

PROGRAMMER'S
GUIDE TO GEM

-

PROGRAMMER'S
GUIDE TO GEM

PHILLIP BALMA

WILLIAM FITLER

Berkeley • Paris • Düsseldorf • London

Cover art by Thomas Ingalls + Associates
Book design by Rick van Genderen

Apple is a registered trademark of Apple Computer Incorporated.
ATARI, ST, is the registered trademark and 520ST the trademark of Atari Corporation.
Turbo Pascal is a trademark of Borland International.
CompuServe is a registered trademark of CompuServe, Incorporated, an H & R Block
Company.
Digital Research, CP/M, Assembler Plus Tools, CP/M-68K, Concurrent DOS, Concurrent
PC-DOS, Digital Research C, DRI, GEM, GEM Desktop, GEM Draw, GEM Graph, GEM
Paint, GEM Programmer's Toolkit, GEM Wordchart, GEM Write, Graphics Environment
Manager, LINK86, and RASM-86 are registered trademarks or trademarks of Digital
Research Incorporated.
IBM, PC-DOS, PC-AT, TopView are registered trademarks or trademarks of International
Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
Lattice is a registered trademark of Lattice Incorporated.
Macintosh is a trademark of the Mcintosh Laboratory, Incorporated, licensed to Apple
Computer, Incorporated.
MetaWare and High C are trademarks of MetaWare Incorporated.
Microsoft is a registered trademark and MS is a trademark of Microsoft Corporation.
Motorola is a registered trademark and MC68000 is a trademark of Motorola
Incorporated.
XEROX is a registered trademark of XEROX Corporation.
SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However,
SYBEX assumes no responsibility for its use, nor for any infringements of patents or
other rights of third parties which would result.

Copyright© 1986 SYBEX Inc., 2344 Sixth Street, Berkeley, CA 94710. World rights
reserved. No part of this publication may be stored in a retrieval system, transmitted, or
reproduced in any way, including but not limited to photocopy, photograph, magnetic or
other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 86-61242
ISBN 0-89588-297-3
Printed by Haddon Craftsmen
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

ACKNOWLEDGMENTS

This book represents a collaboration of efforts. First
and foremost, we would like to acknowledge our wives,
Penny Fitler and Maxine Balma, for supporting us
throughout this project. Next, we would like to thank our
editor, Geta Carlson, whose patient and thorough efforts
have greatly improved the quality of this book.

We have also appreciated the technical assistance of all
of the members of the GEM team at Digital Research,
including but not limited to Rich Greco, Lowell Webster,
Rick Rosenbaum, Dan Brown, and Gregg Morris.

At SYBEX, we would like to thank Dan Tauber for
technical edit, Olivia Shinomoto for word processing,
Donna Scanlon for typesetting, and Aidan Wylde for
proofreading.

vi

CONTENTS

PREFACE
How This Book Is Organized

Other Sources of Information

1 INTRODUCTION TO GEM

What is GEM?

The Components of GEM

What Goes into Building a GEM Application

Summing Up

2 APPLICATION ENVIRONMENT SERVICES

Overview of the AES's Role in GEM

The Components of the AES

GEM Events

VII

The Window Library 50

The Object Library 65

The Resource Library 86

The Menu Library 93

The Form Library 100

The Application Library 106

The Graphics Library 112

The File Selector Library 120

3 VIRTUAL DEVICE I E R F A C E - 1 1
The Purpose of the VDI 127

A Short Primer on Graphics 130

Control Functions 140

Points and Markers 161

Lines and Polylines 169

Graphics Text 170

Rectangles and Filled Rectangles 200

Drawing Shapes: Generalized Drawing Primitives 209

Raster Operations 220

VIII

The Extended Inquire Function 238

Summing Up 240

4 6EI SAMPLE PROGRAM: HELLO ™

The Structure and Size of GEM HELLO 246

HELLO High-Level Entry Point 248

HELLO Event Handler 249

HELLO Message Handler 251

HELLO Initialization and Termination 255

HELLO Display Routines 264

General-Purpose Routines 268

Summing Up 269

mm

3 GEM DEIO 273
What DEMO Does 273

DEMO Start Up 274

DEMO Termination 275

DEMO Initialization 276

The Main Event Handler: demo() 288

Using Objects in DEMO 307

6 ADVANCED GEI TOPICS

Design Considerations 337

Coding Topics 359

How To Use Metafiles for Hard-Copy Output 367

Debugging GEM Applications 377

The GEM Bindings 379

A Brief Survey of GEM Programming Tools 382

A GLOSSARY

B AES AND 1 QUICK REFERENCE GUIDE 4 , o

C RESOURCE CONSTRUCTION SET TUTORIAL 4 2 4

D
E

LISTING OF DEIO 430

LISTING OF .RSC OUTPUT RLE FOR DEMO

FUNCTIONS AVAILABLE IN METAFILES

484

490

DEK 492

xi

PREFACE

This book is an in-depth introduction to GEM for pro
grammers. We as sume that you know how to program
and that you can at least read programs written in the C
language. We have used a number of technical terms,
along with a moderate amount of jargon peculiar to GEM.
To help you with unfamiliar terminology, weve included a
glossary of terms, as well as explanations in the text.

HOW THIS BOOK IS ORGANIZED

The first three chapters of this book will give you a thor
ough conceptual grounding in GEM and its two major com
ponents, the Application Environment Services and the
Virtual Device Interface. The second three chapters put this
information into practice by taking you step-by-step through
the construction of two GEM applications and by discussing
a variety of important design and coding issues. Six helpful
appendixes supplement the information in the main body of
the text. Here is a quick breakdown of what each chapter
and appendix contains:

Chapter 1 is an overview of GEM. We discuss the various
components of GEM and their interrelationships. We also
talk about how GEM programs are built and organized.

Chapter 2 presents the Application Environment Ser
vices (AES). The chapter explains the important concepts
used in the AES , including objects, events, and resources.
It also discusses how these aspects of the A E S are used
to implement menus, forms, and alerts.

In Chapter 3 we cover functions provided by the Vir
tual Device Interface (VDI), which contains the functions

PROGRAMMER'S GUIDE TO GEM

that the A E S and GEM applications use for input and out
put. We discuss the major strength of the VDI, which is to
provide graphics display functions that are portable across
a variety of different computers and hardware devices.

The last three chapters build upon this foundation.
Chapter 4 presents the simplest GEM application that uses
windows, called HELLO. Chapter 5 walks you through a
much lengthier sample program called DEMO, which
allows the user to create simple drawings on the screen.
We rely on these programs quite a bit to demonstrate by
example some of the more subtle points of developing
GEM applications, as we have found that it is not enough
simply to discuss the GEM functions and expect it to be
obvious how to put them to use.

The purpose of Chapter 6 is to present a number of
GEM program design considerations. Chapter 6 discusses
several key design principles and explains how GEM func
tions can be used according to these principles. Chapter 6
also includes other important topics, such as how to use
metafiles, which are relevant to GEM program design but
did not really fit into the scheme of the previous chapters.

The appendixes contain a wide range of reference
information. Appendix A is a glossary, while Appendix B
provides a listing of GEM functions. Weve also included
the complete code listings to DEMO (in Appendix D) and
of its resource file (in Appendix E). In Appendix C, we
walk you through a sample session with the GEM
Resource Construction Set. (The Resource Construction
Set is a very powerful tool for building GEM programs,
and it is included in the GEM Developers Kit.) Finally, in
Appendix F we list all the functions you can use when
displaying to GEM metafile devices.

There are several ways to read this book, including the
obvious method of reading cover to cover. You might want
to read the reference chapters on the A E S (Chapter 2) and
the VDI (Chapter 3) somewhat quickly on the first reading,

Preface XIII

as well as the DEMO example (Chapter 5) and then refer
to these chapters again as you are writing your own GEM
application. Much of the subtler material contained in
these chapters will be more useful and perhaps more
understandable when you are actually writing your own
GEM program.

OTHER SOURCES
OF INFORMATION

Since we could not provide all of the information you'll
need to program GEM in a single volume, we've aimed
instead to provide the conceptual framework you'll need.
For detailed information on GEM, we recommend the Digi
tal Research GEM Developer's Kit. If you plan to develop
professional applications for GEM, you'll probably want to
subscribe to Digital Research's GEM Programmer's Sup
port service. If you have access to CompuServe, you can
get information by typing "GO DRI" at the prompt, and
investigating the DRI Forum.

We are interested in your opinions about this book. We
can be reached by sending electronic mail to CompuServe
account 76244,367.

PROGRAMMER'S GUIDE TO GEM

W H A T IS GEM? 3

THE COMPONENTS OF GEM 8

W H A T GOES INTO BUILDING A GEM APPLICATION 15

SUMMING UP 23

Introduction to GEM 3

mWm his chapter introduces you to GEM by explain-
j f ing its basic features. In the first part of this
» I chapter, we will briefly summarize what GEM

does and relate it to other similar software
packages . We will also give you an overall sense of what
this book has to offer and what you will need to use it.
Next, we will focus on the components of GEM and their
interrelationships as well a s the way GEM relates to its
host computer. Finally, we will present the context for
GEM application development, including the tools you can
use, what programming techniques you should be aware
of, and what kind of hardware environment is appropriate
for GEM application development.

WHAT IS GEM?

GEM is an operating environment. The word GEM is
an acronym for Graphics Environment Manager. It provides
a variety of high-level functions whose purpose is to make
it easier for you, the applications programmer, to develop
software that is both efficient and easy to use.

An operating environment is similar to an operating sys
tem. Whereas an operating system allows your program to
utilize console and disk devices in a standard manner, the
GEM operating environment allows your GEM program to
control a number of graphics devices in a consistent and
standard fashion. Thus, GEM promotes program portabil
ity across many different graphics devices.

Perhaps an even more important function of the GEM
operating environment is its role in your program's inter
face to the user. If you think of the operating system as
the way your program talks to the computer, you can
think of the operating environment a s the way your pro
gram talks to the user. Figure 1.1 shows this relationship
between your program, the user, and the computer. With
the GEM functions, your program can control the devices

PROGRAMMER'S GUIDE TO GEM

the user sees and manipulates, including the keyboard, the
mouse and the screen and also the printer and the plotter,
and even a film recorder capable of producing high-
resolution slides. GEM is very similar to the operating sys
tem in that it allows you to write your program without
having to worry about what kind of mouse is attached to
the computer, what resolution the screen has, whether the
computer's screen is color or monochrome, or most of the
other myriad of differences between graphics devices.

.
The User

S 4

The GEM Operating Environment

The GEM A p p l i c a t i o n

The Operating System t
/ \

The C o m p u t e r

S 4

F i g u r e 1 . 1 : The Role of the GEM Operating Environment

Introduction to GEM 5

Why Program with GEM?

One big reason for using GEM is that GEM is designed
to help you write programs that work with many different
graphics devices. It also facilitates making your program
portable onto very different microcomputers. GEM is cur
rently available for the IBM PC and compatible computers,
running with the Intel 8086 microprocessor architecture.
GEM is also available on the Atari ST, which uses the
completely different Motorola 68000 microprocessor. We
know of no other operating environment that is a s port
able a s GEM. GEM's program portability helps to protect
your software investment.

Another big advantage of GEM is the framework it pro
vides to make GEM programs easy to use. In this way, it
is similar to several other environments on the market
today, including Apple s Macintosh, Microsoft's Windows,
and IBM's TopView.

GEM programs are easy to use for several teasons.
First, the visual effects of graphics can generally com
municate information more effectively than text. The
graphical images that your program uses can serve to
suggest how your program works. For example, the
graphical image of a folder suggests that it contains docu
ments, drawings, and even other folders. Second, GEM
provides standard controls that all GEM applications can
use in a consistent fashion. For instance, one of the stan
dard controls is the menu bar across the top of the
screen. Once the user learns how to use the menus in one
GEM program, she already knows how to operate the
menu bar in your GEM program. The s ame holds true for
manipulating GEM windows and for selecting files.

GEM provides some powerful functions that you can
use to build very interactive applications. By "very inter
active," we mean a type of user interface where a signifi
cant portion of the design and development effort goes

PROGRAMMER'S GUIDE TO GEM

into making the program easy to use.
S o m e of these functions deal with events. Events con

sists of anything from a key getting pressed on the key
board, to a timer signalling that some amount of time
has elapsed, to a mes sage indicating that the user has
selected a particular item from the menu. A particularly
useful capability of GEM's is that it allows your program
to wait for one or more of these events to occur. This
means that your GEM program can make very efficient
use of the computer by not running until one or more
relevant events have occurred and by thus allowing other
processes, such as desk accessories, to use the computer
instead. Programs written for the Macintosh, for example,
only look at single events. This limited multitasking capa
bility of GEMs—that is, its ability to wait for multiple
events—makes it easier to build very interactive programs.

It's important to note that although Digital Research
may develop a true multi-application (as well a s multi
tasking) version of GEM, the current version only supports
a single application running at any given time along with
a number of auxiliary programs (the desk accessories).
Both Microsoft's Windows and IBM's TopView will support
multiple concurrent applications, provided they are "well-
behaved," which means that they don't directly manipulate
the computer's hardware. Most popular applications, by
the way, are not well-behaved.

GEM, on the other hand, was built for a single applica
tion, which has the very beneficial effect of allowing pro
grams written for GEM to run, on the average, much
faster than programs written for Windows or TopView.
GEM also takes less RAM to run programs, which means
that your GEM program will run on a greater range of
IBM PCs and PC compatibles than a Windows or TopView
program. Furthermore, GEM is available on other types of
computers, such as the Atari ST. Currently, Windows and
TopView are only available for the IBM PC and its clones.

Introduction to GEM 7

If your program really needs multitasking, Digital Research, provides
other alternatives for applications requiring multitasking, most notably Con
current PC-DOS (which, by the way, will run GEM programs). Contact
Digital Research for more information about Concurrent PC-DOS.

What This Book Has To Offer

This book can be read by anyone curious about how
the GEM operating environment is used to construct inter
active graphical applications. Although GEM programs can
be written in a number of different languages, including
Pascal, Fortran, or assembler, in this book we have pro
vided all of our examples in C, and we as sume that you
have a working knowledge of C. If you haven't pro
grammed in C before, you will need a companion text on
the C language. We also use certain conventions with our
C programs to promote portability. We'll talk about these
conventions in more detail later in this chapter.

You'll probably get the most out of this book if you've
also acquired the GEM Developer's Kit, available from
Digital Research or Atari. In fact, this book a s sumes you
have access to a number of tools available in the kit if
you plan to run and modify the examples.

This book is an ideal companion to the GEM Devel
oper's Kit for several reasons. First, this book provides a
more gentle and thorough introduction to the ins and outs
of GEM than the Developer's Kit documentation provides.
We've included a number of small sample programs that
illustrate how to use GEM functions to create an applica
tion program. We've also taken two of the sample pro
grams available in the Kit, HELLO and DEMO, and
thoroughly revised and commented them. Finally, we've
attempted to explain not only what the functions do, but
also why they are built the way they are, along with their

8 PROGRAMMER'S GUIDE TO GEM

quirks, oddities, and some historical perspective. The prin
ciple that prompted and guided this b o o k s creation is that
it's easier to remember things when you understand them.

