

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 1 of 68

A Hitchhiker’s Guide
to the BIOS

August 25, 1985

November 26, 1985
Rev 1.0 January 23, 1989

Rev 1.1 Mars 5, 1990

(C) 1985-1990 Atari Corp.
All Rights Reserved

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Table of Content

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 2 of 68

Table of Content
Table of Content ... 2
Introduction ... 7
GEMDOS BIOS Calls ... 8

(0) getmpb .. 8
(1) bconstat .. 9
(2) bconin ... 9
(3) bconout ... 10
(4) rwabs .. 10
(5) setexc .. 10
(6) tickcal .. 11
(7) *getbpb .. 11
(8) bcostat .. 11
(9) mediach .. 11
(10) drvmap .. 12
(11) kbshift .. 12

Extended BIOS Functions .. 13
(0) initmous ... 13
(1) ssbrk ... 14
(2) _physBase .. 14
(3) _logBase ... 14
(4) _getRez ... 15
(5) _setScreen .. 15
(6) _setPallete .. 15
(7) _setColor ... 15
(8) _floprd ... 15
(9) _flopwr .. 15
(10) _flopfmt ... 16
(11) used-by-BIOS .. 16
(12) midiws ... 16
(13) _mfpint .. 17
(14) iorec .. 17
(15) rsconf .. 18
(16) keytbl ... 18
(17) _random .. 19
(18) _protobt ... 19
(19) _flopver ... 19
(20) scrdmp .. 20
(21) cursconf .. 20
(22) settime .. 20
(23) gettime .. 20
(24) bioskeys .. 20
(25) ikbdws ... 20
(26) jdisint ... 21
(27) jenabint ... 21
(28) giaccess .. 21
(29) offgibit ... 21
(30) ongibit ... 21
(31) xbtimer .. 21

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Table of Content

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 3 of 68

(32) dosound .. 22
(33) setprt ... 22
(34) kbdvbase ... 23
(35) kbrate .. 23
(36) _prtblk ... 23
(37) vsync ... 23
(38) supexec ... 24
(39) puntaes ... 24

CONOUT Escape Sequences .. 25
ESC A ... 25
ESC B ... 25
ESC C ... 25
ESC D ... 25
ESC E ... 25
ESC H ... 25
ESC I ... 25
ESC J .. 26
ESC K ... 26
ESC L .. 26
ESC M ... 26
ESC Y ... 26
ESC b .. 26
ESC c .. 26
ESC d .. 27
ESC e .. 27
ESC f ... 27
ESC j ... 27
ESC k .. 27
ESC l ... 27
ESC o .. 27
ESC p .. 27
ESC q .. 27
ESC v .. 28
ESC w ... 28

Traps, Interrupts and Interrupt Vectors ... 29
Calling the BIOS from an Interrupt Handler .. 31
System Variables .. 32

etv_timer (long) $400 .. 32
etv_critic (long) $404 ... 32
etv_term (long) $408 ... 32
etv_xtra (longs) $40c .. 32
memvalid (long) $420 ... 32
memcntlr (byte) $424 .. 32
resvalid (long) $426 .. 32
resvector (long) $42a .. 32
phystop (long) $42e .. 33
_membot (long) $432 .. 33
_memtop (long) $436 .. 33
memval2 (long) $43a .. 33
flock (word) $43e .. 33

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Table of Content

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 4 of 68

seekrate (word) $440 .. 33
_timr_ms (word) $442 ... 33
_fverify (word) $444 .. 33
_bootdev (word) $446 ... 34
palmode (word) $448 .. 34
defshiftmd (byte) $44a .. 34
sshiftmd (word) $44c ... 34
_v_bas_ad (long) $44e ... 34
vblsem (word) $452 .. 34
nvbls (word) $454 ... 34
_vblqueue (long) $456 .. 34
colorptr (long) $45a ... 34
screenpt (long) $45e ... 34
_vbclock (long) $462 ... 34
_frclock (long) $466 .. 35
hdv_init (long) $46a .. 35
swv_vec (long) $46e ... 35
hdv_bpb (long) $472 ... 35
hdv_rw (long) $476 ... 35
hdv_boot (long) $47a .. 35
hdv_mediach (long) $47e .. 35
_cmdload (word) $482 .. 35
conterm (byte) $484 .. 35
themd (long) $48e ... 36
savptr (long) $4a2 ... 36
_nflops (word) $4a6 .. 36
sav_context (long) $4ae .. 36
_bufl (long) $4b4 ... 36
_hz_200 (long) $4bc ... 36
the_env (byte[4]) $4be .. 36
_drvbits (long) $4c4 .. 36
_dskbufp (long) $4c6 .. 37
_prt_cnt (word) $4ee ... 37
_sysbase (long) $4f2 ... 37
_shell_p (long) $4f6 .. 37
end_os (long) $4fa .. 37
exec_os (long) $4fe .. 37

System Variables present as of Mega TOS (1.2) ... 38
scr_dump $502 (long) ... 38
prv-lsto $506 (long) ... 38
prv-lst $50a (long) ... 38
prv_auxo $50e (long) .. 38
prv-.aux $512 (long) ... 38
pun_ptr $516 (long) ... 38
memval3 $51a (long) .. 38
Starting at $51e ... 38
_longframe $59e (word) .. 39
_p_cookies $5a0 (long) ... 39

POST MORTEM INFORMATION ... 40
Getting Into and Out Of Supervisor Mode in GEMDOS .. 41

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Table of Content

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 5 of 68

GEMDOS Relocation Format ... 43
Error Handling .. 44

0 (OK) ... 44
-1 (ERROR) .. 44
-2 (DRIVE_NOT_READY) ... 44
-3 (UNKNOWN_CMD) .. 44
-4 (CRC_ERROR) ... 44
-5 (BAD_REQUEST) ... 44
-6 (SEEK_ERROR) ... 44
-7 (UNKNOWN_MEDIA) ... 44
-8 (SECTOR_NOT_FOUND) .. 44
-9 (NO_PAPER) .. 44
-10 (WRITE_FAULT) ... 44
-11 (READ_FAULT) .. 44
-12 (GENERAL_MISHAP) ... 45
-13 (WRITE_PROTECT) ... 45
-14 (MEDIA_CHANGE) ... 45
-15 (UNKNOWN_DEVICE) ... 45
-16 (BAD_SECTORS) ... 45
-17 (INSERT_DISK) .. 45

Cartridge Support ... 46
Vertical Blank Interrupts ... 48
ROM System Initialization ... 49
PUNTAES and the OS Header ... 51
Boot Sectors ... 53
Formatting a Floppy Disk .. 55
DMA Bus Boot Code .. 56
The Loader ... 59
Boot Sequence ... 60
Boot ROM ... 61
GEMDOS CALL .. 63

$00 PtermO() [2] ... 63
$01 Cconin() [2] .. 63
$02 Cconout(char chr) [4] ... 63
$03 Cauxin () [2] ... 63
$04 Cauxout(char chr) [4] ... 63
$05 Cprnout(char chr) [4] .. 63
$06 Crawio(WORD wrd) [4] .. 63
$07 Crawcin() [2] ... 63
$08 Cnecin () [2] ... 63
$09 Cconws(char *str) [6] .. 63
$0a Cconrs(char *buf) [6] .. 64
$0b Cconis() [2] ... 64
$0e Dsetdrv(WORD drv) [4] .. 64
$10 Cconos() [2] ... 64
$11 Cprnos() [2] .. 64
$12 Cauxis() [2] ... 64
$13 Cauxos() [2] ... 64
$19 Dgetdrv() [2] ... 64
$1a Fsetdta(LONG ptr) [6] .. 64

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Table of Content

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 6 of 68

$20 Super(LONG stack) [6] ... 64
$2a Tgetdate() [2] ... 65
$2b Tsetdate(WORD date) [4] .. 65
$2c Tgettime() [2] .. 65
$2d Tsettime(WORD time) [4] ... 65
$2f Fgetdta() [2] .. 65
$30 Sversion() [2] .. 65
$31 Ptermres(LONG keep, WORD ret) [8] .. 65
$36 Dfree(LONG buf, WORD drv) [] ... 65
$39 Dcreate(char *path) [6] ... 65
$3a Ddelete(char *path) [6] ... 66
$3b Dsetpath(char *path) [6] ... 66
$3c Fcreate(char *name, WORD attr) [8] .. 66
$3d Fopen(char *name, WORD mode) [8] .. 66
$3e Fclose(WORD handle) [4] .. 66
$3f Fread(WORD handle, LONG count, char *buf) [12] .. 66
$40 Fwrite(WORD handle, LONG count, char *buf) [12] ... 66
$41 Fdelete(char *name) [6] ... 66
$42 Fseek(LONG offset, WORD handle, WORD mode) [10] .. 66
$43 Fattrib(path, mode, mode) [10] ... 67
$45 Fdup(WORD stdhandle) [4] .. 67
$46 Fforce(WORD stdhandle, WORD nonstdhandle) [6] .. 67
$47 Dgetpath(char *pathbuf, WORD drv) [8] ... 67
$48 Malloc(LONG amount) [6] .. 67
$49 Mfree(addr) [6] ... 67
$4a Mshrink(WORD zero, LONG mem, LONG size) [12] ... 67
$4b Pexec(WORD mode, char *path, char *cmdline, char *env) [16] 67
$4c Pterm(WORD code) [4] .. 68
$4e Fsfirst(char *spec, WORD attr) [8] .. 68
$4f Fsnext() [2] .. 68
$56 Frename(WORD zero, char *old, char *new) [12] .. 68
$57 Fdatime(WORD handle, char *buf, WORD set) [10] .. 68

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Introduction

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 7 of 68

Introduction
Remember, don't panic. This is the new, improved introduction to the Hitchhiker’s
Guide to the BIOS, which describes the BIOS (and many other aspects) of Atari's ST
computer series. The introduction still won't tell you much, but at least it tells you not to
panic.

The Guide's intended audience:

• Application writers (who will find some of the functions and hints here invaluable);
• Those wishing to make use of some of the ST's hardware-specific features

(hacking palette colors, configuring the RS232 port, and so on);
• Those writing device drivers, videogames, or cartridge-based applications;
• The habitually curious (including trivia trippers, information junkies, and

documentation addicts).
For many reasons this should still be considered a preliminary document. A whole host of
things remain undocumented, many GEMDOS issues have not even been approached by
our friends at Digital Research, and there are a whole lot of features we'd like to add to the
software.
Periodically, as our roving reporters discover new ways to enjoy life on a roving reporter's
budget of one Denebian slime dollar a day, we will be updating the Hitchhiker's Guide to
reflect sudden, violent changes in reality. Those fortunate who do not own a Sub-etha Net
auto-regressive pan-galactic update droid (if you do own one, you know how difficult they
are to get rid of) will have to call Atari occasionally to see if an update has occurred. We
have no plans for another release before the end of September. Don't call too often;
there's an entire galaxy of intelligent beings out there, and our operators are getting
freaked out.
REWARD:
One Denebian Slime Dollar to the first discoverer of a mis-documentation error. Two slime
dollars to the second discoverer, and so on ...

Note from the Jean Louis-Guérin: To edit this guide I have scanned the original text document
dated August 26, 1985 and the last (?) document dated Mars 5, 1990. Alteration from original
document are written with this color (that is in blue!) for added information and like this for
removed information...
Also the C function prototypes have been changed from original K&R convention to ANSI C
convention. For example the original K&R:

VOID getmpb(p_mpb);
LONG p_mpb;

Is presented here as ANSI C:
VOID getmpb(LONG p_mpb);

A table of content and a cross-referencing have been added…
Hopefully this document should perfectly match the originals from Atari. I have checked the text
several times but some errors may still be hidden …

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) GEMDOS BIOS Calls

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 8 of 68

GEMDOS BIOS Calls

Description and Deviation from the GEMDOS Specification

The ST BIOS, contrary to the GEMDOS specification, is callable from the 68000's user
mode.
The BIOS is reentrant to three levels. That is, there may be up to three recursive BIOS
calls before the system runs into trouble. No level checking is performed; the first sign of
an overflow will be mysterious system behavior, and an eventual crash.
Applications should not attempt disk or printer I/O (this includes get BPB calls, and
standard-output redirected to the printer device) in critical-error, system-timer or process-
terminate handlers.
NOTE: The BIOS modifies the function number (and the return address) pushed on the
stack by the application. The function number on the stack will be zero on return. [For the
curious: this feature saved several cycles per BIOS call ...]

(0) getmpb
VOID getmpb(LONG p_mpb);

Upon entry, p_mpb points to a sizeof(MPB) block to be filled in with the system
initial Memory Parameter Block. Upon return, the MPB is filled in.
Structures are:

#define MPB struct mpb
#define MD struct md
#define PD struct pd
MPB {

MD *mp_mfl; /* memory free list */
MD *mp_mal; /* memory allocated list */
MD *mp_rover; /* roving ptr */

};
MD {

MD *m_link; /* next MD (or NULL) */
long m_start; /* saddr of block */
long m_length; /* #bytes in block */
PD *m_own; /* owner's process descriptor */

};

 [See System Variables for more information about setting up the initial TPA.]

