ’
- - ’I P2
n .t e !
TR |

a | 'm = tan (phi) = 121

BN 2 T ek
e X2, +X

Figure B.1: Line in the plane

With the definition of the slope m as well as the axis infersection a, the
intersection of the line with the Y-axis, we get what is called the normal
form of the straight line equation.

y=m*x+a
With this equation you can calculate all points on the line by introducing
various X values into the above equation, knowing the slope m and axis
intersection a.

For the middle-point of a straight line which connects two points (P1,
P2), we can easily calculate the coordinates of this segment:

336

Abacus Software ST 3D Graphics

The two equations above are used in the Cohen-Sutherland clipping
algorithm,

The geometry of a plane is just a special case of the geometry of space
and therefore the same laws apply to a straight line in space as to a
straight line in a plane, i.e. two points are also sufficient to define a point
in space. One difference from the plane is the Z-axis which, if one leaves
the X and Y axis unchanged, can point in different directions. Depending
on the direction used, this system is called a right-hand or left-hand
system. They differ therefore only in the orientation of the Z-axis.

+Y
+Y

+ X X

Left system Right system

+I

Figure B.2

An easy way to distinguish between the right- and left-hand systems as
well as all operations within the system is possible with the aid of a screw
(imagine simply a normal screw inside the system). The screw transfers a
rotating motion into a movement along the rotation axis and there are
basically two types of screws: those with left-handed threads and those
with right-handed threads. For a complete system description, we still
need to know how positive angles are measured and for equalization of
both coordinate systems the following definition is agreed upon:

337

ST 3D Graphics Abacus Software

Rotation about the: positive angle is measured:

Z-axis from +X to +Y axis
Y-axis from +Z to +X axis
X-axis from +Y to +Z axis

With the aid of this definition we can say for the system and the screw: If
a screw is placed in such a system (in the direction of a coordinate axis)
and the screw is turned about a positive angle (see above definition), then
the screw moves in the direction of a positive coordinate axis. You can
determine the position axis of a coordinate system through the definition
of the positive angle as well as the selection of the screw, or you can
recognize the type of an existing coordinate system. As an explanation, in
a right-hand system the right-handed screw moves in the direction of a
positive coordinate axis when rotated about a positive angle. On the other
hand, a left handed screw in a left-hand system rotated about a positive
angle will also move in the direction of positive coordinate axis. Since in
our country, screws with right-handed threads are most common, we shall
follow the positive rotations of a right-handed screw in a right-hand
system.

338

Abacus Software ST 3D Graphics

+Z
+Y
' >
+
—
+Z
*+Y
+
N
+ X
+Z

Figure B.3: Screws in a right-hand system

339

ST 3D Graphics Abacus Software

Two points in space or in a plane are sufficient to describe a line. Under
consideration of Z-coordinates the following relationships hold:

yoyl _ oyazyl o ozrzl 227zl

x=-x1 x2~-x1 x-x1 Xx2-x1

Using a parameter u, which can assume real values between -infinity and
+infinity, all points on a line running through points P1[x1,y1,z1]
and P2{x2,y2,z2] can be determined. For individual coordinates the
values are:

X

Y
Z

x%—x% : u i x%
- u
¥2—¥1 * g + gl

If we use only u real numbers between 0 and 1, all points on the line
between P1 and P2 can be calculated. The line would not run beyond P1
and P2, but would be cut off at the two points. From the lines we get a
vector, which has a definite direction in space. In our example it points
from P1 to P2.

A vector is a directional line, the connecting line between two points in a
coordinate system. The coordinates of the vector are calculated by
subtracting the point coordinates. The vector is therefore indicated by the
vector coordinates and its direction. The direction is shown in the
illustration by an arrow. A vector can be moved along its axis without
consequences for the total system, since only the length and direction are
of significance.