THE COMPONENTS OF GEM

Now that you have a rough idea of what GEM is and
how it relates to other alternatives in the microcomputer
software marketplace, let's explore the components of
GEM in more detail. The purpose of this section is to
give you an overall understanding of how GEM can be
used by your program.

GEM consists of two major functional units: the Appli
cation Environment Services (AES) and the Virtual Device
Interface (VDI). The A E S is further subdivided into a set
of libraries, a limited multitasking kernel, and a Screen
Manager. The VDI is composed of a Graphics Device Oper
ating System (GDOS) that provides a complete set of basic
graphics functions, and a set of drivers for graphics
devices. While we will be discussing the details of each of
these components in the next two chapters, we want to
describe the basic roles of GEM's two subsystems here.

The Role of the VDI

The VDI provides one essential service for the program
mer: a generalized logical interface between the programmer
and any graphics device. A few years ago, each graphics
device came with its own programming interface or set of
libraries. When a programmer wanted to write a program
that used Company X's graphics display, she would have
to follow the conventions and syntax of the libraries of
Company X. If the programmer then wanted to run this
application on Company Y's machine, she would have to
rewrite the application using Company Y's conventions.

Introduction to GEM 9

Since no one who had to work in this area thought that
this was a very a good system, a standard interface for all
graphics devices was developed.

Unfortunately, however, there are several flavors of this
standard. The real usefulness of a graphics standard is
that a single program written to a standard set of graphics
functions can be used on a variety of graphics devices
without being rewritten, recompiled, or relinked. Such a
one-to-many relationship between application and devices
allows a programmer to write device-independent applica
tions. The GEM VDI provides this support.

As part of the support for a true graphics standard, the
GEM VDI provides a large set of drivers to make the final
connection between the software and the hardware. Since
each device has its own set of commands , the driver must
translate the requests of the application into the hardware
instructions that the device recognizes. Thus, for each dif
ferent installed device on the system there must be a
driver. The VDI's GDOS is responsible for making the con
nection between the application program and the specific
device driver.

By the way, the term "virtual" means that now the pro
grammer is writing her application to a virtual graphics
machine. This virtual machine has all the characteristics of
all the various graphics devices. It is a supermachine that
is at once a plotter, a CRT device, a light pen, a mouse,
and a graphics printer. For instance, the programmer can
write an application that uses color, and it will still run on
a monochrome display. The GEM VDI will interpret the
applications request for color, recognize that the installed
device does not support color, and make a suitable choice
between black (for every color but white) or white.

The Role of the AES

One of the original goals of GEM's designers was to
provide a graphical user interface to a computer. This

PROGRAMMER'S GUIDE TO GEM

interface is now known as the GEM Desktop. As Digital
Research, Inc. (DRI) designed and built the Desktop, they
designed and built a set of software routines that were
needed by the Desktop. DRI gathered these routines into 11
software libraries, each categorized by their overall func
tion. For instance, all the routines that manipulate win
dows were collected and form the Window Library of the
A E S . Similarly, all of the event routines form the Event
Library, and so on. Thus, the A E S represents a set of
tools that was found useful in writing the first GEM appli
cation, the Desktop, and that now are useful in developing
any GEM application.

The A E S libraries are categorized by the kind of func
tions they deliver. There are libraries for window handling,
event and resource management, and eight other cate
gories of services. The A E S Screen Manager helps to
handle the mouse and the window mechanism, and the
limited multitasking kernel coordinates the various inde
pendent tasks going on within GEM, including the Screen
Manager itself, the desk accessories, and your program.

The kernel and Screen Manager are a part of the A E S
because they are essential for the event-handling system.
They are not visible to the programmer, in that the service
they provide is an action resulting from the use of the
A E S libraries and not something directly controlled by the
programmer. In other words, your program does not com
municate directly with either the kernel or the Screen
Manager.

The library functions of the A E S rely on basic graphics
primitives in the VDI to construct and manipulate the fea
tures of applications, including windows, dialogs, and alerts.
Thus, while the VDI provides routines to draw a line, display
text, and accept input from the mouse and keyboard, for
example, the A E S uses those routines to provide functions
that display a form on the screen device and allow the user
to enter information into the fields of that form.

Introduction to GEM 11

While the A E S uses VDl functions, the VDl does not use
any A E S function. Thus, the A E S can be viewed as sitting
on top of the VDl, in a top-down hierarchy. A few GEM
applications use the VDl exclusively and do not use the A E S
at all. We do not recommend this, mostly because it pre
cludes the use of desk accessories, but also because we
advocate using A E S features like windows and menus to
give a consistent user interface to GEM applications.

How GEM Works with the Operating System

The A E S and VDl are two legs of the tripod on which
GEM applications are built. The third leg is the operating
system, as Figure 1.2 illustrates. Le t s talk about the role
of the operating system in GEM programs.

A p p l i c a t i o n P r o g r a m

i f i r ^ r

VDl AES DOS

GDOS BIOS

Device Drivers Device Drivers

Camera Mouse Printer Screen Keyboard Disks

F i g u r e 1 .2: The Relationship between the AES, VDl, and DOS

PROGRAMMER'S GUIDE TO GEM

Throughout this book, we use the generic term DOS,
by which we mean IBM's PC-DOS, Microsoft's MS-DOS,
Digital Research's GEMDOS, or Atari's TOS. Please note
that GEM does not attempt to provide many of the serv
ices offered by DOS, such as file and memory manage
ment, but instead relies on the underlying operating
system to provide these services.

This relationship has several implications for GEM pro
grams that are important to understand. First and fore
most is that your GEM program must never make any
calls to the operating system's console input and output
routines. Instead, all keyboard and mouse input and all
screen output should be performed via GEM calls. The
reason for this is that GEM needs complete control of
these devices in order to consistently monitor and keep
track of their internal state. If the screen is in graphics
mode and your program performs character output, it can
cause unpredictable results on the display.

Another implication of GEM's relationship with the
operating system is that GEM programs use either DOS
or language-provided function calls for reading and writing
information to disk. The sample programs provided with
the GEM Developer's Kit, a s well as most of Digital
Research's GEM applications (such as GEM Desktop,
Draw, Paint, WordChart, and Graph), use DOS calls for
disk I/O. It is also possible to write GEM programs in
other languages, such as Turbo Pascal, and use the read
and write calls for file I/O provided by the language run
time library.

There are a limited number of GEM routines that also
use DOS functions to provide certain services to your pro
gram. S o m e of these calls allocate memory and then load
device driver code or type fonts from disk files, while
others output graphics commands to disk files, so that
they can be saved and displayed at s o m e later date.

Introduction to GEM 13

Currently, GEM is available for PC-DOS and GEMDOS/
TOS, and it will be available for other operating systems,
such as Digital Research's Concurrent DOS 286. To maxi
mize the portability of your program across different oper
ating systems, keep all DOS calls localized to one or a
few of your p r o g r a m s modules. This way, if the details of
the operating system interface change, you will easily be
able to locate the code that needs to be changed.

How GEM Is Laid Out in RAM

In order to illustrate how the components of GEM fit
together, let's look at the way GEM uses memory. The
information we present here is specific to GEM on the
IBM PC, but we will also explain how GEM's use of mem
ory differs on the Atari ST.

The functional layout of GEM and a GEM application
on a PC is shown in Figure 1.3. The base for most PC
applications, the DOS, usually resides partly in low mem
ory and partly in high memory. We've depicted DOS as
residing in one place in order to keep the map simple.

Above DOS in Figure 1.3 comes the GEM code and
data, which is divided into the VDI and the A E S . The VDI
area contains code for the VDI functions, a s well a s the
GDOS, except on the Atari. On the Atari, the GDOS is
loaded optionally, whereas it is always present on the IBM
PC. Since the GDOS is responsible for loading device driv
ers and type fonts, the fact that the GDOS may or may
not be present on the Atari has some important implica
tions for Atari GEM programmers. S e e Chapter 6 for
more information.

The A E S code area contains the A E S services (or
libraries), the Screen Manager, and the kernel. There is
also space allocated for the screen driver, the system font,
a menu/alert buffer, and the desk accessories. The Screen
Manager requires the screen driver and system font, which
means that these have already been loaded into the A E S

PROGRAMMER'S GUIDE TO GEM

High Memory Addresses

Allocatable/Free Memory:
Resource Files
Additional Drivers
Loadable Fonts

Your GEM Application
Goes Here!

Desk Accessories

AES Libraries
Screen Manager
Kernel
Menu/Alert Buffer
Screen Driver
System Font

VDI Services
GDOS

o
Q

Low Memory Addresses

F i g u r e 1.3: The GEM Memory Map

area when your GEM application gets loaded.
The menu/alert buffer is an area of RAM that is big

enough to hold one-fourth of the screen. Whenever a
drop-down menu or a form alert (a GEM warning or error
message) is activated, the screen image beneath the menu
or alert is saved into this buffer and is restored when the
menu or alert is dispensed with. This is an optimization to
speed up such common operations a s the display of
menus and warnings. GEM does not save the area under

<
LU

<

g

o
CL
Q.
<

Introduction to GEM 15

overlapped windows, but instead relies on the applications
and accessories to redraw these areas when told to (we'll
talk some more about this later in the chapter, in the sec
tion entitled "Division of Labor"). The amount of memory
required for this menu/alert buffer depends on the resolu
tion of the screen device. To understand how much mem
ory might be required, see the section on "Raster Opera
tions" in Chapter 3.

The size of the desk accessory area, like that of the
menu/alert buffer, may also differ on various systems.
GEM will load up to three desk accessories. Before each
accessory is loaded, GEM checks to see if there is enough
room to load the GEM application. Early versions of GEM
reserve 128K for the application; the latest version of
GEM reserves approximately 192K. GEM won't load any
more desk accessories if there isn't enough memory left
for the GEM application.

On the IBM PC, the early versions of GEM can load
themselves into 256K and leave 128K for the GEM appli
cation (depending on the screen device, it may not be
able to load many desk accessories, however). Because it
is slightly larger and because it reserves more room for
the application, version 2 of GEM requires 384K of RAM.
The GEM application is responsible for managing the
memory set aside for it. It is very important to remember,
however, that the application must leave some memory
unallocated in order to let the GEM functions that allocate
memory work properly.

WHAT GOES INTO BUILDING
A GEM APPLICATION

With this survey of the components of GEM in mind,
let's look briefly at what goes into building a GEM appli
cation. We will talk about the components of the program,

16 PROGRAMMER'S GUIDE TO GEM

including the bindings, resources, and overall program
structure. Then we will discuss the GEM Developers Kit,
along with what assistance you can expect from it in
learning how to program and in actually programming
GEM applications. Finally, we will describe the coding con
ventions for GEM and for this book, as well as what we've
used for development systems.

The Components of a GEM Application

For purposes of this discussion, we can divide up the
typical GEM application into the following components:

Bindings

Resources

Application-specific code

L e t s discuss each of these components in turn.

The Bindings

The first component, the bindings, basically consists of
a set of procedures in the language that the program is
written in. In our examples, the bindings are mostly in C,
with a tiny amount in assembler code. These bindings,
which are provided in the Developers Kit, basically take
their parameters and pack them into the GEM interface
arrays, along with a function number to tell GEM which
function to perform. Once the arrays have been filled, the
bindings call a small assembler routine with the addresses
of the arrays. This small assembler routine executes an
interrupt on the IBM PC architecture or a software trap on
the Atari S T architecture, and thus passes control to GEM.
This kind of interface is almost exactly the method used
for calling DOS in both the PC and the Atari environ
ments. Once GEM has performed its assigned task, it

Introduction to GEM 17

returns to the binding function, and any information to be
passed back to the application is unloaded from the
arrays into the designated storage.

The Developer's Kit provides some additional code that
you can think of as a small run-time library. This addi
tional code includes start-up modules to make sure the
application releases enough memory. It also includes some
miscellaneous string handling and arithmetic functions
and bindings to DOS functions.

The bindings are grouped together into several large
files. You may want to unpack these binding files into
smaller files in order to exclude the binding functions (and
code) that your application never uses, thereby reducing
the size of your application.

Resources and Resource Files

The second component of a GEM application, the
resources, are data structures that are used to build display
and/or input specification information for certain A E S func
tions. Resources are used to represent the menu bar and all
of its associated submenus, form alerts, and dialogs.

Although your program can build resources, they are
usually complex enough to make it undesirable to do so.
One of the nicest features of GEM is a tool called the
Resource Construction Set, or RCS, which comes in the
GEM Developers Kit. The specific purpose of the RCS is
to assist you in building resource files. Resource files,
which contain the resource data structures, can be loaded
separately by your application. Although this scheme may
sound overly complicated, it has some very important
advantages.

First, it allows you to construct the images, dialogs,
and alerts that your application uses before you write any
application code. Thus, the RCS can serve as a proto
typing tool for your application.

18 PROGRAMMER'S GUIDE TO GEM

Second, the resource file can be edited separately from
your program. This means that any text to be displayed
by your program can be changed without the need for
modification to the program itself. Thus, somebody who
speaks French can translate the resources for your appli
cation into French, and suddenly there's a whole new mar
ket for your program. Because it offers these capabilities,
the Resource Construction Set is, in our opinion, one
of the most exciting parts of GEM.

Application-Specific Code

The third component of your GEM application is the
application-specific code that you develop to make your
program do what it was designed to do. The structure of
the GEM services has a couple of implications for the way
you structure your program. We will preview these impli
cations here and then discuss them in greater depth in
Chapter 6.

Division of Labor

The first implication to be aware of is the division of
labor associated with GEM programs. In order to run as
efficiently a s possible, GEM performs part of the job and
expects your application to perform the rest. An example
of this concept is GEM's approach to handling overlapping
windows. S o m e windowing systems will save the window
area when another window is overlaid on the current win
dow. The designers of GEM felt that this approach
required too much memory, and so every GEM application
must be able to redraw the contents of a window when
ever that window is uncovered. This requirement to
redraw the screen at any time makes programs a bit more
difficult to write.

There are several other examples of functions that
require the cooperation of your program and GEM. For
example, the A E S Screen Manager handles a considerable

Introduction to GEM 19

amount of mouse activity in cooperation with your pro
gram, including any user selection of a menu item or
click on a window control point. When the user wants
to resize the window, for instance, the Screen Manager
handles all of the user interaction from when the user
clicks on the sizing box to when she releases the button
to indicate the new window size. When the button is
released, the Screen Manager sends your application a
mes sage with the new size. Your application can either
reset the window size by calling GEM with the size or not
do so, depending on whatever it determines is appropriate.

