

Introducing
ATARI ST
machine code

Roger Pearson
Sean Hodgson

© zzSoft 1990

All rights reserved

First Edition: December 1990
Revised: September 1991

Published by:

zzSoft

25 Honeyhole
Blackburn
Lancashire
England

BB2 3BQ

This book is copyright. No part of this book may be
reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise
without the written permission of zzSoft.

ATARI, 520ST, 1040ST, ST, STE, TOS are
trademakes or registered trademearks of Atari Corp

GEM is a trademark of Digital research Inc

All other trademarks acknowledged

ISBN 1873423 012

Table of

Contents

INTRODUCTION

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9
CHAPTER 10
CHAPTER 11
CHAPTER 12
CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 16
CHAPTER 17

Starting out.

Data types.
Looking at the Debugger.

The DS directive and JSR instruction.

Addressing modes.

Files and mapping the screen.

Restoring the palette. Creating files.

Converting mono pics into low res.

Formatting a disk.

Introducing GEM and the AES.
Introducing the VDL

GEM objects.

Using MKRSC.PRG
Drop—down menus.

Editing text.

GEM File Selector & bit images
GEM windows.

53
67
79
93
103
111
119
135
166
179
213
245

iv Table of Contents

CHAPTER 18 Interfacing with GFA BASIC. 269
CHAPTER 19 The VDL 286
CHAPTER 20 GDOS and the ASSIGN.SYS. 309
CHAPTER 21 Desk accessories. 327
CHAPTER 22 Miscellaneous. 339
CHAPTER 23 Using the zzSoft text editor. 357
CHAPTER 24 Using the assembler and debugger. 371
APPENDIX:

g Keycodes 389
Bibliography 393
GLOSSARY 395

INDEX 401

Introduction

This book aims to teach the practical fundamentals of using MC 68000
assembly lan on the ATARI ST range of personal computers. No
knowledge of assembly language is assumed, through is is expected that
the reader has the use of an ATARI ST and has the ability to copy,
move and delete files, format disks, etc from the GEM desktop, and use
the GEM interface. It is not practical to study a programming language
without first acquiring these Easic skills. Much theory has been omitted
— as this is a practical book, and many aspects of assembly language
programming have had to be left out lest the book became too long and
unmanageable.

This book was initially called ’A Practical Introduction to ATARI ST
Assembly Language’ and in most respects it still fits that title. Game
p mers will not find the secrets to the next mega zapping game,
as tﬁe book is squarely aimed at the ST application programmer. This is
not to say that the games programmer wﬁl not learn anything but the
book is not specific to his/her subject. By application programming is
meant those utilities and programs that are of a more serious nature eg
GEM applications. However, as the book is an introduction there is no
lengthy source code listing of a large application. Rather the book
getails some k?f the tlncthcl)lds and means of achieving s]l;ch a tasg but
oes not tackle any lengthy programming project it self. By studyin;
the book and using the sitsk t.Ee ﬁr shog d at the end of tge book, 1gf
he or she has studied diligently and most importantly patiently, be able
to mm in assembly language with some degree of proficiency.
N y not every aspect of the programmers art could be covered and
very much more study and practise will be needed by the student to be
able to write full scale and complex code. It is sincerely hoped by the
author that this book will be useful in taking the reader on this path.
Others who read this book as part of a hobby will find much of interest
and it is hoped that they too will gain benefit from this book.

As many readers may have the excellent and increasingly popular GFA
BASIC a chapter has been devoted to using assembly language from it.

vi Introduction

Programming style

The author’s own style of programming may be quite different from
yours or indeed anyone else’s. It should be noted that reading (and
trying to understand) another programmers source code is not always
easy or desirable as someone else’s code may complicate what you
rceive as a simple problem. On the other Kand what programmer
asn’t learnt much from the work and source code of others?
Programming is as much creative work as it is an exact and demanding
science and as such a word processor written by one person would
undoubtedly be very much different in programming style and the
resultant operation of the program. Also it is only fair to warn the
novice that the road to proficient and bug free (is it possible!)
programming is fraught with many days and (mostly) nights of
frustration and the general pulling—out of hair (one’s own mostly!).

The disk

This book comes with a double—sided 3.5” floppy disk which has a
symbolic assembler/linker, symbolic disassemgfg; or debugger, a
resource construction program and other programming utilities on it.
Each programming example given in this book is also on the disk as an
executable file (a file with the extension .PRG) and as source code (a file
with the extension .S) and resource file (RSC), if any. If you have a
single—sided disk drive the disk should be returned directly to zzSoft for
an immediate replacement. Please include two first class stamps, and
your name and address.

The disk and all programming examples can be run on any ATARI ST:
STE, STFM; 520, 1040, and megas. Every programming example can be
assembled and run without having to first go out and buy an assembler.
The assembler and debugger can jso be used to develop and debug your
own (Ds to?. HowevePr ask ma)ny people use l(as I do), HiSofLse’
DEVPAC (DEVelopment PAC every example program can
easily adapted to be gsed by this so’ﬁ:va.re. R/ food

Even at this stage the beginner may well feel lost with mention of such
technical words as "debugger’, *source code’. Don’t worry each chapter
will carefully explain the practical use of these words in real-life
programming examples. But also see the glossary for a short explanation
of these programming terms.

Introduction vii

If you are not familiar with using a text editor please read the chapter
"Using the Text Editor’ as all programming should be carried out from
the text editor.

Backup the disk!

You should make a backup copy of the supplied disk before you do
anything else. If you inadvertently manage to damage the disk, or if the
disk was in some way damaged when you received it, or you deleted
some files by mistake you should return the original disk to zzSoft for
:?dlamcsesment. Please enclose two first class stamps and your name and

What’s on the disk ?

zzSoft's text editor: The text editor, EDITOR.PRG, is speciall
designed to enable the reader to get into assembler programming witﬁ
the minimum of fuss. You can ’assemble’ and ’debug’ all the example
programs given in the book directly from the text editor. For speed of

execution and ease of use the assembler and debugger should be run
from a RAM disk.

Note that it is not absolutely necessary that the assembler and debugger
be run from a RAM disk, but it does speed up the process of
assembling. If you want to run the assembll:r= and debugger from a
floppy disk then you should remove the RAM disk program from the
AUTO folder.

The main items on the disk are:

Editor EDITOR.PRG
Assembler and linker: ASSEMBLR.TTP, LINK.TTP
Debugger DEBUGITP

Resource construction kit MKRSC.PRG

viii Introduction(
GEMDOS, BIOS, XBIOS, AES and VDI libraries

Example source code, executable files, etc

To use the disk

Remove all files except assembler, linker, debugger, and source code
from back-up disk. You should then double—click on EDITOR PRG.
Please see READ__ME.1ST file on the disk for more details on how to
use the disk in the most appropriate manner for your computer set—up.

READ_ME.I1ST

This ASCII text file is on the supplied disk and can be loaded into the
supplied text editor and viewed tﬁere. Alternatively, it may be better to
print it out as it contains the very latest information about the book
and disk that could not appear in the book. It is possible to print it out
from the text editor. It is important that you read this file carefully.

Copyright and help notice

Please remember that although the book gives m: examples of
assembly language source code which are also duplicated on the
supplied disk once you alter the source code and possibly run into
di&chl zzSoft cannot help. Help is limited to the source code as given
on the disk. When you write your own assembly language programs or
alter any of the source code on the disk YOU ARE ON YOUR OWN!
zzSoft, its agents, its distributors or its retailers cannot help, nor give
advice as to how to write your own programs.

Help and advice from zzSoft is strictly limited to the book and source
code and its operation within zzSoft’s text editor.

The source code on the disk and in the book is copyright (c) zzSoft
1990, and may not be reproduced in any form whatsoever except for
review purposes. Owners of the disk and book are given permission to
include any of the source code in their own programs, but any source
code from the book or disk included in their own work is still
copyright of zzSoft and may not be published without permission.

Introduction ix
However, any resultant object code is free from any such restriction.

The asgmbg:ixs'kis fgr use with the l:io?k and smlxlrce code on the
companion and is not guaranteed for any other p . It is
obviously possible to develop one’s own applications using it Eut zzSoft
do not in any way guarantee it fit for such a purpose.

Copyright: debugger and MKRSC.PRG (Resource
Construction program)

The debugger on the supplied disk is in the public domain, as is the
resource construction program (RCP) or kit (MKRSC.PRG) - with
some limitations as to its distribution. However, permission has been
granted by the copyright owner of the resource construction kit to
include it on the disk and to include instructions for its use in this
book. The debu: from Sozobon has no restrictions as to its use,
except that Sozobon be acknowledged. Source code for the debugger,
written in C, is in the public domain and freely available from many
PD libraries and BBS’s.

Acnowledgements

Thanks to Alistair Bodin, Prosupport manager, Atari UK for his
prompt attention to all enquiries.

J Charlton, of Winnipeg, Canada for allowing the authors the use of his
excellent resource contruction kit.

Introduction

Chapter 1

Starting Out

This chapter introduces the reader to a simple assembly language pro-
gram, and the terms of reference used in its operation.

Why assembly language when there are so many excellent higher level
languages available for the ST, like GFA BASIC? The most usual an-
swer to this question is speed. Assembly language programs, efficiently
written, undoubtedly run faster than programs written in higher level
languages such as ’C’ and BASIC. But why is speed essential? For
games, screen handling of text, interfacing to peripherals, etc speed is
very important. Poor scrolling speed, slow screen Edaus soon become
very annoying. The faster the program the more efficient, and effective
it is seen by the user. And this sells software.

Assembly language is almost as low as a programming lan can get.
In the hi};rarc y of languages the more Eng'h?srl!;—likg thegil:f;uage gt‘fxte
higher up it is on the ladder. BASIC for example allows the printing to
screen ofa line of text (or ’string’ of text) with the command ’print
"string”’, whilst using assembly language involves a great deal more than
that as we will see. Printing text to the screen cannot be invoked by a
simple print’ command in assembler.

Text editor

To write or develop a computer program a text editor is needed to enter
the source code. Source code consists of the text which we write which
~ s finally assembled. The source code then becomes object code, which
~ is usually an executable or runnable file, ie one that can be double-
clicked or run from the desktop. Sometimes text editors are an integral
part of an assembler/debugger, as DEVPAC 2, and zzSoft’s is. On the
supplied disk is zzSoft’s text editor specially written for this book.
Wﬁen an assembly lan program is written it is then ’passed’ to the
~ assembler, which is anotfer program that converts the text we have
~ written into an executable file, ie one that we can double—click. A disas-
- sembler or debugger is another specially written program that allows us
~ o examine the executable file step—by—step if necessary. A debugger is

2 Chapter 1: Starting Out

an essential part of a programmers equipment as assembly language pro-
grams often don’t work first time! Assembly language is very error
prone and often the only way to find a fault, or bug, in the p , 18
to load it into a debu and by the process of examining the part
where the fault takes place try to locate the bug. It can then be cor-
rected in the source code and then reassembled. Some bugs can be very
hard to find, and many hours can be spent searching for a particularly

elusive bug.

The process of developing and testing assembly language programs can
be shown like this: 7 - #

Start

L

——)[Bdit
A A

Assemble

Debug

Link

Run

J Pinish
diagram 1:1

GEM and the operating system

A lot of programs written for the ST utilise the GEM (Graphics Envi-
ronment Mzmger) interface, which consists of Windows, Icons, Menus,
Pointer (mouse) or the WIMP interface, although most games do not.
GEM (which is a computer program held in the ST’s ROM) itself rests
upon a hierarchy of other programs. These programs (also resident in
the ST’s ROM) which make up the ST’s operating system (0/s), ensure
that disk, screen, keyboard, and other peripherals can be easily accessed
by the programmer. It would be an enormous task if every program had

Chapter 1: Starting Out 3

to have its own file loading program, screen interface, etc. Although

many p: ers do write special routines that b or improve on
the internal ROM functions eg Tempus 2, a pmuculyarf)'s fast text editor.

GEM consists primarily of the VDI (Virtual Display Interface)— which
is mainly concerned with text, and graphics, etc, the AES (Application
Environment Service) which handles windows, drop down menus, etc.
Lower down are the internal functions that handle files, the keyboard,
etc, and consists of the BIOS (Basic Input/Output System), the XBIOS
(EXtended Basic Output/Input System), GEMDOS (GEM Disk Oper-
ating System) and finally the A-line, which has some very fast routines
that are not particularly well documented. The whole range of services
come under the genenly heading of the operating system 07:), which for
the ST is called TOS. The Operating System. :

It is possible to access all of the parts of the GEM environment using as-
sembly language, and many examples will be given as well as an exam-

le of opening, moving, and resizing a GEM window. Menus, dialog
goxs, and mouse handling will also be looked, etc.

Our first program:

This program is about as small and as elementary as possible, but it il-
lustrates many fundamentals, and althox:Eh it does not do much it is as
good as any place to start. To begin either enter the following source
code in the text editor or preferably load it straight into the editor from
the supplied disk. This procedure applies to all the example pro-
grams in the book. Programs are executed in an orderly fashion start-
ing at line one and proceeding to the next line unless instructed by the
program to go somewhere else in the program. Note that unlike many

BASIC’s no line numbers are used and only one 68000 statement per
line is allowed.

* EX1.S This short program (or source code when referring to the

* actual text) prints the letter A’ on the screen. Then it waits for a
* key press and and then exits back to the desktop (if it is run from
* the desktop) or the text editor in an orderly fashion.

start: movew $65,-(sp) ; start of program./ 165="A"
movew ¥2,-(sp)
trap 23 |

4 Chapter 1: Starting Out

addq.] B4,sp ; correct stack

wait: movew 81,-(sp) ; wait for a key press so we can see letter
* on screen

trap a3 |

addq.l H2,sp ;correct stack

exit: movew $20,-(sp) ; leave gracefully!
move.w BS$4c,-(sp)
trap Hi

* exit from program properly

Well, what does all this mean? First things first and we need to look at
how each line of text is processed by the assembler. The format is
shown below:

Label Mnemonic Operands(s) Comment

For example,
start: move.w B65-,(sp) ; start of program

Label

A label is a marker that helps the programmer to navigate his way
around a pro; or source code and allows the naming o? subroutines
to have a useful meaning. Also, you will see later that labels are used to
refer to an address by reference to the label. Thus in the above example
‘start:” helps us to recognize that we are at the start of the program; not
particularll))' useful but if we ever wanted to go back there it is possible
to do so by reference to the ’start:’ label. If the program was to become a
subroutine then we may rename the label to *wait__for__a_ char’ or
whatever and then reference it as such.

Using labels with meaningful names is a prerequisite of

programming practise. Also, importantly, labels can be included in the
assembled program and the executable pro then can be loaded into
a debugger and examined using the IgbeE-‘Ts] ’signposts’. See chapter
three for a practical example. Labels help immensely in this process.
Because the assembler can accept labeYs and symbols (labels and
symbols are used synonymously) the assembler is called a symbolic
assembler. A debugger that can accept and use labels is called a symbolic

Chapter 1: Starting Out 5

debugger. A debugger is sometimes called a monitor or disassembler.
The assembler and debugger with the disk provided with this book are
both symbolic.

Note that labels must be followed by a colon ’:” and that all text includ-

ing labels should be lower—case. Other assemblers do not expect a co-

lon after a label, or ?mbol. A label may start with any character or un-
o

derline ’__’ and be followed by underlines, digits, 0-9, or a full stop ~
or period.

These are acceptable labels

my-label:

——-another_label:

.

but these are not

9nth_label:
:_label:

This consists of 68000 assembler instructions, and in the example, the
first line mnemonic is ‘movew’. Some 68000 instructions need a size
specifier, which can be ’b’, "w’. or I’ These are short for byte, word, and
long (often called a long word). If a size extension is expected and none
is given eg ‘move’ then the assembler assumes *movew’ is the required
ex;ension. This is the usual practise adopted by most if not all asse-
mblers. ;

Operands

This field holds the registers, or symbols that are acted upon, eg
’#1,—-(sp)”. This means, taken in conjunction with the mnemonic, decre-
ment tﬁe address held by the stack pointer (sp or register a7) then move
or place 65 (decimal) in the place referred to ﬁy the stack register, ie the
adzﬁes pointed to by the sp. This will be described more thoroughly

T.

6 Chapter 1: Starting Out
Comment

All comments, or remarks must be preceded by a ’;’ (semicolon) or if
starting on a2 new line in the label field a ** or *;’. It is always advi
able to comment your source code. You may understand what it means
now, but what about in three months time! For your own mental
health ‘comment your source coder.

Assembling the program

If you press ALT-A or go to the drop down menu named "Program’
and select Assemble...g(t)hen the foflowin dialog box - see dia-
gram 1:2 — will . Pressing the Return key or clicking in the As-
sembllel::tton 1 i:dvoke th{(:)f assembler, and {:lnket (f\hft:rkl various mes-
sages appeared advising of correct assembly an, you can
then go back to the text edifor and now you mn):run’ the pxr'?gmm and
see what is does for yourself. Press ALT-X to run the program or se-
lect Run from the Program drop down menu. Please see chapter
twenty four for more details on using the assembler. :

Progran Type: [EEIJSEET

Debug Info:
Output to disk:

it:
¥ oo screed Source nameiE:\EXL.S|
Lo Exec. name:E:\EXL.PRE
#
walt for| [cancer] [Sustax check oaly |
exit! mov

diagram 1:2 Assembly dialog box

file://E:/EX1.PRGL

Chapter 1: Starting Out F &

If there are any faults in the source code, eg if you typed *mowew’ in-

stead of ‘movew’ error messages will appear, as the assembler does its

work, and tells you on what line(s) the error(s) took place. You will

need to correct tﬂz error in the text editor before you can assemble and

run the program. To do this you should make a note of the line

:humbex(s and then use ALT-G to go to the line number and correct
e

. Often source code will assemble correctly (because there were no syn-
~ tax or other errors), but the program will either not run or will crash or
- lock up the computer and the only way out is to reset the computer.
- The problem is usually in the logic of the source code. We may have
~ forgotten some parameter or whatever. This is were the debugger comes
~into the picture. See later for more details.

' Looking at the program line by line
| start: movew H65,-(sp) ; start of program

* The label start:’ just marks the beginning of the program. Only useful
i;vewantwgobacktothisposition.Moreusefufiftheprogmmwasa
routine.

~ As described previously this line of the program decrements the stack
~ pointer (the -’ or minus sign signifies decrement), moves (or places or
- technically ’pushes’) #65, into the place pointed to (or referred to) by
~the stack pointer address or register a7. But how do I know that this is
. the required action and why have I done this? To answer the first
~ of the question we have to look at what we are trying to do, which 1s to
~ print a character to the screen. Now there is a routine or function in the
- ROM which does this and ATARI have kindly provided programmers
- with a method of using this routine (so we don’t have to wnite it our-
~ selves) and a list of all subroutines available to the er that are
. in the ROM is given on the supplied disk or is a e in ST technical
- reference books — see bibliography. This routine is taken from the
- GEMDOS functions. 'It;) mm Sns s?mtine we)ha‘?;h to it the
~ correct parameters via the or sp pointer). Why do we have
. to pass the parameters via the stack? Because that’s the way it’s done!
 Passi ameters means to give the subroutine the things we want to
- give it and the things that it needs to operate correctly. Now this par-
~ ticular subroutine (called ’c__conout’ or ’cconout’ by the programmers

8 Chapter 1: Starting Out

that programmed the ROM) may be expressed in this fashion:
(Note ’c__conout’ is probably short for Character CONsole OUT.)

move.w 165,-(sp)
move.w B2,-(sp)
trap 23 |
addq.l B4, sp

End of ’c__conout’subroutine.

Most of the BIOS functions/routines are accessed in this manner. How-
ever, when it comes to using GEM ROM based functions we have to use
a slightly different technique which is explained later on. Note #65 is
the ASCII representation of the character ’A’. :

Some assemblers would allow ’movew ’A’— (sp)’ instead of ’movew
#65,— (sp).

ASCIHI stands for American Standard Code for Information Inter-
change. Alphanumeric characters and other codes, such as those that
can be sent to a printer are represented on a computer by their ASCII
numbers. A character that is printed to the screen is held in memory in
the computer as a bit mapped image, ie each character is made up of lit-
tle dots which make-u ti‘:a final image. The way the programmer ac-
cesses these bit—mapped characters is via the ASCII table, and is one fea-
ture that is common among most makes of computer. ASCII text, can
easily be transferred between computers of different operating systems
because of its common ground, and between different word processors
and text editors. ASCII text is text that is bereft of any command out-
side the range of common characters of the ASCII table, such as under-
line, bold. Each word processor uses different methods to signify text at-
tributes such as bold, and underline. Each would use various characters
or combination of various characters from the ASCII table to signi

different text attributes, so text with these codes needs to be stripped
out. It then becomes ASCII text suitable for transfer between various

programs and computers. The assembly | programmer soon be-
-comes familiar with the ASCII character c?;isgf?ge

But why ’w’ and 'I”? That’s what is required too. See chapter two for a
discussion about this.

Chapner 1: Starting Out 9

- The answer to second part of the question *why have I done this? is
- implicit in the above paragraphs.

“movew H2,-(sp)

is line of the program is similar to line one, and is part of the ’pass-
parameters’ procedure. It tells the o/s that we want to access number
O routine ie 'c__conout’, and

p 211

we want to use the GEMDOS. A ’trap’ is the name Motorola

nufacturer of the 68000 chip) has given us to tell the o/s we now
to go to the o/s and use a function in the o/s or ROM (o/s and

OM are virtually synonymous). In Z80 assembly language used

ich computers as the Spectrum this is known as a CALL to the o/s

id the term has been carried over to 16 bit computers as it describes

operation rather well.

84 sp

need to adjust the stack pointer (sp) or register a7 so it it is returned
“back to its original condition ready zr use again. This line of the pro-
~gram does this, by adding four to the ’sp’. The ’q’ appended to ’add’
s for quick and can be used if the number is between 0 and 7, in-
ve.

wait: move.w 81,-(sp)

‘The *wait:” label refers to the part of the program that waits for a key to
1 &l;?ed If the three lines of this sectil:)n were left out then it w;vkeguld
‘be difficult to view the A’ character on the screen as the program would
exit back to the calling program or desktop immediately. Try assem-
bling the program with this section of the program omitted and you
will see wﬁat is meant. The name given to this is ’conin’, probably a
shortened version of ‘console in’. You might be forgiven if you said
“Well why not call it "console in"? The reason for shortening the names
is that the o/s is set up to recognize only eight characters, and a space is
not an allowable character.

S

81

10 Chapter 1: Starting Out
addq.l #2,sp

These two lines operate as explained previously.

Register a7’ is used as the stack pointer and should not be used as
anything else by the programmer. But what is the stack pointer? The
stack pointer is an ad that refers to a place in RAM where data may
be safely placed for subsequent use by the function called or the
programmers use. Data is placed on top of each other in sequential
addresses in a manner like stacking plates. However, this means that the
last plate (data) has to be removed before the next plate (data) can be
accessed. Any address register can be made into a stacE pointer but calls
to the o/s will expect the address or parameter found in register a7 to be
the one it needs.

Before continuing we should look at the way numeric data, and
characters are represented to the assembler:

Data representation

For instance the character ’A’ can be represented by the equivalent
ASCII code of 65, or as 41 in hexadecimal, and 01000001 in binary.

The assembler needs to know exactly what we are referring to otherwise
the resultant assembled program will not do what we expect!

Decimal data is prefixed with a hash *#’. Eg #65.

Hexadecimal data is prefixed with a dollar sign $ if it is an address, and
#$ if it is a constant, For example #$41 is the same as #65, and althou
$41 is the same as #65, the assembler would see this as an address in
computer that we were referring to. However, there are exceptions to
this rule when defining room for constants or defining space for storage
in RAM. This difference will be more apparent later.

Note that in the C language hexadecimal data is written like this:
0x10

where this equals 16, ie hex data is preceded by ’0x’. As much of the ST
programming information is written with regard to C it is useful to

" Chapter 1: Starting Out 11

" remember this when studying assembler. Hex data is not acceptable by
the assembler in this form.

Binary data is often prefixed with a percentage sign, eg %01000001.

‘ Binary and hex data is often viewed with some apprehension by the be-
t.:;,liut for programming purposes it is usefv.\i> and fairly easy to un-

. Hex or hexadecimal data representation is used in computer program-
- ming because the basic way data is stored is in bytes, or 8 bits, and
. grouped in words (2 bytes), and longs (4 bytes). As 4 bits can represent
- up to 16 different states (0 to 15, or 0 to F in hex) a byte can be repre-
-~ sented by a system of numbering with a base of 16. In other words 0 to
- 9and A to F are taken to represent these bytes and words. These bits
. can be either off or on, and usually 1 = on, and 0 = off. These bits are
- located physically within the RAM of the ST, and a bit that is ’set’ or
.~ “on’ can signify something as simple as whether a printer is attached.

So, if there are 8 bits to a byte: and these can be represented as
- %00000000, ie 8 bits that are all off, then %11111111 is all on, how do
- we transfer that to hex representation. Simply separate the bits into
- groups of 4 (a nybble wou“l:g you believe). Binary is known as a base 2
- system of counting and is often shown as 111%, for example.

. How do we count in binary? If %0=0 and %1=1 then the way to repre-
- sent decimal 2 is %10, because if %1 is added to %1, we can’t have %2 as
this does not exist in binary notation. So we carry 1 and hence get %10.
Why not %11, because this =2+1, decimal 3. In the decimal method of
unting we get <——-1000"s 100’s 10’s units, etc, but in binary we get
—--168421, etc. %1111= decimal 15 or #$F, the maximum that can

Sofor #$41, we get %0100 0001 separating into nybbles, and this can be
figured out this way: -

Valueofbitifon 8421 8421

5 %0100 %0001

{ we get #$41. Not too difficult. Now let’s try converting #$A8 to
hnary and then to decimal.

12 Chapter 1: Starting Out

Numbers after 9 are represented by A to F up to 15, then a carry is ef-
fected. So A=10, b=11 etc. Converting *A8’:

Value of bitifon 8421 8421
Hex A 8
Binary 1010 1000

Now how do we convert A8 to decimal?:

The simple method is to buy a calculator that does it for you! However,
in a similar fashion hex can be treated like binary but as it is base 16
rather than base 2 (binary) we get:

Decimal value of hex digit «—--6432161
Hex A8

To get the correct result we have to multiply each hex digit by its value
so ti? first result is 1*8=8, the second is 10¥16=160. Now adding the re-
sults together we get 168. Checking with my calculator we get: 168. I’'m
glad my sums are correct!

Note that the assembler can accept decimal and hex modes of represent-
ing data, eg #124, $124, #$124, but cannot accept ’A’ as a character
string, or binary data, as eg %10000001. Many other assemblers are able
to accept all types though.

Signgd binary numbers

Often we have to deal with data that is negative, for instance error codes
from the BIOS are given as returned negative numbers in register do.
For instance when saving a file to disk if it is write protected then the
BIOS will report an error number in register d0. Consider this program
fragment which is the code for creating a file.

* create_file
move 80,-(sp) ; attribute read/write file
move.l Hfile_name,-(sp) ; address of file name
move #83c,-(sp) ; create file function number
trap =3 |

addq.l H8,sp
tst do

Chapter 1: Starting Out 13

bmi do_error_routine
move d0,handle ; no error so get handle of file

do_error_routine:

* actually exit for the purposes of this short program
move.w 120,-(sp) ; leave gracefully!
move.w #$4c,-(sp)
trap a1

file_name dcb “test.doc”,0
handle dsw 1

Initially 2 GEM alert box containing the familiar message *You cannot
modify the disk in drive A: because it is write—protected. Before you
retry remove write protect. is presented. Note that this message is
shorter on the STE. If cancel is selected then the function falls though.

If register dO is now examined dO would contain hex FFFFFFF3, if the
disk was write protected, otherwise it would contain a positive number
which can be used to access this file at any time until 1t is *closed’. See
chapters six and seven for more details on files. Other errors could be
reported too: disk full, etc. See disk for full list of error codes.

Because negative numbers as well as positive numbers have to be
represented in a computer a method called *two’s complement’ has been
devised so that negative data can be used. The long word FFFFFFFF
could be a positive number as hex FFFFFFF3 equals 4,294,967,283
decimal according to my calculator. However the difference between
positive and negative numbers is determined by the left—most (most
significant) bit of the number, which is known as the sign bit. So
FFFFFFF3 is negative as hex F gives all ones in binary notation -1111.
If the disk is not write protectef then a low positive number, eg 7, can
be expected. If it is known that the number returned in dO will be in
2’s complement form then it can be safely assumed that FFFFFFF3 is a
negative number. To see this more clearly we need to look at how
negative numbers are represented in binary. All the 68000 arithmetic
instructions assume signed arithmetic, as do the compare range of
instructions.

For instance take the decimal number °1’, its binary form (byte) is

14 Chapter 1: Starting Out
0000001

First each bit of the binary number is complemented, ie 0’s are re-
placed with 1’s, and 1’s are replaced with 0’s. So 00000010 becomes

11111110

Then another 1 is always added to give 11111111, which is hex FE
which if extended to fit a long word would give FFFFFFFE, which is —
1 decimal. It needs to be sign extended as placing FF in a data register
would result in it being accessed in the range —128 to +127 if it was ac-
cessed as a byte. To facilitate this action there is a specific 68000 instruc-
tion to take care of this ‘ext’. To see this clearly please examine the fol-

lowing program fragments.

* negative TESTLS
cirl do
move.b BSff,do0
tst.b do
bmi its_minus

* continue if not -ve number

* negative TEST2.S
cirl do
move.b BSf1,do
tstw do
bmi its_minus

* continue if not -ve number

* negative TEST3.S
cirl do
move.b uSff,do
ext d0 ; extend byte FF to word FFFF
tstw do
bmi its_minus

* continue if not -ve number.

“TEST1.S branches to ’its__minus’ as dO contains #$FF, and as the most
significant bit is negative, the number is assumed to be negative.

TEST2.S does not branch to ’its__minus’ as a 16 bit .number can hold -

Chapter 1: Starting Out 15
32768 to +32767, and in this case FF is seen as 255 decimal.

TEST3.S branches to ’its__minus’ as dO contains #$FFFF, and as the
most significant bit is negative, the number is assumed to be negative.

Note the label ’its__minus:’ is not shown.

One way to think about FF hex being a negative number is to imagine
that you had a milometer that had only 2 i%;it:s. It could only count to
99 then it would start again. Adding 1 to 99 would cause the reading to
be 0, so relative to 1, 999 can be viewed as a negative number, -1 from
0. In a similar manner the computer carries out arithmetic. When a
number gets too big to fit into a g'lm, word or long, the number wraps
around just like in &xe milometer.

To summarise: Using signed arithmetic a

byte can hold -128 to +127,
a word —32768 to +32767, and a
long word can hold 2,147,483,648 to — 2,147,483,647

What about decimal 2? This is represented in its binary form (byte) as

00000010
11111101 complementing
1 addi

This gives FE. Eventually we would get to FFFFFFF3 which is —-13
decimal.

'DECIMAL
=1
-
~3
-4
=5
-6
d
=

33‘?%88%%5

16 Chapter 1: Starting Out

F7 -9
Fé -10
F5 =11
F4 -12
F3 -13
etc

Continuing with the analysis of the rest of program:

exit movew $20,-(sp) ; leave gracefully!
movew #S$4c,~(sp)
trap 23 |

* exit from program properly

Unless we exit from the p using one of the recommended meth-
ods, as the program is exited it will bomb out, ie crash. Not a serious
crash (as we have finished with the program), admittedly, but whenever
bombs appear it is a signal to the user, and programmer, that something
has gone wrong. If it happens in the middle of a program then clearly
something is seriously wrong with the program. You could try assem-
bling the source code without the ’exit:’ routine. A nice feature of this
exit code is that it allows a return code or number to be passed to the
calling program. If you use Gribnif’s NeoDesk (a replacement desktop
il:fn) y;)u will see that NeoDesk reports that the process exited with a
ue of 20.

Pterm, for this is the Atari name of the exit process, closes all files (if
any where opened), and clears the memory space used by the process or

program.

With just a short program a lot of ground has been covered, and
useful points have also been covered, but there is much to look at yet.

Chapter 2
Data Types

In this chapter data lengths (.b, w, .I), defining data storage and con-
stants (eg ds.b, and dc.b respectively) will be looked at and another sim-
ple program will be analysed in some depth.

In the source code examples from the previous chapter, ‘movew’ was
used quite a lot and "addq.I’ was also used. When using calls to the o/s
we are told what length the ‘move’ and *addq’ operations should use,
but as often as not it 1s up to us to decide. The b’ suffix stands for byte,
‘w’ stands for word, and "I’ stands for long or long word:

byte: 8 bits
word: 16 bits (2 bytes)
long: 32 bits (4 bytes or 2 words)

The 68000 has eight data registers, and 8 address registers, a p.
counter, and a status register. The data registers are referred to as d0 to
d7 - 32 bits wide, and the address registers are referred to as a0 to a7 —
- 32 bits wide too. A register is a held in the actual 68000 processor itself,
- not in RAM, and as we have already seen by using register a7 they are
~ often used. Data that is held in RAM and ROM is accessed by use of the
addmreEsters,asachbyteofdatahasauniqueaddmbyWhichit
. can be referenced. By manipulating these registers we are able to con-
~ trol the heart of the ST. The fundamental data length used by the 68000
~ and the ST is the byte, which is 8 bits wide.

One pecuha.ng' of the computing world is that counting always starts
. atzero (0), so dO to d7 are eight registers.

The data registers are arranged as overpage:

18 Chapter 2: Data Types

(T
diagram 2:1 Registers

So, if we want to act upon data held in the first 8 bits of a data register
we would use the b’ suffix, and if we wanted to access the first 16 bits
we would use the .w suffix, and for all the data length "I’ Addresses are
stored as long words so we usually access addresses using a0—a7 using a
"I, but to access data pointed to by those addresses we can use any of the
suffixes, though as previously stated data is held in byte chunks. En-
ough theory (and if the above is not too clear now it should become
clearer as we progress), down to practise!

Let’s put our name on the screen!

* EX2.S This program prints a string to the screen, waits
* for a key press and exits back.

start:
move.l 8my_name,-(sp) ; put address of string on stack
move.w #9-(sp) ; Gemdos function ’print a line’, 'Cconws’
trap 23 |

addq.l 86,sp ; correct stack

* wait for key press
move H"2,-(sp) ; device number (console)
move #82,-(sp) ; BIOS routine number
trap ®13 ; Call Bios

addq.l #4,sp

- Chapter 2: Data Types 19
- exit:
~ movew 120,-(sp) ; leave gracefully!
move.w BS4c,-(sp)

. trap 81

- * exit from program properly

my-name: dc.b ”"Roger Pearson”,0

- This program is slightly different than the first as it uses the 'dc.b’
- directive. ’dc.b’ means define constants in memory of value byte. There
- can be dew, and dcl as well. So in the above program the label
. ’my__name:’ refers to the address that holds the place were "Roger
~ Pearson is held. What has happened is a place to hold the string "Roger
- Pearson’ has been defined at the address ’my__name:”. This is
- calculated at assembly time and 'Roger Pearson’ is stored there and we
~ can rest assured that the o/s will respect the s allocated. If we
- looked at address ‘'my__name:’, which we could do as the debugger
~ would allow us to name the label my__name:’, and the debugger would
- find the actual address for us. This why it is called a symbolic debugger
~ as it can locate symbols, or labels and, we would see that at the start of
~ that address, the first byte would hold the character ‘R, followed by the
~ rest of the string.

: Cconws

* This has been done as GEMDOS function number nine, Cconws,
- ’print a line’ requires that we pass the address of the string we want
~ printing to the function. The zero (or NULL in computer parlance)
- after "Roger Pearson’ must be there as GEMDOS sees a null as an end of
. string marker. If this null was left out everything might be ok,
- especially if the next held in memory was a null, but that cannot
- be teed so it is always best to append a null after every string. If a
- null could not be found for a while in RAM then the string might be
. extremely long and the assembler might be unable to accept it, or if it
- did the string might be so long as to fill up the screen when run, or it
~ might crash the ST if no null was found. When a ’#’ is placed before a
~ label then that passes the address of that label, whilst missing out the *#’
- would pass the contents of label. This will become clearer as we
- progress. Knowing the difference between passing an address and the
- contents of that address is crucial to correct programming and will be
- looked at in more detail later.

20 : Chapter 2: Data Types

The next parameter is the number nine, the Bios function number.
Then we ’call’ GEMDOS, ie the subroutine ("cconws’) is executed, and
"Roger Pearson’ is printed to the screen. Then the stack register is cor-
rected as usual. :

Bconin

The next three lines which wait for a key press is similar to the three
lines in EX1.S, except this time the Bios is used although the effect is
the same. This function is called ’Bconin’, and it waits for a character
from a device, and in this case it waits for a character from the console,
but it could equally wait for a character from the other devices as de-
scribed below. The actual character received is returned in register dO as
a long and in the case of the console the scan code and ASCII code are
both returned in dO. The scan code is returned in the least significant
byte of the high word, whilst the ASCII code is returned in the least sig-
nificant byte of the long. The scan code shows what key was struck re-

ardless of whether shxf% or Alt was pressed. See appendix for list of the
Eey codes returned by Bconin. To see this in actual operation we will
use the debugger to inspect register d0, in the next chapter.

ST devices

For the purposes of programming the ST is divided into the following
devices. See *wait foriey press’ above, as this uses device 2, the console.

Device number Device name Description

0 PRN The parallel port: printer.

1 AUX The serial port, usually a mo-
dem is connected.

2 l CON Keyboard and screen: the CON-
sole.

3 MIDI Musical Instrument Digital
Interface.

4 IKBD The intelligent Keyboard Device
Then once again we leave the p and return to the program it was

launched from, which would be the text editor if run from there, or the
"desktop if double—clicked from there. Yes, the desktop is a program run

:
3

Chapter 2: Data Types 21
at start—up from the ST’s ROM’s.

Equates

It is very common to see programs written as EX3.S is. However, EX3.5
does the very same as EX2.S except it is written _slightly differently — it
uses label equates. The label equates given at the start of the program
can prove very useful. For instance if a buffer was defined as *buffer equ
1000, then 1000 (b&lm) would be substituted for ’buffer’ whenever
*buffer’ was used in the program.In a program we may use "buffer’
many times, and if later a decision to alter the buffer size was made
then all that would need changing would be the *buffer’ equate. "Equ’
stands for equals, and other assemElers allow *=" as well.

*Buffer’ is a term used a great deal in p ing and refers to a given
area of memory that has been allocated for whatever purpose the pro-

mer needs it for. The term array is has a similar meaning. It could
E:us.;id that at the address *my__name’ a buffer the size of the strin
plus a null is reserved. Note though, that buffers are usually merve§
with the directive ds.b, define a s by the size given, eg reserve: ds.b
100 would allocate 100 bytes of free ram from the ad ’reserve:’.
Similar directives of dsw, and ds. also are used. So, we could write re-
serve: dsw 50. This will be looked at later in more detail.

* EX3.S This program prints a string to the screen, waits for a
* key press and exits back.

gemdos equ 1
bios equ 13
CCOnWS equ 9
pterm equ $4dc
con equ 2

: bconin equ 2

 start:

move.l #my_name,-(sp) ; put address of string on stack
move.w Hcconws,-(sp) ; Gemdos function 'print a line’
trap Hgemdos

addq.l B6,sp ; correct stack

~ * wait for key press

22 Chapter 2: Data Types

move Hcon,-(sp) ; device number (console)
move Hbconin,-(sp) ; BIOS routine number
trap Hbios ; Call Bios

addq.l B4 sp

exit:
move.w 120,-(sp) ; leave gracefully!
movew Hpterm,-(sp)
Bgemdos
* exit from program properly

my_name: dc.b "Roger Pearson”,0

Note that with equates the hex number ’4¢’ is preceded with a °$’ rather
than a ’#$’; this is one case where ’$’ is not taken to mean an address but
an immediate number. Note that when it is used in the program a ’# is
placed before ’pterm’, and as ’pterm’is defined as *$4¢’ this changes the
value of pterm to #$4c. 'Immediate’ data in computerspeak refers to the
fact that the number is not an address. '

Chapter 3
Looking at the debugger

This chapter takes a quick look at the debugger which is invoked to in-
spect register dO after single—stepping the ’bconin” routine as given in
EX3.S and continues with another short programming example that
looks at the use of the *ds.b’ directive.

One way to use the debugger is to enter it directly after some source
code has been assembled correctly. So, if EX3.S is assembled and ALT-
D is pressed the debugger wd{ be loaded and the executable file
EX3.PRG will be automatically loaded in to the debugger for our in-

spection.

There is another way to invoke the debugger by pressing ALT-], or ac-
cessing the Program drop down menu - do this when you wish to de-
bug another program other than the one just assembled. After you have

done this you will be prompted for a filename to pass to the debugger—
only executable files may be passed.

Please note that the debugger is taken from the Sozobon PD suite of
programs. Thanks to their excellent programming abilities we can now
debug our programs with comparative ease.

Debugger commands

The first thing we need to know is what commands the debugger will
respond to, and for our purposes they are:

S Single step each 68000 instruction, or line of the program and
show the registers as well.

s Asabove but do not show the registers.
:C Execute the ’frogmm a full speed until a breakpoint is found and

show the registers if program is halted through the use of a breakpoint,
and shows registers at end of execution.

24 Chapter 3: Looking at the debugger

e As above except don’t show registers.
:b Set a breakpoint.

Control-W See the results of the program in a separate window
from the debugger. Pressing the HELP iey whilst in the debugger will
show some of these commands to the screen.

To explain: single-stepping allows the programmer to execute each line
of the program ’step by step’ or line by line, and thereby see the results
as each line of code is executed.

":C’ allows the programmer to run the program until the end if the in-
spection is over, or to run the program until a breakpoint is set. A
breakpoint is positioned in a program so that when the fully running
program reaches this point it will stop.

Please note that pressing the Return key will execute the last command
given to the debugger.

Unfortunately there are a number of bugs in the debugger. One of them
is that it appears to ignore the first line of the p being debugged!
It seems to have missed the first line of EX3PRG ’movel
#my__name,—(sp)’ In fact the debugger has set the program counter, or
the position in the program, after the first line of EX3.PRG, but it has
also, fortunately, executed the first line too, otherwise the p
would not work. In otherwords the address of *my__name’ hm
placed on the stack.

So assuming that EX3.S has been assembled correctly and ALT-D has
been pxmses you should now enter ’:S’ to single— step through the pro-
gram. As soon as you have entered :S’ you should press the Return key.

You should see this or"something very similar on the screen (see over
page):

v el

Chapter 3: Looking at the debugger

;llgb version 1.8 (english)

pc 85bcc XSp
d8 8 di
dd 045
a8 8 al
ad 8 as
gShtc: Rove.N
pC 85bd8 Xsp
de 8 -4l
dd 8 d5
a8 8 al
8 a5

;Shdl: trap
>

pc 85bdd Xsp
de fcBBBc di
a4 8 d5
ab f3ff2 al
ad 8 a5
85bdd : nove.n
>

diagram 3:1

> 1S

pc 85bds XSsp
de fcBBBc di
dd 8 d5
ab f3ff2 al
al 8 a5
;snus: nove.M
pc 85bdc XSp
de fcBBBc di
dé 8 d5
a8 f3ff2 i
ad 8 a5
;5hdc: trap
>

pC 85bed XSp
de i6iceeed di
dé 8 d5
a8 €76 al
al 8 a5
85beB: ROVE.N
b 3

process exited
(hit any key)§

diagram 3:2

755a
8

8
#9,-(sp)
755a

755a

18

B

93a

8
#14,-(sp)

sr 8388 -> User pri3
d d3

2 8

dé 8 d7
a2 8 a3
ab 8 sp
sr 8388 -> User pri3

d2 8 d3
dé 8 d7
a2 8 a3
ab 8 sp

sr 8388 -> User pri3

d2 8 da3
dé 8 d7
a2 8 al
a6 8 Sp

sr 8388 -> User pri3
d2 d3

8
dé 8 d7
a2 8 a3
ab 8 sp

sr 8388 -> User pri3

d2 8 d3
dé 8 d7
a2 8 al
ab 8 sp

sr 8388 -> User pri3 .
8 d3

dé 8 d7
a2 c7e a3
ab 8 sp

26 Chapter 3: Looking at the debugger

Note ’pc’ refers to the program counter, and “xsp’ refers to the supervi-
sor stack pointer, ’sr’ refers to the status register. The gvr‘cifxun counter
shows the address of the next instruction the computer will execute.

The ST can run in two states one is called the User State, and the other
the Supervisor State. The operating system runs in the supervisor state
whilst user programs run in the user state. The supervisor state protects
certain areas of memory so that user programs cannot use them, this in-
cludes the area of memory that the system variables (see disk for list of

m variables) are kept. However, it is possible to access all areas of
i: e ST’s memory by going into supervisor mode. This will be shown
ater.

The status register

The status register (sr) is divided into two equal the m

and the user byte— see diagram. The user byte isl::ast willsZ:t:cergy;:
at a later stage is also known as the ’Condition Code Register’ g:g)
Only the low five bits of the user byte are used, and each bit has been
given a name, and is used to signify that some state has been reached by
a register. To give a brief example, if we wanted to know whether a reg-
ister contained zero, we could test it using one of the 68000 instruc-
tions. When and if the register was zero the zero bit would be set (to
one) and would could act upon this information. See chapter six for ex-
ample of the ccr in use— EX6.S.

IS | nepl [T B

SYSTEM BYTE USER BYTE
(Condition Code Register)

diagram 3:3 The status register

1=Trace mode

1=Supervisor state
O1,10 Interrupt mask

eXtend flag

Al TR

Chapter 3: Looking at the debugger 27

N: Negative flag
Zs Zero flag

V: oVerflow flag
C: Carry flag

To continue with using the debugger.

As you can see register dO contains nothing at this point. Pressing re-
turnyowill execute ailf:her single—step of thegprogmmPa(:ld should taie us
to ’trap #1’. Now single—stepping from this point will take us into the
systems ROM (:;lcl)/s, to execute the routine. It isl ncl)rma.l practise to by-

a m or trap as it is not particularly interesting to
| fﬁs:)ughs{;t: ROM, besides it would take a great d&ly of time! Hgowevgz
feel free, but don’t forget to set a breakpoint first as described next! So
to get around this problem a breakpoint can be set before the next in-
struction and after the trap is executed. To do this :b is now entered at
the cursor prompt and return is pressed. The breakpoint is now set. As
we don’t want to single—step each ROM statement we should now en-
ter :C which will run the program at full speed until the breakpoint.

:
:

The screen will probably flash (it did for me) indicating the trap has
been executed, and now Ky pressing Control-W you will be able to see
my name, ‘Roger Pearson’, our your name (if you altered the
’my__name’ string in the source code), printed on the alternate screen.

Now we are ready to single—step the Bconin routine and inspect regis-
ter dO.

Another ’:S’ should be entered and Return pressed, and Return pressed
again until "trap# d’ Eggm's This seems to be another bug, (the ’d’) but
- does not seem to e the correct operation of the debugger. What
~ should have been printed is’ trap #1’. However, if we continue by enter-
~ ing ":b’, followed gy *:C’ then the program will display the alternative
. screen with 'my__name’ string displayed. The program is waiting for a
* key press. At this stage I pressed the Return key, and register dO con-
~ tained "101c000d’. If you look at the appendix Key Codes you will see
~ that the key code for Return is *1c0d" *1c’ being the actual scan code
~ and ’0d’ being the ASCII code of the Return key.

| Next another :C’ should be entered and then the program will run un-
~ til the end, and then the debugger will exit back to the text editor after

28 Chapter 3: Looking at the debugger
any key is pressed, by following the debugger command °(hit any key)’.

As stated earlier the debugger is symbolic, ie it can load and use the la-
bels or symbols that we have used in our source code. To access the la-
bels we use a ’globl’ command which has to placed before any label that
we want the debugger to use. The ’globl’ command tells the assembler
that labels should be kept in the executable file. Normally the executa-
ble file does not contain any labels unless ’glob!’ is used, only their loca-
table addresses generated by the use of labels in the source code. Labels
are only dumped (to use the correct jargon) in the executable file when
we want to debug it. Labels are invariably not dumped when the final
executableis generated, as labels add to the length of the executable code
and can aid others to debug/steal/understand your code much easier. If
you can load your executable file in a debugger so can others! If a table
of all labels are generated by the debugger or some times a separate pro-
gram it is known as a symboltable.

’EX3A.S’ shows how to use the ’globl’ command, and as the first line
bug would mean that we could not see it another line of code has been
entered prior to the use of the my__name’ label, ’move.]#1,d1". This ex-
tra code does not affect the program in anyway. If ’move.l’ was inserted
i:btzl EX3.S you would only see an address n:ier than the ‘my__name’

Note that it is not ible to see comments in a debugger, as co-
mments are not assembled at any time to an executable file.

* EX3A.S This program prints a string to the screen, waits for a
* key press and exits back.

gemdos equ 1

bios equ 13

cconws equ 9

pterm equ Sdc

con equ 2

bconin equ 2

start: movel ®1d1 ; only here for debugger bug!

move.l Smy_name,-(sp) ; put address of string on stack

AR KN TIN B 4 N5 20 T I R, 0 AMtony s tia S VAN € NN

Chapter 3: Looking at the debugger 29
move.w Hcconws,-(sp) ; Gemdos function ’print a line’
trap Hgemdos
addq.l B6,sp ; correct stack
* wait for key press
move Hcon,-(sp) ; device number (console)
move Bbconin,-(sp) ; BIOS routine number
trap Rbios ; Call Bios

addq.l B4,sp

exit:
move.w #20,-(sp) ; leave gracefully!
move.w Hpterm,-(sp)
trap Hgemdos

* exit from program properly

.globl my_name
my-name: dcb ”"Roger Pearson”,0

The ds (define space) directive.

The ’ds’ directive is similar to the ’dc’ directive that was looked at
earlier, and can be used in three different ways: ds.b, dsw, and ds.l.

So, ’ds.b” means reserve a enough space in RAM for a byte of data.
Similarly, ’ds.w’ means allocate room in RAM for a word of data, whilst
'ds.]’ reserves a long word of data (or a long’ as it’s often termed). Note
that data reserved using the *ds’ directive is initialised to zero until used
by the programmer. Data is reserved in our source code similarly to the
method used for the ’dc’ directive:

label dsb 4 ; reserve 4 bytes at address label

note that

label ds.1 1 is exactly the same.

Why should we want to reserve space in RAM? There are many reasons

why we should want to do this, eg if we had something on the screen
that we wanted to keep whilst we loaded a DEGAS screen from disk to

30 Chapter 3: Looking at the debugger

display on the screen we would have to reserve 32000 bytes (32K) to
store the screen whilst it was occupied by the DEGAS picture. The ST’s
screen uses 32000 bytes of RAM whether in low, medium, or high reso-
lution. For a more detailed description of the ST’s screen see chapter six
and eight. To reserve 32K or 32000 bytes we would write:

save_screen dsb 32000.

If we wanted to keep a screen in RAM for whatever reason then all we
would need to do would be to copy the screen starting at
*save__screen’, which in assembler is quite easy. See this chapter for dem-
onstration of using a 32K buffer.

The next chapter shows the use of the define space ('ds’) directive and

the use of a subroutine.

Chapter 4

‘ds’ and jsr’

In this chapter the define storage (ds) directive and the jump to subrouti-
ne ’jsr’ instruction are examined. EX4.S is a practical example.

* EX4.S
* This program finds the address of the screen, prints ‘my - name’
* string to screen, clears the screen, and exits back.

gemdos equ 1
bios equ 13
xbios equ 14
cconws equ 9
pterm equ $4c

con equ 2
start:

move H2,-(sp) ; get screen RAM address
*(physical base), returned in d0

trap 814 ; call Xbios

addgl B2sp ; correct stack

move.l dO0,screen — address ; put screen address in symbol

move] Bmy _name,~(sp) ; put address of string on stack
movew Hcconws,-(sp) ; Gemdos function ’print a line’
trap Hgemdos

addql ®6,sp ; correct stack

* this goes to the address 'wait _for _key _ press’ and executes the
* short routine held there until an rts’ is found.

jsr wait _ for _key _ press

* Jets clear the screen

movel #31999,d0 ; counter $32000-1

move.l screen _address,a0 ; place screen address in an
* address register

32 Chapter 4: ds and jsr

do _it _again:
cirb (a0)+ ; now clear the screen
dbra d0,do it again

* wait for a key press so that we can see that the screen has been
* cleared before exiting to desktop or text editor

jsr wait _ for _key _ press

exit:

* exit from program properly
movew 820,-(sp) ; leave gracefully!
movew Hpterm,-(sp)
trap Hgemdos

BEREESRRERERR Sllbml.lﬁne
wait _ for _ key _ press:
* wait for key press subroutine

move Hcon,-(sp) ; device number (console)
move ¥2,-(sp) ; BIOS routine number
trap Hbios ; Call Bios
addgl ®4,sp
rts

my _ name: dcb "Roger Pearson”,0

screen — address: dsl 1

Examining EX4.S we can see there is a number of features that need
some explanation.

First the address of the screen is found, and to do this the Xbios
function number 2 is used. This function finds the address of the screen
and returns it in register d0. In some computer systems the screen is
always held at on&:lg.rticular address, but the ST’s screen can be placed
anywhere, and it differs especially between 520, and 1040’s, at boot up.
As we are not going to use the screen address just yet it is placed in the
symbol ’scree * until it is needed. Why not just leave it in
register d0? The reason is that calls to the o/s whether the BIOS or
XBIOS often use registers 20—a2, d0—d2 to return parameters asked for,
or use the registers themselves as we have seen previously with Bconin.

Chapter 4: ds and jsr 33
So it is best to store data that we need in a safe place until it is needed.

Next the 'cconws’ function is called and the *my__name’ string is
printed to the screen.

Next is:
jsr wait _ for _ key .. press

’jsr’ means "jump to subroutine’ at address *wait__for__ key__press’ and
execute whatever is there until an ’rts’ is found. ’rts’ means "return from
subroutine’. In this case the subroutine is the familiar *wait for a key

press’.

Quite often, and it is safer to do so, all the registers are stored (or
"pushed’) onto the stack prior to entering a subroutine, and at the end
of the subroutine all the registers are taken or *popped’ from the stack.
This ensures that whatever is contained in any register remains unaf-
fected by the subroutine’s action. Subroutines can be many lines long
and many data and address registers may be used in the course of its ac-

tion.
So, taking the *wait__for__key__press’ subroutine we would get this:

~ wait _ for _ key _ press:

: movem.l a0-a6/d0-d7,~(sp)

move Hcon,~(sp) ; device number (console)
move ¥2,-(sp) ; BIOS routine number
trap Bbios ; Call Bios

addgl B4,sp
movem.l (sp)+a0-a6/d0-d7
rts

" ’movem’ mnemonic means move multiple registers, and any combina-

 tion of address and data registers can be stored, eg

movem.] 20/d0-d2,-(sp)

- Note that it is usual to use ’long’ when stori i onto the stack
iy

" 2s this means that nothing is left to chance as data in the various
. registers are retrieved to safety. Note though that any value returned in

34 Chapter 4: ds and jsr

register dO within the subroutine cannot be examined after returning
from the subroutine as.it will be lost when the registers are returned to
their original values just before the ’rts’.

If we needed to use the data in register d0, it would be necessary to set
up some storage space at a label.

my —data ds.1 1
and then use this storage space to store the data:

wait _ for key . press:
movem.l a0-26/d0-d7,-(sp)

move Hcon,-(sp) ; device number (console)
move B2,-(sp) ; BIOS routine number
trap Hbios ; Call Bios

addql" ®4,sp

move.l d0,my . data
movem.l (sp)+a0-a6/d0-d7
rts

Now we come to the clearing the screen part of the program:

* lets clear the screen

move.l #31999,d0 ; counter #32000-1

move.l screen . address,a0 ; place screen address in an
* address register

do - it _again:

cirb (a0)+ ; now clear the screen

dbra d0,do _ it _again ; dbra = decrement and branch
*until false

First the number of bytes, minus one is placed in d0. We subtract one
because of the ’dbra’ mnemonic at the end of the clear screen routine, as
’dbra’ means decrement a register until the value of the register is false,
or less than zero (the ’bra’ means ’branch always’, ‘dbra’ means decre-
ment and branch always until false). If the condition is not false then it
branches or jumps to the address given in the operand field, in this case
’do__it__again’. If one is not subtracted from 32000 then the loop

Ubeals) ol e | s SR AGeR L 1 d La Bdieds RREREe 1250 DL D 100 ctliins

Chapter 4: ds and jsr 35
would operate 32001 times.

clr.b’ means clear a byte (set all bits to zero), and here the byte is the
one held at the screen’s address. *(a0)+” means get the contents of the ad-
dress (the parenthesis indicate this), and after the ’clr’ instruction has
operated on this byte of memory increment the memory address so that
the next byte can be accessed. This method of addressing data is called
indirect with post—increment’. Other addressing modes will be looked
at in chapter four.

The ST’s screen occupies 32K of RAM, and each individual bit of
memory signifies the status of each specific point or pixel (PICture ELe-
ments — the individual dots that make up a monitor or TV screen). If a
bit is set to one the colour of this pixeF will be black — at least on a
monochrome TV or monitor. Each pixel is assigned a colour in me-
dium resolution and low resolution, though the effect of clearing each
byte of memory is the same. When a bit is cleared then that pixel turns
white, and clearing 32K bytes results in the whole screen being cleared
of any information. '

So what we have in this routine is a very fast loop which clears all the
individual bits that make up the screen. If you run this program you
will be able to see how fast it operates. However there are other ways to
write the ’do__it__again’ routine:

* lets clear the screen
move.l ¥#7999.d0 ; counter #32000/4 -1
move.l screen —address,a0 ; place screen address in an

- * address register

', do _ it _again:

clrl (a0)+ ; now clear the screen
dbra d0,do - it — again

This time instead of a byte being cleared a long is cleared. A long is
. equivalent to four bytes so if the counter is divided by four and then de-
1 crem;rlxted by one because of the ’dbra’ then the counter will be the cor-
~ rect value.

: However, the fastest way to clear the screen is probably the method

36 Chapter 4: ds and jsr

shown below as more time is spent clearing the screen rather than loop-
ing. However there is a trade—off here as the source code is longer,
which can be important.

* lets clear the screen
movel #1999,d0 ; counter #32000/4/4 -1
move.l screen . address,a0 ; place screen address in an
* address register

do it _again:
cirl (a0)+ ; now clear the screen
clrl (a0)+
cirl (a0)+
cirl (a0)+

dbra d0,do - it _again

This time as we are using the ’clr.l’ instruction four times in the loop
then we need to divide 32000 once again.

It would be usual to have the ’clear the screen’ routine as a subroutine
in any program of length as clearing the screen is often used. It would
be set up in the same way as ’waiL_for_kcy__pm’ subroutine was us-
ing the ’'movem.l’ instruction. Viz:

clear _ the _screen
movem.l a0-a6/d0-d7,-(sp)
* lets clear the screen
move.l #1999,d0 ; counter #32000/4/4 -1
move.l screen _address,a0 ; place screen address in an
* address register

do _it _again:
cirl (a0)+ ; now clear the screen
clrl (a0)+
cirl (a0)+
cirl (a0)+

dbra d0,do it _again
movem.l (sp)+a0-a6/d0-d7
rts

Chapter 4: ds and jsr 37

By storing the screen in a buffer 32K long then it is possible to rewrite
the buffer back to the screen so that any information that was on the
screen initially will be replaced. This is one use of an 'UNDOQ”’ key in a
lot of programs, eg in an art program we may have done something we
did not like so we press the UNDO key and the screen is restored to the
condition it was prior to the mistake. Obviously it would depend on
when the screen was saved as to what the xcplacedy screen would be like.