340

Abacus Software ST 3D Graphiés

+Y

S¥|-

Sx

+1 Figure B.4: Vector in space

The vector S in Figure 6.3.4 is given by its vector coordinates
S[sx,sy,sz] = [x2-x1,y2-yl,2z2-2z1] and its value, the length
of the distance S, can be determined as follows:

Value S = |S| = V (sx2 + §y2 + $22)

A unit vector is a vector whose value is one. If you want to generate a
unit vector to a given vector S, a vector which points in the same
direction as S but has a value of one, the vector coordinates of the unit
vectorare I [ix,iy,iz]:

Dividing the individual vector coordinates of vector S [sx, sy, sz] by
the length of vector S results in the vector coordinates of the unit vector.

341

ST 3D Graphics Abacus Software

Various operations can be performed on the vectors and those important
for our purposes are:

1. The scalar product (A-B)

2. The cross product (AXB)

B.1 Scalar Product

The scalar product is the sum of the products of the individual vector
coordinates and is important to determine angles (phi) between two
vectors (A,B).

A-B = ax*bxtay*by+az*bz = |A|*|B|*cos(phi)
AB =V ((ax2+ay2+az?) * (bx2+by2+bz?)) *cos (phi)

See also Figure 2.7.5.

B.2 Cross Product

The cross product (AXB), in contrast to the scalar product, is not a real
number but another vector (C). The resultant vector stands perpendicular
to the plane between the vectors A and B and together with them forms a
new coordinate system. The rule of the screw helps us again in the
determining the direction of the resulting vector:

In a right-hand system the result vector (C = [cx,cy,cz]) of the
cross product points in the same direction in which a screw with right-
handed threads would move from A to B when turned. The vectors A, B,
and C form a right-hand system. Similarly for a left-hand system: if one
turns a left-threaded screw from A to B, then C points in the direction in

which-the Stxew would move. This connection can be seen easily in
Figure 6.3.5 aipd in our program is responsible for the recognition of
visible surface

N

342

Abacus Software ST 3D Graphics

} Result vector C in right-hand system

Result vector C in left-hand system

Figure B.5

To determine the result vector C [¢cx, cy, cz] one proceeds as follows:

A'B = [ax*bz-az*by, az*bx-ax*bz, ax*by-ay*bx]

343

ST 3D Graphics Abacus Software

Appendix C: Matrix calculations

A matrix (m,n) is a square number system consisting of m by n numbers.

451 412 a;3 .. ain

a1 42 an aon

431 a3 an as,
A= .

aml amz arn3 ™ amn

The numbers aji where i = 1,2...m and k = 1,2...n are the elements of the
matrix A. The elements a;;, ajp,...a;n form the i-Line, and the elements
a1k,32k,...8mk form the kth column of the matrix, If the number of columns
is equal to the number of rows (m=n), A is called a square matrix. A few
rules can be stated for matrix calculation.

1. Matrices are designated with uppercase letters (A-Z). The
individual elements of a matrix carry the corresponding
lower case letter (a-z).

2. The element ajk is located in the ith row, kth column of
matrix A. i is the row index and k is the column index.

3. The matrix A(m,n) is of the type (m,n) and is defined as a
two-dimensional matrix with m rows and n columns.

4. Matrices with one row and any number of columns, of the

type (1,n), are called row vectors and those of type (n,1)
are called column vectors.

344

Abacus Software ST 3D Graphics

C.1 Adding matrices

The addition of matrices is defined only for matrices of the same
dimensions. Here is an example with two (3,3) matrices, A with the
elements ajk and the matrix B with the elements bjk. During addition, the
sum matrix S is created with elements sjk. S=A+B.