Event-Driven Code

Another way in which the structure of GEM services
impacts the structure of examples in this book and of
your own code has to do with event-driven programming.
Event-driven programming is a style of building programs
that makes for extremely interactive applications. GEM
provides a function named evn t_mu l t i () to wait for one or
more events at any time. Most programs use evn t_mul t f ()

to accept user input. The ideal here is to handle any kind
of input from the user in a consistent fashion, which can
be more easily achieved if all of the input is handled from
a single point in your program. This style of coding is
conducive to avoiding program modes, or input states,
which are difficult for the user to recognize and deal with.

We will discuss event-driven programming in more
detail in Chapter 6, where we will also discuss various
other design considerations. In addition, the examples
throughout this book have been written with this basic
principle of GEM program structure in mind.

The GEM Developer's Kit

The GEM Developer's Kit is a collection of tools, pro
grams, and manuals that facilitate the construction of

20 PROGRAMMER'S GUIDE TO GEM

GEM programs. Although it would be possible to con
struct bindings for GEM, there are several tools included
with the Developers Kit that make it good value.

What's in the Kit

The Digital Research GEM Developers Kit includes

C bindings for GEM A E S and VDI

The GEM Resource Construction Set

The GEM Icon Editor

GEMSID, a symbolic debugger

Reference manuals for all of the above

Examples of GEM applications (HELLO and DEMO)

We ve already talked about the bindings and the
Resource Construction Set. The Icon Editor allows you to
construct bit images to form icons. GEMSID is derived
from Digital Research's SID86 symbolic debugger, but it
contains some modifications to assist the GEM program
mer. The reference manuals are a bit terse, and Digital
Research plans to release new documentation in the near
future. There are many pieces of sample code included in
the Kit, much of which is very informative when you take
the time to study it carefully. The extent of the comment
ing in the sample code ranges from inadequate to fairly
extensive.

Digital Research provides technical support for GEM pro
grammers through the public network CompuServe. Part of
the support is available via a public forum, but the most
valuable part of the service, called GPS (for "GEM Program
mer's Support"), is available as an added-cost subscription.
The GPS members have access to more direct contact with
technical service representatives, as well as to a large
amount of code contributed by other GEM programmers.

Introduction to GEM 21

What's Not in the Kit

The GEM Developer's Kit does not include, however, a
number of tools vital to GEM programming. The Kit con
tains no compiler, assembler, or linker, even though it
does contain bindings for a variety of languages. In Chap
ter 6 we present a brief critical survey of the tools we've
used in writing GEM applications.

Development System Recommendations

You must have 384K RAM, a dual floppy system, and a
graphics card in order to run a GEM application on an IBM
PC or compatible computer. We recommend that you have a
hard disk. In this book, we've used an IBM PC XT with
512K RAM, a 10MB hard disk, and an IBM Color Graphics
Adapter card. We've also used an IBM PC AT with 1.5MB
RAM and an Enhanced Graphics Adapter card.

We've tested all our examples on an Atari 520 S T with
1MB RAM and a 15MB hard disk, which we recommend
for serious software development. We do not know if it is
practical to develop GEM applications on an Atari system
with a single floppy drive. An alternative for development
of Atari GEM applications is to develop first on the IBM
PC and then port the application over to the Atari. We
recommend this method if you are planning to port your
application, because it is easier to port from the Intel
architecture to the Motorola architecture than it is to port
the other way.

C Language Conventions

While the C language is a fairly portable language, we
have found that there are some differences between com
pilers, operating systems, and microprocessor architec
tures that can be worked around by using certain
programming conventions. There are two files included
with the Developer's Kit that contain macro definitions

PROGRAMMER'S GUIDE TO GEM

(the C language #define) that can be changed for dif
ferent environments to allow the code using these macros
to work in a consistent manner across the different
environments.

The first file, called PORTAB.H, contains a number of
alternative type identifiers. In C, the integer type can be
one size (16 bits, for example) on one machine, and
another size (32 bits) on another. We use WORD (in capital
letters, to emphasize that this is a macro) to be whatever
type declaration the compiler needs to produce a signed,
16-bit integer. A list of the types we use includes

#define BOOLEAN short int / * 16 bits * /

#define VOID int / * nothing * /

#define BYTE signed char / * 8 bits * /

#define UBYTE unsigned char / * 8 bits * /

#define WORD signed short / * 16 bits * /

#define UWORD unsigned short / * 16 bits * /

#define LONG signed long / * 32 bits * /

The second file, MACHINE.H, helps to handle details
like pointer size and byte ordering. In small model appli
cations on the IBM PC, a pointer requires only 16 bits,
but it can only address the program's local data area
(within 64K). The GEM A E S requires accessing informa
tion outside of this area (for example, in resource files).
Therefore, the example programs often use the LONG
type to hold pointers that can point anywhere in memory,
and the ADDRQ function to turn a short local pointer (16
bits) into a 32-bit global pointer. Since the 68000 architec
ture ordinarily uses 32-bit pointers, the ADDRQ function
just returns the pointer itself.

Introduction to GEM 23

Some Conventions Used in This Book

Please note that throughout this book, all GEM function
will be printed in boldface and in a special program font. The
same program font, minus the boldface, will be used for the
examples presented in the text as well as for the variable
names associated with those examples or with the GEM
Developer's Kit. In this way, anything associated with pro
gramming GEM will clearly stand out from the rest of the
text. Finally, any special terms associated with GEM will be
italicized when we introduce and define them.

SUMMING UP

In this chapter we have presented an overview of GEM.
We've discussed the components of GEM, the A E S and
the VDI, along with how these components work with
DOS and your program. We've also talked a little bit
about how a GEM program gets built.

In Chapters 2 and 3, we delve into the details of the
A E S and VDI, respectively. We explore two sample appli
cations, HELLO and DEMO, in detail in Chapters 4 and 5.
In Chapter 6, we will present a number of program design
issues. We have saved this information for last in order to
be able to discuss program design in the context of the
GEM functions covered in the rest of the book. Feel free,
however, to refer to Chapter 6 at any point for information
about various coding techniques a s well as about the
philosophy behind the design of applications for GEM.
Finally, a s you read, you may wish to consult the glossary
located in Appendix A to look up unfamiliar terms.

PROGRAMMER'S GUIDE TO GEM

OVERVIEW OF THE AES'S ROLE IN GEM 27

THE COMPONENTS OF THE AES 28

GEM EVENTS 29

THE W I N D O W LIBRARY 50

THE OBJECT LIBRARY 65

THE RESOURCE LIBRARY 86

THE M E N U LIBRARY 93

THE FORM LIBRARY 100

THE APPLICATION LIBRARY 106

THE GRAPHICS LIBRARY 112

THE FILE SELECTOR LIBRARY 120

Application Environment Sewices 27

T his chapter presents the features of the Applica
tion Environment Services (AES), which include
event handling, objects, and window manage
ment. We will have a long talk about the GEM

event-handling system. Perhaps the second most signficant
topic in this chapter is the concept of a GEM object.
Because the original DRI documentation does not present
a clear picture of an object and its importance, we have
greatly expanded on the DRI discussion. We will also intro
duce GEM menus, alert boxes, forms, dialogs, and windows.

In the following sections, we will be discussing each
individual A E S library. At the beginning of each section,
we list the routines contained in the library. Not all of the
functions will be discussed, but we will give a sample C
language calling sequence for each library function at the
end of each section.

We have attempted to illustrate the discussion with
code samples. However, to provide small complete pro
grams to illustrate each A E S function (or group of func
tions) is impossible. We do provide small programs that
illustrate the VDI calls (the next chapter), but because the
A E S builds larger, more complex graphical objects from
the VDI primitives, we must use pieces of larger programs
to illustrate the A E S functions. As a way of doing this, we
have taken to unabashed forward referencing to code in
the DEMO program presented in Chapter 5.

OVERVIEW OF THE AES'S
ROLE IN GEM

Basically, the A E S provides a set of routines to the
programmer so that he doesn't have to reinvent the wheel.
The A E S is like a template: a set of useful, partially filled
in forms that make your programming job easier. For

28 PROGRAMMER'S GUIDE TO GEM

instance, you could build your own version of a window
using the graphics tools available in the VDI. Chances are
you would also build a set of routines that manipulate
your windows. S o you would build a window creation
function, then a window movement function, then a win
dow close, delete, and so forth. All these routines and
more are made available to you through the AES . There
are, however, some rules to follow, which we will explain
as we deal with each library of the A E S both here and in
Chapters 4 and 5.

A major strength in using the A E S is that it provides
consistency in two ways. First, there is the consistency
that comes from giving the user the s ame interface for
many different applications. Second, there is the consist
ency that the programmer gains from using the s ame rou
tines for different applications. Neither the user nor the
programmer has to learn a different way of doing things.

THE COMPONENTS OF THE AES

As we mentioned in Chapter 1, the A E S is composed
of a limited multitasking kernel, a Screen Manager, and
11 libraries: Application, Event, Menu, Object, Form,
Graphics, Scrap, File Selector, Window, Resource, and
Shell. Figure 2.1 illustrates the organization of the AES .
The kernel is simple and controls the various tasks of the
GEM environment, which includes the Screen Manager.
The Screen Manager is the controlling agency that handles
all user input when the mouse cursor is off the window's
work area. Both these modules will be discussed in
greater detail in the next section.

All the functions of the A E S that are available to the
programmer are organized in sets of related functions
called libraries. For instance, all the functions that control

Appäcation Environment Sewices 29

windows are grouped in the Window Library, all the event
functions in the Event Lbrary, and so on.

Desk Accessory
Buffer

Menu and Alert
Buffer

Screen
Manager

Kernel

Libraries

F i g u r e 2 . 1 : The Organization of the AES

GEM EVENTS

The GEM A E S Event Library provides the foundation
that governs all user input in a GEM application. First,
lets define an event to be some action that is external to
the current task and that may require attention. The A E S
defines the following events:

Keyboard interrupts

Mouse movement

PROGRAMMER'S GUIDE TO GEM

Mouse button changes

Timer expiration

Messages

Notice that all these events are either I/O events or
actions external to the task (which is really saying the
s ame thing): a key is pressed, the mouse is moved, a
mouse button pressed or released, a mes sage is received
from another task, and so on. In any of these cases, the
action of an event is some sort of input to the task.
(Please note that we use the terms task and process inter-
changably. They mean the s ame thing in the context of
this discussion.)

For the moment, let's focus on what happens during
keyboard input to demonstrate the utility of the GEM
event system. In most interactive applications, the pro
gram just reads the keyboard. If there is nothing in the
keyboard buffer, then nothing is returned to the program.
Now since most interactive programs depend on getting
control commands from the user, when there is nothing in
the input buffer, the program can do nothing and is
forced to keep asking the user for input. Thus, the pro
gram continually polls the keyboard, a procedure which is
called busy waiting.

The following loop is an example of polling the
keyboard:

read keyboard

while(character not entered){

read keyboard

}

Such a polling loop leaves the CPU unavailable for any
other task. If you have many devices to handle, what hap
pens if another event occurs while you are polling a differ
ent device? For instance, what if the application expects

Application Environment Semices 31

input from both a keyboard and a mouse? In this case,
the polling loop changes to the following:

while(){

if (read keyboard) then do_keyboard()

else

if (read mouse) then do_mouse

}

It is possible, however, that the user will move the mouse
while the polling loop interrogates the keyboard, resulting
in a missed mouse movement.

The Multiple Event Handler

The GEM A E S provides a function whereby your pro
gram can wait for several events without either tying up
the CPU by polling or missing an event. The kernel wakes
your program up whenever input comes from the specified
devices, thus allowing the program to process the data be
fore going back to sleep to wait for the next set of input.
This function is called the multiple event handler, evnt_mult i ()

(see Figure 2.2). evnt_mult i () keeps everyone happy: the sys
tem isn't slowed down by one process hogging the CPU,
and each application can get the kind of information it
needs. In the case where several events happen simultane
ously, each event is buffered by GEM and made available to
the application when it is ready to handle the event.

The ability of GEM to handle multiple events is a feature
that distinguishes it from the Macintosh system. GEM's event
system provides a more efficient mechanism to handle the
many different inputs of a graphics environment. Because
GEM was initially designed for a much slower and inefficient
CPU and operating system, the Intel 8088 running MS-DOS, its
event system had to be more efficient than the Macintosh's.

PROGRAMMER'S GUIDE TO GEM

which = evnt_multl(MU_BUTTON | AAU-MESAG | AAU-MD1,

num_clicks, wich_button, but_state,

mouse_in_out, mevntl_x, mevntl_y,

mevntl_width, mevntl_height,

0,0,0,0,

addr_msgbuf,

lo_timint, hi_timint,

&mouse_x, &mouse_y, &mouse_but, 0,

&nbut_times)

w h e r e

INPUT:
num_clicks— # of times application expects a click.
wich_button—Which button was clicked.
but_state—Button state application is waiting for.
mouse_in_out—Waiting for entry/exit of rectangle.
mevnt l_x—X coordinate of mouse 1 rectangle.
mevntl_y—Y coordinate of mouse 1 rectangle.
mevntl_width—Width of mouse 1 rectangle.
mevntl_height—Height of mouse 1 rectangle.
0,0,0,0—We are not using mouse 2 rectangle.
addr_msgbuf—Address of 16-byte m e s s a g e buffer.
lo_timint—Low word of timer interval (LONG).
hi_timint—High word of timer interval.
0—We are not waiting for keyboard event.

OUTPUT:
mouse_x—X coordinate of mouse when event occurred.
mouse_y—Y coordinate of mouse when event occurred.
mouse_but—Button state when event occurred.
nbut_times— # of times button entered state.

F i g u r e 2 . 2 : Example of evnt_jnulti() Call

evnt_mult i () al lows the application to wait for any and all
types of events (keyboard input, m o u s e button changes ,
m o u s e m o v e m e n t , m e s s a g e s , or a t imer running out).

Appäcation Environment Semices 33

evnt_mul t i () has the largest set of parameters of all the
GEM functions, because it essentially duplicates the work
done by all of the other event functions. Depending upon
how many and what kind of events you want to wait for,
evnt_mult i() needs information for up to two sets of mouse
events as well as for what events to wait for, where to store
the return values in the case of a keyboard event, and so on.

evnt__multi() waits until one or more of the events that
the programmer has specified occurs, and returns which
events happened. For instance, look at Table 2.1 to see
the value of the input flag that identifies which events to
wait for. If the flag was set to 0x003F; for example, the
caller would be waiting for all the possible events (the
sum of all the defined flags in Table 2.1). If the flag were
0x0017, then evn t_mul t i () would wait for either a keyboard,
mouse button, mouse movement, or mes sage event. To
find out which of the specified events happened, check
the return value of the evn t_mul t i () call (the variable which
in Figure 2.2). evn t_mul t i () returns the logical OR of all
events that the user was interested in and that occurred.
For instance, if the user used our first flag example
(0x003F) and both a mouse movement event happened
and a mes sage happened, then the return code from

F l a g D e f i n e d N a m e E v e n t

0x0001 MÜ_KEYBD Keyboard

0 x 0 0 0 2 MCLBCJTTON Mouse Button

0x0004 MÜ_M1 Mouse 1 Movement

0 x 0 0 0 8 M ü j v \ 2 Mouse 2 Movement

0x0010 MÜ_MESAG Message

0 x 0 0 2 0 MÜ_TIMER Timer

T a b l e 2 . 1 : Definition of the Event Flags

34 PROGRAMMER'S GUIDE TO GEM

evn t_mul t i () would be 0x0014 (0x0010 for the message
event and 0x0004 for the mouse movement).