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) GEMDOS BIOS Calls

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 9 of 68

(1) bconstat
WORD bconstat(WORD dev);

Return character-device input status, D0.L will be $0000 if no characters available,
or $FFFF if (at least one) character is available.
dev can be one of:

0 PRT:(printer, the parallel port)
1 AUX:(aux device, the RS232 port)
2 CON:(console, the screen)
3 MIDI port (Atari extension)
4 Keyboard port (Atari extension)
5 Raw console output

Legal operations on character devices are:
Operation 0

PRT
1

AUX
2

CON
3

MIDI
4

KBD
5

RAW
bconstat() no yes yes yes no no
bconin() yes yes yes yes no no

bconout() yes yes yes yes yes yes
bcostat() yes yes yes yes yes no

The midi device (#3) has an interrupt-driven input buffer of 80 characters.
The keyboard device (#4) is output-only and can be used to configure the intelligent
keyboard (or drive it insane).
The raw console device (#5) prints characters to the screen without interpretation
(control characters and escape sequences have no special meanings)

(2) bconin
WORD bconin(WORD dev);

dev is the character device number described in function bconstat.
Does not return until a character has been input (busy-wait). It returns the character
value in D0.L, with the high word zero.
For the console (CON:, device #2) it returns the IBM-PC compatible scan code in
the low byte of the upper word, and the ASCII character in the low byte of the low
word.
If bit 3 in the system variable conterm is set, then the high byte of the upper word
will contain the value of the system variable kbshift for that key stroke.
[The default state for 'conterm%%3' is OFF.]

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) GEMDOS BIOS Calls

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 10 of 68

(3) bconout
WORD bconout(WORD dev, WORD c);

dev is the character device number described in function bconstat.
Output character c to the device. Does not return until the character has been
written.
For PRT: returns 0 for failure and !0 for success.

(4) rwabs
LONG rwabs(WORD rwflag, LONG buf,
 WORD count, WORD recno, WORD drv);

Read or write logical sectors on a drive.
rwflag is one of:

0 read
1 write
2 read, do not affect media-change
3 write, do not affect media-change

buf points to a buffer to read or write to (unaligned transfers -- on odd boundaries --
are permitted, but they are slow). count is the number of sectors to transfer. recno
is the logical sector number to start the transfer at. drv is the drive number, and on
the ST is one of:

0 Floppy drive A:
1 Floppy drive B: (or "logical" drive A: on single-disk systems)
2+ Hard disks, networks, etc.

On return, 0L indicates a successful operation. Any negative number indicates an
error condition. (It is the responsibility of the BIOS to detect media changes, and
return the appropriate error code).
Modes 2 and 3 force a physical disk operation that will NOT affect media change,
nor result in one (this allows the GEMDOS disk formatter, for instance, to read and
write logical sectors after formatting a disk, and still allow the BIOS to recognize a
media change on the volume just formatted). [Explain about "insert-disk" critical
error hack for single-drive systems]

(5) setexc
LONG setexc(WORD vecnum, LONG vec);

vecnum is the number of the vector to get or set. vec is the address to setup in the
vector slot; no set is done if vec is -1L. The vector's previous value is returned.
Vectors $00 through $FF are reserved for the 68000.
Logical vectors $100 through $1FF are reserved for GEMDOS.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) GEMDOS BIOS Calls

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 11 of 68

Vectors currently implemented are:
• $100 System timer interrupt
• $101 Critical error handler
• $102 Process terminate hook
• $103..$107: Currently unused, reserved

Logical vectors $200 through $FFFF are reserved for OEM use. The ST BIOS
makes no provision for these.

(6) tickcal
LONG tickcal();

Returns a system-timer calibration value, to the nearest millisecond. This is a silly
function, since the number of elapsed milliseconds is passed on the stack during a
system-timer trap.

(7) *getbpb
BPB *getbpb(WORD drv);

drv is a device number (0 for drive A, etc.) as defined in rwabs
Returns a pointer to the BIOS Parameter Block for the specified drive, or 0L if (for
some reason) the BPB cannot be determined.

(8) bcostat
LONG bcostat(dev);

dev is a character device number, as in function bconstat.
Returns character output status:

-1 Device is ready to send (no waiting on next
device-output call)

0 Device is not ready to send.
Note: Device 3 is keyboard and 4 is Midi

(9) mediach
LONG mediach(WORD dev);

drv is a drive number as defined in rwabs. Returns one of:
0 Media definitely has not changed
1 Media /might/ have changed
2 Media definitely has changed

GEMDOS will respond to a return value of '1' with a read operation. If the BIOS
detects an absolute media change, it will return a "media change" error at that time.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) GEMDOS BIOS Calls

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 12 of 68

(10) drvmap
LONG drvmap();

Returns a bit-vector that contains a 1 in a bit position (0 .. 31) when a drive is
available for that bit, or a 0 if there is no drive available for the bit.
Installable disk drivers must correctly maintain the long word _drvbits [see: System
Variables]

(11) kbshift
LONG kbshift(WORD mode);

If mode is non-negative, sets the keyboard shift bits accordingly and returns the old
shift bits. If 'mode' is less than zero, returns the IBM-PC compatible state of the shift
keys on the keyboard, as a bit-vector in the low byte of D0.
Bit assignments are:

0 Right shift key
1 Left shift key
2 Control key
3 ALT key
4 Caps-lock
5 Right mouse button (CLR/HOME)
6 Left mouse button (INSERT)
7 (reserved, currently zero)

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Extended BIOS Functions

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 13 of 68

Extended BIOS Functions
These functions are available through trap 14. The calling conventions are the same as for
trap 13. Contrary to the GEMDOS specification, the caller does not have to be in
supervisor mode. It is the caller's responsibility to cleanup arguments passed to the trap
(as per the C calling standard). A typical trap handler, one that works from a C binding,
might be:

_trap14:
move.l (sp)+,tr14ret ; pop ret addr
trap #14 ; do BIOS func
move.l tr14ret,-(sp) ; return to
rts ;caller

bss

tr14ret: ds.l ; saved ret. Addr

and it might be used like:
/*
 * Stupid way to set the screen to a single value.
 */
set_screen_to(WORD v)
{

extern long trap14();
register WORD *p;
register int i;
scrbase = (WORD *)trap14(3);
for (i = 0x4000; i; --i)
 *p++ = v;

}
/*
 * Xor palettes in a range with a given value
 */
set_palette_range(WORD start, WORD fin, WORD v);
{

while (start <= fin)
trap14(7, trap14(7, -1) ^ v);

}

(0) initmous
VOID initmous(WORD type, LONG param, LONG vec);

Initialize mouse packet handler. type is one of:
Type Action
0 disable mouse
1 enable mouse, in relative mode
2 enable mouse, in absolute mode
3 (unused)
4 enable mouse, in keycode mode

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Extended BIOS Functions

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 14 of 68

param points to a parameter block that should look like:
struct param {

BYTE topmode;
BYTE buttons;
BYTE xparam;
BYTE yparam;

};

topmode should be:
0 Y_position == 0 at bottom
1 Y_position == 0 at top

buttons is a parameter for the keyboard's "set mouse buttons" command.
xparam and yparam are the X and Y threshold, scale or delta factors, depending
on the mode the mouse is being placed in.
For mouse absolute mode, some extra parameters immediately follow the
parameter block:

struct extra {
WORD xmax;
WORD ymax;
WORD xinitial;
WORD yinitial;

};

xmax and ymax specify the maximum X and Y mouse positions. xinitial and
yinitial specify the initial X and Y mouse position.
vec points to a mouse interrupt handler; see extended function number 34,
kbdvbase, for further information about ikbd subsystem handlers.

(1) ssbrk
LONG ssbrk(WORD amount);

Reserve amount bytes from the top of memory. Returns a long pointing to the base
of the allocated memory. This function must be called before the OS is initialized.
ssbrk is actually pretty useless. It does not work after GEMDOS has been brought
up, since the TPA has already been set up.

(2) _physBase
LONG _physBase();

Get the screen's physical base address (at the beginning of the next vblank).

(3) _logBase
LONG _logBase();

Get the screen's logical base, right away. This is the location that GSX uses when
drawing to the screen.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Extended BIOS Functions

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 15 of 68

(4) _getRez
WORD _getRez();

Get the screen's current resolution (returning 0, 1 or 2).

(5) _setScreen
VOID _setScreen(LONG logLoc, LONG physLoc, WORD rez);

Set the logical screen location logLoc, the physical screen location physLoc, and
the physical screen resolution. Negative parameters are ignored (making it
possible, for instance, to set screen resolution without changing anything else).
The logical screen location changes immediately.
The physical screen location hardware register is changed immediately, but the
new screen location will take effect after the next vertical retrace.
When resolution is changed, the screen is cleared, the cursor is homed, and the
VT52 terminal emulator state is reset.

(6) _setPallete
VOID _setPallete(LONG palettePtr);

Set the contents of the hardware palette register (all 16 color entries) from the 16
words pointed to by palettePtr. paletteptr must be on a word boundary. The
palette assignment takes place at the beginning of the next vertical blank interrupt.

(7) _setColor
WORD _setColor(WORD colorNum, WORD color);

Set the palette number colorNum in the hardware palette table to the given color.
Return the old color in D0.W. If color is negative, the hardware register is not
changed.

(8) _floprd
WORD _floprd(LONG buf, LONG filler, WORD devno, WORD sectno,
 WORD trackno, WORD sideno, WORD count);

Read one or more sectors from a floppy disk. filler is an unused longword. buf
must point to a word-aligned buffer large enough to contain the number of sectors
requested. devno is the floppy number (0 or 1). sectno is the sector number to
start reading from (usually 1 through 9). trackno is the track number to seek to.
sideno is the side number to select. count is the number of sectors to read (which
must be less than or equal to the number of sectors per track).
On return, D0 contains a status code. If D0 is zero, the operation succeeded. If D0
is non zero, the operation failed (and D0 contains an error number).

(9) _flopwr
WORD _flopwr(LONG buf, LONG filler, WORD devno, WORD sectno,
 WORD trackno, WORD sideno, WORD count);

Write one or more sectors to a floppy disk. buf must point to a word-aligned buffer.
filler is an unused longword. devno is the floppy number (0 or 1). sectno is the

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Extended BIOS Functions

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 16 of 68

sector number to start writing to (usually 1 through 9). trackno is the track number
to seek to. sideno is the side number to select. count is the number of sectors to
write (which must be less than or equal to the number of sectors per track).
On return, D0 contains a status code. If D0 is zero, the operation succeeded. If D0
is non zero, the operation failed (and D0 contains an error number).
Writing to the boot sector (sector 1, side 0, track 0) will cause the media to enter
the "might have changed" state. This will be reflected on the next rwabs() or
mediach() BIOS call.

(10) _flopfmt
WORD _flopfmt(LONG buf, LONG filler, WORD devno, WORD spt,
 WORD trackno, WORD sideno, WORD interlv,
 LONG magic, WORD virgin);

Format a track on a floppy disk. buf must point to a word-aligned buffer large
enough to hold an entire track image (8K for 9 sectors-per-track). filler is an
unused longword. devno is the floppy drive number (0 or 1). spt is the number of
sectors-per-track to format (usually 9). trackno is the track number to format
(usually 0 to 79). sideno is the side number to format (0 or 1). interlv is the sector-
interleave factor (usually 1). magic is a magic number that must be the value
$87654321. virgin is a word fill value for new sectors.
On return, D0 contains a status code. If D0 is zero, the operation succeeded. If D0
is non zero, the operation failed (and D0 contains an error number). The format
function can soft-fail when it finds bad sectors during the verify pass. The caller has
the choice of attempting to re-format the media, or recording the bad sectors so
they will not be included in the file system.
A null-terminated (0.W) list of bad sector numbers is returned in the buffer. They
are not necessarily in numerical order. (If there were no bad sectors, the first word
in the buffer will be zero.)
A good value for virgin is $E5E5. The high nibble of each byte in the virgin
parameter must not be equal to $F. Resist the temptation to format a disk with
sectors initialized to zero.
Formatting a track will cause the media to enter the "definitely changed" state. This
will be reflected on the next rwabs() or mediach() BIOS call.

(11) used-by-BIOS
VOID used-by-BIOS();

[Obsolete function]

(12) midiws
VOID midiws(WORD cnt, LONG ptr);

Writes a string to the MIDI port. cnt is the number of characters to write, minus one.
ptr points to a vector of characters to write.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Extended BIOS Functions

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 17 of 68

(13) _mfpint
VOID _mfpint(WORD interno, LONG vector);

Set the MFP interrupt number interno (0 to15) to vector. The old vector is written
over (and thus unrecoverable).