Anyway, the source code could look like this:

* EX5.S
* This program finds the address of the screen, prints ‘my _ name’
* string to screen, clears the screen, and prints the string my _name’
. .
again.

gemdos equ 1
bios equ 13
xbios equ 14
cconws equ 9
pterm equ $4c
con equ 2

start:
move H2-(sp) ; get screen RAM address
* returned in d0
trap Bxbios ; call Xbios
addgl H2sp ; correct stack
movel dO,screen _address ; put screen address in symbol

movel ¥®my_name,-(sp) ; put address of string on stack
movew Hcconws,~(sp) ; Gemdos function ’print a line’
trap Rgemdos

addql ®6,sp ; correct stack

* save the screen in a buffer

save _the _ screen:
move.l ¥#1999,d0 ; counter #32000/4/4 -1
move.l screen _address,a0 ; place screen address in an
* address register
move.l - Hscreen _ buffer,al ; address of screen buffer in

38 Chapter 4: ds and jsr
*al
save it —again:
move.l (a0)+(al)+ ; save the screen in
* screen - buffer
movel (a0)+(al)+
movel (a0)+(al)+
move.l (a0)+(al)+
dbra dO0,save _ it _ again

jsr wait _ for _ key . press
jsr clear _ the _screen
jsr wait _ for — key _ press

buffer _ to —screen:

movel #1999,d0 ; counter #32000/4/4 -1
: move.l screen - address,a0 ; place screen address in an
* address register

movel Hscreen - buffer,al ; address of screen buffer in
*al
put - it _ again:

move.l (al)+(a0)+ ; place contents of ’screen buffer’
* to screen

movel (al)%(a0)+

move.l (al)(a0)+

movel (al)+(@0)+

dbra d0,put it — again

jsr wait _ for _key _ press

exit:

* exit from program properly
movew ¥$20,-(sp) ; leave gracefully!
movew Hpterm,-(sp)
trap Bgemdos

REEXTEBEIERRER subm“ﬁnes
wait _ for _ key _ press:
* wait for key press subroutine

move Hcon,-(sp) ; device number (console)

Chapter 4: ds and jsr 39

move B2-(sp) ; BIOS routine number
trap Bbios ; Call Bios

addql ®B4,sp

rts

clear _ the _screen:
movem.l a0-a6/d0-d7,-(sp)
* lets clear the screen
movel ¥1999,d0 ; counter #32000/4/4 -1
move.l screen . address,a0 ; place screen address in an
* address register

do - it _again:
clirl (a0)+ ; now clear the screen
cirl (a0)+
cirl (a0)+

cirl (a0)+

dbra d0,do _it —again
movem.l (sp)+a0-a6/d0-d7
rts

my - name: dcb "Roger Pearson”,0
screen —address: dsl 1
screen buffer: dsb 32000

Now the executable file for this pro is not on the disk! This is
because once assembled the executable file is over 32K in length,
obviously due to the 32K screen buffer. Have a look for yourself if you
have just assembled "EX5.S". Fortunately there is an easy way around
this, as there is no real point in saving 32K of empty space to disk, and
that is to specify that we want the screen buffer tor{em in the ’bss’,
or block storage segment. This means that the 32k buffer is not saved to
disk only the information that we want a 32k buffer after the program
has been loaded. The code for this is to place a ’bss’ before the define
storage directives that need to be specified for the ’bss’. The ’bss’ stores
unitialised data, ie data that may not necessarily be empty of data.
Initialised data is always set to zero, so we can be sure that the space
really is empty. However, in EX5.S data is placed into the buffer over
writing any data in it so it does not need to be initialised to zero first.

40 Chapter 4: ds and jsr

my —name: dcb “Roger Pearson”,0
screen —address: dsl 1

bss
screen . buffer: dsb 32000

When the source code with the altered ’bss screen__buffer:’ is assem-
bled the resultant executable file is only 214 bytes in size! What a differ-
ence. This the executable file on the zzSoft disk.

If you had a software company you could soon impress your prospec-
tive customers with the size of your executable programs by making
sure that you never used the bss!

Note that "bss’ or ’bss’ are both acceptable to the assembler.

Another method of placing an address on the stack is to use the *pea’
instruction, Push Effective Address. EX4A.S shows how ’pea’ is usecfm

* EX4AS
* This program demonstrates the use of the 68000 ’pea’ instruction.

gemdos equ 1
bios equ 13
cconws equ 9
pterm equ $4c

con equ 2
start:
pea my - name ; put address of string on stack using
s
pea

movew Hcconws,-(sp) ; Gemdos function ’print a line’
trap Hgemdos

addgql ®6,sp ; correct stack

* wait for key press
move Hcon,-(sp) ; device number (console)
move R2,-(sp) ; BIOS routine number
trap Bbios ; Call Bios

addq.l B4,sp

Chapter 4: ds and jsr

41

exit:
movew $20,-(sp) ; leave gracefully!
movew Hpterm,-(sp)
trap HBgemdos

* exit from program properly

my - name: dcb "Roger Pearson”,0

42

Chapter 4: ds and jsr

Chapter 5
Addressing Modes

Addressing modes were briefly mentioned in chapter three, but as ad-
dressing modes are part and parcel of the study of assembly language
here is a description of them. Most of this chapter can be used for refer-
ence as and when you need information on a particular addressing
mode — no point in getting a headache just yet!

The 68000 has a total of 14 addressing modes.

The notation 'Dn’, where ’n’ is a register number from 0 to 7 is often
used in as shorthand to describe the data registers, similarly ’An’ for ad-
dress registers 0 to 7. Eg, MOVE.L (An)+,Dn

1. Inherent addressing

In this addressing mode there are no operands since they are already
supplied by the opcode. For example,

Reset
Reset is an 68000 instruction which is used to reset all the peripherals.
2. Data register direct
This mode specifies that the operand should be found in one of the data

mgi;ners. For example move the contents of data register d1 to data regis-
ter dO:

Instruction Before After
MOVE.B D1,D0 dO=fHfHf do=ffffff67
d1=01234567 d1=01234567
MOVEW D1,D0 dO=fffffff do=ffff4567
d1=01234567 d1=01234567
MOVE.L D1,D0 dO=fF{fffff d0=01234567
d1=01234567 d1=01234567

44 Chapter 5: Addressing Modes

An instruction with .b as a suffix only changes the lowest 8 bits of the
destination, and instructions with .w as a suffix only change the low-
est 16 bits of the destination. Instructions with .1 as a suffix change all
32 bits of the destination.

3. Address register direct

In this addressing mode an address register should be one of the ope-
rands. Byte operators (those with .b suffix) are not allowed in this ad-
dressing mode. When using the address register as a destination and a
word operation (suffix w) is used, the destination word is sign—ex-
tended into a long word. This means that during a word transfer into an
address register the upper 16 bits are filled with the value of the most-
significant bit (this is bit 15) of the word. The example below will show

you how it’s done.

instruction Before After

MOVEW A1,D0 dO=fFFffff do=ffff4567
al=01234567 al=01234567

MOVEW DO0,A1 d0=01234567 d0=01234567
al=ffffff a1=00004567 «— ex-

tended

MOVEW D0,A1 d0=0000ffff dO=0000ffff
a1=00000000 al =ffffff < ex-

tended

MOVE.L A1,DO dOo=fFHff d0=01234567

al1=01234567 al=01234567

4. Address register indirect

In this addressing mode, the address register contains the address of the
memory location that points to contents of that address. In assembler
this is being denoted by putting parentheses around an address registers
name, e.g. (a0).

When using word w’ or longword I’ addressing it is necessary that the
address register contains an even number.

Chapter 5: Addressing Modes 45

Instruction Before After

MOVE.L (Al),DO dO=ffHff d0=01234567
a1=00005000 al1=00005000
address $5000 contains 01234567

MOVE.L Do,(A1) d0=76543210 d0=76543210

a1=00005000 a1=00005000
address $5000 now contains 76543210

S. Address register indirect with post-increment

This addressing mode resembles the address register indirect addressing
mode. The only difference is that after having moved or stored the data,
the address register is incremented. The amount incremented depends
on the suffix used in the opcode. If the suffix is .b then the address regis-
ter will be incremented by one. If the suffix is .w then the address regis-
ter will be incremented by two (one word is two b}yts) If the suffix 1s .1
then the address register will be incremented by four (one longword is
four bytes). In assembler this addressing mode is denoted by putting the
?dcgr&s register within parentheses fo]fowed by a + sign. For example:
a0)+.

Instruction Before After
MOVE.L (A1)+,D0 do=feffef d0=01234567
a1=00005000 a1=00005004 «— in-
cremented by 4 '
address $5000 contains 01234567
MOVEW (A1)+,D0 dO=fffffff do=£fff0123
al1=00005000 a1=00005002 <« in-
cremented by 2
address $5000 contains 01234567
MOVE.B (A1)+,D0 dO=fffffff do=ffffffo1

a1=00005000 a1=00005001 <~ in-
cremented by 1
address $5000 contains 01234567

MOVE.L DO,(A1)+ d0=76543210 d0=76543210

46 Chapter 5: Addressing Modes

a1=00005000 a1=00005004
address $5000 now contains 76543210

For instance to search for a character sting until the terminating null
character is found can be implemented like this. Assuming the address
of the string is in address register Al. Note that a NULL is used by
GEM as an end of string marker.

loop: tstb (al)+ ; test to see if there a null. Flag
* in CCR set tol if null found. If not then
bnz loop ; branch if not zero

6. Address register indirect with pre-decrement

This addressing mode resembles the address register indirect addressing
mode. The only difference is that before moving or storing the data, the
address register is decremented. The decrement depends on the suffix
used in the opcode. If the suffix is .b then the address register will be de-
cremented by one. If the suffix is w then the address register will be de-
cremented by two (one word is two bytes). If the suffix 1s .l then the ad-
dress register will be decremented by four (one longword is four bytes).
In assembler this addressing mode is denoted by putting the address reg-
ister within parentheses preceded by a — sign. For example: —(a0)

instruction Before After
MOVE.L —(A1),D0 dO=fFEEEE d0=01234567
d1=00005004 a1=00005000 «— de-
cremented by 4
address $5000 contains 01234567
MOVEW -(A1),D0 do=ffffffff do=ffff4567
a1=00005004 a1=00005002 «— de-
cremented by 2
address $5000 contains 01234567
MOVE.B -(A1),D0 do=fHffffff do=ffffff67
a1=00005004 a1=00005003 «— de-
cremented by 1

address $5000 contains 01234567

Chapter 5: Addressing Modes 47

MOVE.L DO,—(AI) d0=76543210 d0=76543210
al1=00005004 a1=00005000
address $5000 now contains 76543210

7. Address register indirect adressing with displace-
ment

Assembler syntax: w(An) (w stands for word displacement)

This addressing is also rather similar to address register indirect address-
ing. The only difference lies in the fact that before moving or storin,
the data a 16-bit signed displacement is added to the contents of the a&f
dress register (the address register itself does not change). In assembler
this adcfrlmsing mode is denoted by enclosing the address register name
in parentheses preceded by a 16-bit constant. For example: 8(a6) de-
notes the memory location whose address is the contents o¥a6 plus 8.

This addressing mode is very useful for accessing data structures Note if
a $§ is placed before a number then the data is taken to be hex, other-
wise decimal data is assumed by the assembler.

Instruction Before After

MOVE.L 8(A1),D0 dO=fFFFEFEf d0=01234567
a1=00005000 al1=00005000
address $5008 contains 01234567

MOVE.L D0,-6(A1) d0=76543210 d0=76543210

a1=00005006 a1=00005006
address $5000 now contains 76543210

8. Address register indirect with index
Assembler syntax: b(An,Rn.w) or b(An,Rn.])

(R stands for a register).

This addressing mode makes it possible to add a variable index (con-
tained in an or data register) to an address register and also an

48 Chapter 5: Addressing Modes

eight bit signed displacement. The variable index may be either word or
longword. Both the index and displacement are sign extended before

they are added to the address register.
Instruction Before After
MOVE.L 8(A1,A0.L),D0 dO=fFFFEFFfE d0=01234567

a1=00001000 a1=00001000
a0=00078000 a0=00078000
address $79008 contains 01234567

MOVE.L 8(A1,A0W),DO do=fHfff d0=01234567
a1=00001000 a1=00001000
a0=00078000 a0=00078000

note a0.w=8000 —> sign—extend gives ffff8000
address ${fff8008 contains 01234567

MOVEW 8(A1,D0.L),D0 d0=0001fffe d0=00010123
al=00001000 a1=00001000

0001fffe (contents of dO.
00000008 (sign—extended byte displacement)

00001000 (contents of al}}

address $21006 contains 01234567

MOVE.L 8(A1,DOW),D0 d0=0001fffe d0=01234567
a1=00001000 a1=00001000
00001000 (contents of al)
ffffffe (sign—extended contents of dO.w)
00000008 (sign—extended byte displacement)

address $1006 contains 01234567
9. Absolute short addressing
With absolute short addressing it is only possible to specify a 16 bit con-

stant. At execution time the 68000 sign extends the word 1nto a long ad-

Chapter 5: Addressing Modes 49

instruction Betors After

MOVE.L $1234,D0 do=ffffffff d0=01234567
address 1234 contains 01234567

MOVE.L $5000,D0 dO=fHfffef d0=76543210
address $ffff5000 contains 76543210

10. Absolute long addressing

With this addressing mode a long address is supplied. It is very similar
to absolute short adsxes

Instruction Betore After

MOVE.L $12345678,D0 do=ffffffff d0=01234567
address $00345678 contains 01234567

11. Program counter with displacement

Assembler syntax: x(PC) (x is a 16 bit constant)

This addressing mode is the same as address adareg;;:r indirect with dis-

placement. The only difference is that the register is replaced
w1t.h the PC (the PC is in fact also an address register).
instruction Before After
MOVE.L 8(PC),D0 dO=FEEFEEEE d0=01234567
pc=00005000 pc=00005000
address $5008 contains 01234567

12. Program counter with index
Assembler syntax: b(PC,Rn.L) or b(PC,Rn.w) (b is 8 bits)
This mode is the same as address register indirect addressing with index.

Instruction Before After

50 Chapter 5: Addressing Modes

MOVE.L 8(PC,A0.L),D0 do=fFFFeFef d0=01234567
pc=00001000 pc=00001000
a0=00078000 a0=00078000
address $79008 contains 01234567

MOVE.L 8(PC,A0W),DO0 do=ffffffff d0=01234567
pc=00001000 pc=00001000
a0=00078000 a0=00078000

Note: 20.w=8000 —> sign—extend gives ffff8000
afdr&ss $ff8008 contains 01234567

MOVEW 8(PC,DOL),D0 d0=0001fffe d0=00010123
pc=00001000 pc=00001000
00001000 (contents of pc
0001fffe (contents of d0.1
00000008 (sign—extended byte displacement)

address $21006 contains 01234567

MOVE.L 8§(PC,DOW),D0 do=0001fffe d0=01234567
pc=00001000 pc=00001000
00001000 (contents of pc)
fffffffe (sign—extended contents of dO.w)
00000008 (sign—extended byte displacement)

address $1006 contains 01234567
13. Immediate addressing

Instruction _ Before After

MOVE.L #$A1234E5D,D0
d0=00000000 d0=A1234E5D

14. Status condition code register addressing
Assembler syntax: SR or CCR

Chapter 5: Addressing Modes 51
SR = Status Register. CCR = Condition Code Register

This mode is used to control the contents of this register. Changes to
the SR can only be made when in user—mode. Changes to the CCR can
be made in any mode. Note ’SR’and ’CCR’ are reserved words in the as-

sembler, ie don’t use them as labels.

Instruction Before After

MOVEW SR,DO d0=87654321 d0=87653200
sr=3200 sr=3200

MOVEW #$0500,SR sr=3200 sr=0500

Notice that the 68000 was in supervisor mode before executing the in-
struction but after completion it is in user mode. This operation isn’t
possible the other way around.

A summary of the address modes of the 68000.

Syntax Name

Dn Data register direct

An Address register direct

2An§ Address register indirect

An)+ Addpress register indirect with post—increment

;—é Addpress register indirect with pre—decrement
An Adderess register with displacement

b(An,Rn) Adderess register with in

w Absolute short

1 Absolute lon

w(PC) PC with displacement

b(PC,Rn) PC with in

#x Immediate

SR or CCR Status register

b is a byte constant

w is a word constant
lis a long constant
xany of b,lor w

52 Chapter 5: Addressing Modes

n is a register number ranging from 0 to 7
R is a register specifier, either A or D

Chapter 6

Files and the Screen

This chapter looks at how to load files from and to floppy disk, and an
example program loads a DEGAS file and displays it on 2'.-_ screen. The
format oF screen RAM is looked at.

Loading a file from disk is often referred to as ’reading’, and saving a file
to disk 1s often referred to as *writing’.

Reading a file from disk:
There are three stages to loading a file:
1

2
3

Opening the file
Actually reading the file into a buffer.
Closing the file

(1) First a file must be opened. GEMDOS allows 40 files to be open at
any one time and to distinguish between them each opened file is given
a number from which it can always be identified. Even if only one file
is opened a number is always allocated to that file. The number allo-
cated to it is called its *handle’.

The source code for opening a file is:

* open a file
movew ¥#0,-(sp) ; set file attribute
move.l Hfile _name,-(sp) ; address of filename
movew #®$3d,-(sp) ; open function nmumber
trap 43 | ; hello GEMDOS
add.l H8,sp
tst do ; -ve number?
bmi error _routine ; Yes, go to error routine
move.w d0,handle ; store file handle

error . routine:

®ceccccccsaccccscscene

54 Chapter 6: Files and the Screen

eoescscssssssscsssccss

handle: dsw 1
file_name: deb XX.PI3,0

The source code is not complete as the routine ’error routine’ is not
i;lzluded, but it serves the purpose of introducing stage one of loading a

A °PI?’ file is an uncompressed DEGAS ELITE file. DEGAS was the
one of the first art package released for the ST and as such its file format
became the standard used for picture files from then on. *PI3’ refers to a
high res file, whereas *PI2’ is a medium resolution file, and PI1’ refers
to a low res Plcture file. A compressed DEGAS Plcture file changes the
T for a ’C;, so that a high res compressed DEGAS ELITE file E:ss the
extension *PC3’.

To open a file two parameters need to be passed to it — the file name,
and the file’s attribute. The file’s attribute is set when the file is Saved,
and is usually 0, for normal ’read or write’. The different file attributes
are given below:

$00 Normal file, can read and write to it.

$01 File is read only (can’t be deleted or written to)

$02 File is on disk, but does not appear in file selector direc—
tory, ie hidden

$04 System file

$08 File is volume name, ie disk name
$10 File is subdirectory/folder
Normally when trying to load a file a GEM selector box, or more

accurately a GEM dialog box is used. A directory listing is made of all
the files that fulfil the pattern described in the mask on the command
line. For instance when a directory listing of all files with the extension
DOC are needed, then **DOC’ is used. ** is a shorthand way of
saying "anything’, so ***’ would list all of the files on the disk. Using a
file selector box to load and save files is looked at later on.

If the file exists then a non—negative number is returned in register do,
which is the file’s *handle’, and 1s used from now on when ever we refer

Chapter 6: Files and the Screen 55

to the file. If a negative number is returned in dO, the ’tst’ instruction
sets the in the condition code register (ccr). Next the ’bmi’ instruc-
tion is used to alter the course of the program if the ’tst’ instruction ac-
tually set the ccr negative flag to 1, (set actually means ’set to one’, ’re-
set’ equals ’set to zero’). bmi’ means ’branch if minus’ (minus =nega-
dwzidmtllczi in dc;sur l:ase Elms bxf-;nc}tito ’error_routil:ie’. ’ertfr_mutine’
WO en y a 'file not found’ message, possibly with various o

tions,forinstatl:cetotryandﬁndtheﬁle i pﬁezam le ofthiswﬁ-l
be included in the final source code example at the end of this chapter.

In the debugger all 16 bits of the Status Register (sr) are shown, for ex-
ample, when I used the debugger to examine EX6.S the sr showed the
fo].lpowing when ’tst’ was single stepped:

before

sr 8300 —» User pri3
after

sr 8308 —> User pri3 N

showing that the negative had been set. The last °8’ in the 8308
shows bit 3 (counting from 0) has been set, and the debugger displays an
"N’ to also remind us that the negative flag has been set. :

The GEMDOS error codes returned in register d0 when file loading or

saving is not successful are as follows:

-32 Invalid function number

-33 File not found

—34- Path not found (see explanation below of *path’)

-35 Too many open files (no handles left)

-36 Access not possible

—37 Invalid handle number

-39 Not enough memory

-40 Invalid memory block address

—46 Invalid drive specification. Ie drive does not exist.

—49 No more files (used when searching directories/folders)

> refers to the sgecifiwion that is given whenever a file is searched
r. For instance folders (or directories) are often used to collect to-
gether a certain type of file, so that for instance all DEGAS picture files

56 Chapter 6: Files and the Screen

may be placed in a folder called "PICTURES’ on a disk in drive B’. The

way a “PI3’ file would be accessed would be as B:\PICTURES*PI3’-
this would be the PATH name. However, if the name "PICTURES’ was
misspelt then the path would not be found and error code —34 would
be returned in register dO. :

The number returned in dO (see chapter four) is in the form
$FFFFFFxx, eg $FFFFFFDF which is —33 decimal, the code for “file
not found’. Now how can we convert the negative hex numbers found
in dO when a file Open (or Save or Load) error results, to the negative
decimal numbers and thus know what error actually occurred? In as-
sembler this is quite simple, all we have to do is to use the 'neg] d0’in-
struction which negates what ever is in register dO, and if the number is
already negative then the result will be the positive number we want.

However the assembler will convert negative decimal numbers to hex
for us:

* £X6.S Try to open a DEGAS file and check to see whether it
* exists

move.w #0,-(sp) ; set file attribute

move.l tifile_name,-(sp) ; address of filename
move.w 8#$3d,-(sp) ; open function number
trap un1 ; hello GEMDOS
add.l H8,sp
tst do ; -ve number?
bmi error—routine ; yes, go to error routine
move.w dO,handle ; store file handle
bra exit

error_routine:

* a couple of examples
cmpi.l 8-33,d0

beq error-message
cmpi.l 8-34,d0

beq- error-message
bra exit

error-message:
move.l Herror,-(sp) ; put address of string on stack

3 Chapter 6: Files and the Screen 57

3 move.w 19 ,-(sp) ; Gemdos function ’print a line’,
~ ¥Cconws’
addq.l 16,sp ; correct stack
~ * wait for key press
: move #2,-(sp) ; device number (console)
move #2,-(sp) ; BIOS routine number
trap n13 ; Call Bios
addq.l B4, sp

 exit:
; move.w 120,-(sp) ; leave gracefully!
move.w BS$4c,-(sp)

trap 81

~ error: dcb ’Cannot find file or path not found’,0
~ handle: dsw 1
~ file_name: dcbhb ’XX.PI3’,0

Note to test the workings of this program "XXPI3’ should not exist on
~ the disk!

~ Note that part of EX2.S has been utilised in this example.

Most of the code should be familiar to the reader except for the follow -
ing

' cmpi.l 1#-33d0 ; Compare immediate data -33

beq error-message

- This piece of code can be translated as compare —33 with what ever is

~ in register dO. If —33 is the same as the contents of dO then branch to
- ‘error__message’. ‘cmp’ actually subtracts the source operand from the
 destination operand and sets the condition flags accordingly. However,
- the result of the subtraction does not affect the destination register.
- Thus if the comparison is equal to zero then the ’beq’ instruction
3 ila)bgetllch if equal to zero’ will send the program to the ‘error__message:’

»‘Also:

58 Chapter 6: Files and the Screen

bra exit

*bra’ equals ’branch always’ to the label in the operand field, and in this
case makes sure that if tzz file did exist that we could exit properly as

the program would branch straight to ’exit:’. If *bra exit’ was not placed
there and the file had been found then the program would continue
with ’error__routine’, not what would be needed!

Note that it is not possible to use apostrophes in a string as the assem-
bler would expect a null after it. So this would result in errors being re-
ported by the assembler, for instance:

error: dcb ’Can’t find file or path not found’,0

The errors printed by the assembler were:

Pass1 (Garbage after instruction. No ’; before comment)

Assembler: line 51 (Non—terminated string)

The second error message is the more accurate one.

So far we have looked at opening a file but haven’t actually opened one!
However, this will be rectified soon, as on the supplied disk is a DE-

~ GAS .PI3 file (med res users should use the .PI2 file instead), called
" PICT1.PI3 which will be opened, loaded and closed.

(2) Reading a file and (3) closing a file:

To read a file we have to decide where we are going to place it: in a
buffer until we need it, or to place it directly to the screen, which in es-
sence is a 32K buffer.

When a file is opened a file handle is returned, however GEMDOS allo-
cates numbers to the standard devices too which means we can use these
numbers when writing to them:

0 standard input (usuallaﬁ console?
1 standard output (usually console)
2 RS-232

- Chapter 6: Files and the Screen 59

3 printer—standard list
6+ and up- file handles

. We could also get the screen address from the Xbios function number 3
~ which returns the address of the screen in register dO.

~ In order to display a DEGAS file we need to take a closer look at how a
. DEGAS file is organised. When a DEGAS screen is saved to disk the
- first 34 bytes — known as its header — contains picture information.
- The first word (2 bytes) contains the resolution of the file:

1= low res
2= med res
3= hires

- The rest of the header contains the colour palette, which is made up of
~ 16 words, with each word corresponding to a colour. The ST can dis-
- play 16 colours in low res, 4 colours in med and 2 in high res (black and
- white). Note a 34 byte header is always used even when in high resolu-
tion despite only 2 colours being used.

- The rest of the DEGAS file contains 32K or 32000 bytes of bit image
. information of the DEGAS screen. ’K’= Kilobytes which is a equiva-
.~ lent to approx 1000 bytes of data. Approximately as programmers when
~ talking about kilobytes of RAM or data do not use it as a completely
~ accurate measurement as 1 Kilobyte of RAM or data is actually 1024
' of data, or 2 to the power of 10. "Bit image’ refers to the fact that
~ the screen whether monitor or TV is made up of pixels (Plcture ELe-
. mentS), or little dots of light that are either on or off for black and
white displays or are coloured for colour displays. A monitor or TV
- when connected to a computer displays what is held in screen RAM. As
 each dot of the display can be held in the screen RAM as a bit then the
3 dlsplz is said to be bit—mapped as each pixel on the screen corre-

- sponds to a bit of screen RAM. Even text is drawn using a number of
3 gs. An ’A’ can be crudely represented like this:

. oreven better like this: see diagram over the page

60 Chapter 6: Files and the Screen

11

diagram 6:1 bit map of ’A’

This is why ASCII codes are used as the number is used to fetch the
corresponding bit i onto the screen. Fortunately it is done so fast
that when we pressuTE:y on the ST’s keyboard we don’t even notice a
delay, although a lot of computing has to happen to get the text onto
the screen. Each line ofpixcﬁacrossthescxeenismﬂedasmnline, as
tlﬁc electron beam that is used in TV’s and monitor(sl sb(;ns or refrz(l:m
the screen approximately every 60 times secon moving from
the top to the bottom of the display. A E: resolution DEng\S file
stores each 8 pixels in each byte, so each pixel is represented by a single
bit. The first lz;;represents the first eight pixels in the top left hand
corner of the display, and each succeeding Eyﬁe represent the next pi-
xels continuing to the right. This is the way the screen is also repre-
sented in screen memory. See high and med resolution mode figures.

: '3 Chapter 6: Files and the Screen 61

*%39

; LTI T ITTITTTOT]
Mono screen pixels

T

bute 1 byte 2 l etc

Screen RAM

y
399

diagram 6:2 High resolution screen format

8
Colour pixels o

e NS [| | colour Index

-~
~
/ B 2 \\
(MM \EUIHIUIDI&I

1.,’, bute 1 | bute 2 bute 3 | byte 4....
9

Screen RAN

diagram 6:3 Medium resolution screen format

- As a high res screen has 640 pizxels or dots across then it needs 640/8
 bytes to represent one (scan) line of the display, which is 80 bytes per
 line. The next line is represented by the next 80 bytes, and as the high
- res ATARI monitor has 400 dots down, then the screen can be repre-
- sented by 80 bytes *400 which equals 32000 bytes, or 32K. This is why
. the high res monitor is said to have resolution of 640*400.

Med res= 640 * 200, 4 colours

62 Chapter 6: Files and the Screen
Low res= 430 * 200, 16 colours

As has been stated before a bit can hold the value of 1 or 0, so as the
high res screen displays only black and white then each bit can repre-
sent black (on) or white (off). However the med res screen can display 4
colours so 2 buts are needed to store this information as 2 bits can yield
4 possible combinations:

Bit pattern value

00 0
01 1
10 2
11 s

Each 16 pixel group of dots on the screen is held in screen RAM as two
consecutive words. The first word supplies the low bit of colour infor-
mation whilst the next word holds the high bit of colour information.
These bits are combined to give a value which is called the colour index
which enables us to select the required colour from the palette. The pa-
lette holds 16 words of data each of which contains the colour settings.
Bits 0—3 are used for the blue component, bits 4-7 for green, bits 8-11
for red. Bits 12—15 are not used. As 3 bits can represent the required 8
different levels of colour intensity the last bit in each 4—bit group is not
used; the last 4 bits of the word are also not used. As each word repre-
sents 8 blue of colour intensity, and 8 green levels of colour inten-

sity, and 8 red levels then it is possible to have 8*8*8 (512) shades of col-
our on the ST, although only 16 may be displayed at once (in low res).
Some software art programs have overcome LEIS limitation however.

Similarly for low res except 16 colours can be displayed so 4 bits are

needed to represent 16 colours, and 4 consecutive words in memory are
needed to describe a single pixel.

Chapter 6: Files and the Screen 63

Colour Index

—phBlue Intensity

.12845‘5?.9‘%%5%* ——hGreen Intensity
=) Red Intensity
Colour Palette l

To Hardware Display

diagram 6:4 Colour palette arrangement

If we want to display the DEGAS picture using the correct colours then
we need to set the palette taking Lge information from the DEGAS file

T.

When the ST is first booted up it is set up using a icudlz{a.leme set-
ting, ie the different colour settings that are used for the desktop. If we
xms’the first 34 bytes from the DEGAS file into a specific buffer that
we set up then it is possible to use the Xbios function number six, ’se-
tpalette’, which allows a new colour palette to be set by using this rou-

tine.

This will read the first 34 bytes into the buffer whose address is held at
the label ’pic__header:’

move.l Hpic_header,-(sp)

move.l #34,-(sp) ; number of bytes to read
move handle,-(sp)

trap |

add.l 18,sp

pic_header: dsb 34

This program fragment will set the palette to the one the DEGAS file
was created with:

64 Chapter 6: Files and the Screen

* use new palette

move Bpic_header+2,-(sp) ; address of palette
move #6,-(sp) ; set palette

trap B14 ; call Xbios

add.l B6,sp

Why ’pic__header+2’? The first 2 bytes or word of the ’pic__header’
bu.fgr contains the screen resolution, and we need to skip past this as
the ’setpalette’ function does not expect nor want this information.

Note that on exiting to the desktop or text editor the new palette will
‘continue to be used. We should really reset the palette back to what is
was prior to setting the new palette. Fortunately there is a fairly easy
solution this problem which will be shown in EX8.S in chapter seven.

So placing the file on the screen would be entail the following:
* EX7.S Open and read a DEGAS file to the screen.

*open
move.w #0,-(sp) ; set file attribute
move.l Hfile_name,-(sp) ; address of filename
move.w #$3d,-(sp) ; open function number

trap 23 | ; hello GEMDOS

add.l #u8,sp

tst do ; -ve number?

bmi general _error ; yes, go to error routine

move.w d0,handle ; store file handle
* read palette data
move.l Bpic_header,-(sp) ; pic_header address

move.l B34,-(sp) ; number of bytes to read
move handle,-(sp)
) |

trap

add.l ug,sp

tst do ; -ve number?

bmi general_error ; yes, go to error routine

* use new palette

Chapter 6: Files and the Screen 65
move.l Hpic_header+2,-(sp) ; address of palette

move ¥#6,-(sp) ; set palette
trap ®14 ; call Xbios
add.l #6,sp

* get screen address
move ¥3,-(sp)
trap ®14
add.l ¥#2,sp
move.l d0,screen_address
* read
move.l screen_address,-(sp) ; address of buffer
move.l #32000,-(sp) ; buffer size/mumber of
* bytes to read
move.w handle,-(sp)
movew BS$3f,-(sp)
trap ¥1
add.l ®¥12,sp
tstl dO ; see if error
bmi general_error

* close
move handle,(sp)
move #$3e,-(sp)
trap ¥1
add R4,sp
tstl d0
bmi general_error
bra wait

general_error: :

* a couple of examples
cmpi.l #-33,d0
beq error_message
cmpi.l 8#-34,d0
beq error_message
bra exit

error_message:
move.l Herror,-(sp) ; put address of string on stack

66 Chapter 6: Files and the Screen

movew H9,-(sp) ; Gemdos function ’print a line’,
*Cconws’

trap 23 |
addq.] B6,sp ; correct stack
wait:
* wait for key press
move #2,-(sp) ; device number (console)
move B2,.-(sp) ; BIOS routine number
trap 813 ; Call Bios
addq.l B4,sp
exit:
move.w £120,-(sp) ; leave gracefully!
move.w #$4c,-(sp)
trap ni
error: dcb ’An error has occurred!,0
handle: dsw 1

file_name: dcb ’PICLPI3,0
screen_address: ds.1 1

Jbss
pic_header: ds.b 34

Chapter 7

Restoring the Palette and Files

This chapter continues where chapter six left off, and looks at restoring
_tul::‘falctte before exiting a program. File creation (saving) is also exam-

Fortunately there is an easy way of restoring the palette after using a
DEGAS file. What we need to do is to save the palette that is in use
prior to altering the palette from the loaded DEGAS file. The BIOS
provides a way of doing this with the call *Setcolor’, which allows the
changing of a colour in a single hardware colmr. However, by
passing a negative value we can read the values i of changing them
- with the result in register d0. The ’setcolor’ assembly language for-
mat looks like this:

move Hnewcolor,-(sp)
move Bregister,-(sp)
move R’7,-(sp)

trap n14

addq.l B6,sp

Where register is a number from 0 to 15, and newcolor is a2 word con-
taining 0—$777. See previous chapter.

So all we have to do is to set up a loop to read each palette setting and
before we exit reset the palette with ’Setpalette’, Bios call 6.

* this program fragment reads the colour palette from the colour
* registers into a buffer called ’palette_buffer’.

move.l Bpalette_buffer,a3
move.l #15,d3

read_again:

move B-1-(sp) ;read contents
move d3,-(sp) ; counter from 15 to 0

68 Chapter 7: Restoring the Palette and Files

move 87-(sp) ;’Setcolor’

trap Bi4

addq.l Be6,sp

move do0,(a3)+ ; place contents of d0 in palette_buffer
sub u1,d3

cmpi.b r0,d3

bge read_again

palette_buffer: ds.w 16

This program fragment sets up a loop so that the "setcolor’ call can be
accessed 15 times. Each time the trap is called d3 is reduced by 1 by the
instruction ’sub #1,d3’. Then the contents of d3 are compared to zero,
‘*mpi.b #0,d3. The mnemonic ’cmpi.b’ means ’compare immediate
data’. If d3 is not zero then the ’bge’ mnemonic sends it back to the
*read__again:’ label. *bge’ means ’branch if greater than or equal to zero’

After the trap has been called register dO contains the information we
need so it is placed in the place pointed to by the address in register a3.
In other words a3 contains ’paﬁ:otte_buffer’ address and the operands
’d0,(a3)+” says find the address in a3 and put dO there, and then
increment that address by a word. This coulcr have also been written

like this:
move do,(a3)
add B2.a3

but (a3)+ does the same job. Note that adding 1 to a3 would increment

itbyabyte,add.inﬁzmcrementsﬁbyaword(Zbym,andaddin 4
increments a3 by a long (4 bytes or 2 words).) .

* EX8.S Open and read a file to a buffer, display DEGAS file
* to screen. Reset the palette before exiting.

* get palette
move.l Bpalette_buffer,a3
move.l #0,d3

read_again:

e ol

Chapter 7: Restoring the Palette and Files 69

move B-1,-(sp) ; read contents

move #3,-(sp) ; counter from 15 to 0
move u7,-(sp) ; Setcolor

trap 814

addq.] 86,sp

move do,(a3)+ ; place contents of d0 in
* palette_buffer

add n1,d3 s counter

cmpi.b 116,d3

bne read_again

open
movew 80,-(sp) ; set file attribute
move.l Hfile_name,-(sp) ; address of filename
move.w #$3d,-(sp) ; open function number
trap 2] | ; hello GEMDOS
add.l u8,sp
tst do ; -ve number?
bmi general _error ; yes, go to error routine

move.w d0,handle ; store file handle

* read palette data

move.l Hpic_header,-(sp) ; pic_header address
move.l #34,-(sp) ; number of bytes to read
move handle,-(sp)

movew BS$3f-(sp

trap 81

add.l "12,sp

tst do. ; -ve number?

bmi general_error ; Yes, go to error routine

* get current screen res

move 14,-(sp)
trap Bi4
addq.] H2,sp

* res returned in d0

70 Chapter 7: Restoring the Palette and Files
move pic_header,d1 ; get res of DEGAS file

cmp d1,do ; compare to actual res in
* use
bne error-message

* use new palette

move.l Bipic_header+2,~(sp) ; address of palette

move 16,-(sp) ; set palette
trap Bi4 ; call Xbios
add.l 86,sp
* get screen address
move #3,-(sp)
trap 814
add.l B2,sp
move.l d0,screen_address
* read ;
move.l screen_address,-(sp) ; address of buffer
move.l #32000,-(sp) ; buffer size/number of
* bytes to read

movew handle,-(sp)
move.w B$3f,-(sp)

trap o3 |

add.l B12,sp

tstl do ; see if error

bmi general_error
* close

move handle,(sp)

move B$3e,-(sp)

trap ui

add B4,sp

tst.l do

bmi general_error

bra wait

general_error:
* a couple of examples

Chapter 7: Restoring the Palette and Files

71

cmpi.l 8#-33,d0

beq error-message
cmpi.l R1-34,d0

beq error-message
bra exit

error-message:
move.l Herror,-(sp) ; put address of string on stack
move.w 19 -(sp) ; Gemdos function ’print a line’,
*Cconws’

trap 81
addq.l B6,sp ; correct stack
wait:
* wait for key press
move B2,-(sp) ; device number (console)
move H2,-(sp) ; BIOS routine number
trap n13 ; Call Bios
addq.l B4,sp
exit:
* reset palette
move.l Hpalette_buffer,-(sp) ; address of old palette
move 16,-(sp) ; set palette
trap n14 ; call Xbios
add.l B6,sp

move.w #20,-(sp) ; leave gracefully!
move.w H#$4c,-(sp)
trap 23 |

error: dcb ’An error has occurred”,0

handle: dsw 1 y
~ file_name: dcb ’PICLPI30
- screen_address: ds.l 1 i

palette_buffer: ds.w 16

bss

pic_header: ds.b 34

~ What if we wanted to load the DEGAS file from another disk drive or

72 Chapter 7: Restoring the Palette and Files

from another path or both. For instance say PIC1.PI3 was on drive B,
then we should write:

file_name: dc.b ’B:\PIC1.PI3’,0

Then the program would go to the correct drive and load PIC1.PI3
from there. Drive A: would not be accessed. But what if the DEGAS
was in a folder called ’PICS’. Then we would write:

file_name: dec.b ’B:\PICS\PIC1.P13’,0

This time the program would try to load the DEGAS file from the
folder "PICS’, on drive B:. Of course if the folder or the file did not ex-
ist then an error would be returned in register dO.

You may be wondering why the GEM file selector box has not been
used to select a DEGAS picture. The answer to this question is that to
use anything connected with GEM we first need to do quite a bit of set-
ting—up which will be looked at in the next chapter.

This part of the program neatly illustrates the difference between using
a l1;11ll>el as an address and the contents pointed to by the address of that
label:

move pic_header,dl ; get res of DEGAS file
cmp d1,do ; compare to actual res in use
bne error-message

’move pic__header,d1’ puts the contents of the address referenced by
the labef ’pic__header’ into d1. Prior to this the current resolution be-
ing used was placed in dO. They are compared to each other — if th

are not equal ("bne’ means branch if not equal) then the program Wiﬁ

branch to ’error_message’. Loading the incorrect resolution DEGAS
screen will not help at all! And this test helps to bypass this possibility.

If move.]l #pic__header,d1’ is used then the actual address of the label
’pic__header’ would be placed in d1. However, by using ’move
pic__headerd1’ the (word) contents pointed to by the address
’pic__header’ are placed in d1. This is extremely useful as most assem-
bly language programming makes use of this feature, and it can lead to

Chapter 7: Restoring the Palette and Files 73

some elegant programming solutions.

If ’move pic__header+2,d1’ is used then the contents of the address
"pic__header’ plus 2 bytes would be placed in d1. Note that the address
accessed by this method must always be on an even boundary so that
‘move.l #pic__header+3,d1’ would result in an address error (3 bomb
icons on screen) as odd addresses cannot be accessed. Similarly, *move
pic__header+3,d1 would also result in 3 bombs on the screen. How-
ever, ‘move.b pic__header+3,d1’ is ok as in this case only a byte is
fetched and altﬁough the address is odd we are accessing the contents
not trying to refer to an address per se.

Whenever bombs a on the screen the program has invariably ter-
minally ’crashed’, agﬁe result is either thE ST will *hang up), iz the
mouse pointer, keyboard and screen will freeze or if you are lucky you
will be returned to the desktop or the calling program. Even if you are
returned to the calling program it may stillie necessary to cold—boot
your ST either by the off/on switch, or soft—boot it by pressing the re-
set button on the back at the left of the ST. See chapter 21 for a list of
‘exception handling’ whenever severe program errors occur.

Writing a file to disk:
This process is very similar to loading a file from disk.

Note that in the following example the current palette is first placed in
a palette buffer, and then the screen address is ound, and the current
resolution of the screen is also found. These factors are needed for the
DEGAS header. As 32000 bytes are saved to disk a check as to whether
this actually happens is done. This is quite easy as when a file is written
to disk the amount that is actually saved to disk is returned in dO, after
. the writing to disk has finished. It is easy to check the amount re-
~ turned mti the amount that was wanted to be saved and report an er-
. ror to the user advising a full disk. In the example the ’general__error’
- routine is used if a fu.lf disk is found but a more specific error m:

- would, of course, be used in practise. This time a friendl message advis-
~ ing the user to press any is placed on screen, followed by the
. GEMDOS call *Crawcin, which waits for any key to be pressed but
does not echo (show) it to the screen.

74 Chapter 7: Restoring the Palette and Files

* £X9.S Save and Close a 32K file (screen) to disk in DEGAS
* format. Also check to see if disk is full after 32K is saved.

start:
move.l Hpic_head+2,a3 ; place buffer address in a3
move.l 80,d3 ; counter
* get contents of palette
read_again:
move 8-1,-(sp) ;read contents
move d3,-(sp) ; counter from 15 to 0
move B7-(sp) ; Setcolor
trap B14
addq.l Be6,sp
move d0,(a3)+ ; place contents of d0 in
* palette_buffer
add #1,d3
cmpi.b #17,d3
bne read_again
* get screen address
move #3,-(sp)
trap B14
add.l H2,sp
move.l d0,screen_address
* create file
move 80,-(sp) ; read/write status
move.l Bfile_name,-(sp) ; address of filename
move 8#83C,-(sp)
trap 223 |
addq.l B8,sp
tst do
bmi general_error
move d0,handle ; get handle in handle’

* get current screen res
move 14,-(sp)

Chapter 7: Restoring the Palette and Files

75

trap
addq.l

B14
B2,sp

* res returned in d0

* write palette file

move d0,pic_head
move.l Hpic_head,-(sp) ; address of buffer
move.l B34,-(sp) ; number of bytes to save
move.w handle,-(sp)
move.w #$40,-(sp)
trap 23 |
add.l B12,sp
tst.l do
bmi general_error
* write 32K screen RAM file
move.l screen_address,-(sp) ; address of buffer
move.l 832000,-(sp) ; 32K of RAM to save
move.w handle,-(sp)
move.w 1$40,-(sp)
trap 23 |
add.l Ri12,sp
tst.l do
bmi general_error
move.l d0,saved_amount

* close file
move

bit

general_error:

handle,(sp)
#383e,-(sp)
=3 |

B4,sp
do
general_error

#32000,saved_amount ; see if 32000 bytes were

general_error ; if not then disk full
wait

76

Chapter 7: Restoring the Palette and Files

* a couple of examples

cmpi.l

error-message:
move.l
move.w
*Cconws’
trap
addq.]
wait:
move.l
move.w
*Cconws’
trap
addq.l

8-33,d0
error-message
RB-34,d0
error-message
exit

Herror,-(sp) ; put address of string on stack

19 -(sp) ; Gemdos function ’print a line’,
#1

B6,sp ; correct stack

HBmessage,-(sp) ; put address of string on stack

19 -(sp) ; Gemdos function ’print a line’,
33 |

16,sp ; correct stack

* wait for key press

move #7,-(sp) ; Get key, no echo
trap 23 | ; Call GEMDOS
addq.l B2,sp
exit:
move.w £120,-(sp) ; leave gracefully!
move.w B$4c,-(sp)
trap 23 |
erTor: dchb ’An error has occurred’,0
message: dcb ’Press any key to exit’,0
handle: dsw 1
file_name: dcb ’SAVE_PIC.PI3’,0
screen._address: ds.I 1
palette_buffer: ds.w 17
bss
pic_head: ds.b 34
saved_amount: ds.l1

http://ds.Il

Chapter 7: Restoring the Palette and Files 77

There are a couple of interesting features in this source code, checking
for a full disk is one:

cmpi.l 132000,saved_amount ; see if 32000 bytes were saved
bit general _error ; if not then disk full

Here the amount that we expect to be saved 32000 bytes, is compared to
the actual amount saved. Previously the actual amount saved was placed
in ’saved__amount’, and after the file is closed the check is made.

Also by finding the actual screen res in use at the present time we can
then use this result to place in the DEGAS header:

* get current screen res

move B4,-(sp)
trap B4
addq.l B2,sp

* res returned in d0

* write palette file
move d0,pic_head

’move dO,pic__head’ will place the current resolution at the start of the
header which is where DEGAS expects to find it. Without this value
here DEGAS will not load the file.
Strictly speaking all the example programs so far have been TOS pro-
s, usually identifiable from tEe "TOS’ extension (although PRG’
as been used for convenience). TOS programs do not make use of
GEM or the mouse, which is what we have been doing, although it
does not really seem to matter what extension is given with such small
examples.

78 A Chapter 7: Restoring the Palette and Files

Chapter 8
Mono Pics to Low Res

This chapter looks in detail at converting a high resolution DEGAS file
to low res and displaying it on screen.

btst and bset

As the *btst’ — bit test and ’bset’ — bit set instructions are used exten-
zx;cginthcsoumecodeitwouldbeusefultolookatthsebeforepro—
ng.

The ’btst’ instruction allows the programer to test any bit in a register
whether it is the actual contents of the register or a pointer to an area of
memory, eg ’btst #15,(a0)’ Here the bit tested is bit 15 (counting from
0), and in an area of memory referenced by the address register a0. The
parentheses around a0 tell us that we want to refer to the contents of the
address held in register a0.

If register d0O held the hex value $Of -
(%00000000000000000000000000001111), but we did not know this,
~ then a simple ’btst #0,d0’ would test bit 1 for us. By using the branch if
4 :}ua.l to zero) ’beq’ instruction immediately after the test then we co-
- uld tell what the result of the test was. The zero flag in the ccr would be

set to one if the bit tested was zero. In this case the result would be that
- the ccr zero flag would be not be set to 1 and and the branch if equal to
zero condition would be not be fulfilled.

’btst’ using immediate data on a register can only be used as "btst.l}
- whilst testing a bit in memory only a ’btst.b’ is allowed. The assembler
- defaults to these values when they are not specified.

- To set a bit (to one) in a register or in memory, ’bset’ is used in a simi-
- lar way that ’btst’ is described above. It also has the same byte and long
restrictions.

80 Chapter 8: Mono Pics to Low Res
Converting

Sometimes you may wish to convert mono pictures into colour and
vice—versa. It is in operations like this that assembly language comes
into it’s own — high level languages such as Basic and C cannot com-
pete with the sheer speed that is offered to the programmer by writing
1n assembly language.

This routine loads a high—res DEGAS picture from a disc and converts
it into low resolution, displaying it on the screen. Obviously, this rou-
tine must be run in low-res — otherwise garbage will result!

If you were to look closely at part of a low—res screen and compare it to
a high—res screen, you would see that low—res pixels are four times the
size of high—res pixels

HI-RES LO-RES
16 pixels 4» pixels

diagram 8:1

The basis of this high to low—res conversion is that we take a grid of
four high—res pixels and convert them into one low—res pixel.

HI-RES LO-RES

diagram 8:2

On a high—res picture any pixel can have one of two states — on or off

Chapter 8: Mono Pics to Low Res 81

— black or white. Some areas of high—res pictures may appear to be dif-
ferent shades of grey, this is because the eye cannot perceive the indi-
vidual pixels but instead perceives the density of black pixels making us
think that we see an area of grey.

With a low-res picture things now begin to get rather more compli-
cated. Instead of just being on or off a pixel can now have one of six-
teen different values or colours and each colour is made up of three indi-
ces — one for red, one for green and one for blue! The actual values for
each colour are stored in an area of RAM called the palette. If the ST
finds that a pixel is set to be, for example, colour number 10 it looks
into the palette and finds the exact amount of red, green and blue light
to tell the monitor to transmit.

Setting the palette

There are two XBIOS calls that allow the p. er to set the palette
c?l?hurs - XBIOS 6 and XBI&)S 7.l Both of :sale cal)ls l;:ctlume that one
of the parameters passed is the colour (RGB values) that you require.
This parameter must be passed as a word. The easiest way of doing this
is to use a 3 digit hexadecimal fi — the first figure corresponds to
red, the second to green and the third to blue. On a ST each figure may
have a value between 0 and 7 inclusive — the higher the number, the
brighter that colour. However, the STE can display many more colours.

- Examples $700 = red
$007 = blue

$070 = green
$077 = yellow

In practice, using this system, if equal amounts of red, green and blue
- light are mixed, the resulting colour will be black, white, or a shade of
- grey.

Elh:s routine firstly sets the first five colours of the palette as per this ta-

Palette number/ Palette RGB Resulting colour
source pixels black

0 $000 White

82 Chapter 8: Mono Pics to Low Res

1 $222 Light grey
2 $444 Mid grey
3 $666 Dark grey
< $777 Black

Next a2 bﬁ 2 grid of the high—res picture is sampled and the density of
black pixels is calculated by simply counting them. The value returned
from &.IS calculation is used as the colour number for the correspond-
ing pixel that is to be set in the low—res picture.

EG. If the pixel count finds that 3 out of the 4 pixels are black (which
would appear to be a dark Eey};he resulting low—res pixel is set to be
o dark grey.

colour number 3 which is
In this way fout high res pixels are converted into a single low—res pixel.
Bits and planes

The whole operation is made slightly more difficult due to the fact that
the ST holds different resolution screens in memory in different ways.
'I:helhigh—res screen is a simple bitmap — each bit corresponds to one
pixel.

Pixels

1/108(111(8(811(8] Byte

diagram 8:3

The low-res screen is much more difficult. As there are a total of 16
possible colours (0 to 15) that each pixel could be, four bits are required
to determine the colour of each pixel. This is due to the fact that if the
number 15 is reﬁ)resented as a binary number (15=%1111), four binary
digits and therefore four bits are required (remember: the term ’bits’

Chapter 8: Mono Pics to Low Res 83
means binary digits). This would be fine if these four bits were held

consecutively in memory, but they’re not!

The STs video display uses a series of ’planes’ A high—res screen needs
1 plane, a med-res needs 2 and a low—res 4. The amount of planes
equals the amount of bits required to represent the largest possible col-

our number.

high—res 2 colours (%0-%1) 1 plane required
med-res 4 colours (%0-%11) 2 planes required
low—res 16 colours (%0-%1111) 4 planes required

A word of data for the first plane is followed by a word of data for the

next plane and so on. In a low-res screen:—

[——1 word
1 byte-
|] | | | |]
Plane 1 Plane 2 Plane 3 Plane 4

diagram 8:4

To find the colour of any one pixel we must test the relevant bits from
each plane. For example to find the colour of the first pixel on the
screrssn,wemusttaket e first four words and test bit 31 of each of these
words.

O T T I I T T T T T T T piels

(16118111]80011811]61111811[11111181]11811181[11811111 |16888888] 81818181

COLOUR MWo. %1181 = 13

diagram 8:5

84 Chapter 8: Mono Pics to Low Res

* EXAMPLELS
; Finding the colour of the top left pixel of a low-res screen

; get screen address

move.w #3,-(sp) ;opcode

trap ni4 ; XBIOS

addq.l "2 sp ; tidy stack

move.l d0,a0 ; the screen address

cirl d1 ; make some space
btst #15,(a0) ; plane ®#1
beq p2 ; is it set?
bset 8o,d1 ; yes
p2: ;or no?
btst #15,2(a0) ; plane #2
beq p3 ; as before
bset B1,d1
p3:
btst #15,4(a0) ; plane 8#3
beq pd
bset B2.d1
p4:
btst 815,6(a0) ; plane 84
beq end
bset no,d1
end: ; the colour number of the first

; is now in register d1

The heart of the routine

This routine starts with various "housekeeping’ duties such as opening
and closing files, finding the address of the screen, and so on. As these
are explained in full earlier in this book, we shall ignore these and
straight to the heart of the routine — the part that actually converts the
picture.

The whole routine is contained within three nested loops — we shall
call these the outer, middle, and inner loops.

Chapter 8: Mono Pics to Low Res 85
The OUTER LOOP processes a horizontal line (known as a scan line).

The MIDDLE LOOP reads two long words (64 pixels) from the high—
res picture and writes four words (16 pixels) to the low—res picture.

The INNER LOOP is the actual conversion process.

It is worth taking a closer look at the MIDDLE and INNER loops. If
we start at the beginning of the picture, we read the first long into dO
and another long, 80 bytes after the start of the picture, into d1. This
offset of 80 bytes allows us to read the second line of the picture — this
is required because we sample a 2x2 grid of pixels.

A value of 31 is moved into d4 — the comment calls this a ’bit counter’.
This the number of the bit to test of r?lstﬂs dO and d1. The first time
through the loop, this will equal 31 and then 30, the next time through
is wdF equal 29 and 28 etc.

/ Bit number

3130 39 27 26 25 24 23 22 21 20 19 18 17 16 etc

dBcontains [[,[,f,f I | I [T I 1 0 P 1 J 11
flemtatns (1T J1LE)E T P LD VB B4
ist time
l 2nd time
BHM pixel grid
diagram 8:6

- After testing these four bits we have a value in d2 representing the
~ amount of black pixels from the 2x2 grid. This value also represents the
- colour number that the resulting low—res pixel is to have.

 Nowit is just a matter of setting the relevant bits of the four planes of
- the low—res screen. Actually, this is not quite true. As we are only us-

86 Chapter 8: Mono Pics to Low Res "

ing colours 0—4 we will never have to use the fourth plane. To repre-
sent the number 4, we only need to use 3 binary digits. So, in practice,
we just ignore the 4th plane leaving it empty (equal to 0).

As we are converting two lines of 32 pixels from the high—res screen
into one line of 16 pixels of the low—res screen we need to divide our
*bit counter’ by two. This gives us the number of the bit to set in each
of the 4 planes of the low—res picture.

* EX10.S

* This program converts a high res DEGAS file to a low res
* DEGAS file and displays it on the screen.

; check screen resolution - XBIOS 4

rezz movew H4,-(sp ; opcode

trap 814 ; XBIOS

add.l B2,sp ; tidy stack

cmpi 10,d0 ; check for low-res
bne rez_error ;if not

; get the address of the screen - XBIOS 3

screen: movew ¥H3,-(sp) ; opcode
trap B14 ; XBIOS
addq.l B2,sp ; tidy stack
move.l d0,daddr ; keep this address safe for later

; open a file - GEMDOS 61

open: movew 50-(sp) ; mode - read only
move.l Hifname,-(sp) ; address of a string containing

; path and filename
move.w H61,-(sp) ;opcode
trap 1 ; GEMDOS

addg.l u8,sp ; tidy stack

Chapter 8: Mono Pics to Low Res 87
movew d0,f_hand ; a handle is returned in d0

; test for errors

tst do ; check for negative number
bmi file_error

; read a block from the opened file - GEMDOS 63

read: move.l Hsaddr,-(sp) ; address of buffer to hold the
; information
move.l #32034,-(sp) ; amount of bytes to read
; a DEGAS file consists of a
; 34 byte header followed by 32000
; bytes of bitmapped data
move.w f_hand,-(sp) ; file handle
move.w 163,-(sp) ; opcode
trap 11 ; GEMDOS
add.l B12,sp ; tidy stack

; close the file - GEMDOS 62

close: movew f_hand,-(sp) ;file handle
movew R62,-(sp) ; opcode
trap 43 | ; GEMDOS
add.l B4,sp ; tidy stack

; clear the screen

cls: cirl do ; make it equal 0
move.l daddr,al ; address of the screen
move.w #7999,d1 ;8000 words = 32000 bytes
cls2: movel d0(al)+ ;move to the screen address and
; increment address for the next
; time around
dbra dl,cls2 ; round and round

88 Chapter 8: Mono Pics to Low Res

; Now set the first 5 palette colours to our chosen
; shades of grey. Rather than setting each colour

; individually using XBIOS 7 we shall set the all at
; once using XBIOS 6

s-pal: movel ®pal,a0 ; address of our buffer
movew 1$777,(a0)+ ; white
movew 8$666,(a0)+ ; light grey
move.w 1$444,(a0)+ ; mid grey
move.w 1$222,(a0)+ ;dark grey
move.w 8$000,(a0)+ ;black

move.l Hpal,-(sp) ; buffer address
move.w B6,-(sp) ; opcode

trap ni4 ; XBIOS

add.l B6,sp ; tidy stack

; the conversion routine itself

movea.l Hsaddr,a0 ; the address of the picture data
adda.l H134,a0 ; skip the 34 byte header
movea.l daddr,al ; destination address - the screen

* THE OUTER LOOP

; Two scan-lines are processed at one time in

; the outer loop. A high-res screen consists of

; 400 horizonta lines - this leads to the figure

; (400/2)-1=199, the -1 is needed for the decrement
; and branch if false (dbra) at the end of this loop

move 8199,d2
12:

* THE MIDDLE LOOP
; In the middle loop a long is processed in one pass.

; A high-res scanline consists of 80 bytes which equais
; 20 words. As before subtract 1 to get the

Chapter 8: Mono Pics to Low Res

89

x1:

x2:

; figure - 19.

move #19,d3
I

move.l (a0),d0

move.l 80(a0),d1

adda.l 14,20

cirl ds

cirl dé

cirl a7

movew d2,-(sp)

movew d3,-(sp)
* THE INNER LOOP

; get a long for processing

; and one from the next scanline

; make it point to the next long for
; the next pass

; avoid errors!