S e e Listing 5.6 in Chapter 5 for an example of using
evn t_mu l t i () .

When the application calls evn t_mul t i () , the application
really no longer needs to use the CPU, since the applica
tion wants to wait until some I/O happens, which is not a
CPU function. In this case, the application is said to be
blocked from execution until some specific external event
happens. For efficiency reasons, the A E S kernel replaces
the blocked application with a process that is ready to
run, such as the Screen Manager.

The Kernel

The GEM kernel places a blocked process on the Not
Ready list, which contains all the processes that are wait
ing for some kind of external event (usually I/O) that
hasn't happened yet. Of course, there is also a Ready list
containing all the processes that are ready to run—that is,
not waiting for any outside event. By definition, the pro
cess on top of the Ready list is currently running. Figure
2.3 illustrates how the kernel dispatches processes.

The kernel's job is to move the processes in and
between the two lists. The Ready list is managed in what
is known as a round robin scheme without preemption.
"Round robin" means that when a process comes off the
top of the Ready list and is either moved to the Not
Ready list or merely terminated, the remaining processes
on the Ready list are moved up one position, as shown in
Figure 2.3. "Without preemption" means that when a pro
cess is added to the Ready list, it is always added to the
bottom of the list, and no task has priority over other
tasks. Each gets executed in the order in which they
appear in the Ready list.

A process is said to be dispatched when it is moved

Application Environment Sewices 35

from the Ready list to the Not Ready list. Thus, you might
hear of the term dispatcher in discussions of the kernel's
operation (a dispatcher or scheduler is part of a kernel).

F i g u r e 2 . 3 : How the Kernel Dispatches Processes

In contrast to the Ready list, the ordering of the Not
Ready list has no bearing on how tasks are removed from
it. The dispatcher takes all the tasks that are ready to run
off the Not Ready list and adds them to the Ready list in
the order that the tasks become ready.

As we have said, the GEM kernel is a limited multi
tasking system in that it can only handle five tasks: three
desk accessory programs (containing up to six desk acces
sories), one application, and the Screen Manager.

It is important to note that the only time that GEM
performs a dispatch is when a GEM A E S call is made. It
is possible for the application to use only a few A E S calls
at the initialization stage (like those for creating and open
ing a window), and then use only VDI functions in the rest

36 PROGRAMMER'S GUIDE TO GEM

of the code. The kernel is an A E S component, and if the
A E S is not used, no multitasking will take place; in parti
cular, the Screen Manager will not run. If the Screen
Manager does not get to run, in turn, the user will not
have any system response time when he moves the
mouse out of the work area of the window and onto the
menu bar area or slider area.

As a rule, all GEM programs must make an A E S call
sometime within the main programming loop. If nothing
else, the application should issue an event timer call with a
time of 0 to get dispatched (see the section on evnt_t imer()

later in this chapter). This will clear compute-bound GEM
programs and give a chance to other programs.

The Screen Manager

The second major component of the GEM event sys
tem is the Screen Manager, which keeps track of the
mouse when it is outside of the work area of the active
window. The application must track the mouse when it is
within its own work area, but only when there is a change
of state (that is, when mouse button is pressed or mouse
moves into or outside of a rectangle). The areas in ques
tion are the borders of a window, the drop-down menus,
and the menu bar. This means when the mouse crosses
the area of the screen where the drop-down menus reside,
the Screen Manager sends the appropriate message .

The Screen Manager is constantly tracking where the
mouse is. As soon as the mouse crosses into the menu
bar area, the Screen Manager saves the screen area where
the appropriate menu is going to be displayed, and then
displays the drop-down menu onto the screen. The Screen
Manager then waits for some selection on the part of the
user—that is, clicking on a menu item or other part of the
screen. If the mouse button is pressed and released on a

Application Environment Semices 37

menu item, then the Screen Manager sends a mes sage to
the running application with the information as to which
menu item was selected. If the button is pressed off the
menu area, then the Screen Manager restores the original
screen area from the menu buffer.

S o far we have been concentrating on what happens
when the A E S and your program wait for many events.
Now we will begin to discuss each event individually, and
introduce each A E S function. Keep in mind, however, that
evnt__multi() is a superset of each of the event functions we
are about to discuss.

Mouse Events

The GEM Event Library provides for two kinds of
mouse events: mouse movement into and out of a speci
fied rectangle, through the function evnt_mouse() , and
mouse button activity, through the function evn t_but ton() .

Of course, any pointing device may be substituted for a
mouse a s long as it is functionally equal to a mouse.
Thus, a sketch pad, data tablet, or light pen may be
viewed through the GEM system as a mouse.

First lets deal with mouse movement. The typical GEM
window is divided into two major areas: the window work
area, which is managed by the application itself, and the
rest of the window (title bar, menu bar, and so on), which
is managed by the Screen Manager. When the mouse
moves, it may do so in relation to a rectangle. For instance,
the mouse may move anywhere inside a rectangle, and
there will be no particular meaning associated with such
movement. However, if it moves out of that rectangle, then
the application may want to know about it and begin a
series of actions in response. This is known as a mouse
movement event. In the simple case, the rectangle may be
identified as the cursors current position.

The evnt_mouse() function allows the user to identify

PROGRAMMER'S GUIDE TO GEM

HOW A GEM RECTANGLE IS SPECIFIED

A rectangle in GEM AES is specified by a structure with an (x,y) coor
dinate and a width and height component For instance, a Wx 10 rectangle
can be placed anywhere in the window by specifying the starting x and y
coordinate and a width of 10 and height of 10 (or (x,y, 10,10)). In this sys
tem, (0,0) is at the upper left comer of the window. (Note, however, that
the y coordinate does not go negative; rather, it remains a positive num
ber.) Thus, (0,4) means 4 units below the origin on the y axis. If we
wanted a 10x10 rectangle at that point, we would specify a rectangle
structure of (0,4,10,10), which results in a rectangle at points (0,4),
(10,4), (0,14), and (10,14).

In the code examples in Chapters 4 and 5, you will see a C structure
called GRECT used. It defines an x coordinate, a y coordinate, a width, and
a height. To specify a rectangle for the VDI, however, a different scheme is
used: two opposing comers are specified, which is conceptually the same
as specifying one point, and a width and height. To accommodate the dif
ference in the systems used by the AES and the VDI, there are functions
to translate between the two ^GRECT__to_array(), for example).

whether the mouse movement was into a specified rec
tangle or whether it was out of a specified rectangle. This
allows the user to change the mouse cursor form or just
mouse form in accordance with some meaning associated
with the specified area of the screen. You can observe an
example of this change in mouse form when you move
the mouse over the menu bar in the GEM DEMO pro
gram presented in Chapter 5. (See also the discussion of
the g ra f_mouse() function in the section on the Graphics
Library and Listing 5.7 in Chapter 5.)

In addition to keeping track of the mouse movement,
it is important to monitor changes in the mouse button
state by means of evnt_but ton() . For instance, what if the
user presses the third button on the mouse (assuming that
the mouse has a third button)? If all you care about is the
first button, the application can tell evn t_but ton() to ignore

Application Environment Semices 39

this action. In fact, you can specify which button you are
interested in a s well a s whether the application is waiting
for it to be pressed or released. S e e Listing 5.8 in Chapter
5 for an example of handling button activity.

Another event function associated with the mouse,
evnt_dcl ick() , is the length of time to wait for a double-click.
In most graphics user interfaces, the user may press upon
the s ame mouse button twice in quick succession (this is
double-clicking) in order to signify selection and action.
Thus, double-clicking in many instances provides a short
cut to the usual point-and- select-and-point-and-select oper
ation of execution by including an embedded action that
is usually execution. For instance, in the GEM Desktop
the user may click on an executable folder (like GEM
Draw), move the mouse to the menu bar, select the File
menu, and open the selected folder (in this case, since the
folder identifies an executable file, GEM will run that pro
gram). However, a savvy user will instead merely double
click on the folder. If this has meaning, then GEM will run
the selected program. If the folder cannot be opened or
executed, then nothing will happen.

The amount of time that the program will spend wait
ing for the second click certainly has great influence
on the actions of the user. A very short time will mean
that the user must be very fast to get the second click in.
If the click arrives outside the click window, the second
click is interpreted as the first click of the next click pair.
If the click interval is very long, on the other hand, the
mouse driver waits a long time before reporting a com
pleted click event. No second click will be misinterpreted,
but there is a lot of wasted time at the mouse driver level.

In the GEM Desktop, the double-click interval can be
changed by the user, and this setting is carried to all
applications run from the Desktop. If your application
does not load from the Desktop (that is, if it loads
directly), the default dclick setting is 2, an intermediate

40 PROGRAMMER'S GUIDE TO GEM

speed. As you can control the dclick setting by means of
evnt__dclick(), you can write your application to allow the
user to change the dclick setting so that it is more com
fortable for him.

Keyboard Events

While GEM provides a graphics interface to the com
puter, this doesn't obviate the need for input from the
keyboard. In fact, GEM allows for a mouseless system that
will accept cursor movement control from the cursor con
trol keys (the arrow keys on the keypad). In this case,
however, the keyboard driver is responsible for tracking
the cursor, not the application. The application should
therefore never receive an interrupt concerning the cursor
movement. Yet if the application expects keyboard input,
it must handle this input using the evn t_keybd() function.
The state of the keyboard is also available through an
additional A E S call, g ro f_mks ta te () .

None of the code samples included in this book deal
with using the keyboard. You might look at the GEM
DEMO application distributed by DRI in the Developers
Kit for an example of using the keyboard. (Please do not
confuse the DEMO program included in this book with
the one distributed by DRI.)

Message Events

In general, all communication within the GEM system is
driven through the message system. While the user may
move the mouse all over the screen, the Screen Manager
only sends a message to tell waiting applications significant
results: for example, selection of a menu item, the need to
redraw the screen, slider bar movement, and so on. The
GEM message system uses fixed-length messages through a
pipe, and these messages are FIFO (first in, first out) ordered,

Appücation Environment Semices 41

(A pipe is an FIFO entity that acts exactly as you would
expect: information that goes into a pipe comes out first,
just like water flowing through a water pipe.) Messages are
taken out of the pipe when the application reads the pipe.

GEM provides 1 2 predefined mes sages and allows
more to be defined by the application. Each predefined
mes sage is 16 bytes long and follows a set format:

Word 0

Word 1

Word 2

Word 3-7 :

Message type.

Application ID of sender.

Number of extra bytes (greater than 16).
In order to obtain the rest of the mes
sage , use the A E S app l_ read() routine.

Depends on the message .

The 12 predefined mes sage s are

AAN_SELECTED

Word 0:

Word 3

Word 4

WM_REDRAW

Word 0

Word 3

Word 4

Word 5

Word 6

Word 7

WAAJTOPPED

Word 0:

Word 3:

-A menu was selected.

10

Object index of the selected menu title.

Object index of the selected menu item.

-Redraw the screen.

20.

Handle of window to redraw.

X coordinate of the area to redraw.

Y coordinate of the area to redraw.

Width of the area to redraw.

Height of the area to redraw.

-Make this window the topmost.

2 1 .

Window handle.

PROGRAMMER'S GUIDE TO GEM

WAA_FULLED

Word 0:

Word 3:

WAA_ARROWED

Word 0:

Word 3:

Word 4:

WAA_HSLID

Word 0:

Word 3:

Word 4:

WM_VSUD

Word 0:

Word 3:

Word 4:

WM_SIZED

Word 0:

Word 3:

Clicked upon the full box.

23.

Window handle.

Clicked on the arrows or scroll bars.

24.

Window handle.

The requested action:

0—Page up

1—Page down

2—Row up

3—Row down

4—Page left

5—Page right

6—Column left

7—Column right.

-New horizontal slider position.

25 .

Window handle.

0 -1000 , indicating the slider position,
where

0 = Leftmost position

1000 = Rightmost position.

-New vertical slider position.

26.

Window handle.

0 - 1 0 0 0 (see WAA_HSLID).

- T h e new window size.

27.

Window handle.

Appäcation Environment Services 43

New x coordinate.

New y coordinate.

New width.

New height.

The new window coordinates.

28.

Window handle.

New x coordinate.

New y coordinate.

New width.

New height.

Desk accessory item selection.

30.

Desk accessory menu item identifier.

Close any desk accessory selections.

3 1 .

Desk accessory item menu identifier
from menu__register() call.

The evnt_mesag() function is used to wait for any
expected messages . (If you don't want to receive any mes
sages , then take the receiver off the hook by not using
evnt_mesag().) In the case of the 12 predefined messages ,
the entire mes sage is contained in the 16 bytes. Even if
you define your own messages , it is certainly possible to
deliver the entire mes sage within the 16-byte format. For
times when you need to transfer more than 16 bytes of
information, however, you must use two functions from
the Application Library: appLread() and appLwri te() .

app!__write() writes a specified number of bytes into
a mes sage pipe between two processes. appl_reod()
takes a specified number of bytes out of the pipe. Thus,

Word 4:

Word 5:

Word 6:

Word 7:

WMJ\AOVED —

Word 0:

Word 3:

Word 4:

Word 5:

Word 6:

Word 7:

AC_OPEN —

Word 0:

Word 3:

AC_CLOSE —

Word 0:

Word 1:

PROGRAMMER'S GUIDE TO GEM

evnt_mesag() may be used to transfer the actual num
ber of bytes in the write message , before issuing an
appl__read(). In any case, the point to remember is that all
the mes sage events only pas s 16 bytes of data. You must
use the app l_ read() routine to get the rest.

S e e Listings 5.15, 5.16, 5.17 in Chapter 5 for a com
plete treatment of handling messages .

Timer Events

GEM provides a function called evnt__timer() that allows
the application to wait a specified amount of time without
doing anything as silly as polling the system clock. The
application just goes to sleep for the requested amount of
time and is then awakened with a timer event.

The event is guaranteed to happen within the specified
time interval. It is possible, however, to request such a
short interval that it takes longer for the dispatch, which
means that you can't be certain of the accuracy of the
time out Similarly, if there are other processes running,
the timed out process might take longer than requested
before being awakened.

Event Library Syntax Summary

This section is a short reference summary of all the
functions in the Event Library.

Waiting for a Button Event: e v n t _ b u t t o n ()

The evn t_but ton() function waits for the specified button
state. To use it, see the following syntax summary.