(14) iorec
LONG iorec(WORD devno);

Returns a pointer to a serial device's input buffer record. devno is one of:
devno Device

0 RS232
1 Keyboard
2 MIDI

The structure of the record is:
struct iorec {

LONG ibuf; /* pointer to buffer */
WORD ibufsiz; /* size of buffer */
WORD ibufhd; /* head index */
WORD ibuftl; /* tail index */
WORD ibuflow; /* low-water mark */
WORD ibufhi; /* high-water mark */

};

For RS-232, an output-buffer record immediately follows the input-buffer record.
The format of the output-buffer record is identical. ibuf points to the device's buffer.
ibufsiz is the buffer's size. ibufhi is the buffer's high-water mark. ibuflow is the
buffer's low-water mark.
If flow control is enabled and the number of characters in the buffer reaches the
high-water mark, the ST requests (according to the flow-control protocol) the
sender to stop sending characters. When the number of characters in the buffer
drops below the low-water mark, the ST tells the sender to resume transmission.
The flow-control operation is similar for the RS-232 output record.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Extended BIOS Functions

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 18 of 68

(15) rsconf
LONG rsconf(WORD speed, WORD flowctl, WORD ucr, WORD rsr,
 WORD tsr, WORD scr);

Configure RS-232 port. If any parameter is -1 ($FFFF), the corresponding hardware
register is not set. speed sets the port's baud rate, as per:

speed Rate (bps) speed Rate (bps)
0 19,200 8 600
1 9600 9 300
2 4800 10 200
3 3600 11 150
4 2400 12 134
5 2000 13 110
6 1800 14 75
7 1200 15 50

flow sets the flow control, as per:
flow Flavor
0 No flow control [powerup default]
1 XON/XOFF (^S/^Q)
2 RTS/CTS
3 XON/XOFF and RTS/CTS [is this useful?]

ucr, rsr, tsr, and scr set the appropriate 68901 registers.
Returns old values of ucr, rsr, tsr, and scr (in that order) bytes packed in a long
value.

(16) keytbl
LONG keytbl(LONG unshift, LONG shift, LONG capslock);

Sets pointers to the keyboard translation tables for unshifted keys, shifted keys,
and keys in caps-lock mode. Returns a pointer to the beginning of a structure:

struct keytab {
LONG unshift; /* -> unshift table */
LONG shift; /* -> shift table */
LONG capslock; /* -> capslock table */

};

Each pointer in the structure should point to a table 128 bytes in length. A scan
code is converted to ASCII by indexing into the table and taking the byte there.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Extended BIOS Functions

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 19 of 68

(17) _random
LONG _random();

Returns a 24-bit psuedo-random number in D0.L. Bits 24 .. 31 will be zero. The
sequence should be different each time the system is turned on. [The algorithm is
from vol. 2 of Knuth:

S = [S * C] + K

Where K = 1, C = 3141592621, and S is the seed. S >> 8 is returned. The initial
value of S is taken from the frame-counter _frclock].
The function's behavior is surprisingly good, except that bit 0 has an exact
distribution of 50%. Therefore it is probably not a good idea to test individual bits
and expect them to be well behaved.

(18) _protobt
VOID _protobt(LONG buf, LONG serialno,
 WORD disktype, WORD execflag);

Prototype an image of a boot sector. Once the boot sector image has been
constructed with this function, write it to the volume's boot sector.
buf points to a 512-byte buffer (which may contain garbage, or already contain a
boot sector image).
serialno is a serial number to stamp into the boot sector. If serialno is -1, the boot
sector's serial number is not changed. If serialno is greater than or equal to
$01000000, a random serial number is generated and placed in the boot sector.
disktype is either -1 (to leave the disk type information alone) or one of the
following:

0 40 tracks, single sided (180K)
1 40 tracks, double sided (360K)
2 80 tracks, single sided (360K)
3 80 tracks, double sided (720K)

If execflag is 1, the boot sector is made executable. If execflag is 0, the boot
sector is made non-executable. If execflag is -1, the boot sector remains
executable or non-executable depending on the way it was originally.

(19) _flopver
WORD_flopver(LONG buf, LONG filler, WORD devno, WORD sectno,
 WORD trackno, WORD sideno, WORD count);

Verify (by simply reading) one or more sectors from a floppy disk. buf must point to
a word-aligned 1024-byte buffer. filler is an unused longword. devno is the floppy
number (0 or 1). sectno is the sector number to start reading from (usually 1
through 9). trackno is the track number to seek to. sideno is the side number to
select. count is the number of sectors to verify (which must be less than or equal to
the number of sectors per track).
On return, D0 contains a status code. If D0 is zero, the operation succeeded. If D0
is non zero, the operation failed (and D0 contains an error number).

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Extended BIOS Functions

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 20 of 68

A null-terminated (0.W) list of bad sector numbers is returned in the buffer. They
are not necessarily in numerical order. (If there were no bad sectors, the first word
in the buffer will be zero.)

(20) scrdmp
VOID scrdmp();

Dump screen to printer.
[Currently this is the monochrome-only version from CES. Will be fixed soon.]

(21) cursconf
WORD cursconf(WORD function, WORD operand)

Configure the"glass terminal" cursor. The function code is one of the following:
0 Hide cursor
1 Show cursor
2 Cursor set to blink
3 Cursor set not to blink
4 Set cursor blink timer to operand
5 Return cursor blink timer value

The cursor blink rate is based on the video scan rate (60 Hz for color, 70 Hz for
monochrome, and 50 Hz for PAL). The rate parameter is equal to one-half the
cycle time.

(22) settime
VOID settime(LONG datetime);

Sets the intelligent keyboard's idea of the time and date. datetime is a 32-bit DOS-
format date and time (time in the low word, date in the high word).

(23) gettime
LONG gettime();

Interrogates the intelligent keyboard's idea of the time and date, and returns that
value (in DOS format) as a 32-bit word. (time in the low word, date in the high
word).

(24) bioskeys
VOID bioskeys();

Restores the power up settings of the keyboard translation tables.

(25) ikbdws
VOID ikbdws(WORD cnt, LONG ptr);

Writes a string to the intelligent keyboard. cnt is the number of characters to write,
minus one. ptr points to a vector of characters to write.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Extended BIOS Functions

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 21 of 68

(26) jdisint
VOID jdisint(WORD intno);

Disable interrupt number intno on the 68901.

(27) jenabint
VOID jenabint(WORD intno);

Enable interrupt number intno on the 68901.

(28) giaccess
BYTE giaccess(BYTE data, WORD regno);

Read or write a register on the sound chip. regno is the register number, logically
ORed with:

$00 to read [well, ok, you don't really OR with this...]
$80 to write

data is a byte to write to the register.
Sound chip registers are not shadowed. Procedures that change register values by
reading a register, modifying a local copy of it, and writing the result back to the
register, should be critical sections. In particular, the BIOS (frequently) updates the
PORT A register, and any code that read-modify-writes PORT A must be atomic.
[See GIACCESS at the end of this guide]

(29) offgibit
VOID offgibit(WORD bitno);

Atomically set a bit in the PORT A register to zero.

(30) ongibit
VOID ongibit(WORD bitno);

Atomically set a bit in the PORT A register to one.

(31) xbtimer
VOID xbtimer(WORD timer, WORD control, WORD data, LONG vec);

timer is the timer number (0, 1, 2, 3 corresponding to 68901 timers A, B, C and D).
control is the timer's control-register setting. data is a byte shoved into the timer's
data register. vec is a pointer to an interrupt handler. Timers are allocated:

Timer Usage
A Reserved for end-users and applications
B Reserved for graphics (hblank sync, etc.)
C System timer (200 Hz)
D RS-232 baud-rate control (this timer's

interrupt vector is available to anyone).

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Extended BIOS Functions

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 22 of 68

(32) dosound
VOID dosound(LONG ptr);

Set sound daemon's "program counter" to ptr. ptr points to a set of commands
organized as bytes.
Command numbers $00 through $0F take a one byte argument to be shoved into a
sound chip register. (Command $00 shoves the byte into register 0, command 1
shoves the byte into register 1, and you get the idea...)
Command $80 takes a one byte argument which is shoved into a temporary
register.
Command $81 takes three one-byte arguments. The first argument is a register
number to load, using the temp register. The second argument is a 2's complement
value to be added to the temp register. The third argument is the termination value.
The instruction is executed (once on each update) until the temp register equals the
termination value.
Commands $82 through $FF take a one-byte argument. If the argument is zero, the
sound is terminated. Otherwise the argument reflects the number of system-timer
ticks (at 50 Hz) until the next update.

(33) setprt
WORD setprt(WORD config);

Set/get printer configuration byte. If config is -1 ($FFFF) return the current printer
configuration byte. Otherwise set the byte and return it's old value. Bits currently
defined are:

Bit# When 0 When 1
0 Dot matrix Daisy wheel
1 Color device Monochrome device
2 Atari printer "Epson" printer
3 Draft mode Final mode
4 Parallel port RS232 port
5 Form-feed Single sheet
6 reserved
7 reserved
8 reserved
9 reserved
10 reserved
11 reserved
12 reserved
13 reserved
14 reserved
15 Must be zero

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Extended BIOS Functions

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 23 of 68

(34) kbdvbase
LONG kbdvbase();

Returns a pointer to the base of a structure:
struct kbdvecs {

LONG midivec; /* MIDI-input */
LONG vkbderr; /* keyboard error */
LONG vmiderr; /* MIDI error */
LONG statvec; /* ikbd status packet */
LONG mousevec; /* mouse packet */
LONG clockvec; /* clock packet */ L
ONG joyvec; /* joystick packet */
LONG midisys; /* system MIDI vector */
LONG ikbdsys; /* system IKBD vector */

};

midivec is initialized to point to a buffering routine in the BIOS. D0.B will contain a
character read from the MIDI port.
vkbderr and vmiderr are called whenever an overrun condition is detected on the
keyboard or MIDI 6850s. [Probably not a useful vector to grab.]
statvec, mousevec, clockvec, and joyvec point to ikbd status, mouse, real-time
clock, and joystick packet handlers. The packet handlers are passed a pointer to
the packet received in A0, and on the stack as a LONG. GEM/GSX uses the
mouse vector. Handlers should return with an RTS, and should not spend more
than 1 ms handling the interrupt.
The midisys and ikbdsys vectors are called when characters are available on the
appropriate 6850. Initially they point to default routines (the MIDI handler indirect
through midivec, and the ikbd handler parses-out ikbd packets and calls the
appropriate subsystem vectors).

(35) kbrate
WORD kbrate(WORD initial, WORD repeat);

Get/set the keyboard's repeat rate. initial governs the initial delay (before key-
repeat starts). repeat governs the rate at which key-repeats are generated. If a
parameter is -1 ($FFFF) it is not changed. Times are based on system ticks (50
Hz).
Returns the old key-repeat values, with initial in the high byte of the low word and
repeat in the low byte of the low word.

(36) _prtblk
VOID _prtblk();

Prtblk() primitive [see manual pages on PRTBLK].

(37) vsync
VOID vsync();

Waits until the next vertical-blank interrupt and returns. Useful for synchronizing
graphics operations with vblank.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Extended BIOS Functions

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 24 of 68

(38) supexec
VOID supexec(LONG codeptr);

codeptr points to a piece of code, ending in an RTS, that is executed in supervisor
mode. The code cannot perform BIOS or GEMDOS calls. This function is meant to
allow programs to hack hardware and protected locations without having to fiddle
with GEMDOS get/set supervisor mode call.

(39) puntaes
VOID puntaes();

Throws away the AES, freeing up any memory it used. If the AES is still resident, it
will be discarded and the system will reboot. If the AES is not resident (if it was
discarded earlier) the function will return.
There is no way to throw away the AES and return -- the reboot must be
performed. [Ok, ok -- we know this is a lose].

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) CONOUT Escape Sequences

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 25 of 68

CONOUT Escape Sequences
These are the escape functions interpreted by the BIOS bconout() function. For the
most part they emulate a VT-52 terminal [that's the easy one to do].There are
extensions to hack screen colors, control screen wrap, and a few other simple
functions.

ESC A
Cursor Up

This sequence moves the cursor up one line. If the cursor is already on the top line
of the screen, this sequence has no effect.

ESC B
Cursor Down

This moves the cursor down one line. If the cursor is already on the last line of the
screen, this escape sequence has no effect.

ESC C
Cursor Forward

This moves the cursor one position to the right. If this function would move the
cursor off the screen, this sequence has no effect.

ESC D
Cursor Backward

This move the cursor one position to the left.This is anon-destructive move
because the character over which the cursor now rests is not replaced by a blank. If
the cursor is already in column 0, this escape sequence has no effect.

ESC E
Clear Screen (and Home Cursor)

This moves the cursor to column 0, row 1 (the top left-hand corner of the screen),
and clears all characters from the screen.

ESC H
Home Cursor

This move the cursor to column 0, row 0.The screen is NOT cleared.

ESC I
Reverse Index

Moves the cursor to the same horizontal position on the preceding lines. If the
cursor is on the top line, a scroll down is performed.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) CONOUT Escape Sequences

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 26 of 68

ESC J
Erase to End of Page

Erases all the information from cursor (including cursor position) to the end of the
page.