1 2 3 1 2 3
A=4 5 6 B= 4 5 6
7 8 9 7 8 9

2 4 9

C=A+B= 8 10 12

14 16 18

The elements of the sum matrix result from: sjk = ajk + bjk for i,k from 1
to 3. The limits of the variables i and k are written in mathematical form:
i,k = 1(1)3. The value in front of the parentheses is the start value, the
value in the parenthesis is the increment and the last number designates
the final value of the variables. In this example, i and k take values of one
through three with an increment of one. These are the numbers 1,2,3.
During matrix addition, one adds the elements which are in the same
place in each matrix, to obtain the elements of the sum matrix S. One
proceeds in the same manner when multiplying of matrix A with a
constant factor fac. The elements of the product matrix P are calculated
by multiplying each element in A by the factor.

pik = fac * aik i,k=1(1)3

345

ST 3D Graphics Abacus Software

C.2 Multiplying Matrices

The multiplication of two matrices A and B is somewhat more complex
than addition and has some limitations. The product of two matrices is
only defined when the number of columns of A matches the number of
rows in B. For two square matrices with i=k=constant, the multiplication
is always defined. The product of two matrices A (ajj) and B (bjk) is
defined as follows: A is a matrix of type (m,]) and B is of type (I,n), then
the product of the matrices A and B is A*B, the result matrix P is (pik),
whose elements are calculated in the following manner:

Pik = sum of j=1 to | over ajj*bjk
withi=1(1)mand j = 1(1)n.

This connection can be recognized in the following example.

A= 1 2 B=35 6
7 8

C=A*B= 1*5+2*%7 1%6+ 2% =
3*5 + 4%7 3*6 + 4*8

19 22
43 50

The result matrix P therefore contains the same number of lines as the
multiplicand A and the same number of rows as the multiplier B. In
regard to matrix multiplication there is a neutral element, i.e. for every
matrix A there is a matrix N with which A can be multiplied without
changing the original matrix. A*N=A. N is called the unit matrix and the
elements of the diagonal are one. All others have the value zero.
Moreover, the associative and the distributive law are valid during
multiplication.

A*(B*C) = (A*B)*C Associative Law
A*(B+C) = (A*B)+(A*C) Distributive Law

346

Abacus Software ST 3D Graphics

The commutative law does not hold for matrix multiplication. This means
A*B is not necessarily equal to B*A. The order of the multiplication is
not arbitrary, as you see, and must be observed.

347

ST 3D Graphics Abacus Software

Appendix D: Bibliography

(1] Foley James D., van Dam A., Fundamentals of Interactive
Computer graphics, Addison Wesley Publishing Company
(1984)

2] Harrington Steven, Computer Graphics, McGraw-Hill
(1983)

3] Newman William M., Principles of Interactive Computer
Graphics, McGraw-Hill (1984)

(4] Knuth Donald E., The Art of Computer Programming
Volume 2 Seminumerical Algorithms, Addison-Wesley
Publishing Company (1981)

[5] Kane Gerry, Hawkins Doug, Leventhal Lance, 68000
Assembly Language Programming, McGraw-Hill (1981)

6] Bruckmann, Englisch, Gerrits, Atari ST Internals, Abacus
Software (1986)

[N Szczepanowski, Gunther, Atari ST GEM Programmer’s
Reference, Abacus Software (1986)

348

Abacus Software

ST 3D Graphics

INDEX

3.-D wire models 4
3-D wire models 56
68000 computer 78

A

Abscissa 335

Apple Macintosh 4
Assembler 88, 89
Associative 346
Axis-symmetrical objects 169

BASIC1.5 92
Batch file 90
Binary system.
BIOS &8

C programming language 4

CAD systems 3

CAD-CAM 3

Cartesian coordinate system 7, 108,
249, 335

CAT scans 3

Clip algorithm 122
Cohen-Sutherland clipping algorithm
122, 337

Color monitor 219

Column vectors 344

Commodore Amiga 4

Computer animation 3, 56
Computer science 122
Convex polygons 57
Coordinate arrays 299
Coordinate origin 11

Cray Il 3,4, 56

Cross product 214, 342

Data system 117

Decimal system 333, 334
Definition block 298-300
Definition line 169, 189
Desktop 296

Digital Research 88
Direction Binary number 334
Display coordinate system 7
Display of :2veral objects 298
Distributive law 346
Draw-line-algorithm 107