WORD nbut_times = evnt_button (num_clicks, wich_button,
but_state, &mouse_x,
&mouse_y, &mouse__but,
&kb_state)

Application Environment Semices 45

Input:

WORD num_clicks

UWORD wichjautton

UWORD but_state

Output:

WORD nbut_times

WORD mouse_x

WORD mouse_y

UWORD mouse_but

UWORD kb_state

Number of clicks on the speci
fied button that the application
will wait for.

Which button to wait for (up
to 16).

Button state to wait for
(up/down).

Number of times the specified
button entered the desired
state.

X coordinate of mouse when
button event happened.

Y coordinate.

Button state when event
happened.

The state of the keyboard
Shift, Ctrl, and Alt keys when
the button event happened.

K e y

Right Shift

Left Shift

Ctrl

Alt

D o w n V a l u e

0x0001

0x0002

0x0004

0x0008

A 0 value indicates a key up.

Getting and Setting

the Double-Click Interval: e v n t _ d c l i c k ()

The evnt_dcl ick() function gets or sets the interval
between clicks that constitute a double-click. To use it,
see the following syntax summary.

PROGRAMMER'S GUIDE TO GEM

WORD speed = evnt_dcl ick (new, getset);

Input:
WORD new New double-click speed. Slow

to fast (0-2-3-4).

WORD getset Get current value (0) or set
new value (1).

Output:
WORD speed The actual double-click speed

(0-4).

Waiting for a Keyboard Event: e v n t _ k e y b d ()

The evnt_keybd() function reads the keyboard and returns
the key that was pressed. To use it, see the following syntax
summary.

Waiting for a Message Event: e v n t _ m e s a g ()

The evn t_mesag() function waits for a message . To use
it, see the following syntax summary.

WORD dummy = evnt__mesag (msgbuff);

Input:

UWORD key = evnt_keybd();

Output:

UWORD key The code of the key that was
pressed (see the DRI documen
tation or the IBM technical
manual for the IBM keyboard
scan codes).

LPTR msgbuff Address of a 16-byte mes sage
buffer in which the mes sage
will be placed.

Output:

WORD dummy Always 1.

Application Environment Semices 47

Waiting for a Mouse Event: e v n t _ m o u s e ()

T h e evn t_mouse() function wai t s for the m o u s e to enter
or l eave the spec i f i ed rec t ang le . To u s e it, s e e the follow
ing s y n t a x s u m m a r y .

WORD dummy = evnt mouse (mouse_in_out, mevnt_x,
mevnt_y, mevnt_width,
mevnt_height, &mouse_x /

&mouse__y, &mouse_but /

&kbstate);

Do we wait for entry into (0)
or exit from (1) the specified
rectangle?

X coordinate of the rectangle
that the mouse may enter or
leave.

Y coordinate.

Width of rectangle.

Height of rectangle.

Always 1.

X coordinate of mouse when
event happened.

Y coordinate.

Button state when event
happened.

Keyboard state when event
happened (see evn t_but ton()) .

Input:

WORD mouseJn_out

WORD mevnt_x

WORD mevnt_y

WORD mevnt_width

WORD mevnt_height

Output:

WORD dummy

WORD mouse_x

WORD mouse_y

WORD mouse_but

WORD kbstate

Waiting for Multiple Events: e v n t _ m u l t i ()

T h e evnt_mult i () function waits for o n e or m o r e of
the specif ied events . To u s e it, s e e the following syntax
summary .

PROGRAMMER'S GUIDE TO GEM

WORD which = evnt rnulti (events, num_clicks, wich_button,
but_state, mouse l_Jn_out,
mevntl_x, mevntl__y,
mevntl_width, mevntl_height,
mouse2_in_out, mevnt2_x,
mevnt2_y, mevnt2__width,
mevnt2_height, msgbuff,
lo_timint, hi_timint, &mouse__x,
&mouse_y, &mouse_but,
&kb__state, &key, &nbut_times);

Input:
Logical OR of which events to
wait for (see Table 2.1).

Number of times application
expects a click.

Which button to wait for.

What button state to wait for
(up/down—0/1).

UWORD mousel_in_out Waiting for entry (0) or exit (1)
for first mouse rectangle.

X coordinate of the first
mouse rectangle that the
mouse may enter or leave.

Y coordinate of first mouse
rectangle.

Width of first rectangle.

Height of first rectangle.

UWORD mouse2_in_out Wait for entry or exit for sec
ond mouse rectangle.

WORD mevnt2_x X coordinate of the second
mouse rectangle that the
mouse may enter or leave.

WORD mevnt2_y Y coordinate of second rectangle.

UWORD events

WORD num_clicks

WORD wich_button

UWORD but state

WORD mevntl_x

WORD mevntl_y

WORD mevntl_width

WORD mevntl_height

WORD mevnt2_width Width of second rectangle.

AppUcation Environment Sewices

WORD mevnt2_height Height of second rectangle.

LPTR msgbuff

UWORD lo_timint

UWORD hi_timint

Output:

WORD mouse_x

WORD mouse_y

WORD mouse_but

UWORD key

UWORD nbut_times

Address of 16-byte buffer to
place any messages .

Low word of the time interval
(LONG value) to wait.

High word of time interval.

X coordinate of mouse when
event happened.

Y coordinate.

Button state when event
happened.

The code of the key that was
pressed.

Number of t imes that the
mouse button entered the
specified button state.

Waiting for a Timer Event: e v n t j i m e r ()

T h e evn t_ t imer () function wai t s for the spec i f i ed t i m e (in
mi l l i s econds) . To u s e it, s e e the fol lowing s y n t a x s u m m a r y .

WORD dummy = evnt_ t imer (UWORD ev_tlocount, UWORD
ev__thicount);

Input:

UWORD lo_timint

UWORD hi_timint

Output:

WORD dummy

Low word of timer interval
(LONG).

High word.

Always 1.

PROGRAMMER'S GUIDE TO GEM

THE WINDOW LIBRARY

At the very heart of GEM lies the concept of windows.
Simply speaking, a window is merely an area of the
screen, but GEM enhances that area to include a set of
borders and structures such as the title area, full box, and
so on. A full-blown GEM window includes the following
components, which are also shown in Figure 2.4:

Title bar: to name the window.

Move bar: to allow the user to drag the window
around on the screen (occupies the s ame space a s
the title bar).
Close box: to allow the user to close the window.

Full box: to allow the user to toggle between the full
and new sizes.

Information line: to show application-specific
information.

Up/down arrows: to allow paging up or down one

window unit.

Scroll bar: to allow paging through a window.

Left/right arrows: to move the columns left or right.
Work area: the part of the window that does not con
sist of the above items and that is available for use
by the application.

Perhaps at this point we should remind you not to
begin to think of windows as something that contains any
thing. From the programmer's point of view, windows
serve instead to organize the screen into handy units. It is
up to you to keep things within the borders of the window

Application Environment Semices

F i g u r e 2 . 4 : GEM Window with All Components

that you have created and put somewhere on the screen.
It is your responsibility to keep track of where the window
is a s well a s of drawing and clipping to that area. Your
application can draw anywhere on the screen, which
makes you responsible for confining your program's out
put to the window.

The value of the formal structure of windows lies in
the components of the window that allow you to manipu
late the data displayed within the borders of the windows.
GEM provides you with a well-defined structure so you
don't have to reinvent the wheel.

Window Creation and Sizes

By using the w ind_crea te() function, you can choose to
build a window with any of the components we have listed

52 PROGRAMMER'S GUIDE TO GEM

above. One of the input parameters to w ind_crea te () is the
kind of window you want to build—that is, what compo
nents you want in the new window. This parameter is a
set of bit flags that identifies each component. In the
header files for the A E S , there are s o m e defined names
corresponding to the window component. You can either
logically OR these names together or just figure out the
appropriate hex flag. Table 2.2 defines the window compo
nent flags. In order to create a window with just a title
bar, close box, and information line, for example, the flag
would be set to 0x0013, whereas a window with all avail
able components would be OxOFFF

Finally, w ind_crea te () needs to know the size of the win
dow at its largest (that is, at full size). Using w i n d _ o p e n () ,

you can open or size the window smaller than that, but

F l a g D e f i n e d N a m e Window C o m p o n e n t

0x0001 NAME Title bar

0x0002 C L O S E Close box

0x0004 FÜLL Full box

0x0008 MOVE Move bar

0x0010 INFO Information line

0x0020 SIZE Size box

0x0040 ÜPARROW Clp arrow

0x0080 DNARROW Down arrow

0x0100 VSLIDE Vertical slider

0 x 0 2 0 0 LFARROW Left arrow

0x0400 RTARROW Right arrow

0x0800 HSLIDE Horizontal slider

T a b l e 2 . 2 : Definition of the Window Component Flag

Application Environment Semices 53

the A E S needs to initialize its data structures. For
instance, you can obtain information concerning the size
for the window at any moment by using the w i n d _ g e t ()

function. If the A E S has not been initialized with the win
dow's largest possible size, the A E S will have no way of
accurately maintaining those values. S e e Listing 5.5 for an
example of using w ind_crea te () .

The w i n d _ g e t () function returns information on the fol
lowing items depending on the value of the input variable
kind (see the syntax summary for wind__create()), which spe
cifies which components to use. S e e Listings 5.5 and 5.13
in Chapter 5 for examples of using w ind_ge t () . Again there
is a set of predefined C values to use:

Coordinates of the work area.

Coordinates of the current window, including borders,
title bar, and information line.

Coordinates of the previous window, including bor
ders, title bar, and information line.

Coordinates of the window at its greatest possible

size, including borders, title bar, and information line.

Slider position and size.

Window handle of active window.
Coordinates of the rectangles in the window's rec
tangle list.

Where and how large the internal menu/alert buf
fers are.

As this list suggests , w i n d _ g e t () is an important window
function because it provides information that is critical, for
example, in updating the screen (window rectangles), in
resizing windows, and in moving data within a window
based upon slider movement. In addition, w i n d _ g e t () has a

PROGRAMMER'S GUIDE TO GEM

complementary function, w ind_se t () , that allows you to
change some of the fields handled by w ind_ge t () . For
instance, when you change the current window coordi
nates, the A E S will automatically change the previous
window coordinate field and the current work area coordi
nates. You will not, however, be able to change all the
wind _get fields directly. Listing 5.13 in Chapter 5 also
shows a usage of w ind_se* () .

Window Management

GEM uses the mes sage system to communicate to the
application when something has happened in the window.
If the action occurred on the borders of the window, how
ever, the Screen Manager processes the user's actions and
sends the application a mes sage telling it whether the user
clicked on the full box, selected a menu item, dragged
the window, resized it, or whatever. It is up to the applica
tion to process that information. For instance, based on
the received message , the application can move a window
or ignore the message . If you don't want a user to move a
window, however, you shouldn't provide a move bar.

Because GEM provides overlapping windows, there is a
formal, controlled way of updating and redrawing windows.
The first rule is that the application takes the responsibility
to control its window environment. The A E S does not allo
cate memory for the application's window (or windows), nor
does it update the screen when something happens to it.
The A E S does provide a consistent interface for the man
agement of windows as well as services to the border area.
The A E S shares responsibility for the window display with
the application, in that the A E S tells the application where
to draw and the application does the drawing.

When windows overlap, GEM must be able to tell
which window is affected by a user action such as clicking

Application Environment Sewices 55

with the mouse. For instance, if the user clicks with the
mouse, either of two scenarios can occur.

First, if the window wherein the clicking occurred is the
currently active window (called the topmost window or the
window on top), the A E S sends a message to the applica
tion if it is waiting for a mouse button event. Otherwise, the
A E S does nothing with the button event.

Let's use the GEM Desktop as a typical example of a
GEM application and look at the highlighting it does when
a user clicks on an icon. The Desktop waits for a mouse
event, and receives a mouse button event wake up call
with the coordinates of the mouse when the click takes
place. The Desktop then uses w ind_ f i nd () (passing in the
mouse coordinates) to find out which window the click
occurred in. The Desktop arranges all the icons in a win
dow as an object tree and keeps track of what tree occurs
in what window. It is then able to do an ob |c_f ind() to
determine if the coordinates match an icon in the window.
If the mouse was over an icon when the click occurred,
then the Desktop highlights the icon. If the user clicked
on the space between icons, the Desktop removes the
highlighting from any highlighted icon.

Second, if the window where the click occurred is not on
top, then the A E S will send a message to the application
that owns the window, telling the application that it must
reorder its windows and that another window is now active.

Unfortunately, we cannot use the Desktop as an
example here because of the changes made to it recently
(it no longer supports overlapping windows). We can, how
ever, examine the action of a desk accessory on top of a
Desktop window. If you bring up the Clock desk accessory,
the window that it uses will be on top of one of the
Desktop windows. If you click on the underlying Desktop
window, then the Desktop gets a message that it is now on
top, which causes it to redraw its window so that the Clock
is now hidden and the Desktop window is back on top.

56 PROGRAMMER'S GUIDE TO GEM

Window Updating

Because GEM provides a small multitasking kernel and
supports overlapping windows, the screen must be pro
tected from inadvertent updating. Thus, GEM provides a
mechanism whereby the application can keep other proc
esses from updating the screen, ensuring that the applica
tion has a stable screen environment during the course of
its modifications. This notion is similar to the problem of
simultaneous update of a disk file in a concurrent system,
and it is solved in a like manner—that is, by locking out
any other process while the update is going on.

As you will see in the code samples in Chapters 4 and
5, w ind_update() is the function that notifies the A E S that
the calling process wants to update the window. The A E S
then prevents any other process, including menus and
alerts, from modifying that portion of the screen where
the window resides (in the case of a full-screen window,
the entire screen is locked). When the application is fin
ished with the modifications, it calls w ind_update() again to
unlock the window screen area. If you forget to complete
the update pair, you will notice that your menus will not
work, nor your desk accessories, nor anything that
changes the screen.

Window Redrawing

There are two reasons for a window to be updated:
first, the user affects the window through, for example,
scrolling, sizing, closing, or moving; and second, the appli
cation changes the displayed information. In all cases ,
either the specified area of the window or the entire win
dow will need to be updated.

The mechanism that GEM employs is called "walking the
rectangle list." For each window on the screen, the A E S
maintains a list of rectangles that defines the actual physical

Application Environment Sewices 57

screen used by the visible part of each window. The rec
tangle list is generated by an algorithm that ensures that the
screen is divided into the least number of nonoverlapping
rectangles. For instance, if there is only one window on the
screen and it is a full-screen sized window, then the list iden
tifies only one rectangle, the window itself. Figure 2.5, on
the other hand, shows an example of a two-window screen
that requires six nonoverlapping rectangles.

When an application needs to redraw a window area, it
first locks the window using w ind_updo te () . Then, using
wind_ge t () , it finds the first rectangle in the list. If this rec
tangle and the rectangle that defines the region that needs
to be updated (called the update rectangle) intersect, then
the application must compute the resulting rectangle and
redraw that window area. The application gets the next
rectangle in the list and continues using the technique we
have just described until all rectangles in the window's
list have been examined.