ESC K
Clear to End of Line

This sequence clears the line from the current cursor position to the end of the line.

ESC L
Insert Line

Inserts a new blank line by moving the line that cursor is on, end all following lines,
down one line. Then, the cursor is moved to the beginning of the new blank line.

ESC M
Delete Line

Deletes the contents of the line that the cursor is on, places the cursor at the
beginning of the line, moves all the following lines up one line, and adds a blank
line at the bottom.

 ESC Y
Position Cursor

The two characters that follow the "Y" specify the row and column to which the
cursor is to be moved.The first character specifies the row, the second specifies the
column. Rows and columns number from 1 up.

ESC b
Set Foreground Color

The Foreground Color is the color in which the character is displayed. Escape-b
must be followed by a color selection character. Only the four least significant bits
of the color character are used:

7 6 5 4 3 2 1 0
X X X X Color Index

(X = "don't care")

ESC c
Set Background Color

This function selects Background Color, the color of the cell that contains the
characters. Escape-c must be followed by a color selection character. Only the four
least significant bits of the color character are used. (See diagram for ESC-b
function)

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) CONOUT Escape Sequences

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 27 of 68

ESC d
Erase Beginning of Display

This sequence erases from beginning of the display to the cursor position. The
cursor position is erased also.

ESC e
Enable Cursor

This sequence causes the cursor to be invisible. The cursor may still be moved
about on the display, using escape sequence defined in this appendix.

ESC f
Disable Cursor

This sequence causes the cursor to be invisible. The cursor may still be moved
about on the display, using escape sequences defined in this appendix.

ESC j
Save Cursor Position

This sequence preserves the current cursor position. You can restore the cursor to
the previously saved position with ESC-k.

ESC k
Restore Cursor Position

This sequence restores the cursor to a previously saved position. If you use this
sequence without having previously saved the cursor position, then the cursor is
moved to the home position, the top left-hand corner of the screen.

ESC l
Erase Entire Line

This sequence erases an entire line and moves the cursor to the leftmost column.

ESC o
Erase Beginning of Line

Erases from the beginning of the line to the cursor and includes the cursor position.

ESC p
Enter Reverse Video Mode

Enters the reverse video mode so that characters are displayed as background
color characters on a foreground colored cell.

ESC q
Exit Reverse Video Mode

Exits the reverse video mode.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) CONOUT Escape Sequences

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 28 of 68

ESC v
Wrap at End of Line

This sequence causes the first character past the last displayable position on a line
to be automatically placed in the first character position on the next line. The page
scrolls up if necessary.

ESC w
Discard at End of Line

Following invocation of this sequence, after the last displayable character on a line
has been reached, the characters overprint. Therefore, only the last character
received is displayed in the last column position

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Traps, Interrupts & Vectors

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 29 of 68

Traps, Interrupts and Interrupt Vectors
The ST makes use of four of the sixteen TRAP vectors provided by the 68000. All other
traps are available for applications.

Trap Use
0 (none)
1 GEMDOS interface
2 DOS extensions (GEM, GSX)
3 (none)
4 (none)
5 (none)
6 (none)
7 (none)
8 (none)
9 (none)
10 (none)
11 (none)
12 (none)
13 BIOS
14 Atari BIOS extensions
15 (none)

68901 interrupts are based at $100. The sixteen longwords at this location are bound by
the hardware to:

Vector Function
$100 (Disabled) Parallel port int.
$104 (Disabled) RS232 Carrier Detect
$108 (Disabled) RS232 Clear-To-Send
$10c (Disabled)
$110 (Disabled)
$114 200hz System clock
$118 Keyboard/MIDI [6850]
$11c (Disabled) Polled FDC/HDC
$120 HSync (initially disabled)
$124 RS232 transmit error
$128 RS232 transmit buffer emtpy
$12c RS232 receive error

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Traps, Interrupts & Vectors

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 30 of 68

$130 RS232 receive buffer full
$134 (Disabled)
$138 (Disabled) RS232 ring indicator
$13c (Disabled) Polled monitor type

The divide-by-zero vector is pointed at an RTE.
All other traps (Bus Error, et al) are pointed at a handler that dumps the processor
state and attempts to terminate the current process. [See: System Initialization]
The Line 1010 ("Line Aye") vector is used as a short-circuit around theVDI to the
ST's graphics primitives. It is a powerful and useful interface; see the 'Line A'
document for further information.
The Line 1111 ("Line Eff") trap is currently being used internally to the system. If
you fiddle with this vector the AES will break.
The FDC/HDC interrupt may be enabled by a hard disk device driver. The floppy
disk code, however, assumes this interrupt is disabled (it busy-waits on the input
bit's state). It is the responsibility of other drivers in the system to ensure that, when
the floppy disk read/write/format code gets control, the FDC/HDC interrupt is
disabled.
The processor's normal interrupt priority level is 3. This is to prevent HBLANK
(autovector level 2) interrupts from occurring on every scan line. [It would eat about
10% of a system running in a color graphics mode, or about 22% of a system
running in monochrome. Yuck]. The default HBLANK interrupt handler modifies the
interrupted process' IPL to 3 and performs an RTE. This is to discourage programs
from using IPL 0 -- to use HBLANK, use an IPL of 1.
To prevent "jittering" in programs that change screen colors on the fly, using the
HBLANK and HSYNC interrupt vectors, the following hack will keep the system
intact and still yield a solid display:

1. Re-vector the keyboard/MIDI interrupt to a routine that lowers the IPL to 5
and then jumps through the original vector.

2. During the "critical" section of the screen, re-vector the 200 Hz system clock
interrupt vector to point to a routine that increment a counter and RTEs. The
counter keeps track of the number of system ticks that occur during the
critical section.

3. After the critical section, block interrupts (at IPL 6) and call the system clock
handler (JMP through the interrupt vector, with a fake SR and return address
on the stack) the number of times indicated by the counter.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) BIOS from an Interrupt Handler

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 31 of 68

Calling the BIOS from an Interrupt Handler
It is possible to do a BIOS call from an interrupt handler. More specifically, it is possible for
exactly one interrupt handler to call the BIOS at a time. It is not possible to do GEMDOS,
VDI or AES traps from interrupt handlers.
The basic problem is a critical section in the BIOS trap handler code. The critical section
occurs when the registers are being saved or restored in the register save area; the
variable savptr must be maintained correctly.

*+
* Calling the BIOS from an interrupt, safely.
*
*-
* These are from the BIOS listing:
savptr = $4a2 ; BIOS register-save ptr
sav_amt = 23*2 ; #words BIOS saves on the stack

interrupt_handler:

* Create safe TRAP environment:

sub.l #sav_amt,savptr
.
.
. lotsa BIOS traps (#13, #14 only)
.

* Restore old trap environment:
add.l #sav_amt,savptr
.
.
.
rte ; (or whatever)

--- DANGER ---
Only ONE interrupt handler may do this. That is, two interrupt handlers cannot nest
and do BIOS calls in this manner.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) System Variables

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 32 of 68

System Variables
This is a list of variables in the ST BIOS that have been "cast in concrete". Their
locations and meanings in future revisions of the ST BIOS are guaranteed not to
change.
Any other variables in RAM, routines in the ROM, or vectors below $400 that are
not documented here are almost certain to change. It is important not to depend on
undocumented variables or ROM locations.

etv_timer (long) $400
Timer handoff vector (logical vector $100). See GEMDOS documentation.

etv_critic (long) $404
Critical error handoff vector (logical vector $101). See GEMDOS documentation.

etv_term (long) $408
Process-terminate hand off vector (logical vector $102).See GEMDOS
documentation.

etv_xtra (longs) $40c
Space for logical vectors $103 through $107).

memvalid (long) $420
Contains the magic number $752019F3, which (together with memval2) validates
memcntlr and indicates a successful cold start.

memcntlr (byte) $424
Contains memory controller configuration nibble (the low nibble). For the full story,
see the hardware manual. Some popular values are:

Memory size Value
128K 0
512K 4
256K (2 banks) 0
1MB (2 banks) 5

resvalid (long) $426
If resvalid is the magic number $31415926 on system RESET, the system will
jump though resvector.

resvector (long) $42a
System-RESET bailout vector, valid if resvalid is a magic number. Called early-on
in system initialization (before any hardware registers, including the memory
controller configuration register, have been touched). A return address will be

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) System Variables

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 33 of 68

loaded into A6. Both stack pointers will contain garbage. (See Rainbow TOS
Release Note)

phystop (long) $42e
Physical top of RAM. Contains a pointer to the first unusable byte (i.e. $80000 on a
512K machine).

_membot (long) $432
Bottom of available memory. The getmpb BIOS function uses this value as the
start of the GEMDOS TPA.

_memtop (long) $436
Top of available memory. The getmpb BIOS function uses this value as the end of
the GEMDOS TPA.

memval2 (long) $43a
Contains the magic number $237698AA which (together with memvalid) validates
memcntlr and indicates a successful cold start.

flock (word) $43e
Used to lock usage of the DMA chip. Should be non zero to ensure that the OS
does not touch the DMA chip registers during vertical blank. Device-driver writers
Take Note: this variable must be nonzero in order to make use of the DMA bus.

seekrate (word) $440
Default floppy seek rate. Read only at boot time: setting this variable has no effect
until you reboot. Bits zero and one contain the default floppy disk seek rate for both
drives:

00 6ms
01 12ms
10 2ms
11 3ms [default]

_timr_ms (word) $442
System timer calibration (in ms). Should be $14 (20 decimal), since the timer hand
off vector is called at 50 Hz. Returned by BIOS function tickcal, and passed on the
stack to the timer handoff vector.

_fverify (word) $444
Floppy verify flag. When nonzero, all writes to floppies are read-verified. When
zero, no write-verifies take place. The default state (after system-reset) is to verify.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) System Variables

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 34 of 68

_bootdev (word) $446
Contains the device number the system was booted from. The BIOS constructs an
environment string from this variable before bringing up the desktop.

palmode (word) $448
When nonzero, indicates the system is in PAL (50 Hz video) mode. When zero,
indicates the system is in NTSC (60 Hz video) mode.

defshiftmd (byte) $44a
Default video resolution. If the system is forced to change from monochrome mode
to a color resolution, defshiftmd contains the resolution the system will switch to.

sshiftmd (word) $44c
Contains shadow for shiftmd hardware register:

0 320x200x4 (low resolution)
1 640x200x2 (medium rez)
2 640x400x1 (high rez / "monochrome)

_v_bas_ad (long) $44e
Pointer to base of screen memory. Always on a 512-byte boundary on ST and
Mega a 2-byte boundary on STE and an 8-byte boundary on TT. Always points to
32K of contiguous memory.

vblsem (word) $452
Semaphore to enforce mutual exclusion in vertical-blank interrupt handler. Should
be '1' to enable vblank processing,

nvbls (word) $454
Number of longwords that _vblqueue points to. (On RESET, defaults to 8).

_vblqueue (long) $456
Pointer to a vector of pointers to vblank handlers.

colorptr (long) $45a
Pointer to a vector of 16 words to load into the hardware palette registers on the
next vblank. If NULL, the palettes are not loaded. colorptr is zeroed after the
palettes are loaded.

screenpt (long) $45e
Pointer to the base of screen memory, to be setup on the next vblank. If NULL, the
screen base is not changed.

_vbclock (long) $462
Count of vertical-blank interrupts.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) System Variables

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 35 of 68

_frclock (long) $466
Count of vertical-blank interrupts that were processed (not blocked by 'vblsem').

hdv_init (long) $46a
Vector to hard disk initialization. NULL if unused.

swv_vec (long) $46e
The system follows this vector when it detects a transition on the "monochrome
monitor detect" input (from low to high rez, or visa-versa). swv_vec initially points
to the system reset handler; therefore the system will reset if the user changes
monitors.

hdv_bpb (long) $472
Vector to routine to return a hard disk's Bios Parameter Block (BPB). Same calling
conventions as the BIOS function for GETBPB. NULL if unused.

hdv_rw (long) $476
Vector to routine to read or write on a hard disk. Same calling conventions as the
BIOS function for rwabs. NULL if unused.

hdv_boot (long) $47a
Vector to routine to boot from hard disk. NULL if unused.

hdv_mediach (long) $47e
Vector to routine to return a hard disk's media change mode. Same as BIOS
binding for floppies. NULL if unused.

_cmdload (word) $482
When nonzero an attempt is made to load and execute COMMAND.PRG from the
boot device. (Load a shell or an application in place of the desktop). Can be set to
nonzero by a boot sector.

conterm (byte) $484
Contains attribute bits for the console system:

Bit Function
0 nonzero: enable key-repeat
1 nonzero: enable key-click
2 nonzero: enable bell when ^G is written to CON:
3 nonzero: on BIOS conin() function, return the current value of

'kbshift' in bits 24..31 of D0.L.
zero: leave bits 24..31 alone...