; we need these registers, so keep
; their contents safe for later

; now we count the number of black pixels in each
; 2x2 grid. Register d2 is our counter, d4 contains
; the number of the bit to test.

|113] pixel grid (high-res)

131,44

d2
d4,d0
x1
#1,d2
u4,d1
x2
"1,d2
B1,d4

; bit counter

; clear it

; test grid 81

; if white do nothing

; if black increase the count
; test grid 82

; if white

; if black

; decrement the bit counter

90 Chapter 8: Mono Pics to Low Res
btst d4,d0 ; test grid 83
beq x3 ; as before
addq #1,d2
x3: btst d4,d1 ; test grid ¥4
beq x4
addq #1,d2
x4:
; The amount of black pixels is now held in
; register d2.
; As we are turning a long from the high-res picture
; into a low-res word (x4 for each plane) we need
; to know which bit to set.
move.l d4,d3 ; put the bit counter into d3
divs #2.d3 ; and divide by 2 to find the
; low-res bit to set
; The amount of black pixels in the grid is held
; in d2. This number also happens to be the palette
; number of the required colour. Normally we would
; have 4 planes to worry about, but as we only use
; colours 0 to 4 (in binary %0 to %100) we only need
; 3 planes. The registers d5-7 are used for the
; output.
btst #2,d2 ; plane 3
beq cl ; if it is not set - do nothing
bset d3,d7 ; else set the bit
cl: btst B1,d2 ; plane 2
beq pl ; as before
bset d3,dé6
pl: btst #0,d2 ; plane 1
beq p2
bset d3,ds
p2:
subq 81,44 ; decrement the high-res bit counter
cmpi 10,d4 ; have we finished a high-res long?

bge bl ; no

(o o0 40 4000 Mrahh Sudd s i et T B Gl ol FUD 4! L 6 L

Bt olide M08 d e ity

Chapter 8: Mono Pics to Low Res 91
* END OF INNER LOOP ; yes!

move ds5,(al)+ ; move plane 1 to the screen

move S - T3 7

move il it afagt? »

adda #2,al ; and compensate for the unused plane 4

move.w (sp+d3 ; recover our loop counters
move.w (sp)+d2

dbra d3,l ; have we finished a scanline
 yes
* END OF MIDDLE LOOP
adda 1180,a0 ; as we take 2 lines at a time from the

; high-res picture, be sure to miss a line

dbra d2,12 ; have we finished the lot?
; certainly have
* END OF OUTER LOOP

; now wait for a key press BIOS 2

kp: movew H2,-(sp) ;device code - the console
move.w RB2,-(sp) ; opcode
trap 713 ; BIOS
add.l B4,sp ; tidy stack

; and quit cleanly GEMDOS 76

quit: clrw -(a7) ; status code
move.w #76,-(a7) ;opcode
trap a3 | ; GEMDOS

; error trapping routines
; using GEMDOS 9 - print a line of text to the screen

92 Chapter 8: Mono Pics to Low Res

rez_error: ; wrong resolution
move.l Berrorl,-(sp) ; address of the message
bra err—cont ; g0 and finish the call
file_error: ; error opening file
move.l Berror2,-(sp) ; address of the message
err—cont:
move.w 89 -(sp) ; opcode
trap 23 | ; GEMDOS
add.l "6,sp ; tidy stack
bra kp ; forget it!
=
fname: dc.b "monapipe.pi3”,0 ; file name and path

; erTOr messages
errorl:dc.b 7 ERROR - low res only!”,0

error2: de.b " DISC READ ERROR - CANNOT”
dc.b “CONTINUE",0

. .bss
f_hand: dsw 1 ; file handle
pal: dsw 16 ; buffer for our palette
saddr: dsb 32034 ; buffer for the picture

daddr: ds:I 1 ; screen address

Chapter 9

Formatting a Disk

This chapter looks at, in some detail, on how to format a floppy disk.

Formatting a disk can be a very complicated procedure — some pro-
grammers make their living from devising dxsg formats, especially in
the computer games field where the copy—protection is quite often
based on the disk format. However, formatting a *normal’ disk is rela-
tively simple due to the fact that Atari’s operatin: sz'smm provides us
with some calls (traps) that will do most of the wox%: or us. These calls

are:
XBIOS $0A __flopfmt format track
XBIOS $12 __protobt prototype boot sector image
XBIOS $09 __flopwr write sector(s) to floppy disk

BIOS $04 __rwabs read/write sectors to device

To understand how these calls work, it is necessary to learn something
about the nature of a floppy disk. -

When we format a disk, all we are doing is writing a code to the disk so
that when the computer later writes data to the disk it can find it again
later. The disk is divided into a series of concentric rings called ’tracks’
and then each track is further divided into ’sectors’.

Normally a sector can contain 512 bytes of data. From this it is easy to
calculate how many bytes in total a disk can hold. If we take a normal
single—sided disk which is formatted with 80 tracks and each track hav-
ing 9 sectors —

80 x 9 = 720 sectors in total

720 x 512 = 368640 bytes

94 Chapter 9: Formatting a disk

However, not all this space can be used for storing data as the computer
reserves the first two sectors for it’s own use. This 1s where the *boot sec-
tor’, *directories’ and *file allocation tables’ (FAT) are to be found. A disk
stores data in a similar way to a book. A book will typically have num-
bered pages, a contents section and an index.

Numbered pages = Sectors
Contents section = Directories
Index = File allocation table (FAT)

Directories — store information about files such as the file name, at-
tributes (whether read only, hidden etc.) time and date of creation,
length in byrtes etc.

File allocation tables — tell the computer where to find the data for each
file, ie what sectors on the disk that it occupies.

So far we have not looked at the boot sector, this contains something
known as the ’bios parameter block’. The bios parameter block contains
information about the format of a disk such as the amount of sectors
per track, total amount of sectors on disk, amount of sides etc. It also
contains the disk’s serial number. The computer uses the disk’s serial
number to determine if a disk has been changed, therefore each disk
should have an unique serial number. This is normally achieved by us-
%ng a mndo)m gixmber.bghe bcgt se%r c:ml also contain cxecutabli code
a program), this can be anything from a legitimate program such as a
loader program (which makes a disk self—bogéing) to a virus!

It is beyond the scope of this book to go any deeper into the mysteries
of disk formats, FATs, boot sectors and boot sector code. However there
are books on the market that deal with these subjects specifically and in
detail. This aspect of computer programming is éscinating and you will
probably find further study very rewarding.

To format a floppy disk these steps must be taken:
1. Format each track in turn

2. Prototype a bootsector and write it to the disk
3. Make the FATs.

Chapter 9: Formatting a disk 95

Let’s look at each step in detail.
1. Format each track in turn

This uses the XBIOS call — _flopfmt The following parameters must be

a. fcod - format code ssometimes know as virgin). Determines what
value the sectors will hold after formatting. Normally $E5ES.

b. magc — magic number. A contant used during formatting. This
must be set to $87654321.

c. intl — interleave. Determines the order of sectors within each track.
Normally set to 1. '

d. sidn - side number. Side number to format, either O or 1.

e. trkn — track number. Track number to format.

f. sptk — sectors per track. 9 is normal

g- devn — device number. Either O for drive A or 1 for drive B.
h. scrt - not used so set to 0

i. buff — buffer address. This call uses a buffer in which to prototype
the format before writing it to the disk. Available documentation says
the 8k must be reserved for a normal disk with 9 sectors per track. Our
routine reserves 10k just to be on the safe side.

As this ’trap’ is called many times, the obvious thing to do is to use a
loop. A BASIC programmer would write something like this:

FOR track_number = 0 TO 79
(format routine)
NEXT track_number

‘ As the track number is increasing we will not be able to use a decre-
ment and branch if false (dbra), so we must devise our own looping sys-
tem:

96 Chapter 9: Formatting a disk

move.w 10,d7 ;track_number
loop:
(format routine)

addq.w #1,d7 ;increase track_number
cmpi.w 1180,d7 ;have we finished?
bit loop ;if no

; bit= branch if less

A further bit of trickery involving the format code (virgin) is required
when formatting each track. As mentioned earlier the computer re-
serves the first two tracks of a disk for directories, FAT’s and the boot-
sector. These tracks should be zeroed whereas all the rest of the tracks
should contain the standard filler — $e5e5. To do this we use register dé
to hold the format code. At the start of the routine this register is
cleared (set to zero). After two tracks (0 and 1) have been formatted, the
value $e5e5 is moved into it.

cirl dé ; format code (virgin)
movew 10,d7 ; track number to format

(format routine - _flopfmt call)

addqw #1,d7 ;increase track number
cmpi.w 12.d7 ;two tracks formatted

bne no—_change ; if not
move.w n$eS5e5,d6 ; else change the format code
no_change: '

2. Prototype a boot sector and write it to disk.

To prototype the bootsector we use the XBIOS call — __protobt, which
requires the following parameters:

a. exfl — executable flag. 1=executable O=non-executable. Normally
set to 0.

b. dskt — disk type.
0=40 trk S/S
1=40 trk D/S
2=80 trk S/S

Chapter 9: Formatting a disk 97
3=80 trk D/S

Either set to 2 or 3 (1 and 2 are used for IBM format disks). You will see
from this that if you wish to format a disk with a non—standard
amount of tracks (ie. 81) you will not be able to use this call and must
make your own bootsector.

c. sern — serial number. According to the Atari documentation if a
number r than 24 bits is used (>$1000000) a random number is
generated. In the routine at the end of this chapter a random number is
generated using the XBIOS $11 call — _random

move.w 1S$11,-(sp) ;opcode
trap ni4 ; XBIOS
addq.l H2,sp ; tidy stack

This call returns a random number in register d0.

d. buff — pointer to a 512k buffer. When this trap has been called the
pmtotypcdpgxootsector will be found at the address of this buffer. It is
then a simple matter of writing it to the disk.

To write the bootsector to the disk we must know which sector to write
it to. Simple! The bootsector is always the first sector on the disk — Side
0, Track 0, Sector 1. To write the bootsector to the disk the XBIOS call
—flopwr is used. You may notice that the formatting program at the
end of this chapter also uses a BIOS call (rwabs) to write sectors to the
disk, so why do we not use this call to write the bootsector as well?
The answer to this is because Atari tell you not to! No explanation is
given but using rwabs to write the bootsector to a disk does seem to
cause problems.

3. Make the FATs

On a freshly formatted disk a FAT is one sector that contains $f7££f00
followed by 508 x $00. A disk actually contains two FATs the second
one being an exact duplicate of the first (supposedly in case the first gets
damaged). To make our FATs we firstly prototype them in memory:

move.l Bbuffer,a0 ; memory address
move.l HSf71ff100,(a0)+ ; FAT header

98 Chapter 9: Formatting a disk
move.l 1126,d0 ;-and 508 x $00
crl di

loop: movel d1,(a0)+
dbra do0,loop

‘Then using the rwabs call we write it to the disk. The rwabs call requi—

res us to

as a parameter the logical sector to start writing to. The

pass
‘bootsector which is the first sector on the disk is logical sector 0. The
FATs occur at logical sectors 1 and 6.

* This program formats a disk: single-sided only.

* EX11.S

gemdos equ 1

bios equ 13

xbios equ 14 -

start:
move.l Bstr1,d0
Jjsr message
jsr key_press
; check key press
cmpi.b #$59,d0
beq format
cmpi.b 1$79,d0
beq format

quit:
move.w 1$0,-(sp)
trap Hgemdos
addq.l #2,sp

format:
move.l Bstr2,d0
jsr message
cirl dé
movew 80,d7

3y

s p-term
; quit cleanly

; track number to format

Chapter 9: Formatting a disk 99

f_loop:
move.w dé6,-(sp) ; format code
move.l 1$87654321,-(sp) ; magic number
move.w 81,-(sp) ; interleave
move.w 80,-(sp) ; side number
move.w d7,-(sp) ; track number
movew "9 -(sp) ; sectors per track
move.w RO,-(sp) ; drive number
move.l 80,-(sp) ; reserved
move.l Bbuffer,-(sp) ; buffer address
movew HS$a,-(sp) ; opcode - _flopfmt
trap HBxbios
add.l B26,sp ; tidy stack

cmpi.w 10,d0 ; check for errors
bne error ; bne= branch if not equal

addq.w n1,d7 ; increase track number

cmpi.w n2.d7 ; if two tracks have been formatted

bne no_change -
move.w H$eS5e5,d6 ; change the format code
no—change:

cmpi.w n80,d7 ; check to see if finished
bit f_loop ; bit= branch if less than

; now make bootsector
; get random number
move.w #8$11,-(sp) ; -random
trap Bxbios
adda.l B2sp ;tidy stack
; prototype boot sector
move.w 80,-(sp) ; executable flag
move.w n2-(sp) ; disktype

move.l d0,-(sp) ; serial number
move.l Bbuffer,-(sp) ; buffer address

100 Chapter 9: Formatting a disk
" movew HS12-(sp) ;_protobt

trap Bxbios

add.l B14,sp ; tidy stack

; and write it to the disk

move.w H1,-(sp) ; number of sectors to write
move.w 80,-(sp) ; Side number

move.w R10,-(sp) ; track number

move.w #1,-(sp) ; start sector number
move.w 80,-(sp) ; drive number

move.l 80,-(sp) ; reserved

move.l Rbuffer,-(sp) ; buffer address
move.w 88$9,-(sp) ; ~flopwr

trap - #xbios

add.l B20,sp ; tidy stack
cmpi.w 10,d0 ; check for errors
bne error

; make a FAT

move.l Bbuffer,a0 ; buffer address
move.l BSf711100,(a0)+ ; FAT header
move.l 1126,d0 ; and clear the rest

cirl dl
loop: movel dl,(a0)+
dbra d0,loop

; and write it to disk - twice

move.w B1,d0 ; FAT 81

jsr sector_write
cmpi.w #0,d0 ; check for errors
bne error

move.w 86,d0 ; FAT #2

jsr sector_write

cmpi.w 10,d0 ; check for errors
bne error

Chapter 9: Formatting a disk

101

move.l
jsr
jsr
bra

error:
move.l
jsr
jsr
bra

key_press:
move.w
move.w
trap
addq.l
rts

message:
move.l
move.w
trap
addq.l
rts

sector_write:

move.w
move.w
move.w
move.l
move.w
move.w
trap
add.l
rts

strl: dcb
dcb
str2: dcb
str3: dcb
dc.b

Bstr4,d0 ; display finished message
message

key_press

quit

RBstr3,d0 ; display error message
message

key_press

quit

H$2,-(sp) ; device - the keyboard
B$2,-(sp) ; bconin

Bbios ; read a character

B4,sp ; tidy stack

d0,-(sp) ; address of our string
1S$9,-(sp) ; C-CONWS

HBgemdos ; Write a string to the screen
B6,sp ; tidy stack

#0,-(sp) ; drive number
do0,-(sp) ; start sector number

R1,-(sp) ; number of sectors to write

Bbuffer,-(sp) ; buffer address
B3-(sp) ;flag - write
B$4,-(sp) ; rwabs

Bbios

R14,sp ; tidy stack

”** Do you really want to format the disk in Drive”

” A? (Y)” or (N) ***”,13,10,10,0

"Formatting disk... ”,13,10,0

”An error has occurred during formatting. Press”
” any key to quit”,0

102 Chapter 9: Formatting a disk

strd: dcb "Disc formatted successfully. Press any key to quit”,0
bss
buffer: dsw 5000

As this routine only formats a single sided disk, if you wish to convert
it to format a disk double sided, you must bear in mind the following
points.

1. Alternate sides when formatting each track.

format side0 trackO

sidel track©
side0 track1
sidel track1
etc.

2. When setting the format code (virgin) to 0 for the first two tracks
remember that side 0 track 0 and side 1 track 0 are the first two.

Chapter 10
Introducing GEM

This chapter introduces the reader to GEM programming via assembly
language; the GEM header, and other conventions.

To use the GEM libraries, ie the AES, and VDI, function calls in the
same way that the previous chapter’s used the BIOS etc, first a header or
shell has to be set up so that we can properly use GEM. Like the BIOS
etc, the GEM libraries consist of many ROM functions or routines that
enable us to use these libraries for ourselves.

Resources

However, there is one caveat to using assembler when accessing GEM.
Some of the routines to use menus, and dialog boxes are very involved
and as there is resource construction kit on the disk we are fortunate in
that we don’t have to spend hours constructing menus, and compli-
cated dialog boxes from scratch. So, although some details of construct-
ing dialog boxes by hand (ie from the basics) are included this book
does not go into tKe hand construction of drop down menus, as these
are especially awkward to manage.

After constructing a few dialog boxes by hand you will soon appreciate
the usefulness of a resource kit, and except for possibly including bit im-
ages in your dialog boxes, which the resource kit cannot handle, you
may never want to construct them by hand again!

30 in essence a resource construction kit enables the programmer to cre-
ate drop down menus, and dialog boxes. To see an example of a dialog
box see the Assembly options box in zzSoft’s text editor, or see al-
most any GEM program. Once the dialog bozes, etc have been created
in the resource kit a file containing all the information is saved in a file
with the extension *RSC’. The p that is going to use this re-
source file loads the resource file and allocates the information accord-
ingly. This process will be looked at in more detail later on.

104 Chapter 10: Introducing GEM
GEM header

So what is needed to utilise GEM in our programs. First a header and its
associated user stack pointer has to be set up. This looks very compli-
cated at first, and the reasons for doing this are also quite complex, Eut
once the header (plus a few buffers, and other things) has been set up

they can almost be ignored and programming can go ahead as usual.

The main r:?lson for the header is tlf;td Gl:'.il\:If ilomws all the ssvailable
memory to that program as it is invoked an e program needs to use
any calls that allocates memory then the p should de-allocate
the memory it is not using at startup. This is done via the XBIOS ’Se-
tblock’ function and the header. At the same time a user stack is needed
and this is added to the ’setblock’ function. This procedure does not ap-
ply to desk accessories. ;

In practise the GEM header is invariably used in this form:

* GEM header and user stack
* header
move.l a7,a5 ; save a7
move.l Hustk,a7 ; stack pointer to our stack
move.l 4(a5),aS ; base page address
move.l 12(a5),d0 ; base page offset to text length

add.l 20(a5),d0 ; base page offset to data length
add.l 28(a5),d0 ; base page offset to bss length
add.l 1$100,d0 ; base page size

move.l do0,-(sp)
move.l a5,-(sp)

move d0,-(sp) ; dummy value
move u$4a,-(sp) ;’setblock’
trap =31

add.l #12,sp

* initiate GEM application: *appl_init’

* GEM program goes here

*end GEM application: "appl_exit’
dsl 256

Chapter 10: Introducing GEM 105
ustk: dsl 1

In addition to the header and new stack, GEM the programmer
to set up some space for it in the following arrays (or buffers):

contrl: dsw 12 ; control parameters

intin: dsw 128 ; input parameters

intout: dsw 128 ; output parameters

global: dsw 16 ; global parameters

addrin: dsw 128 ; input address

addrout: dsw 128 ; output address

These arrays are set up so that we can pass and receive information from
GEM, with the information being passed by the programmer in this
way:

* evnt_keybd
move #20,contrl ; function number
move H0,contri+2 ; number of integer inputs to intin
= move Hl,contri+4 ; number of integer results from
* intout
move #0,contrl+6 ; number of input addresses passed
* to addrin :
move 8#0,contrl+8 ; number of addresses returned by
*addrout
- * call AES to operate function

~ *return code of key pressed in intout

~ This particular AES call is called ‘evnt__keybd’ and is similar to ’conin’
. in that it just waits for a key press, but the result is not passed to register

E do, but via the ’intout’ array.

 Once again the ion can be asked how do I know what parameters
are to call the AES, and the VDI? All the necessary parameters
.~ are listed on disk in a similar manner to the BIOS calls.

 In order to use GEM we need to initialise an a pliationviath;:m

call *appl._init’, and once we have finished with the program we need to

tell GEM we have finished with it by the use of "appl__exit’. Although I

106 Chapter 10: Introducing GEM
have found that it is not always necessary to actually include these two
calls in 2 GEM program it is always wise to follow the proper program-
ming procedures as recommended by the people who wrote GEM.

Also, when calling GEM via the AES it is necessary to set u the AES
parameter block, which contains the addresses of the six data arrays.
They must be arranged in the following manner as this is how GEM ex-
pects to find them.

aespb: dc. contrl,global,intin,intout,addrin,addrout
To call the AES the AES parameter block is placed in register d1, and

then the AES identification code, #$¢8, is passed to register d0, and then
trap #2 is called. This is done like this:

* call the AES
move.l Haespb,d1
move.l #$c8,d0
trap B2

We can now put it all together to form the first GEM program:

* GEM1.S
* This simple GEM program just waits for a key press. Although
* simple it shows the basic outline or shell of a GEM AES program.

* header
move.l a7,a5
move.l Hustk,a7
move.l 4(asS),a5
move.l 12(a5),d0
add.l 20(a5),d0
add.l 28(a5),d0

add.l 1$100,d0
move.l do0,-(sp)
move.l a5,-(sp)
move do0,-(sp)
move #$4a,-(sp)
trap 223 |

add.l B12,sp

Chapter 10: Introducing GEM 107

* appl_intit

move 110,contrl ; function number or opcode

move #0,contrl+2

move #1,contrl+4

move #0,contri+6

move 80,contrl+8

jsr aes ; call AES
* evnt_keybd (wait for key press)

move #20,contrl

move #0,contri+2

move #1,contri+4

move #0,contrl+6

move 1#0,contrl+8

jsr aes ; call AES
* appl_exit

move #19,contrl

move #0,contri+2

move #1,contri+4

move 80,contri+6

move 80,contri+8

jsr aes ; call AES
* pterm -exit cleanly

move 810,-(sp)

move #$4c,-(sp)

trap L |
* AES subroutine
aes: move.l Baespb,d1

move.l #$c8,d0

trap 82

rts

dsl 256

ustk: dsl 1
* GEM arrays

contrl: dsw 12

108 Chapter 10: Introducing GEM

intin: dsw 128

intout: dsw 128

global: dsw 16

addrin: dsw 128

addrout: dsw 128

aespb: dcl contrl,global,intin,intout,addrin,addrout

Although this program is simple enoufx it does show the basic setup of
a GEM program. To utilise the VDI other arrays and parameters have to
be included too, but thus will have to wait for another chapter.

Please note the GEM arrays are user definable in that the amount
defined for each array should be determined by the p er.
However, the amounts set above for the arrays should be sufficient for
most purposes. This also applies to the user stack amount. Too little and
the program will not function correctly.

GEML.S can be written in another way, and it is perhaps more usual to
see the ’contr]’ parameters passed this way.

* GEM2.S

* header
move.l a7,as5
move.l Bustk,a7
move.l 4(as),as -
move.l 12(a5),d0
add.l 20(a5),do
add.l 28(a5),d0
add.l #$100,d0
move.l do,-(sp)
move.l a5,-(sp)

move do0,-(sp)
move H#$4a,~(sp)
trap #1

add.l B12,sp

* appl_init
move.l Bappl_init,aespb

Chapter 10: Introducing GEM

109

jsr aes ; call AES
* evnt_keybd (wait for key press)
move.l Hevnt_keybd,aespb

jsr aes ; call AES
* appl_exit

move.l Rappl_exit,aespb

jsr aes ; call AES
* pterm -exit cleanly

move #10,-(sp)

move BS$4c,-(sp)

trap 23 |

* AES subroutine

aes: move.l Haesph,d1
move.l HS$c8,d0
trap B2
rts
dsl 256
ustk: dsl 1
* GEM arrays
contrl: dsw 12
intin: dsw 128
intout: dsw 128
global: dsw 16
addrin: dsw 128
addrout: dsw 128

aespb: dc.l contrl,global,intin,intout,addrin,addrout

appl_init dew 10,0,1,0,0
appl_exit: dew 19,0,1,0,0
evnt_keybd: dew 20,0,1,0,0

In the first example the ’contrl’

‘contrl’, but if the AES parameter block

the "contr]’ array comes first so by

eters were passed directly to
is examined it can be seen that
moving the address of each function

each parameter can be passed directly to the AES parameter block. If
any other parameters have to be passed, eg to ’intin’ then these would

110 Chapter 10: Introducing GEM
have to be passed separately.

Please note that VDI, AES, BIOS, XBIOS, and GEMDOS calls may be
freely used in the same source code although some care is needed in
practise when mixing similar AES and VDI calls. In the above example
AES calls and a GEMDOS call, ’pterm’, are used together in the same

program.

Chapter 11
Introducing the VDI

This chapter looks at a simple GEM VDI program, and also examines
the *virtual’ and *physical’ work station concepts.

* GEM3.S This program uses the VDI call vqg_mouse() which waits
* for a right mouse button press. GDOS is also checked for.

gemdos equ 1

* GEM header
move.l a7,as5
move.l Bustk,a7
move.l 4(a5),a5
move.l 12(a5),d0
add.l 20(a5),d0
add.l 28(a5),d0
add.l 1$100,d0
move.l do0,-(sp)
move.l a5,-(sp)

move do0,-(sp)

move 1$4a,-(sp)

trap Hgemdos

add.l B12,sp
* get current screen res

move 84,-(sp)

trap ni4

addg.l #2,sp
* res returned in d0

move dOsres ; store screen resolution
* appl_init()

move.l Rappl_init,aespb

jsr aes ; call AES
* graf_handle()

move.l figraf_handle,aespb ; get physical screen handle

112

Chapter 11: Introducing the VDI

jsr
move

aes
intout,gr_handle ; store handle

* start by opening a virtual workstation

move £8#100,contrl
move #(,contrl+2
move #11,contri+6
* is GDOS present
moveq 8-2,d0
trap B2
addq #2.d0
beq no-gdos ;no GDOS
move res,d0
add #2,d0
move d0,intin
bra s-no-gdos
no_gdos:
move B1,intin ; default if GDOS not
* loaded
s-no_gdos:
move Hlintin+2 ;line type
move Bl,intin+4 ; colour for line
move Hl,intin+6 ; type of marking
move Hl,intin+8 ; colour of marking
move B1,intin+10 ; character set
move Bl,intin+12 ; text colour
move Bl,intin+14 ; fill type
move B1,intin+16 ; fill pattern index
move B1,intin+18 ; fill colour
move #2,intin+20 ; coordinate flag
move.w gr-handle,contri+12 ; device handle
jsr vdi ; v-opnvwk open virtual work station
move.w contri+12,ws_handle ; store virtual workstation handle

S iy program goes here
* sample mouse button state: vq_mouse()

sample_again:

move

8#124,contrl

http://s-.no-.gdos

Chapter 11: Introducing the VDI

113

move.w
move.w
move.w
jsr
cmpi.w
bne

8#0,contrl+2

#0,contrl+6

ws_handle,contri+12

vdi

#2intout ; right mouse button
sample_again

* i end of program

* exit

* close the virtual workstation
* v~clsvwk()

move
clrw
clrw
move.w
jsr

* appl_exit()

move.l
jsr

#101,contrl

contrl+2

contrl+6
ws_handle,contrl+12
vdi

Happl_exit,aespb
aes ; call AES

* pterm -exit cleanly

move #10,-(sp)
move #$4c,-(sp)
trap Hgemdos

* AES subroutine

aes: movem.l d0-d7/a0-a6,-(sp)
move.l Baespb,d1
move.l 1$c8,d0
trap 82
movem.l (sp)+d0-d7/a0-a6
rts

vdi: :
movem.l d0-d7/a0-a6,-(sp)
move.l Rvdipb,d1
moveql 8$73,d0

114 Chapter 11: Introducing the VDI

trap B2
movem.l (sp)+d0-d7/a0-a6
rts
dsl 256
ustk: ds.l 1
* GEM arrays
contrl: dsw 128
intin: dsw 128
intout: dsw 128
global: dsw 16
addrin: dsw 128
addrout: dsw 128
* for vdi
ptsout: dsw 128
ptsin: dsw 128

vdipb: dc. contrl,intin,ptsin,intout,ptsout

aespb: dc.l contrl,global,intin,intout,addrin,addrout
appl_init: dew 10,0,1,0,0

appl_exit: dew 19,0,1,0,0

graf_handle: dcw 77,0,5,0,0

gr-handle: dew 1

res: dsw 1

ws-handle: dsw 1

GEM divides its output world into ’virtual’ and ’physical’ workstations
or devices. In practise GEM opens the screen as a physical workstation
for us, whilst we have to open up any other physical devices for
ourselves. In practise this usua.lf; means directing the output to a printer
which GEM, and specifically the VDI would refer to as a physical work -
station.

Virtual workstation

The desktop, user programs and desktop accessories all have to use the

Chapter 11: Introducing the VDI 115

screen, and so that each application can use the VDI without affecting
the other application, we have to allocate ourselves a virtual screen
workstation. GEM uses the word ’virtual’ to mean ’as if’ or ’pseudo’
device. Each virtual workstation opened can be then directed to the
screen without affecting any other graphic settings. In this book and of-
ten in practise only one virtual workstation is opened and one physical
workstation is opened: a printer.

Because the VDI can send its output to a variety of devices most usu-
ally the screen, plotter, printer and metafile, each workstation is given a
handle so that tﬁe output can be sent to that device by reference to that
handle. So if a printer workstation was opened its handle — which is a
number allocated to that device — would be used each time the output
of the VDI was wanted to be sent to the printer. A practical example of
opening a physical workstation— a printer will be given at a later stage.

GDOS

Note to open a physical workstation GDOS needs to have been loaded.
GDOS is an acronym for Graphics Device Operating System and was
left out of the GEM ROMS, so it has to loa\dege separately. Invariably it
is loaded via an AUTO folder at boot up. Failure to boot with GDOS
will crash the ST without warning when attempting to open a physical
workstation.

An example VDI call:
* sample mouse button state: vq_mouse()
move ‘8#124,contrl ; function opcode (numbern)
move.w R10,contrl+2 ; number of coordinate points in
* ptsin array
move.w R1(,contrl+6 ; number of input parameters in
* intin array
move.w ws_handle,contri+12 ; device handle
jsr vdi

Besides these parameters others involved could be:

contri+4 ; number of coordinate points in ptsout array
contrl+8 ; number of output parameters in intout array
contri+12 ; sub function number

116 Chapter 11: Introducing the VDI

In various GEM technical manuals you may see the contrl array ele-
ments referred to as contrl(0), contrlgl")), contrl(2), etc, where contrl(0)=
contrl, contrl(2)= contrl+2, and contrl(2)= contrl+4 in assembly lan-
guage. This is because the ’contrl’ array is accessed by word length pa-
rameters.

graf _handle

When using the VDI in our program the first thing we need to do is to
get the physical screen handle via the ’graf__handle’ call. This handle is
then passed to the virtual workstation and from this we get the virtual
workstation handle which is then used for all further VDI calls to the
screen. If any other physical workstations are opened (eg a printer) then
we have to get the handle for that device so that any output can be ac-
cessed via its handle.

To call the VDI the address of the VDI parameter block is placed in d1,
and the VDI code, #$78 is placed in dO. This is obviously very similar to
the AES sequence.

GDOS again

When a virtual workstation is opened it is necessary to first determine
whether GDOS has been loaded. This is done with the call

moveq 8-2.d0
trap B2
addq #2.d0

If dO is equal to O after the trap then GDOS has not been loaded then a
one must be passed to the intin array, as the first word of intin

the device driver identification gsee ASSIGN.SYS later). IF GDOS is
present then two should be to the result and this should be
totheintinm:ﬁBypasing1’stotherstoftheintinarmythe ule
GEM values will be used by the program for the various VDI graphic
operations.

'NCD or raster coordinates

However, ’intin+20’ needs to be passed a suitable value as this deter-

‘
3
<
E

,
=
-
..
3
k.
:

é_,

,,_,,..uv,
w‘i""““ B AT

Chapter 11: Introducing the VDI 117

mines the coordinates used by GEM. There are two possibilities here: a
one passed to "intin+20" would tell GEM that you wanted NDC (Nor-
malized Device Coordinates) coordinates to be used in graphic output to
the screen. A two tells GEM that raster coordinates should be used,
which is the coordinate system usually used. NCD uses 32,768 pixels by
32,768 pixels but as there is no output device that can handle this
of mol!t)xtion raster coordinates are usually used where 0,0 indicates the
x and y coordinates respectively starting at the top left of the screen.
Each point (pixel) that can be plotted on the display screen is repre-
scnncdpo the raster coordinate system, where the actual dimensions are
rned by the screen resolution. In high res the x coordinate goes
m 0 to 639, whilst the y coordinate goes from 0 to 399. In medium
res the y coordinate goes from 0 to 199, and in low res the x coordinate
goes from 0 to 319 with the y coordinate from 0 to 199..

Workstation capabilities

Once the virtual workstation has been opened the output array lists a
variety of pertinent information about the screen and what it can sup-
port. More information about this can be found from the *vq__extnd’
call which lists further information about the graphic capabilities of the
workstation eg text alignment, colour information, etc. See disk for full
coverage of the information available from these GEM calls. Suffice it to
say that the screen supports all the VDI graphic calls in the VDI library
as listed on the disk.

vgq—mouse

Next the VDI *vq__mouse’ call is made which waits for the user to
press the right mouse button. Pressing the left button or keyboard re-
sults in the call being operated again by the *sample__again’ loop until
the right mouse button is pressed.

Exiting the workstation

To exit, the virtual workstation(s) and any other physical workstation
must be closed and then the "appl__exit’ call shoulcf be made (in that or-
der), and finally ’pterm’ so that we exit back correctly to the calling

program.
Note that GEM3.S is set up for AES and VDI calls. If you only want to

118 Chapter 11: Introducing the VDI
call the VDI the AES stuff can be left out.

VDI printer output

One important feature of the VDI graphic output, including text, is that
it is possible to ensure that the output is at the resolution of the device.
In practise this means that printing text on the the high resolution
screen at 90*90 dots per inch (dpi) results in text being printed to 2 9-
pin dot matrix printer at 120%144 dpi, to 24—pin printer at 180*180 dpi
or even 360*360 dpi. If a screen dump was sent to the printer the out-
put resolution would be similar to the screen, and therefore not nearly
as good. This is covered in very much more detail later on.

Chapter 12
GEM Objects

This chapter examines the data structures of GEM ob{:e;s that make up

the construction of dialog boxes and a simple dialog box is constructed
from first principles.

Constructing a dialog box

GEM refers to the parts that make up a dialog box, or alert box, or drop
down menu as objects. Each object has a special name and function
most of which are available in the Resource Construction Program
(RCP). However, in this chapter we are going to construct a simple dia-
log box by hand ie from first principles, but to do this we have to exam-
ine the basic structures that make up a GEM object.

First object types are examined, by which is meant the basic types of
boxes, text, icons, and bit images that are available to the programmer
when constructing a dialog box or menu.

Object types
The following are the type of objects available:

20 g box

21 g text

22 g _boxtext
23 g image
24 g progdef
25 g ibox
26 g button
27 g boxchar
28 g string
29 g ftext
30 g fboxtext
31 g _icon

120 Chapter 12: GEM Objects
g-box a rectangular box with an optional border

gtext a text string, which can have various characteristics. Uses
’tedinfo’ structure.

gboxtext arectangular box that contains text, as g__text.
g.image a mono only bit image that points to ’bitblk’ structure.

gprogdef an object defined by programmer; uses "applblk’ struc-
ture.

gibox an invisible rectangle usually used to group together
other objects, often radio buttons.

g-button centred text in default font in a rectangle, usually used as
a radio button.

gboxchar asabove but just one character allowed.

g-string a string in the default font.
gftext a formatted text string that can be edited. Uses ’tedinfo’
structure.

gfboxtext asabove but contained within a rectangle.

gicon a mono image with mask (icon). Uses ’iconblk’ struc-
ture.
g title a special g__string’ for use in GEM menu bar titles.

The RCP does not allow the use of gimage, g progdef, and g icon
ob;ects For more information on ’tedinfo’ structure see later. Using
’g__image’ from first principles is looked at in chapter sixteen.

Tree

In a dialog box there can be many GEM objects such as a g_strmg
which could be used to give the dialo ibox a title, or ’g__boxtext’ to
it a title in a box; radio buttons; an editable text object so that user

Chapter 12: GEM Objects 121

can be entered for example changing a drive designation, say from A:\
to B:\, with the whole lot contained within a ’g__box’. The structure
these various objects are grouped in is called a tree. Each object branches
out from a parent (g__box) to other objects that themselves can be par-
ents to other objects (children), whilst objects that have a common par-
ent are called siblings. The actual arrangements of objects in a tree is
quite complicated and as we have a RCP that does all tiﬁs arranging for
us no further theory will be discussed except to explain various con-
ctl:)pts as they come about in the actual practise of constructing GEM
objects.

Each object is defined by a 24 byte (12 word) list, and it is organized in
this way:

Object structure:
Word description

0 next object; index of child that is not first or last. If root, —1
(hex FFFF)

1 starting object; index of first child object

2 ending object; index of last child object

3 object type, eg g__box, g__button

4 object flags; selectability of object, see below
5 object status; state of object, see below

6 & 7 object specification; pointer to-object data structure, eg tedin-
fo, or colour & thickness of box.

8 object x coordinate, relative to parent
9 object y coordinate, relative to parent
10 object width
11 object height

122 Chapter 12: GEM Objects

There is even more to come! Now can you see why using a RCP that
sorts all this lot out for you has very distinct advantages!

The tedinfo data structure:
This structure is arranged as follows:

Word description

o&1 te__ptext pointer to actual string

2&3 te__ptmplt pointer to format template

4&5 te__pvalid pointer to validation string, see
below

6 te_font font size(3=normal, 5=small)

7 te__resvdl reserved word (0)

8 te_just text justification (O=left 1=right
2=centred).

9 te__colour colour, see below

10 te__resvd2 reserved word (0)

1 te__thickness thickness of rectangle, 0=no

border, 1—128= thickness of inside border, —1 to —128 thickness of out-
side border.

12 te_txtlen length of ’te__ptext’ string+1
13 te__tmplen length of 'te__ptmplt’
string+1
te—pvalid
Validation code ~ characters allowed
9 digits0-9 A upper case letters (A
to Z) or spaces
a upper and lower letters and spaces
N 9+A
n 9+a
F valid TOS filename chars including ? : -
p F+\
P valid TOS filename chars including \ and:
X All

Chapter 12: GEM Objects 123

Colour
Colour coding:

white 0 light 8

black 1 dark A 9

red 2 light ﬁ 10
en 3 light green 11

Ell-fxe 4 light blue 12

cyan 5 light cyan 13

yellow 6 light yellow 14

magenta 7 light magenta 15

te_—color and object specification (forg_box, g ibox,
g_boxchar)

To select the border and text colour, write mode, fill pattern, and fill
colour used in an object a bit arrangement is used:

msb Isb
brix:: e goxexsR 0% i B0 IRER Ox K08 IR
15 1413121110 9 8 7 6 5 4597332 vl 0
bit
0-3 fill colour :
4-6 fill pattern— O=no fill, 1-6 dithered, 7 solid
7 writing mode: O=transparent, 1=replace.
8-11 text colour

12-15 border colour

An additional word is used for the 2 word object specification, where
bits 16—23 describe the border thickness, and bits 24—31 describe the
ASCII value of ’g__boxchar’ character.

Values for bits 16—23 are the same as ’te__thickness’ in the tedinfo data
structure.

124 Chapter 12: GEM Objects
Object flags

bit if set

selectable
de_fault

exit
editable
rbutton
lastob
touchexit
hidetree
indirect

CONOUVMBEWNE=O

selectable: the user can select the object which then appears in re-
verse.

default: as above but can also be selected with the return key. Only
sensible to have one object designated ’default’. Often used with the
’OK’ button. When setting this bit you should make the rectangle hold-
ing the text thicker so that it stands out and the user can see that it is
the default exit button.

exit: this allows the control of the dialog box to finish and return
to the rest of the program. ’exit’ would be used with ’selectable’, and “de-
fault’ for an ’OK’ button that would end the use of a dialog box.

editable: text held by the object can be entered/edited by the user.

rbutton: this stands for a radio button, which is a group of buttons
usually arranged within an invisible box from which only one can be se-
lected. When one button is selected any other choice is de—selected. Ra-
dio buttons must all be children of the same parent object.

lastob: this bit is set to show that this is the last object in the par-
ticular tree.

touchexit: as soon as the mouse pointer is over the object and the
mouse button is pressed control is passed back to the calling program.

Chapter 12: GEM Objects 125

hidetree: all objects are made invisible to ’obj__draw’ and
‘obj__find’.

indirect: object points to another value.

Object status
bit if set

selected
crossed
checked
disabled
outlined
shadowed"

VA WLWN=O

selected: the object is displayed in reverse video to show that it
has been selected.

crossed: the object has an X’ drawn in the box.

checked: a tick appears in the box, or menu item.

disabled: text is greyed out.

outlined: a border is drawn around the object.

shadowed: ashadow falling to the lower right is drawn around
the object. :

* GEM4S This example shows the construction of a simple dialog
* box by hand, and how to display it on screen.

gemdos equ 1

* header
move.l a7,as5
move.l Rustk,a7

move.l 4(a5),a5
move.l 12(a5),d0

126 Chapter 12: GEM Objects
add.l 20(a5),d0
add.l 28(a5),d0
add.l #$100,d0
move.l do,-(sp)
move.l a5,-(sp)
move d0,-(sp)
move H$4a,-(sp)
trap Bgemdos
add.l B12,sp
bsr form_cent ; get centred coordinates
bsr obdraw ; put dialog box on screen
bsr f_do ; handle interaction

* pterm -exit cleanly

move
move
trap

form_cent:
move.l
move.l
bsr
movem.w
rts

obdraw:
move
move
move
move
move
move
move.l
move.l
bsr
rts

f_do:
move.l
clrw

£#10,-(sp)
#$84c,-(sp)
Hgemdos

#form_center,aespb ; get coords of centred tree
Rparent,addrin

aes

intout+2,d0-d3 ; returned in intout+2

B0,intin ; index of first object

Blintin+2 ; depth

d0,intin+4 ; x coord

dLintin+6 ;y coord

d2,intin+8 ; width

d3,intin+10 ; height

Hparent,addrin ; address of parent dialog box tree
Bobject_draw,aespb

aes

Hform_do,aespb -
intin ; No editable text field

Chapter 12: GEM Objects 127
move.l Hparent,addrin

bsr aes
rts
* AES subroutine

aes:
move.l Haespb,d1
move.l 8$c8,d0

trap u2
rts
dsl 256
ustk: dsl 1
textl: deb ’ - EXAMPLE----",0
text2: del textytextt2 textt2
dew 3,0,2,$1110,0,3,5,0
texty: dcb ’Exit’,0
textt2: dch O
* GEM arrays
contrl: dsw 12
intin: dsw 128
intout: dsw 128
global: dsw 16
addrin: dsw 128
addrout: dsw 128
aespb: dc. contrl,global,intin,intout,addrin,addrout

" form_center: dcw 54,0510
object_draw: dcw 42,6,1,10

form_do: dew 50,1,2,1,0
* dialog box tree
parent:

dew -1,1,2,20,0,16 ; g-box

128 Chapter 12: GEM Objects

del $00021100

dew 170,100,250,100

dew 2,-1,-1,28,0,0 ; g-string, title string

del textl

dew 10,1051

dew 0,-1,-1,22,7+32,0 ; g-boxtext, boxed exit button
del text2

dew 50,60,60,25

diagram 12:1 the result

To i a dialog box on screen GEM calls to the AES need
to mdﬁ?ﬁm is tg form__center’ which usefully returns the
centred coordinates of the dialog box so that it can be centred on the
screen. The second is to ’objc__draw’ which draws the objects on screen
and the next is to *form__do’ which handles the interaction between
user and objects until we exit from the dialog box back to the program.

Looking in more detail at the program:
First the GEM header is set up with the user stack. Note that the stack
buffer space is allocated above the "ustk’ label as the stack grows upward

in memory.

Next form__center’ an AES call is made. This returns the centred

http://EI_iem.HU

Chapter 12: GEM Objects 129

coordinates of the dialog tree in ’intout’ so that it can be displayed in
the centre of the screen by ’obj__draw’. If these returned coordi
were not used then we would have to calculate the coordinates our-
selves. Obviously form__center’ is very useful. However, if you wanted
to place the dialog box anywhere on the screen entering the required co-
onﬁnates into the ‘objc__draw’ ’intin’ array would do the job. The first
word of ’intout’ is a reserved word so we need to get the coordinates
from the second word, ’intout+2’.

The coordinates are returned in the following manner:

intout+2 centred x coord of tree
intout+4 centred y coord of tree
intout+6 width of tree
intout+8 height of tree

These results are placed in d0—d3 with the ’movemw’ instruction
which places each sequential word held by ’intout’ in each data register
one by one.

To actually draw the dialog box on screen the AES call "objc__draw’ is
next made using the coordinates returned by *form__center’ by placing
them in the ’intin’ array from ’intin+4’. This is because objc__draw’ ex-
pects the number of the object (index) to be drawn first in the first
word of ’intin’ and the number of levels to be drawn in the second
word. Invariably the first object would be zero in the first word. A
value of seven in the second word would ensure that all (possible) lev-
els of the dialog tree would be drawn. :

So that the user can interact with the dialog box now on screen, the
AES call *form__do’ needs to be invoked. This allows the mouse to be
used to select any radio buttons or other of button, move any sli-
ders, or the user to edit or enter text from the . The first word
of the ’intin’ should contain the number (index) of the first text
field to be edited, but if there are no text fields this should be set to zero.
This can be done with the instruction ’clr intin’, which has the same re-
sult as “move #0,intin, ie the first word of the ’intin’ array will contain

nothing.

’intout’ contains the index of the object which was selected by the user
to end interaction with the dialog In this case the ’exit’ button,

130 Chapter 12: GEM Objects

which can be selected by the mouse pointer and pressing the left mouse
button or by pressing the 'Return’ key.

Examining the first part of the dialog box tree we can see that it is ar-
ranged so that there are 6 words, 1 long, and another 4 words of data
contained in it, which satisfies the conditions of the object structure.

* dialog box tree

parent:
dew -1,1,2,20,0,16 ; parent: g_box
del $00021100

If we examine the first line of data:
dew -1,1,2,20,0,16 ; parent: g_box

This corresponds with the first 6 words of the object structure as de-
fined earlier:

Word description

0 next object; index of child that is not first or last. If root, -1
(hex FFFF):
1 starting object; index of first child object
ending object; index of last child object

2

3 object type, eg g_box, g_button
4 object flags; selectability of object
5

object status; state of object

The first word has the value ’~1’ which shows that it is the root object.
The root object refers to the object that holds all the other objects, ie its

parent.

The second word has the value *1’ which is the index of the first child
which is the next object, which is the object that holds the data for the

Chapter 12: GEM Objects 131

The third word has the value *2’ which states that the 3rd object (count-
ing from 0) is the last, the ’exit’ button.

The fourth word has the value *20° which refers to ’g__box’ type of ob-
ject. This is the actual box to hold the other objects.

The fifth word has the value ’0’ which means that the object cannot be
selected. It would not be correct if the main box was selectable, ie it
would turn black when the mouse pointer was clicked over it.

The sixth word has the value 16 which means that the box should have
an outline around it which it does.

Examining the second line of data (word 6 and 7) — object specification:
dcl $00021100

This refers to the colour and thickness of the border of the object— the
’g__box’, where *$00021100° means:

0= white fill colour

0= no fill, and transparent writing mode
1= text colour— black

1= border colour— black

2= inside border thickness

The last and third line corresponds to the 8—11 words of the object
structure:

dew 170,100,250,100

refers to the x coordinate, y coordinate, width and height of the
’gbox’, where x refers to dz'stance across the screen (0 to 639 on a
mono monitor), and y refers to the distance down the screen (0 to 399
on a mono monitor). This corresponds to the number of pixels on the
screen.

If we now look at the second data structure in the dialog box:

132 Chapter 12: GEM Objects

dew 2,-1,-1,28,0,0 ; g_string, title string
dcl textl
dcw 10,10,5,1

This follows the pattern described above but with some differences.

The first three words describes the next, start and end objects as we have

seen. So this states that number 2’ is the next object in the tree, and

’~1 states that there are no children, so there are no next or end ob-
jects.

The next three words tell us that the object type is a ring’ and that
it cannot be selected and has no special status, which is what we need
for text.

*text]’ is a label that points to or refers to the text which we want
printed:

textl: dcb ’ ----- EXAMPLE----,0

The actual text to be printed must always be followed by a null byte.
The next four words describe the x, y, width, and height coordinates of
the object. However, it is important to realise that the coordinates of the
children of an object— in this case child of the ’g__box’- are relative to
the parent.

The last object— the ’exit’ button:

dew 0,-1,-1,22,7+32,0 ; g-boxtext, boxed exit button
dcl text2
dew 50,60,60,25

is also similar in construction but has the following differences:

The first three words describes the next, start and end objects. So this
states that number 0’ is the next object in the tree (the last object must
point back to the parent). *~1” states that there are no children, so there
are no next or end objects.

The next word value is 22’ and describes a ’g__boxtext” which has its

3
!
:
i
3
]
i

Chapter 12: GEM Objects 133

object flags (flag is a computer term to describe a particular state) set to
7 ie it is ’selectable’, a ’degult’, and an ’exit’ object which is ideal for an
exit button. But what about *32’? As this is the last object in the tree,
bit 5 is set so 32 is added to the object flag.

The next two words are an address pointer that refers to a tedinfo struc-
ture:

text2: dcd textytextt2 textt2
dew 3,0,2,$11€0,0,3,5,0

texty: dcb ’Exit’,0

textt2: deb O

Referring back to the tedinfo structure you will see that the first long
word is ’te__ptext’ a pointer to the string to be actually printed, in this
case "texty” which has defined "Exit’ to be the string.

The next two long words are not relevant to us as the text is not edit-
able so they both point to a null *textt2".

The next 8 words refer to the font (5=normal), 0 for reserved word, 2=
centred text, $11f0 for colour, O for reserved word, 3 for thickness of

box, 5 for length of text+1 for null, and 0 for ’te__ptmplt’ as it is not
applicable.

*form__do’ returns in the first word of the intout array the index of the
object that caused ’form__do’ to finish. In this case intout would con-
tain "2, :

And that’s it at last!

134 Chapter 12: GEM Objects

Chapter 13
Using MKRSC.PRG

This chapter takes a detailed look at using the supplied Resource Con-
struction Pro (RCP). With a step—by—step description of con-
structing a dialog box and a program to use it in assembly language the
reader is taken further along the road to proficient GEM programming.

A resource construction program (RCP) allows the ST application pro-
grammer to design a useful and user—friendly program interface with
the minimum of fuss. However to correctly use a RCP it is necessary to
understand at least some of the basic theory underlying their construc-
tion and method of design and the reader is referred back to chapter
twelve for reference.

The RCP on the disk can only be used with the resource files created by
the program. Other resource files (created for example by WERCS) can-
not (usually) be edited and altered within this RCP. The other limita-
tion to this RCP is that bit images cannot be used in dialog boxes as the
program does not support this. Fortunately it is fairly easy to put bit
1mages in simple dialog boxes by creating the dialog g'ox by hand. See
chapter sixteen for more details of this.

Using MKRSC.PRG

To use the RCP it should be double clicked from the desktop or run
from the text editor by selecting the Run Other option from the Pro-
gram drop down menu.

Constructing a dialog box

Before reading the next part of the chapter it would be as well to run
GEMS5.PRG and look at the finished dialog box that is about to be con-
structed. Diagram 13:1 shows the finished dialog box within the RCP.

136 Chapter 13: Using MKRSC.PRG

Desk File Edit c
BUTTON

STRING ' Exanple Dialnl Box Im- zxsort

) e
Button:
9 Output: [Moden | ([Printer| Pate:dd/mm/yy |
TExT -
]

diagram 13:1

The dialog box consists of three radio buttons in the centre of the box,
called BUTTON 1, BUTTON 2, and BUTTON 3, with text on the left
describing them, entitled ’Button:’. The next row entitled *Output’
holds two radio buttons which hold the legends "Modem’ and Printer”.
The next button is an editable button and it holds the date to be en-
tered by the user: dd/mm/yy, where this refers to the day (dd), month
(mm), and year (yy). The bottom two buttons are the usual *Cancel’ and
Ok’ objects. Notice that the ’Ok’ button has a thicker border indicat-
ing it is the default object and will be selected by pressing the Return
key. The whole dialog box is described at the top by a shadowed box
with the title in it: "Example Dialog Box’. Finally to the right of this is
the text *from zzSoft’ in small text.

Note that the dialog is an example only and is used only as such.

As discussed in the previous chapter GEM refers to the that make
up a dialog box, or alert box, or drop down menu as objects. Each ob-
ject has a special name and function most of which are available in the
RCP as icons. When the RCP is first run we are presented with three

N s o AR Lt s e e R Y

file:///RRC/EXRMPLE

Chapter 13: Using MKRSC.PRG 137

icons to the left of the screen: "Menu’, ’dialog’, and *unknown’, menus
and dialog boxes being the two most useful types. To make a start New
should now be selected from the File drop menu and the screen
should change to diagram 13:2 which shows a window opened for ready
for use by ge programmer. The dialog box icon should now be se-
lected and dragged over to the window— see diagram 13:3, when the
name of the tree (dialog box) under construction is presented to us to al-
ter or agree with. I usually leave it as it is and select "Ok’.

diagram 13:3

Next the dialog box icon should be double clicked with left mouse but-

138 Chapter 13: Using MKRSC.PRG

ton pointer, and the screen should alter to diagram 13:4 which shows a
object type ’g__box’— a plain box with a border. The size of this rectan-
gle can be altered by dragging the bottom left—hand corner either in or
out to make it smaller or bigger respectively. However, I have chosen to
leave it at the default size.

diagram 13:4

The left—hand side of the screen shows the types of GEM objects that
can be used in our dialog box, shown in icon form. Obviously an invis-
ible box cannot be shown so I have assumed that the sixth icon down
can be used as an invisible box by adjusting its parameters later on. This
will be used to hold other objects, its chilcigren which will be configured
to be selectable radio buttons.

So, next drag, the sixth icon down, to the rectangle, or window that
contains the rectangle (g__box) and place in a central position. This
small rectangle can be moved about the window by clicking inside it
without releasing the left mouse button, and dragging it about. Releas-
ing the left mouse button will position it at that particular point. This
wﬁl be known as the second object for the rest of the construction.

The rectangle should now be made bigger by clicking in the bottom
right—hand corner and dragging the outline of the rectangle until it is
the required size to hold three radio buttons. If you get the size wrong it
is very easy to correct in a similar manner.

Chapter 13: Using MKRSC.PRG 139

Next the first icon— rectangle with ’button’ in it should be d into
the second object. This should be done three times until the three but-
tons are situated symmetrically in the second rectangle. See dia-
gram 13:5. Note that by moving the second object about the three but-
tons contained within it are also moved with it, this is because the three
buttons are now children of the second object, whilst the second object
is a child of the first, large object which holds them all.

Altering specifications

We now need to alter the specifications of the three buttons so that they
can be radio buttons and selectable too. To alter the specifications of any
object all that needs to be done is to double click in that object. Imme-
diately a dialog box appears with a variety of specification choices.

So, next you should double click inside each of the three buttons and
ensure that it is made ’selectable’, and a ’radio button’. See diagram 13:6.
Only those buttons that are contained within a particular parent object
can {e (dependant) radio buttons. This means that another set of radio
buttons can be created within another parent object without affecting
the integrity of any other radio button grouping.

140 Chapter 13: Using MKRSC.PRG

oy]
AN | (SHRGED

-

diagram 13:6

Once the second object is positioned correctly then this may be dou-
ble—clicked and the border set to zero so that it is an invisible box.
This does not affect the objects relationship with its children or parent.
It should not be made selectable etc. Note that this box does not have to
made invisible, it is only done this way as it looks better. It is perfectly
all right to leave the parent box visible.

Naming the objects

The three radio buttons should then be selected one by one so that they
can be named. When an object is named it should be named so that is

to identify later on. For instance when a button is the ’Ok’ button
then it should be named *OK’, and so on. The names we give to the ob-
jects should not be confused with the text contained in the object. We
give each object 2 name because when the resource file is saved a file
with the extension .H (H= Header) is saved with the same name as the
resource file. In this file are the names that we have given to the objects.
It is only sensible to name those objects that are selectable as those are
the only ones we would be interested in. There is no particular point in
naming a title or a non—editable string.

To name an object click over it so that it becomes selected- ie it goes
black (known as reverse video). I found that some objects were difficult
to select, but if I held the left shift down at the same time as click-
ing over the objects they could be selected ok. Also holding down the

Chapter 13: Using MKRSC.PRG 141

control key at the same time as clicking on an object selects its parent
which can be useful. Then select 'name’ from the Choose menu.

My EXAMPLE.H looked like this:

HBdefine TREE001 0
Bdefine CANCEL 2
HBdefine BUTTON2 4
Hdefine BUTTONI1 5
Hdefine BUTTON3 6

Bdefine DATE 9

Rdefine MODEM 11
Bdefine PRINTER 12
Bdefine OK 14

which I later altered to equates. See the example source code file,
GEMS.S. It will become more apparent as we go on as to why naming
objects can be so useful. :

Further #define’s are for tree002, used for a drop down menu-— see next
chapter.

To get the title object "Example Dialog Box’ is very easy. Drag the last
object icon ’boxtext’ to the top of the dialog box, and double click to al-
ter its specifications. Enter the required text in the 'PTEXT" field, alter
the size of the border, select shadowed. Ensure that it is not editable,
and ignore the PTMPLT, and PVALID fields . That’s it.

Next the the ’modem’ and ’printer’ radio buttons should be created by
following the procedures as outlined above. Note that I named these ob-
jects for the header file the same as the text in the button.

Editable text

The date object is the next to be created by dragging the fourth icon ob-
ject (EDIT:____) across to the dialog box and positioning it next
to the printer button. Double—clicking on this object will show the dia-

142 Chapter 13: Using MKRSC.PRG
log box as illustrated in diagram 13:7.

File Edit Chesse Wisdoes
| @ [omssssseeasizeearaBaiC: \ARC\EXAHPLE . R SCREstas e e iassEiates)

s | SELECTASLE (CHESKEY) [HINEN [)(GEEL)
o
(CET) LR (SSMLES) (BSSED)

B e TR
gy ack-

PTHPLDDate:_/_/_| L]
PYALID>999395_
| PTEXT>ddmmyy.

i

i

diagram 13:7

The "Date’ object demonstrates using editable text with a template, and
a validation string. The form it takes is:

PIMPLDdate___ /___ /
PVALID»999999

PTEXT:ddmmyy

From the previous chapter these will be remembered from the tedinfo
data structure, except each name was proceeded by ’te_’ eg
’te__ptmplt. "PTMPLT’ is the template the object’s text takes, whilst
the validation string only allows digits which is appropriate for a date to
be entered in this format— pressing any key other than a number key
will result in no action being taken by *form__do’. The actual text ini-
tially output is 'ddmmyy’. Note that it is possible to pass the actual date
taken from the computer, but this woulci have to done from assembly
language and not from the RCP.

Editing text

A dialog box allows the input and editing of text (see next two chapter’s,
and their associated p for more d%mls on dialog boxes with edit-
able text fields) where the objects are specified as editable. To make edit-

Chapter 13: Using MKRSC.PRG 143
ing easy GEM allows the following functions:

Escape: All characters are erased from the field

Return or Enter: If an object has the flag *default’ then this is se-
lected by GEM and the dialog box is ended immediately and control
passed from GEM (*form__do’ or "objc__edit’) to the application.