The following pseudocode shows the proper proce
dure. For an example of C code, look at Listing 5.14 in
Chapter 5.

PROGRAMMER'S GUIDE TO GEM

1 Lock down the window using w ind_upda te (l).

2 Get the first rectangle in list:
wind_get(WF_ FIRSTXYWH,

&box(x,y,width /height))

3 While (box.width && box.height) {
if (dest = intersect(redraw area, box)) {

copy screen buffer to destination

Window Library Syntax Summary

This section is a short reference summary of all the
functions in the Window Library.

The Window Calculation Function: w i n d _ c a l c ()

Given a windows work area coordinates, w ind_co lc ()

calculates the borders, or given the border area coordi
nates, it calculates the work area. To use it, see the follow
ing syntax summary.

WORD ret_code = wind_calc (type, kind, in_x, in_y,
in_width, in_height, out_x,
out_y, out_width, out_height)

4

wind_get(WF_NEXTXYWH, &box(x,y,width, height))

{
Unlock the window (wind_update(0))

Input:

WORD type Type of calculation:

UWORD kind

0—return border area
1—return work area.

Kind of window identified by
which components it contains
(see Table 2.2).

Appücation Environment Sewices 59

WORD in x

WORD in_y

WORD in_width

WORD in j ie ight

Output:

WORD ret_code

WORD out x

WORD out_y

WORD out_width

WORD out j ie ight

Input x coordinate. If type = 0,
then in_x is for the work area.
If type = 1, then in_x is for
the border area.

Input y coordinate for type.

Input width for type.

Input height for type.

If > 0, then no error. If = 0,
then an error occurred.

Output x coordinate. If
type = 0, then out_x is for
border area; otherwise, out_x
is for work area.

Output y coordinate for type.

Output width for type.

Output height for type.

Closing a Window: w i n d _ c l o s e ()

T h e wind_close() function c l o s e s a n o p e n window, pre
serv ing the h a n d l e a n d all a l l o c a t e d r e s o u r c e s . T h e win
d o w m a y b e re-opened . To u s e it, s e e the fol lowing syntax
s u m m a r y .

WORD ret_code • wind_close (handle);

Input:

WORD handle Window handle of the window
to close.

Output:

WORD ret_code If > 0, then no error. If = 0,
then error exists.

PROGRAMMER'S GUIDE TO GEM

Creating a Window: w i n d _ c r e a t e ()

The w ind_crea te () function creates the window, returns
the window handle, and allocates the resources needed
by the window. To use it, see the following syntax summary.

WORD ret_code = wind_create (kind, full_x, full_y,
full_width, fulLheight)

Input:

UWORD kind

WORD full_x

WORD f u lLy

WORD fu lLwidth

WORD fulLheight

Output:

WORD ret_code

Kind of window identified by
which components it contains
(see Table 2.2).

X coordinate of the full-size
window.

Y coordinate.

Width of full-size window.

Height of full-size window.

If > 0, then no error. If = 0,
then error exists.

Deleting a Window: w i n d _ d e l e t e ()

The w ind_de le te () function deletes a window and frees
all the resources attached to the window. To use it, see
the following syntax summary.

WORD ret_code = w ind_de le te (handle);

Input:

WORD handle

Output:

WORD ret code

Handle or identifier of a
window.

If > 0, then no error. If = 0,
then error exists.

AppÜcation Environment Semices 61

What Window Is the Mouse In: w i n d _ f i n d ()

T h e w ind_ f i nd () function d e t e r m i n e s which window the
m o u s e is currently over. To u s e it, s e e the fol lowing syntax
s u m m a r y .

f ind (mouse_x, mouse_y);

X coordinate of the current
mouse position.

Y coordinate.

The window handle of the win
dow that the mouse is over.

Getting Window Information: w i n d _ g e t ()

T h e w i n d _ g e t () function returns either the GRECT v a l u e s
for v a r i o u s windows (current, p rev ious , fullest, a n d s o on),
the s l ider pos i t ion , the h a n d l e of ac t ive window, the GRECT
v a l u e s of first a n d next r ec t ang le in the w i n d o w s r e c t a n g l e
list, the s l ider s ize , or the locat ion a n d length of the inter
nal m e n u / a l e r t buffer. To u s e it, s e e the fol lowing s y n t a x
s u m m a r y .

WORD ret_code = w ind_get (handle, flag, values[0]);

Input:

WORD handle Handle of window.

WORD flag What information is requested:

1 Reserved
4 WF_WXYWH Work area (x,y,

width,height).

5 WF_CXYWH Current window,
including borders,

WORD wat_wind = w i n d .

Input:

WORD mouse_x

WORD mouse_y

Output:

WORD wat wind

PROGRAMMER'S GUIDE TO GEM

6 WF_PXYWH

7 WF_FXYWH

8 WF__HSLIDE

9 WF_VSLIDE

10 WFJTOP

11 WF_FIRSTXYWH

12 WF_NEXTXYWH

13 Reserved

15 WF_HSLSIZE

title bar, and infor
mation line (x,y,
width,height).

Previous window,
including borders,
title bar, and infor
mation line (x,y,
width,height).

Window at its great
est size, including
borders, title bar,
and information line
(x,y,width,height).

values[0] = relative
position of horizontal
slider (1 to 1000); 1
is leftmost position,
1000 is rightmost.

values[0] = relative
position of vertical
slider (1-1000) .

values[0] = handle
of topmost window.

Coordinates of first
rectangle in rec
tangle list (x,y,
width,height).

Coordinates of next
rectangle in rec
tangle list (x,y,
width,height).

values[0] = size of
the horizontal slider
relative to the scroll
bar. - 1 = the

Application Environment Services 63

default, while 1 =
smallest and 1000
= largest.

16 WF__VSLSIZE values[0]
= size of vertical
slider a s above.

17 WF_SCREEN Address and length
of the internal
menu/alert buffers.

values[0] = low word of
address.

values[l] = high word.

values[2] = low word of
length.

values[3] = high word.

Output:

WORD ret_code If > 0, then no error. If = 0, then
error exists.

WORD values[4] Return values depending on flag.

Opening a Window: wincLopen()
T h e w i n d _ o p e n () function o p e n s the indica ted window

with the spec i f i ed s ize a n d at the spec i f i ed locat ion. To
u s e it, s e e the fol lowing syntax s u m m a r y .

WORD ret_code = w i n d

Input:

WORD handle

WORD init_x

WORD init_y

open (handle, init_x, init_y,
init__width, init height);

Window handle.

X coordinate of window
at the initial size.

Y coordinate.

64 PROGRAMMER'S GUIDE TO GEM

WORD init_width

WORD initjieight

Output:

WORD ret code

Initial width.

Initial height.

If > 0, then no error. If = 0,
then error exists.

Setting Window Information: w i n d _ s e t ()

T h e w ind_se t () function s e t s certa in spec i f i ed f ields for
the window. To u s e it, s e e the fol lowing s y n t a x s u m m a r y .

WORD ret_code = w ind_set (handle, flag, values[0]);

Input:

WORD handle Window handle.

WORD flag What field to change:

2 WF_NAAAE Address of a string
containing the new
window name.
Uses values[0] and
values[l].

Address of a string
containing the new
information line.
Uses values[0] and
values[l].

S e e w i n d g e t () .

S e e w i n d g e t () .

S e e w ind ge f () .

S e e w i n d _ g e t () .

Address of new
default GEM
Desktop.

3 WF INFO

5 WF_CXYWH

8 WF_HSUDE

9 WF_VSLIDE

10 WF_TOP

14 WF NEWDESK

values[0] = low word of
object tree.

Application Environment Services 65

values[l] = high word.

values[2] = starting object
in tree to draw.

15 WF_HSLSIZE See w i n d _ g e t () .

16 WF_VSLSIZE S e e w i n d _ g e t () .

WORD values[4]

Output:

WORD ret_code If > 0, then no error. If = 0, then
error exists.

Updating a Window: w i n d _ u p d a t e ()

The wind__update() function provides a resource locking
mechanism for the A E S and prevents other processes
from doing a window update. While any process can still
write to the screen, GEM A E S attempts to provide a
mechanism to allow a gentlemanly standard of conduct
among cooperating processes. To use it, see the following
syntax summary.

WORD ret__code = w ind_updote (code);

Input:

WORD code 0—END_UPDATE
1— BEG_UPDATE
2—END_AACTRL
3—BEG_AACTRL

Output:

WORD ret_code If > 0, then no error. If = 0,
then error exists.

THE OBJECT LIBRARY

S o far we have examined two fundamental A E S
libraries: the Event Library and the Window Library. Now

66 PROGRAMMER'S GUIDE TO GEM

we need to discuss another critical set of functions in the
GEM A E S : the Object Library. While the importance of
the other two libraries may seem obvious to you, the
importance of the Object Library is more elusive. In fact,
the Object Library provides some crucial connections
between what appears on the screen and its representation
within the GEM system. To make this clear, we will exam
ine the usefulness of an object before presenting a defini
tive, byte-by-byte description of the contents of an object.

What Is a GEM Object?

Quite simply, a GEM object is a data structure con
tained in a GEM resource that describes what appears on
the screen. Objects can be used to define plain boxes,
boxes with text in them, icons, character text, and bit
images. As you might suspect, GEM itself uses objects
extensively. For example, a menu uses objects to repre
sent what should appear on the screen, a s does a dialog.
While it is possible to write a GEM application without
using any objects (which means that the application does
not use resources), we don't recommend it, mainly
because such an application will not be consistent with
many of the features of the AES—that is, menus, dialogs,
and so on will not look exactly the same. We believe that
the overhead associated with using objects is worth it. An
analogy may make the value of an object clearer.

Imagine that you are a decorator and want to add
some bookshelves to a wall in order to store books and
plants, and to hold knickknacks, and so on. You can, of
course, get s o m e cinder blocks and simple pine planking
and build a functional student's bookcase, but this type of
design won't provide the flexibility that you desire. Your
goal is to be able to place this particular fixture to any
place on the wall and to be able to link other units to it
when you wish. In addition, you want to be able to

Application Environment Semices 67

change the internal shelving of each unit, so that you can
have shelves that are wide apart or close together.

The GEM object provides the s ame level of flexibility
and function as our imaginary wallhanging system. An
object can be used to represent a number of graphic
things on the screen (simple boxes, text, icons, and so
on), which is similar to our basic wallhanging unit in the
way it can contain a book, vase, plate, or any knickknack.
Furthermore, an object may be placed anywhere on the
screen, which is also like placing our wallhanging unit
anywhere on a wall. Finally we can connect objects in
what is called an object tree much as we can connect each
unit of our wallhanger to form a new visual pattern on the
wall. The GEM A E S function, ob jc_draw() , displays an
entire object tree.

Object Trees

GEM groups objects together to form trees, not just
chains, by means of parent/child/sibling relationships
between the objects in the tree. The importance of this is
that the objects can contain other objects, defining com
plex visual hierarchies like boxes within boxes, adjoining
areas of the screen contained within a larger area of the
screen, menus within menus, and so on. For instance, all
the levels of an application's menu bar can be represented
by one object tree. Within that tree will be a subtree that
defines the first level of the menu bar—that is, the mate
rial that appears on the screen when the application is
first loaded. Another subtree defines the items within any
of the first-level menus, and so forth. For an example, see
the discussion DEMOMENU and Figure 5.6 in Chapter 5.

There are three pointers within the object data struc
ture itself that identify the next sibling object in the tree,
the head or first child of the current object, and the tail or
last child of the current object. By using these three

PROGRAMMER'S GUIDE TO GEM

pointers, we can string together a number of objects into
a tree. The tree is composed of a series of objects, each
identifying where any children might be (which also tells
us if any children exist). Figure 2.6 shows an example of
an object tree that only shows the three pointers (we will
fully define all the parts of an object shortly). Figure 2.6 is

Object 0 Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Object 7

F i g u r e 2 . 6 : Vector Representation of an Object Tree

in the form of a long vector, a s this is the way that an
object tree exists in memory. S e e Figure 2.7 for a tree-like
characterization of the s ame object tree showing the
parent/child/sibling relationship.

WHAT IS A POINTER TO AN OBJECT?

By pointer, we really mean indices to the next object in the tree. In
terms of the C language, an object tree is an array of structures of type
object, where an integer index uniquely identifies any particular object in
the array or tree. One of the consequences of defining tree pointers as
indices is that all of the objects in a tree must be within the same 64K
segment (on the Intel version of GEM).

Each object in Figure 2.6 shows a next sibling pointer,
a pointer to the head of any children, and a pointer to the

Application Environment Sewices 69

| next | head | taH~]<^

i
l ; l 1

r h r * f ~r L

I " 1 h I ' I I — H n | h | t l 4

• •

F i g u r e 2 . 7 : Illustration of an Object Tree

tail of children, respectively. Thus, the first object in Fig
ure 2.6 (object 0) shows a - 1 or a null pointer to a sib
ling. Object 1 is the head of the children of object 0 (or,
in other words, the first child of object 0), and object 7 is
the last child of object 0. Similarly, object 1 shows that it
has a sibling (object 6) and a child (object 2 is the first
and only child of object 1). Now study Figure 2.7 to see
how this example of an object tree looks when we take
into account the relationships between the objects.

There is a main object, called the root (object 0), which
has three children, two grandchildren, and two great-grand
children. The root is always object 0, or the first object in
the tree. There may be no other objects, but there is always
a root. For instance, a single box on the screen can be

70 PROGRAMMER'S GUIDE TO GEM

defined in terms of a single object with no children. Another
fact about the root object is that there is never any pointer
to a sibling; the root has no brothers or sisters, just children
(if any).

Composition of an Object

Now that we have established a rudimentary under
standing of what an object is and why it is useful, and
have seen an example of an object tree, we are ready to
fully define the object data structure. Each object is com
posed of 11 elements: a pointer to the next sibling, a
pointer to the first child of the object, a pointer to the last
child, a set of flags, a state, a specification, and the coor
dinates of where this object is on the screen relative to
the root object. The first part of Figure 2.8 shows this
definition in terms of a parameter block. Note that the
only 4-byte or LONG value in an object is the object spec
ification. This is because an object specification some
times contains a pointer to types of data structures that
are not objects. This is an aspect of objects that we will
discuss shortly.

We have already talked about the first three elements
of an object, so let's examine the remaining eight.