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) System Variables

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 36 of 68

themd (long) $48e
Filled in by the BIOS on a getmpb call; indicates to GEMDOS the limits of the TPA.
This is used by GEMDOS and should not be used by any other programs.
The structure is:

struct MD {
MD *m_link; /* ->next MD [NULL] */
Long m_start; /* start of TPA */
Long m_length; /* size of TPA (bytes) */
PD *m_own; /* ->MD's owner [NULL] */

} ;

The structure may not be changed once GEMDOS has been initialized. In addition,
there may be only one of these suckers (you can't use the m_link field in the first
MD). Someday these (with a better GEMDOS) these limitations may be lifted.

savptr (long) $4a2
Pointer to register save area for BIOS functions.

_nflops (word) $4a6
Number of floppy disks actually attached to the system (0, 1, or 2).

sav_context (long) $4ae
Pointer to saved processor context (more on this later).

_bufl (long) $4b4
Two (GEMDOS) buffer-list headers. The first list buffers data sectors, the second
list buffers FAT and directory sectors. Each of these pointers points to a BCB
(Buffer Control Block), that looks like:

struct BCB {
BCB *b_link; /* next BCB */
int b_bufdrv; /* drive#, or -1 */
int b_buftyp; /* buffer type */
int b_bufrec; /* record# cached here */
int b_dirty; /* dirty flag */
DMD *b_dm; /* -> Drive Media Descriptor */
Char *b_bufr; /* -> buffer itself */

} ;

_hz_200 (long) $4bc
Raw 200 Hz system timer tick. Used to divide-by-four for a 50 Hz system timer.

the_env (byte[4]) $4be
The default enviroment string. Four bytes of $00....

_drvbits (long) $4c4
32-bit vector, returned by the drvmap BIOS function (#10), of "live" block devices .If
any floppies are attached, this value is at least 3.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) System Variables

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 37 of 68

_dskbufp (long) $4c6
Points to a 1024-byte disk buffer somewhere in the system's BSS. The buffer is
also used for some GSX graphics operations, and should not be used by interrupt
routines.

_prt_cnt (word) $4ee
Initialized to -1. Pressing the ALT-HELP key increments this. The screen dump
code checks for $0000 to start imaging the screen to the printer, and checks for
nonzero to abort the screen print.

_sysbase (long) $4f2
Points to the base of the OS (in ROM or RAM).

_shell_p (long) $4f6
Points to shell-specific context.

end_os (long) $4fa
Points just past the last byte of low RAM used by the operating system. This is
used as the start of the TPA (end_os is copied into _membot).

exec_os (long) $4fe
This point to the shell that gets exec'd by the BIOS after system initialization is
complete. Normally this points to the first byte of the AES' text segment.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) System Variables TOS ≥ 1.2

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 38 of 68

System Variables present as of Mega TOS (1.2)

scr_dump $502 (long)
Pointer to screen-dump code.

prv-lsto $506 (long)
Pointer to code for output device status for screen-dump when configured for
"printer" port.

prv-lst $50a (long)
Pointer to code for character output for screen-dump when configured for "printer"
port.

prv_auxo $50e (long)
Pointer to code for output device status for screen-dump when configured for
"serial" port.

prv-.aux $512 (long)
Pointer to code for character output for screen-dump when configured for "serial"
port.

pun_ptr $516 (long)
Pointer to a bard-disk driver data structure: see the hard-disk driver documentation
for details.

memval3 $51a (long)
Still another memory-validation marker used to check for cold boots.

Starting at $51e
There are four sets of 8 vectors for character device functions, as follows:

xconstat ds.l 8 : $51e console status vectors
xconin ds.l 8 : $53e Console input vectors
xcostat ds.l 8 : $55e Console output-status vectors
xconout ds.l 8 : $57e Console output vectors

These allow you to manipulate character based device functions at BIOS level by
replacing the built-in input/output and status routines with your own before
GEMDOS gets them.
GEMDOS gets all its character input by trapping into the BIOS to a RAM based
jump table.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) System Variables TOS ≥ 1.2

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 39 of 68

Each set of vectors consists of the addresses of the routines that handle the BIOS
character devices (in the following order :)

0 lst: (printer)
1 aux: (rs232)
2 con: (screen)
*3 midi
*4 keyboard (output only)
5 raw console output (bypass vt52

pressure cooker)
*Note: for xcostat device 3 is keyboard and 4 is midi.
No range checking is performed. If a bogus device number is passed to the BIOS'
character I/O handler, the system will crash or become funky dueux.

System Variables newer than Mega TOS (1.2) but useful retroactively

_longframe $59e (word)
When nonzero, indicates the presence of a CPU with long exception stack frames
(i.e. not a 68000). When zero, indicates a 68000. Initialized to zero in old TOSes
which are not 680x0-aware. We do *not* guarantee that newer TOSes will actually
be able to accomodate other CPUs.

_p_cookies $5a0 (long)
Pointer to the "cookie jar" or zero (when there is no cookie jar). Initialized to zero (at
cold boot only) by TOSes which do not install a cookie jar at boot time. See the
cookie jar documentation for more details

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Post-Mortem Information

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 40 of 68

Post Mortem Information
If a diagnostic cartridge is not inserted, all "unused" interrupt vectors are pointed to
a handler in the BIOS that saves the processor's state in low memory (see below)
and displays a number of icons in the middle of the screen. The handler attempts to
restart the system after the crash -- it is not always (honestly: it isn't very often)
successful.
The exact number of icons represents the exception that occurred (2 for bus error,
3 for address error, and so on -- see the `Exception Processing' section in the
Motorola 68000 manual).
The processor state is saved in an area of memory that is NOT touched by a
system reset. Therefore it is possible to examine a post-mortem dump after
resetting the system to reboot.

*+
* Post-mortem dump area;
* processor state saved here on uncaught exception:
*
*-
proc_lives equ $380 ; $12345678 if valid
proc_dregs equ $384 ; saved D0-D7
proc_aregs equ $3a4 ; saved A0-A6, supervisor A7 (SSP)
proc_enum equ $3c4 ; first byte is exception #
proc_usp equ $3c8 ; saved user A7
proc_stk equ $3cc ; sixteen words popped from SSP

If the longword at $380 is the magic number $12345678, then the following
information is valid (unless it's been stepped on by another crash).
D0-D7, A0-A6, and the supervisor A7 are copied to locations $384 to $3c0. The
exception number (2 for bus error, etc.) is recorded in the byte at $3c4. The user
A7 is copied to $3c8.The first sixteen words at the supervisor A7 are copied to the
sixteen words starting at $3cc.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Supervisor Mode in GEMDOS

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 41 of 68

Getting Into and Out Of Supervisor Mode in GEMDOS
DRI hasn't bothered to document this function yet, so....
Yes, there is a way to get into (or out of) supervisor mode in GEMDOS. While you read
the following description, please bear in mind that the original intent was to provide a
binding usable at the C level. It is clumsy to use from assembly language.
The function is Trap 1, number 32 (hex$20). It wears three hats:

LONG _super(LONG stack)

If stack is -1 ($FFFFFFFF), then the function returns (in D0.L) either a 0 (indicating that
the processor is in user mode) or a 1 (indicating that the processor is in supervisor mode).
If the function is called when the processor is in user mode, GEMDOS will return with the
processor in supervisor mode. The old value of the supervisor stack will be returned in
D0.L. If stack was NULL ($00000000), then the supervisor stack will be the same as the
user stack before the call. Otherwise the supervisor stack will be set to stack.
If the function is called when the processor is in supervisor mode, GEMDOS will return
with the processor in user mode. stack should be the value of the supervisor stack that
was returned by the first call to the function.
The old value of the supervisor stack MUST restored before the process terminates.
(Failure to do so may result in a crash).
An example of how to use it from C:

superstuff() {
long save_ssp;
long trap1();
/*
 * Get into supervisor mode:
 */
save_ssp = trap1(0x20, 0L);

... do lots of supervisor stuff

/*
 * Get out of supervisor mode,
 * restore old supervisor stack:
 */
trap1(0x20, save_ssp);

}

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Supervisor Mode in GEMDOS

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 42 of 68

And from assembly:
*+
* superstuff - play around in supervisor mode
*
*-
superstuff:

.

.

. do user stuff

.

.
clr.l -(sp) ; we want our own stack
move.w# #$20,-(sp) ; get/set supervisor mode
trap #1 ; (do it)
addq #6,sp ; (clean up)
move.l d0,save_ssp ; save old SSP
.
.
. do supervisor stuff
.
.
move.l save_ssp,-(sp) ; push old SSP
move.w #$20,-(sp) ; get/set supervisor mode
trap #1 ; (do it)
addq #6,sp ; (clean up)
.
.
. do user stuff
.
.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) GEMDOS Relocation Format

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 43 of 68

GEMDOS Relocation Format
(Clarification to GEMDOS manual)
This is the REAL GEMDOS fixup byte stream format, as implemented by the function
xpgmld() in GEMDOS (as opposed to what is documented in the GEMDOS manual):

$00 no more relocation information
$01 add $FE to the dot
$02..$FF add N to the dot, and fixup the longword there

So, to fixup a longword $100 bytes from the current one (the dot), RELMOD would
generate:

$01 $02
[note that only longwords can be fixed up, and that they must be on word boundaries.]

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Error Handling

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 44 of 68

Error Handling
Error numbers are returned by certain BIOS and most GEMDOSfunctions. Note that some
GEMDOS functions return WORD error numbers instead of LONG ones (that is, bits
16..31 of D0.L are garbage). Someday DRI will get around to fixing these [Describe
critical-error handler calling conventions, whenever DRI gets around to defining them so
they're useful.]

0 (OK)
Successful action (the anti-error).

-1 (ERROR)
All-purpose error.

-2 (DRIVE_NOT_READY)
Device was not ready, or was not attached, or has been busy for a long time.

-3 (UNKNOWN_CMD)
Device didn't know about a command.

-4 (CRC_ERROR)
Soft error while reading a sector.

-5 (BAD_REQUEST)
Device couldn't handle a command (the command might be valid in other contexts).
Command parameters may be bad.

-6 (SEEK_ERROR)
Drive couldn't seek.

-7 (UNKNOWN_MEDIA)
Attempt to read foriegn media (usually meansacor- rupted or zero boot sector).

-8 (SECTOR_NOT_FOUND)
Sector could not be located.

-9 (NO_PAPER)
Printer is out of paper (this cannot happen on disks, right?)

-10 (WRITE_FAULT)
Failure on a write operation.

-11 (READ_FAULT)
Failure on a read operation.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Error Handling

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 45 of 68

-12 (GENERAL_MISHAP)
Reserved for future catastrophes. [This seems to be a useless error right now.]

-13 (WRITE_PROTECT)
Attempt to write on write-protected or write-only media.

-14 (MEDIA_CHANGE)
Media changed since last write -- the operation (read orwrite) did NOT take
place.(This is more a message to the file system than a real error).

-15 (UNKNOWN_DEVICE)
Operation specified a device the BIOS doesn't know anything about.

-16 (BAD_SECTORS)
Format operation succeeded (for the most part) but yielded bad sectors.

-17 (INSERT_DISK)
Ask user to insert a disk (this is more a message to the shell –GEM or
COMMAND.PRG – to start a dialogue with the user).

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Cartridge Support

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 46 of 68

Cartridge Support
There are two kinds of cartridges. 'Application' cartridges are recognized by GEM
and the desktop. 'Diagnostic' cartridges are executed almost immediately after
system reset (before the 68000 touches any RAM), and may take over the entire
system.
The ST hardware maps cartridge space to a128K region starting at $FA0000,
extending to $FBFFFF. The longword at $FA0000 has special meaning to the OS.
It should be one of the following:

• $FA52255F indicates that a diagnostic cartridge is inserted.
• $ABCDEF42 indicates that an application cartridge is inserted.
• Anything else is ignored.

On system RESET, if a diagnostic cartridge is inserted the OS will (almost
immediately) jump to location $FA0004. A6 will contain a return address (should
the cartridge ever wish to continue with system initialization).The stack pointer will
be garbage. Most of the ST's hardware registers will not have been touched. The
most significant of these registers is the memory controller -- the diagnostic
cartridge is responsible for sizing memory and initializing the memory controller.
Application cartridges should provide 'application header' at location $FA0004
(immediately following the magic longword). An application header contains
information about an application in ROM. There may be any number of applications
in a cartridge.

CARTRIDGE APPLICATION
HEADER

CA_NEXT 0 ->next header

CA_INIT 4 ->init code

CA_RUN 8 ->run code

CA_TIME $c DOS time

CA_DATE $e DOS date

CA_SIZE $10 "size" of appl.