Backspace: the character to the left of the cursor is deleted and the-
cursor is moved one position to the left

Delete: deletes the character to the right of the cursor

Up arrow or Shift+Tab: the cursor is moved to the previous editable
object, and positioned at the next writing position.

Down arrow or Tab: As above but moved to next input field.

Left and right arrows: the cursor is moved over text to the left or

right.

The Ok’ and *Cancel’ buttons are constructed from the first icon, *but-

ton’. They are usually both given an ’exit’, and selectable spec, whilst

:iOk’ is made ’default’. They should be named appropriately as I have
one.

The resource file should now be saved with an appropriate name— I
called mine ’example.rsc’. Note that the resource file should be in the
root directory, ie it should not be placed in a folder even if the calling
program is executed from one, unless ’rsc__load’ is passed the folder

path in your program.

The dialog bax can now be displayed on then screen in the following
manner:

* GEM5SS

* Load and display an example Resource file: EXAMPLE.RSC
* Use AES calls only

* Equates modified from the file EXAMPLE.H

144 Chapter 13: Using MKRSC.PRG

* NOTE: resource file must be in root directory of drive program run
* from.

tree001 equ 0
cancel equ 2
button2 equ 4
buttonl equ 5
button3 equ 6
date equ 9
modem equ 11
printer equ 12
ok equ 14
* header

move.l a7,a5

move.l Rustk,a7

movel . 4(a5)as
move.l 12(a5),d0
add.l 20(a5),d0
add.l 28(as5),d0
add.l #$100,d0
move.l do0,-(sp)
move.l a5,-(sp)

move do,-(sp)

move B$4a,-(sp)

trap 23 |

add.l B12,sp

move.l Rrsc_load,aespb ; AES load a resource file
move.l Brsc_file,addrin ; name of resource file to be loaded
jsr aes

cmpi.w R1(,intout ; was the resource file loaded
beq exit ; o

move.l Brsc_gaddr,aespb ; get address of resource tree
move B80,intin ; tree structure

move 80,intin+2

bsr aes

cmpi.w R1(,intout ; error

beq exit ;yes

Chapter 13: Using MKRSC.PRG 145

move.l
bsr
bsr
bsr

move.l

add.l
* *printer’

addrout,parent ; place address in parent

form_center ; get centred coords of dialog box

obdraw ; draw it on screen
f_do ; handle interaction with user
parent,a0

3(printer‘24)+10,a0 ; get address of object status -

* test to see whether ’printer’ button has been selected

cmpi.w

move.l

* resource file
bsr
bra

obdraw:
move
move
move
move
move
move
move.l
move.l
bsr
rts

* _globl
f_do: move.l
move
move.l
bsr
rts

form_center:
move.l
move.l

#1,a0)
Rrsc_free,aespb ; free memory taken up by the

aes
exit ; let’s quit

B0,intin

82 intin+2
d0,intin+4
dl,intin+6
d2,intin+8
d3,intin+10
parent,addrin
Hobject_draw,aespb
aes

f_do

Bform_do,aespb ; form_do
Hdate,intin ; editable text field
parent,addrin

aes

Bf_center,aespb
parent,addrin

146 Chapter 13: Using MKRSC.PRG

jsr aes
movem.w intout+2,d0-d3
rts

* AES subroutine

aes: move.l Haespb,d1
move.l #$c8,d0
trap B2
rts

exit:
clrw -(sp)
trap 1

dsl 256
ustk: dsl 1

aespb: dc.l contrl,global,intin,intout,addrin,addrout

object_draw: dcw 42,6110

form_do: dew 50,1,2,1,0
f_center: dew 54,0510
rsc_load: dew 110,0,1,1,0
rsc_gaddr: dew 112,2,1,0,1
rsc_free: dew 111,0,1,0,1
contrl: dsw 12

intin: dsw 128
intout: dsw 128
global: dsw 16

addrin: dsw 128
addrout: dsw 128
parent: dsl 1

rsc_filee dcb “example.rsc”,0

Along with the *RCS’ file and *H’ file a "DEF file is also created when
the resource file is saved. Although not needed by GEM when using a
resource file in a program it is needed by the RCP when further editing
is necessary.

|
4
:

Chapter 13: Using MKRSC.PRG 147
Using the names of objects e

*form__do’ needs the index number of the first editable object as one of
its parameters. If there is no editable text object then the first word of
the ’intin’ array should be cleared. As there is an editable text object in
the above source code it is easy to use the ‘date’ equate found in the "H’
file. We do not even have to know what the actual value of ’date’ is.

Another way that the names of objects can be used is when we need to
know what the user has actually selected after exiting the dialog box. In
the dialog box above a printer or modem could have been selected, or
one of the three buttons, but how are we to know?

If *Cancel’ has been selected then it is up to us to restore the dialog back
to its prior state. This is the normal use of the *Cancel’ button. To do
this we need a list of the condition it was in prior to the dialog box be-
ing used. This would be done by checking tﬁe object’s status and stor-
ing its state prior to the dialog’s use. See next example source code for a
demonstration of this.

As we know each object is defined by a 24 byte structure, with the ob-
ject status 10 bytes ahead of that, and fortunately these are sorted into
index order by GEM when they are loaded so that using the formula:

move.l parent,a0 ; put address of tree in A0
add.l #(object’*24)+10,a0 ; object equate®*24+10 bytes
cmpi.w 81,(a0) ; see if selected

can show whether an object has been selected or not.

When the *printer’ button status is tested it takes the form of:

move.l parent,a0 ; put address of tree in A0

add.!l H(printer®*24)+10,a0 ; get address of object status- ’printer’
* test to see whether ’printer’ button has been selected

cmpiw #1,(a0)

If the *printer’ object had been selected by the user then its status would
be ’selected’. We can then decide what needs to be done. For instance se-

148 Chapter 13: Using MKRSC.PRG

lecting ’printer’ may be a signal to the program that something needs to
be printed.

What if we needed to have the ’printer’ object selected as a default state,
and for instance ’button1’ selected too, as a default. We cannot set the
object status flag to selected within the RCP, but we can set the flags be-
fore we display the dialog box in assembler using the knowledge we al-
ready have. GEM6.S shows how this may be done.

To summarize the process of displaying a dialog box:

1. Load the resource file from disk into memory, by ’rsrc__load’ call.
Find address of object tree with *rsrc__gaddr’ call.
Call *form__center’ to get centred coordinates of dialog box.

Z

3

4. Call *form__dial’ to reserve screen memory space. (optional)
5. Call "form__dial’ again to draw a growing box. (optional)

6

. Draw the dialog box with objc__draw’ using centred coordinates
from (3)
7. Call form__do". The AES now assumes complete control over user
interaction with the dialog box until the user clicks on an ’exit’ object
or presses the Return key to activate a *default’ object. If ‘objc__edit’ is
used instead of form__do’ the programmer gas to take control of some
of the functions that *form__do’ would normally handle.

8. Remove dialog box from screen by calling *form__dial’. (optional)
9. Show a shrinking box by calling form__dial’ again. (optional)
To display the dialog box again step 1 and 2 are not necessary.

For example code using *form__dial” see next chapter.

GEM6.S shows how objects can have their status flags set in a dialog

Chapter 13: Using MKRSC.PRG 149

prior to being shown on screen, eg showing objects in a default selected
state. It also demonstrates returning a dialog box back to its original
state when the *Cancel’ button is selected. In actual practise a dialog box
would be returned back to its state before it was invoked if the cancel
button was selected. This may or may not be the default state. This
would depend on whether the dialog box set—up was altered previously
and exited with an Ok’ button being selectecf A complicated dialog
box may well have a ’default’ button so that it could be returned back to
its original boot—up state. Some programs even offer the user the op-
tion of saving the users own defauﬁs in a file often called something like
"DEFAULT.DEF'. At boot—up the programmer will then load thus file
automatically and set the dialog accordingly. For instance a dialog box
might offer the choice of serial or parallel printer, flashing cursor or still
cursor, etc. The user then selects his preferences and the saves them.

* GEM6.S

* Load and display an example Resource file: EXAMPLE.RSC

* Use AES calls only. The mouse pointer is also changed to an

* arrow.

* Equates modified from the file EXAMPLE.H

* NOTE resource file must be in root directory of drive program run
* from. Set object spec, and reset object spec if ’cancel’ selected.

* equates from EXAMPLE.H

tree001 equ 0
cancel equ 2
button2 equ 4
button1 -equ 5
button3 equ 6
date equ 9
modem equ 11
printer equ 12
ok equ 14
* header
move.l 7,a5

move.l Bustk,a7
move.l 4(a5),a5

move.l 12(a5),d0
add.l 20(a5),d0

150 Chapter 13: Using MKRSC.PRG
~ addl 28(a5),d0
add.l #$100,d0
move.l do0,-(sp)
move.l a5,-(sp)
clrw -(sp)
move H1S$4a,-(sp)
trap 23 |
add.l B12,sp
* appl_intit()
move.l Rappl_init,aespb
jsr aes ; call AES
move.l Brsc_load,aespb ; AES load a resource file
move.l frsc_file,addrin ; name of resource file to be
* loaded
jsr aes
cmpi.w R(,intout ; was the resource file loaded
beq exit ;o
move.l Hrsc_gaddraespb ; get address of resource tree
move #0,intin ; get whole tree structure
move Htree00l,intin+2 ; tree
bsr aes
cmpi.w R(,intout ; error
beq exit ; yes
move.l addrout,parent ; place address in parent
move.l parent,a0 ; address in a0
move #(button1*24+10),d0 ; offset in dO
move #1,0(a0,d0) ; make button1 default selected
move 0(a0,d0),butl_status ; save status
move #(button2*24+10),d0
move 0(a0,d0),but2_status ; save status
move #(button3*24+10),d0
move 0(a0,d0),but3_status ; save status
move H(printer*24+10),d0

Chapter 13: Using MKRSC.PRG 151

move #1,0(a0,d0) ; make printer default selected
move 0(a0,d0),printer_status ; save status
move #(modem®24+10),d0
move 0(a0,d0),modem_status ; save status
bsr arrow ; change mouse to arrow
bsr form_center ; get centred coords of dialog
* box
bsr obdraw ; draw it on screen
bsr f_do ; handle interaction with user
move.l parent,a0
add.l f(cancel*24)+10,a0 ; get address of object status-
* *cancel’

* test to see whether cancel’ button has been selected
cmpi.w #1,(a0)

bne dont_restore
* restore status of buttons
move.l parent,a0 ; place address in a0
move #(button1*24+10),d0 ; offset in dO
move but1_status,0(a0,d0) ; restore old status
move #(button2*24+10),d0
move but2_status,0(a0,d0)
move #(button3*24+10),d0
move but3_status,0(a0,d0)
move H(printer*24+10),d0
move printer_status,0(a0,d0)
move #(modem®24+10),d0
move modem_status,0(20,d0)
dont_restore:

bsr obdraw

152 Chapter 13: Using MKRSC.PRG

bsr f_do

move.l Hrsc_free,aespb ; free memory taken up by the
* resource file

bsr aes

bra exit ; let’s quit
obdraw:

move #0,intin

move 82,intin+2

move cx,intin+4

move cy,intin+6

move cw,intin+8

move ch,intin+10

move.l parent,addrin

move.l Hobject_draw,aespb

bsr aes

rts

* _globl f_do
f_do: movel Hform_do,aespb ;form_do

move Rdate,intin ; editable text field
move.l parent,addrin
bsr aes
rts
form_center:
move.l Rf_center,aespb
move.l parent,addrin
jsr aes
movem.w intout+2,d0
movemw d0,cx ; put values in cx-ch
rts
arrow:

* graf_mouse
movem.l a0-a6/d0-d7,-(sp)

move.l Hgraf_mouse,aespb
jsr aes
move R(,intin ; arTowW

movem.l (sp)+a0-a6/d0-d7
rts

Chapter 13: Using MKRSC.PRG

153

* AES subroutine
aes:
movem.! a0-a6/d0-d7,-(sp)
move.l Haespb,d1
move.l B$c8,d0
trap "2
movem.l (sp)+a0-a6/d0-d7
rts
exit:
* appl_exit()
move.l Rappl_exit,aespb
jsr aes ; call AES
clrw -(sp)
trap 23 |
ds.l 256
ustk: ds.l 1

aespb: dc. contrl,global,intin,intout,addrin,addrout

object_draw:

appl-init:
appl_exit:
form_do:
f_center:
graf_mouse:
rsc-load:
rsc-gaddr:
rsc_free:

contrl:
intin:
intout:
global:
addrin:
addrout:

dew 42,6,1,1,0

dew 10,0,1,0,0
dew 19,0,1,0,0
dew 50,1,2,1,0
dew 54,0510
dew 78,1,1,1,0
dew 110,0,1,1,0
dew 112,2,1,0,1
dew 111,0,1,0,1

dsw 12
dsw 128

dsw 128

dsw 16
dsw 128
dsw 128

154 Chapter 13: Using MKRSC.PRG

parent: dsl 1

rsc-file: dcb “example.rsc”,0
* these 4 must stay together

cx: dsw 1

cy: dsw 1

cw: dsw 1

ch: dsw 1

butl_status: dsw 1
but2_status: dsw 1
but3_status: dsw 1

printer_status: dsw 1
modem_status: dsw 1

GEMES.S is a, slightly unusual program in that *form__do’ is executed
twice. Under normal program conditions we have to expect a dialog box
to be called many times, and it is for this purposee:E:t GEM6.S has
been written to show what happens when objects are selected and the
dialog box is exited from.

GEM helps in many ways to ease the programming burden but it
expects the programmer to see to it that objects are returned to their
original conditions if necessary. For instance it is usual to ensure that
the OK’ or ’Cancel’ button once selected are returned to their non—
selected state. GEM does not do this automatically. In the program
above I have shown how it is possible to reset all the objects back to
their original condition when the *Cancel’ button is selected. But you
may have noticed that I have not taken care of the Ok’ or *Cancel’
button state, so that once it has been selected it stays selected. It could
have been easily turned back to its original state in the same manner as
all the other seF;ctable objects, but they have been left as an example.

GEM provides a call to alter an objects status called ’objc__change’,
which can be used as an alternative to the methods outlined above,
although it is not as flexible.

It may be useful to examine this program fragment in more detail:

L Ul

i

Chapter 13: Using MKRSC.PRG 155

move.l parent,a0 ; address in a0 :

move H#(button1*24+10),d0 ; offset in dO

move R11,0(a0,d0) ; make button1 default selected
move 0(a0,d0),butl_status ; save status

First the address of the dialog box tree is placed in address register a0,
then the index of ’button1’ is multiplied by 24 to get the address of that
particular object. To get the object status a further 10 (bytes) needs to be
add to that result. This is then placed in dO. The third line takes the
address in a0, adds whatever is in dO to it, and places one in the place
referred to by that address so that button1 is now selected. Fortunately,
register a0’s contents are not altered by this operation so that it is
possible to alter the value of dO to get turther addresses. The last line
stores the new contents of this address and places it at the address
I;belled ’butl__status’ ready for use if the *Cancel’ button is selected by
the user.

Note that the mouse pointer is altered to an arrow from the busy bee,
with the ’graf__mouse’ AES call. Other options are. available to the
programmer, such as a pointing hand. See disk for list of options and
chapter fifteen.

Sorting objects

If a group of objects is created with the RCP, such as a group of editable
objects tEen we would probably need the objects to be in order so that
for instance pressing the up arrow key sends the cursor up to the last
object, and so on. However, it is often the case that such a group of
objects is not ordered correctly in the process of creating the dialog box.
In fact they may be ordered in a seemingly haphazard way, which can
be due to a number of factors eg the ’copy’ option being used.
Fortunately the RCP has a *Sort’ option which permits the ordering of
a group of siblings, or children of the same object.

For instance if a group of editable objects where laid out like this:
First name 3 Last name

Home Address : Work Address :

156 Chapter 13: Using MKRSC.PRG

Post Code : Bheiiolla- PoCotl¥conedis __sax

As we know the Tab key or down arrow will take the cursor to the next
editable object (actually the object pointed to by that object which co-
uld be the next physical field but might not). When the user types his/
her name into the First name’ field the cursor should logically go next
to the ’Last name’ field, but if the objects are arranged so that the sec-
ond column follows on from the first column then "Home Address’ will
be the next input field. Not what is wanted.

The *Sort’ option allows all the siblings of an object (at one level) to be
sgrted in a g)ur different ways. "X only’, ’Y only’, ’X then Y’, and 'Y
then X,

"X’ refers to the layout of objects in columns whilst Y” refers to objects
in rows. So sorting all the siblings in the order "X’ only would result in
the cursor following the objects in columns, *first name’ followed by
*home address’ etc. Sorting by Y only’ results in the cursor following
the objects in rows:

T 7T S wys teecsiBlb oyt '
———field 2-————— <o soe-sor-Tielidbivere = =

In this case the cursor would go to field 1 then to 2 etc.

Sorting "X then Y’ is the same as "X only’ in this case, and ’Y then X’
‘is the same as *Y only’ in this case too.

Last editable object

If the last object in the tree is an editable one then the ST will crash
when the cursor reaches there! The solution is to ensure that the ’OK’
button (for example) is the last object in the tree. In the RCP double
clicking over the ’OK’ button before exiting and Saving the resource file
will ensure that the ’OK’ button is the last object in the dialog tree.
This is not the only GEM bug; ’evnt__multi’ is not free of bugs. Fortu-
nately most GEM gugs can be programmed around.

Chapter 13: Using MKRSC.PRG 4 157
RCP Edit

The following options are available for editing objects:

X Cut

C Copy
V Paste
E Erase

They are accessed by selecting the object and then pressing ALT and the
required option or by selecting the option from the drop down menu
itself. For 1nstance to copy an object it should be first selected by click-
ing over it, and then ALT-C should be pressed which copies the object
into an internal buffer. Next Paste’ sEould be selected by pressing
ALT-V and where ever the mouse pointer is situated the object will be
copied to. If the receiving parent object is not big enough to accommo-
date the pasted (copied) object then the object will not be copied until
the parent is enlarged or the pasting arrow is positioned more accu-
rately so that the object will fit into the parent.

Useful RCP options:
With the mouse pointer and left button:

Control selects parent of the object. Useful for drop down menu
entries as Control-Click selecting the menu title opens up the drop
down menu. Control—click on menu item selects drop down menu par-
ent box so that it can be reduced or enlarged in size to accommos::e
less or more menu entries— keep control key depressed whilst opening
up or reducing menu box.

Left-shift copies object to buffer.

Cursor correction

Unfortunately the AES insists on placing the cursor at the end of an
editable object field. This is ok as in the last example where an example
date filled the editable text field, but if the field is empty having the cur-
sor at the end of the field is unacceptable.

To see this effect and the method to correct it please have a look at the

158 Chapter 13: Using MKRSC.PRG

example source code below. Diagram 13:8 shows the finished dialog box
in the RCP.

Desk File Edit Choose MWindows

STRING | Name & Rddress]
5, P MddressTi—— Addresss:
RO e - s Mtceng =T
l:] Addressd i _____ Address8:
ol
TEXT m
el
diagram 13:8
* GEM6A.S

* Load and display an example Resource file: NAME_ADD.RSC

* Equates modified from the file NAME_ADD.H

* NOTE: resource file must be in root directory of

* drive program run from.

* This program is used as an example of correcting cursor position
* in an editable text object field.

tree001 equ 0
name equ 3
addrl equ 4
addr2 equ 5
addr3 equ 6
addr4 equ 7
name2 equ 8

file:///ftRC/NflME-flPD

Chapter 13: Using MKRSC.PRG

159

addr5 equ 9
addr6 equ 10
addr?7 equ 11
addr8 equ 12
ok equ 13
* header

move.l a7,as5

move.l Bustk,a7
move.l 4(a5),a5
move.l 12(a5),d0
add.l 20(a5),d0
add.l 28(a5),d0
add.l 1$100,d0
move.l do0,-(sp)
move.l a5,-(sp)

clrw -(sp)

move 1$4a,-(sp)

trap 23 |

add.l "12,sp

move.l 1Ftrsc..load,ae'spb ; AES load a resource file

move.l Birsc_file,addrin ; name of resource file to be
* loaded

jsr aes

cmpi.w 1(,intout ; was the resource file loaded
beq exit ; o

move.l Hrsc_gaddr,aespb ; get address of resource tree
move #0,intin ; tree structure

move #0,intin+2

bsr aes

cmpi.w #(,intout ; error

beq exit ;yes

move.l addrout,parent ; place address in parent

* correct cursor
move.l parent,a0

* correct cursor position method 1

160 Chapter 13: Using MKRSC.PRG
move H#(name*24+12),d0
move.l 0(a0,d0),al
move.l (al),a2
moveb #0,(a2)

*correct cursor position method 2

move
jsr

move
jsr

move
jsr

bsr
* box

bsr
bsr
move.l

move.l
* resource file
bsr

bra

correct
mulu
add -
move.l
move.l

* address
move.b

Baddrl,d0
correct

Haddr2,d0
correct

Raddr3,d0
correct

form_center ; get centred coords of dialog

obdraw ; draw it on screen
f_do ; handle interaction with user
parent,a0

Hrsc_free,aespb ; free memory taken up by the
aes

exit ; let’s quit

#24,d0 ; get offset

812,d0 ; get object spec

0(a0,d0),al ; get address held there

(al),a2 ; get address pointed to by that

#0,(a2)

Chapter 13: Using MKRSC.PRG 161

rts

obdraw:
move
move
move
move
move
move
move.l
move.l
bsr
rts

* _globl
f_do: move.l
move
move.l
bsr aes
rts

form_center:

#0,intin
#2,intin+2
d0,intin+4
d1,intin+6
d2,intin+8
d3,intin+10
parent,addrin
Hobject_draw,aespb
aes

f_do

fiform_do,aespb ; form_do
Hname,intin ; editable text field
parent,addrin

move.l #f_center,aespb
move.l parent,addrin
jsr aes
movemw intout+2,d0-d3
rts
* AES subroutine
aes: move.l Haespb,dl
move.l 18c8,d0
trap 82
rts
exit:
clrw -(sp)
trap 81
dsl 256

ustk: dsl 1

162 Chapter 13: Using MKRSC.PRG

aesph: dcl contrl,global,intin,intout,addrin,addrout
object_draw: dcw 42,6,1,1,0
form_do: dew 50,1,2,1,0
f_center: dew 54,05,1,0
rsc_load: dew 110,0,1,1,0
rsc_gaddr: dew 112,2,1,0,1
rsc_free: dew 111,0,1,0,1
contrl: dsw 12

intin: dsw 128

intout: dsw 128

global: dsw 16

addrin: dsw 128

addrout: dsw 128

parent: dsl 1

rsc_file: dc.b “name_add.rsc”,0

If you assemble and run the above example you will be able to see that

only those objects that have a correction made to the tedinfo structure

have the cursor in the right place, ie to the extreme left of the field. The

correction to the tedinfo structure is to place a null at the fist word of

“te__ptext’ ensuring that this is seen as the end of the field, Without this

}:ioxl'éection the cursor is placed at the extreme right end of the editable
eld.

In the above example only ’name’, ’addrl’, ’addr2’, and ’addr3’ are
corrected in this manner. This bug is not the fault of MKRSC.PRG,
other RCP’s exhibit the same fault. The bug is 2 GEM one and is a
nuisance but can be easily corrected with the code given above.

Examining the code closely to see how it is done we have to aware that
the object spec points to a tedinfo data structure which itself refers to an
address. We can see this in the code taken from chapter fifteen. It is not
necessary at this point to understand all this information but it is put
here for reference.

dew 6,-1,-1,29,8,0
del addr5 ; object spec points to addrS
dew 92,45,400,15

Chapter 13: Using MKRSC.PRG 163

addr5: dcd tx5,txtgd,txt2 ; addrS (te_ptext) points to tx5
dew 3,0,0,$1110,0,0,37,37

tx5: deb ‘e ’0 ; actual string to be output

So examining the code taken from GEM6A.S to correct the cursor
position:

* correct cursor position method 1

move #i(name*24+12),d0
move.l 0(a0,d0),al
move.l (al),a2

move.b H0,(a2)

The first line calculates the offset position of name, and adds 12 bytes to
the position to get the object specification offset. This is then added in
line two §without affecting a0) to the address in a0 which is the start
address of the object tree. The resultant address is passed to al. But al
points to or refers to another address the string ’te__pext’ outputs. So
this is passed to register a2, and finally at this address a null is placed or
in BASIC poked. The ‘correct:’ subroutine does the same thing.

In GFA BASIC the code for correcting this fault is:
POKE LPEEK(LPEEK(tree%-+(sourcename®24)+12)),0

Where ’tree% is the address of the tree loaded by ’rsc__load’ and
’sourcename’ holds the index of the editable object.

GFA BASIC V3 users can use a slightly different method to achieve the
same result:

CHAR{{ OB_SPEC(tree%,sourcename)} } =""

When creating editable text fields in the RCP the underline key to the
left of the ’=’ key, is used to donate an editable character space. The
only way to see that the correct amount of underline representations
have been made is to see where the cursor is placed. This is the onl
way to check as the RCP dialog box which accepts the underline itse
uses the underline for a blank editable character as it is an editable

164 Chapter 13: Using MKRSC.PRG

object itself! Studying the example 'NAME__ADD.RSC’ resource file
in the RCP will demonstrate this to you.

Chapter 14
Drop Down Menus

This chapter gives details on how to create drop down menus using the
RCP, and how to use it in an application.

Most ST application software, apart from a few notable exceptions, use
the GEM WIMP interface as a means of providing a user—friendly
front—end to their programs. One of the most notable features of a
WIMP environment is the use of drop down menus, which can be ac-
cessed with a mouse.

It is difficult (but not impossible) to create drop down menus in assem-
bly language by hand, so throughout this book the RCP is used create

the drop down menus. The RCP makes the creation of drop down
menus a relatively painless process. GEM7.S demonstrates how to use
drop down menus in an assembly language program.

Also some new GEM calls are made:

Form_dial

*form__dial’ which has four modes of operation, two of which are used
in the code below. First the an area the size of the dialog box is saved to
an internal buffer so that when the dialog box is finished with the
screen can be restored. This is a useful function although its application
is restricted as it does not clean up any part of the dialog box that has
infringed on a window element. In this case though we are not using a
window so it is ok. The other function of form__dial’ is to provide an
expanding and shrinking box when a dialog box is opened and closed
respectively. Many programmers leave this out as they feel it is some-
thing that can be profitably dispensed with as it speeds up the display of

dialog boxes and windows.
Objc_change

"objc__change’ is also used to alter the status of the ’OK’ or Cancel’
button when exiting the dialog box.

166 Chapter 14: Drop Down Menus
Form_alert

This is a standardized GEM dialog box that can handle short messages
with a maximum of three exit buttons. They do not have to be created
within the RCP, and they are used extensively by the operating system
for ’disks full’, data on i{e disk may be damaged...] amge other system
messages.

menu—_tnormal

This GEM AES call displays a menu title in reverse video or as normal.
Its main use is in de—selecting menu titles after they have been clicked
on.

Menus from the RCP

A similar process to creating dialog boxes is used when creating dro
down menus. One point though is that the menus should be created al-
ong with the dialog box, so that EXAMPLE.RSC contains both the
dijog box and the drop down menus.

Once again it is important to name each menu entry so that the ’EX-
AMPLE.H’ file can later be modified for inclusion in the assembly lan-
guage source code.

If you have been following this book chapter by chapter you will have
created a similar dialog box to the one supplied in the EXAMPLE.RSC.
Now load your dialog box into the RCP, and now drag across the menu
icon, and give it a name when prompted or leave it as it is as I have

done. Next double click on the menu icon and two default menu titles
will be displayed.

Two menu titles are created to begin with by the RCP, and they follow
the GEM convention of DESK, and FILE. The next choice of menu ti-
tle is usually EDIT. DESK, and FILE should not be erased from the

menu bar.

The first menu title DESK holds the About Message another GEM
convention where copyright messages and credits are often displayed
when this menu item is selected. The rest of the menu holds the stand-

Chapter 14: Drop Down Menus 167

ard six desk accessories (DA). It is not necessary to alter these menu
items as any DA will substitute its own name for the one in the menu
automaticaﬂy. GEM will also display the correct number of loaded
DA’s so that accessing the DESK drop down menu will only display
the About Message... if there is no loaded DA’s.

Another GEM convention generally adopted is the use of three periods
after a menu item that displays further information when clicked on,
usually in a dialog box. For example Lo&d... which usually displays the
GEM file selector dialog box.

The About Message... menu item should be doubled clicked and the
About Message... should be replaced with the title of the program. I
altered this to About Example... .

Only some of the object flags need to be selected. Selected should be
clicked on if not already selected. Also checked if a tick is needed to
the extreme left of the menu item. This helps to signal to the user that
the menu item is in operation currently or more usually that a choice
out of a list of (menu or dialog box) items has been made.

Another choice could be to disable the menu item which has been done
for Save in the example menu. A disabled or greyed—out menu item
signifies to the user that it cannot be selected until some further action
is taken. For instance in a word processor it would seem sensible to re-
strict the use of any Save option until a file had been loaded, or a new
file created in the word processor. After all there is no point in saving an
empty file.

Adding menu items

To add new items (objects) to the next menu title FILE should be se-
lected. If difficulty is experienced in selected a particular drop down
menu then the Control key should be held down at the same time as
clicking over the menu title. Once Quit is displayed it should be dou-
ble clicked and the length of the Quit string shortened. Exiting from
this enables us to expand the menu to accommodate more menu items
by the usual process of ing the bottom right —hand corner of the
Quit menu box. Another quicier) method is to hold down the Con-
trol key and click over the last item in the menu bar, in this case Quit
This will select the parent of the menu item in this case the object box

168 Chapter 14: Drop Down Menus

that holds the menu item(s). Keeping the Control key pressed down the
box should then be expanded.

Once this has been done the Quit menu item can be moved about
within the newly expanded menu box, and other menu items added by
dragging over ENTRY to the new menu. The new menu entries should
be made the same width as the menu box so that later on in an applica-
tion when they are selected the whole width of the menu item is se-
lected not just the name and perhaps a space. This is done by expand-
ing the menu item box to the full width of the menu box, or filling in
enough spaces at the end of the menu item string. Also it is normal to
leave two spaces before the menu item so that ticks can be placed there
if necessary. Note that any drop down menu should not be greater than
one—quarter of the screen.

To alter the menu name from ’ENTRY’ to what ever you want just
double click over the item and edit the string in the dialog box.

To add a menu title drag across the TITLE icon and place in an appro-
priate position on the menu bar.

It is essential that a name is given to each menu title and entry, except
the DA’s. This is done by seicting each item and naming each menu
object in the usual manner. It is normal to give an appropriate name to
the menu objects so that they are easily recognizable in the assembly
source code. The names are linked to the object’s index which is invalu-
able later on. The names are then listed in the *H’ file which can be eas-
ily modified for inclusion in our assembly language source code.

If GEM?7.S is studied it will be seen how to display a menu bar and how
the mouse pointer interacts with it.

* GEM7S

* Uses drop down menu, dialog box, ‘objc_change’, *form_dial’ and

* ’form-alert’. Needs EXAMPLE.RSC

* Equates modified from the file EXAMPLE.H

* NOTE: resource file must be in root directory of drive program run
* from Click on About Example... to display dialog box. Quit to exit
* dialog box

tree001 equ 0

Chapter 14: Drop Down Menus _ 169

cancel equ 2
button2 equ 4
button1 equ 5
button3 equ 6
date equ 9
modem equ 11
printer equ 12
ok equ 14
* MENU

tree002 equ 1
desk equ 3
file equ 4
page equ 5
about equ 8
save_as equ 18
load equ 20
quit equ 22
g-top equ 24
g-bottom equ 25
pagel equ 27
etc equ 28

* 23 is used to store address for AES calls using addrin
* a4 for editable text fields if any

* header
move.l a7,a5
move.l Bustk,a7
move.l 4(a5),a5
move.l 12(a5),d0
add.l 20(a5),d0
add.l 28(a5),d0
add.l 1$100,d0
move.l do0,-(sp)
move.l a5,-(sp)

move do0,-(sp
move 1S$4a,-(sp)
trap 23 |

add.l B12,sp

170 Chapter 14: Drop Down Menus
* appl_init()
move.l Bappl_init,aespb
jsr aes ; call AES
move.l Brsc_load,aespb ; AES load a resource file
move.l Brsc_file,addrin ; name of resource file to be
* loaded
jsr aes
cmpi.w #0,intout ; was the resource file loaded
beq exit2 ; no
* dialog box
move.l Rrsc_gaddr,aespb ; get address of resource tree
move B(,intin ; tree structure
move Btree00l,intin+2 ; dialog box
bsr aes
cmpi.w #0,intout ; error
beq exit ; yes
move.l addrout,dialog ; place address in dialog
* menu
move.l Brsc_gaddr,aespb ; get address of resource tree
move 80,intin ; tree structure
move Rtree002,intin+2 ; drop down menu menu
bsr aes
cmpi.w B0,intout ; error
beq exit ; yes
move.l addrout,men_bar ; place address in men_bar

* put menu bar on screen

move.l
move.l
move
bsr

bsr

* evnt_mesag
evnt_mess:

Hmenu_bar,aespb ; display menu object tree
men_bar,addrin

B1,intin ; show menu_bar

aes

arrow ; change mouse pointer to arrow

Chapter 14: Drop Down Menus 171

jsr menu-_t ; change menu title to normal video
move.l Hevnt_mesag,aespb ; wait for report in message buffer
move.l Bmessage_buffer,addrin

bsr aes ;do it

* what have we got

cmp 110, message_buffer ; is it a menu message? (10)
bne evnt_mess ; no don’t bother with it
cmp ftdesk,message_buffer+6 ; is it Desk menu bar?
beq do_menu s yes
cmp fifile, message_buffer+6 ; is it File menu bar?
beq do_menu ;yes
jsr do-_alert ; it’s not Desk or File
bra evnt_mess
do_menu:
cmp Habout,message_buffer+8 ; has About... been
* selected?
beq got_about ;yes
cmp Bquit,message_buffer+8 ; has Quit been selected?
beq exit
jsr do_alert ; neither selected
bra evnt_mess
got_about:
move 1#0,form_flag ;reserve area of screen memory
move.l dialog,a3 ; address of dialog tree in a3
move Hdate,d4 ; date object in d4
jsr do_dialog ; display dialog box and interact with it
move 13 form_flag ;release area of screen memory
jsr form_d ; do it
bra evnt_mess
do_dialog:
bsr form_center ; get centred coords of dialog
* box :
bsr form_d ; Teserve screen memory

bsr obdraw ; draw it on screen

172 Chapter 14: Drop Down Menus
bsr f_do ; handle interaction with user
bsr ob_change ; reset ok or cancel to non selected
rts

EX T 333 S“broutines EHERBIE

do_alert
move.l fiform._alert,aespb
move #1,intin ; first button
move.l Balert_string,addrin
bsr aes
rts

ob_change:
move.l Hobjc_change,aespb
move intout,intin ; ok or cancel- from *form_do’
move #0,intin+2
move cx,intin+4
move cy,intin+6
move cw,intin+8
move ch,intin+10
move 10,intin+12 ; new status- not selected
move #1,intin+14 ; not re-drawn after status change
move.l a3,addrin
bsr aes
rts

menu_t:
move.l Bmenu-tnormal,aespb
move message_buffer+6,intin
move #1,intin+2
move.l men_bar,addrin
bsr aes
rts

obdraw:
move #0,intin
move 82 intin+2
move cx,intin+4
move cy,intin+6

Chapter 14: Drop Down Menus

173

move cw,intin+8

move ch,intin+10

move.l a3,addrin

move.l Hobject_draw,aespb
bsr aes

rts

* _globl f_do
* a4 contains editable text field if any
f_do: movel Hform_do,aespb ;form_do

move d4,intin ; editable text field
move.l a3,addrin
bsr aes
rts

* form_dial

form_d:
move form_flag,intin
move cx,intin+2
move cy,intin+4
move cw,intin+6
move ch,intin+8
move cx,intin+10
move cyintin+12
move cw,intin+14
move ch,intin+16
move.l HBform_dial,aespb
bsr aes
rts

form_center:
move.l Bf_center,aespb
move.l a3,addrin
bsr aes

movem.w intout+2,d0-d3
movem.w d0-d3,cx
rts

* AES subroutine
aes: move.l Raespb,d1
move.l 1$c8,d0

174 Chapter 14: Drop Down Menus
trap "2
rts
arrow:
* graf_mouse
movem.! a0-a6/d0-d7,-(sp)
move.l Bgraf_mouse,aespb
move 80,intin ; aTTOW
bsr aes
movem.l (sp)+a0-a6/d0-d7
rts
exit:
move.l Hrsc_free,aespb ; release memory taken up by the
* resource file
bsr aes
exit2:

* appl_exit()

move.l Happl_exit,aespb
bsr aes ; call AES
clrw -(sp)
trap a3 |
addq.l B2,sp

dsl 256

ustk: dsl 1

aespb: dc.l contrl,global,intin,intout,addrin,addrout

object_draw:
form_do:
f_center:
menu_bar:
evnt_mesag:
form_dial:

dew 42,6,1,1,0
dew 50,1,2,1,0
dew 54,0510
dew 30,1,1,1,0
dew 23,0,11,0
dew 519,110

. ghacde i Ul il o et

Chapter 14: Drop Down Menus 175

appl-init: dew 10,0,1,0,0
appl_exit: dew 19,0,1,0,0
rsc-load: dew 110,0,1,1,0
rsc-gaddr: dew 112,2,1,0,1
rsc_free: dew 111,0,1,0,1
graf_mouse: dew 78,1110
menu-tnormal: dcw 33,2,1,1,0
objc_change: dew 478,110
form_alert: dew 52,1,1,1,0

message_buffer: dsb 16

* these 4 must stay together

cx: dsw 1

cy: ds.w 1

cw: dsw 1

ch: ds.w 1

contrl: dsw 128

intin: dsw 128

intout: dsw 128

global: dsw 128

addrin: dsw 128

addrout: dsw 128

dialog: dsl 1

men_bar: dsl 1

form_flag: dsw 1

rsc-file: dcb “example.rsc”,0
alert_string: dcb ”[3)[There is nothing | assigned to this |

dc.b ” menu entry! | Please try another.]] Why not? 17,0
To use *form__dial’ to show an expanding and shrinking box it could be
used as described below. Note that it should be used prior to
"objc__draw’ and after exiting *form__do’ respectively.

move Bl flag ; expanding box

176 Chapter 14: Drop Down Menus

bsr form_di

*** rest of routine *****
move 82 flag ; shrinking box

bsr form_di

* form_dial- expanding/shrinking box from centre of screen.
form_di:

move flag,intin ; expanding (1)/shrinking box (2)
move 1319,intin+2 ; ok for med and hi res; x
* coord for rectangle in its smallest size
move #199,intin+4 ; should be halved for med res;
* ditto y coord
move B8(,intin+6 ; ditto width
move 80,intin+8 ; ditto height .
move cx,intin+10 ; x coord of rectangle in its largest size
move cy,intin+12 ; ditto y
move cw,intin+14 ; ditto width
move ch,intin+16 ; ditto height
move.l Hiform_dial,aespb
bsr aes
rts
flag dswl

It is also possible to get the expanding box to start from a particular
menu item, and shrink back to it, by using the menu coordinates.

‘evnt__mesag’ is one of the calls that make up the ’evnt__multi’ call.
‘evnt__mesag’ waits until a report is present in the event buffer. There
are many message events most of which concern GEM windows. For
instance a message might be that the user has clicked the full box in
order to enlarge the window to its full size, or reduce it to its former
size. However, ‘evnt__mesag’ returns through ’intout’ the report that
the user has selected an option from one of the available drop down
menus (mn__selected):

mn__selected:

Chapter 14: Drop Down Menus 177
16 byte buffer passed to ’evnt__mesag’

word 0= 10 if a drop down menu has been clicked on
word 3= object index of the menu title
word 4= object index of the menu entry

From this it is easy to check what menu entry has been selected espe-
cially as the equates at the start of the program allow us to use the name
of each menu item as we check which one it is.

Please see disk and chapter fifteen for more coverage of message events.

178 Chapter 14: Drop Down Menus

Chapter 15
Editing Text

This chapter looks at creating a GEM dialog box by hand in which text
can be freely edited. The created dialog box which asks the user for
name and aci'drwses and other particulars to be input is something that
might be seen in an accounts or database program. The use of
’evnt__multi’ and ’‘objc__edit’ is also looked at. Using ’evnt__multi’
with drop down menus is also examined.

The following program (for high and medium res) demonstrates the use
of a hand made dialog box which allows characters to be freely edited.

* GEMS8.S

* This program displays a dialog box into which text can be freely
* entered and edited. The mouse can be used to position the cursor.
* Pressing the Return key ends all editing.

* header
move.l a7,a5
move.l Bustk,a7

move.l 4(a5),a5
move.l 12(a5),d0
add.l 20(a5),d0
add.l 28(a5),d0
add.l 1$100,d0
move.l do,-(sp)
move.l aS,-(sp)

clr -(sp)
move #$4a,-(sp)
trap 23 |
add.l B12,sp
* appl_init()
move.l Rappl_init,aespb
jsr aes ; call AES

* get current screen res

180 Chapter 15: Editing Text
move 114,-(sp)
trap Bi4
addq.] H2,sp
* res returned in d0
cmp 82.d0 ; is it high res
bne dont_alter_coords
move.l Bparent,a5
move.l B11,d5
bsr alter_coords

dont_alter_coords:

bsr

bsr
bsr
bra

alter_coords:
add.l
movew
muluw
move
add.l
move
muluw
move
dbf
rts

obdraw:
move
move
move
move
move
move
move.l
move.l

f_center

obdraw
f_do
exit

H18,a5

(a5),d3

#2.d3

d3,@@s5)+

B2.as5

(a5),d3

B2.d3

d3,(as)+
d5,alter_coords

#0,intin
H1,intin+2
cx,intin+4
cy,intin+6
cw,intin+8
ch,intin+10
Hparent,addrin

Robjc_draw,aespb

Chapter 15: Editing Text

181

bsr aes
rts

f_do: movel ®form_do,aespb
movew H1,intin ; first editable object
move.l Hparent,addrin
bsr aes
rts

f_center:
move.l Bform_center,aespb
move.l Hparent,addrin
jsr aes

move.w intout+2,cx
movew intout+4,cy
move.w intout+6,cw
move.w intout+8,ch
rts

aes: move.l Raespb,d1
move.l BS$c8,d0

trap "2
rts
exit:
* appl_exit()
move.l Rappl_exit,aespb
bsr aes ; call AES
clrw -(sp)
trap 23 |
dsl 256
ustk: dsl 1

addrl: dcd tx1,txtgltxt2
dew 3,0,0,$11€0,0,0,37,37

txI: dcb ‘e "0

182

Chapter 15: Editing Text

* need @ so that cursor is to left

txtgl: dcb
txt2: - dc.b

addr2: dc.l
dew

tx2: dcbhb
txtg2: dc.b
addr3: dc.l

dew
tx3: dcb

txtg3: dc.b

addr4: dc.l

’Code : 0

‘nnnnnnnnnnnnnNnNOnnNnnDnnnnEnnannnon’,0

tx2,txtg2,txt2
3,0,0,$11£0,0,0,37,37

9 @ !’0

’Name : ’0

tx3,txtg3,txt2
3,0,0,$110,0,0,37,37

!o ”0

’Address : 0

tx4,txtgd, txt2

dew 3,0,0,5110,0,0,37,37

tx4: dcb
txtgd: dcb

addr5: dc.l
dew

tx5: dcb

addré: dc.l
dew

tx6: dcb

addr7: dc.l
dew

!0 3’0

= 3,0

tx5,txtgd txt2
3,0,0,$11f0,0,0,37,37

!o !’0

tx6,txtgd, txt2
3,0,0,81110,0,0,37,37

9 @ !,0

tx7,txtg4,txt2
3,0,0,$1110,0,0,37,37

Chapter 15: Editing Text 183
tx7: dcb ‘e ’,0

addr8: dcl tx8,txtg8,txt2
dew 3,0,0,8$11£0,0,0,37,37

tx8: dcb ‘e ’0

txtg8: dcb ’Post Code: ’0

addr9: dcd tx9,txtg9,txt2
dew 3,0,0,$11f0,0,0,37,37

tx9: dcb ‘e 0

txtg9: dcb ’'Phone No: "0

addr10: dcl tx10,txtgl0,txt2
dew 3,0,0,$11f0,0,0,37,37

tx10: dcb ‘e %0

txtgl0: dc.b VAT No : ’0
texttq: deb O

ok_text: dcl text_ok,texttq.texttq

dew 3,0,2,$11£0,0,1,7,0

text_ok: decb *OK’0
parent:dc.w -1,1,11,20,0,16

del $00021100

dew 50,30,450,125

dew 2,-1-1,29,8,0

del addrl

dew 20,5,400,15

dew 3,-1,-1,29.8,0

184 Chapter 15: Editing Text
dc.l addr2
dew 20,15,400,15
dew 4,-1,-1,29,8,0
de.l addr3
dew 20,25,400,15
dew 5,-1,-1,29,8,0
dc. addr4
dew 92,35,400,15
dew 6,-1,-1,29,8,0
de.l addr5
dew 92,45,400,15
dew 7,-1,-1,29,8,0
de.l addré
dew 92,55,400,15
dew 8,-1,-1,29,8,0
dc.l addr7
dew 92,65,400,15
dew 9,-1,-1,29,8,0
de.l addr8
dew 20,75,400,15
dew 10,-1,-1,29,8,0
dc.l addr9
dew 20,85,400,15
dew 11,-1,-1,29,8,0
dc.l addr10
dew 20,95,400,15
dew 0,-1,-1,22,7+32,0
dc.l ok_text
dew 150,110,60,10
aespb: dc.l contrl,global,intin,intout,addrin,addrout

Chapter 15: Editing Text 185

objc_draw: dew 42,6,1,1,0
form_do: dew 50,1,2,1,0
form_center: dcw 54,0,5,1,0

appl_init: dew 10,0,1,0,0
appl_exit: dew 19,0,1,0,0
contrl: ds.w 12

intin: ds.w 128
intout: ds.w 128
global: ds.w 16
addrin: ds.w 128
addrout: ds.w 128

* these 4 need to stay together

cx: ds.w 1

cy: ds.w 1

cw: dsw 1

ch: ds.w 1

Executing EX_GEMS.PRG...

diagram 15:1 The dialog box

To understand this program we need to look carefully at the object data,
and ’tedinfo’ data structures

* first child of dialog box (object data)

186 Chapter 15: Editing Text

dew 2,-1,-1,29,8,0 ; g_ftext, editable, normal
dc. addrl ; this points to tedinfo data
dew 20,5,400,15 ;x,y width & height

* tedinfo data

addrl: dcl tx1,txtgl txt2
dew 3,0,0,$11f0,0,0,37,37

txl: dcb ‘e ’0

txtgl: dcb ’Code : ’0

txt2: dcb ’nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn’,O

The object data’s first three words state that the next object (index) is
two, and there are no children (no subordinate starting object= -1, no
subordinate ending object= -1)

The next three (29,8,0) words state that the object is a g frext’
which supports f:ditablza text, and that the object]ﬂag is semo that the
object is editable, and the last word in the group, 0, gives the object
status as normal, ie not selectable ,etc.

’addr1’ points to a ’tedinfo’ data structure where ’tx1’ is the actual
editable text to be output, in this case nothing. ’@’ is very important as
the object will not function correctly without this character placed at
the start of the string. ’txtgl’ points to a mask that will overlay the *tx1’
string and will therefore used as a template for the input of text. *zxt2’ is
a pointer to the string which allows the particular type of characters
that can be entered into the dialog box.

But what about this bit of code?

alter_coords:

* a5 holds address of tree

* d5 number of of objects in tree
add.l H18,a5 ; add 18 (bytes) to bring to y coordinate
move.w (a5),d3 ; put contents of that address in d3

Chapter 15: Editing Text _ 187
muluw 12,d3 ; double it to satisfy higher resolution

move d3,(a5)+ ; put back, and increment

add.l H2,a5 ;increment again

move (a5),d3 ; repeat process for height

muluw B2,d3

move d3,(a5)+

dbf d5,alter_coords ; not end of tree then do again
rts

The coordinates in the object data, specifically the object ’y’ and
*height’ coordinates are suitable only for medium resolution, so they
must be altered for high resolution by multiplying them by two. This 1s
because med res screen height as measured in the usual way (pixels) has
a heiﬁt of 200, whilst high res has a height of 400. This code ensures
that this happens and that the dialog box 1s suitable for high res screen
output. The dialog box was originally constructed in med res. The med
res screen width is the same as high res 0-639 pixels.

One of the drawbacks of this type of GEM dialog box is that pressin
the Return key always results in the default exit button being selectef,
and thus the end of editing. This is not particularly useful as most users
would expect a 'Return’ to signal that the cursor would go to the next
line, or to the end of text on the next line.

This limitation can be got around by using ’objc__edit’ an AES call,
whicléailsl.used extensively in GEM9.S, which also uses the ’evnt__multi’
AES call:

* GEM9.S

* This program displays a dialog box into which text can be freely
* entered and edited. The mouse can be used to click over the

* OK button to exit. This program demonstrates the use of

* ’evnt_multi’, and ’objc_edit’

* Pressing the HELP key ends all editing.

* header
move.l a7,as5
move.l Rustk,a7
move.l 4(as),a5
move.l 12(a5),d0

188 Chapter 15: Editing Text

add.l 20(a5),d0
add.l 28(a5),d0
add.l #$100,d0

move.l do0,-(sp)
move.l as5,-(sp)

clr -(sp)

move H$4a,-(sp)

trap =3 |

add.l B12,sp
* appl_init()

move.l Bappl_init,aespb

jsr aes ; call AES
* get current screen res

move B4,-(sp)

trap B4

addq.l B2,sp
* res returned in d0

cmp B2,d0 ; is it high res

bne dont_alter_coords ; O

move.l Hparent,a5 ; address of tree in a5
move.l #11,d5 ; number of objects
bsr alter_coords

dont_alter_coords:

bsr f_center
bsr obdraw

bsr do_text

bra exit

alter_coords:
* adjust object data for high res screen
add.l #18,a5
move.w (a5),d3
muluw n2.d3
move d3,(as5)+
add.l B2.a5

Chapter 15: Editing Text

189

move (a5),d3
muluw B2,d3

move d3,(as)+
dbf d5,alter_coords
rts

obdraw:
move 80,intin
move RHl,intin+2
move cx,intin+4
move cy,intin+6
move cw,intin+8
move ch,intin+10
move.l Hparent,addrin
move.l Hobjc_draw,aespb
bsr aes
rts

f_center:
move.l HBform._center,aespb
move.l Rparent,addrin
jsr aes

move.w intout+2,cx
move.w intout+4,cy
move.w intout+6,cw
move.w intout+8,ch

rts
* start of main text editing loop
do_text:
move 8(,char_pos
move #0,key
move #1,index

move.w index,intin

move.w key,intin+2

move.w char_pos,intin+4

move.w #1,intin+6 ; curs on
move.l Hparent,addrin

move.l Hobjc_edit,aespb

jsr aes

move intout+2,char_pos

190 Chapter 15: Editing Text
move #0,mouse_shape ; arrow
jsr graf_m
move #1,mouse_rect ; leave rect(1)
evnt_mult:
move 87,intin keyboard, mouse, #1 rectangle
move Hlintin+2 ; number of clicks
move Hlintin+4 ; left button
move Hl,intin+6 ; left button down
move mouse_rect,intin+8 ; mouse enter(0)/leave(1) rectangle
move cx,intin+10 ; x coord #1 rectangle
move cyintin+12 ;y coord #1 rect
move cw,intin+14 ; width
move ch,intin+16 ; height
move R0,intin+18 ;
move 8#0,intin+20 ; no coords for sec
move R(,intin+22
move 8#0,intin+24
move R0,intin+26
move H1,intin+28 ; timer low word
move 8#0,intin+30 ; timer high word
move.l Hevnt_multi,aespb
Jsr aes
move.w intout+2,mx ; mouse X coord
move.w intout+4,my
cmpi.w B2 intout ; mouse click event
beq mouse
cmp R4 intout ; mouse rectangle event
beq mouse_rectang
* must be keyboard now
move.w intout+10,key
cmpi.w 154800 key ; CUrsor up
beq Cursor-up
cmpi.w #81c0d,key ; Carriage Return
beq cr
cmpi.w #8$5000,key ; cursor down
beq cr
cmpi.w 1$6200,key ; HELP
beq help

Chapter 15: Editing Text 191

move.w
move.w
move.w
move.w

move.l
move.l
jsr
move.w
bra

help:
rts

mouse:

*objc_find
move
move
move
move
move.l
move.l
jsr
cmp
beq
bra

do_alert:
move.l
move
move.l
bsr
cmpi.w
beq
rts

mouse_rectang:

cmp
beq
move
jsr
move

index,intin

key,intin+2

char_pos,intin+4

R2.intin+6 ; do text
Bparent,addrin
Hobjc_edit,aespb

aes

intout+2,char_pos

evnt_mult

B0,intin ; index of first obj in tree to be searched
Blintin+2 ; depth

mx.intin+4 ; x coord of object

my,intin+6 ;y coord of object

Bobjc_find,aespb

Hparent,addrin

aes

Bll,intout ; OK button

do_alert

evnt_mult

Rform_alert,aespb
H1,intin ; first button
Ralert_string,addrin
aes
#1,intout
evnt_mult
; quit

#1,intin+8

enter_rect
#0,mouse_shape ;arrow
graf_m

#1,mouse_rect

192 Chapter 15: Editing Text
bra evnt_mult

enter_rect:
move #0,mouse_rect
move #4 mouse_shape ; open hand
jsr graf_m
bra evnt_mult
graf_m:
movem.l a0-a6/d0-d7,-(sp)
move.l Hgraf_mouse,aespb
move mouse_shape,intin ; arTow
bsr aes
movem.l (sp)+a0-a6/d0-d7
rts
Cursor-_up:
cmp flindex ;don’t go past first line
beq evnt_mult
move.b H1,curs_up_flag
cr:
*Carriage return

move.w index,intin

move.w key,intin+2

move.w char_pos,intin+4

movew #3,intin+6 ; cursor off
move.l Bobjc_edit,aespb

move.l HBparent,addrin

jsr aes
move intout+2,char_pos
move intout+2,d0
cmpi.b Bl,curs_up_flag ; cursor up?
bne not_curs_up ; No
sub B1,index ; yes, go back one index
bra . dont_add
not_curs_up:
cmpi.w #10,index ; last editable object

beq dont_add

http://not-.curs.up

Chapter 15: Editing Text 193
add.w #1,index ; do next object
dont_add:
move.w index,intin
move.w key,intin+2
movew char_pos,intin+4
move.w #1,intin+6 ; CUrsor on
jsr aes
move intout+2,char_pos
cirb curs-up-flag
bra evnt_mult ; and wait for another key press
aes: move.l Haespb,d1
move.l #$c8,d0
trap B2
rts
exit:
* appl_exit()
move.l Happl_exit,aespb
bsr aes ; call AES
clrw -(sp)
trap 23 |
dsl 256
ustk: dsl 1
addrl: ded tx1,txtgltxt2
dew 3,0,0,$11£0,0,0,37,37
txI: dcb ‘e '0
* need @ so that cursor is to left
txtgl: dcb ’Code 0

txt2: dcb ’‘nnnnnnnnnnnnnoDDONDDDNDDnnRRRDnonnnn’,0

addr2: dcl tx2txtg2 txt2
dew 3,0,0,811£0,0,0,37,37

194 Chapter 15: Editing Text
tx2: dcb e %0

txtg2: dcb ’Name : ’0
addr3: dc] tx3,txtg3,txt2

dew 3,0,0,$11f0,0,0,37,37
tx3: dcb ’e ’0

txtg3: dcb ’Address : ’0

addr4: dcd tx4,txtgd,txt2
dew 3,0,0,$11f0,0,0,37,37

tx4: dcb ’e 0

txtgd: dcb : ’0

addr5: ded tx5,txtgd,txt2
dew 3,0,0,$11€0,0,0,37,37

tx5: dcb ’e ’0

addr6: dcd tx6,txtgd,txt2
dew 3,0,0,8$1110,0,0,37,37

tx6: dcb ‘e ’0

addr7: dc] tx7txtgd,txt2
dew 3,0,0,$1110,0,0,37,37

tx7: dcb ‘e ’0

addr8: dc] tx8,txtg8,txt2
dew 3,0,0,$1110,0,0,37,37

tx8: dcb ‘e ’0

txtg8: dcb ’Post Code: ’0

Chapter 15: Editing Text 195
addr9: dcd tx9,txtg9,txt2

dew 3,0,0,$1110,0,0,37,37
tx9: dcb ‘e 0
txtg9: dcb ’Phone No: ’0
addr10: ded tx10,txtgl0,txt2

dew 3,0,0,$1110,0,0,37,37
tx10: dcb ‘e ’0
txtgl0:dc.b VAT No "0
texttq: deb 0
ok_text: dcl text_ok,texttq,texttq

dew 3,0,2,$1110,0,1,7,0

text_ok: deb ’OK’3,3,0
parent:dc.w -1,1,11,20,0,16

del $00021100

dew 50,30,450,125

dew 2,-1,-1,29,8,0

dcl addrl

dcw 20,5,400,15

dew 3,-1,-1,29,8,0

dcl addr2

dew 20,15,400,15

dew 4,-1,-1,29,8,0

dcl addr3

dew 20,25,400,15

dew 5,-1,-1,29,8,0

dcl addr4

dew 92,35,400,15

196 Chapter 15: Editing Text

dew 6,-1,-1,29,8,0

dc.l addr5

dew 92,45,400,15

dew 7,-1,-1,29,8,0

dcl addr6

dew 92,55,400,15

dew 8,-1,-1,29,8,0

dcl addr7

dew 92,65,400,15

dew 9,-1,-1,29,8,0

dcl addr8

dew 20,75,400,15

dew 10,-1,-1,29,8,0

dcl addr9

dew 20,85,400,15

dew 11,-1,-1,29,8,0

dcll addr10

dew 20,95,400,15

dew 0,-1,-1,22,7+32,0

dcl ok_text -

dew 150,110,60,10
aespb: dc.l contrl,global,intin,intout,addrin,addrout
objc_draw: dew 42,6,1,1,0
form_do: dew 50,1,2,1,0
form_center: dcw 54,0,5,1,0
appl_init: dew 10,0,1,0,0
appl_exit: dew 19,0,1,0,0
objc_edit: dew 46,4,2,1,0
objc_find: dew 43,4,1,1,0
evnt_multi: dew 25,16,7,1,0
graf_mouse: dcw 78,1,1,1,0

Chapter 15: Editing Text 197

form_alert: dew 52,1,1,1,0

alert_string: dcb ”[1][Are you sure you want to|”
dcb ” leave !? 7,28,29
dcb ol ” 30,31,191, ”|You should Save your|”
dcb ” work before exiting.J[No! | Exit 17,0

even

bss
contrl: ds.w 12
intin: ds.w 128
intout: ds.w 128
global: dsw 16
addrin: ds.w 128
addrout: ds.w 128
* these 4 need to stay together
cx: dsw 1
cy: dsw 1
cw: dsw 1
ch: ds.w 1
index: ds.w
key: dsw 1
char_pos: ds.w 1

mx: dsw 1
my: dsw 1
mouse_rect: ds.w 1
mouse_shape: dsw 1
curs-up-flag: dsb 1

GEMYSS is basically the same program as the previous one except
form__do’ has been substituted by ‘objc__edit’ in its various guises to
get around the Return key problem. ’objc__edit’ offers g\:ﬁsﬁ and
complete control over the keyboard, but the editing facilities still
remain. However, the mouse has to be monitored by the user which
means extra code, but overall the results are beneficial. Moving the
mouse into or out of the dialog box rectangle changes the shape of the
mouse pointer.