Extended coordinate system 31
Extended-BIOS 88

G

GEM functions &8
GEM-DOS 88
Global variables 152
GRLINK1.S 123

349

ST 3D Graphics

Abacus Software

H

Hard disk 4

Hexadecimal number 334
Hexadecimal system 333
Hidden lines 4, 248, 249, 301
Hidden surfaces 217, 301
HIDEl1.S 198

HOUSE1.8 155

Indirect illumination 69
Inverse transformation matrices 41

Left coordinate system 30, 34, 47, 48,
59, 64, 337, 338, 342

Line array 298

Link file 170

Linking programs 89

M-N

Machine language 4, 89
Matrices 344

Matrix addition 345

Matrix multiplication 119, 346
MENU1.5 257

Metacombeo Editor 107
Monochrome monitors 219
Motorola MC68000 3-4
MULTI1.s 302

Normal vector 116

0

Object definition block 299-300
Object definition coordinate system
300

Observation coordinate system 44
Observation direction point (ODP) 43,
44,116,216

Observation reference point (ORP) 43,
44, 46

Observation window 43

Observer system 118

Operating system 30, 34, 107, 218,
248

Ordinate 335

PAINT1.S 221

Pascal 4

Perspective transformation 31, 119,
122

Picture coordinate system 8-9
Plot-point routine 80

Point coordinate arrays 298

Point light sources 70

Polygon 11

Polymarker 296

Projection 38, 51

Projection center 50, 116, 167, 214
Projection plane 50, 51, 56

R

Real time 3-D graphics 191
Reflection coefficient 69, 71
RELMOD 88

350

Abacus Software

ST 3D Graphics

Relocator 89

Right coordinate systems 64, 122, 214,
337, 338, 342

ROTATE1.S 172

Rotating definition line 170
Rotation 16, 32, 35, 37, 41
Rotation body 170, 188, 296
Rotation line 170, 249
Rotation matrices 42, 191
Rotation reference point 167
Row vectors 344

Scalar product 214, 342
Scaling 10, 12

Scaling matrix 32

Scan line algorithm 56
Screen memory 79
Screen pages 87

Screen switch routine 122
Screen system 118
Shading routine 218, 248
Shading surfaces 248
Sine table 78

Size manipulation 120
Slope 81, 335, 336

Square matrix 344
Straight line equation. 336
Structogram 246

Surface normal vector 216
Surface world arrays 299

Taylor series 76
Transformations 31, 121
Unit matrix 346

Unit vector 341

USA Today 3

User-defined objects 301

vectors 38, 340

View coordinate system 8, 11, 15, 43,
116,118, 119, 122,214

Visible surfaces 296

W

Window size 165

Wire model mode 249

World array 298, 301

World coordinate system 8, 11, 15, 44,
109, 116, 117, 119, 120, 121, 122, 165,
188, 217, 246, 298, 299, 300, 301
World parameters 300

World surface array 298

351

Optional Diskette

ATARI ST
3D

Graphics

Optional Diskette

For your convenience, the program listings contained in this book are
available on an SF354 formatted floppy disk. You should order the diskette
if you want to use the programs, but don't want to type them in from the
listings in the book.

All programs on the diskette have been fully tested. You can change the
programs for your particular needs. The diskette is available for $14.95 plus
$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a
check, money order or credit card information. Mail your order to:

Abacus Software
P.O. Box 7219
Grand Rapids, MI 49510

Or for fast service, call 1- 616 / 241-5510.