CA_NAME $14 ASCII name
(NNNNNNNN.EEE\0)

CA_NEXT is a pointer to the next application header. If CA_NEXT is $00000000,
then there are no more headers in the list.
CA_INIT is a pointer to the application's initialization code. If CA_INIT is NULL,
there is no initialization code. The initialization vector is called at system startup
time, as controlled by magic bits in the high byte of this longword (see below).
CA_RUN is a pointer to the application's main entry point.
CA_TIME and CA_DATE are DOS-format time and date stamps. [They are kind of
useful for keeping track of version numbers and things like that, but are otherwise
useless]

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Cartridge Support

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 47 of 68

CA_SIZE is a silly field that is the "size" of the application. [This field is pointless,
but DRI wanted it, sooo]
CA_NAME is the NULL-terminated name of the application.
It should be in the same format as a DOS acceptable filename, without a path (i.e.
up to eight leading characters, optionally followed by a dot and up to three
characters of extension, and a final NULL ($00).
The high 8 bits (24..31) of CA_INIT have special meaning:

0 Set to execute application (through CA_INITvector) before
interrupt vectors, display memory (etc.) have been initialized.

1 Set to execute application (through CA_INIT vector) just before
GEMDOS is initialized.

2 (unused)
3 Set to execute application (through CA_INIT vector)

immediately before a disk-boot. [***for now*** Applicable to
boot ROM only.]

4 (unused)
5 Set if the application is a desk accessory
6 Set if the application is NOT a GEM application. That is, it runs

under DOS and doesn't do any AES calls.
7 Set if non-GEM application (see bit 6) requires command line

parameters before execution.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Vertical Blank Interrupts

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 48 of 68

Vertical Blank Interrupts
This section describes the OS's Vertical Blank Interrupt (VBI) handler, entered
through the VBI vector at $70.
The VBI handler increments the "frame counter" _frclock and then checks for
mutual exclusion by testing vblsem. If vblsem is less than or equal to zero, no
other VBI code is executed. Otherwise, all registers are saved on the stack and the
"vblank counter" _vbclock is incremented.
If the system is currently in high-resolution mode (SHIFTMD >= 2) and a low-
resolution monitor is attached, the resolution is set to defshiftmd. (or zero, if
defshiftmd is >= 2). This test is necessary because some low-resolution monitors
may "burn up" when driven by the ST's high-resolution video signal.
The handler calls the cursor-blink routine. If colorptr is nonzero, then the 16 color
palettes are loaded from the16 words that colorptr points to. colorptr is then
zeroed.
If screenpt is non zero, then the screen's physical base address set to screenpt.
screenpt is then zeroed.
There may be any number of "deferred" VBI vectors. These are executed just
before the VBI handler returns. The variable nvbls contains the current number of
deferred vector slots. vblqueue points to an array of NVBL pointer slots that in turn
point to deferred VBI code or NULL (in the case of an empty slot):
 +----------+
 |vblqueue o|----+
 +----------+ |
 |
 +--------------------------+|
 |
 | ---------------'NVBL' entries---------------
 | / \
 | +-------+-------+-------+-------+-------+-------+
 +->| o | | | o | | |
 +---|---+-------+-------+---|---+-------+-------+
 | |
 +---> handler... +---> handler...

The OS initially allocates 8 VBI slots. The first slot is reserved for GEM's VBI code.
To add another deferred handler, place a pointer in a free (NULL) slot. If there are
no more free slots, then allocate a larger VBI array, copy the current vectors to the
new array (clearing any new, unused entries), and update vblqueue and nvbls.
Deferred VBI handlers should return with RTS, not

Applications are responsible for cleaning up vbl-vectors they have installed prior to
process termination.

 RTE. They may use any
registers except the user stack-pointer.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) ROM System Initialization

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 49 of 68

ROM System Initialization
1. Initial PC set from location $FC0000, initial SP(trash, really) set from location

$FC0004.
Catch system RESET. Raise processor IPL to 7, execute RESET instruction to reset
hardware registers.
If a diagnostic cartridge is inserted, load a return address into A6 and jump to the
cartridge.

2. If memory was setup (i.e. this is a warm start) the initialize the memory controller.
3. If the RESET-bailout vector is valid, load a return address into A6 and jump to the

reset handler.
4. Initialize the PSG (deselect floppies), setup the scan rate (50 or 60 hz), write default

values to the color palettes, and set the display pointer to 0x10000.

If memory was sized on a previous reset, go to step 8.

5. Size both banks of memory.
6. [This used to perform a memory test.]
7. Once memory has been sized and zeroed, record the fact by setting two magic

longwords in low memory.
8. Clear the low 64K of memory, from endosbss to 0xFFFF. Initialize all kinds of OS

variables. Setup interrupts vectors. Call the serial BIOS' initialization entry-point.
9. Execute %%2 cartridge applications.
10. Initialize the screen resolution.
11. Execute %%0 cartridge applications.
12. Enable interrupts (all but HBLANK) by bringing the IPL to 3.
13. Execute %%1 cartridge applications.
14. Call GEMDOS' initialization routine.
15. Attempt to boot from floppy disk, if the system variable bootdev is less than 2. If there

are no floppies, no attempt is made to boot from floppy.
Attempt to load a boot sector from the DMA bus. For each of the eight DMA bus
devices, a read operation is attempted on logical sector 0. If the read is successful,
and the sector checksums to $1234, then the sector is executed. [See the section
"DMA Bus Boot"]
ALL devices are checked. The boot sector code may return, in which case the BIOS
will attempt to load boot sectors from the rest of the devices.

16. Turn on the cursor. Do autoexec. Attempt to exec COMMAND.PRG.
17. Do autoexec. Kludge up an environment string. Exec the AES (in ROM).
If [16] or [17] ever complete, restart the system by going back to [1].

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) ROM System Initialization

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 50 of 68

The following diagram depicts the initialization sequence

Diagnostic Cartridge
Check

Memory Controller
(fast init)

RESET bailout vector

Init PSG
Init 50/60 Hz
Init palettes

Display at $10000

Has memory been sized?
(is this a warmstart?)

Size memory and
clear it

Indicate successful
warmstart

Clear bottom 64K
Init Variables
Init Interupts

Init serial BIOS

Execute %%2
Cartridge App.

Init screen resolution

Bring IPL to 3

Execute %%0
Cartridge App.

Execute %%1
Cartridge App.

System Reset

No

Yes

Initialize GEMDOS

Attempt to boot from
floppy Execute Boot sector

Poll devices on DMA
bus, requesting boot

sectors
Execute Boot sector

_cmdload==0?

Turn on cursor
Exec \Auto*.PRG

Exec Command.PRG

Exec \Auto*.PRG
Kludge up env. string

Exec AES in ROM

No

Yes

Reset System
Start over again

(1)

(2)

(3)

(4)

(5)

(7)

(8)

(9)

(10)

(11)

(12)

(14)

(13)

(15)

(15a)

(16) (17)

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) PUNTAES and the OS Header

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 51 of 68

PUNTAES and the OS Header
(Gory Details)
The OS variable _sysbase [$4F2] points to the base of the operating system. The
operating system may be in ROM or RAM (if _sysbase is greater than phystop then the
OS is in ROM)
The base of the OS is a structure that looks like:

BRA to reset handler 0.w

OS version number 2.w

 reset handler 4.L

 base of OS 8.L

 end of OS RAM usage $c.L

(unused, reserved) $10.L

 GEM memory usage parameter block $14.L

Date of system build ($YYYYMMDD) $18.L

OS configuration bits $1c.w

DOS formatted date the system was built $1e.L

 GEMDOS internal memory (1.2) $20.L

 Keyboard shift state bits (1.2) $24.L

 Currently executing GEMDOS process (1.2) $28.L

The GEM memory usage parameter block (hereinafter referred to as "the magic") informs
the OS about GEM's memory requirements. and GEM'S start address. The magic looks
like:

$87654321(our favorite magic#) $0.L

 end of system(OS+GEM) BSS $4.L

 start (execution) address of GEM $8.L

 $c

The OS header contains a pointer to the magic. The magic parameter block is validated if
the number $87654321 appears in its first longword. GEM is started up ONLY if there is a
valid magic. In addition, on a RAM-loaded system, if the magic is not valid then the
memory normally used by GEM is included in the initial TPA.
The extended BIOS call puntaes() (#39) checks to see if the magic is valid. If the magic is
NOT valid, it returns immediately. Otherwise it checks if the magic is located in ROM, and
if it is, puntaes() returns. Finally puntaes() invalidates the magic (by zeroing its first
longword) and jumps to the system reset handler.
Puntaes will either return (meaning that the AES was already punted, or more accurately,
that the magic was invalid) or clobber the magic and restart the operating system. The OS

•

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) PUNTAES and the OS Header

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 52 of 68

must be restarted because GEMDOS does not allow the TPA to be expanded after
GEMDOS has been initialized [fooey!].
The country-specific configuration word (" os_conf ") looks something like:

… 2 1 0

 Country # PAL/NTSC

The country-number assignments are:
0 USA
1 Germany
2 France
3 UK
4 Spain
6 Sweden
7 Switzerland (French)
8 Switzerland (German)
9 Turkey

Bit 0 of the word indicates NTSC when 0 and PAL when 1: the "syncmode" hardware
register is initialized accordingly during system startup. The country bits may be expanded
in the future.
The version number is $0000 for the boot ROM, and nonzero for ROM-based operating
systems. The format of the version word is $VVRR (VV = version#. RR = release#), and
the first OS ROMs will have the version $0100. Mega ROMS (blitter support) have the
version number $0102.
Several dates, in various formats, are in the header. The first is (more or less) human-
readable, in hexadecimal it is a longword that reads like $YYYYMMDD (YYYY = year,
MM = month, DD = day). The second date is a GEMDOS-format timestamp.
At an offset $20 from the address at _sysbase is a pointer, _root, which holds the base of
the OS pool, the internal memory used by GEMDOS. This pointer is used by
FOLDERXXX.PRG. You can still add to the pool the same way as before, but the OS will
take the memory you added and use it differently than before. Exists since Mega ROMS.
A pointer to the variable kbshift is at an offset of $24 from _sysbase. This is a word which
contains the keyboard shift state bits which is updated at interrupt level. Exists since Mega
ROMS.
The process ID (basepage address) of the process GEMDOS is currently executing is
held by the variable _run (long) and is at an offset of $28 from _sysbase. Exists since
Mega ROMS.
DISCLAIMER
Atari makes no promises that version numbers in future revisions of the operating system
will reflect reality, since the outside world's version of reality is different from Atari's. We
may release bug fixes without changing the OS version number, or (contrariwise) we may
change version numbers without changing the operating system.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Boot Sectors

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 53 of 68

Boot Sectors
The boot sector contains

• A volume serial number
• A BIOS parameter block
• Optional boot code and boot parameters

An executable boot sector must word-checksum to the magic number $1234.During
system initialization the boot sector from a disk drive is loaded into a buffer. If the
checksum is correct, the system JSRs the first byte of the buffer. [Since the location of the
buffer is indeterminate, any code contained in the boot sector must be position-
independent.] See the section on system initialization for further details on writing bootable
applications.
When a "Get BPB" call is made, the BIOS reads the boot sector and examines the
prototype BIOS parameter block (BPB). A BPB is constructed from the prototype. If the
prototype looks strange (for instance, if critical fields in it are zero) the BIOS returns NULL
(as an error indication).
A BPB is normally computed and written when the volume is formatted.
The 24-bit serial number is used to determine if the user has changed disks.(see the [still
non existant] section on "Disk Changes").The serial number is computed and written by
the FORMAT utility, and is (hopefully) unique.

BRA.S (wherever) $00 W branch to boot code
filler(OEM craft) $02 reserved for OEMs
SERIAL24-bit volume
serial number

$08 volume serial number
written by FORMAT

BPS $0b W #bytes/sector
SPC $0d B #sectors/cluster
RES $0e W #reserved sectors
NFATS $10 B #FATs
NDIRS $11 W #directory entries
NSECTS $13 W #sectors on media
MEDIA $15 B media descriptor
SPF $16 W #sectors/FAT
SPT $18 W #sectors/track
NSIDES $1a W #sides on media
NHID $1c W #hidden sectors
boot code (if any) $1e
Checksum $1fe W Checksum
 $200

The prototype BPB is software compatible with an MS-DOS version 2.x BPB. (This does
not mean the ST can read sectors written by, or write sectors readable by, a disk
controller other than the WDC 1770/1772).
The low byte of a 16-bit field in the BPB (such as 'BPS') occupies the lower address [as on
the 8086.]
BPS is the number of bytes per sector (for floppies on the ST, it will be 512).
SPC is the number of sectors per cluster (on floppies, usually 2 for a cluster size of 1K).

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Boot Sectors

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 54 of 68

RES is the number of reserved sectors at the beginning of the media, including the boot
sector. RES is usually 1 on floppies.
NFATS is the number of File Allocation Tables on the media.
NDIRS is the number of directory entries.
NSECTS is the total number of sectors on the media (including the reserved sectors).
MEDIA is a media descriptor byte. The ST BIOS does not use this byte, but other file-
systems might.
SPF is the number of sectors in each FAT.
SPT is the number of sectors per track.
NSIDES is the number of sides on the media. (Single- sided media can be read on
double-sided drives, but not vice-versa).
NHID is the number of "hidden" sectors. (The ST BIOS currently ignores this value for
floppies).
The last word in the boot sector (at offset $1FE) is reserved for "evening out" checksums.
In particular, the "_protobpb" extended BIOS function modifies this word.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Formatting a Floppy Disk

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 55 of 68

Formatting a Floppy Disk
1. Use the 'flopfmt()' (#10.) extended BIOS call to format all tracks on the floppy disk.