Evnt_multi

The AES call ’evnt__multi’ is an all-purpose event handling routine. It

198 Chapter 15: Editing Text

can handle a variety of different events: mouse click, keyboard, mouse
entry/leaving a choice of one or two rectangles, timer, and it also
returns the x and y coordinates of the mouse pointer when clicked or
moved in or out of a rectangle. Event messages can also be returned so
that menus and windows can be monitored. A very useful call, but not
without its bugs.

‘evnt__multi’ in the above program has been set up for keyboard,

mouse click, and in or out of a rectangle.

The parameter code for these events which is passed to the first word of
’intin’ is taken from this list:

bit bitvalue name f:;l’:oard

0 1 mu_keybd

1 2 mu__button mouse button or click
2 4 mu__ml mouse rect #1

3 8 mu__m2 mouse rect #2

4 16 mu__mesag report

5 32 mu__timer timer

Therefore placing 7 in the first word of the intin array selects the
keyboard, mouse button, and first mouse rectangle.

evnt_mult:
move #7,intin ; keyboard, mouse, #1 rectangle
move #lintin+2 ; number of clicks-ONE
move Hlintin+4 ; left button
move Blintin+6 ; left button down
move mouse_rect,intin+8 ; mouse enter(0)/leave(1) rectangle
move cx,intin+10 ; x coord ¥1 rectangle
move cyintin+12 ;y coord ¥1 rect
move cw,intin+14 ; width
move ch,intin+16 ; height
move 80,intin+18 ;
move 1#0,intin+20 ; no coords for sec
move 80,intin+22
move #0,intin+24
move 80,intin+26
move Bl,intin+28 ; timer low word

move 8#0,intin+30 ; timer high word

Chapter 15: Editing Text 199

move.l Hevnt_multi,aespb
jsr aes

The results which are given in the first word of the intout array follow
the same format as the bit arrangement passed to the ’intin’ array. So

checking for a mouse click event or mouse rectangle event is done
simply like this:

cmpi.w 82 intout ; mouse click event

beq mouse

cmp B4, intout ; mouse rectangle event
beq mouse_rectang

As these two events have been checked for any other event that occurs
must be a keyboard event, ie a key must have been pressed.

‘evnt__multi’ allows the monitoring of two rectangles so that it will
recognize whether the mouse pointer has entered or left a particular
rectangle. The dimensions of each rectangle are d to the intin array.
Whenever the mouse pointer enters or leaves a rectangle the
evnt__multi call is invoked and the mouse position is given via
’intout+2’, and ’intout+4’:

move.w ntout+2,mx ; mouse X coord
move.w ntout+4,my ; mouse y coord

As ’evnt__multi’ can only check whether the mouse pointer is leaving
or entering a rectangle a symbol mouse__rect’ is used to pass the
correct value to intin:

move mouse_rect,intin+8 ; mouse enter(0)/leave(1)

As soon as the mouse passes from into or out of the rectangle — in this
case the dimensions of the dialog box — it passes to another routine
which checks to see what value is in ’intin+8’. From this value it is
decided what value needs to be passed to *mouse__rect’— if it is 1 then
pass zero, if it is zero then pass 1 to ’intin+8’ and at the same time alter
the shape of the mouse pointer as it crosses the boundary. Various
mouse pointer shape values can be passed to ’graf__mouse’ — the values
used here alter the shape to an arrow or an open hand. Other types
include bee (2), hand with index finger (3), plus others see disk. It is also

200

Chapter 15: Editing Text

possible for the programmer to design his/her own shape (255), and
pass this to the *graf__mouse’ function.

mouse_rectang:

cmp
beq
move
jsr
move
bra

enter_rect:
move
move
jsr
bra

objc_edit

#1,intin+8

enter_rect
#0,mouse_shape ;arrow
Bgraf_m

#1,mouse_rect
evnt_mult

#0,mouse_rect
#4,mouse_shape ; open hand
graf_m

evnt_mult

’objc__edit’ has three distinct modes which are determined by what is
passed to ’intin+6".

0 ed_start
1 ed_init
2 ed_char
3 ed-end

reserved for future use
turn cursor on

display text

cursor off

This code shows the ’ed__char’ mode:

* objc_edit
move.w
move.w
move.w
move.w
move.l
move.l
jsr
move.w

index,intin ; object index

key,intin+2 ; value of keyboard press
char_pos,intin+4 ; character position
#2,intin+6 ; print text

Hparent,addrin

Hobjc_edit,aespb

aes

intout+2,char_pos ; get next character position

Chapter 15: Editing Text 201

The first word of ’intout’ gives a zero if an error occurred or a positive
value otherwise. *intout+2’ gives the next character position of the field.

Basic operation
The basic operation of the program is as follows:
Display dialog box.

1s

2 Turn cursor on.

3: Use evnt__multi to monitor events

4. If keyboard check value returned and do various routines. Go
back to event__multi.

5: If mouse pointer movement into/out of dialog box alter
shape. Go back to event__multi.
6. If mouse pointer click see if over OK’ button. If it is exit,

otherwise go back to event__multi.

Carriage return

The carriage return (ie pressing the Return key) routine (crz) deserves
special attention. It also serves the *cursor__up’ routine and when the
cursor down key is pressed it processes this as if a carriage return had
been received. This is because pressing the cursor down key can result in
a similar action to pressing the Return key— placing the cursor at the
end of any present text in the next line or gcld own. Pressing the
cursor up key is also similar as the cursor is placed at the end of any text
string in the previous field.

The ’cr:’ routine first turns the cursor off and then checks for to see if
the cursor up key has been pressed. If it has then the value of ’index’ is
decremented by one so that the previous editable object is now the one
that will be dealt with‘:(the GEM/AES. If the cursor up key has not
been pressed then the value of ’index’ is incremented by one unless it is
the last object. Fortunately, GEM/AES checks to see if any characters
are present in the field and puts the cursor at the next editable position,
so if any characters are present then the cursor position is passed via
"intout+2",

The last fhing to do is to switch the cursor on.

202 Chapter 15: Editing Text

cr:
*Carriage return

move.w index,intin ; object index

move.w key,intin+2 ; value

move.w char_pos,intin+4 ; position of cursor

move.w B3,intin+6 ; cursor off

move.l Hobjc_edit,aespb

move.l Hparent,addrin

jsr aes

move intout+2,char_pos ; store cursor pos

cmpi.b B1,curs_up_flag ; cursor up?

bne not_curs_up ; o

sub B1,index ; yes, go back one index

bra dont_add
not_curs_up:

cmpi.w £#10,index ; last editable object

beq dont_add

add.w H1,index ; do next object
dont_add:

move.w index,intin

move.w key,intin+2

move.w char_pos,intin+4

move.w #1,intin+6 ; CUrsor on

jsr aes

move intout+2,char_pos

clrb curs-up-flag

bra evnt_mult ; and wait for another key press
objc_find

When a mouse click is detected then the routine *mouse:’ is invoked.
‘objc__find’ takes the ’mx’ and ’my’ values from ’evnt__multi’
Whatever object the mouse pointer is over the index value is given in
*intout’. If it is the ’OK’ button index then an alert box is presented to
the user. If it isn’t the ’OK’ object index then nothing is done.

mouse:
*objc_find

http://not.curs-.up

Chapter 15: Editing Text 203

move 80,intin ; index of first obj in tree to be searched
move Blintin+2 ; depth
move mx,intin+4 ; x coord of object
move my,intin+6 ;y coord of object
move.l Hobjc_find,aespb
move.l Hparent,addrin
jsr aes
cmp #1lintout ; OK button
beq do_alert
bra evnt_mult
Alert string

The alert string demonstrates how to use characters not available in the
normal manner. The way to do this is to use the ASCII characters after
the inverted commas as in the example.

alert_string: dc.b ”[1][Are you sure you want to|”
dcb ”leave!? ”,28,29
dchb 7 ” 30,31,191, ”|You should Save your{”
dcb " work before exiting.][No! | Exit 17,0

Evnt_multi and drop down menus

Using ’evnt__multi’ and drop down menus follows a similar process to
that described in chapter fourteen, as ’evnt__multi’ can also receive
messages. As ’evnt__multi’ can also accept keyboard presses it is possible
to set up drop down menus so that they can seem to msponm key
presses such as ALT-L which often selects the menu entry Load..., or
ALT-Q which selects the Quit option. This method of *hot keys’ is
used in the supplied text editor and many other ST applications.

Often the symbol for opening a window to its maximum size and
reducing it to its prior size is used to represent the ALT key in a drop
down menu entry. It is usually placed after the text so that for instance
in the menu entry Quit.. , ALT-Q would be Placed as in the zzSoft
text editor. Pressing ALT-Q would probably bring an alert box asking
if the user really wanted to quit. To get the ALT character in the RCP
double click on the menu entry press Control-G in the edit field.

204 Chapter 15: Editing Text
GEM10.S demonstrates the technique of using "hot keys’:

* GEM10.S

* Uses drop down menu, uses dialog box, "objc_change’, and

* *form-_dial’. Equates modified from the file EXAMPLE.H

* Resource file EXAMPLE2.RSC

* NOTE: resource file must be in root directory of drive program run
* from. Uses ’evnt_multi’ instead of ’evnt_mesag’, so that 'hot keys’

* may be used.

* dialog box

tree001 equ 0
cancel equ 2
button2 equ 4
button1 equ 5
button3 equ 6
date equ 9
modem equ 11
printer equ 12
ok equ 14
* MENU

tree002 equ 1
desk equ 3
file equ 4
page equ 5
about equ 8
save_as equ 18
load equ 20
quit equ 22
g-top equ 24
g-bottom equ 25
page0 equ 27
etc equ 28

* a3 is used to store address for AES calls using addrin
* a4 for editable text fields if any

* header
move.l a7,as
move.l Bustk,a7

Chapter 15: Editing Text

205

move.l
move.l
add.l
add.l
add.l
move.l
move.l
move
move
trap
add.l

* appl_init()
move.l
jsr

move.l
move.l
* loaded
jsr
cmpi.w
beq

* dialog box
move.l
move
move
bsr
cmpi.w
beq

move.l

* menu
move.l
move
move
bsr
cmpi.w
beq

4(a5),a5
12(a5),d0
20(a5),d0
28(a5),d0
#$100,d0
do,’(Sp)
aS,-(sp)
d0,-(sp)
#$4a,~(sp)
43 |
B12,sp

Rappl_init,aespb
aes ; call AES

Brsc_load,aespb
Brsc_file,addrin

; AES load a resource file
; name of resource file to be

aes
1(,intout ; was the resource file loaded
exit2 ; no

Hrsc_gaddr,aespb ; get address of resource tree

RB(,intin ; tree structure
Btree001,intin+2 ; dialog box

aes

8(,intout ; error

exit ; yes

addrout,dialog ; place address in dialog

Hrsc_gaddr,aespb ; get address of resource tree

#0,intin ; tree structure
Htree002,intin+2 ; drop down menu
aes

#0,intout ; error

exit ; yes

206

Chapter 15: Editing Text

move.l

addrout,men_bar

* put menu bar on screen

move.l
move.l
move
bsr

bsr
jsr

evnt_mult:
jsr
move
move
move
move
move
move
move
move
move
move
move
move
move
move
move
move
move.l
move.l
jsr
move.w
move.w
cmpi.w
] beq

cmpi.w
beq
cmpi.w

Bmenu_bar,aespb

; place address in menu_bar

; display menu object tree

men_bar,addrin

B1,intin
aes

arrow

menu-_t

menu_t

; show menu_bar

; change menu title to normal video

#1+2+16,intin ; keyboard, mouse, report

Blintin+2 ; number of clicks

Blintin+4 ; left button

Blintin+6 ; left button down

B(,intin+8 ; mouse enter(0)/leave(1) rectangle
80,intin+10 ; x coord no coords for #1 rectangle
80,intin+12 ;y coord ¥1 rect

#0,intin+14 ; width

B(,intin+16 ; height

#0,intin+18

#0,intin+20 ; no coords for second rect
B(,intin+22

B(,intin+24

R1(,intin+26

R(,intin+28 ; timer low word

B(,intin+30 ; timer high word
Bevnt_multi,aespb ; display menu object tree
Bmessage._buffer,addrin

aes

intout+2,mx ; mouse X coord

intout+4,my

82, intout ; mouse click event

mouse

#1,intout

key_board

8$10,intout

Chapter 15: Editing Text 207

beq
jsr
bra

report_mouse:
cmp

do_menu:
cmp
beq
cmp
beq
jsr
bra

load_file:
jsr
bra

exit_alert:

report_mouse
do_alert

evnt_mult

fidesk,message_buffer+6 ; get Desk menu bar
do_menu

Hfile,message_buffer+6 ; get File menu bar
do_menu

evnt_mult

intout+10,d7 ; get key press
1$51000,d7 ;ALT Q
exit_alert ; quit
1$2600,d7 ; ALT L LOAD
load_file

#$3B00,d7 ;F1

f1

1$3C00,d7 s F2

f2

1#$3D00,d7 ;F3

f3

1$4400,d7 ; F10

f4

evnt_mult

Habout,message_buffer+8
got_about
Bquit,message_buffer+8
exit_alert

do_alert

evnt_mult

load_alert
evnt_mult

208 Chapter 15: Editing Text

jsr quit_alert
bra evnt_mult

* F1-F4 unassigned
f1:

f2:
f3:
f4:
bra evnt_mult
got_about:
move #0,form_flag ;reserve area of screen memory
move.l dialog,a3
move Hdate,d4
Jjsr do_dialog ; display dialog box and interact with it
move 3 form_flag ;release area of screen memory
jsr form_d ;doit
bra evnt_mult
do_dialog:
bsr form_center ; get centred coords of dilaog
* box
bsr form_d ; Teserve screen memory
bsr obdraw ; draw it on screen
bsr f_do ; handle interaction with user
bsr ob_change ; reset ok or cancel to non selected
rts
do_alert:
move.l Hform_alert,aespb
move #1,intin ; first button
move.l Ralert_string,addrin
bsr aes
rts
load_alert:
move.l Bform_alert,aespb
move Rlintin ; first button
move.l Bload_string,addrin
bsr aes

rts

Chapter 15: Editing Text 209

quit_alert:
move.l
move
move.l
bsr
cmpiw
beq
rts

ob_change:
move.l
move
move
move
move
move
move
move
move
move.l
bsr
rts

menu-t:
move.l
move
move
move.l
bsr
rts

obdraw:
move
move
move
move
move
move
move.l
move.l
bsr

Hform_-_alert,aespb

Hl,intin ; first button
Bexit_string,addrin

aes

H1,intout

exit

HBobjc_change,aespb

intout,intin ; ok or cancel- from form_do’
R1(,intin+2

cx,intin+4

cy,intin+6

cw,intin+8

ch,intin+10

R#0,intin+12 ; new status- not selected
Hl,intin+14 ; not redrawn after status change
a3,addrin

aes

Bmenu_tnormal,aespb
message_buffer+6,intin
R1,intin+2
men_bar,addrin

aes

R(0,intin
#2.intin+2
cx,intin+4
cyintin+6
cw,intin+8
ch,intin+10
a3,addrin
Hobject_draw,aespb
aes

210 Chapter 15: Editing Text
rts

* _globl f_do
* a4 contains editable text field if any
f_do: movel Hform_do,aespb ;form_do

move d4,intin ; editable text field
move.l a3,addrin
bsr aes
rts

* form_dial

form_d:
move form_flag,intin
move cx.intin+2
move cyintin+4
move cw,intin+6
move ch,intin+8
move cx,intin+10
move cyintin+12
move cw,intin+14
move ch,intin+16
move.l Hform-_dial,aespb
bsr aes
rts

form_center:
move.l Bf_center,aespb
move.l a3,addrin
bsr aes

movem.w intout+2,d0-d3
movemw d0-d3,cx
rts

* AES subroutine

aes: move.l HBaespb,d1
move.l 1$c8,d0
trap B2
rts

arrow:
* graf_mouse

Chapter 15: Editing Text | 211

movem.l
move.l
move
bsr
movem.l
rts

exit:
move.l

* resource file
bsr

exit2:

* appl_exit()

a0-a6/d0-d7,~(sp)
Heraf_mouse,aespb
80,intin ; arrow
aes

(sp)+a0-a6/d0-d7

Hrsc_free,aespb ; release memory taken up by the

aes

move.l Happl_exit,aespb
bsr aes ; call AES
clrw -(sp)
trap ni
dsl 256
ustk: dsl 1

aespb: dc.l contrl,global,intin,intout,addrin,addrout

object_draw:
form_do:
f_center:
menu._bar:
form_dial:

appl_init:
appl_exit:
evnt_multi:
rsc-load:
rsc_gaddr:
rsc_free:

graf_mouse:

dew 42,6,1,1,0
dew 50,1,2,1,0
dew 54,0510
dew 30,1,1,1,0
dew 519,110

dew 10,0,1,0,0
dew 19,0,1,0,0
dew 25,16,7,1,0
dew 110,0,1,1,0
dew 112,2,1,0,1
dew 111,0,1,0,1
dew 78,1110

menu_tnormal: dew 33,2,1,1,0

212 Chapter 15: Editing Text

.objc_change: dew 478,110
form_alert: dew 52,1,1,1,0

message_buffer: dsb 16

* these 4 must stay together
cx: dsw 1

cy: dsw 1

cw: dsw 1

ch: dsw 1

contrl: dsw 128
intin: dsw 128
intout: dsw 128
global: dsw 128
addrin: dsw 128
addrout: dsw 128
dialog: dsl 1
men_bar: dsl 1
form_flag: dsw 1

rsc_file: dcb “example2.rsc”,0

alert_string: dc.b ”[3][There is nothing | assigned to this r
dcb ” menu selection! | Please try another])] OK I”,0

load_string: dc.b ”[3][Load a file | assigned to this |”
dcb ” menu selection!][OK 17,0
exit_string: dc.b "[1][Do you really | want to quit|”
dcb ” from this program!][OK | NO 1,0
mx: dsw
my: dsw

i

Chapter 16

File Selector/Bit Images

This chapter looks at the GEM file selector box and a short example
ﬁrogram demonstrates its use. Also, two methods of using bit images in
and constructed dialog boxes is shown.

GEM file selector

The file selector box is a ready made dialog box provided by GEM
which facilitates the selection of files from a disk drive. Some find the
GEM file selector box to be very limited in design and consequently
there are quite a number of excellent substitute selector boxes on the
market, from PD to commercial offerings.

These substitute boxes offer many advant over the flawed GEM one,
such as radio buttons for the selection of other drives, automatic dis-
play of file size etc. The source code below will load the GEM original
from ROM or the substitute ones. :

The new STE TOS has an improved file selector box as does TOS 1.4,
but many people are stuck with the original or have to use a PD one ex-
ecuted usually from an AUTO folder at start up.

If the mouse pointer is in the file selector box and an underline is typed
into the editable line the ST will crash, or at least it will if you have one
of the older TOS’s. There is no way around this except to use the substi-
tute boxes, although typing an underline at the same time the mouse
pointer is in the box must be a fairly rare occurrence.

Note that the screen or a window has to be refreshed after a fsel__input
call as GEM does not clear the screen itself. You have to do it your self.
So in the example below if we did not exit but carried on then the file
selector box would be left on the screen and would overwrite anything

we hagfirior to its display. Solution to this problem is to save the screen
in a buffer prior to the call and restore it afterwards.

Also, the VDI clipping rectangle is altered by the appearance of the file

214

Chapter 16: File Selector/Bit Images

selector box, and it is up to the programmer to set the any clipping af-
ter use of the file selector box.

* GEM11.S

* This program illustrates the use of the GEM file selector box
* by use of the AES call fsel_input’

* header

move.l a7,a5

move.l Bustk,a7

move.l 4(a5),a5

move.l 12(a5),d0

add.l 20(a5),d0

add.l 28(a5),d0

add.l £#$100,d0

move.l do,-(sp)

move.l as5,-(sp)

move do0,-(sp)

move #$4a,-(sp)

trap 23 |

add.l B12,sp
* appl_init()

move.l Bappl_init,aespb

jsr aes ; call AES

move.w n8$19,-(sp) ; Get current drive

trap u1

addg.l B2,sp

add.b #65,d0 ; alter from number to letter

move.b do0,ddir

move.l Hfsel_input,aespb

move.l Bddir,addrin ; initial directory and
* drive to be dislayed

move.l Bfsel_file,addrin+4 ; initial file selection
* to be displayed

jsr aes

bra exit

aes: movel

Haespb,d1

Chapter 16: File Selector/Bit Images 215

move.l 8$c8,d0
trap "2
rts
exit:
* appl_exit()
move.l Bappl_exit,aespb

bsr aes ; call AES
clrw -(sp)
trap w1
dsl 256
ustk: dsl 1
contrl: dsw 12

intin: dsw 128
intout: dsw 128

global: dsw 16
addrin: dsw 128
addrout: dsw 128

aespb: dc.l contrl,global,intin,intout,addrin,addrout

fsel_input: dew 90,0,2,2,0
appl-init: dew 10,0,1,0,0
appl_exit: dew 19,0,1,0,0

fsel_file: dsw 8

ddir: dcb 7AN.S”
dsb 56

*fsel__input’ two addresses to be passed to the first long of
addrin and in+4. The first parameter is the address of the buffer
that holds the path of the directory that is initially displayed, eg
C:\AUTO\NEODESK.PRG. Wildcards car: be used eg *** for all files,
C:*PRG for all program files, etc. The actual path selected, including

file://C:/AUTO/NEODESKJRG

216 Chapter 16: File Selector/Bit Images

drive is returned in the same buffer at exit from *fsel__input’. Note that
the buffer should be about 56 bytes in size to accommodate any path
size. The second is the address of the buffer that holds the string that
specifies the actual choice of file. In the example above the choice has
been left out. The choice of the user, if any, is returned in the same

buffer.

’intout’ also returns some results. The first word of ’intout’ should con-
tain either zero for an error occurred, or a number greater than zero for
’Ok’. ’intout+2’ contains either a zero or a one, zero signifying cancel
was selected, and a one Ok’ was selected.

Bit images in dialog boxes

As the supplied RCP does not support the use of bit images in dialog
boxes the rest of this chapter is devoted to this subject. Two methods are
shown one from first principles, and the other using a bit image from
the DEGAS ELITE art program.

* GEM12.S

* This program displays a dialog box and bit mapped image. Both
* are constructed from first principles. It cannot be assembled by
* 22Soft’s assembler. See GEM13.S for same program but

* converted for use with zzSoft’s assembler

* header
move.l a7,as
move.l Bustk,a7

move.l 4(a5),a5
move.l 12(a5),d0

add.l 20(a5),d0
add.l 28(a5),d0
add.l #$100,d0

move.l d0,-(sp)
move.l as,-(sp)

clr ~(sp)

move #$4a,-(sp)
trap B

add.l B12,sp

* appl_init()

Chapter 16: File Selector/Bit Images

217

move.l Rappl_init,aespb

jsr aes ; call AES
* get current screen res

move B4,-(sp)

trap 814

addq.l B2,sp
* res returned in d0

cmp 12.d0 ; is it high res

bne dont_alter_coords ; no

move.l Hparent,a5 ; address of tree in a5
move.l 19 d5 ; number of objects
bsr alter_coords

dont_alter_coords:

bsr f_center
bsr obdraw
bsr f_do
bra exit
obdraw:
move 80,intin
move #2,intin+2
move d0,intin+4
move dlintin+6
move d2,intin+8
move d3,intin+10

move.l Hparent,addrin
move.l Bobject_draw,aespb

bsr aes
rts
f_do: movel ®form_do,aespb
clrw intin ; no editable text field
move.l Hparent,addrin
bsr aes
rts

f_center:

218 Chapter 16: File Selector/Bit Images
move.l Hform_center,aespb
move.l Hparent,addrin
Jsr aes
movem.w intout+2,d0-d3
rts

alter_coords:

* adjust object data for high res screen
add.l H18,a5
move.w (a5),d3
muluw n2.d3
move d3,(as5)+
add.l B2,a5
move (a5),d3
muluw B2.d3
move d3,(a5)+
dbf d5,alter—_coords
rts

* AES subroutine

aes: move.l Baespb,d1
move.l 88$5c8,d0
trap B2
rts
exit:
* appl_exit()
move.l Rappl_exit,aespb
bsr aes ; call AES
clrw -(sp)
trap #u1
dsl 256
ustk: dsl 1
tl: del t-1

dew 4,16,0,0,50111

t_1: dcl %00000000000000000000000000000000

Chapter 16: File Selector/Bit Images 219

t2:

-2

t3:

dc.l
dcl
dc.l
dc.l
dcl
dcl
dc.l
dcll
dc.l
dc.l
dcl
dc.l
dcl
dc.l
dc.l

dc.l
dew

dcll
dc.l
dc.l
de.l
dc.l

~del

dc.l
dcll
dcl
dc.l
dcl
dc.l
dc.l
dc.l
dc.l
de.l

dcl

%00000000000000000000000000000000
%I111111111111 111111111111 11111111
%I111111 111111111111 1111111111111
%00000011110000000000000000000000
%00000011110000001111111100000000
%00000011110000011111111110000000
%00000011110000011100001110000000
%00000011110000011100001110000000
%00000011110000011111111110000000
%00000011110000011111111110000000
%00000011110000011100011110000000
%00000011110000011100001111000000
%00000011110000011100000111100000
%00000000000000000000000011110000
%I11111111111111111111111111111110

t-2
4,16,0,0,501f1

%00000000000000000000000000000000
%00000000000000000000000000000000
%I11111111 111111111111 111111111111
%I1111111111 111111111111
%00000000000000000000000000000000
%00111111110000011111111100000000
%01111111111000011111111110000000
%01110000111000011100001110000000
%01110000111000011100001110000000
%01111111111000011100001110000000
%01111111111000011100001110000000
%01110000111000011100001110000000
%01110000111000011111111110000000
%01110000111000011111111100000000
%00000000000000000000000000000000
%I111111111111 1111111111 1111111111

t-3

dow 4.16,0,0,801f1

dc.
dcl

%00000000000000000000000000000000
%00000000000000000000000000000000

220

Chapter 16: File Selector/Bit Images

t4:

t-4:

titlel:
title2:

t6:

dc.l
dc.l
de.l
de.l
dcl
dc.l
de.l
dc.
de.l
de.l
de.l
dc.l
de.l
dc.l

dc.l
dew

dc.
dc.
de.l
dc.l
dc.l
dc.l
de.l
de.l
de.l
dc.l
dc.l
del
de.l
dc.l
de.l
del

dcb
dc.b

dcl
dew

S%I1111111111111111 1111111111111
%11111111111111 11 1111111111111
%00000000000000000000000000000000
%01111111111000011111111000000000
%01111111111000011111111110000000
%01110000000000011100001110000000
%01110000000000011100001110000000
%01111111111000011111111110000000
%01111111111000011111111110000000
%01110000000000011100011110000000
%01111111111000011100001111000000
%01111111111000011100000111100000
%00000000000000000000000011110000
%11111111111111111111111111111111

t-4
4,16,0,0,501f1

%00000000000000000000000000000000
%00000000000000000000000000000000
%11111111111111111111111111111111
S%I11111111 111111111111 111111111111
%00000000000000000000000000000000
%01111111110000011111111111100000
%01111111110000011111111111100000
%01111000000000000001111000000000
%00011110000000000001111000000000
%00000011100000000001111000000000
%00000011110000000001111000000000
%00000011110000000001111000000000
%00111111110000000001111000111100
%00111111110000000001111000111100
%00000000000000000000000000000000
%11111111111111111111111111111111

’ Integrated Accounts’,0
’ Software’,0

ty,null,null
3,0,2,$13b2,0,1,14,0 ; gives red background, blue text

Chapter 16: File Selector/Bit Images 221
ty: dc.b ’Version: 1.00°,0

t7: dcb 189, Someones Software’,191,” 1990’,0
null: dcb O

exit: dcl text_ok,null,null
dew 3,0,2,$1202,0,3,5,0

text_ok: deb ’OK’,32,175,0
aespb: dc.l contrl,global,intin,intout,addrin,addrout

object_draw: dcw 42,6,1,1,0

form_do: dew 50,1,2,1,0
parent: dew -1,1,9,20,0,16 ; large box
dcl $22020

dew 170,50,250,120

dew 2,-1,-1,28,0,0
dc.l titlel
dew 35,30,90,15

dew 3,-1,-1,23,0,0 ; 23=bitblk
dc.l t1
dew 10,10,16,19

dew 4,-1,-1,23,0,0
dc.l t2
dew 40,10,16,19

dew 5,-1,-1,23,0,0
dc.l t3
dew 70,10,16,19

dew 6,-1,-1,23,0,0
dcl t4

dew 100,10,16,19
dew 7,-1,-1,28,0,0
dcl title2

222 Chapter 16: File Selector/Bit Images
dew 70,40,90,15
dew 8,-1,-1,22,7,0
dcl exit- ; exit
dew 100,100,50,15
dew 9,-1,-1,22,0,0
dc.l t6 ; version
dew 50,60,150,15
dew 0,-1,-1,28,32,0
dc.l t7 ; (¢) copyright
dew 30,80,150,15
* GEM arrays
contrl: dsw 12
intin: dsw 128
intout: dsw 128
global: dsw 16
addrin: dsw 128
addrout: dsw 128
appl_init: dew 10,0,1,0,0
appl_exit: dew 19,0,1,0,0
form_center: dcw 54,0,5,1,0

The ’bitblk’ structure is in the form:

word
Oand 1

AN WN

name -

bi__pdata apointer to a bit ma arra
bi__ width of bit map in B9 e
bi height of bit map in pixels
bi__x X COO

bi__y y coord

bi_color colour of graphic

*bi__wb’~ this number must be even, and ’bi__color’ does not seem to
have any effect. The colour is always black and white.

If we look at the first tedinfo structure we can see that the structure

Chapter 16: File Selector/Bit Images 223
conditions are fulfilled:

tl: del t-1 ; pointer to bit mapped array
dew 4,16,0,0,501f1 ; 4 bytes wide (one long word)
* 16 pixels height, 0- X coord, 0- Y coord, $01f1 colour data

The bit mapped array is to construct as it can be done by hand.
Unfortunately it y needs two arrays one for medium resolution,
and one for high res as there is a height discrepancy in d.isg)laying the bit .
image. The rest of the program should be easy enough to tollow.

Also, unfortunately the zzSoft assembler cannot accept the ’dc.l
%0000000000” binary format. It must first be converted to hexadecimal

representation. Other assemblers can accept data in binary format such
as Devpac. Taking the first 4 lines the conversion would be like this:

t_1: dcl %00000000000000000000000000000000
dcl %00000000000000000000000000000000
del %Il1111111111111111111111111111111
dcl %I111111111111111111 1111111111111

Converting

t-1: decl $00000000
dcl $00000000
dcl STFFFff
dcl STFFfffff

As each long (dc.l) is 32 bits then there must be 4 bytes of information
in each line which then can be translated as above.

GEM13.S gives the correct file for assembling with the supplied assem-
bler. The code in all respects is the same except the binary bit mapped
notation has been changed to hexadecimal notation.

* GEM13S

* This program displays a dialog box with a bit image in it.

* The dialog box and bit mapped image are both constructed from
* first principles.

224 Chapter 16: File Selector/Bit Images
* header

move.l a7,a5

move.l Bustk,a7

move.l 4(a5),as

move.l 12(a5),d0

add.l 20(a5),d0

add.l 28(as),d0

add.l #$100,d0

move.l do,-(sp)

move.l a5,-(sp)

cir -(sp)

move BS$4a,-(sp)

trap #i

add.l B12,sp
* appl_init()

move.l Happl_init,aespb

jsr aes ; call AES

* get current screen res

move 14,-(sp)
trap B4
addq.l 82,sp
* res returned in d0
cmp 12,40 ; is it high res
bne dont_alter_coords ; o
move.l Hparent,aS ; address of tree in a5
move.l Rn9.d5 ; number of objects
bsr alter_coords
dont_alter_coords:
bsr f_center
bsr obdraw
bsr f_do
bra exit
obdraw:
move #0,intin
move #2intin+2

Chapter 16: File Selector/Bit Images

225

move d0,intin+4
move dl,intin+6
move d2,intin+8
move d3,intin+10
move.l Hparent,addrin
move.l Hobject_draw,aespb
bsr aes
rts
f_do: move.l H®form_do,aespb
clrw intin ; no editable text field
move.l Hparent,addrin
bsr aes
rts
f_center:
move.l Hform_center,aespb
move.l Hparent,addrin
jsr aes
movemw intout+2,d0-d3
rts
alter_coords:
* adjust object data for high res screen
add.l 118,25
move.w (a5),d3
muluw B2.d3
move d3,@a5)+
add.l "2.a5
move (as5),d3
mulu.w #2.d3
move d3,(as5)+
dbf d5,alter_coords
rts
* AES subroutine
aes: movel Raespb,dl
move.l 1S$c8,d0
trap "2

rts

226 Chapter 16: File Selector/Bit Images

exit:
* appl_exit()
move.l Rappl_exit,aespb

bsr aes ; call AES
clrw -(sp)
trap 23 |
dsl 256
ustk: dsl 1
tl: del t_1
dew 4,16,0,0,501f1
t-1: dcl $00000000
dcl $00000000
dcl SEEEEEfef
del SIEFfffef
dcl $03c00000
dcl $03c0ff00
dcl $03c1ff80
dcl $03c1c380
de.l $03c1c380
dcl $03c1ff80
dcl $03c1ff80
dcl $03c1c780
del $03c1c3c0
dcl $03ciclel
dcl $00000010
dcl SEEffeeee
t2: dcl 2
dew 4,16,0,0,50111
t-2: dcl $00000000
dcl $00000000
dcl SEFFEFee
dcl SEFFfeeeef

del $00000000

Chapter 16: File Selector/Bit Images

227

dcl
dcl
dc.l
dcl
dcl
del
dcl
dcl
dcl
dc.l
dcl

t3: dcl
dew

t-3: dcl
dcl
dc.
dc.l
dcl
dcl
de.l
dc.l
dcl
dcl
dcl
dcl
dc.l
dcl
dcl
de.l

t4: dcl
dew

t_4: dcl
‘deld
dcl
dcl
dcl
dcl

$31c1ff00
$71e1ff80

- $70e1c380

$70e1c380
$7felc380
$7felc380
$70e1c380
$70e11180
$70e1££00
$00000000
RJiidiiiid

3
4,16,0,0,50111

$00000000
$00000000
SEFfffff
SIEffffff
$00000000
$7felfe00
$7felff80
$7001c380
$7001c380
$7felff80
$71elff80
$7001c780
$7felc3c0
$7felclel
$00000010
SEEEfffff

t-4
4,16,0,0,50111

$00000000
$00000000
SEFEffff
SEFFreef
$00000000
$7fclffe0

228 Chapter 16: File Selector/Bit Images

del $71clffe0

de.l $78001e00 :

del $1e001¢00 %

dcl $03801e00

dc.l $03c01e00

de.l $03c01e00

dc.l $3fc01e3c

dc.l $3fc01e3c

dcl $00000000

dcl SIFffffff :

1

titlel: dc.b °’ Integrated Accounts’,0 ‘
title2: dcb ’ Software’,0

t6: dcd tynullnull
dew 3,0,2,$13b2,0,1,14,0 ; gives red background, blue text

ty: dcb ’Version: 1.00°,0
t7: dcb 189, Someones Software’,191,’ 1990’,0
null: dcb 0

exit_: dcl text_ok,null,null
dew 3,0,2,$1202,0,3,5,0

text_ok: dcb ’OK’,32,175,0

aespb: dc.l contrl,global,intin,intout,addrin,addrout

object_draw: dcw 42,6110

form_do: dew 50,1,2,1,0

parent: dew -1,1,9,20,0,16 ; large box
dcl $22020
dew 170,50,250,120
dew 2,-1,-1,28,0,0

de.l titlel

Chapter 16: File Selector/Bit Images 229
dew 35,30,90,15

dew 3,-1,-1,23,0,0 ; 23=bitblk;
dcl t1
dew 10,10,16,19
dew 4,-1,-1,23,0,0
dcl t2
dew 40,10,16,19
dew 5,-1,-1,23,0,0
dcl t3
dew 70,10,16,19
dew 6,-1,-1,23,0,0
de.l t4
dew 100,10,16,19
dew 7,-1,-1,28,0,0
dcl title2
dew 70,40,90,15
dew 8,-1,-1,22,7,0
dcl exit_ ; exit
dew 100,100,50,15
dew 9,-1,-1,22,0,0
dcl t6 ; version
dew . 50,60,150,15
dew 0,-1,-1,28,32,0
dcl t7 ; (©) copyright
dew 30,80,150,15
* GEM arrays
contrl: dsw 12
intin: dsw 128
intout: dsw 128
global: dsw 16

addrin: dsw 128

230 Chapter 16: File Selector/Bit Images
‘addrout: dsw 128

appl_init: dew 10,0,1,0,0
appl_exit: dew 19,0,1,0,0
form_center: dcw 54,0510

Fortunately it is not necessary to have to tediously convert the bit
mapped image to hex, nor to create the image by hand as it is possible
to use DEGAS ELITE to create the image.

Using DEGAS

After loading DEGAS ELITE the Block drop down menu should be
selected and from this the Format entry should be selected. The Icon
file format should be clicked on.

Next the particular image that is wanted should be drawn. When a
satisfactory drawing is obtained by one’s own efforts or by importing
someone else’s work and modifying, the Block option should be
clicked on from the menu screen. Going back to the drawing screen
press ESC to get two large crossed lines. Position the cross—lines at the
top left of your drawing and holding down the left mouse button draw
a rectangle around your drawing. As soon as the block is cut out return
to the menu screen and save the block as an *ICN’ file. This file can
now be converted from its present C structure form to a format suitable
for inclusion in assembly language source code as shown in GEM14.S

So that the reader can see the original ’ICN’ file called

’EXAMPLE.ICN’ before inclusion into GEM14.S this file may be
found'on the supplied disk.

First the >ICN’ file must be converted for inclusion in our source code.
The following procedure will convert it correctly:

1. Load the ’ICN’ file into zzSoft’s text editor and

2. Delete any *{’, and ’}’ and place **’ in front of the DEGAS ELITE
definitions and text. See example below.

3. Replace ’ Ox’ with ’$’ using the Replace All option. Position cursor

Chapter 16: File Selector/Bit Images 231
at start of bit mapped block before clicking on Replace All.

At end of replacement press ALT-T to go back to the top of the file.
Do not put inverted commas () in Find (and Replace) dialog box.

4. Globally replace °, > with nothing ie the Replace field should be
empty. This gets rid of the end comma.

5. All that needs doing now is to put a ’dcw’ in front of the hex data.
'Ifr;fis is done by globally replacing * * with * dcw ’, and the file is
Y-

6. Save file with a .S’ extension and insert into your assembly language
source code with the ’insert file’ option in the text editor by pressing
ALT-L

* GEM14.S ,
* This program displays a dialog box with a bit mapped
* image, taken from a DEGAS ELITE icon block file.

* header
move.l a7,as
move.l Rustk,a7
move.l 4(a5),a5
move.l 12(a5),d0
add.l 20(a5),d0
add.l 28(as),d0
add.l #$100,d0
move.l do0,-(sp)

_ move.l as,-(sp)

cir -(sp)
move #$4a,-(sp)
trap |
add.l B12,sp
* appl_init()
move.l Rappl_init,aespb
jsr aes ; call AES

* get current screen res
move B4,-(sp)

232 Chapter 16: File Selector/Bit Images
trap ni4
addq.l B2,sp
* res returned in d0
cmp 12.d0 ; is it high res
bne dont_alter_coords ;no
inove.l Hparent,a5 ; address of tree in a5
move.l B2.d5s ; number of objects
bsr alter_coords

dont_alter_coords:

bsr
bsr
bsr
bra

obdraw:
move
move
move
move
move
move
move.l
move.l
bsr
rts

f_do: move.l
clrw
move.l
bsr
rts

f_center:
move.l
move.l
jsr
movem.w
rts

f_center
obdraw
f_do
exit

BQ,intin
#2,intin+2
d0,intin+4
dl,intin+6
d2,intin+8
d3,intin+10
Hparent,addrin
Hobject_draw,aespb
aes

Bform-_do,aespb

intin ; no editable text field
Hparent,addrin
aes

Bform-_center,aespb
Hparent,addrin

aes

intout+2,d0-d3

Chapter 16: File Selector/Bit Images

233

alter_coords:
* adjust object data for high res screen
add.l B18,as5
move.w (a5),d3
muluw #2.d3
move d3,@as5)+
add.l #"2,a5
move (a5),d3
muluw B2.d3
move d3,(a5)+

dbf d5,alter—coords
rts
* AES subroutine

aes: move.l Haespb,d1
move.l H$c8,d0
trap "2
rts

exit:
* appl_exit()
move.l Rappl_exit,aespb

bsr aes ; call AES

clrw -(sp)

trap 23 |

dsl 256

ustk: dsl 1
b_map:

dcl bit_map

dew 24,$79,0,0,$22a3,0
bit_map:

* /* DEGAS Elite Icon Definition ¥/

* ttdefine ICON_W 0x00B9 divide by 8 to get number of bytes,

* round up to get even number

* ttdefine ICON_H 0x0079 need this as it is
* ttdefine ICONSIZE 0x05AC not needed

234 Chapter 16: File Selector/Bit Images
* int image[ICONSIZE] = not needed

dew $0000,$0000,$0000,50000
dcw $0000,50000,$0000,50000
dcw $0000,50000,50000,50000
dcw $0000,50000,$0000,50000
dcw $0000,$0000,50000,$0000
dcw $0000,50000,50000,50000
dcw $0000,$0000,50000,50000
dcw $0000,$0000,$0000,$0000
dcw $0000,$0000,$0000,50000
dcw $0000,$0000,$0000,50000
dcw $0000,$0000,50000,50000
dcw $0000,50000,50000,50000
dcw $0000,50000,$0000,$0000
dcw $0000,$0000,$0000,50000
dcw $0000,$0000,50000,50000
dcw $0000,$0000,50000,50100
dcw $0000,$0000,50000,50000
dcw $0000,$0000,50000,50000
dcw $0000,$0000,50000,50000
dcw $0820,$0000,50000,50000
dcw $0000,$0000,$0000,$0000
dew $0000,$0000,50000,50000
dcw $0000,50000,50000,50000
dcw $0000,$0000,50000,50000
dcw S001ESFFFESFFFESFFFF
dcw SFFFESFFFESFFFESFFFF
dcw SFFFESFFFESFFCO0,$0000
dcw S$S003FSFFFESFFFESFFFF
dcw SFFFESFFFESFFFESFFFF
dcw SFFFESFFFESFFE0,$0000
dcw S$007ESFFFESFFFESFFFF
dew SFFFESFFFESFFFESFFFF
dew SFFFESFFFESFFF0,50000
dcw S007ESFFFESFFFESFFFF
dcw SFFFESFFFESFFFESFFFF
dcw SFFFESFFFESFFF0,50000
dcw S007ESFFFESFFFESFFFF
dcw SFFFESFFFESFFFESFFFF
dcw SFFFESFFFESFFF0,50000

Chapter 16: File Selector/Bit Images

235

dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew

$007FSFFFESFFFESFFFF
SFFFESFFFESFFFESFFFF
SFFFESFFFESFFF0,50000
$007E,$0000,50000,50400
$4010,$0010,$0000,$0000
$0080,50000,$03F0,$0000
$007E,$0000,50804,$8000
$0000,$4000,$0203,$0000
$0000,$0000,503F0,$0000
$007E,$0000,$0000,50000
$0002,50000,50000,$0200
$0000,50000,503F0,50000
$007E,$8000,50100,50000
$0000,$0000,$0020,52000
$0000,$1120,503F0,50000
$007K,$0020,$0020,50000
$0002,$2000,$0000,50000
$0008,50100,503F0,$0000
$007E,$0400,50000,$0200
$0000,50300,$0040,50000
$0000,$0000,$03F0,$0000
$007E,$1100,50000,50010
$0000,50004,$0000,50000
$0008,50000,503F0,$0000
$007E,$0800,$0000,50000
$0000,50002,$0400,50000
$0000,$0400,$03F0,50000
$007E,$0800,$0000,50000
$0000,50000,50000,$0000
$0000,50000,$03F0,$0000
$007E,$8000,50001,50000
$0000,50000,$0010,50000
$0000,50888,503F0,50000
$007E,$4000,$0018,50000
$0400,50000,5$0000,50001
$0000,$0000,$03F0,50000
$007E,$0000,$0210,$0000
$0000,$0000,$0000,$0000
$0000,$1040,503F0,50000
$007E,5001F,SFFE7,SFFF8
S1FELSFETES9FFES87F8

236 Chapter 16: File Selector/Bit Images

dcw SO01FESFE80,503F0,$0000
dcw S$007E,$0010,50024,50C08
dew $1021,50240,$9000,$8408
dcw $0100,50340,$03F0,50000
dcw $007E,$0010,$1024,50C08
dew $7039,$03C0,$9000,SE408
dcw $0100,50300,503F0,50000
dcw S$S007E,$0010,S3FE4,$0C08
dcw $4009,$0000,59030,$2408
dcw $0103,$FE20,503F0,50000
dcw S$S007E,$0010,$600C,$0C09
dcw S$SCO00K$0000,$9030,52408
dew $0102,$0000,503F0,50000
dcw $007E,$0010,$2207,50039
dcw $8343,5$0000,$9030,52408
dew $0102,$0020,503F0,50000
dcw SO007E,$0010,53F81,$0021
dcw $030B,$0000,$9030,52408
dcw $0103,5FB00,$03F0,$0000
dcw S$007E,$0011,50C81,$COE1
dcw $0303,$0000,$9500,SE408
dcw $0100,50800,503F0,50000
dcw S007E,$0018,50081,5SCOE1
dcw $0303,$0000,$9000,$8408
dew $0100,$1800,503F0,50000
dcw S007E,$0032,$3F81,50021
dew $0003,$03C0,$903F,$8408
dew $0103,5F810,$03F0,$0000
dcw $007E,$0050,52087,50039
dew $0003,50A40,$9020,50428
dew $0102,50020,503F0,50000
dcw S$S007E,$0018,$2004,50C09
dew $0303,$0240,59020,$0408
dew $0102,$0400,503F0,$0000
dcw S007E,$0012,$3FE4,$0C09
dcw $0303,$0240,$9020,5040F
dcw $F907,8SFE00,503F0,50000
dcw $S007E,$0012,50024,50C09
dcw $0303,$0240,$9020,$0400
dew $0900,$0200,503F0,50000
dcw $007E,$0C30,$0024,50C29

Chapter 16: File Selector/Bit Images

234

dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew

$0303,$0248,$9020,50400
$0900,$0200,$03F0,50000
$007E,$101KSFFE7,8FFF9
SFFFESFETFES9FE0,S07FF
SFIFESFE00,503F0,50000
$007E,$1204,$4000,50000
$0000,$0000,$0000,50000
$0000,$0000,$03F0,50000
$007E,$2810,$0000,50001
SFFF8,$1FFE,S1FFESE001
$0000,$0000,503F0,$0000
$007E,$0000,$0000,50001
$0008,$1002,$1000,$2000
$0000,$0000,503F0,$0000
$007E,$0000,50000,50001
$000E,$1002,$1000,$2000
$0000,$1484,$03F0,50000
$007E,$0000,$0000,50001
$0302,$1COE,$1F03,$E000
$0000,$0080,$03F0,50000
$007E,$0088,$0000,50001
$0302,$0408,50102,50000
$0010,$0040,507F0,50000
$007E,$2000,50000,50001
$0302,50418,$0102,$0000
$8400,50130,503F0,50000
$007E,$0220,$0000,50001
$0302,50408,50142,50000
$0000,$2100,503F0,50000
$007E,$0000,$0000,50001
$008E,$0408,$0102,50000
$0000,$0210,$03F0,50000
$007E,$0000,50420,50003
$020E,$0408,$0102,50000
$4010,$0030,503F0,50000
$007E,$0200,$0000,$0001
$0302,$0408,50102,$0000
$0000,$0000,503F0,$0000
$007E,$0100,$8800,50001
$0302,$0408,50102,$0000
$0008,50080,503F0,50000

238 Chapter 16: File Selector/Bit Images

dcw $007E,$0000,$0000,$0001
dcw $0302,5$1408,$0102,54000
dcw $0005,50080,503F0,50000
dcw S$007E,$0000,$0000,$0001
dcw $2302,51C4E,$0102,$8000
dcw $0008,50200,503F0,50000
dcw S$007E,$8040,$0000,$2001
dcw S$000E,$5002,$0106,50401
dcw $0011,$0000,$03F0,$0000
dcw $007E,$4900,$0080,$1809
dcw $0008,$1002,$0102,50000
dcw $0020,50400,503F0,$0000
dcw $007E,$0000,$801C,$0003
dcw SFFF8,S1FFE,$91FE,$4000
dcw $0000,54804,503F0,50000
dcw $007E,$0000,$2000,50000
dcw $0000,50000,$0000,50002
dcw $0010,50002,503F0,50000
dcw S$O007E,$007E$9FE0,$7F81
dcw SFFF8,S7FFESIFFESETFF
dcw $8000,50000,$03F2,$0000
dcw S$S007E,$0450,$D020,$4081
dcw $0008,54002,$1000,$3400
dcw $9000,50000,503F0,$0000
dcw $007E,$0040,8F225,8C0E1
dcw S$001E,$4003,$9000,$2400
dcw $E080,50000,503F8,50000
dcw $007E,$0040,$0021,$0021
dcw $0302,540C0,8903FSE400
dcw $2009,50402,503F0,50000
dcw S$007E,$0040,$0027,$0039
dcw $0302,540C0,$9820,50400
dcw $7800,50000,$03F0,$0000
dcw S$007E,$C040,$0424,50C09
dcw $0302,540C0,$9020,5040C
dcw $0800,50000,503F0,$0000
dcw S$S007E,$0040,$0024,50C09
- dew $0302,540C0,$B03F,$840C
dcw S$09FESFE00,503F0,$0000
dcw $007E,$0040,$0024,$0C09
dcw $000E,$4047,59000,$840C

Chapter 16: File Selector/Bit Images

239

dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dcw
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew

$0900,$4200,503F0,50000
$007E,$1060,$0024,50C09
$0008,$4002,$1000,$840C
$0900,$0240,$03F0,$0000
$007E,$0148,5F024,50009
$03F8,540FE,$103F,$840C
S09FF,$FE00,503F0,$0000
$007E,$1048,$9024,$0009
$0200,54080,$1020,$040C
$0800,50800,503F0,50000
$007E,$1040,$9024,50C09
$0200,54080,$1020,$0400
$3804,54000,503F2,50000
$007E,$8850,$9024,$0C09
$0200,54080,5103K$E400
$2000,50200,$03F4,$0000
$007E,$2050,$9024,50C09
$0200,54080,$1000,$2400
$E000,50000,$03F0,$0000
$007E,$0140,$9024,$0C09
$0200,$4080,51000,52400
$8000,$8000,$03F0,50000
$007E,$407F$9FE7,SFFF9
$SFE00,$7F80,$1FFESE7FF
$8000,50300,503F8,$0000
$007E,$0040,$0000,50000
$0000,$0000,$0000,50000
$0001,$2000,$03F0,$0000
$007E,$0000,$0001,8FFE7
SFIFE,$07F8,507FF,SE7FF
$F800,50000,$03F0,50000
$007E,$0000,$0001,$0025
$090A,50408,$0400,52400
$0800,50044,503F0,50000
$007E,$1000,$0011,$0024
$0F02,$1COE,$1C00,52400
$0800,50080,$03F0,$0000
$007E,$1080,$1001,$COE4
$0002,$1002,$103ESECOF
$F800,$00A0,503F0,$0000
$007E,$0000,$0000,54084

240 Chapter 16: File Selector/Bit Images

dew $0082,$7803,59020,50408
dew $0000,5$4000,503F0,50000
dew SO007E,$0008,50010,84886
dew $0002,$42C0,$9020,50408
dew $0080,50000,503F0,50000
dew S$S007E,$0000,50520,54084
dew $8002,540C0,5903FSE40F
dew $E000,$0000,803F0,50000
dcw $007E,$0200,50000,54084
dew $0002,$40C0,$B000,52400
dew $2100,$4808,503F0,50000
dew SO007E,$8000,50080,54084
dew $0002,$42C0,$9000,52400
dew $2000,50080,503F0,50000
decw S007E,$4400,52000,54084
dew $0F02,$4000,$9030,5240F
dew S$SE000,50080,503F0,50000
decw $007K$C081,51101,54084
dew $0902,$4000,$9030,52408
dew $1000,$0400,503F0,50000
dcw S$007E,$2180,5080B,5408C
dew $0902,$40C0,$9038,52408
dew $0000,$1040,503F0,50000
dcw SO007E,$0C80,50005,SCOE4
dew $0902,$40C0,59030,5240F
dew $F800,$1000,503F0,50000
dcw $007E,$0000,50081,50024
dew $0902,$40C0,59C00,52400
dew $0800,50480,503F0,50000
dew $007E,$0280,50101,500A4
dcw $0902,$40C0,58400,52500
dcw $0840,500C0,503F0,50000
dcw S$S007E,$0802,56521,SFFE7
dcw SFIFE,STFFES87TFESETFF
dcw $F800,500A1,503F0,50000
dcw S007E,$0001,59C44,50400
dew $0000,$0000,$0200,$0010
dcw $2000,$1100,503F0,$0000
dcw $007EK$0000,SDB88,50000
dew $1010,50000,$0000,50000
decw $0080,$0202,$03F0,50000

Chapter 16: File Selector/Bit Images

241

dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew
dew

$007K$8000,$0380,50000
$0004,50000,50000,50000
$0080,$0000,503F0,$0000
$007E,$0006,$5200,50805
$2008,$0000,$0000,50800
$0000,50008,503F0,50000
$007E,$0009,$3544,50800
$0000,50004,$0000,50008
$0000,$0000,$13F0,50000
$007E,$000C,SF00E,$0000
$0000,$0000,$0000,50000
$4000,50000,503F0,50000
$007E,$0002,504C8,50000
$0080,$1000,$0000,$0000
$0002,50000,$03F0,50000
$007E,$0002,54B00,50000
$0000,$0000,$0000,50000
$0000,$0020,$03F0,50000
$007E,$0008,52028,50000
$0000,$4008,$2100,$0200
$0000,$0000,$03F0,$0000
$007E,$0007,$3A40,50000
$0000,$8800,50000,50000
$0000,50000,$43F0,50000
$007E,$0000,$0800,50000
$0000,$0000,$0800,$0000
$0200,$8000,$03F0,$0000
$007E,$0000,50000,$0000
$0000,$0000,$8000,$0000
$0000,$0000,$03F0,$0000
$007E,$0000,$0000,50000
$0000,$0000,$0000,50040
$0000,50410,$03F0,50000
$007E,$0000,$0000,50000
$0000,$0000,$0008,58000
$1002,50000,$03F0,$0000
$007FSFFFESFFFESFFFF
SFFFESFFFESFFFESFFFF
SFFFESFFFESFFF0,$0000
$007KSFFFESFFFESFFFF
SFFFESFFFESFFFESFFFF

242 Chapter 16: File Selector/Bit Images

dcw SFFFESFFFESFFF0,50000
dcw S007ESFFFESFFFESFFFF
dcw SFFFESFFFESFFFESFFFF
dcw SFFFESFFFESFFF0,50000
dcw S007ESFFFESFFFESFFFF
dcw SFFFESFFFESFFFESFFFF
dcw SFFFESFFFESFFF0,50000
dcw S003FSFFFESFFFESFFFF
dcw SFFFESFFFESFFFESFFFF
dcw SFFFESFFFFSFFE0,$0000
dcw SO001ESFFFESFFFESFFFF
dcw SFFFESFFFESFFFESFFFF
dcw SFFFESFFFESFFC0,$0000
dcw $0000,$0000,$0000,$0000
dew $0000,$0000,$0000,50000
dew $0000,$0000,50000,$0000
dew $0000,$0000,50000,50000
dcw $0000,50000,50000,$0000
dew $0000,$0000,50000,$0000
dcw $0000,50000,50000,$0000
dcw $0000,$0000,50000,$0000
dew $0000,$0000,$0000,$0000
dcw $0000,$0000,50000,$0000
dcw $0000,50000,$0000,$0000
dew $0000,$0000,50000,$0000
dcw $0000,50000,50000,50000
dcw $0000,50000,50000,50000
dcw $0000,50000,$0000,50000
dcw $0000,50000,50000,50000
dcw $0000,50000,50000,$0000
dcw $0000,50000,50000,50000
dcw $0000,50000,$0000,50000
dcw $0000,50000,50000,50000
dew $0000,$0000,50000,50000
dcw $0000,50000,50000,50000
dcw $0000,50000,50000,50000
dcw $0000,50000,5$0000,$0000

o-k: dcl text_ok,te,te
dew 3,0,2,9$1110,0,3,5,0

Chapter 16: File Selector/Bit Images 243

text_ok:
te:

parent: dc.w
del
dew

dew
del
dcw

dew
dcl
dew

dc.b
dc.b

>0K’,0
0

-1,1,2,20,0,16 ; large box
$00021100
100,26,340,80

2,-1,-1,23,0,0
b_map
25,6,260,90

0,-1,-1,22,7+32,0

o-k

; ok

200+20,35,70,14

aespb: dc.l contrl,global,intin,intout,addrin,addrout

object_draw:
form_do:

* GEM arrays
contrl:

intin:

intout:

global:
addrin:
addrout:

appl_init:
appl_exit:
form_center:

dew
dew

ds.w
ds.w
ds.w
ds.w
ds.w
ds.w

dew
dew
dew

42,6,1,1,0
50,1,2,1,0

12
128
128
16
128
128

10,0,1,0,0
19,0,1,0,0
54,0,5,1,0

Note that it is possible to include a resource file created by the RCP and
hand constructed dialog boxes such as the one above. This allows the
best of both worlds.

244

Chapter 16: File Selector/Bit Images

Chapter 17
GEM Windows

This chapter is devoted to GEM windows which most ST users have
seen if they have ever used 1ST__WORD word processor or opened a
window to see a disk drive directory. Many other applications use win-
dows in one form or another.

Normally only four GEM windows can be opened at any one time but
as desk accessories may also use one too, this results in a total of five.
GEM provides the basis of window management: the components of a
window and its many features such as scroll bars, and arrows etc. How-
ever, the programmer is left to deal with everything that goes on in and
around the window: its re—drawing, updating and resizing, etc. If more
than one window is open and they are overlapping the code to deal
with this sort of situation is very complex as the contents of each win-
dow has to be refreshed or updated if any window is moved or resized.

The first GEM window example GEM15.S is shown below:

* GEM15.S
* This program opens a simple static GEM window
* Click close box to exit window.