AA Rated Software
Atari and Abacus

DataTrieve

The electronic
filing system
for the ST

Word processor for the ST

reaia double-
sized pictures 10

-

Multiple
windows

For creative illustrations on the ST |

ST DataTriave
A simple-to-use and versatile database
manager. Fealures help screens;
lightning-fast operation; tallorable

display using multiple fonts;
user-definable edit masks; capacity up
to 64,000 records. Supports multiple
files. RAM-disk support tor 10405T.
Complete search, sort and file
subsetling. Interfaces to TexiPro. Easy
printer ¢ontrol. $49.95

ST TextPro
Wardprocesser with professional
features and easy-to-use! Full-screen
editing with mouse or keyboard
shorteuts. High speed input, scrolling
and editing; sideways printing;
multi-column output; Fexible printer
installation; automatic index and table
of contents; up to 180 chars/line; 30
definable function keys; metalile
output; much more. $49.95

ST PaintPro
A GEM™ among ST drawing programs.
Very friendly, but very powerful design
and painting program. A must for
everyone's arlistic or graphics needs.
Use up o three windows. You can
even cut & pasite between windows.
Free-form sketching; lines, circles,
ellipses, boxes, text, fill, copy, move,
zoo0m, spray, paint, erase, undo, heip.
Double-sized picture format. $49.95

Multi-Tasking
Full-Featured

AssemPro
The complete 68000
assembler development
package for the ST

PCBoard
Designer

Create printed circuit board layouts

Auto-routing, eomponent list, pineut list, nat list

ST Forth/MT
Powerful, multi-tasking Forth for the ST.
A complete, 32-bit implementation
based on Forth-83 standard. Develop-
ment aids: full screen editor, monitor,
macro assembler. 1500+ word library,
TOS/LINEA commands. Floating point
and complex arithmetic, $49.95

ST AssemPro
Protessional developer's package
includes editor, two-pass interactive
assemblar with error locator, online help
including instruction address mode and
GEM paramaeter information,
moniter-debugger, disassembler and
68020 simulator, more. $59.95

Call now for the name of the dealer nearest you.

Or order directly using your MC, Visa or Amex
card. Add $4.00 per order for shipping. Foreign
orders add $10.00 per item. Call (616) 241-5510
or write for your free catalog. 30-day money
back software guarantee. Dealers inquires
welcome—over 1400 dealers nationwide.

Abacus

P.0. Box 7219 Dept.NB Grand Rapids, MI 49510
Phone 616/241-5510 « Telex 709101 « Fax 616/241-5021

PCBoard Designer
Interactive, computer aided design
package that automates layout of printed
circuit boards, Aute-routing, 45° or
90° traces; two-sided boards; pin-to-pin,
pin-to-BUS or BUS-to-BUS. Rubber-
banding of components during place-
ment. Quiputs pinout, component and
net list. $395.00

ST and 10408T are trademarks of Atari Corp.
GEM s a trademark of Digita Research Inc.

1111
i

PRESENTING THE ST
Gives you an in-dapth look at
this sensmtional new
computer. Discusaes the
architecturs of the ST, work-
Ing with GEM, the mouss,
operaiing Eyatem, all the
various interfaces, the BBOOD
chip and its insfructions,
LOGO, 200pp 516,95

ST GRAPHICS & SOUND
Detalled guide to graphics
and sound on 1he ST. 20 &
30 function plotiers, Moiré
patterns, graphic memory
and vaflous resolutions,
fractals, recursion, wavelorm
generation. Examples written
in G, LOGO, BASIC and

ST Heginher's Guide
Written for the firsthand ST
usel. Get & basle undenttand-
ing ol your ST, Explare
LGGO and BASIC from 1he
ground up. Simple explan-
ations of the bardware and
Internal workings of the ST.
llustrations. diagrams. Gloss-
oy Index. 200pp $14.55

9T LOGO GUIDE
Take conrol of your ST by
learning 5T LOGO—the easy
to use, powerful language,
Topics Indude: file handiing,
recursion-Hilbert & Sierpinskl
curves. 20 and 30 hunction
plots, data structure, efror
handiing. Helpful guids for

ST INTERNALS

Esrential guide to the Inside
indormation of the ST
od descriptions of
sound and graphics chips,
Internal hardwara, [0 ports,
using GEM. Commented
BlOS listing. An Indiepen-
sible reference for your ST
450pp $19.95

Dst

liorary,

ST PEEKS & POKES

Enhancs your programa with
the sxampies lound within
this book. Explores ualng
differant languages BASIC,
G, LOGO and machine
language, using various
intarfaces, memory usags,
reading and saving from anc

withaut

BASIC Training Guide

Thorough guide for lesrning
ST BASIC programring.
Detailed programming funda

GEM Programmer's Red.