Object Coordinates

First let's look at the last four WORD entries in the
parameter block, shown in the top part of Figure 2.8.
They contain the x, y, width, and height of where the par
ticular object is to be placed on the screen. These values
are absolute screen coordinates only for the root object of
the tree. For the remaining objects, the coordinates are
relative to the placement of the root object. This means
that if we wanted to move the entire tree on the screen,
all we would have to do is reposition the root object.
GEM will redraw all of the children objects relative to the

AppUcation Environment Services

O b j e c t

n e x t h e a d

t a i l t y p e

f l a g s s t a t e

s p e c i f i c a t i o n

X y

w i d t h h e i g h t

(W O R D b o u n d a r i e s)

if type is t h e n spec is

G _ B O X
i
I
I

C o l o r a n d t h i c k n e s s

G T E X T
" t -

1
i

P o i n t e r t o TEDINFO

G B O X T E X T
i
I P o i n t e r t o T E D I N F O

. J . _

G I M A G E I
I

P o i n t e r t o BITBLK

G P R O G D E F
T ~
1
1 P o i n t e r t o APPLBLK

+ -
G J B O X 1

1
C o l o r a n d t h i c k n e s s

G B U T T O N
T
1
1

P o i n t e r t o s t r ing

G B O X C H A R l
I L_

C h a r a c t e r , c o l o r & th ick .

G S T R I N G
1
1

1-
P o i n t e r t o s t r ing

G F T E X T
1
1
1

P o i n t e r t o T E D I N F O

7 ~
G F B O T E X T 1

1 P o i n t e r t o T E D I N F O

G I C O N

"t
1
1

_ 1 _
P o i n t e r t o I C O N B L K

G T I T L E
1
1
l

P o i n t e r t o s t r ing

F i g u r e 2 . 8 : Object Structure

new position of the root. This ease of repositioning an
entire visual hierarchy is one of the reasons why objects
are used so heavily in GEM.

72 PROGRAMMER'S GUIDE TO GEM

Object Types and Object Specifications

There are 13 defined types of objects, including
programmer-defined objects. S e e the bottom part of Fig
ure 2.8 to find a complete list of all the object types. The
names on the left side of the table (under "if type is") are
defined for you in the header files from the GEM Devel
oper's Kit. Please see the OBDEFS.H file in Appendix D.

Object Types: G_BOX, G_BOXCHAR, GJBOX

First let's look at all the types that don't have pointers
for object specifications. A G_BOX is an object type that
produces a box on the screen at the specified coordinates
(relative to the root, of course). A G_BOXCHAR is an object
type that draws a single character within a box on the
screen. A G J B O X is an imaginary box that is actually invis
ible on the screen. This type of object is used to group
the elements of an object, but you don't want to show the
actual outline of a box around them. For instance, the
Desktop file icon is a bit image plus some text (the file
name) grouped together by an invisible box. The use of
G J B O X in this case eases the problem of object selection
with objcJind().

All these box specifications have two associated WORD
values: the color and thickness of the borders. The color is
the low WORD of the LONG object specification field; it is
described in Figure 2.9. The actual colors used in the object
color WORD are defined in the top part of Figure 2.10. (You
will notice that there are 4 bits assigned for each color in
Figure 2.9. This allows color codes from 0 to 15, as seen in
the top table of Figure 2.10.) All the names that start with
an "D" indicate the darker shade of the color. For instance,
DRED means "dark red."

The low byte of the high WORD of the object specifica
tion field associated with box object types defines the
thickness of the borders of the box. The thickness of a

Application Environment Sewices

Transparent (0) /Replace(1)

Inside co lo r

Fill Pattern

0 — h o l l o w

7 - so l id

1 - 6 - > d i ther pat tern w i th

increasing darkness

F i g u r e 2 . 9 : Format of the Object Color WORD

C o l o r s
W H I T E 0
BLACK 1
R E D 2
G R E E N 3
B L U E 4
C Y A N J5__
Y E L L O W 6
M A G E N T A 7__
W H I T E 8
BLACK A_
D R E D 1 0
D G R E E N 1 1
D B L U E 1 2
D C Y A N 1 3
D Y E L L O W 1 4
D M A G E N T A •1 5

F lags

N O N E _oxggoo
S E L E C T A B L E _gxoooi
D E F A U L T 0 X 0 0 0 2
E X I T 0 X 0 0 0 4
E D I T A B L E 0 X 0 0 0 8

!B B U T T O N _oxgoio
L A S T O B 0 X 0 0 2 0
T O U C H E X I T 0 X 0 0 4 0
H I D E T R E E 0 X 0 0 8 0
I N D I R E C T oxo ifoo

S t a t e s

N O R M A L 0 X 0 0 0 0
S E L E C T E D 0 X 0 0 0 1
C R O S S E D 0 X 0 0 0 2
C H E C K E D 0 X 0 0 0 4
D I S A B L E D 0 X 0 0 0 8
O U T L I N E D 0 X 0 0 1 0
S H A D O W E D 0 X 0 0 2 0

F i g u r e 2 . 1 0 : Colors, Flags, and States for Objects

74 PROGRAMMER'S GUIDE TO GEM

box's border is a number ranging from - 1 2 7 to + 1 2 8 . If
the thickness is a negative number, then the thickness
measures from the outside edge. If the thickness is a posi
tive number, then it measures from the inside edge. If it is
0, then there is no thickness for the box object, which in
the case of G J B O X means that it is truly an invisible box.

The difference between a G J B O X and G_BOX with 0 thick
ness is more than the difference in thicknesses. A G_BOX is
actually drawn, but a GJBOX is really just a construct to
hold together the object trees visual hierarchy. A G J B O X
is a box by virtue of its name, whereas as G_BOX is really
a box.

The high byte of the high WORD of the object specifi
cation field associated with box object types has meaning
only if the object is a G_BOXCHAR type. In this case, the
high byte contains the actual character to be displayed.

Object Types: G_STRING, G_BUTTON, GJTITLE

S o far we have talked about three out of the 13 object
types, limiting the discussion to those types in which the
object specification is not a pointer. Now lets look at
the simplest types that have a pointer for a specification.

G_STRING is an object type that defines where on the
screen a simple text string should appear. Since there is
no room within the data structure of the object itself to
contain the string, however, GEM uses the object specifi
cation field to point to somewhere in memory where the
string resides. Please note that in keeping with all strings
in C, the string that the object specification of a G__STRING
points to must be null-terminated.

The object type G_BUTTON also needs to point to a null-
terminated string. This type is used to describe so-called
buttons that have text within them, like the OK or Cancel
buttons seen in many alert boxes.

Finally, the type G__TITLE describes the name that appears

Application Environment Services 75

in menu titles. It is therefore just a special case of G_STRING,
displayed in a different font.

The Rest of the Object Types

The remaining object types all use the object specifica
tion field to point to data structures other than objects.
For instance, when the need arises to get a file name
within a dialog (which is described by an object tree), the
particular area on the screen that should reflect the file
name information is controlled by a data structure called
TEDINFO, which stands for "Text EDited INFOrmation."
Another data structure that objects use is known as a
BITBLK. BITBLKs are used to define graphics bit images.
APPLBLKs and PARMBLKs allow the programmer to define her
own data structures, which, of course, necessitates a lot of
effort on the part of the programmer. Chapter 5 discusses
programmer-defined objects in detail. Finally, there are
ICONBLKs, which are used to define icons.

We will only be discussing in s o m e detail the TEDINFO
data structure, a s we have not covered either bit images
or icons in this book at all. Although we will show you
the APPLBLK and PARMBLK data structure in a moment, we
will wait until we discuss programmer-defined objects in
Chapter 5 for any discussion of them.

TEDINFO Structure

The TEDINFO (Text EDited INFOrmation) structure pro
vides a framework that allows the user to edit formatted
text. There are four object types—G_TEXT, G_BOXTEXT,
G_FTEXT, and G_FBOTEXT—that point to a TEDINFO structure
that is shown in Figure 2 . 1 1 . The structure contains a
pointer to the text string, ptext (again there is no room in
the structure itself to contain the actual string). Since
TEDINFO structures allow edited input text, however, s o m e

PROGRAMMER'S GUIDE TO GEM

rules must exist to determine how the text is to be dis
played and what a valid input string should look like. Let's
review these rules briefly.

p t e x t

t e m p l a t e

v a l i d

f o n t r e s e r v e d

j u s t c o l o r

r e s e r v e d t h i c k

l e n g t h l e n t e m p l a t e

(W O R D b o u n d a r i e s)

p t e x t - p o i n t e r t o t e x t s t r i n g
t e m p l a t e - p o i n t e r t o t e x t t e m p l a t e
v a l i d - p o i n t e r t o v a l i d a t i o n s t r i n g
l e n g t h - n u m b e r o f c h a r a c t e r s in t e x t s t r i n g
l e n t e m p l a t e — n u m b e r o f c h a r a c t e r s in t e m p l a t e

F i g u r e 2 . 1 1 : TEDIMFO Data Structure

The text string pointed at by ptext may be blank, which
is indicated either by a completely blank string or an at
sign (@) in the first character position of the field. If the
first character position is blank, the remaining characters
may be anything—GEM A E S will interpret the entire field
a s blank.

The template (template) that controls how the text
appears on the screen points at another string that has

Application Environment Sewices 77

underscored positions to indicate where the specified text
is to be entered.

The final ingredient required is to describe the input
validation field pointed at by valid. This string is a string
of special characters that determines what input GEM will
accept. Table 2.3 defines these validation characters.

V a l i d a t i o n C h a r a c t e r I n p u t A l l o w e d

9 Only the digits 0 - 9 .

a Upper- and lowercase alpha characters
plus the space .

n Digits, upper- and lowercase alpha
characters, plus the space .

P All the valid D O S path name charac
ters, plus the backslash (\) and the
colon (:).

A Only uppercase alpha characters, plus
the space .

N Digits and uppercase alpha characters,
plus the space .

F All valid D O S file name characters,
plus the question mark (?), asterisk (*) ,
and colon (:).

P All valid D O S path name characters,
plus the backslash (\) , colon (:), ques
tion mark (?), and the asterisk (*) .

X Anything.

T a b l e 2 . 3 : TEDINFO Validation Characters

For instance, what if the ptext text is " @ " and the tem
plate is "Enter File Name: . ". In this case,
only the template string would appear on the screen. Now

PROGRAMMER'S GUIDE TO GEM

to get the effects of allowing editing, we need to specify
an input validation string, which is what valid points at. In
this example, lets use " F F F F F F F F F F F " to represent the
file name that the user is going to type in. If the user
types "chapterltxt", then GEM shows the following on the
screen: "Enter File Name: chapterl.txt".

The APPLBLK and PARMBLK Structures

To promote the greatest flexibility, GEM allows the pro
grammer to define his own data structures for use within
the object system. This is for the situation in which none
of the defined object types really does what the program
mer wants. The reason why we are deferring the discus
sion of this until Chapter 5 is that there are some tricky
details involved with defining your own objects, and the
coding examples illuminate those details nicely. At this
time we will therefore simply illustrate the APPLBLK and
PARMBLK structures in Figure 2.12 and 2.13, respectively.

p c o d e

parameter

p c o d e — pointer to t h e c o d e to c h a n g e o b j e c t
parameter - opt ional LONG v a l u e a s p a r a m e t e r

F i g u r e 2 . 1 2 : APPLBLK Structure

Building an Object Tree

In the last few pages , we have introduced you to the
notion of a GEM object. As you will probably have gath
ered from our discussion, building them can be very tedi
ous. For this reason, it is worth reemphasizing the value

Application Environment Services 79

ptree

obj index old state

state o b j x

obj_y ob jwidth

obj height c l i p x

c l i p y clip width

clip height parameter

p t r e e - p o i n t e r to o b j e c t t ree
c l i p ? - c o o r d i n a t e s of c u r r e n t c l ipping r e c t a n g l e
p a r a m e t e r - i d e n t i c a l to APPBLK

F i g u r e 2 . 1 3 : PARMBLK Structure

of the Resource Construction Set (RCS). The RCS is an
invaluable tool for dealing with all the resource data struc
tures (objects, TEDINFOs, BITBLKs, and so on). You can build
these structures by hand, but you only have to do that
once to realize how difficult it can be.

Summary of Important Facts About Objects

We have presented only the bare essentials concerning
the manipulation of objects and the other resource data
structures. We do go into more detail about objects in the
sample program in Chapter 5, but even so, there is a lot
more to cover. Here, however, is a quick summary of
some of the more important facts about objects that we
have discussed.

1 Whenever an object tree is used as a parameter
in any of the Object Library functions, it is a

PROGRAMMER'S GUIDE TO GEM

LONG pointer to an array of objects.

2 The root of an object tree is always at index 0 of
the array.

3 All pointers to objects consist of the pointer to an
object tree plus the index into the object tree
array.

4 Use the RCS.

5 The value for a NIL object index is - 1 , since 0
is a valid object index (the root).

Object Library Syntax Summary

This section is a short reference summary of all the
functions in the Object Library.

Adding a Child Object: o b j c _ a d d ()

The ob jc_add() function adds an object a s a child to the
parent in an object tree. To use it, see the following syn
tax summary.

WORD r e t _ c o d e = ob jc_add (ob j_ t ree , parent , child) ;

Input:

LPTR o b j _ t r e e

WORD parent

WORD child

Output:

WORD ret c o d e

Address of the object tree that
is being added to.

Parent to which children are
being added.

Object to be added a s a child
to the specified parent.

If > 0, then no error. If = 0,
then an error occurred.

Appäcation Environment Semices 81

Changing the Object State: o b j c _ c h a n g e ()

The objc_change() function changes a specified object's
state within the confines of the specified clipping rec
tangle. To use it, see the following syntax summary.

WORD ret_code = objc_change (obj_tree, object, reserved,

clip_x, clip_y, clip_width,
clip_height, new_state,
redraw);

Input:

LPTR obj_tree

WORD object

WORD reserved

WORD clip_x

WORD clip_y

WORD clip_width

WORD clip_height

WORD new_state

WORD redraw

Output:

WORD ret_code

Address of the object tree that
contains the object whose
state will be changed.

Object whose state will be
changed.

Must be 0.

X coordinate of the clipping
rectangle.

Y coordinate.

Width of clipping rectangle.

Height of clipping rectangle.

New state value (see Figure
2.10).

0—Do not redraw object.
1—Redraw the changed object.

If > 0, then no error. If = 0,
then an error occurred.

Deleting an Object: o b j c _ d e l e t e ()

The ob jc_deiete() function unlinks an object from the
parent. To use it, see the following syntax summary.

PROGRAMMER'S GUIDE TO GEM

WORD ret_code = objc_delete (obj_tree, object);

Input:

LPTR obj_tree Address of the object tree that
contains the specified object.

Object to be deleted from tree. WORD object

Output:

WORD ret code If > 0, then no error. If = 0,
then an error occurred.

Input:

Displaying an Object Tree: o b j c _ d r a w ()

T h e ob jc_draw() function d r a w s the spec i f i ed ob jec t , a s
well a s any ind ica ted d e s c e n d a n t s of the o b j e c t (children,
g randchi ldren , a n d s o on) . N o t e that s ib l ing s of the speci
fied o b j e c t a r e not inc luded in the drawing list. T h e draw
ing is c o n t a i n e d within a spec i f i ed c l ipp ing rec tang le . To
u s e it, s e e the fol lowing syntax s u m m a r y .