If tracks 0 or 1 have any bad sectors then the media is unusable. The ST standard
format is
 1 or 2 sides;
 80 tracks;
 9 sectors per track;
 no interleave (sequential sectors).
Zero the first two tracks (this will zero the FAT and directory sectors).

2. Use the 'protobt()' (#18.) extended BIOS call to create a boot sector. The 'disktype'
parameter should be 2 or 3 for 1 or 2 sided 80-track media respectively. The
'serialno' parameter should be a random number (or $1000000).
The 'execflag' parameter should be zero unless the prototyping buffer contains
code (such as a copy of the Loader) that you want executed when the disk is
booted.

3. Write the boot sector, (prototyped in the buffer in step [2]) to track 0, side 0, sector
1 of the new disk. Do NOT use the 'rwabs' call; use the extended BIOS function
'flopwr'.

It is possible to create disks in weird formats by varying the number of sectors per track,
formatting a few extra tracks, or specifying strange interleave factors.
The 1772 "write track" codes used to format a track are:

COUNT BYTE what
60 $4e start of track
For each sector
12 $00
3 $F5 Write $A1
1 $FE ID Address Mark
1 track # 0..$4F
1 side# 0..1
1 sector# 1..9
1 $02 512 bytes/sector
1 $f7 2 CRCs written
22 $4e
12 $00
3 $f5 Write $A1
1 $fb data address mark
512 xx virgin data
1 $f7 2 CRCs written
40 $4e
End of track:
1401 $4e filler at end of track

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) DMA Bus Boot Code

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 56 of 68

DMA Bus Boot Code
This code, extracted from the ST's BIOS, attempts to load boot sectors from devices on
the DMA bus. The code can be used:

• As an example of how to use the DMA bus(useful for boot-sector and device-driver
writers);

• To provide information about the timeout and command characteristics expected
from bootable DMA bus devices:

gpip equ $fffffa0l ; (B) 68901 input register
diskctl equ $ffff8604 ; (W) disk controller data access
fifo equ $ffff8606 ; (W) DMA mode control
dmahigh equ $ffff8609 ; (B) DMA base high
dmamid equ $ffff860b ; (B) DMA base medium
dmalow equ $f€ff860d ; (B) DMA base low

flock equ $43e ; (W) DMA chip lock variable
_dskbufp equ $4c6 ; (L) -> 1K disk buffer
hz 200 eau $4ba ; (L) 200hz counter

*+
* dmaboot - attempt to boot from a device on the DMA bus
* Passed: nothing *
* Returns: maybe-never (although it depends ...) *
* Uses: everything *
* Discussion:
* Attempts to read boot sectors from eight devices connected
* to the DMA bus. If a sector is 'read, and it is executable
* (word checksum is $1234), then it is executed.
*
* This code should take about 0.5 sec to execute if nothing
* is connected to the DMA bus. Of course, if something IS
* hooked up, it should provide us with a boot sector, right?
*-
dmaboot:

moveq #0,d7 ; start with dev *0
dmb_1:bsr dmaread ; attempt to read boot sector

bne dmb_2 ; (failed -- try next dev)
move.l _dskbufp,a0 ; a0 -> disk buffer
move.w #$00ff,d1 ; checksum $100 words
moveq #0,d0 ; checksum = 0

dmb_3:add.w (a0)+,d0 ; add (next) word
dbra dl,dmb_3
cmp.w #bootmagic,d0 ; is the sector executable?
bne dmb_2 ; (nope)
move.l _dskbufp,a0 ; a0 -> disk buffer
jsr (a0)

dmb_2:add.b #$20,d7 ; next devno
bne dmb_1 ; (do all eight devs)
rts

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) DMA Bus Boot Code

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 57 of 68

*+
* dmaread - attempt tc read boot sector from DMA bus device
* Passed: d7.b = ddd00000
* ('ddd' is the ACSI device number, 0..7)
* Returns: NE: read failed;
* EQ: successful read,
* sector data in (*_dskbufp)[];
* Preserves: d7.w
* Uses: everything else
*-
dmaread:

lea fifo,a6 ; a6 -> DMA control register
lea diskctl,a5 ; a5 -> DMA data register
st flock ; lock up DMA against vblank

move.l _dskbufp,-(sp) ; setup DMA pointer
move.b 3(sp),dmalow
move.b 2(sp).dmamid
move.b 1(sp),dmahigh
addq #4,sp

move.w #$098,(a6) ; toggle R/W, leave in Read state
move.w #$198.(a6)
move.w #$098,(a6)
move.w #1,(a5) ; write sector count register (= 1)

move.w #$088,(a6) ; select dma bus (not SCR)

move.b d7,d0 ; setup d0.L with devno+command
or.b #$08,d0 ; d0.b=devno<<5 OR "READ" command bit
swap d0
move.w #$088,d0
bsr wcbyte ;d0.L=xxxxxxxxDDD01000xxxxxxx010001010
bne dmr_q ; (punt on timeout)

moveq #3,d6 ; (count = 4)
move.l #$0000008a,d0 ; d0:L = generic command ($0000)

dmr_lp:
bsr wcbyte ; write bytes 2, 3, 4 and 5
bne dmr_q ; (punt on timeout)
dbra d6,dmr_lp ; (loop for more bytes)

move.l #$0000000a,(a5) ; write byte 6 {final byte)
move.w #400,dl ; timeout = 2.0 sec
bsr wwait ; wait for completion
bne dmr_q ; (punt on timeout)

move.w #$08a,(a6) ; select status reg
move.w (a5),d0 ; get return code from DMA device
and.w #$00ff,d0 ; strip crufty bits
beq dmr_r ; (return if OK)

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) DMA Bus Boot Code

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 58 of 68

*--- reset DMA, return NE
dmr_q:
 moveq #-1,d0 ; return -1 (error)
dmr_r:

move.w #$080,(a6) ; cleanup DMA chip for floppy driver
tst.b d0 ; (test for NE on return)
sf flock ; unlock DMA chip
rts ; return

*+
* wcbyte - write ACSI command byte, wait for IRQ
* Passed: DO.L = command.byte and FIFO control
* bits 16..23 = command byte,
* bits 0..7 = FIFO control bits
* a5 -> $ff8604
* Returns: NE on failure (timeout)
* EQ on successful ACK
* Uses: dl
*-
wcbyte:

move.l d0,(a5) ; write WDC, WDL [due to jwtl]
moveq #10,d1 ; wait 1/20th second

wwait:add.l _hz_200,d1 ; d1 = time to quit at...
ww_1: btst.b #5,gpip ; disk done?

beq ww_w ; (yes, return)
cmp.l _hz_200,d1 ; timeout?
bne ww_1 ; (not yet -- wait some more...)
moveq #-1,d1 ; ensure NE (timeout error) return

ww_w: rts
•

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) The Loader

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 59 of 68

The Loader
The Loader is a generic system-loader. It lives on boot sectors, and is brought into RAM
and executed during system initialization. The Loader has the capability to load an "image"
file or a set of contiguous sectors from disk.
The six reserved bytes starting at offset 2 in the boot sector must be:

'Loader'
for some tools to be able to manipulate Loader boot sectors.
An image file contains no header or relocation information. It is an exact image of the
program to be executed. The loader is capable of loading any file from disk, regardless of
where it appears in the directory or whether the file is contiguous or not.
Loader information immediately follows the BPB in the boot sector:

EXECFLG $1e _cmdload

LDMODE $20 load mode

SSECT $22 sector start

SECTCNT $24 #sectors

LDADDR $26 load-address

FATBUF $2a FAT address

FNAME $2e nnnnnnnneee

(reserved) $39

BOOTIT code $3a

EXECFLG is a word that is copied to _cmdload.
LDMODE governs the loading mode. If LDMODE is zero, a file is searched for and loaded.
If LDMODE is nonzero, then SECTCNT sectors, starting with logical sector number
SSECT, are loaded from the disk.
SSECT is the logical sector number to start loading from (valid if LDMODE is nonzero).
SECTCNT is the number of sectors to load (valid if LDMODE is nonzero).
LDADDR is the load-address of the file (or the sectors).
FATBUF points to a place to put the FAT and directory sectors.
FNAME is a filename to load (valid iff LDMODE is zero). It consists of eight character
name and a three character extension.
[See also: documentation on the BOOTGEN utility.]

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Boot Sequence

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 60 of 68

Boot Sequence
1. The boot sector is loaded. The Loader takes control of the system.
2. The boot device's directory and 2nd FAT buffer are read into memory, starting at

_membot. The Loader searches for a file (usually) called TOS.IMG. If it is not
found, it returns with an error code in D0.

3. TOS.IMG is read into memory, starting at $40000.
4. Control is passed to the first byte of TOS.IMG.

TOS.IMG consists of three parts:
1. A relocator (RELOCRL) that moves TOS.IMG to where it expects to be executed in

memory. RELOCRL takes control of the system, fades the screen, performs a fast
block-copy, and passes control to the first byte in the operating system.

2. An image of the operating system ('prox 90K).
3. An image of the desktop and GEM ('prox 110K).

System initialization proceeds as normal (except for clearing memory) once the OS has
control.

•

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Boot ROM

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 61 of 68

Boot ROM
The ST boot ROM (AKA "Das Boot") contains a subset of the BIOS. The only functions
available relate to reading floppy disks.
System initialization is identical to the normal OS procedure. However, the locations and
interpretations of the system variables may have changed. See the end of this section for
a list of "safe" system variables.
The normal course of events is:

The boot ROM catches RESET and initializes the system. It puts up some pretty
graphics. Kids'll love it.
An attempt is made to boot from both floppies. '_bootdev' will contain the device
number on a successful boot sector load. [Someday there may be a version of the
boot ROM that understands about hard disks.]
The boot sector is executed. [See-also: Loader]

Das Boot's version number (the second word in the ROM, at $F00002) is $0000.
BIOS functions on trap 13:

func Name [see: GEMDOS spec]
0 [unused]
1 [unused]
2 [unused]
3 [unused]
4 rwabs (read only)
5 [unused]
6 [unused]
7 getbpb

Extended functions on trap 14:
func Name [see: Extended BIOS Functions]
0 [unused]
1 ssbrk
2 [unused]
3 [unused]
4 [unused]
5 [unused]
6 [unused]
7 [unused]
8 _floprd (read sectors)

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) Boot ROM

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 62 of 68

DAS BOOT uses memory from $10000 to $20000 for screen buffers. Avoid loading stuff
into this region (until you take over the system) when writing directly-bootable applications.
Between the time when DAS BOOT was released and the time the first RAM-loaded
systems were shipped (will be shipped?) the variables in low memory were added to and
relocated.
<<<give list of "safe" variables here>>>

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) GEMDOS CALL

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 63 of 68

GEMDOS CALL
(QUICKER) REFERENCE GUIDE
Functions are available through trap #1. The first number is the trap number (first word on
the stack when the trap is made). The function's name (as given in OSBIND.H) is next,
along with the named arguments. The number in brackets is the number of bytes that
must be cleaned up off the stack after the call is made (for those of us doing traps from
assembly). The argument declarations (if any) follow the first line. Then a short description
of the function is given.
In general, GEMDOS calls return LONGs in D0. However, there are exceptions. When
testing for error returns, it is best to examine D0.W only. In addition, GEMDOS may
occasionally return BIOS error numbers (that is, between -1 and -31).

$00 PtermO() [2]
Terminate process (with return code of $0).

$01 Cconin() [2]
Return cooked character from stdin.

$02 Cconout(char chr) [4]
Write character to stdout.

$03 Cauxin () [2]
Return character from AUX:

$04 Cauxout(char chr) [4]
Write character to AUX:

$05 Cprnout(char chr) [4]
Write character to PRN:

$06 Crawio(WORD wrd) [4]
If (wrd == OxOOff) return char from stdin
If (wrd != OxOOff) print it on stdout;

$07 Crawcin() [2]
Return raw character from stdin (without echo).

$08 Cnecin () [2]
Read char from stdin without echo. Control characters CS, "Q, "C) are interpreted
and have effect.

$09 Cconws(char *str) [6]
Write null-terminated string to stdout,

•

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) GEMDOS CALL

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 64 of 68

$0a Cconrs(char *buf) [6]
Read edited string from stdin. On entry, buf[0] contains size of data part of buf[]. On
exit, buf[1] contains number of characters in data part of buf[]. The data part of buf[]
starts at buf[2]

$0b Cconis() [2]
Return -1 [nonzero] if character is available on stdin, 0 otherwise.

$0e Dsetdrv(WORD drv) [4]
Select current drive (O=A:, 1=B:, etc.). Returns a bitmap of drives in the system
(bit 0 = A,....)

$10 Cconos() [2]
Returns -1 [nonzero] if console is ready to receive a character, 0 if it is
"unavailable."