For sarious programmers
nesding detalied information
on GEM. Prasented in an
apsy-to-understand format.
All examples are in G and
astembly language. Covars
YOI and AES functions. No
serlous programer should ba
410pp $19.05

MACHINE LANGUAGE

Program In the fastesi lang-

ukge for your ATARI 5T
Learn 88000 amesmbly lang-
uage, He numbering system,
use of registers, structure &
Important desailn of instruc-
tion sat, and use of internal
systemn routines. Gearsd for
the $T. 200pp 316.08

BASIKCto C
Move up from BASIC 10 C. If
you'te alresdy a BASIC

mentals, commands descrip-
tions, ST graphice & sound,
using GEM in BASIC, file
managemani, dixk operation.
Tutorial problems. glve hande

ar . YOu can learn C
all that much taster. Parallel
sxamples demosirate the
programming technigues and
constructs in bath languages,
Variables, pointers, arrays,

ST TRICKS & TIPS
Fantastic collection of pro-
greme and info for the ST.
Complete programa [ndude;
super-last FAAM dith; time-
aaving printer spooler; color
prim hardcogy: plotter outpust
hardcopy. ¢teating access-
aries. Monaey saving tricks
and tipa, 260pp $10.05

30 GRAPHICS
FANTASTIC! Rotate, zoom,
and shade 3D cbiscts. Al
programk wiitten in machine
language for high spesd.
Learn the mathamatics
behind 30 graphics. Hidden
ling removal, shading. With
AD patiern maker wnd

Modula2 250pp $18.85 ST LOGO users. $1985 on saperience. 300pe $16.95

0 disk, more, 280pp $16.95 data siructure, 250pp 510.08 wnimator, $24 05
The ATARIlogo and ATARI ST are ¥ sdemerks of Atad Carp,

AbacusEiSoftware

P.0. Box 7219 Dept. A9 Grand Rapids, MI 49510 - Telex 709-101 - Phone (616) 2415510

Optional diskettes are available for all book titles at $14.95

Call now for the name of your nearest dealer, Qr order directly from ABACUS with your MasterCard, VISA, or Amex card. Add
$4.00 per order for postage and handling. Foreign add $10.00 per book. Other software and books coming scon. Call or
write for your free catalog. Dealer inquiries welcome—over 1400 dealers nationwide.

E¥FFEIIILT

e & el
p o e e
1 oo
o+ O 1 oD
3 o ()
{ o110
D) HEARR
% !OOD
: OO
> A WRAS
() G [21 |
R= |) 20
S) | Lo/
i+ £ [(17
/s F [11/

FANTASTIC! Learn how to create impressive and fascinating 3D
graphics on the Atari ST. Covers introductory concepts and
background materials, graphic animation, using the assembler
and much more. Learn real-time animation with dozens of
graphic routines. 3D Graphics is an amazing book for all
programmers interested in advanced level graphics. Some of
the areas covered include:

2D & 3D Transformations

» Hidden lines & surfaces

» Data structure for 3D objects
» Object animation

Spatial projection
Screen manipulation
Rotation of objects
Light and shadows

L] ® o @

About the author:

Uwe Braun is a member of the Data Becker Product
Development team, based in Duesseldorf, W. Germany. He is a
knowledgeable machine language programmer with extensive
graphics programming experience.

ISBN 0-91k439-k9-0

The ATARI logo and ATARI ST are trademarks of Atari Cormp.

A DataBecker book published by

| Eﬁs i Software

el P 0. Box 721! Grand Ranllls M| 43510 - Telex 708-101 - Phone 616/241-5510