* header
move.l a7,a5
move.l Bustk,a7
move.l 4(a5),a5
move.l 12(a5),d0
add.l 20(a5),d0
add.l 28(a5),d0
add.l 1$100,d0
move.l do0,-(sp)
move.l aS,-(sp)

clrw -(sp)
move H$4a,-(sp)
trap ni

add.l B12,sp

246 Chapter 17: GEM Windows
* appl_init()

move.l Happl_init,aespb

jsr aes ; call AES

jsr mouse—_off ; turn mouse pointer off and

jsr arrow ; change to arrow
* graf_handle()

move.l Hgraf_handle,aespb ; get physical screen handle

jsr aes

move - intout,gr-handle ; store handle

* start by opening a virtual workstation

move #100,contrl
move #0,contrl+2
move B11,contrl+6
* is GDOS present
moveq B-2.d0
trap B2
addq 82.d0
beq no-gdos ; no GDOS
move res,d0
add #2.d0
move do,intin
bra s-no_gdos
no-gdos:
move Blintin ; default if GDOS not loaded
s-no-gdos:
move Blintin+2 ;line type
move #1,intin+4 ; colour for line
move Blintin+6 ; type of marking
move B1,intin+8 ; colour of marking
move B1,intin+10 ; character set
move Blintin+12 ; text colour
move Hl,intin+14 ; fill type
move B1,intin+16 ; fill pattern index
move B1,intin+18 ; fill colour

Chapter 17: GEM Windows 247

move #2,intin+20 ; coordinate flag
movew gr_handle,contrl+12 ; device handle
jsr vdi ; v—opnvwk open virtual work station
move.w contrl+12,ws_handle ; store virtual workstation handle
* the type of the window
wtype equ SOff

* the size lies in intout, so calculate the window size

* wind_get
move.l Rwind_get,aespb
move.w R(,intin
move #5,intin+2 ; get window exterior coords
jsr aes
* wind_calc
move R#1,intin ; work position and size
move.w Hwtype,intin+2
movemw intout+2,d0-d3 ; returned from wind get
movem.w d0-d3,intin+4 ; the size
move.l Bwind_calc,aespb
jsr aes
* now get its offsets
move intout+2,x
move intout+4,y
move intout+6,xwidth
move intout+8,ywidth
* and create the window
move Bwtype,intin ; see above
movem intout+2,d0-d3
movem d0-d3,intin+2 ; the size
* wind_create
move.l Bwind_create,aespb
jsr aes
move intout,w_handle ; save the handle

248 Chapter 17: GEM Windows

* now set its title

move.w w-handle,intin
move.w H2intin+2 ; title string
move.l Bwindowname,intin+4 ; the address
clrw intin+8
clrw intin+10
* wind_set
move.l Bwind_set,aespb
jsr aes

* set information title

move.w w-handle,intin

move.w R3intin+2 ; information string
move.l Rinfo,intin+4
clrw intin+8
clrw intin+10
* wind_set
move.l HBwind_set,aespb
jsr aes

* now actually show it by opening it

move.w w-handle,intin
movem.w X,d0-d3

add.w R"5,d0 ; X start

movem.w d0-d3,intin+2 ; the size
* wind_open

move.l Bwind_open,aespb

jsr aes

* make interior of window white
* vsf_interior
move #23,contrl
clrw contrl+2
move.w B1,contrl+6

Chapter 17: GEM Windows

249

move.w
move.w
jsr

* vsf_stly
move
clrw
move.w
move.w
move.w
jsr

* vsf_color
move
clrw
move.w
move.w
move.w
jsr

*wind get first

ws_handle,contrl+12
H1,intin
vdi

#24 contrl

contrl+2
B1,contrl+6
ws_handle,contrl+12
H1,intin

vdi

#25,contrl

contrl+2
#1,contrl+6
ws-handle,contrl+12
B(,intin

vdi

move.w w-handle,intin
move H4,intin+2
move.l Rwind_get,aespb
jsr aes
movem.w intout+2,d0-d3
movem.w d0-d3,x
move.w d0,ptsin
move.w d1,ptsin+2
add.w d2,d0
add.w d3,d1
sub.w 81,d0 ; adjust
sub.w #1,d1 ; adjust
* fill rect with white fill
move.w d0,ptsin+4
move.w d1,ptsin+6
* vr_recfl
move B114,contrl

250 Chapter 17: GEM Windows

move.w 82 contrl+2
move.w 80,contrl+6
move.w ws-handle,contrl+12

jsr vdi
jsr mouse_on
e_multi:
move.l HBmessagebuf,addrin
move.l Hevnt_multi,aespb
move #1+2+16,intin ; keyboard, mouse, report
move Hlintin+2 ; number of clicks
move #1l,intin+4 ; left mouse button
move B1,intin+6 ; left button down
move Blintin+8 ; leave rect (not applicable)
move #0,intin+10
move #0,intin+12
move #0,intin+14
move #0,intin+16
move 8#0,intin+18
move 80,intin+20
move B10,intin+22
move 80,intin+24
move 80,intin+26
move 80,intin+28
move 80,intin+30
jsr aes
move.w intout,d0 ; 2=mouse 1= k/b

move.w intout+2,mx ; X mouse coord
move.w intout+4,my ;y mouse coord

cmpi.w 1%$10,d0 ; mouse message

beq mouse

cmpi.w #2,d0 ; mouse button

beq e_multi

move intout+10,d1 ; key code
mouse: ;

move.l Bmessagebuf,al

move.w (20),d0

Chapter 17: GEM Windows

251

* subroutines

vdi:
movem.l
move.l
moveq.l
trap
movem.l
rts

aes:
movem.l
move.l
move.w
trap
movem.l
rts

mouse_off:
movem.l
dew
move.l
move.l
dew
movem.l
rts

mouse.on:
movem.|
dew
move.l
move.l
clrw
clrw
clrw
dew
movem.l

1$16,d0 ; L/Hand corner of window

quit
e_multi

d0-d7/a0-a6,-(sp)
Bvdipb,d1
1$73,d0

u2
(sp)+d0-d7/a0-a6

d0-d7/a0-a6,-(sp)
Raespb,d1
1$c8,d0

n2
(sp)+,d0-d7/a0-a6

a0-a4/d0-d5,-(sp)
$a000

4(a0),al

8(a0),a2

$a00a

(sp)+a0-a4/d0-d5 -

a0-a4/d0-d5,-(sp)
$a000

4(a0),al

8(a0),a2

(a2)

2(al)

6(al)

$a009
(sp)+a0-a4/d0-d5

Chapter 17: GEM Windows

252
rts

arrow:
move.l Hgraf_mouse,aespb
move #0,intin
jsr aes
rts

* end of subroutines

quit:

* wind_close
move.w w-handle,intin
move.l Bwind_close,aespb
jsr aes

* wind_delete

move.w w-handle,intin
move.l Bwind_delete,aespb
jsr aes

* close the virtual workstation

* y_clsvwk
move 1#101,contrl
clrw contrl+2
clrw contrl+6
move.w ws_handle,contrl+12
jsr vdi

* appl_exit()

move.l Happl_exit,aespb
bsr aes ; call AES
* now quit to the desktop
clrw -(a7)
trap a3 |
dsl 100
ustk: dsd 1

* keep these dc.w together
X: dswl

Chapter 17: GEM Windows 253

y: dsw 1
xwidth: dswl
ywidth: dswl
w-handle: dswl
ws_handle: dswl

messagebuf: ds.b 16

windowname: dcb ’Example Window’,189,0

vdipb: dc.l contrlintin,ptsin,intout,ptsout
contrl: dsw 128

intin: dsw 128

intout: dsw 128

global: dsw 128

addrin: dsw 128

addrout: dsw 128

ptsin: dsw 128

ptsout: dsw 128

aespb: dc.l contrl,global,intin,intout,addrin,addrout
appl_init: dew 10,0,1,0,0

appl_exit: dew 19,0,1,0,0

evnt_multi: dew 25,16,7,1,0

wind_get: dew 104,2,5,0,0

wind_calc: dew 108,6,5,0,0
wind_create: dcw 100,5,1,0,0
wind_set: dew 105,6,1,0,0
wind_open: dew 101,5,5,0,0
graf_handle: dcw 77,0,5,0,0

graf_mouse: dcw 78,1,1,1,0

wind_close: dew 102,1,1,0,0
wind_delete: dcw 103,1,1,0,0

gr-handle: dsw 1
mx: dsw 1
my: dsw 1

info: dcb '’ Information area:’,0

254 Chapter 17: GEM Windows

ress dsw 1

By studying the above source code you should be able to understand
the process of opening a GEM window. As you can see it quite a
laborious process, but 1n that process we are given much flexibility in
the size and type of window that we can create.

The disk contains further information about the GEM calls made in
the above program.

Note that the window must be filled with a colour, in this case white,
otherwise the window ;ﬁpmrs with the background colour. This is
andt

why the *vsf__interior’ he other VDI calls are made.

There are a few new calls. The mouse__on and mouse__off routines in
particular are very useful. Without switching the mouse off when
drawing a window and its interior the mouse would be overdrawn but
as soon as the mouse pointer was moved a gap would appear where the
mouse originally was. These routines were found sometime ago in a
Public Domain program and they work extremely well. They are
somewhat better than the equivalent GEM calls as a count of how
many times 2 mouse is hidden or shown has to be made in order to
control the GEM mouse hide/show routines correctly.

*wind__calc’ and *wind__create’ both use the equate:
wtype equ SOff
*wtype’ allows the of window to be determined by the bits in its

value, where a bit that is on stands for an active window component
whilst a bit that is off is used for an inactive window component.

The bits have the following meaning:

Bit wvalue if on meaning

0 1 title line with name of window
1 2 close box

2 4 full box

3 8 move box

4 16 information line

Chapter 17: GEM Windows 255

5 32 size box

6 64 up arrow

7 128 down arrow

8 256 vertical slider

9 512 left arrow

10 1024 right arrow

11 2048 horizontal slider

So if the value of *wtype’ was set to %00101111, or $2f then the title
line, close box, full bax, move box, and, size box will be drawn. All

other components will be missing.

The m buffer *m buf’ the address of which is passed to the
’evnt_m:iti’ routine holds all the messages that are passed to GEM
when any actions are taken by the user with the mouse. See also chap-
ter fifteen with shows its use with drop down menus.

The message received follows this format:

Element number Contents

0 message id which indicates type of message

1 application id

2 number of additional bytes in excess of standard 16
3-7 depends on message

These are the events that are received in the message buffer:

Message name message
number
10 mn__selected menu item selected
20 wm__redraw window display needs redrawing
21 wm__topped a window has been selected to be the ac-
tive, ie top, window
2 wm__closed the close box has been clicked
23 wm__fulled the full box has been clicked
li%::d wm__arrowed the scroll bar or arrows have been
clic
25 wm__hslid the horizontal scroll bar has been moved
26 wm_v.slid the vertical scroll bar has been moved

27 wm__sized the bottom right size box has been

256 Chapter 17: GEM Windows

dragged
28 wm__moved the move bar has been dragged
29 wm__newtop a window has become active
40 ac__open a desk accessory has been selected
41 ac__close a desk accessory has been closed

The disk contains a tutorial on GEM by Tim Oren who was one of the
original DR programmers that helped to write GEM. Initially it is
heavy going for the beginner, especially as it refers to the C languai&
But this information is extremely useful and once you get used to the
terminology much of the information can be used by the assembly lan-

guage programmer.

The next piece of source code shows "'wm__sized” and the redrawing of
the window.

First though clipping should be looked at.
Clipping

Clipping is a very useful concept and is used extensively in GEM win-
dow graphic operations. Say for instance we had a GEM window open
that occupied the full screen and we wanted to draw a box using one of
the VDI graphic primitives in the window. Now if the clipping func-
tion is set to the inner window’s coordinates then when the box is
drawn it can never go beyond the dimensions of the window. This is
very useful for two good reasons. First we would not want a box drawn
over the menu bar or scroll bars or beyond the dimensions of a particu-
lar window. it would be no good at all if part of the box was drawn in
an entirely different window. Secondly, drawing anything beyond the
dimensions of the screen is extremely dangerous as we do not know
what occupies the memory there. It could be part of our program, and
placing a box there would surely obliterate anything there with the re-
sultant crash when we came to use that code!

If the window is moved or resized by the user it is a simple matter to set
the clipping the dimensions of the window as the next example source
code demonstrates.

Chapter 17: GEM Windows

257

* GEM16.S

* This program opens a simple GEM window and allows the user to
* resize it. A rectangle is drawn in the window, clipping is set

* so that the rectangle is only drawn in the window.

* Click close box to exit window.

* header
move.l a7,a5
move.l Hustk,a7
move.l 4(a5),a5
move.l 12(a5),d0
add.l 20(a5),d0
add.l 28(a5),d0
add.l #1$100,d0
move.l do0,-(sp)
move.l a5,-(sp)

clrw -(sp)
move 1S$4a,-(sp)
trap 23 |

add.l R12,sp

* appl_init()
move.l Rappl_init,aespb

jsr aes ; call AES

move intout,ap_id

jsr mouse_off ; turn mouse pointer off and
jsr arrow ; change to arrow

* graf_handle()
move.l Hgraf_handle,aespb ; get physical screen handle
jsr aes
move intout,gr_handle ; store handle

* start by opening a virtual workstation

move #100,contrl
move 10,contrl+2
move B11,contrl+6

* is GDOS present
moveq B-2.d0

258 Chapter 17: GEM Windows
trap B2
addq 12,40
beq no_gdos ;no GDOS
move res,d0
add 12,40
move dO0,intin
bra s-no.gdos
no_gdos:
move #lintin ; default if GDOS not loaded
s-no-gdos: '
move Blintin+2 ; line type
move #l,intin+4 ; colour for line
move Hlintin+6 ; type of marking
move Rlintin+8 ; colour of marking
move B1,intin+10 ; character set
move 8lintin+12 ; text colour
move Bl,intin+14 ; fill type
move Rl,intin+16 ; fill pattern index
move R1,intin+18 ; fill colour
move R2.intin+20 ; coordinate flag
movew gr-handle,contri+12 ; device handle
jsr vdi ; v-opnvwk open virtual work station
move.w contrl+12,ws_handle ; store virtual workstation handle
* the type of the window
wtype equ Sfff ;all components
* the size lies in intout, so calculate the window size
* wind_get
move.l Bwind_get,aespb
movew 80,intin
move #5,intin+2
jsr aes
* wind_calc
move Bl,intin
move.w Bwtype,intin+2

Chapter 17: GEM Windows 259
movem.w intout+2,d0-d3 ; returned from wind get

movemw d0-d3,intin+4 ; the size
move.l Bwind_calc,aespb
jsr aes
* now get its offsets
move intout+2,x
move intout+4,y
move intout+6,xwidth

move intout+8,ywidth

* and create the window

move Bwtype,intin ; see above
movem intout+2,d0-d3
movem d0-d3,intin+2 ; the size

* wind_create

move.l Bwind_create,aespb
jsr aes
move intout,w_handle ; save the handle

* now set its title
move.w w-handle,intin

move.w "2 intin+2 ; title string
move.l Bwindowname,intin+4 ; the address
clrw intin+8
clrw intin+10

* wind_set
move.l Bwind_set,aespb
jsr aes

move.w w-handle,intin
move.w #3,intin+2 ; information string

move.l Rinfo,intin+4

clrw intin+8
clrw intin+10

* wind_set

260 Chapter 17: GEM Windows

move.l HBwind_set,aespb
jsr aes

* now actually show it by opening it

move.w w-handle,intin
movem.w Xx,d0-d3

add.w H5,d0 ; X start

movem.w d0-d3,intin+2 ; the size
* wind_open

move.l Hwind_open,aespb

jsr aes

* make interior of window white

jsr fill_window
jsr mouse_on
e_multi:
move.l Hmessagebuf,addrin
move.l Hevnt_multi,aespb
move #1+2+16,intin ; keyboard, mouse, report
move Hlintin+2 ; number of clicks
move #1,intin+4 ; left mouse button
move H#1,intin+6 ; left button down
move f1,intin+8 ; leave rect (not applicable)
move R(,intin+10
move 80,intin+12
move #0,intin+14
move B80,intin+16
move 10,intin+18
move 10,intin+20
move B0,intin+22
move 8(,intin+24
move R(0,intin+26
move 80,intin+28
move #0,intin+30
jsr aes

move.w intout,d0 ; 2=mouse 1= k/b

Chapter 17: GEM Windows

261

move.w
move.w
cmpi.w
beq
cmpi.w
beq

move

mouse:
move.l
move.w
cmpi.w
beq
cmpi.w
beq
bra

resize:

intout+2,mx ; x mouse coord
intout+4,my ;y mouse coord

B$10,d0 ; mouse message
mouse

B2.d0 ; mouse button
e_multi

intout+10,d1 ; key code

Bmessagebuf,al

(a0),d0

1$16,d0 ; L/Hand corner of window
quit

#S$1b,d0

resize

e_multi

* resize message received so get the new dimensions

move
move
move
move

move
* wind_set
move.w
move.l
Jjsr
jsr

jsr
bra

8(a0),intin+4
10(a0),intin+6
12(a0),intin+8
14(a0),intin+10

RS5,intin+2
w-handle,intin
Bwind_set,aespb
aes

fill_window

draw_rounded_rect
e_multi

* the subroutines

draw_rounded_rect:

262 Chapter 17: GEM Windows

* set clip to inside rect
* vsf_color
* set fill colour
move #25,contrl
move #0,contrl+2
move.w #1,contrl+6
move.w ws_handle,contrl+12

move #1,intin
jsr vdi
* v_rfbox
* filled rounded rectangle
move #811,contrl
move 82, contrl+2
movew BrQ,contri+6 —
move 89 contri+10 ; GDP function 9
move.w ws_handle,contrl+12
move.w B120,ptsin ; X coord
move B110,ptsin+2 ; Yy coord
move.w 1120+60,ptsin+4 ; X coord+width
move #110+80,ptsin+6 ; Y coord+height
jsr vdi
rts
fill_window:
* vs_clip
* set clip to inside rect
move 8129 ,contrl

move.w 82, contrl+2
move.w 81,contrl+6
movew ws_handle,contrl+12

move B(,intin ; clipping off
jsr vdi
* vsf_interior
move #23,contrl
clrw contri+2

move.w #1,contri+6

move.w ws-handle,contri+12
move.w B1,intin

jsr vdi

Chapter 17: GEM Windows

263

* ysf_style
move
clrw
move.w
move.w
move.w
jsr

824 contrl

contrl+2
R1,contrl+6
ws_handle,contri+12
B1,intin

vdi

* vsf_color- white

move
clrw
move.w
move.w
move.w
jsr

* wind get first, get window internal dimensions

#125,contrl

contrl+2
#1,contrl+6
ws_handle,contrl+12
RQ,intin

vdi

move.w w-handle,intin
move R4 intin+2
move.l Hwind_get,aespb
jsr aes
movem.w intout+2,d0-d3
movem.w d0-d3,x
movew d0,ptsin
move.w d1,ptsin+2
add.w d2,d0
add.w d3,d1
sub.w R11,d0
sub.w B1,d1

* fill rect with white fill
move.w d0,ptsin+4
move.w d1,ptsin+6

* vr_recfl
move B114,contrl
move.w 82, contrl+2
move.w 10,contrl+6
move.w ws_handle,contrl+12
jsr vdi

* vs_clip

264 Chapter 17: GEM Windows

* set clip to inside rect
move 1129,contrl
move.w 2 contrl+2
move.w B1,contrl+6
move.w ws_handle,contrl+12

move #1,intin ; clipping on
jsr vdi
rts
vdi:
movem.l d0-d7/a0-a6,-(sp)
move.l Bydipb,d1 g
moveq.l 1$73,d0 37
trap B2
movem.l (sp)+d0-d7/a0-a6 '_’
rts |
i
aes:],
movem.l d0-d7/a0-a6,-(sp)
move.l Baespb,d1 |
move.w B$c8,d0
trap B2
movem.l (sp)+d0-d7/a0-a6
rts
mouse_off:
movem.l a0-a4/d0-d5,-(sp)
dew $a000

move.l 4(a0),al
move.l 8(a0),a2

dew $a00a
movem.l (sp)+a0-a4/d0-dS
rts

mouse_on:
movem.l a0-a4/d0-d5,-(sp)
dew $a000

move.l 4(a0),al
move.l 8(a0),a2
cirw (a2)
clrw 2(al)

Chapter 17: GEM Windows 265

clrw 6(al)
dew $a009
movem.l (sp)+a0-a4/d0-d5
rts
arrow:
move.l Rgraf_mouse,aespb
move 80,intin
jsr aes
rts

* end of subroutines

quit:

* wind_close
move.w w-handle,intin
move.l Hwind_close,aespb
jsr aes

* wind_delete
move.w w-handle,intin
move.l Hwind_delete,aespb
jsr aes

* close the virtual workstation

* v_clsvywk
move 1101,contrl
clrw contrl+2
clrw contrl+6
move.w ws_handle,contrl+12
jsr vdi

* appl_exit()

move.l Happl_exit,aespb
bsr aes ; call AES
* now quit to the desktop
clrw -(a7)
trap a3 |
ds. 100

ustk: ds.1 1

266 Chapter 17: GEM Windows
* keep these dc.w together

X: ds.w 1
y: ds.w 1
xwidth: ds.w 1
ywidth: ds.w 1
w-handle: ds.w 1

ws-handle: ds.w 1
messagebuf: ds.b 16

windowname: dc.b ’Example Window’,’, ’,189,’somebody’,0

vdipb: de.l contrl,intin,ptsin,intout,ptsout

contrl: ds.w 128

intin: ds.w 128

intout: ds.w 128

global: ds.w 128

addrin: ds.w 128

addrout: ds.w 128

ptsin: ds.w 128

ptsout: ds.w 128

aesph: dc.l contrl,global,intin,intout,addrin,addrout

appl_init: dcw 10,0,1,0,0
appl_exit: dew 19,0,1,0,0
evnt_multi: dew 25,16,7,1,0
wind_get: dew 104,2,5,0,0
wind_calc: dcw 108,6,5,0,0
wind_create: dcw 100,5,1,0,0
wind_set: dew 105,6,1,0,0
wind_open: dew 101,5,5,0,0
graf_handle: dcw 77,0,5,0,0
graf_mouse: dc.w 78,1,1,1,0
wind_close: dcw 102,1,1,0,0
wind_delete: dcw 103,1,1,0,0
appl_write: dew 12,2,1,1,0
gr-handle: ds.w 1

mx: ds.w 1

Chapter 17: GEM Windows 267
my: dsw 1

info: dc.b ’ Information area:’,0
res: dsw 1
ap_id: ds.w 1

In the above program two subroutines handle the interior fill of the
window, and the drawing of a rectangle. They are *fill__window:” and
’draw__rounded__rect:’ respectively. Each time the window is resized
the window must be filled with a white interior and then the rectangle
drawn. To ensure the rectangle does not overwrite any part of the
window clipping is set to the interior dimensions of the window. Note
clipping is turned off when filling a newly resized window; if it was not
then the fill would be bound by the dimensions of the previous interior.

The new dimensions of the window are found directly from a0 (from
move.l #messagebuf,a0), and can be placed into the intin array by the
method outlined below. Looking at the first line of code the offset 8 is
added to the address held in a0, and then the contents of that address are
placed in intin+4. Register a0 is not affected by this operation.

* resize message received so get the new dimensions

move 8(a0),intin+4
move 10(a0),intin+6
move 12(a0),intin+8
move 14(a0),intin+10

Next the *wind__set” AES function is called to redraw the window at its

new position.

move #5,intin+2

* wind_set
move.w w_handle,intin
move.] Hwind_set,aespb
jsr aes

GDP’s

The VDI supports ten basic drawing operations called Generalized Dra—

268 Chapter 17: GEM Windows

wing Primitives. The function 'v__rfbox’ is one of them. Others in-
clude filled circle, filled ellipse and justified text. Please see disk for a list
of all the VDI library functions. The next chapter looks a the VDI in
greater detail.

Chapter 18
Interfacing with GFA BASIC

This chapter looks at linking the object files produced by the zzSoft as-
sembler with object files (see chapter 24 for more details about object
files) produced by the GFA BASIC Version 3 compiler. Calling assem-
bler routines from GFA BASIC V3 is also examined.

The zzSoft assembler produces DR (Digital Research) compatible ob-
ject files which may be linked with similar GFA BASIC files, although
there are a few constraints according to the GFA compiler: registers a3
to a6 must not be altered or used in the assembly language program.This
leaves all the data registers though. However, registers a3—a6 may be
saved to either an array or the stack (using the +$c GFA option) and be
restored when the routine has finished.

Although the zzSoft assembler can be used to provide linkable DR
compatible object files the purpose of the assembler is to provide a tool
for tﬁe learning of assembler and is not guaranteed in any form or way
if the reader uses it to produce object files for use with GFA BASIC pro-
grams.

The procedure for linking object files is outlined below using previous
examples from earlier on in the book. Note that the object file to be
linked must end in an ’rts’ and begin with a global label that is called
from GFA BASIC. Any assembly language file with a GEM header,
stack, exit code eg ’pterm’, any VDI initialisation, and ’appl__init’ and
appl__exit’ must also be stripped out. GFA2.S shows this.

When using the AES and VDI the GEM arrays used by the program
have also been initialized by GFA BASIC so should not really need re-
serving again but as there is no hooks into GFA regarding the GEM ar-
rays it would appear better to duplicate them.

* GFALS
* This program finds the address of the screen, prints ‘'my_name’
* string to screen, clears the screen, and exits.

270 Chapter 18: Interfacing with GFA BASIC

gemdos equ 1

bios equ 13

xbios equ 14

cconws equ 9

pterm equ S$4dc

con equ 2
.globl start

start: move B2,-(sp) ; get screen RAM address

* returned in d0
trap Bi4 ; call Xbios
addq.] B2,sp ; correct stack
move.l d0,screen_address ; put screen address in symbol
move.l Bmy_name,-(sp) ; put address of string on stack
move.w Hcconws,-(sp) : Gemdos function ’print a line’
trap Hgemdos
addq.l Re6,sp ; correct stack

* this goes to the address "wait_for_key_press’ and executes the short
* routine held there until an ’rts’ is found.
jsr wait_for_key_press

* Jets clear the screen

move.l 131999.d0 ; counter ¥#32000-1

move.l screen_address,a(; place screen address in an
* address register

do_it_again:
cirb (a0)+ ; now clear the screen
dbra d0,do_it_again

* wait for a key press so that we can see the screen being cleared
* before returning to GFA BASIC.

jsr wait_for_key_press
rts ; this is here for GFA BASIC
XXX RXERRERE Subroutine

wait_for_key_press:
* wait for key press subroutine

Chapter 18: Interfacing with GFA BASIC 271

move Hcon,-(sp) ; device number (console)
move #B2,-(sp) ; BIOS routine number
trap Rbios ; Call Bios
addq.l R4,sp
rts

my_name: dc.b "Roger Pearson”,0

screen-address: dsl 1

The assembly language routine should start with a label which must be
declared as a global one by using the ’globl’ directive. If this is not used
then the object file will not contain any reference to such a label and
the GFA BASIC program will not be able to find it. In effect the GFA
BASIC compiler produces an object file of the GFA BASIC program
and then links the above file with the GFA BASIC one and produces an
executable file. Many files can be linked in this manner. The assembly
language routine must contain an ’rts’ at the end of the routine.

The GFA BASIC program

’ clear screen

’ GFAL.GFA

clear_screen

PROCEDURE clear_screen
$X start

RETURN

To link the above files, first the assembly language file should be
assembled and an object file produced (GFA1.0). Next the GFA BASIC
compiler should be run and the above GFA program (GFA1.GFA)
selected from the File drop down menu. ’C—Object C’ should then be
selected from the Sets menu and *GFA1’ (no need for .O extension)
entered when prompted, and Return pressed to finish text entry. This
file name should now be shown in the compiler options box top left
’Lnk: GFAY’. Next 'PRG=GFA F2’ shoufd be ticked so that the
resultant "PRG’ file will take its name from the GFA file, and
GFALPRG will be generated. Press F10 to complile GFA1.GFA and
link GFA1.0 which will produce GFA1.PRG.

One of the benefits of linking object files produced with the zzSoft

272 Chapter 18: Interfacing with GFA BASIC

assembler is that the ’dc’ or ’ds’ directives can be used in the source
code, whereas when calling assembler from GFA BASIC (see later) they
cannot be used as no relocation information can be given to GFA BA-
SIC so that the labels can be used from their correct addresses. For in-
stance the label *my__name’ refers to the address in memory that the
string "Roger Pearson” is held at. Until the program is loaded the ac-
tual address is not calculated as the program can be loaded anywhere in
the ST’s free memory depending what desk accessories have been

loaded etc. When the pro is loaded (relocation) information is used
to calculate the actual ad of ’my__name’. The information is gener-

ated by the linker at assembly time, and appended to the ’PRG’ file.

If a reference to a label is made from one object file to another the label
in the second file must be declared global. Thus if the instruction
st do__something’ is made in ogject file one, then the label
*do__something’ in the second file must be declared global by using the
globl’ directive, as in the above example with ’start:’

When producing linkable object files the source code hardly needs
much adjustment, and many useful object file subroutines may be built
up. Whereas when calling assembler from GFA BASIC great care has to
used to ensure that no reference to addresses in memory that are un-

known at assembly are used. This limits the usefulness of calling assem-
bler from BASIC.

GFA2.S and GFA2.GFA shows example files that can be linked using
the GFA BASIC compiler:

* GFA2.S

* This program displays a dialog box with a bit image in it.

* The dialog box and bit mapped image are both constructed from
* first principles.

.globl dialog

dialog:

* get res
move B4.-(sp)
trap ni4

addq.l H2,sp
* res returned in d0

Chapter 18: Interfacing with GFA BASIC 273

cmp
bne

move.l
move.l
bsr

B2,d0 ; is it high res
dont_alter_coords ; no

Hparent,a0 ; address of tree in a5
19 d0 ; number of objects
alter_coords

dont_alter_coords:

bsr
bsr
bsr
rts

obdraw:
move
move
move
move
move
move
move.l
move.l
bsr
rts

f_do: move.l
clrw
move.l
bsr
rts

f_center:
move.l
move.l
jsr
movem.w
rts

alter_coords:
cmpi.b

f_center
obdraw
f_do

R(,intin
H2intin+2
d0,intin+4
dl,intin+6
d2,intin+8
d3,intin+10
Hparent,addrin
Hobject_draw,aespb
aes

Hform_do,aespb

intin ; no editable text field
Rparent,addrin
aes

Hform_center,aespb
Hparent,addrin

aes

intout+2,d0-d3

B1,done_it

274 Chapter 18: Interfacing with GFA BASIC

beq done
alter2_coords:
move.b #1,done_it
* adjust object data for high res screen
add.l #118,a0
move.w (a0),d1
mulu.w B2.d1
move d1,(a0)+

add.l #2,a0

move (a0),d1

muluw B2.d1

move d1,(a0)+

dbf d0,alter2_coords
done:

rts

* AES subroutine

aes: move.l Haespb,d1
move.l H$c8,d0
trap B2
rts

tl: ded t-1
dcw 4,16,0,0,501f1

t_1: dcl $00000000
dcl $00000000
dcl SFEffffff
dcl SFEEffff
del $03c00000
dcd $03c0ff00
dcdl $03c1ff80
dcd $03c1c380
del $03c1c380
dcl $03ciff80
dcl $03ciff80
dcdl $03c1c780
dcl $03cic3cO
dedl $03ciclel
dcl $000000f0

Chapter 18: Interfacing with GFA BASIC

275

dc.l

SIFFEfeef

t2: dedl t.2
dew 4,16,0,0,801f1

t-2: dc.l

dc.l
dc.l
dc.
dc.l
dc.l
dc.l
dc.l
de.l
de.l
dc.l
dc.l
dc.l
dcl
dc.l
dc.l

$00000000
$00000000
NSiiiiiiid
RS iiiiiiid
$00000000
$31c1ff00
$7felff80
$70e1c380
$70e1c380
$7felc380
$7fe1c380
$70e1¢380
$70e1££80
$70e1ff00
$00000000
hyiiiiiiid

t3: gel 13
dew 4,16,0,0,501f1

t-3: dcl

dcl
dc.l
de.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dcl
del
del
de.l
del
dc.l

$00000000

$00000000
SEfFffff
SIFffffff
$00000000
$7felfe00
$71elff80
$7001c380
$7001c380
$71e1ff80
$71elff80
$7001c780
$7felc3c0
$7felclel
$000000f0
NJiiiiiiid

276 Chapter 18: Interfacing with GFA BASIC

t4: dcl t_4
dew 4,16,0,0,801f1

t_4: dcl $00000000
dcl $00000000
dcl SEFFFEFef
dc] SFFfffff
dcl $00000000
dcl $7fciffe0
del $7fclffe0
dcl $78001e00
del $1e001e00
dcl $03801e00
del $03c01e00
dcl $03c01e00
ded $3fcOle3c
dcd $3fc0le3c
dcl $00000000
dcl SFFffffef

titlel: dcb ’ Integrated Accounts’,0
title2: dcb ’ Software’,0

t6: dc.l tynullnull
dew 3,0,2,$13b2,0,1,14,0 ; gives red background, blue text

ty: dcb ’Version: 1.00°,0
t7: dcb 189, Someones Software’,191,” 1990°,0
null: dcb 0

exit_: dc.l text_ok,null,null
dew 3,0,2,$1202,0,3,5,0

text_ok: decb ’OK’,32,175,0
aespb: dc.l contrl,global,intin,intout,addrin,addrout

object_draw: dcw 42,6,1,1,0

Chapter 18: Interfacing with GFA BASIC

277

form_do:

parent:
dcl
dew

dew
del
dew

dew
de.l
dew

dew
dcl
dew

dew
dc.l
dew

dew
del
dew

dew
dc.
dew

dew
dc.l
dew

dcw
dc.
dew

dew
del
dew

dew 50,1,2,1,0

dew -1,1,9,20,0,16 ; large box

$22020
170,50,250,120

2,-1,-1,28,0,0
titlel
35,30,90,15

3,-1,-1,23,0,0 ; 23=bitblk
t1
10,10,16,19

4,-1,-1,23,0,0
t2
40,10,16,19

5,-1,-1,23,0,0
t3
70,10,16,19

6,-1,-1,23,0,0
t4
100,10,16,19

7,-1,-1,28,0,0
title2
70,40,90,15

8,-1,-1,22,7,0
exit- ; exit
100,100,50,15

9,-1,-1,22,0,0
t6 ; version
50,60,150,15

0,-1,-1,28,32,0
t7 ; (c) copyright
30,80,150,15

278 Chapter 18: Interfacing with GFA BASIC
* GEM arrays ?

contrl: dsw 12
intin: dsw 128
intout: dsw 128
global: dsw 16
addrin: dsw 128
addrout: dsw 128

form_center: dcw 54,0,5,1,0
done_it: dsbhb 1

Note no GEM header is used and the routine ends in a ’rts’. Also, each
time the routine is called the dialog tree would be adjusted for high res
(if hi res was used) so a flag is used to deflect the course of the program
so that it does not do it again when the routine is called again. The
symbol ’done__it’ is used. A ’flag’ is a term used to mean that some
state is either on or off, rather like a ’go’ or ’stop’ signal is used to tell a
train driver or motorists to either proceed or halt. By testing to see if
*done__it’ contains a one or not the program can be controlled to our
wishes. Register a5 in the coords adjust routine has been altered to
register a0 to conform with the requirements of GFA BASIC.

The GFA program:

> GFA2.GFA

’ display dialog box

get_dialog

PROCEDURE get_dialog
$X dialog

RETURN

The rest of the chapter looks at calling assembly language routines from
assembler by including the *PRG’ files as data statements in the GFA
BASIC source code.

The method to do this is:

1. Assemble the source code to produce a *PRG’ file.

http://done.it

Chapter 18: Interfacing with GFA BASIC 279

2. Turn this into data statements using the GFA BASIC utility to do
this.

3. Run the program in the interpreter or compile and run.

For instance examine the assembly language program below which calls
another executable file using the ’p__exec’ call and executes it immedi-
ately. The source code for both programs are listed.

* P.EXEC0.S
* This program loads and executes another
* header

move.l a7,a5

move.l Bustk,a7

move.l 4(a5),as
move.l 12(a5),d0

add.l 20(a5),d0
add.l 28(a5),d0
add.l #$100,d0
move.l do0,-(sp)
move.l asS,-(sp)
clrw -(sp)
move "S$4a,-(sp)
trap 22 |
add.l B12,sp

* p-exec start and run
move.l Renv,-(sp)
move.l Hcom,-(sp)
move.l ufil,-(sp)
move 80,-(sp) ; load and run immediately
move #S84b,-(sp)
trap 23 |
add.l B16,sp

* quit
move 8#7,-(sp)
move #S$4c,-(sp)

trap 43 |

280 Chapter 18: Interfacing with GFA BASIC

ds.l 20
ustk: dsld 1
.globl env
env: dcb 0
.globl com
com: dcb 0
.globl fil

fil: dcb 2.prg’,0

The program 2.prg source code:

*2s
* simple program
* display ’A’ on screen

move B65,-(sp)
move H2,-(sp)
trap 23 |

addq.l B4 sp

*wait for key press
move #1,-(sp)
trap a3 |
addq.l H2,sp

* exit pterm

move B3,-(sp) ; exit code
move 1$4c,-(sp)
trap 23 |

addq.l B4, sp

So what happens is that the first program loads the second, *2.prg’ and
it is immediately executed, and an ’A’ is displayed on screen, and when
a key press is processed the program exits back to the calling program
with the exit code three and then the calling program exits.

To use the p__execO’ program from GFA BASIC V3 there is a number
of methods we can use:

Chapter 18: Interfacing with GFA BASIC 281
The first method is *C:addr([x y,...])

where the function ’C:’ calls an assembler subroutine located at ad-
dress ’addr’. Parameters may be passed via the stack, as either longs or
words. The first long passed to via the stack is the return address. See
GFA BASIC book for more details.

> EXEC-0A.GFA
’ using assembly language from GFA BASIC EXEC_0A.PRG
> passing paramters USING C:ADDR)[X,Y])

DIM asm%(68/2)
asm-_adr%=V:asm%(0)
adr%=asm-adr%
DO
READ asm%
EXIT IF asm%-=-1
CARD adr% =asm%
ADD adr%,2
LOOP

’

x$=""

x%=V:x$

2$="2.prg”

z%=V:z$

exec:

“C:asm-adr%(L:x%,L:x%,L:z%) ! data lengths should be specified in
’ this case longs, (L:)

DATA 8303,4,8815,8,9327,12,12040,12041
DATA 12042,16188,0,16188,75,20033,57340,0
DATA 16,20085

DATA -1

To use the file for inclusion into a GFA BASIC program we have to pre-
pare the assembly language source code before it is assembled:

* EXEC_0A.S

* passing parameters via the stack in GFA BASIC
* C:addr([x,y,...)

282 Chapter 18: Interfacing with GFA BASIC

* addr: avar (at least 32 bit, ideally intger-type: adr%)
* x,y: iexp
* method #1

move.l 4(sp),al ; get the parameters
move.l 8(sp),al
move.l 12(sp),a2

*

run
move.l a0,-(sp) ; env
move.l al,-(sp) ; command line
move.l a2,-(sp) ; file name
move B0,-(sp) ; mode (load and run=0)
move 1S$4b,-(sp)
trap ni
add.l RB16,sp ; correct stack
rts ; need this for GFA

This should be assembled using the zzSoft assembler and the resultant
*PRG’ should be converted into data statements as shown above in
EXEC__OA.GFA. A utility to do this is provided on the GFA BASIC
disk — ASM_DATA.LST.

The second method is to use RCALL:

This is very useful as it allows the BASIC programmer to specify what

values will be in any data or address register at the start of the assem-
bler routine. When the routine returns it is also possible to inspect the

same registers.

This is done by declaring an array of 16 longs called ’reg%. The data
registers d0—d7 are then allocated to "reg%(0)’ to ’reg%(7)’ and the ad—
dress registers a0—a6 to ’reg%(8)’ to reg%(14). See GFA BASIC V3 User
Guide for more details.

The GFA BASIC program to do the same as the above two programs,
P_EXECO.S and EXEC__0A.GFA using the GFA function 'RCALL

182

> EXEC_0B.GFA
’ using assembly language from GFA BASIC EXEC_0B.PRG
’ passing parameters USING RCALL ADDR,REG%()

Chapter 18: Interfacing with GFA BASIC 283

DIM reg%(16)
DIM asm%(56/2)
asm_adr%=V:asm%(0)
adr%-=asm_adr%
DO
READ asm%
EXIT IF asm%-=-1
CARD adr% =asm%
ADD adr%,2
LOOP

x$=””

reg%(8)=Vv:x$ 'A0
reg%(9)=V:x$§ Al
z$="2.prg”
reg%(10)=V:z$ 'A2
exec:

’RCALL asm_adr%,reg%()

* EXAMINE DOo;
PRINT reg%(0) ! 3 should be returned here

DATA 12040,12041,12042,16188,0,16188,75,20033
DATA 57340,0,16,20085
DATA -1

The assembly language source code to assemble and turn into data state -
ments is:

* EXEC_-0B.S

* passing parameters via the stack in GFA BASIC
* RCALL addr;reg%()

* reg%(): Name of integer (4-byte) array

* addr: iexp

*

run
move.l a0,-(sp) ; eny
move.l al,-(sp) ; command line
move.l a2,-(sp) ; file name

move RO,-(sp) ; mode (load and run=0)

284 Chapter 18: Interfacing with GFA BASIC

move 8$4b,-(sp)

trap 23 |

add.l B16,sp ; correct stack
rts ; need this for GFA

Using labels that cannot be relocatable in assembly language programs
to be included as data statements is not advisable but this does not
include ’bsr’, *bra’ and ’dbra’ to a label which can be safely used. This
allows the use of looping with an assembly language routine. Note that
jumps to labels cannot be used eg, "jsr” you should use ’bsr’ instead.

Please examine the following source code as it is an example of
assembly language source code that would not work with GFA BASIC
as the addresses of the labels with ’dc.b’ could not be known by GFA,
for the reasons stated earlier.

* EXEC-0.S
* Assembly language source code for 'p_exec’ mode 0, start and run
* Would not work with GFA BASIC

move.l Henv,-(sp) ; environment
move.l Hcom,-(sp) ; command line
move.l a0,-(sp) ; file name
move B0,-(sp) ; mode
move 1$4b,-(sp)
trap 23 |
add.l B16,sp ; correct stack: note this is 16
rts
env: deb 0
com: deb 0

*fil dcb ’2.prg’,0 ;this would be passed via a0 by GFA
* BASIC call ’'C’

It is always advisable to save all registers to the stack before calling an
assembly language routine from GFA BASIC. They can be retrieved at
the end of the routine. This is easily done with the ’movem.l
d0—-d7/a0-6,—(sp)’ instruction at the start of a routine, and the
corresponding ’movem.] (sp)+, d0—d7/a0—a6’ at the finish. See the rest
of this book for many examples.

Chapter 19
The VDI

This chapter looks at using the VDI to output simple text, and 2
rounded rectangle to the screen. Blitting is also examined. Later chap-
ters look at VDI output to printers. The reader is referred to chapter
eleven for some details of the VDL

* VDI1.S
* This program outputs the letter A’ and a rectangle to the screen
*HEADER

move.l a7,a5

move.l Bustk,a7

move.l 4(a5),a5
move.l 12(a5),d0

add.l 20(a5),d0
add.l 28(a5),d0
add.l 1$100,d0
move.l do0,-(sp)
move.l a5,-(sp)
clrw -(sp)

move 1$4a,-(sp)
trap 23 |

add.l "12,sp

* get current screen resolution
move.w B4,-(sp)
trap nl4
addq.l H2,sp
move.w dO,res

* js gdos present
moveq 1-2.d0

trap "2
addq 12,d0
beq no-gdos

move res,d0

286 Chapter 19: The VDI

add 82.d0
move d0,intin
no_gdos:

* graf_handle

move.l Bgraf_handle,aespb
jsr aes
move intout,gr_handle

* start by opening a virtual workstation

move £1#100,contrl
move R10,contrl+2
move #11,contrl+6
move gr_handle,contrl+12
move B1,intin+2
move #81,intin+4
move #1,intin+6
move #1,intin+8
move #1,intin+10
move #1,intin+12
move H1,intin+14
move #1,intin+16
move #1,intin+18
move #2,intin+20
jsr vdi

move.w contrl+12,ws_handle

* appl_intit()

move.l Rappl_init,aespb

jsr aes ; call AES
* vst_point
* font height in points

move 1107,contrl

move.w 80,contrl+2

move.w B1,contrl+6

move.w ws_handle,contrl+12

move B24,intin ; height in points
jsr vdi

Chapter 19: The VDI

287

* v_gtext

* text output

move
move
move
move
move
move
move
jsr

* v_rbox
* rounded rectangle

move
move
move
move
move
move
move
move
move
jsr

#8,contrl
#1,contrl+2

HBl,contrl+6 ; number of chars in string

ws_handle,contri+12

#20,ptsin ; X coord screen
H#50,ptsin+2 ; y coord screen
H6S5,intin ; actual character="A’
vdi

H11,contrl

#2,contrl+2

80,contrl+6

ws_handle,contrl+12

#8,contrl+10 ; function 8

#100,ptsin ; x coord screen
H#50,ptsin+2 ; y coord screen
#100+60,ptsin+4 ; x coord right edge
#50+40,ptsin+6 ; y coord bottom edge
vdi

* wait for keypress(no echo)

*

* appl_exit()

move.l
bsr

quit:

move H8,-(sp)
trap a3 |
addq.l H2,sp
close the virtual workstation
move #101,contrl
clrw contri+2
clrw contrl+6
move.w ws_handle,contri+12
jsr vdi

Happl_exit,aespb
aes ; call AES

Chapter 19: The VDI

288

move #1,-(sp)

move 1S4c,-(sp)

trap 23 |

dsl 100

ustk: dsl 1
contrl: dsw 128
intin: dsw 128
intout: dsw 128
global: dsw 128
addrin: dsw 128
addrout: dsw 128
ptsin: dsw 128
ptsout: dsw 128

aespb: dc.l contrl,global,intin,intout,addrin,addrout

vdipb: dc.l contrlintin,ptsin,intout,ptsout

aes:

movem.l d0-d7/a0-a6,-(sp)
move.l Haespb,d1
move.w #$c8,d0

trap B2

movem.l (sp)+d0-d7/a0-a6

rts
vdi:

movem.] d0-d7/a0-a6,-(sp)
move.l Bydipb,d1
moveq.l 1$73,d0

movem.l (sp)+d0-d7/a0-a6

trap n2

rts
p-handle: ds.w
gr-handle: ds.w
ws_-handle: ds.w
res: ds.w
appl_init: dew
appl_exit: dew

graf_handle: dcw

ok ke k.

10,0,1,0,0
19,0,1,0,0
77,0,5,0,0

Chapter 19: The VDI 289

This simple program uses two VDI calls to output to the screen,
*v__gtext’, and ’v__rbox’, the first graphic text, and the second a
rounded rectangle. The height of the text can be set from the VDI call
*vst__point’, which sets the height in points where a point is equal to
1/72". So 36 points is equal to 1/2”. In this case the VDI uses the inbuilt
ROM screen font. Later we will use a font loaded from disk.

The ’v__gtext’ call is interesting as it lets the programmer place text
anywhere on the screen. Text can even be placed Eeyond or before (use a
negative value in ’ptsin+2’) it. Obviously in cases like that it is sensible
to ensure that clipping is set to the screen boundaries. Note that
‘contrl+6’ expects the number of characters in the string to be passed
here. The actual string should be placed in the ’intin’ array, as a word
with actual ASCII character in the lower byte and with a null in the
higher byte of the word. Any character with an image in the font
(character set) can be sent to the screen as control characters are not
recognized. This differs from the GEMDOS ’bconout’ as passing the
ASCII code 10 would result in the cursor being moved down one line
— a line feed. This is because the ST emulates a DEC VT52 display
terminal and therefore interprets any ASCII character from 0 to 31 as a
non—printing control character. The VDI graphic text output do not
follow this emulation and therefore the line feed character would be
printed on the screen as a small bell. Note that a GEM program
switches off the cursor so that it has to be turned on by using an escape
code, so called because the display under VT52 emulation responds to
strings of characters beginning with the character 27 (Esc). The escape
for turning on the cursor is "e”. So to turn the cursor on the code
would be:

* cursor on
move #27,-(sp) ; escape
move #2,-(sp) ; console
move #3,-(sp) ; opcode- function number
trap #13,-(sp)
addq.l H6,sp
move #101,-(sp) ; ’¢’
move B2,-(sp) ; console
move R3,-(sp) ; opcode- function number

trap #13,-(sp)

Chapter 19: The VDI

290
.addq.l He6,sp
* cursor off
move B27,-(sp) ; escape
move 12,-(sp) ; console
move #3,-(sp) ; opcode- function number
trap 8#13,-(sp)
addq.l B6,sp
move 7102,-(sp) ; 'f’
move #2,-(sp) ; console
move #3,-(sp) ; opcode- function number
trap 813,-(sp)
addq.] B6,sp

To place a string in the intin array it is possible to use evnt__multi’, or
‘evnt__keybd’ to get the characters from the user and then place them
in the intin array. Please see next example:

* VDI2.S

* This program outputs a VDI graphics string to the console

*HEADER
move.l
move.l
move.l
move.l
add.l
add.l
add.l
move.l
move.l
clrw
move
trap
add.l

* appl_intit()
move.l
jsr

a7,as
Bustk,a7
4(a5),a5
12(a5),d0
20(a5),d0
28(a5),d0
#$100,d0
do"(sp)
a5,-(sp)
-(sp)
#$4a,-(sp)
43 |
B12,sp

Rappl_init,aespb
aes ; call AES

Chapter 19: The VDI

291

* get current screen resolution

move.w
trap
addq.l
move.w

#4,-(sp)
B14
H2,sp
d0,res

* is gdos present

moveq
trap
addq
beq
move
add
move

no-gdos:

* graf_handle
move.l
jsr
move

B-2,d0
n2
"2.d0
no_gdos
res,d0
n2.d0
d0,intin

Hgraf_handle,aespb
aes
intout,gr_handle

* start by opening a virtual workstation

move
move
move
move
move
move
move
move
move
move
move
move
move
move
jsr
move.w

* yst_point

#100,contrl
#0,contrl+2
B11,contrl+6
gr-handle,contri+12
B1,intin+2
B1,intin+4
#1,intin+6
H1,intin+8
R1,intin+10
B1,intin+12
H1,intin+14
B1,intin+16
H1,intin+18
RH2intin+20

vdi
contrl+12,ws_handle

* font height in points

292 Chapter 19: The VDI
move #107,contrl
move.w #0,contrl+2
move.w #1,contrl+6
move.w ws_handle,contrl+12
move #18,intin ; height in points
jsr vdi
* alert
move.l tform-_alert,aespb
move #1,intin ; first button
move.l Halert_string,addrin
bsr aes
move.l Rintin,a0
* evnt_keybd
cirl d3
again:
move.l Hevnt_keybd,aespb
jsr aes ; call AES
move intout,d0
and B$0ff,d0
move d0,(a0)+
add B1,d3 ; count the number of chars
cmpi.w B5,d3 ; allow user to enter 5 characters
bne again
* y_gtext
* output string in a0
move #8,contrl
move #1,contrl+2
move d3,contrl+6 ; number of chars in string
move ws_handle,contri+12
move 8120,ptsin ; X coord screen
move #150,ptsin+2 ;y coord screen
jsr vdi
* wait for keypress(no echo)
move H8,-(sp)
trap a3 |
addq.l B2,sp

R SO TR T

Chapter 19: The VDI

293

=

move
clrw
clrw
move.w
jsr

* appl_exit()
move.l
bsr

quit:
move
move
trap

ds.l
ustk: ds.l

contrl:
intin:
intout:
global:
addrin:
addrout:
ptsin:
ptsout:

aespb: dc.l
vdipb: dc.l

aes:
movem.|
move.l
move.w
trap
movem.l
rts

vdi:
movem.|
move.l

close the virtual workstation

#101,contrl

contrl+2

contrl+6
ws-handle,contrl+12
vdi

Bappl_exit,aespb
aes ; call AES

H1,-(sp)
a#%4c,-(sp)
"1

100

dsw 128
dsw 128
dsw 128
dsw 128
dsw 128
dsw 128
dsw 128
dsw 128

contrl,global,intin,intout,addrin,addrout
contrl,intin,ptsin,intout,ptsout

d0-d7/a0-a6,-(sp)
Raespb,d1
B$c8,d0

"2
(sp)+d0-d7/a0-a6

d0-d7/a0-a6,-(sp)
Rydipb,d1

294 Chapter 19: The VDI
moveq.] #$73,d0

trap "2

movem.l (sp)+d0-d7/a0-a6

rts
p-handle: dsw 1
gr-handle: dsw 1
ws-handle: dsw 1
res: dsw 1
appl_init: dew 10,0,1,0,0
appl_exit: dew 19,0,1,0,0

evnt_keybd: dew 20,0,1,0,0
graf_handle: dcw 77,0,5,0,0
form_alert: dew 52,1,1,1,0

alert_string: dc.b ”[3] Please type five letters [and then press any|”
dcb “key to exit. |Click Ok first though!][Ok 1,0

In the above program the user types five characters at the keyboard via
;}:e "evnt__keybd’ call, which are then displayed by the 'v__gtext’ VDI
nction.

To effect this procedure first the address of the intin array is first placed
in 20 before the ’evnt__keybd’ call. Register d3 is cleared as it is to used
as a counter to hold the number of keypresses. The VDI function
‘evnt__keybd’ waits for a keypress and then passes the result via the
intout array. The value passed by intout contains the ASCII character in
the lower byte and the scan code in the higher byte of the low word -
similar to ’conin’ the GEMDOS call. The high byte contains a unique
identifier of the key struck which is independent of whether the Shift,
Control or Alt key was pressed whilst the lower byte contains the
ASCII value, which does take into account whether the Shift key was

ressed. However, we are only interested in the contents of the lower
Eyte of intout as *v__gtext’ expects to receive an ASCII character bound
as a word. The ASCII character should be placed in the low part of the
‘word, whilst the high byte should contain a null (0) - not the ASCII
character ’0’ which 1s different. The program fragment that does this is
shown overpage:

Chapter 19: The VDI 295

move.l Bintin,a0
* evnt_keybd
cirl d3
again:
move.l Hevnt_keybd,aespb
jsr aes ; call AES
move intout,d0
and B$O0ff,d0
move do,(a0)+
add #1,d3 ; count the number of chars
cmpi.w #B5,d3 ; allow user to enter 5 characters
bne again

What we need to do is to ensure that the intin array only receives the
correct parameters. To do this we take the intout output and place it in
register dO and ’and’ the contents of dO with #$0ff. This is known as
masking as ’anding’ something masks off the part we require without
doing anything to it and removes the part we don’t want by changing
all the bits to zero. The result of ’anding’ register d0 with #$0ff 1s to
cause register dO to contain only the the ASCII character in the lower
byte and nothing to be present in the higher byte of the low word. Note
here we are only concerned with the lower word. It is irrelevant to us as
to what the higher word may contain. Next the result of this operation
is placed into the intin array — 'move d0,(a0)+’ and the address of the
intin array is incremented by a word ready for the next ASCII code to
be placed. Then a one is added to the contents of register d3 and this is
then checked to see if the maximum number of characters allowed has
been achieved.

Logical and

To understand the and’ operation we need to look at what we are doing
here, which is in effect a Boolean operation on each bit of the lower
word of d0 - a logical "and’ A detailed description of Boolean
arithmetic is beyond the scope of this book, but we can look at results
of anding’ which can be very useful in many assembly language
operations.

Whenever a ’1’ is anded with a bit it always returns whatever is
contained in that bit. So ’and #$01,d0’ will return in dO whatever is in

296 Chapter 19: The VDI

bit 0 of d0. Whenever a ’0’ is anded with a bit it returns a 0. In effect
*and #$01,d0’ is the same as *and #%00000001,d0” as the "and’ source can
only contain zeros. This results in only the value of bit 0 being left or
returned in dO.

So if we want to get the lower byte of a word in a register we just need
to "and’ it with #$ff, which will return everything that is contained in
the lower byte whilst zeroing everything else. This is also useful if we
want to isolate a particular bit in a register, all we need to do is ‘and’ it
with the relevant amount. So to return the value contained in bit 3 of
register d0, we would ’and #$4.d0’ or ’and #%00000100,d0’. Please note
the zzSoft assembler can only accept the hex value.

Logical or

A logical ’or’ is often used in a similar manner to a logical "and” except
this time instead of returning the original bits it is used to set bits.

So ’or #$01,d0° would ensure that bit O was set no matter what is was
before. Note other instructions can be used such as ’bset’ to set a bit,
’btst’ to test a bit. See chapter eight which uses these instructions exten-
sively in its example source code.

The VDI consists of many useful routines that can be utilised by the
rogrammer: lines of various thicknesses, boxes, circles, etc. Please see

disk for list of VDI calls.
Bit blitting

The VDI contains very useful functions that allows the programmer to
manipulate bit image blocks, the bit blit operation (Bit BLock Trans-
fer). The one we will be examining is called *vro__cpyfm’ — copy ra-
ster. This is very useful when moving parts of the screen about, for ex-
ample in GEM windows when blocks of text need to be shifted about
when scrolling. For instance a word processor like First Word displays
its text in a GEM window. If the user had loaded a large text file into
the window and was displaying only part of the file then the user may
decide to scroll downward using the cursor at the bottom of the win-
dow. The block of text from the bottom of the window to the line be-
fore the first line would be moved (or blitted) so that the block of text
would be moved up a line all at once. The bottom line — the next line

Chapter 19: The VDI 297

the user wants to read would be displayed by other methods. This way
very smooth scrolling can be achieved. Load First Word and have a
look. The zzSoft text editor uses this technique for smooth scrolling.

Naturally art programs can make good use of these blitting techniques
as can animation, and other programs. Note that the STE has a chip
that speeds up blitting built into the hardware.

These functions called VDI raster operations by Atari, use a format
called the Memory Form Definition Block (MFDB) to manipulate the
data presented by the programmer. It is laid out in the following man-
ner:

Lon, address of image data

Worg image width in pixels

word image height in lines

word image width in words

word image format flag 0=ST specific format, 1=GEM for-
mat

word number of colour bit planes

word reserved for future use

word reserved for future use

word reserved for future use

The first member of the MFDB structure should contain the address of
the bit image area. If the value here is zero the VDI recognizes this as

then being referred to the screen and the rest of the array is filled in by
the VDL

The image width and height should be even multiples of 16 pixels wide.
The image width in words is found by dividing the pixel value by 16 (16
bits = 1 word).

The next member of the structure shows whether image data is ar-
ranged in the format of the ST display memory, or in standard GEM
format. 0= ST format, 1= GEM format.

The next member is the number of bit=planes used by the image. In
high res this is 1, whilst in med res this is 2, and in low res this 4. The
"vq_extend’ call can be used to determine the number of planes being

298 Chapter 19: The VDI

used by the program by accessing the "work__out’ array. Please see the
supplied disk. In the example source BLIT.S the resolution of the screen
is first found and then the MFDB block is adjusted accordingly.

The VDI call looks like this in assembly language:

* vro_cpyfm
move 8109,contrl
move.w B4 contrl+2
move.w #1,contrl+6
move.w ws_handle,contrl+12

move.l Bmfdbl,contrl+14 ; source address
move.l Bmfdb2,contri+18 ; destination address
move R(,intin ; Xor mode

* source block coordinates using screen screen

move RQ,ptsin ; X coordinate
move BQ,ptsin+2 ; y coordinate
move 1640,ptsin+4 ; width
move ht,ptsin+6 ; height
* destination coordinates
move RQ,ptsin+8
move 70,ptsin+10
move 8640,ptsin+12
move ht,ptsin+14
jsr vdi

The MFDB data structure looks like this:
* structure to store a bit image DEGAS picture (high res)

mfdbl1: dc.l store_area ; DEGAS pic
dcw 640 ; width in pixels

width: dcw 400 ; height in pixles (high res)
dcw 40 ; divide pixel width by 16
dcw

res: dcw
dew
dew
dcw

; number of planes

cCoOoOND

Chapter 19: The VDI 299
store_area: ds.b 32000

mfdb2: dc.l screen_area
dew 640
width: dew 400
dew 40
dew 0
res: dcw 2
dew 0
dew 0
dew 0

The following source code load 2a DEGAS picture from disk, stores it in

a buffer, waits for a key press and then the picture is displayed on screen
by blitting it from the DEGAS buffer.