$11 Cprnos() [2]
Returns -1 [nonzero] if PRN: is ready to receive a character, 0 if it is "unavailable."

$12 Cauxis() [2]
Returns -1 [nonzero] if char is available on AUX:, 0 otherwise.

$13 Cauxos() [2]
Returns -1 [nonzero] if AUX: is ready to receive a character, 0 if it is "unavailable."

$19 Dgetdrv() [2]
Returns number of current drive (0=A:, etc.)

$1a Fsetdta(LONG ptr) [6]
Set disk transfer address (used by Fsfirst()).

$20 Super(LONG stack) [6]
Hack processor privilege mode. If stack is 1L, return 0 or -1 (processor is in user
or supervisor mode). If in user mode, switch to supervisor mode and use stack as
the supervisor stack (or the value from USP if stack is NULL). If in supervisor
mode, switch to user mode and use stack as the supervisor stack. Return the old
supervisor stack value.

•

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) GEMDOS CALL

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 65 of 68

$2a Tgetdate() [2]
Returns date:

bits
0..4 day 1..31
5..8 month 1..12
9..15 year 0..119 since 1980

$2b Tsetdate(WORD date) [4]
Set date in the format described above.

$2c Tgettime() [2]
Return time in the format:

bits
0..4 second 0..59 (2-second resolution)

5..10 minute 0...59
11..15 hour 0..23

$2d Tsettime(WORD time) [4]
Set time in the format described above.

$2f Fgetdta() [2]
Return current DTA.

$30 Sversion() [2]
Return current version number.

$31 Ptermres(LONG keep, WORD ret) [8]
Terminate and stay resident. keep has number of bytes to keep in the process
descriptor. ret is the process' return code.

$36 Dfree(LONG buf, WORD drv) []
Return information about allocation on drive drv (0 = current, 1=A:, 2=B:, etc.). buf
points to a structure where stuff will be returned:

LONG b_free; #free clusters on drive
LONG b_total; total #clusters on drive
LONG b_secsiz; #bytes in a sector
LONG b_clsiz; #sectors in a cluster

$39 Dcreate(char *path) [6]
Create a directory.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) GEMDOS CALL

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 66 of 68

$3a Ddelete(char *path) [6]
Delete a directory.

$3b Dsetpath(char *path) [6]
Set current directory.

$3c Fcreate(char *name, WORD attr) [8]
Create a file with the given pathname. Returns a handle or a (negative) error#. Bits
in the attribute word are:

• $01 set to readOnly
• $02 hidden from directory search
• $04 system file, hidden from dir search
• $08 volume label (first 11 bytes of name)

$3d Fopen(char *name, WORD mode) [8]
Open a Open a file. Mode is 0, 1 or 2 for read, write, and read/write. Returns a
handle or a (negative) error#.

$3e Fclose(WORD handle) [4]
Close the handle.

$3f Fread(WORD handle, LONG count, char *buf) [12]
Read bytes from a file. Return count read or a negative error#.

$40 Fwrite(WORD handle, LONG count, char *buf) [12]
Write bytes to a file. Return count written, or a negative error#.

$41 Fdelete(char *name) [6]
Delete the file.

$42 Fseek(LONG offset, WORD handle, WORD mode) [10]
Seek within the file (handle). offset is the (signed) number of bytes to seek by.
Mode is one of:

• 0 from beginning of file
• 1 from current position
• 2 from end of file

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) GEMDOS CALL

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 67 of 68

$43 Fattrib(path, mode, mode) [10]
Get file attributes if mode is 0, set them if mode is 1. Bits are:

• $01 readOnly
• $02 hidden
• $04 system (hidden hidden)
• $08 volume label
• $10 subdirectory
• S20 written to and closed

$45 Fdup(WORD stdhandle) [4]
Returns non-standard handle that refers to the same file.

$46 Fforce(WORD stdhandle, WORD nonstdhandle) [6]
Force standard handle to point to same file or dev as the nonstandard handle.

$47 Dgetpath(char *pathbuf, WORD drv) [8]
Return current directory for drive drv (0=default, 1=A:, etc.) in the buffer. Buffer
must be at least 64 bytes long.

$48 Malloc(LONG amount) [6]
amount contains # bytes to allocate (or -1, which returns maximum available
memory). Return pointer to block (on word boundary) of 'amount' bytes, or zero on
allocation failure.

$49 Mfree(addr) [6]
char *addr;
Free a block of memory. Nonzero return on failure.

$4a Mshrink(WORD zero, LONG mem, LONG size) [12]
zero must be a word containing 0. mem contains beginning of memory block. size
is the the amount of memory to RETAIN in the block. Nonzero return on failure.

$4b Pexec(WORD mode, char *path, char *cmdline, char *env) [16]
mode is one of:

• 0 load and go
• 3 just load
• 4 just go
• 5 create basepage

cmdline is the command tail, which is copied into the basepage. env is the
environment string; if NULL, the parent process' environment string is inherited.
For mode 0, the return code is the child's return code, or a negative (OS) error. If
the load or create-basepage fails, a negative error number is returned.

Hitchhiker’s Guide to the Bios (Rev 1.1 Mars 5, 1990) GEMDOS CALL

© 1985-1990 Atari Corp (Edited by jlg V1.1) - All Rights Reserved Page 68 of 68

$4c Pterm(WORD code) [4]
Terminate current process, returning 'code' to the parent.

$4e Fsfirst(char *spec, WORD attr) [8]
attr is a set of attributes to match (see function #43 for details). spec may contain
wildcard characters in the filename, but not in the pathname. Returns 0 if a file is
found, EFILNF if no file was found. Dumps stuff into the DTA:

bytes
0..20 junk
21 file attributes
22-23 file time stamp
24-25 file date stamp
26-29 file size (longword)
30-43 name+extension of found file

$4f Fsnext() [2]
Continue with with Fsfirst ().

$56 Frename(WORD zero, char *old, char *new) [12]
Change the name of a file from old to new
zero is reserved, and must be 0.

$57 Fdatime(WORD handle, char *buf, WORD set) [10]
buf points to buffer containing file date and time information. handle is a handle to
the file. If set is zero, get the time and date. If set is 1, set the file time and date.

	Table of Content
	Introduction
	GEMDOS BIOS Calls
	getmpb
	bconstat
	bconin
	bconout
	rwabs
	setexc
	tickcal
	*getbpb
	bcostat
	mediach
	drvmap
	kbshift

	Extended BIOS Functions
	initmous
	ssbrk
	_physBase
	_logBase
	_getRez
	_setScreen
	_setPallete
	_setColor
	_floprd
	_flopwr
	_flopfmt
	used-by-BIOS
	midiws
	_mfpint
	iorec
	rsconf
	keytbl
	_random
	_protobt
	_flopver
	scrdmp
	cursconf
	settime
	gettime
	bioskeys
	ikbdws
	jdisint
	jenabint
	giaccess
	offgibit
	ongibit
	xbtimer
	dosound
	setprt
	kbdvbase
	kbrate
	_prtblk
	vsync
	supexec
	puntaes

	CONOUT Escape Sequences
	ESC A
	ESC B
	ESC C
	ESC D
	ESC E
	ESC H
	ESC I
	ESC J
	ESC K
	ESC L
	ESC M
	ESC Y
	ESC b
	ESC c
	ESC d
	ESC e
	ESC f
	ESC j
	ESC k
	ESC l
	ESC o
	ESC p
	ESC q
	ESC v
	ESC w

	Traps, Interrupts and Interrupt Vectors
	Calling the BIOS from an Interrupt Handler
	System Variables
	etv_timer (long) $400
	etv_critic (long) $404
	etv_term (long) $408
	etv_xtra (longs) $40c
	memvalid (long) $420
	memcntlr (byte) $424
	resvalid (long) $426
	resvector (long) $42a
	phystop (long) $42e
	_membot (long) $432
	_memtop (long) $436
	memval2 (long) $43a
	flock (word) $43e
	seekrate (word) $440
	_timr_ms (word) $442
	_fverify (word) $444
	_bootdev (word) $446
	palmode (word) $448
	defshiftmd (byte) $44a
	sshiftmd (word) $44c
	_v_bas_ad (long) $44e
	vblsem (word) $452
	nvbls (word) $454
	_vblqueue (long) $456
	colorptr (long) $45a
	screenpt (long) $45e
	_vbclock (long) $462
	_frclock (long) $466
	hdv_init (long) $46a
	swv_vec (long) $46e
	hdv_bpb (long) $472
	hdv_rw (long) $476
	hdv_boot (long) $47a
	hdv_mediach (long) $47e
	_cmdload (word) $482
	conterm (byte) $484
	themd (long) $48e
	savptr (long) $4a2
	_nflops (word) $4a6
	sav_context (long) $4ae
	_bufl (long) $4b4
	_hz_200 (long) $4bc
	the_env (byte[4]) $4be
	_drvbits (long) $4c4
	_dskbufp (long) $4c6
	_prt_cnt (word) $4ee
	_sysbase (long) $4f2
	_shell_p (long) $4f6
	end_os (long) $4fa
	exec_os (long) $4fe

	System Variables present as of Mega TOS (1.2)
	scr_dump $502 (long)
	prv-lsto $506 (long)
	prv-lst $50a (long)
	prv_auxo $50e (long)
	prv-.aux $512 (long)
	pun_ptr $516 (long)
	memval3 $51a (long)
	Starting at $51e
	_longframe $59e (word)
	_p_cookies $5a0 (long)

	Post Mortem Information
	Getting Into and Out Of Supervisor Mode in GEMDOS
	GEMDOS Relocation Format
	Error Handling
	0 (OK)
	-1 (ERROR)
	-2 (DRIVE_NOT_READY)
	-3 (UNKNOWN_CMD)
	-4 (CRC_ERROR)
	-5 (BAD_REQUEST)
	-6 (SEEK_ERROR)
	-7 (UNKNOWN_MEDIA)
	-8 (SECTOR_NOT_FOUND)
	-9 (NO_PAPER)
	-10 (WRITE_FAULT)
	-11 (READ_FAULT)
	-12 (GENERAL_MISHAP)
	-13 (WRITE_PROTECT)
	-14 (MEDIA_CHANGE)
	-15 (UNKNOWN_DEVICE)
	-16 (BAD_SECTORS)
	-17 (INSERT_DISK)

	Cartridge Support
	Vertical Blank Interrupts
	ROM System Initialization
	PUNTAES and the OS Header
	Boot Sectors
	Formatting a Floppy Disk
	DMA Bus Boot Code
	The Loader
	Boot Sequence
	Boot ROM
	GEMDOS CALL
	$00 PtermO() [2]
	$01 Cconin() [2]
	$02 Cconout(char chr) [4]
	$03 Cauxin () [2]
	$04 Cauxout(char chr) [4]
	$05 Cprnout(char chr) [4]
	$06 Crawio(WORD wrd) [4]
	$07 Crawcin() [2]
	$08 Cnecin () [2]
	$09 Cconws(char *str) [6]
	$0a Cconrs(char *buf) [6]
	$0b Cconis() [2]
	$0e Dsetdrv(WORD drv) [4]
	$10 Cconos() [2]
	$11 Cprnos() [2]
	$12 Cauxis() [2]
	$13 Cauxos() [2]
	$19 Dgetdrv() [2]
	$1a Fsetdta(LONG ptr) [6]
	$20 Super(LONG stack) [6]
	$2a Tgetdate() [2]
	$2b Tsetdate(WORD date) [4]
	$2c Tgettime() [2]
	$2d Tsettime(WORD time) [4]
	$2f Fgetdta() [2]
	$30 Sversion() [2]
	$31 Ptermres(LONG keep, WORD ret) [8]
	$36 Dfree(LONG buf, WORD drv) []
	$39 Dcreate(char *path) [6]
	$3a Ddelete(char *path) [6]
	$3b Dsetpath(char *path) [6]
	$3c Fcreate(char *name, WORD attr) [8]
	$3d Fopen(char *name, WORD mode) [8]
	$3e Fclose(WORD handle) [4]
	$3f Fread(WORD handle, LONG count, char *buf) [12]
	$40 Fwrite(WORD handle, LONG count, char *buf) [12]
	$41 Fdelete(char *name) [6]
	$42 Fseek(LONG offset, WORD handle, WORD mode) [10]
	$43 Fattrib(path, mode, mode) [10]
	$45 Fdup(WORD stdhandle) [4]
	$46 Fforce(WORD stdhandle, WORD nonstdhandle) [6]
	$47 Dgetpath(char *pathbuf, WORD drv) [8]
	$48 Malloc(LONG amount) [6]
	$49 Mfree(addr) [6]
	$4a Mshrink(WORD zero, LONG mem, LONG size) [12]
	$4b Pexec(WORD mode, char *path, char *cmdline, char *env) [16]
	$4c Pterm(WORD code) [4]
	$4e Fsfirst(char *spec, WORD attr) [8]
	$4f Fsnext() [2]
	$56 Frename(WORD zero, char *old, char *new) [12]
	$57 Fdatime(WORD handle, char *buf, WORD set) [10]