* BLITS
* This program load a DEGAS file into a buffer and blits it from
* that buffer to the screen.

* HEADER
move.l a7,a5
move.l Rustk,a7

move.l 4(a5),a5
move.l 12(a5),d0

add.l 20(a5),d0
add.l 28(a5),d0
add.l 1$100,d0
move.l do0,-(sp)
move.l aS,-(sp)
cirw ~(sp)

move "$4a,-(sp)
trap 23 |

add.l B12,sp

* get current screen resolution
move.w R4,-(sp)
trap n14
addq.l H2,sp
move.w d0,screen_res

300

Chapter 19: The VDI

* is gdos present

moveq
trap
addq
beq
move
add
move

no_gdos:

* graf_handle
move.l
jsr
move

B-2.d0

u2

82,d0
no_gdos
screen_res,d0
12,d0
dO0,intin

HBgraf_handle,aespb
aes
intout,gr_handle

* start by opening a virtual workstation

move
move
move
move
move
move
move
move
move
move
move
move
move
move
Jjsr
move.w

* appl_init()
move.l
jsr

move

cmp
beq

#100,contrl
10,contrl+2
#11,contrl+6
gr-handle,contri+12
#1,intin+2
#1,intin+4
#1,intin+6
#1,intin+8
#1,intin+10
#1,intin+12
#1,intin+14
B1,intin+16
B1,intin+18

12 intin+20

vdi
contrl+12,ws_handle

Rappl_init,aespb
aes ; call AES
8400,ht

#2 screen_res ; is it high res
dont_alter_coords ; N0

Chapter 19: The VDI

301

* alter MFDB values
move #200,ht ; med res screen height
move #200,width
move 8200,wdth
move B2 res
move B2 res_

dont_alter_coords:

*open
move.w
move.l
move.w
trap
add.l
tst
bmi
move.w

10,-(sp) ; set file attribute
Hfile_name,-(sp) ; address of filename
1$3d,-(sp) ; open function number
223 | ; hello GEMDOS

H8,sp

do ; -ve number?

general_error ; Yes, go to error routine
d0,handle ; store file handle

* read palette data

move.l
move.l
move
move.w
trap
add.l
tst

bmi

Bpic_header,-(sp) ; pic_header address
R34,-(sp) ; number of bytes to read
handle,-(sp)

HS$3f,-(sp)

253 |

RB12,sp

do ; -ve number?
general_error ; yes, go to error routine

* use new palette

move.l Hpic_header+2,-(sp) ; address of palette
move 86,-(sp) ; set palette
trap B14 ; call Xbios
addl ®6,sp
* get screen address
move B3,-(sp)
trap ni4
add.l H2sp
move.l d0,screen_address

302 Chapter 19: The VDI
* read

move.l Hstore_area,-(sp) ; address of buffer

move.l #32000,-(sp ; buffer size/number of bytes
* bytes to read

move.w handle,-(sp)

move.w B$3f,-(sp)

trap a3 |

add.l H12,sp

tstl do ; see if error

bmi general _error
* close

move handle,(sp)

move HS$3e,-(sp)

trap o3 |

add B4, sp

tst.l do

bmi general _error

* wait for key press

move B2,-(sp) ; device number (console)
move B2,-(sp) ; BIOS routine number
trap B13 ; Call Bios
addq.l R4,sp

* vro_cpyfm()

* display DEGAS picture
move #109,contrl
move.w 84 contri+2
move.w #1,contrl+6
move.w ws-handle,contri+12
move.l Bbuffer,contrl+14 ; source address
move.l Hscreen_address,contrl+18 ; destination address
move #3,intin ; replace mode

* source block coordinates

move
move
move
move

BQ,ptsin
RBQ,ptsin+2
#640,ptsin+4
ht,ptsin+6

Chapter 19: The VDI 303

* destination coordinates

move #(,ptsin+8
move B(,ptsin+10
move R640,ptsin+12
move ht,ptsin+14
jsr vdi

* wait for key press

' move B2,-(sp) ; device number (console)
move B2,-(sp) ; BIOS routine number
trap B13 ; Call Bios
addq.l RH4,sp

exit:
* close the virtual workstation
move #101,contrl
clrw contrl+2
clrw contrl+6
move.w ws_handle,contrl+12
jsr vdi

* appl_exit()
move.l Rappl_exit,aespb
bsr aes ; call AES

move.w #20,-(sp) ; leave gracefully!
move.w H3$4c,-(sp)
trap a3 |

* subroutines

general_error:

* a couple of examples
cmpi.l B-33,d0

beq error-message
cmpi.l R-34,d0

beq error-message
bra exit

error-message:
move.l Herror,-(sp) ; put address of string on stack
move.w 19 ,-(sp) ; Gemdos function ’print a line’,

304 Chapter 19: The VDI
*Cconws’
trap 23 |
addq.l H6,sp ; correct stack
* wait for key press
move H12,-(sp) ; device number (console)
move H2,-(sp) ; BIOS routine number
trap r13 ; Call Bios
addq.l B4,sp
bra exit
* AES subroutine
aes: movem.! d0-d7/a0-a6,-(sp)
move.l Haespb,d1
move.l H$c8,d0
trap B2
movem.l (sp)+d0-d7/a0-aé
rts
* VDI subroutine
vdi:
movem.l d0-d7/a0-a6,-(sp)
move.l Bvdipb,d1
moveql #$73,d0
trap B2
movem.l (sp)+d0-d7/a0-a6
rts
dsl 256
ustk: dsd 1
aespb: dc.l contrl,global,intin,intout,addrin,addrout
vdipb: dc. contrlintin,ptsin,intout,ptsout
* GEM arrays
contrl: dsw 12
intin: dsw 128
intout: dsw 128
global: dsw 16
addrin: dsw 128
addrout: dsw 128

Chapter 19: The VDI

305

ptsin:
ptsout:

appl_init:
appl_exit:

graf_handle:

error:
handle:
file_name:

even
pic_header:
*MFDB’s

buffer: dc.l
dew

width: dcw
dew
dew

res: dcw
dew
dew
dew

dsw 128
dsw 128

dew 10,0,1,0,0
dew 19,0,1,0,0
dew 77,0,5,0,0

dcb ’An error has occurred’,0

dsw 1

dcb ’A\MACART24.PI3’,0

ds.b 34

store_area
640

400

40

CoOoO=O

screen-address: dc.] 1

dew
wdth: dew
dew
dew
res_: dcw
dcw
dew
dew
ht:
p-handle:
gr-handle:
ws_handle:

640
400

ds.w
ds.w
ds.w

el e e)

; DEGAS pic

306 Chapter 19: The VDI

screen_res: dsw 1
Jbss
store_area: ds.b 32000

One important feature of the program above is the use of the ‘even’
directive placed before the ’pic__header’ array. This must be here as the
address o *pic__buffer’ would be odd and the ST would crash when the

rogram was run. This is because *file__name’ has an odd number of
Eytes in its buffer which produces an odd address for ’pic__buffer’ To
circumvent this the ’even’ directive is placed after *file__name’ to ensure
that the next address is alligned correctly.

Most of the program uses many of the programming techniques
discussed earlier in this book. However, an interesting feature is the
method used to alter the MFDB values if the current screen resolution
is medium. Initially the DEGAS picture is stored in a 32K buffer
’store__buffer:” with the MFDB structure set up for a high res DEGAS
picture. However, by testing the current resolution we can then alter the
values in the MFDB if necessary:

cmp H2,screen_res ; is it high res
beq dont_alter_coords ;o
* alter MFDB values
move 8200,ht ; med res screen height
move 1200,width
move #200,wdth
move B2 res
move B2 res—

dont_alter_coords:

If you are using medium resolution the you should ensure that a "PI2’
file is used in the program, and *file__name:’ is altered appropriately.

By using the xor graphic mode it is ible to blit sections of the
screen or GEM wmdpows onto themselves and thereby clear the area
very quickly. This can be very effective when a GEM window needs to
be filled with a white fill after a redraw message is received. Taking the
coordinates returned from ’evnt__multi’ or from *wind__set’ instead of
filling the window using ’vr__recfl’, *vro__cpyfm’ can be used with

Chapter 19: The VDI 307

excellent results.

Note that VDI clipping does not affect the VDI blitting operations, so
great care has to be taken not to go beyond the screen boundary. Doing
so may cause your program to crash as the VDI may write the bit im-
age data to your actual program or program data area. This is because
the sg:reen image is held in screen RAM and your program may reside
nearby.

308 Chapter 19: The VDI

Chapter 20
GDOS/ASSIGN.SYS

This chapter takes a detailed look at GDOS, and the ASSIGN.SYS file,
and demonstrates how to get hard copy using GDOS and some VDI
calls.

What is GDOS? GDOS is an acronym for Graphics Device Operating
System and was left out of the ST’s operating system ROM’s. GDOS is
an essential part of GEM, and specifically the VDI. Note that some
VDI (V irtuaf Device Interface) calls to the operating system cannot be
made without GDOS being installed. Doing so causes the ST to crash
without warning. Some of these calls are:

v__opnwk Open Workstation

v__clwk Close Workstation

vst__load__fonts Load GEM/GDOS fonts

vst__unload__fonts Unload fonts

v__updwk Update Workstation

Loading GDOS

GDOS is invariably loaded from an AUTO folder at boot—up. This

means that a disk with an AUTO folder with ’GDOS.PRG’ in it should
be placed in drive A:/ when the ST is first switched on.

ASSIGN.SYS file

We have seen in chapter nineteen how to direct VDI calls to the screen,
but what if we want to send the same output to the printer as well as
the screen. To do this is where GDOS comes into the picture. With this
booted we can open a workstation — a printer and direct output to it
instead of the screen. But wait, there is more to it than that!

310 Chapter 20: GDOS/ASSIGN.SYS

Another three essential items are first needed: an ASSIGN.SYS file, a
printer driver and some fonts for any text output.

What is an ASSIGN.SYS file? An ASSIGN.SYS file goes hand in hand
with GDOS, GDOS fonts, and printer output in general. It assigns or
tells GEM what fonts we wish to use ang what devices (eg printer,
screen) we want the output sent to, and what printer driver we are

oing to use. As there are many different types of fonts, with various
Eeig ts and styles the ASSIGN.SYS file allows us to tell GEM which
specific fonts we want loaded with our application (DTP, or art
program), and what particular device we are going to output to. In
practise this invariably means screen and printer. However, note that
there is low, med and hi res screens to chose from, and about 6 different
Zgaes of printer, eg FX80 (standard Epson compatible 9-pin printer

wver), LQ (standard Epson compatible 24—pin printer driver), etc.

Why use GDOS printer fonts? Because a printer is capable of a greater
resolution than a monitor or tv. For instance the ATARI hi res monitor
has a resolution of 90*90 dpi (dots per inch), whilst a standard 9—pin
printer is capable of at least 120*144 dpi. Therefore to gain the best
output possible it is essential to use printer fonts. Note that screen fonts
and printer fonts should match in all aspects except of course, in size. A
printer font will be much larger in size than its screen equivalent due to
their differing resolutions, although when the printer font is used for
output the screen representation and printed output should match,
except the printed output should be finer. As GDOS fonts are bit—
mapped, ie a character is made up of pixels that are either on or off, this
effect is easy to see in a font editor.

The other essential that goes with GDOS, fonts, and general output is a
printer driver. A printer driver is complex program that analyses the
commands sent to it and acts upon them by sending appropriate
commands to the printer for hard copy. A typical printer driver 1s the
FX80.SYS program (for most 9—pin Epson compatible printers) which
must be placec% in the folder containing the fonts and printer driver. It
is about 50K in size and note that a suitable printer driver is necessary
for different of printers, although the FX80 and LQ printer
drivers are suitable for most popular 9 and 24 pin printers, including
Star LC10, and Citizen 120cf etc. Please note that this driver is not
suitable for use with word processors like First Word.

Chapter 20: GDOS/ASSIGN.SYS 31

Well that’s enough theory! What about the practical side of GDOS?
Note that GDOS :onts are also called GEM fonts.

It is essential tha: the ASSIGN.SYS file is on the same disk or partition
if using a harddisk, as the GDOS.PRG, and in the root directory, ie not

in a folder.

You also need the FONTS folder on the same disk, or on the disk
pointed to by the path statement at the head of the ASSIGN.SYS file.
The fonts folder contains the actual fonts used by the program (see
later). The FONTS folder should contain GDOS screen gmts, printer
fonts, and the printer driver, eg FX80.SYS.

If GDOS is successfully installed at boot—up then a message should
come onto your screen &'op left—hand corner) for a short period of time
before you are returned to the ST’s desktop. The message should read:

ATARI GDOS Ver. 1.1 resident.

If, however, GDOS was not installed other messages will appear briefly
on the screen, for example telling you thatssatie ASSIGN.SYS file
contains an illegal workstation, ETC. You must correct this problem
before proceeding. :

Modifying the Assign.sys

To modify the ASSIGN.SYS file so that different fonts may be loaded
other than the ones already specified in the file, you have to modify the
file. This is achieved by loading the ASSIGN.SYS file into First Word
and then turning off Word Processing (WP Mode — top of the EDIT
menuy). The file can then be modified to your purposes.

To change the printer driver you need only place the appropriate driver
in the FONTS folder and change the name of the driver at 21, in the
ASSIGN.SYS file.

As an example an ASSIGN.SYS file could contain the following text:

path=A:\FONTS\

312 Chapter 20: GDOS/ASSIGN.SYS

é)lp screen.sys ;Default screen

62p screen.sys ;Low—resolution screen
63p screen.sys ;Medium—resolution screen
(;)4p screen.sys ;High—resolution screen

COURIE10.FNT
COURIE14.FNT
COURIE18.FNT
COURIE28.FNT
COURIE36.FNT

21 FX80.SYS ; EPSON FX80 and compatibles
EPSON__10.FNT
EPSON__14FNT
EPSON__18.FNT
EPSON__28. FNT
EPSON__36.FNT

Do not leave a blank space in the ASSIGN.SYS file between the font
names as this will cause the remainder of font names in the file to be
ignored. Eg do not do this:

COMPUT16.FNT
COMPUT18.FNT

COMPUT28.FNT

You should not give any GDOS fonts a name starting with a number,
eg 42NDST.FNT. This will cause GDOS not to be installed. In all
events check your ASSIGN.SYS file carefully.

To use the fonts you want substitute the new font names for the present
ones, or alternatively include your new choice of fonts with the present
ones. Then save the new ASSIGN.SYS file and place on your working
disk with the other files. Only have one ASSIGN.SYS file on your
working disk.

Chapter 20: GDOS/ASSIGN.SYS 313

Replace the fonts in the FONTS folder by the fonts specified in the
ASSIGN.SYS file.

If you want to use your FONTS folder on another disk drive/partition
you should alter the path statement in the ASSIGN.SYS file eg

Path = C:\FONTS\

You may call the folder what you will, so long as the name in the
ASSIGN.SYS file corresponds with it.

Note that the ’;” used in an ASSIGN.SYS file is there so that comments
can be placed in the file. Any text on the same line as a ’;” and placed
after it will be ignored by GDOS, which is occasionally useful.

Fonts

Note that all fonts are loaded at start—up if there is enough RAM. If
there is not enough RAM to accommodate all the fonts NO fonts will
be loaded at all OR only some.

It is possible to have many different ASSIGN.SYS files, by naming them
slightly differently from ASSIGN.SYS. So you could have 4 different
ASSIGN.SYS files called ASSIGN.SY1, ASSIGN.SY2, ASSIGN.SY3
and the one you are using at start—up ASSIGN.SYS. By having different
combinations of fonts in each ASSIGN.SYS file it is possible at start—
up time by correctly renaming any one of the other three files to
ASSIGN.SYS and renaming the other now unwanted ASSIGN.SYS to
some other name to load di%ferent font styles.

' Always reboot the computer if you change the ASSIGN.SYS file, or use
a different printer driver.

Selecting a font size that is not available results in the next smaller size
being used.

GDOS/GEM allows you to have a screen font half the printer font size.
So, if you have a screen font 18 points high it is only necessary to have a
printer font 9 points high to reproduce the screen font on your printer
as the print program will dou{;le—up the printer font for you. This

314 Chapter 20: GDOS/ASSIGN.SYS

useful feature saves time and space.

On the disk you will find a simple ASSIGN.SYS file with some PD
fonts in a FONTS folder with an FX80.SYS printer driver. Note that
this will print—out on an Epson compatible 24—pin printer ok,

although the scaling will be incorrect.
The ASSIGN.SYS file on the supplied disk:

; ASSSIGN.SYS FILE
path = \fonts\

E)lp screen.sys
62p screen.sys

63p screen.sys ; MED RES SCREEN FONTS, New York
NEWYMDI12.FNT

04p screen.sys ; HI RES SCREEN FONTS
NEWYHI12.FNT

21fx80sys ; EPSON 9-PIN PRINTER DRIVER AND
; PRINTER FONT
EPNEWY12FNT

The next example source code demonstrates how to load a screen font
and print to screen using this font rather than the normal system font.

* GDOS1.S

* Loads a GEM/GDOS screen font from disk and and displays the
* letter A’ on screen, 12 points high. A rectangle is also

* displayed

*HEADER
move.l a7,a5
move.l Bustk,a7
move.l 4(a5),a5

move.l 12(a5),d0
add.l 20(a5),d0

Chapter 20: GDOS/ASSIGN.SYS

315

add.l 28(a5),d0
add.l #$100,d0
move.l do0,-(sp)
move.l a5,-(sp)
clrw -(sp)
move B$4a,-(sp)
trap ni
add.l R12,sp
* appl_intit()
move.l Rappl_init,aespb
jsr aes ; call AES

* get current screen resolution
move.w B4 -(sp)
trap ri4
addq.l B2 sp
move.w d0,res

* is gdos present
moveq RB-2.d0

trap B2
addq "2,d0
beq no_gdos ; Or quit
move res,d0
add H2,d0
move d0,intin
no_-gdos:

* if no GDOS should not continue

* graf_handle
move.l Bgraf_handle,aespb
jsr aes
move intout,gr_handle

* start by opening a virtual workstation

* v_openvwk
move 1100,contrl
move 10,contrl+2
move 8#11,contrl+6

move gr-handle,contri+12

316 Chapter 20: GDOS/ASSIGN.SYS
move B1,intin+2
move B1,intin+4
move B1,intin+6
move H1,intin+8
move B1,intin+10
move B1,intin+12
move B1,intin+14
move H1,intin+16
move #1,intin+18
move B2 intin+20
jsr vdi
move.w contrl+12,ws_handle

* vst_load_fonts

* load fonts
move
clrw
move.w
move.w
move.w
jsr

* vqt_name

8119,contrl

contrl+2
H1,contrl+6
ws_handle,contrl+12
R0,intin

vdi

* get name, font id, and style

move
clrw
move.w
move.w
move.w
jsr
move

* vst_font

#130,contrl

contrl+2
B1,contrl+6
ws_handle,contrl+12

B2 intin ; second font 1=system font

vdi

intout,d0 ; get id only

* select actual font to use

move
clrw
move.w
move.w
move.w
jsr

#21,contrl

contrl+2
#1,contri+6
ws_handle,contrl+12
dO,intin ;id

vdi

Chapter 20: GDOS/ASSIGN.SYS

317

* vst_point
* set font height in points
move 8107,contrl

move.w 10,contrl+2
move.w #1,contrl+6
move.w ws_handle,contri+12

move R12,intin ; height in points
jsr vdi
* y_gtext
* ouput graphic text
move n18,contrl
move H1,contrl+2
move H#1,contrl+6 ; number of chars in string
move ws_handle,contrl+12
move B20,ptsin ; X coord screen
move H50,ptsin+2 ;y coord screen
move 165,intin ; actual character="A’
jsr vdi
* v_rbox
* ouput rounded rectangle
move 811,contrl
move R2,contri+2
move #0,contrl+6
move ws_handle,contrl+12
move #8,contrl+10 ; function 8
move #100,ptsin ; x coord screen
move 8#50,ptsin+2 ; y coord screen
move #100+60,ptsin+4 ; x coord right edge
move #50+40,ptsin+6 ; y coord bottom edge
jsr vdi
* wait for keypress (no echo)
move #B8,-(sp)
trap a1

addq.l H2,sp

* vst_unload_fonts
* unload screen fonts
move #120,contrl

318 Chapter 20: GDOS/ASSIGN.SYS

cirw contrl+2

move.w #1,contrl+6

move.w ws_handle,contri+12
move.w B0,intin

jsr vdi

* v_clsvwk

* close the virtual workstation
move 8101,contrl
clrw contrl+2
clrw contrl+6
move.w ws_handle,contri+12
jsr vdi

quit:

* appl_exit()
move.l Rappl_exit,aespb
bsr aes ; call AES
move H1,-(sp)
move BS$4c,-(sp)
trap a3 |

aes:
movem.l d0-d7/a0-a6,-(sp)
move.l Haespb,d1
move.w H$c8,d0
trap B2
movem. (sp)+d0-d7/a0-a6
rts

vdi:
movem.! d0-d7/a0-a6,-(sp)
move.l Bvdipb,d1
moveq.l 1$73,d0
trap n2
movem.l (sp)+d0-d7/a0-a6
rts

ds.l 100
ustk: dsl 1

Chapter 20: GDOS/ASSIGN.SYS 319

contrl: dsw 128

intin: dsw 128

intout: ds.w 128

global: dsw 128

addrin: dsw 128

addrout: dsw 128

ptsin: dsw 128

ptsout: dsw 128

aespb: dc.l contrl,global,intin,intout,addrin,addrout
vdipb: dc.]l contrl,intin,ptsin,intout,ptsout
p-handle: dsw 1

gr_handle: dsw 1

ws_handle: dsw 1

res: dsw 1

graf_handle: dcw 77,0,5,0,0

vst_load_fonts

The VDI call *vst__load__fonts’ trys to load the fonts from disk using
the path specified by the ASSIGN.SYS file. It loads all the fonts
specified in the ASSIGN.SYS too. It is not possible to load a particular
font, all or none must be loaded. It returns in dO the number of fonts
loaded, if any. This is useful as a check can be made and if dO contains 0
— the user should be informed that no fonts have been loaded, and that
a disk containing the fonts should be placed in the disk drive. Similarly
a check can be made for GDOS at the start of the program to see if it
has been loaded and if it has not then the user shoufd be informed and
the prtl)lgmm ended. Proceeding without GDOS will cause the program
to crash.

The companion VDI call *vst__unload_ fonts’ should be made when

exiting to remove the loaded fonts from memory.

vqt_name

This VDI call is useful as it passes via the intout array information
regarding the nature of the font. The system font is given the number 1,
whilst all other loaded fonts are given font number starting at 2. As

320 Chapter 20: GDOS/ASSIGN.SYS

only one font has been loaded by the above program, as specified in the
ASSIGN.SYS then it is safe to assume that the font we want to access is
number 2, which is passed to the intin array. The intout array returns
the font id (identification) number to be used in all subsequent calls in
the first word of intout. The second word (intout+22 to the 64th
(intout+64) word of the array contains the name of the font with each
word containing the ASCII value of the name in the low byte and a null
in the high byte, with the last 16 words containing the its thickness and

style.

vst_font

This VDI function selects the font that will be used for all subsequent
graphic text output. The font that we want to be set for use is the id
number returned by the *vqt__name’ call in the first word of intout.

vst_point

This call sets the character height of the font currently in use to the
height in points as specified in the value passed via the first word of the
intin array. As not all heights are possible the VDI selects the next
lowest available height.

v_gtext

This function outputs graphic text, and will output any ASCII
character that has an available bit image in its character set/font. See
chapter 19.

The next example program demonstrates how to redirect VDI output to
the printer. It is virtually identical in all respects to the above pro
excepe that a physical workstation (printer) is opened by *v__opnwk’ as
well as a virtual workstation (screen) by ’v__opnvwk’ Notice the
similarity of the names. The physical workstation call is almost
identical to the *v__opnvk’ except that the number 21 is passed to the
intin array, which specifies the printer driver (FX80.SYS) named in the
ASSIGN.SYS - this is then loaded by the call. The handle of the
printer is passed via the contrl array (contrl+12) in the manner that the
virtual workstation handle is received. This handle is then used in all
the subsequent VDI graphic functions and the output is passed to the
printer.

Chapter 20: GDOS/ASSIGN.SYS 321

Note that the ’v__opnwk’ intout array contains the maximum
horizontal coordinate of the printer output in the first word of intout,
and the second word contains the maximum vertical coordinate value,
both in pixels. See disk for further information. If nothing is received in
the first word of the intout array after calling *v__opnwk’ then we can
be sure that no printer driver has been loa:fed and appropriate action
can then be taken to inform the user.

* GDOS2.S
* Direct VDI output to a printer, using FX80.SYS 9-pin printer
* driver

*HEADER
move.l a7,a5
move.l Rustk,a7

move.l 4(a5),a5
move.l 12(a5),d0

add.l 20(a5),d0
add.l 28(a5),d0
add.l 1$100,d0
move.l d0,-(sp)
move.l a5,-(sp)
clrw -(sp)
move "$4a,-(sp)
trap ni
add.l RB12,sp
* appl_intit()
move.l Rappl_init,aespb
jsr aes ; call AES

* get current screen resolution
move.w H4,-(sp)
trap "14
addq.l H2sp
move.w d0,res

* is gdos present
moveq RB-2.d0
trap n2

322 Chapter 20: GDOS/ASSIGN.SYS
-addq B2.d0
beq no-gdos
move res,d0
add "2.d0
move d0,intin
no_gdos:

* if no GDOS should not continue

* graf_handle
move
move
move
move
move
jsr
move

* v_opnvwk

877, contrl
B0,contrl+2

85, contrl+4
Rr(,contrl+6
80,contrl+8

aes
intout,gr_handle

* start by opening a virtual workstation

move
move
move
move
move
move
move
move
move
move
move
move
move
move
jsr
move.w

* v_opnwk

* open printer
move
move
move

8100,contrl
B0,contrl+2
R11,contrl+6
gr-handle,contrl+12
R1,intin+2
R1,intin+4
#1,intin+6
B1,intin+8
B1intin+10
B1,intin+12
B1,intin+14
R1,intin+16
B1,intin+18
R2intin+20

vdi
contrl+12,ws_handle

#1,contrl
R0,contrl+2
B11,contrl+6

Chapter 20: GDOS/ASSIGN.SYS 323

move ws_handle,contrl+12
move H21,intin ; fx80 driver
move B1,intin+2

move B1,intin+4

move R1,intin+6

move R1,intout+8

move #1,intin+10

move B1,intin+12

move B1,intin+14

move B1,intin+16

move #1,intin+18

move B2 intin+20

jsr vdi

move.w contrl+12,p_handle ; printer handle

*to see if there is there a driver, test d0, if zero no driver

move intout,d0 ; width
move intout+2,d1 ; height
* vst_load_fonts
* load fonts
move 8#119,contrl
clrw contri+2

move.w #1,contri+6
move.w p-handle,contrl+12
move.w B(,intin

jsr vdi

* vqt_name

* get font id, name, and style
move #130,contrl
clrw contrl+2

move.w #1,contrl+6
move.w p-handle,contri+12

move.w H2.intin ; second font 1=system font
jsr vdi
move intout,d0 ; get id only

* yst_font

* select actual font to use
move #21,contrl

324 Chapter 20: GDOS/ASSIGN.SYS
clrw contrl+2
move.w B1,contrl+6
move.w p-handle,contrl+12
move.w d0,intin
jsr vdi
* yst_point
* set font height in points
move 8107,contrl
move.w B#0,contrl+2
move.w B1,contrl+6
move.w p-handle,contrl+12
~ move #12,intin ; height in points
jsr vdi
* v_gtext
* output graphics text
move B8, contrl
move R1,contri+2
move #1,contrl+6 ; number of chars in string
move p-handle,contrl+12
move #20,ptsin ; X coord printer
move R#20,ptsin+2 ;y coord printer
move 165,intin ; actual character="A’ ;
jsr vdi |
i
* v_rbox |
* output rounded rectangle
move #11,contrl
move B2 contrl+2
move R10,contrl+6
move p-handle,contri+12
move H8,contri+10 ; function 8
move R100,ptsin ; x coord printer
move B50,ptsint+2 ;y coord printer
move #100+60,ptsin+4 ; x coord right edge
move 150+40,ptsin+6 ; y coord bottom edge
jsr vdi

* update workstation- actually print

* v_updwk

Chapter 20: GDOS/ASSIGN.SYS

325

move
move.w
move.w
move.w
jsr

B4 contrl
R(,contrl+2
#0,contrl+6
p-handle,contri+12
vdi

* vst_unload_fonts
* unload printer fonts

move
clrw
move.w
move.w
move.w
jsr

*voclswk
* close the workstation (printer)

move
clrw
clrw
move.w
jsr

* v_clsywk
* close the virtual workstation

* appl_exit()

quit:

aes:

move
clrw
clrw
move.w
jsr

move.l
bsr

move
move
trap

#120,contrl
contrl+2
B1,contrl+6
p-handle,contri+12
#0,intin

vdi

B2 contrl

contrl+2

contrl+6
p-handle,contri+12
vdi

#101,contrl

contrl+2

contrl+6
ws-handle,contrl+12
vdi

Bappl_exit,aespb
aes ; call AES

1#1,-(sp)
#%4c,-(sp)
B

326 Chapter 20: GDOS/ASSIGN.SYS
movem.] d0-d7/a0-a6,-(sp)

move.l HBaespb,dl
move.w HS$c8,d0
trap "2
movem.l (sp)+d0-d7/a0-aé
rts
vdi:
movem. d0-d7/a0-a6,-(sp)
move.l Bvdipb,d1
moveq.l #$73,d0
trap n2
movem.l (sp)+d0-d7/a0-a6
rts
ds.l 100
ustk: ds.d 1
contrl: dsw 128
intin: dsw 128
intout: dsw 128
global: dsw 128
addrin: dsw 128
addrout: dsw 128
ptsin: dsw 128
ptsout: dsw 128
aespb: dc.l contrl,global,intin,intout,addrin,addrout
vdipb: dc.l contrl,intin,ptsin,intout,ptsout
p-handle: dsw 1
gr-handle: dsw 1
ws_handle: dsw 1

res: dsw 1

Chapter 21

Desk Accessories

This chapter looks at creating a simple desk accessory.

A desk accessory is a special of GEM program that has the file ex-
tension ~ACC’, and has to be booted from drive a:\ or from partition
¢\ on a hard disk. Unlike other GEM and TOS programs (.PRG, .TOS,
TPP) it cannot be executed directly by double—clicking on it. A maxi-
mum of six desk accessories are normally available, however there are
some programs available that can extend that number. A desk accessory
is permanently installed (until removed by not booting with it) under
the extreme left drop down menu, DESK and therefore is usable from
any GEM program or the GEM desktop.

There are small but important differences between directly executable
files and desk accessories. After starting the accessory by ’appl_init’
which returns the application id number from intout, the desk acces-
sory then installs itse[Ff’ in the DESK menu with the name passed to the
addrin array, by using the *menu__register’ call. This returns the desk
accessory menu identification number from the intout array,
*menu__id’, which is used to identify it in any further operations. It
then goes into a never—ending loop, see the *wait’ subroutine below, un-
til it receives an ’ac__open’ AES message as the user selects the DESK
drop down menu. As the desk accessory has no control over the menu
bar it cannot use the mn__selected’ message in the way a usual applica-
tion does so the AES sends an ’ac__open’ message.

If the desk accessory is identified as the one we have implemented from
the *menu__id’ value then a *bsr’ or ’jsr’ to the desk accessory program
proper is made. This obviously expects an ’rts’ at some point, and your
program should ensure that ity the user signals an end to the use of the
accessory it encounters one which will return it to the ’wait’
’evnt__mesag’ loop.

If an ’ac__close’ message is received then it should be checked that the
accessory window is open before doing the ’quit:’ routine. This is

328 Chapter 21: Desk Accessories

because the ’evnt__mesag’ routine can receive an "ac__close’ message if
the user has called the accessory from within a main GEM application
and is now closing down the application without first exiting the desk
accessory. This is the reason for ensuring that the window handle
’w__handle’ is passed a ’~1’ if no window is open. To go to the ’quit:’
routine when tge accessory window is not open is to invite all sorts of
trouble.

Once the desk accessory is opened the program can be the same as any
application and follows the same rules. Note that there is no ’pterm’
cafl) at the end as there is no standard GEM header file, although we

must allocate ourselves a stack.

Note that there is no handling of redraw messages in the following
code.

* ACC1S

* This program should be assembled then the filename extension altered
* to .ACC

* It displays a GEM window on the screen.

move.l Rustk,a7
move H-1,w_handle
* appl_intit
move.l Rappl_init,aespb
jsr aes ; call AES
move.w intout,ap_rid
* graf_handle
move.l Rgraf_handle,aespb ; get physical screen handle
jsr aes
move intout,gr_handle ; store handle
move ap_rid,intin
move.l Bmenu_name,addrin
* menu_register
move.l Hmenu_register,aespb
jsr aes
move intout,menu_id

* if intout =-1 no room for another accessory

Chapter 21: Desk Accessories

329

wait:
move.l Hmessagebuf_b,addrin
* evnt_mesag
move.l Hevnt_mesag,aespb
jsr aes ; call AES
move.l Bmessagebuf_b,a0
movew (a0),d0 ; message type
cmpi.w #41,d0 ; close our window
beq our_window
cmp.w 140,d0
bne wait
move.w 8(a0),d0
cmp.w menu-id,d0 ; open acc
bne wait
bsr do_it_
bra wait
our—window:
move.w 6(a0),d0
cmp menu_id,d0
beq nr-quit
bra wait
nr_quit:
cmp.w R8-1,w_handle
beq wait
bra quit
do_it_:
* start by opening a virtual workstation
move #100,contrl
move R1(,contrl+2
move #11,contrl+6
* is GDOS present
moveq "-2.d0
trap "2
addq "2,d0
beq no_gdos ; no GDOS
move res,d0

330 Chapter 21: Desk Accessories
add H2,d0
move d0,intin
bra s-no_gdos
no_gdos:
move H1,intin ; default if GDOS not
* loaded
s-no_gdos:
move Bl,intin+2 ;line type
move #1,intin+4 ; colour for line
move #1,intin+6 ; type of marking
move #1,intin+8 ; colour of marking
move 8#1,intin+10 ; character set
move #1,intin+12 ; text colour
move #1,intin+14 ; fill type
move #1,intin+16 ; fill pattern index
move B21,intin+18 ; fill colour
move #12.intin+20 ; coordinate flag
move.w gr-handle,contrl+12 ; device handle
jsr vdi ; v_opnvwk open virtual work station
move.w contrl+12,ws_handle ; store virtual workstation handle
jsr mouse_off
* the type of the window
wtype equ SOff

* the size lies in intout, so calculate the window size

* wind_get
move.l
move.w
move
jsr

* wind_calc
move
move.w
movem.w

Bwind_get,aespb
B0,intin
H5,intin+2

aes

B1,intin
Hwtype,intin+2
intout+2,d0-d3 ; returned from wind get

Chapter 21: Desk Accessories 331

movem.w d0-d3,intin+4 ; the size
move.l Hwind_calc,aespb
jsr aes

* now get its offsets

move intout+2,x
move intout+4,y
move intout+6,xwidth
move intout+8,ywidth

* and create the window

move Bwtype,intin ; see above
movem intout+2,d0-d3
movem d0-d3,intin+2 ; the size

* wind_create

move.l Bwind_create,aespb
jsr aes
move intout,w_handle ; save the handle

* now set its title
move.w w-handle,intin

move.w #2.intin+2 ; title string
move.l Hwindowname,intin+4 ; the address
clrw intin+8
clrw intin+10

* wind_set
move.l Hwind_set,aespb
jsr aes

move.w w-handle,intin

movew 83 intin+2 ; information string
move.l Binfo,intin+4
clrw intin+8
clrw intin+10
* wind_set

move.l Bwind_set,aespb

332

Chapter 21: Desk Accessories

jsr

aes

* pow actually show it by opening it
w-handle,intin

move.w
movem.w
add.w

movem.w

* wind_open
move.l
jsr

jsr
jsr
jsr

move.l
e_multi:
move.l

move
move
move
move
move

move
move
move
move
move
move
move
move
move
move
move
jsr

move.w
cmpi.w
beq

x,d0-d3
#5,d0

d0-d3,intin+2

; X start
; the size

Bwind_open,aespb

aes

wind_fill
mouse-on
arrow

Bmessagebuf_b,addrin

HBevnt_multi,aespb

B1+2+16,intin ; keyboard, mouse, report

#1,intin+2
H1,intin+4
#B1,intin+6
#1,intin+8

#0,intin+10
#0,intin+12
80,intin+14
B0,intin+16
#0,intin+18
80,intin+20
80,intin+22
80,intin+24
B80,intin+26
#0,intin+28
#0,intin+30
aes

intout,d0
1$10,d0
mouse

; number of clicks

; left mouse button

; left button down

; leave rect (not applicable)

; 2=mouse 1= k/b, 16 = message
; message

Chapter 21: Desk Accessories

333

bra
mouse:

move.l
move.w
cmpi.w
beq
cmpi.w
beq
bra

wind_fill:

* wind get
move.w
move
move.l
jsr
movem.w

* bit blit
move
move.w
move.w
move.w
move.l
move.l

move
move

move
move

add.w
add.w
subw
sub.w

move
move

move

e_multi

Hmessagebuf_b,a0

(a0),do

8#$16,d0 ; L/Hand corner of window/close window
quit

H41,d0 ; acc close message

quit

e_multi

w-handle,intin
B4, intin+2
Hwind_get,aespb
aes
intout+2,d0-d3

1109,contrl

B4 contrl+2
#1,contrl+6
ws_handle,contrl+12
HSmfdb,contrl+14
8#Smfdb,contrl+18

d0,ptsin
d1,ptsin+2 ; was menu_ht

d0,ptsin+8
d1,ptsin+10

d2,do
d3,d1
#1,d0
H#1,d1

d0,ptsin+4
d1,ptsin+6

d0,ptsin+12

334 Chapter 21: Desk Accessories

move d1,ptsin+14
move n0,intin ; ERASE SCREEN
Jsr vdi
rts
quit:

* wind_close
move.w w_handle,intin
move.l Bwind_close,aespb
jsr aes

* wind_delete

move.w w-handle,intin
move.l Hwind_delete,aespb
jsr aes

* close the virtual workstation

* v_clsvwk
move 8#101,contrl
clrw contrl+2
clrw contrl+6
move.w ws_handle,contrl+12
jsr vdi

* appl_exit()

move.l Happl_exit,aespb
bsr aes ; call AES
move #-1,w_handle
rts
dsl 100
even
ustk: dsd 1

* subroutines

vdi:
movem.l d0-d7/a0-a6,-(sp)
move.l Bvdipb,d1

Chapter 21: Desk Accessories

335

moveq.l 1$73,d0

trap B2

movem.l (sp)+d0-d7/a0-a6
rts

aes:
movem.l d0-d7/a0-a6,-(sp)
move.l Raespb,d1
move.w #$c8,d0
trap "2

movem.l (sp)+d0-d7/a0-a6
rts

mouse._off:
movem.l a0-a4/d0-d5,-(sp)
dew $a000
move.l 4(a0),al
move.l 8(a0),a2
dew $a00a
movem.l (sp)+a0-a4/d0-d5
rts

mouse_on:
movem.l a0-a4/d0-d5,-(sp)
dew $a000

move.l 4(a0),al
move.l 8(a0),a2

clrw (a2)
clrw 2(al)
clrw 6(al)
dew $a009

movem.l (sp)+a0-a4/d0-d5
rts

arrow:
move.l HBgraf_mouse,aespb
move R1(,intin
jsr aes
rts

* end of subroutines

336 Chapter 21: Desk Accessories

* keep these dc.w together

X: dsw 1
y: dsw 1
xwidth: dsw 1
ywidth: dswl

w-handle: dsw 1
ws-handle: dsw 1

windowname: dc.b ’Example Window’,189,0

vdipb: dc.l contrl,intin,ptsin,intout,ptsout
contrl: dsw 128

intin: dsw 128

intout: dsw 128

global: dsw 128

addrin: dsw 128

addrout: dsw 128

ptsin: dsw 128

ptsout: dsw 128

aespb: dc.l contrl,global,intin,intout,addrin,addrout
appl_init: dew 10,0,1,0,0

appl_exit: dew 19,0,1,0,0
evnt_multi: dew 25,16,7,1,0
wind_get: dew 104,2,5,0,0
wind_calc: dew 108,6,5,0,0
wind_create: dcw 100,5,1,0,0
wind_set: dew 105,6,1,0,0
wind_open: dew 101,5,5,0,0
graf_handle: dcw 77,0,5,0,0
graf_mouse: dcw 78,1,1,1,0
wind_close: dew 102,1,1,0,0
wind_delete: dcw 103,1,1,0,0
menu_register: dcw 35,1,1,1,0
evnt_mesag: dcw 23,0,1,1,0
gr-handle: dsw 1

info: dcb ’ Information area:’,0
smfdb: del 0 ; SCREEN

Chapter 21: Desk Accessories 337

dsl 5

ap_id: dsw1

messagebuf_b: ds.b 16
even

ap_rid: dsw 1

res: dsw 1

menu_name: dcb ' Memo Taker’,0
even

menu..id: dew 1

338 Chapter 21: Desk Accessories

Chapter 22

Miscellaneous

This chapter looks at common programming errors; useful program-
ming utilities such as using the ri%ht mouse button with ’evnt__multi’,
finding the TOS version, booting from drive B:\, etc.

Programming errors

When calling a subroutine which uses the ’'movem’ instruction some-
times a branch out of the subroutine is made when there is an error
code returned in the subroutine. For instance the example code below
shows an open file routine. If an error is returned the error routine,
’general__error’ is executed and the program branches back to the main
part of the program, ’main’, possibly an ‘event__multi’ Unfortunately
the stack remains uncorrected.

open:
movem.] d0-d7/a0-a6,-(sp)
move.w R0,-(sp) ; set file attribute
move.l Hfile_name,-(sp) ; address of filename
move.w 1$3d,-(sp) ; open function number
trap "1 ; hello GEMDOS
add.l H8,sp
tst do ; -ve number?
bmi general _error ; yes, go to error routine

move.w d0,handle
movem.l (sp)+d0-d7/a0-a6
rts

general_error
* error code
bra main

Even when the ’movem’ instruction is not used a programming error
can occur:

open:

340 Chapter 22: Miscellaneous
move.w 80,-(sp) ; set file attribute

move.l Hfile_name,-(sp) ; address of filename
move.w B$3d,-(sp) ; open function number
trap 223 | ; hello GEMDOS
add.l H8,sp
tst do ; -ve number?
bmi general_error ; yes, go to error routine
rts
general_error
* error code
bra main

Here the programmer is expecting to utilise the result of register dO,
which returns the handle of the opened file. If an error occurs when
opening the file the general error code will be executed. Once again the
stack remains uncorrected, as an ’rts’ was expected. This is the corrected

code:

open:
move.w B0,-(sp) ; set file attribute
move.l Hfile_name,-(sp) ; address of filename
move.w 1S$3d,-(sp) ; open function number
trap a9 | ; hello GEMDOS
add.l B8,sp
tst do ; -ve number?
bmi general_error ; Yes, go to error routine
rts

general_error
* error handling code
rts

This is correct as the subroutine always reaches an ’rts’ instruction
which corrects the stack.

A very common error is to use the same name for a subroutine label
and for a symbol constant by mistake.

evnt_multi:
move.l Bmessagebuf,addrin

Chapter 22: Miscellaneous 341
move.l Hevnt_multi,aespb
move 81+2+16,intin ; keyboard, mouse, report
move Hlintin+2 ; number of clicks
move H1,intin+4 ; left mouse button
move H1,intin+6 ; left button down
move Bl,intin+8 ; leave rect (not applicable)
move R(,intin+10
move RB(,intin+12
move R(,intin+14
move R(,intin+16
move R(,intin+18
move R0,intin+20
move R0,intin+22
move #(,intin+24
move 8(,intin+26
move #0,intin+28
move R(,intin+30
jsr aes
movew intout,d0 ; 2=mouse 1= k/b
move.w intout+2,mx ; x mouse coord
movew intout+4,my ;y mouse coord
cmpi.w 1$10,d0 ; mouse message
beq mouse
cmpi.w R"2,d0 ; mouse button
beq evnt_multi
evnt_multi: dew 25]16,7,1,0
The above pro fragment illustrates the fault. When assembled no
errors will Ee Eagged, but when run and the ’evnt__multi’ routine is

entered, and a mouse button is
program will branch to the dew la

ressed it is very probable that the
el ’evnt__multi’ which has the same

name. The result will be an almost immediate crash. Of course the
solution is easy:

e_multi:
move.l
move.l

Hmessagebuf,addrin
Hevnt_multi,aespb

342 Chapter 22: Miscellaneous
move 81+2+16,intin ; keyboard, mouse, report
move #l,intin+2 ; number of clicks
move #1,intin+4 ; left mouse button
move H#1,intin+6 ; left button down
move #1,intin+8 ; leave rect (not applicable)
move #(,intin+10
move #0,intin+12
move #0,intin+14
move #0,intin+16
move 80,intin+18
move R(,intin+20
move 80,intin+22
move #1(,intin+24
move #(,intin+26
move B(,intin+28
move #0,intin+30
jsr aes
move.w intout,d0 ; 2=mouse 1= k/b
move.w intout+2,mx ; x mouse coord
move.w intout+4,my ;y mouse coord
cmpi.w 8$10,d0 ; mouse message
beq mouse
cmpi.w #2,d0 ; mouse button
beq e_multi

evnt_multi: dew 25,16,7,1,0

Take a look at the three separate program fragments below. In number

three adding 99 to register a0 affects

of the a0 register which is what

we would probably want. In the other two examples register dO is only
affected in the lower word, 1234 remains unaffected. This is potentially
disastrous if an address is acted upon in dO and then used later in the
program. The address would refer to a place further back than when the
address was acted upon by the *add’ instruction— a subtraction will have
been the actual effect. Some very odd program behaviour can be

expected then!

Chapter 22: Miscellaneous 343
*
1

move.l 1$1234ffff,d0

addi.w 799 d0 result: 12340062
*2

move.l B$1234ffff,d0

add.w 899 d0 result: 12340062
E

3
move.l B$1234ffff,a0
add.w #99.a0 result: 12350062

Remember that when passing the address of a label that an address must
always be accessed by a long word in length, so *movew #address,a0’
will result in a program crash almost immediately. The correct way to
pass an address is, of course, ’move.l #address, a0’. The ’address’ label

would have to refer to something like this:

address dc.b ’Please place disk in drive’,0
*or
address dew 0,1,0,2,0

As we have discussed crashes so much in this chapter it is a good place
to list the cause of crashes and the number of bombs (sometimes
referred to as cherries) that each produces. The ST programmer soon
becomes familiar with seeing bombs (meaning a crash has occurred) as a
result of his or her programming.

Exceptions

The 68000 has a mechanism for handling severe programming errors
called exception handling — the errors themseleves are known as
exceptions.

When the programmer asks the 68000 to do something it cannot do an

exception occurs and those bomb icons appear! They are in order of
number of bombs:

Bus error (two bombs): this happens when the programmer tries to

344 - Chapter 22: Miscellaneous

access memory that does not exist, or is protected from being accessed
such as the ST’s operating system. Certain addresses such as the system
variables can only be accessed when in supervisor mode— see later. If a
program that is not in supervisor mode tries to access these areas two
bomb icons appear.

Address errors (three bombs): these occur when the proiam-
mer tries to reference a word or long on an odd byte boundary. this is
why the ’even’ directive is needed.

lllegal instructions (four bombs): these occur when the pro-
grammer tries to use an instruction that does not exist in the 68000’s in-
struction set. At assembly time these errors would be caught by the as-
sembler error trapping routine, but if your program accidentally over-
writes a subroutine then when you came to access that subroutine you
would probably see four bomb icons on screen as a result.

Zero divide (five bombs): this doesn’t usually cause any bombs as
TOS does not really consider this to be a serious error. This can occur
when the programmer tries to divide something by zero.

CHK instruction (indexing errors) are caused by indexes of ar-
rays becoming negative, or becoming bigger than the array. This gives
six bombs

TRAPV instruction (overflow) is caused by a special instruc-
tion TRAPV. If two numbers are added and the result is too big to store
then an overflow occurs. If a TRAPV instruction is placed after the
ADIl) instruction whenever an overflow occurs seven bombs will be the
result.

Priviege violations occur when the program tries to execute an
instruction that is only allowed in supervisor mode. Eight bombs is the
result.

Finding the TOS version:

Programming an application is made more difficult by the fact that
there are a number of different TOS’s, each having its own peculiarity.
Often a programmer will find that a particular part of the program will

Chapter 22: Miscellaneous 345

function corectly with one TOS whilst it refuses to operate correctly
with an earlier or later TOS. This can be a frustrating experience but
one that has to be recognised by the programmer who wishes to sell his

or her programs.

The following program whilst being useful in itself also illustrates the
use of accessing a system variable. A system variable is an area of
memory containing data that is guaranteed to remain consistent no mat-
ter what ATARI do with the machine. So a particular address that con-
tains a pointer to another address which contains data useful to the pro-
grammer (and operating system) is guaranteed to remain inviolate. To
access this area of memory it is necessary to switch to supervisor mode.
Please see disk for a listing of the system variables.

* TOS.V.S
* This program returns the TOS version number from a system
* variable

* enter supervisor mode

cirl -(sp)

move.w 1$20,-(sp)

trap 23 |

add.l H6,sp

move.l dO,up_save ; save user stack pointer

* get system base address, _sysbase

move.l $412,a0

move.l al,sys_base ; save for later use
add.l H$14,a0 ; add $14 to get '_os_magic’ value
move.l (a0),al1

move.l (al),d0
* should be ‘magic’ number #$87654321 in d0. This should be tested
* to confirm that we have a valid sys_base. Assume ok.

cirl do
move.l sys-base,a0
add.l #2,a0 ;add 2 to get actual TOS versions

move.w (a0),d0

* tos numbers 106= STE tos 1.6 with blitter

346 - Chapter 22: Miscellaneous

p 100= tos 1.0 ; (1985)
e 102=tos 1.2 ; + blitter (1987)
b 104= tos 1.4 ; (1988)

cmpi.w #$100,d0

beq tosl
cmpi.w 1$102,d0
beq tos2
cmpi.w 1$104,d0
beq tos3
cmpi.w 1$106,d0
beq tos4
bra exit ; TOS not recognised, could print erorr message
here
tosl
move.l Atos_v1,a0
bra cont
tos2
move.l Btos_v2,a0
bra cont
tos3
move.l Btos_v3,a0
bra cont
tos4
move.l Btos_v4,a0
cont:
move.l a0,-(sp) ; put address of string on stack

move.w #9,-(sp) ; Gemdos function 'print a line’, ’cconws’
trap 23 |
addq.l H6,sp ; correct stack

* wait for key press
move H2,-(sp) ; device number (console)
move B2,-(sp) ; BIOS routine number

Chapter 22: Miscellaneous 347

trap 113 ; Call Bios
addq.l H4,sp

exit:
* restore user stack address, and exit supervisor mode
move.l up-save,-(sp)
move.w 1$20,-(sp)
trap =3 |
add.l B6,sp
* pterm -exit cleanly
move 1210,-(sp)
move "$4c,-(sp)
trap 243 |
up_save: dsl 1
sys_base: dsl 1
tos_vl: dcb "TOS Version 1.00”,0
tos_v2: dc.b "TOS Version 1.27,0
tos_v3: dcb "TOS Version 1.47,0
tos_v4: dcb "TOS Version STE 1.6”,0
even

Interrupt mouse handier

One if the drawbacks of using evnt__multi’ is that we can set it up to
recognize the press of the left mouse button but not the right button at
the same time. Similarly we can set it up to recognize a right button
event but not the left at the same time. This presents a dilemma as the
programmer often wants to use both buttons at once. Many programs
use this to good effect with a left mouse press signifying one particular
choice whilst a right mouse button press signifies some other action the
user wants the program to perform.

One solution is to use the VDI call *vex__butv’ call. Every time a
mouse button is pressed we can a short routine to this call which it
will run before GEM learns of the results of the button press. If the
routine examines dO it will find the result of the button press there,
whether right, left, none, or both. If a right button is pressed we can
pass a value to a symbol set aside for this purpose. At the same time we

348 Chapter 22: Miscellaneous

can place a one in dO so that GEM thinks a left mouse button has been
pressed. As this is all done under on an interrupt basis it is transparent
to our main program. Now all we have to do is to set up ’evnt__multi’
to look for a left button and when it drops through when we press the
right mouse button we look at our holder to see whether a right mouse
button has actually occurred.

The following routine sets this out in more detail.

* Install a new mouse handler that recognises

* the right mouse button using the vex_butv() VDI call.

* Mouse button status is same as vq_-mouse() with values returned
* in d0. 0=no button 1=left, 2=right, 3=both

* Every time the right mouse button is pressed "button_state’

* is passed a value of 1, and 1 is passed to the handler to simulate
* 2 left mouse button. This ensures that when the right button is
* pressed evnt_multi sees it as a left button press and we can use
* evnt_multi as usual. We then examine button state to

* see whether the right mouse button was pressed when we have
* fallen through evnt_multi.

* install new mouse handler
move B125,contrl
move.w 10,contrl+2
move.w B80,contri+6
move.w gr_handle,contrl+12 ; physical screen device handle

move.l Hnew_mouse,contrl+14 ; address of new mouse handler
jsr vdi
move.l contrl+18,0ld_mouse_addr

* de-install new mouse handler
move 8125,contrl
move.w 170,contrl+2
move.w 10,contrl+6
move.w gr_handle,contri+12
move.l old_mouse_addr,contri+14
jsr vdi

new_mouse:

s Seiis atiog

Chapter 22: Miscellaneous 349

cmpi.w #2,d0 ; right button

bne.s nowt

move B1,button_state

moveq R11,d0 ; pretend it was left button
nowt:

move.l old_mouse_addr,-(sp)

rts

button_state: dsw 1
old_mouse_addr ds.] 1

The ’new__mouse’ routine should be installed at the start of our
application. The old address of the routine can be found from
’contrl+18’ and is placed in ’old__mouse__addr’ for safe keeping. When
our application exits back to the desktop we should de—install our new
mouse handler and pass it the old mouse address via
’old__mouse__addr’.

Now when ’evnt__multi’ is used — it should be set up to recognize a
left mouse button event — and if the right mouse button is pressed it
will think that left mouse button event has occurred. We should then
examine ’button__state’ to see if a right mouse button was pressed and
then act accordingly. The value of button__state should always be set to
zero after it has been examined after every ’evnt__multi’ call, ’clrw
button__state’.

Booting from drive B:\

It is often very useful to be able to boot from drive B:\, especially if you
own an early ST with a single—sided drive, and have an external
double-sided drive. A lot of software is provided on double-sided
disks and often needs to be booted from drive a:\ — the internal drive.
The following program allows the user to boot from drive B:\ by
bypassing the need to boot from the internal drive.

After the program has been assembled and run the ST should be reset
and until the ST is switched off drive B:\ will be the boot drive.

* B_.BOOT.S
* This program allows the user to boot from drive B:

350 Chapter 22: Miscellaneous

* print message

move.l Hmessage,-(sp) ; put address of string on stack
move.w 19,-(sp) ; Gemdos function ’print a line’, 'cconws’
trap 23 |

addq.l B6,sp ; correct stack

* enter supervisor mode

cirl -(sp)

move.w 8$20,-(sp)

trap 2 |

add.l B6,sp

move.l dO,up_save ; save user stack pointer

* make boot device B, using system variable $446
move.w 81,$446 ; drive b now boot drive, 0=drive a:\

* wait for key press

move B2,-(sp) ; device number (console)
move H2,-(sp) ; BIOS routine number
trap B13 ; Call Bios
addq.] B4, sp
exit:
* restore user stack address, and exit supervisor mode
move.l up-save,-(sp)
move.w 88$20,-(sp)
trap 23 |
add.l RH6,sp
* pterm -exit cleanly
move B10,-(sp) ; exit code
move BS4c,-(sp)
trap a1
up-save: dsl 1

message: dcb ’Set drive B to be boot disk. Reset ST afterwards’,13,10
dcb ’Press a key to continue’,0
even

Chapter 22: Miscellaneous 351
Hex to ASCII

The programmer often has to report to the user of his/her software
certain conditions that have been requested by the user. For example it
is often useful for the user to know how much free RAM is available.
This information is easy to get with a simple call to the o/s. However, a
difficulty arises here as the information is given to us in hexadecimal
whilst we need it in ASCII format. For instance if we had the amount
of free RAM in register d0 and then decided we wanted to print this to
the screen we would find that the hex values would be interpreted as
ASCII values and therefore of little use. Experiment your self and you
will soon see what I mean. What we need s a utility that would alter
the hex values to ASCII for us so that when we printed them to the
screen we would see the correct amount.

To demonstrate this principle and to provide a useful program please
examine the following source code.

* FREE_RAM.S
* Get amount of free RAM, and convert hex amount to ASCII
* Display amount to screen

* header
move.l a7,as
move.l Bustk,a7
move.l 4(a5),a5
move.l 12(a5),d0

add.l 20(a5),d0
add.l 28(a5),d0
add.l #$100,d0

move.l do0,-(sp)
move.l aS,-(sp)

clrw ~(sp)
move HS$4a,-(sp)
trap ri
add.l 812,sp

* get free RAM
move.l R-1,-(sp)
move H$48,-(sp)

trap ni

352 Chapter 22: Miscellaneous
addq.l Be6,sp ; free RAM returned in d0
clrl d1
move.l do,d1
cirl do
clrl d3

* hex to ascii
move.l
jsr
move
move.l
jsr
move.l
move.w
trap
addq.l

fram_amount+10,a6 ; address of where amount will be
convert ; after converting

110,d4

Hram_amount,a2

check_spaces ; alter preceeding zeros to spaces
Hram_amount,-(sp) ; put address of string on stack
H9,-(sp) : Gemdos function 'print a line’

Bl

B6,sp

* wait for key press

move
move
trap
addq.l

exit: movew
move.w
trap

convert:
move.l

another_num:

move.w
clrw
swap
divu
bvc

rts

skip: move.w
move.w
divu
swap

#2,-(sp) ; device number (console)
"2, -(sp) ; BIOS routine number
RB13 ; Call Bios

H4,sp

120,-(sp) ; leave gracefully!
H$4c,-(sp)
29|

810,d2

di,d3
di

d1
d2,d1
skip

dl,d4
d3,d1
d2,d1
d1

Chapter 22: Miscellaneous 353

addi.b 1$30,d1
cmpi.w w0,d1

bit here
cmpi.w w9’ dl
bgt here

move.b d1,-(a6)
here: movew d4,d1

swap dl1
tst.l d1
bne another_num
rts
check_spaces:
clrl d3
checkagain:

move.b (a2)+d3
subi.w H1,d4
cmpi.w Rr(,d4

beq checkfinished
cmpi.b 148,43
blt put_space
bra checkagain
put_space:
suba B1,a2
move.b "’ (a2)+
bra checkagain
checkfinished:
rts
dsl 50
ustk: dsl 1

ram-amount: ds.l 4

Once we have the amount of free RAM in register dO we need to
convert this hex number to its equivalent ASCII representation. To do
this we need to convert the free RAM to ASCII by placing it in a string
which then can be printed by ’cconws’, or something similar. The rou-

354 Chapter 22: Miscellaneous

tine ’convert:” expects the hex amount to be in register d1, and an
empty string address in register a6 so that it can place the converted hex
values there.

Once the ASCII values are placed in the string ’am__amount’ then we
need to place spaces before any ASCII numbers that are preceded by
nulls. The routine check__spaces:” does this. This is necessary as GEM
sees a null as an end of string marker and if we try to print a string that
has a null at the start of it we will find that nothing will be printed.

Note that the ’convert:” routine needs to place the converted ASCII val-
ues in the ram__amount string from the end of the array. If this was not
done the result would be an ASCII string back—to—front! This is the
reason for the +70 in the statement ’move.] #ram__amount+10,a6’.

The ’convert:’ and ’check__spaces:” routines are general purpose rou-
tines that can be easily adapted for use in your own software.

ASCII to hex

Another problem that the programmer is faced with is converting AS-
CII input to hex. For instance a user may input some figures in a dialog
box, say for setting margins in a word processor. the result is an ASCII
string that needs converting to hexa::&cimal before anything can be
done with it.

In the following code we simulate input via a dialog box by placing the
number 3, ASCII code 51 in "amount’. The rest of the program con-
cerns itself with converting this ASCII code to a hex number.

Once again the string passed to the conversion routine has to be the end
of the array, so that ASCII code can be picked off starting with the low-
est part of the number.

The ’mult:’ routine is a special routine that can be used separately to
give greater accuracy when multiplying two large numbers together
than the mulu instruction alone.

* ASC_HEX.S
* Get ASCI1I number from user, probably dialog box and convert to

(llaais st i oo Lk it ol ablRRE A g bt b o i ong e (i it

Chapter 22: Miscellaneous

355

* hex for use within program

move.b

move.l
move.l
jsr

exit: move.w
move.w
trap

convert:
cirl
cirl
move.]
again: move.b
subi
beq
cmp.b
bit
cmp.b
bgt
and.l
jsr
add.l
move.l
jsr
move.l
bne
ret:
rts
mult:

#51,amount ; place number '3’ in string
H4+1,d5 ; number of bytes +1, in ’amount’
Hamount+4,a2 ; address of end of string in a2
convert ; hex value is returned in d6

8#20,-(sp) ; leave gracefully!
#$4c,-(sp)
a1 |

do

dé

n1,d2
-(a2),d1
Rr1,d5

ret

w0',d1
again
79’ di
again
1$000f,d1
mult
d1,dé6
110,d1
mult
dl,d2
again

; D6 contains result

* mult d1 and d2 return result in d1

movem.|
move.w
move.w
swap
swap
mulu
mulu

d2-d4,-(sp)
d1,d3
d2,d4

356 Chapter 22: Miscellaneous
mulu d4,d3
add.w d2,d1
swap di
clrw di
add.l d3,d1
movem.l (sp)+d2-d4
rts
amount: dsl 1

Chapter 23
Using the Text Editor

This chapter deals with the use of the editor - EDITOR.PRG, and as-
sembling and debugging programs from it, but does not go into detail
about the assembling/debugging process. See the next chapter for a de-
tailed look at the assembler and debugger.

The text editor on the disk supplied with this book is specially written
to be used in conjunction with the book. :

A text editor differs from a word processor in that a text editor permits
none of the text attributes such as bold, underline and italic, etc co-
mmon to such word processors such as 1ST Word. Word wrap or any
type of justification does not exist. However, none of these particular
functions are needed when writing assembly language programs.

All other functions are very similar to a word—processor. zzSoft’s text
editor is very similar to HiSoft’s DEVPAC text editor. If you are famil-
iar with word processing software, the supplied text editor will hold few
surprises for you.

"The main use of the editor is to enter and edit assembly language pro-

grams (source code), store the text on disk, and load the text back again
when necessary, and assemble the text into either executable programs
and/or object files that can be linked into executable programs.

To list the possibilities:

Editable source code to: .PRG files (executable program)
O files that can be linked to give .PRG files.

The editor acts as a shell from which source code can be assembled and
debugged without leaving the editor. The current assembled executable
file can also be run without leaving the editor. The only time you might
need to leave the editor is when a program crashes and the ST locks—up
or is unusable and you have to reboot.

358 Chapter 23: Using the Text Editor
Dialog boxes

The editor makes extensive use of dialog boxes which are boxes that can
have information with buttons, radio buttons, and editable text. For in-
stance pressing the HELP key will bring a dialog box to the screen pre-
senting you with box of helpful text. There is also a button with the
word ’Ok’ written inside. This Ok’ button is used to tell the dialog
box that you have finished with it by either clicking inside it with the
mouse pointer or pressing the Return key— which simulates the mouse
click. Sometimes there are choices such as 'Ok’ and *Cancel’. By click-
ing in *Cancel’ this will cancel anything you may have done in the dia-
log box, such as entering text, ancft return it to the state it was in before
it was invoked. This will also signal to the program that you have fin-
ished with it. If a button has a thicker border than any others then this
button is said to be the ’default’ and this button can also be selected by
pressing the Return key.. :

If a button is in inverse video, ie black with white text, this means that
it is, or has been, selected.

Radio Buttons

Radio buttons are groups of buttons. Selecting one, which makes it ap-
pear black with the text white (inverse video), immediately deselects
any in that group, if any had been selected. These buttons are usually
grouped in such a way as it would be expected that such action would

take place. For instance in the Assembly dialog box you can select ei-
ther a "PRG’ or *O’ file but not both.

Editable text in a dialog box is shown with a dotted line and a cursor
that is a thin vertical line. Characters can be entered and corrected by
using the backspace, delete, and Esc key which clears the whole line.
The cursor keys can be used to position the cursor. Some dialog boxes
only allow a limited range of characters such as the Goto Line... dialog
box which only allows numbers to be entered.

When a button or text (usually in a menu option) is greyed out then
that part of the dialog box is not selectable.

Chapter 23: Using the Text Editor 359

Entering text, using the cursor, and mouse
pointer.

As soon as the editor is loaded you will be presented with an empty
screen, a still cursor in the top left—hand corner, and a status line,
topped by the menu bar. See diagram 23:1 below which shows the edi-
tor with the File drop down menu selected.

Print Block
Insert File...

Quit 20

s|e|

¢

diagram 23:1 the editor

The status line reflects certain conditions that appertain to the editor
such as the number of lines of the current text, cursor position in the
form of line and column. The right hand side of the status line is used
to display useful messages such as *bottom of file’ etc. If text is present in
the e?itor the path and file name is shown above the status line — in the

shaded area.

To enter text you just type at the ST’s keyboard and whatever you type
is shown on screen. This is known as echoplexing or echoing for short.
As you press a key the cursor will advance along the line. As you reach
the end of a line you should press the Return key which will take you

360 Chapter 23: Using the Text Editor

to the next line. If you enter long lines of text the window will scroll
sideways. You can correct mistakes by pressing the backspace key which
deletes the character to the left of the cursor, or delete key which re-
moves the character the cursor is over. Holding down the backspace key
will result in the cursor moving left until it meets the left hand of
the screen and cannot go any further. It then will go to the next line of
text above (if there is one) and start to remove any characters it meets
there. You can use the backspace key to join text from a line to the one
above it in this way. Similarly holding down the delete key will remove
any text on that particular line to the right of the cursor.

Text should always be in lower case when writing source
code. The '*' character at the start of a line signifies that the
line will not be assembled. It is used for comments. The '’
character can also be used to mark a comment on the same
line as code that should be assembled.

Cursor keys

You can use the cursor keys to move around the text when you want to
correct errors and enter text. The cursor keys are under the HELP and
UNDO keys. If you try to move past the end of a line with a cursor key
you find that you are unable to do so; entering a character is the only
way to extend the length of a line.

If the cursor is at the top of the window and is held down the text will
scroll past the cursor until the start of the file occurs. A Top of file
message will then appear in the status line. If the cursor at the bottom
of the window and 1s held down, the text will scroll past the cursor un-
til the bottom of the file is found. A Bottom of file message will then
be displayed in the status line. Note that the cursor jumps to the end of
the next line if its present column position is greater that the length of
the next line.

You can also move the cursor by (repeated) clicking on the arrow boxes
at the end of the horizontal and vertical scroll bars.

Mouse pointer positioning

You can also position the cursor at any character by placing the mouse
pointer over a character and clicking the left mouse button. The cursor

Chapter 23: Using the Text Editor 361

will immediately jump to that position. Trying to position the cursor
with the mouse pointer anywhere other than over a character will re-
sult in it being placed at the end of the nearest line of text. You can also
select a block of text by holding down the left mouse button and draw-
ing an outlined box over the text you wish to select. This text will be
then shown in reverse video (white text on a black background) and
may then be deleted or moved to another position (copied) by selecting
Delete or Paste from the Options menu or Shift-F4 or F4 respec-
tively. See later.

Start and end of line

To move immediately to the start of a line press Control- left cursor
key, and to go to the end of a line of text press Control- right cursor

key.
Page Up, Page Down

To move the cursor a page up click on the upper part of the vertical
scroll bar or press Shift-up arrow. The editor window will display the
next page. Similarly to move the cursor down a page, click on the bot-
tom part of the vertical scroll bar or press Shift—down arrow.

Any part of the text

To move to a particular section of the text you should drag the white
section of the scroll bar (the slider) either up or down depending which
way you want to go. See over page, diagram 23:2

The horizontal scroll bar can be used in a similar manner to view text
that is longer than the width of the editor’s screen.

The Tab key

The Tab key will move the cursor ten spaces and is useful for tabulat-
ing your source code neatly.

A maximum number of 150 characters (including spaces) are allowed
per line.

362 Chapter 23: Using the Text Editor

Current position mithin text
(can be 'dragged’ to required position)

diagram 23:2

Goto a line

To move the cursor to any particular line of text select Goto line... from
the Options drop down menu and after the dialog box has appeared en-
ter a number. To go to the required line press the Return key or click
in the Ok button. To abort click in the Cancel button.

Goto top of file

To move to the start or top of text file press ALT-T or click on Goto
Top from Options menu. The cursor will be placed at line 1.

Goto end of file

To get to the last line or bottom of your text file press ALT-B or click
on Goto Bottom from Options menu.

Quitting the editor

Press ALT-Q to leave the editor or select Quit from the File menu.

Chapter 23: Using the Text Editor 363

Deleting text

Delete a line

The line the cursor is positioned on can be removed by pressing Con-
trol-Y.

Undelete a line

The last line that has been deleted with Contro/-Y can be reinserted
into the text by pressing Contol-U.

Delete all of the text

Selecting Clear from the File drop down menu will remove all text
from the screen and from the text editor. This means that unless you
have saved your text to disk it cannot be recovered.

Using the mouse to select text for deletion or
pasting

Text in the GEM window may be selected by pressing the left mouse
button down at the cursor position and d.}l'awing an outlined box
around the text you want selected. The text thus selected will be then
shown in reverse video, and various operations can then be carried out.
Immediately the text is marked as a block in reverse video it is placed in
an internal buffer and thus can be deleted, or pasted to any position
within the file. The delete and paste options are selected from the
Options drop down menu. Alternatively you may use the Function
key options for deleting (shift F4) and pasting (F4) text

If a block of text is highlighted and this includes all the text up to and
including the last line ang then deleted but the text does not occupy
more than a full screen so that the right—hand scroll bar em ty it can
seem that all the text has been deleted. However, this is not the case as
using the cursor—u keg to display the rest of the text will demon-
strate. The reason t%r this seemingly silly behaviour is that when a
block of text is deleted the cursor is placed at the first line of the de-
leted block of text. -

364 Chapter 23: Using the Text Editor

Disk operations:

GEM file selector

The GEM file selector is a standard dialog box which is normally used
to facilitate the loading and saving of files. The diagram over the page
shows its main features. Please note the TOS 1.4 and STE dialog box
has been improved to include disk drive buttons.

Saving text (ALT-S)

To save the text file currently held in the text editor press ALT-S or se-
lect Save as... from the File drop down menu to bring the GEM file
selector box on screen. A suitable file name should be entered on the
command line or a file name selected with the mouse pointer which
will place it on the command line to be altered if necessary. Press the
Return key, or click in the OK box to complete this operation. Click in
the Cancel button to abort process. The contents of that file (if it al-
ready exists) will be over—written with the present contents of the text

editor. Double clicking on a displayed file name will result in the same
action.

FILE SELECT
Directory:
EINPLSISTVES e e
Selectiont | .
D;;}?’;E;‘,H:{;ZZZ‘; 1

1=

diagram 23:3
File selector

o[

Loading text (ALT-L)

[=[e]

Loading text follows a similar procedure to that above. Note that any
text in the editor will be completely over—written and cannot be recov-
ered unless previously saved to disk.

file://E:/SFILSYSTNtt.S-

Chapter 23: Using the Text Editor 365

The file name and path of the loaded or saved text is displayed above
the status line, and is updated if and when the file is saved with a differ-
ent name or a different file is loaded.

Inserting text file (ALT-I)

To insert a text file at any point in your text you should position the
cursor where you want tge text inserted. Press ALT-/ and you will be
presented with the GEM file selector. Assuming that you do not select
cancel the text file you select will be read from disk and inserted. If
there is not enough memory to permit this a warning will be given.

Searching and Replacing Text

Find

If you wish to find a particular word or some text in your text you
should press ALT-F or go to the Search drop down menu and select
Find...

You should enter the string you want to find when the dialog box ap-
pears in the ’Find’ field. If you press Return or click in the Next but-
ton the search for your string will start forwards. If the string can be
found the program will place the cursor on the text. If no text can be
found the cursor will remain stationary. If you click in the Previous
button the search will begin backwards. To search for more occurrences
of the string you should press ALT-N to go forwards or ALT-P to go
backwards.

Replace

If you enter text in the "Replace’ field and the program finds the text en-
tered in the *find’ field, this text will be replaced with the text entered in
the ’replace’ field. To continue with replacing press ALT-N for the next
string or ALT-P for the previous (if any).

Replace all

To replace all the occurrences of the string you should place the cursor
at the top of the file and select Replace All in the Search drop down

366 Chapter 23: Using the Text Editor

menu. Immediately the program will start to replace the text with your
string. As the program does this it will indicate its progress by moving
the vertical scroll bar position indicator - if sufficient text is held in the
editor. When all the text has been replaced the number of text replace-
ments is reported.

Block commands

A block of text is a marked section of text that can be deleted, copied,
saved to disk, or printed. If a block of text cannot be found by the pro-
gram the error message "What Blocks!” is given.

Marking a Block (F1, F2)

To mark a block of text use the F1 key to mark the start of the block at
the cursor position. To mark the end of the block you should move the
cursor to the required position and press F2 Both start and end of a

block are marked with arrows. Note that the end of a block should be
marked on the line after the actual line.

Saving a Block (F3)

To save a block of text to disk you should press F3 and enter the name
of the file in the GEM file selector.

Deleting a Block (Shift-F4)

To delete a block of text you should press Shift-F4. The block can be
restored by pressing F4.

Pasting a Block (F4)

To paste or copy a block of text you should place the cursor at the posi-
tion in the text were you want the text to be copied to and press F4.

Printing a Block

To print the current marked block of text you should select Print

Chapter 23: Using the Text Editor 367
block... from the File drop down menu.

Miscellaneous Commands

Help (ALT-H, HELP)

Pressing the HELP key or pressing ALT-H or selecting from the HELP
drop down menu will bring a dialog box on screen containing some
usegxl reminders.

Assembler Help

Pressing ALT-E or selecting from the HELP drop down menu will
bring this dialog box on screen.

Editor Help

As above.

Touch

This option allows files to be updated to the current time and date.
Delete a file

This option allows the user to delete files from the disk. Warnings are
given.

Format a disk

This useful option allows you to format disk in drive A, either single—
sided or double-sided. Warnings are given to prevent accidental format-
ting of disks. A standard format is used.

Text editor error messages

I can’t find the resource file- Exit

368 Chapter 23: Using the Text Editor

When double—clicking on the text editor program ’EDITOR.PRG’ to
run it the first action 1t takes is to try ancf load its resource file ’EDI-
TOR.RSC’. If the resource file cannot be found then the program can-
not continue as it is essential that the editor loads this file. This usually
happens when the executable file is copied from one disk to another
and the resource file is not copied along with it. The solution is to en-
sure that the resource file EDITOR.RSC file is always with the EDI-
TORPRG.

Many of the error messages reported to the user are system messages
passed via GEMDOS to the program and these are the type of errors
that might occur if a disk is corrupted, or if you try to save a file to full
disk or when there is no disk in the drive.

Other error messages that the editor may report are those that result
when a file cannot be found when assembling or linking:

File (ASSEMBLRTTP) not found

This usually means that the path has not been correctly set in the Set
Paths... drop down menu selection dialog box, or that the file is not on
the disk. Other files that may suffer from the a similar message might
be the linker 'LINK.TTP”, or the debugger.

Insufficient memory to run ASSEMBLRTTP

This message means that there is not enough free RAM memory to run
the assembler, and probably means that you have too many desk acces-
sories loaded. Solution: exit editor and reboot with fewer accessories.
This message may also be received about the linker, executable files, and
the debugger.

Can't insert a line, or block as maximum number of lines
(1000) reached. Try deleting some lines first.

The text editor can only support 1000 lines of text of a maximum
length of 150 characters. So this error message means that the editor is
full and cannot support any further text. If some lines of text are de-
leted or a block saved to disk and then deleted then the block or line
can the be inserted. The maximum length of each line of text allowed is
150 characters including spaces.

Chapter 23: Using the Text Editor 369
What blocks!

This message results if a block has not been marked out correctly or not
at all. When marking out a single line of text the second marker should
be on the next line.

File to big to insert! Would cause text buffer overflow.

When trying to insert a file to disk it may not be apparent that if the
file was inserted then the file buffer would overflow. That is, more than
1000 lines of text would be the result of inserting the file into the dis-
played text file which is the maximum allowed. To insert the file would
result in the ST crashing very quickly so this is not allowed.

Converting the source files for use with HiSoft’s
DEVPAC

To convert the example source files for use with this popular assembler
development package the "bss’, and data’ directives should be altered to
SECTION BSS and SECTION DATA. Note that DEVPAC does not
support the "globl’ directive, although labels can be dumped easily.

For earlier versions of DEVPAC the ’bss’ directive should be altered
like this:

from
.bss
buffer ds.b 32000

to
buffer dsbss.b 32000

Keyboard Options, a complete listing:

AIT-C Clear (remove all the text)
AIT-L Load (a text file)
ALT-S Saveas (save a text file via file selector)

AIT-Q Quit (leave EDITOR.PRG and go to GEM desk-

370 Chapter 23: Using the Text Editor
top)
ALT-F Find (a word or phrase)

AIT-N Find next (find next occurrence of word or phrase)

ALT-P Find previous (occurrence of word or phrase)

AL')I'—R Replace (replace word with word or phrase or noth-
ing

AIT-G Goto line (place cursor on line specified)

AIT-T Goto top (go to top of file-line 1)

AIT-B Goto bottom (go to bottom of file)

ALT-A Assembler (invoke assembler dialog box)

AIT-X Run (run last executable file assembled)
AILT-D Debug (invoke debugger with last executable file)
AIT-] RunDebug (invoke debugger)

ALT-O Run other (run any other executable program, se-
lected from file selector)

AIT-H Editor Help (show editor help dialog)
ALT-E Assembler Help (show assembler help dialog)

Chapter 24
Using the Assem’r & Debug’r

Although explanation of the use of the assembler and debugger is pro-
vided throughout the book this chapter provides further detailed de-
scriptions of the assembler and debugger’s operation and methods of
use.

The assembler

The assembler and linker are separate programs from the text editor and
can be found on the disk as ASSEMBLR.TTP and LINK.TTP. The as-
sembler and linker must be both on the same disk and in the same
folder, if any, as this is expected by the text editor which searches for
these files using the same path for both files.

Desk File Search Options Program

,,,,,

nf lines: 22 ull.lln: : Ll;ie:

¥ EX1.S This short progras (or source code when referring to the
¥ actual tg o T , :

¥ and and
¥ or the t e sCnily UPLLo

Prograa Type: EECSERLT

Debug Info: s

Output to disk:
Source nameiE:\EX1,S]

Exec. name:E:\EX1.PRG.

|

start: mov

add
¥ wait for [canceL] | Suntax check only |
exit: mové

o

diagram 24:1 Assembler dialog box

file://E:/EX1.SJ_

372 Chapter 24: Using the Assem’r & Debug’r

A ’TTP file is a special kind of executable program which expects pa-
rameters passed to it via a command line or via the ’p__exec’ call. This
type of program is often produced from C compilers as they produce
this type of file almost by default. Double clicking on the this type of
file results in a Tos Takes Parameters (TTP) dialog box being dis-
played — see diagram 24:2, and the parameters it needs are placed in the
editable field — the command line. In this case the assembler would ex-
pect a file name with an extension ’s’ (it must be in lower—case). You
will only be presented by the TTP box if you double-click the assem-
bler or linker from the desktop. If the file is on a different disk or in a
different folder from that of the assembler then the path would have to
be specified. The assembler and linker are both separately called usin
the ’p__exec’ function from the editor. The source code file name an§
path is passed to the assembler and once it has been loaded it starts as-
sembling the source code. If the source code file is on a different disk or
in a different folder from the assembler and linker then the assembler’s
path must be set with Set Paths... from the editor prior to assembly.

Desk File View Options

153 iten
s 1595 82-89-98 11:38 ¢
1708 89-18-98 83:48

OPEN APPLICATION
R_BUTTON

TOS_V Name: ASSEMBLR.TTP
UDIi Parameters:

VD12 I

WINDOWL |l ¢
W_ACC
ASSIGN

FINDWORD U I
ASSEMBLR TT 157 é%
DEBUG TTP 38374 30-85-98 Bi:i6
LINK TTP 18418 02-89-38 62:41

diagram 24:2 TTP dialog box

The actual process of producing an executable file from the source code

Chapter 24: Using the Assem’r & Debug’r 373
held by the editor follows this pattern:

The programmer invokes the assembler dialog box and presses Return
or clicks the Ok’ button. Assembly then proceeds:

Assembly process:
1. The source code is automatically saved to disk.

2. The assembler is loaded using the ’p__exec’ call. If the path is incor-
rect then the assembler cannot be loaded. Set path from Set Paths...
drop down menu. '

3. Source code parameters are passed to the assembler and the assembler
launched.

4. The source code saved to disk is loaded by the assembler and ana-
lysed for errors. If there are any errors these are displayed on the screen
and the assembly process aborted.

5. The assembler produces an object file if no errors occur.

6. The object file is loaded by the linker and an executable file (.prg) is
produced and saved to disk if no errors are found. Any errors are re-
ported to the screen.

7. The 0’ (object) file is deleted from the disk automatically.

Looking at this in more detail:

The programmer invokes the assembler dialog box and presses Return
or clicks the Ok’ button. For the assembler to work correctly some
source code must be held by the text editor. If there is no text, ie source
code held by the editor then the following error message will result:

Name of source file please, and name?
After the presence of text is found the source code held by the editor is

automatically saved to disk, ie the whole of the text file being wholly or
partially displayed in the editor window is saved to disk. The text is

374 Chapter 24: Using the Assem’r & Debug’r

saved to disk on the path and with the name it was loaded with. This
ensures that any changes made by the programmer to the source code
are saved before the file is loaded by the assembler and analysed for mis-
takes. If the programmer has produced source code starting from scratch
(ie no source code has been loaded) then the file name should be en-
tered in the assembler dialog box. The path and name of the source
code in the assembler dialog box *Source name’ field are taken from the
original source path and name (when the file was loaded) and automati-
cally placed there by the editor. The "Exec. name’ ie Executable file
name field is automatically filled in by the text editor with the name
and path taken from the source code name and path, but with the
source fiode ’s” extension replaced by a ’prg’. The paths and files can be
renamed.

Renaming the source code

If source code has been loaded from disk it is possible to change the
path and name of the source code file being saved by the assembler so
that the original file may be preserved if you wish. To do this the path
and new name of the source code should be entered in the ’Source
name:’ editable field in the assembler dialog box. See diagram 24:1. In a
similar manner the executable file name and path may be altered.

If source code has been written in the editor without loading a file from
disk then the assembler cannot fill in the path and names of the source
code and executable file. This must be done by yourself in the assem-
bler dialog box. A typical path and name would be if assembling from
floppy disk drive A:

Source name:a:\test.s

If the assembled program name was to be the same as ’test’, ie ’test.prg’
then it is sufficient to fill in the *Source name:’ field. The editor wi
provide the executable file name and path.

The assembler and linker path must also be set if they are held on a dif-
ferent drive or in a different folder from the original source code path.
This should be done from the Set Paths... menu option. Once this has
been set it will remain throughout until the editor is quit, or the path
altered. See diagram 24:3

Chapter 24: Using the Assem’r & Debug’r 375

Desk File Search Options Program Help ETI3TIYYA

Number o

¥EXAMPLEL.S This short program (or source code when referring to the
¥ actual text) prints 'R' on the screen. Then it waits for a key press
¥ and and then exits back to the desktop (if it is run from the desktop)
¥ or the text editor in an orderly fashion.

[o

sta

addq.1 #2,sp ; correct stack
wait for a key press.

K
exit: move.w #28,-(sp) ; leave gracefully!
move.n #%4c,-(sp)
trap #1

¢ f

diagram 24:3 Set Paths dialog box

For the user who choses to keep the assembler, linker, text editor, all
source code and executables in the root directory very little of the above
need concern him.

After the source code has been saved then the assembler is loaded and
launched into action. The assembler then loads the newly saved source
code and analyses it for errors. Many types of error can occur but he
main ones are usually easily corrected, as they are often simple typing
mistakes or syntax errors.

To give an example:

move.l a0,d0
* etc
If errors occur during assembly then brief messages will be displayed on
screen with the editor line number on which they occurred. These line
numbers should be noted down so that they can be used in the text edi-
tor to rectify the errors.

376 Chapter 24: Using the Assem’r & Debug’r

If assembly has been successful then the file a >0’ (object) file, ie a file
without any relocatable data is passed to the linker and if no errors oc-
cur there an executable file is produced and saved to disk. The object
file is automatically deleted from the disk.

To execute the newly assembled program you should press ALT-X or
select Run from the Program drop down menu.

Syntax checking

One very useful time—saving option is to use Syntax check only in
the assembler dialog box. This does everything that assemble does ex-
cept no object file is saved to disk. Note that this means as no object file
has been produced no executable file can be processsed by the linker.

Executable and linkable files

At default the assembler is set up to produce ’prg’ files ie GEM type ex-
ecutable files, and this can be seen in the assembler dialog box, "Pro-
gram Type:” selected radio button. The other option is to produce an
object glr: This is only useful if you wanted to link object files at a later
time to produce an executable ’.prg’ file.

One of the main uses of producing linkable files is that once some par-
ticular source code has geen assembled and debugged then it can be
safely set aside until it is needed. For instance a GEM header file com-
plete with stack and GEM arrays could be produced as a object file and
then linked to whatever GEM program you have produced.

To demonstrate this procedure please examine the following source
code shown below. LINK1.S is a GEM AES shell which provides some
of the routines usually needed by any GEM program. This is first as-
sembled with the ’Obj: .O’ option selected in the assembler dialog box
which produces a linkable object file. Next the file MY_NAME.S
should be similarly assembled to produce an object file. Then they
should be both linked using the Link object files... option from the
Program menu. A suitable executable file name should ie given to the
linked files such as MY__NAME.PRG.

Chapter 24: Using the Assem’r & Debug’r 377

* LINKL1S

* This source code contains the essence of a GEM AES shell to
* provide a linkable object file

* header
move.l a7,a5
move.l Bustk,a7

move.l 4(a5),a5
move.l 12(a5),d0

add.l 20(a5),d0
add.l 28(a5),d0
add.l 7$100,d0
move.l d0,-(sp)
move.l a5,-(sp)
clr -(sp)
move H$4a,-(sp)
trap ni
add.l "12,sp
* appl_intit()
move.l Happl_init,aespb
jsr aes ; call AES
jsr main
.globl exit
exit:
* appl_exit()
move.l Rappl_exit,aespb
bsr aes ; call AES
clrw -(sp)
trap 223 |
* AES subroutine
.globl aes
aes: move.l Raespb,d1
move.l 1S$c8,d0
trap "2

rts

378 Chapter 24: Using the Assem’r & Debug’r

ds.l 256
ustk: ds. 1

* GEM arrays
.globl contrl

contrl: dsw 12
.globl intin

intin: dsw 128
.globl intout

intout: dsw 128
.globl global

global: dsw 16
.globl addrin

addrin: dsw 128
.globl addrout

addrout: dsw 128

* some GEM functions

appl_init: dew 10,0,1,0,0

appl_exit: dew 19,0,1,0,0

.globl form_center
form_center: dcw 54,0510
.globl aespb
aespb: dc.l contrl,global,intin,intout,addrin,addrout
.globl object_draw
object_draw: dcw 42,6,1,1,0
.globl form_do
form_do: dew 50,1,2,1,0

Examining the above source code there are a couple of features that
need looking at. One is the use of globl’. This makes this label and
hence the address associated with it accessible to other files when they
are linked. If they were not labelled .globl then any other reference to
that label by another file would result in an error at link time. For
instance the ’jsr main’ instruction is made under the presumption that
any file linked to it will have a label called *main:’ and that it will end
with an ’rts’. If you look at the next program you will be able to see
that *main:’ has been made ’globl’. This allows, at link time, the two
files to be linked successfully and to operate correctly. Without ’main:’
being globl’ the link would fail with the warnings:

Chapter 24: Using the Assem’r & Debug’r 379

Undefined main from *path\name__of__file’
Bad symbol type

Where ’path’ would be something like a:\ and name__of__file could be
"link1".

However, ’appl__init:” and ’appl__exit:” do not need to be declared glo-
bally as they are limited to use within the shell itself. Similarly "ustk:’.

So it can be seen that only those labels that are used by other files than
the one in which it is contained need to be declared ’globl’, ie global.

Note also that linking is considerably faster than assembling which can
be very useful when the program is a large project.

Note that the path name and/or the names of the object files and result-
ant executable file should be kept as short as possible. The reason for
this is that a TTP program (the linker) is passed information about
what files to link ancF the string that is used to pass this information can
only be of a certain length. Going beyond this length results in the
string being truncated. As one of the last parameters to be passed to the
linker is the name of the executable file then this may be truncated.
Suitable warnings are given to the programmer when using the linker.

However, it is possible to link many object files by passing a list of ob-
ject files to the linker. To do this you have to leave the eiitor and use
the linker from the desktop. Double click the linker and enter:

—f link.doc —o name.prg

This will load an ascii file from disk called ’link.doc” which should con-
tain a list of object files that you want to link, and the resultant executa-
ble file will be called *name.prg’. If the *doc’ file is on another disk or in
another folder then you woull}need to do something like this:

—f b:\docs\link.doc —o name.prg
if ’link.doc’ was on drive b:.

Similarly if you wanted the executable program saved to another disk or
path, eg —o b:\name.prg

file://b:/name.prg

380 Chapter 24: Using the Assem’r & Debug’r

If you just enter:

—f link.doc

then the name of the first program in the ’link.doc’ will be used as the
name of the resultant executable file. So if *xxx.0’ was the name of the

first object file in the list of object files then the executable file would
be called *xxx.prg’.

On the disk you will find a file named link.doc which you may like to

experiment with.

The following program should be assembled to to make an object file
and then linked with the above AES shell.

* MY-NAME.S
* This file provides the variable source code to be linked with
* the GEM AES shell.

.globl main:

move.l Bmy_name,-(sp)
move.w 19 -(sp) ; Gemdos function print a line’
trap 223 |
addq.l B6,sp ; correct stack

* wait for key press
move H2,-(sp) ; device number (console)
move B2,-(sp) ; BIOS routine number
trap B13 ; Bios
addq.l B4, sp
rts

my_name: dcb "Roger Pearson”,0

MY_NAMES is a very simple file to link and it contains no GEM
calls so we can try another more complicated file. The file be-
low should be assembledg and linked and given a suitable executable
name such as DIAL.PRG. You will find DIAL PRG on the disk as well
as the object file.

Chapter 24: Using the Assem’r & Debug’r

381

* DIALOGL.S

* This example shows the construction of a simple dialog

* box by hand, how to diplay it on screen. (Taken from GEM4.S)
* This should be linked to LINK1.S

.globl main

main:
bsr form_cent
bsr obdraw ; put dialog box on screen
bsr f_do ; handle interaction
rts
form_cent:
move.l Hform_center,aespb ; get coords of centred tree
move.l Hparent,addrin
bsr aes
movem.w intout+2,d0-d3 ; returned in intout+2
rts
obdraw:
move B0,intin ; index of first object
move Hl,intin+2 ; depth
move d0,intin+4 ; x coord
move dl,intin+6 ;y coord
move d2,intin+8 ; width
move d3,intin+10 ; height
move.l Hparent,addrin ; address of parent dialog box tree
move.l Hobject_draw,aespb
bsr aes
rts
f_do: movel H®form_do,aespb
clrw intin ; No editable text field
move.l Hparent,addrin
bsr aes
rts

textl: decb ’ -----EXAMPLE----",0

text2: dcl textytextt2 textt2

382 Chapter 24: Using the Assem’r & Debug’r
dew 3,0,2,9$1110,0,3,5,0

texty: dcb ’Exit’,0

textt2: dcb 0
* dialog box tree
parent:
dcw -1,1,2,20,0,16 ; g-box
dcl $00021100
dew 170,100,250,100
dew 2,-1,-1,28,0,0 ; g-string, title string
dcl textl
dew 10,10,5,1
dew 0,-1,-1,22,7+32,0 ; g-boxtext, boxed exit button
dcl text2
dew 50,60,60,25

At default "Debug Info:’ is switched on but unless the "globl’ statement
is used to make the label global having debug switched on will have no
effect. However, switching this off will result in no debugging

information being passed to the executable file despite any labels being
declared ’globl.

By debugging information we mean that any labels that are declared

Jobal can be used in the debugger for reference. As it is also possible
%or other programmers to use this information in a debugger, and it
makes the program length larger, it is usual to leave this information
out in the final executable file.

The Debugger

In chapter three some ground was covered using the disassembler
although this was rather brief. The debugger has an accompanying
document on disk which refers to the ’szadigeprogmm. If you the
documentation you will soon realise that ’adb’ is a UNIX type
debugger, and that ’szadb’ has been based upon it.

Chapter 24: Using the Assem’r & Debug’r 383

The document is not what could be termed user friendly! However, one
of the prime reasons of using a debugger is to either single—step a pro-
gram to a certain point and the other 1s to run the program at full speed
until that point (usually to find a bug, by examining what happens
when single—stepping) and doing this using the commands as listed is
not too difficult.

As discussed in chapter three the command for single—stepping is ’:s’
and for running at gxll speed is ’:c’. In both cases using upper—case Jet-
ters results in all the registers being displayed on screen. The command
for setting a breakpoint is *:b’, and for deleting a breakpoint is :d.

A breakpoint is used to stop a running program at a particular point. In
the course of programming it is usual to come across bugs, ie the pro-
gram does not do what we expect! The result of this is the ST locking
up or bombs appearing on screen or peculiar behaviour, etc. As it is
usual to write programs of any length as modules consisting of subrouti-
nes then it is usua.ﬁy possible to have some idea where the é\ult may lie.

For instance when writing a word—processor it may follow the follow-
ing path:

Do GEM header set user stack

Open GEM application

Load Resource file

Find dialog/menu addresses

Open menubar

Declare type and size of GEM window
Open a GEM window

Fill window with white background
Put cursor on screen

Wait on event__multi etc

Now in the course of writing this imagi word—processor we would

probably pause every so often and assemble what we had written and

test the results of our endeavours by running the resultant executable

file. Now in the course of running the program if a fault occurred say
for instance just before the GEM window was opened then we would

expect that the fault would lie before this point. If we examine the

source code and check that everything looks ok and we cannot fault

what we have written it is time for the debugger!

384 Chapter 24: Using the Assem’r & Debug’r

We could then declare a label global in the source code after the point
where the menu had been placed on screen. We could then assemble
the source again, enter the gebu r set a breakpoint at the label, and
run the program at full speed until this point. The program would halt
at this point, hopefully E:;'ore the bug occurs and then we could sin-
gle—step each line of code until the fault occurs. It is not usual to sin-
gle—step a trap as the code is often extensive and is not alterable in any
case, as it is in ROM. We also have to assume that it is correct. By keep-
ing an eye on the registers and parameters we can usually find the fault,
though sometimes not for after a while of searching.

Looking at the practical details of doing this:

If we called the label *fault:” prior to the routine the we believed was

causing the bug, then setting a breakpoint after we enter the debugger
would be done like this:

fault :b (press Return key)

Once this has been done then we should run the program at full speed
by using ’:C’. The program will halt at the breakpoint and we can now
single—step the faulty routine until the bug occurs.

What about avoiding single-stepping ’traps’?

When we see that a trap is about to be executed as we are single—ste
ping we should immediately set a breakpoint by the command *b’
Then the pro should be run with "¢’ and after the trap has been
executed *:s” should be used to return to single—stepping. Pressing re-
turn operates the last command again, so unless we use *:s’ after the trap
has executed pressing Return will run the program until the end or un-
til a fault occurs.

What about subroutines and dbra’s?

In the course of debugging we often come across a subroutine (jsr) that
we know is ok as we have used it before with no unpleasant results, or
we come across a 'dbra’ routine that we know is ok too. How can we
avoid having to single—step these routines, if a label is not available af-
ter the routine so that we can set a breakpoint there?

Chapter 24: Using the Assem’r & Debug’r 385

We can use the /i’ command which will disassemble each instructéon
from the pro counter, ie from where we are in the and at
the same timm give us the address of the instruction Ei?l)]%?:sl an off-
set of a label or an actual address. Pressing Return will disassemble the
next instruction and so on. Once we arrive at a point at the end of a
subroutine or after a dbra instruction then we can set the breakpoint
there as detailed above. For instance the address given after a dbra might
be ’fault+32’, then we should use *fault+32 :b. Use &’ to return to
original spot (prior to using ’/1’) in the debugger.

To delete a breakpoint we should use *:d’. So to delete the breakpoint af-
ter the dbra then we should use *fault+32 :d’ and press Return.

Using *$b’ will list all the breakpoints if any. *:d’ will delete one of the
listedg breakpoints. So to delete a list of breakpoints *$b’ should be fol-
lowed by a :d’, and this procedure should be followed until all ’$b’

shows no breakpoints.
"$¢’ will list all global symbols and their addresses.

We sometimes need to find the contents of a symbol, for instance the
state of some particular flag, or symbol that has stored an address. Of-
ten we need to see whether a symbol contains what we think it should.
For instance we may expect the label ’screen__address’ to contain the
screen’s address but what if inadvertently it has been over—written by
some stray code. Note that ’screen__address’ would have been declared
to have a value of a long word. If at the start of the program we note the
value placed in the symbol then if we later inspect it at another point in
the program we can confirm that it holds the correct value.

To examine any particular symbol we should use *symbol/X’. For in-
stance if examining the ’screen__address’ label we should first use ’$¢’ to
see the actual length of the symbol. It would be truncated to
’screen__a), ie eight characters, excluding the colon, which is the maxi-
mum allowed. So to see the value it contained we would write
’screen__a/X’, were X’ indicates a long word value is to be returned.
This would give us the address we want, hopefully. To get a word value
we would use ’x’. See ’'FORMATS’ in the ’szadb’ documentation.

In the case where we expected a string we would use an ’s’ For in-
stance ‘'my__name/s’ would give "Roger Pearson’ if we were to examine

386 Chapter 24: Using the Assem’r & Debug’r
the first example programs in this book in the debugger.

Use ’$q” to leave the debugger at any point. Note though that leaving 2
GEM program in the middle of it may result in faults a ing later
on in the editor and/or the next time we want to use the cf; ugger. This
may because we have not closed, or deleted a window, used "appl__exit’,
not released a resource file space, etc. It is better to quit a GEM pro-
gram correctly if at all possible so that all memory, windows, menus, re-
sources can be dealt with properly by your exit routine.

Reserved words

As you might expect the assembler will get very confused if you use la-
bels such as ’a0’ or ’bss’ to refer to anything other than what the assem-
bler thinks they are, namely register a0, and the block storage segment.
The following list shows what words are reserved, ie they are under-
stood by the assembler to refer to a specific function.

.bss, .comm, .data, .dc, .ds, .end, .equ, .even, .globl, .org, .text; and
similar words all without the preceding period.

ao to a7: doO to d7; pc, sp. Sr, usp

Error messages

The assembler and linker will report errors whenever it finds one as it
goes about assembling and linking your program. These errors are of-
ten caused by bad syntax, and spelling mistakes. The following list gives
the most common errors that are likely to occur in the normal course
of assembling and linking.

Error message Example fault Solution

Syntax error :main: main:
Missing ':" after label movvve move
lllegal expression move.l #$name,—(sp) move.l #name,—(sp)

llegal use of symbol move.l #name,—((s.p) move.l #name,—(sp)
in expression

Chapter 24: Using the Assem’r & Debug’r 387

Missing ') —(sp ~(sp)

Invalid decimal move #9b,—(sp) move #9,—(sp)
constant

lllegal instruction trap #19 trap #1
Non-terminated string dc.b "roger dc.b "Roger”,0
Bytes not separately dc.b "roger”,p dc.b "Roger”,0
relocatable

Missing ':" after label RTS rts

The last error message will appear when ever upper—case text is used.

388 Chapter 24: Using the Assem’r & Debug’r

Appendix
Key Codes

This appendix list all the keycodes available in hexadecimal. The first
two numbers refer to the actual key struck, whilst the last two numbers
refer to the ASCII code.

* KEYS

* get keycode as result of keypress in register d0, from BIOS bconin()
* eg character "a’=001e0061. ASCII character returned in least :
* significant byte, and scancode (physical key code) is returned

* in least significant byte of high word.

* GEMDOS ’cconin’ can also be used.

* *evnt_multi’ returns keycodes as listed.

* beonin() read a character

move B2.-(sp) ; device number (console)
move H2,-(sp) ; BIOS routine number
trap Rr13 ; Call Bios
addq.l H4,sp

* d0 has keycode

exit:
move.w #20,-(sp) ; leave gracefully!
move.w BS$4c,-(sp)
trap Hy

* exit from program properly

Main Keyboard

Unshifted Shift Control Alt
a 1e61 A le41 1e01 1e00
b 3062 B 3032 3002 3000
c 263 C 2e43 2¢03 2e00
d 2064 D 2044 2004 2000
e 1265 E 1245 1205 1200

390 Appendix: Key codes

f 2166 F 2146 2106 2100

2267 G 2247 2207 2200
E 2368 H 2348 2308 2300
i 1769 I 1749 1709 1700
] 246a] 244a 240a 2400
k 256b K 254b 250b 2500
| 266¢ L 264c 260c 2600
m 32d M 324d 230d 3200
n 316e N 314e 310e 3100
o 186f (@) 184f 180f 1800
P 1970 B 1950 1910 1900
q 1071 Q 1051 1011 1000
r 1372 R 1352 1512 1300
s 173 S 1153 113 100
t 1474 T 1454 1414 1400
u 1675 U 1655 1615 1600
v 276 A% 2156 2f16 2{00
w 1177 W 1157 1117 1100
X 2d78 X 2d58 2d18 2d00
y 1579 Y 1559 1519 1500
z 2c7a Z 2c5a 2cla 2c00
1 0231 ! 0221 0211 7800
2 0332 i 0322 0300 7900
3 0433 £ 049C 0413 7a00
4 0534 $ 0524 0514 7b00
5 0635 % 0625 0615 7c00
6 0736 " 075e 071e 7d00
7 0837 & 0826 0817 7¢00
8 0938 * 092a 0918 7f00
9 0a39 (0a28 0a19 8000
0 0b30) 0b29 0b10 8100
- Oc2d A Oc5f Oc1f 8200
= 0d3d + 0d2b odid 8300
¢ 2960 29ff 2900 2960
\ 2b5¢ | 2b7c 2bic 2b5c
[1a5b { 1a7b 1alb 1a5b
] 1b5d } 1b7d 1bid 1b5d
- 273b 273a 271b 273b
. 2827 @ 2840 2807 2827

Appendix: Key Codes 391

= 332c < 333c 330c 332c

: 342e > 343e 340e 342e

/ 352f ? 353f 350f 352f

Space 3920 3920 3900 3920

Esc 011b 011b 011b 011b

Backspace 0e08 0e08 0e08 0e08

Delete 537f 537f 531f 537f

Return 1c0d 1c0d 1c0a 1c0d

Tab 0f09 0fo9 0fo9 0f09

Cursor Pad

Unshifted Shift Control Alt

Hel 6200 6200 6200 Print screen

Undo 6100 6100 6100 6100

Insert 5200 5230 5200 left button

Clr/Home 4700 4737 7700 right button

Up-—arrow 4800 4838 4800 move mouse
up

Dn-—arrow 5000 5032 5000 move mouse
down

Rt-arrow 4b00 4b34 7300 move mouse
right

Lft—arrow 4d00 4d36 7400 inf(:ve mouse
e

Numeric Pad

Unshifted Shift Control Alt
(6328 6328 6308 6328
) 6429 6429 6409 6429
/ 652f 652f 650f 652f
* 662a 662a 6602 662a
- 422d 422d 4a1f 422d
* 4e2b 4e2b 4e0b 4e2b
’ 712 712e 710e 712
Enter 720d 720d 720a 720d

0 7030 7030 7010 7030

392 Appendix: Key codes

1 6d31 6d31 6d11 6d31
2 6e32 6e32 6e00 7e32
3 633 633 6f13 633

4 6a34 6a34 6al4 6a34
5 6b35 6b35 651b 6b35
6 6c36 6c36 6cle 6c36
7 6737 6737 6717 6737
8 6838 6838 6818 6838
9 6939 6939 6919 6939

Function Keys

Unshifted Shift Control Alt
F1 3b00 5400 3b00 3b00
F2 3c00 5500 3¢c00 3c00
F3 3d00 5600 3d0o 3d00
F4 3e00 5700 3e00 3e00
F5 3f00 5800 3f00 3f00
F6 4000 5900 4000 4000
F7 4100 5a00 4100 4100
F8 4200 5b00 4200 4200
F9 4300 5c¢00 4300 4300

f10 4400 5d00 4400 4400

Bibliography

Compute!’s Technical Reference Guide series: all by Sheldon Leeman.
These are recommended guides to the ST and contain many examples of
source code in C, and assembler.

Volume 1: AES
Volume 2: VDI
Volume 3: TOS

Concise Atari 68000 Programmer’s Reference,
Katherine Peel, published by Glentop.

Programmer’s Guide to GEM by Balma and Fitler, published by
Sybex.

Various assembly and C source code, programming information text
files, example programs, etc, available from PD libraries:

Goodman Enterprises 0782 335650
16 Conrad Close

Meir Hay Estate

Longton

Stoke—on-Trent

ST3 1SW

Softville 0705 266509
Unit 5

Stratfield Park

Elettra Avenue

Waterlooville

Hants

PO7 7XN

MT Software 0983 756056
Greens Ward House
The Broadway

394 Bibliography

Totland
Isle of Wight
PO39 0BX

ST Club 0602 410241
49 Stoney St

Nottingham

NG1 1XF

Recommended assembly language development package,
necessary for programs of any complexity, and size:

DEVPAC 2, from HiSoft.
Recommended BASIC:

GFA BASIC Version 3
Recommended C language:
Sozobon C- an excellent PD offering.

Lattice C Version 5, from HiSoft

Glossary

A small glossary of some programming terms

680x0 16/32 bit CPU manufactured by Motorola.
Used by ATARI ST, CBM Amiga, Apple Mac.

Active Window The GEM window which is on top of any
other windows and thus receives all mouse, and keyboard input/output.

.ACC GEM desk accessory executable file.

Address A number that identifies a particular location
in the computers memory — RAM or ROM.

Address Register 32 bit register used to store addresses, num-

bered a0-a7.
AES Application Environment Services: part of
GEM that provides windows, forms and menus.
Alert A standardized dialog box which contains a
short message, and usually a NOTE, WAIT, or STOP icon.
Alogorithm Precise sequence of steps required to perform
some action.

.APP GEM executable file. APP=APPlication
Application A computer program that performs some-

thing useful, eg word processor, spreadsheet, compiler.

Array A structure for storing data in sequential loca-
tions/order. Sometimes known as a buffer.

ASCIl American Standard Code for Information In-

396 Glossary

terchange. Used to represent alphanumeric characters held as bit 1mages
in memory.

Assembler A program which translates source code to ob-
ject code.

Assembly Language A low level computer language.

ASSIGN.SYS ASCI file used by the VDI to configure the
system, usually with particular fonts.
BBS Bulletin Board System. A program running

on a remote computer which handles communication between your
computer and the other computer. Communication is via modem.

Binary A system of numbering using 0, and 1. Base 2.
Bit Binary dilT, which can have a value of 1 or 0.
BITBLIT Bit image block transfer.

Bit map A collection of pixels used to represent an im-
age.

Boolean logic Operations performed on binary numbers.
Bug An error in a program.

Button An outlined area (rectangular box) in a dialog

box that you click in to do something. The mouse button usually refers
to the left mouse button.

Byte 8 bits. The standard length of a location in
memory.
CCR Condition Code Register. Bits (called flags) in

the CCR indicate the results of a program operation.

Click The user positions the mouse pointer and
presses a2 mouse button and releases it.

Glossary 397

Click-drag The user positions the mouse pointer presses a
button and without releasing the button moves to another location on
the screen. The button is then released.

Clipping Rectangle A rectangle that defines the bounds of VDI
Eraphics display. Any graphics drawn outside the clip rectangle will not
e drawn.

Compiler A program that converts high level language
source code to object code.

CPU Central Processing Unit, eg 68000

Crash When the program stops working properly.
Usually followed by bombs, or a hang or both.

Data Register Registers d0—-d7, which can hold data up to 32
bits long.

Debugger A program used to locate bugs in a program.
Also known as a monitor, or disassembler.

Default What you get if you do not specify something
different.

Desk Accessory An application that must be in the root direc-
tory at boot up, on drive A, or partition C if hard disk. Accessible from
the left—most drop down menu.

Desktop GEM user interface that compares the default
display with an office desk.

DESKTOP.INF ASCII file which contains the users desktop
preferences, such as whether a window should be opened at boot up,
resolution, etc.

Dialog A form usually designed with a resource con-
struction kit, that displays information and often allows the user to in-
put information.

398 Glossary

Directory The contents of a disk usually displayed in a
GEM window.
DOS Disk erating System, mostly associated

with MSDOS on the IBM PC and compatibles.

Double-click Pressing the mouse button quickly twice in
succession usually to activate an object or icon.

DR Digital Research— the creators of GEM.

Drop-down menu Usually located at top of screen and activated
by moving mouse pointer there.

Field A specific part of a form that is usually user
editable. For instance in a mailing record there would be a name field,

an address field etc.

Font A collection of letters, numbers, and symbols
with a consistent look.

Full box A GEM window function which allows the
user to expand a window to its full size or return it to its previous size.
Garbage Meaningless or unexpected characters.

GDOS Graphics Device Operating System. Usually

auto—booted so that fonts can be loaded and printed. Used by art and
DTP programs.

.GEM A metafile which contains a list of VDI opera-
tions, often used by paint programs.

Greyed Text that is fainter than its usual look. Often
indicates something that is not selectable.

Hang The application cannot accept any input or
proceed. ST has to be reset to be able to continue.

K A measure of a computers memory, disk space

Glossary 399

that is equal to 1024 characters, or bytes.

Invoke Run or launch a program or application.
MC Motorola Corporation, manufacturer of 68000
CPU.

Meg, megabyte A measure of a computers memory, disk
space. Equal to 1024K. or 1,048,576 characters or bytes.

Menu bar The horizontal area across the top of the
screen that holds the menu titles.

Object code The result of assembling source code.

Operating System A program which controls the day-to-day

running of the computer.

Program A piece of software that usually does some-
thing useful. Other names for program: process, application, routine.
Patch A small program used to correct or enhance
another program.

RAM Random Access Memory. Used for the short
term retention of memory until the ST is reset or turned off.

RGB Red Green Blue

ROM Read Only Memory. Memory that can be read

but not written to. O/s is stored in ROM.

Root directory The directory that appears when a disk icon is
double—clicked or opened.

Source code The text of a program that can be read/edited
by the programmer.
ST Sixteen Thirty two. Named like this as the ST

has an internal 32 bit bus, and an external 16 bit bus.

400 Glossary

SySop A BBS’s operator (Sysop= System operator)
String A sequence of characters; a word, phrase, or
number.

Wildcard A symbol (usually *) that means any charac-

ter or sequence of characters. In the file selection box **DOC’ would
display all files ending in DOC.

Index

A

ac_open
addressing modes
summary
address registers
AES
arameter block
ibraries
alert box
ALT list (editor)
an
appLinit
applexit
array
ASCII
ASCII to hex
assembler
error messages
reservede:zgrds
assembling
a program
acceptance
assembly language
process
ASSIGN.SYS
AUTO folder
AUX

bconin
beq
bge

327
43
51
17
3
106
103
13
369
295
104
104,117
21
9,10,27,60
354
371
386
386
6

6
12

2
309,314
115

20

20,27
57,79

binary 11,12
signed 12
bios eter block 94
bit blitting 296
bit im 59,213
blitblk structure 222
bit map 82
bit pattern 62
block storage segement 39
boot sector 94,97
booting (drive B) 349
mi 55
bne 72
bombs 16,73
boot 32
bra 58
breakpoint 23,2427 38
bsr 33
bss 39,40
bset 79
btst 79
buffer 21,37
bug 2
call 9
C language 10
ccr 26,55
cconws 19,20,33
clipping 256
clr 35
cmpi 57,68
cold boot 73

402 Index
colour palette 59,62 disk
complement 15 formatting 93
two’s 13 full 73,77
comments 46 double 102
console, CON 20,58 drop down menus 165,203
conout 8 ds 29,31
contrl array 116
convertin;
hex toiin, decimal 12 E
DEGAS 78 echo 73
crash 16,73,213 editor 1
create ﬁle 12,67 errors 2
crawcin 73 error, which line >4
error codes
D GEMDOS 55
equ 21
DA (desk accessories) 168 equates 21
data even 73
immediate 22 evnt.mesag 176
lengths 17 evntmulti 197,203
registers 17 evntkbd 105
dbra 33 executable file 1,376
debugger 1,2,4,382 exceptions 73,243
commands 23 ext 14
globl, use in 28
decimal 10
default button 187 F
define space 29 FAT 94-7
DEGAS ELITE 19,29,54 faults 7
63,230 file
converting 79 closing 58
header 59 create 67
ICN file 230 executable 1,376
.PI3, PC3 54 handles 53,59
desktop 20 loading 53
devices, ST 20 object 1,269,376
dialog box 119,135,358 reading 53,58
display process 148 saving 67
disassembler 5 TTP 372
directories 94 writing 73

Index

403

file selector

fl

foai%iers

fonts

form_alert
form_dial
formatting a disk
freeze

fselinput
FX80.SYS

G

garbage
GDP
GDOS
GEM
file selector
header
o/s
windows
GFA BASIC
globl
grat. mouse
GRIBNIF

handle

h
h::ger files

HELP
hexadecimal
hex to ASCII

hot keys

IBM
immediate data

213
278
55

313
166
165
93

73

215
310

58

267
115,116,309
103
54,72
104

2

245
163,269
28,271
155,199
16

53,59
16
140
24

10
351
203

97
79

interrupt
intout

J

Jst

L

labels
acceptable
address
contents
lowercase

libraries

line numbers

linker

1Q

menuw_id
menu_register
menu_tnormal
message buffer
MFDB
milometer
MKRSC.PRG
mn_selected
mnemonic
movem

NCD coords
negative flag
null

nybble

3470
105

33

4,19

19,72
19,72

103

310

327

327

166

255
297,306
15

135

327

5

33,36

404 Index
objc_change 154,165 quick 9
objc_draw 129
objc_edit 200 R
objc_find 202
object files 269 radio button 358
ob;ects. 119 raster coords 116
adding 167 reserved words 386
default 187 resource files, kit 103,135
editable 179 RCP 135
ﬂ?s 124 RGB 81
index 129 ROM 2,7
last editable 156 RS-232 59
naming 140 rsc_load 143
names 147 rts 34
sorting 155
status 125
structure 121 s
tee 120 scan code 20,27
types 119 scan line 60
operands 3 screen dump 118
o/s 2 sector 93,94
o o 2% setblock 104
Oren, Tim 256 setcolor 67
setpalette 63,67
P signfd arithmetic 13,15
single—steppin: 23,384
p-exec 279,372 sougrce cocf::p = 1,2
palette restoring 67 Sozobon 23
pea : 40 sp 7,9
physical w’station 111,114 sr 26
planes 82,86 status register 26,55
point 289 S 13
pqpped 33 supervisor 26
printer 59 subroutines 433
pterm 16 symbolic 4
pushed 33 system variables 345
SZADB 382

Index

405

T

te__pvalid

te__color

tedinfo

text editor
error messages
keyboard options

TOS

tracks

trap

tst
TTP file

U

UNDO

user stack

Vv

v_gtext
v_opnvwk
v_opnwk
v.rbox

vrfbox

VDI

vex_butv
virtual w’station
virus

vst font
vstload fonts
vst.point
vstload_unfonts
vgtname
VT52 emulation

W

wildcard, **

wind__calc
wind_create
122 wind_set
123 windows
185 WIMP
357 workstation

37
104,128

289,294
320

320

289

268
102,111,287
347

114

94

320

319
289,320
319

319

289

54,215

254
254
267
245

114

sdpusweg -
ARFOSETO0uE
nerhow
rEOSTI0uR
ARTLOuE
Aoz

A

b1l S

I L w‘m\". s

o

4

ol
it

E“
-t

=
L
i

b e

y t(l\,ﬂﬁ o;h

ool 1% o

s
%
e

:

.
4
i
L.
oL
.

Introducing ATARI ST
machine code

At last a book (and disk) that takes the beginner step—by—step into the
secrets of programming the ST in its native language: 68000 assembly
language. Now for the first time 2zzSoft provide a complete
programming environment for the beginner to intermediate ST
applications programmer with a book and a disk. No need to buy a
separate assembler or resource kit!

For any ATARI ST, STE, Mega: 520, 1040 or more

The book has over 40 complete assembly language examples, with an
index, and glossary.

24 chapters introduce the gamut of ST applications programming from
formatting a disk to constructing drop down menus and dialog boxes.

The book comes complete with a disk which has:
e A complete symbolic 68000 assembler and linker.

e A resource construction kit, for the easy creation of drop down
menus, and dialog boxes. 5

e A symbolic debugger.
e Anintegrated fully featured GEM text editor specially written for
this book — assemble the source code and run the executable program

from within the editor!

All the source code in the book is on the disk and is ready for
assembling.

The disk also contains a comprehensive listing of all BIOS, XBIOS,
GEMDOS, AES and VDI assembly language calls, with examples.

zzSoft
All trademarks acknowledged I S B N 1 8 7 3 42 3 01 2