WORD ret_code = ob jc_draw (obj_tree, object, depth,
clip_x, clip_y, clip__width,
clip_height);

LPTR obj_tree Address of the object tree that
contains the specified object.

WORD object Object that marks where in the
object tree to begin drawing.

WORD depth Relative to the above object,
how many levels deep to draw:

0—Only the specified object.

1—Children of the specified
object.

2—Children of the children of
the specified object, and so
on.

WORD clip_x X coordinate of the clipping
rectangle.

Appäcation Environment Services 83

WORD clip_y

WORD clip_width

WORD clip_height

Output:

WORD ret__code

Y coordinate.

Width of the clipping rectangle.

Height of the clipping rectangle.

If > 0, then no error. If = 0,
then an error occurred.

Changing the Editable Text Object: o b j c _ e d i t ()

T h e ob jc_ed i t () function ed i t s the text in the spec i f i ed
ob jec t , which m u s t b e either a G_TEXT or G_BOXTEXT (refer
to the d i s c u s s i o n of the TEDINFO d a t a s t ructure earl ier in
this chapter) . To u s e ob jc_edi t () , s e e the fol lowing syntax
s u m m a r y .

WORD ret_code = objc_edi t (obj__tree, object, character,
char__idx, kind, &new_idx);

Input:

LPTR obj_tree

WORD object

WORD character

WORD char jdx

WORD kind

Address of object tree that
contains the specified object.

Object containing the text to
be edited.

Replacement character.

Index of the next position in
the text string.

0 ED_START

1 ED INIT

Reserved.

Produce a for
matted string by
moving the input
text into the tem
plate. Turn on the
text cursor.

PROGRAMMER'S GUIDE TO GEM

2 ED_CHAR Make sure that
the input charac
ters are expected
in the validation
string of the
TEDINFO structure.
Update the text,
and display the
string.

3 ED_END Turn off the text
cursor.

Output:
WORD ret_code If > 0, then no error. If = 0,

then an error occurred.

WORD new_Jdx Index into the text string that
points to the next character
position.

Locating an Object on the Screen: o b j c _ f i n d ()

The objc_find() function finds out if there is an object
under the mouse, given a starting location in the object tree.
The function returns the index of the found object in the
tree. To use ob|c_f ind(), see the following syntax summary.

WORD obj_idx = objc_f ind (obj_tree, object, depth,
mouse__x, mouse_y);

Input:

LPTR obj_tree Address of object tree that
contains the specified object.

WORD object Object in the tree to begin the
search.

WORD depth How deep into the tree:

0—Only search the specified
object.

Application Environment Semices 85

1—Search through the chil
dren of the specified object.

WORD mouse x

2—Search through the grand
children of the specified
object.

X coordinate of the mouse .

WORD mouse_y Y coordinate.

Output:

WORD obj_idx Index of the object in the
object tree, if found. - 1
if object not found.

Calculating an Object's Screen Coordinates: o b j c _ o f f s e t ()

T h e ob|c_offset() function returns the ac tua l s c r e e n
c o o r d i n a t e s of the spec i f ied ob jec t . T h e obje_offset() a n d
objc_f ind() funct ions a r e inverse of e a c h other. ob jc_f ind()

t a k e s a n ac tua l s c r e e n pos i t ion a n d returns what o b j e c t is
d i s p l a y e d at that pos i t ion , w h e r e a s objc_of fset() t a k e s a n
o b j e c t a n d returns its ac tua l s c r e e n pos i t ion .

To u s e ob|c_of fset() , s e e the fol lowing syntax s u m m a r y .

Output:

WORD ret_code If > 0, then no error. If = 0,
then an error occurred.

WORD obj_y

WORD obj_x X coordinate of the specified
object relative to the screen.

Y coordinate.

86 PROGRAMMER'S GUIDE TO GEM

Reordering the Children: o b j c _ o r d e r ()

The ob jc_order() function reorders a child within the list
of children of an object. To use it, see the following syn
tax summary.

WORD r e t _ c o d e = objc order (ob j_ t ree , object , n e w p o s) ;

Input:

LPTR o b j _ J r e e

WORD object

WORD n e w p o s

Output:

WORD ret c o d e

Address of an object tree that
contains the specified object.

Object to be moved.

New position in the list of
children of the specified
object.

0—-Move to bottom of list.

1—Move to one from the
bottom.

2—Move to two from the bot
tom, and so on.

- 1—Move to top of the list.

If > 0, then no error. If = 0,
then an error occurred.

THE RESOURCE LIBRARY

Now that you have been introduced to the Object
Library, let's look at the closely related A E S Resource Li
brary, which provides the services needed to manage a
programs data or resources. In GEM, resources are the
menus, dialogs, icons, bit images, and alerts of the applica
tion, and since these are represented by GEM objects,

Application Environment Services 87

there is a strong relationship between an application's
resources and its objects. In effect, the Resource Library
provides more routines to manipulate GEM objects. In this
section, we show you how to use the Resource Library rou
tines to load and access the resources of your application.

This A E S Library manipulates the resources contained
in the .RSC file, which is usually created by the RCS. (Do
not, however, confuse this file with the initials of the
Resource Construction Set (RCS). They are related but
distinct entities.) Only one .RSC file at a time is allowed
for each application; if more than one is needed, the pro
gram can free the first and load the second. In this file
are all the menus, dialogs, alerts, icons, and so on used
by the application. Of course, the application may choose
to create its own objects within itself, but this would be
very difficult, and it would also limit the portability of the
application. We vigorously urge the use of the RCS.

Thus, GEM separates the program into two distinct
groups: the program itself and the data used by the pro
gram. The full usefulness of this separation is best seen
when you want to modify the object trees that are the
resources of the program. If the resources of the program
were part of the program itself, then you would have to
edit the program, recompile it, and relink it. But the fact
that the resources are in a separate file (the .RSC file)
means that when you need to change the resources, all
you need to do is use the RCS to edit the .RSC file. No
changes need to be made to the program itself. You can,
of course, choose to merge your program's data with the
program itself, but we do not recommend this since it
turns the process of making minor changes to simple text
into a major job.

An attractive side benefit to this separation is interna
tional portablity. Think of customizing your application for
another country such as J apan . DRI has produced a ver
sion of the DRI GEM applications for the J a p a n e s e market

PROGRAMMER'S GUIDE TO GEM

with relatively little effort, because of the compartmentali-
zation of the resources used by GEM applications. Most of
the effort went into editing the text of the menus, dialogs,
and alerts into Kanji (the host system already supported
Kanji) using the RCS. None of the actual code had to be
changed, just the text that the user sees.

THE 2 FILES THAT MAKE A GEM APPLICATION

Because GEM separates the program from its data in a separate
resource file, most GEM applications reside in two files; the resource file
(the .RSC file), and the application file itself (the .APP file). If the application
uses the resources in the .RSC file then the .RSC file must be in the same
directory as the .APP file.

The most used Resource Library functions are rsrc_lood()
and rsrc_gaddr(). The resource load function, r$rc_lood(), finds
the .RSC file on disk and loads all the object trees in mem
ory. The rsrc_ gaddr() function returns the address of a speci
fied tree that was loaded by mcJoadQ. Once all the object
trees for the application are loaded and available in memory,
the application can address each tree as needed and use the
information stored within each tree. Notice that rsrcJoad()
returns only an error code and nothing else, implying that
only one resource file can get loaded for each application at
a time. If you need to switch resources, you must use the
rsrc_free() function to free the used memory in the already
loaded .RSC file before loading the next .RSC file.

There is a linkage between the .RSC file and the appli
cation via another file created by the RCS. The RCS will
produce, upon direction, an C include file (a file with a file
type of .h) for use in the application. The include file
names the indices of the trees and objects in the resource

Application Environment Services 89

file. (For example, see the listing of DEMO.H in Chapter 5.)
You get to name the objects (see Appendix C) when you
build the object using the RCS. These names are just C
defined names of the object indices. If you do not name
the object, then the include file will not contain the object.
After naming the objects, you can use names instead of
numbers in the A E S functions that take object indices.
This should minimize the kinds of errors that result from
using the wrong object index.

Let's look at the way DEMO uses the Resource Library
routines. After the .RSC file is loaded, DEMO gets the
address of the object tree that describes its menu bar, and
calls menu_bar () to display the menu bar. Similarly, when
one of DEMO's dialogs needs to be displayed (in order to
allow the user to save the screen, open a file, or change
the pencil style, for example), DEMO calls rsrc_goddr() with
the index of the object that describes the dialog in order
to get the address in RAM where the tree is stored. This
pointer is then used by the ob jc_draw() to display the
dialog and by f o r m _ d o () to process the user input while
the dialog is active.

One of the more common mistakes in using the
Resource Library and the Object Library is to confuse the
name of a tree with the name of an object in the tree.
Essentially, this means that you are using the wrong object
index (instead of confusing the tree name with the object
name, you can also, of course, simply use the wrong object
name). In the case of using the wrong object index, you
could end up overindexing the object structure and getting
something somewhere in RAM. This probably won't do you
any good; in fact, you could end up rebooting the system.
There is no real way to predict the behavior when you over-
index. You could get lucky and index into another object
tree, but then you would be using the wrong tree.

The material in Chapter 5 shows how most of the
major routines in the Resource Library are used.

PROGRAMMER'S GUIDE TO GEM

Resource Library Syntax Summary

This section is a short reference summary of all the
routines in the Resource Library.

Freeing Memory Allocated for Resources: r s r c _ f r e e ()

The r$rc_free{) function releases the memory allocated by
rsrc_load() and is used when the program wants to load
another set of resources. If another set of resources is
loaded, the old set that is already loaded will be discarded.
To use rsrc_free() see the following syntax summary.

WORD ret_code = rsrc_free ;

Input:

None

Output:

WORD ret_code If > 0, then no error. If = 0,
then an error occurred.

Getting the Address

of the Loaded Resource: r s r c _ g a d d r ()

The rsrc_gaddr() function gets the address of the speci
fied data in the structure after the resource is loaded in
memory. To use it, see the following syntax summary.

WORD ret_code = r s r c _ g a d d r (type, index, &data);

Input:

WORD type The type of object or data

pointed at by index, a s follows:

0—Tree.

1—OBJECT.

2—TEDINFO.
3—ICONBLK.

Appücation Environment Services 91

4—BITBLK.

5—String.

6—Image data.

7—Object specification.

8—Pointer to text (TEDINFO).

9—Pointer to text template
(TEDINFO).

10—Pointer to text validation
string (TEDINFO).

11—Pointer to mask of icon
bit image (ICONBLK).

12—Pointer to data of icon
data image (ICONBLK).

13—Pointer to text of icon
(ICONBLK).

14—Pointer to bit image
(BITBLK).

15—Address of a pointer to a
free string.

16—Address of a pointer to
free image.

WORD index Index of the data.

Output:

WORD ret c o d e

LPTR d a t a

If > 0, then no error. If = 0,
then an error occurred.

Address of data in memory.

Loading a Resource File into Memory: r s r c _ l o a d ()

The r$rc_load() function loads the specified .RSC file
into memory. To use this function, see the following syn
tax summary.

WORD r e t _ c o d e = r s r c j o a d (RSCfile);

92 PROGRAMMER'S GUIDE TO GEM

Input:

LPTR RSCfile Address of .RSC file name
string.

Output:

WORD ret_code If > 0, then no error. If = 0,
then an error occurred.

Changing Object Tree Coordinates: r s r c _ o b f i x ()

The r$rc_obBx() function changes the form of the coordi
nates in the specified object tree from character coordinates
to pixel coordinates. Character coordinates are created by
the RCS because it doesn't know the device resolutions
when the resource file is being created. r$rc_lood() uses the
rsrc_obfix() function to convert the coordinates.

To use this function, see the following summary.

WORD d u m m y = rsrc_obf ix (tree, object);

Input:

LPTR tree

WORD object

Output:

d u m m y Always 1.

Storing Free Strings: r s r c _ s a d d r ()

The rsrc_saddr() function stores the values of either the
free string or free image addresses in the specified object
to another place in the object tree. To use this function,
see the following summary.

WORD ret_code = rsrc_saddr (type, index, saddr);

Input:

WORD type Type of data:

Address of tree that contains
the object.

Index of object.

Appäcation Environment Semices

15—Address of a pointer to a
free string.

16—Address of a pointer to a
free image.

WORD index Index of destination in the
data.

Output:

WORD r e t _ c o d e

LPTR saddr

If > 0, then no error. If =
0,then an error occurred.

Address of the data.

THE MENU LIBRARY

We are now ready to discuss one of the more common
uses of an object tree, the GEM menu. Each application
that uses the GEM standard interface can make use of the
typical GEM menu bar on the top of the physical screen.
GEM uses menus to provide the options available to each
application. For instance, in GEM Draw the menu bar dis
plays options that allow the user to change the text font
and size, change the fill pattern, arrange the objects on
the Draw screen, write the window to a file, use the desk
accessories, and more.

By choosing to use the GEM Menu Library, an applica
tion gains by having a consistent interface to follow. The
Menu Library routines make it possible to

Display the appropriate menu bar for the application.

Display an item that cannot be selected by displaying
it at a dimmed brightness level. Items that can be
selected are shown at normal brightness.

Display menu text.

94 PROGRAMMER'S GUIDE TO GEM

GEM menus are known as drop-down menus because
when the user moves the mouse over the menu bar, the
Screen Manager drops the entire menu down onto the
screen. In contrast, the Macintosh uses pull-down menus,
which work by having the user click on the desired menu,
and, holding the button down, move through the menu
highlighting each pointed-at item. By releasing the button
the user selects the last highlighted item. Thus, on the
Macintosh, the menu is displayed as long as the button
remains depressed, whereas GEM menus are visible until the
user moves the mouse out of the menu, either into another
menu or to another part of a screen. GEM menus are also
different in that the mouse button is used to to select a
menu item.

The Screen Manager handles all of the user interaction
with the menu. This includes the saving of the area of the
screen that is overwritten when the menu is dropped
down, and restoring it again when the user is finished with
the menu. One of the rules of writing GEM applications
concerns the size of the menu itself. Because the Screen
Manager uses a fixed buffer the size of 1/4 of the screen,
no menu can exceed that size. This means that when you
build the menus for your application using the Resource
Construction Set, you will have to be careful not to build
a menu that is too large. If you find that you need a
larger menu, then cut it up into smaller submenus.

Using Menu Functions

Of the six menu functions, the three most interesting
ones are m e n u _ b a r () , menu icheck() , and menu__ienable(), All
programs that use menus will have to use the menu_bar ()

function as this is the only function that displays the
menu bar on the screen. One of the first things that
DEMO does in the demo_ in i t () routine is to load the
resource file and later display the object tree that

Application Environment Services 95

describes the menu bar (see Listing 5.3 and Listing 5.5).
Unfortunately, DEMO does not use the other two menu
routines, so we we will have to discuss these without the
benefit of having an example to refer to.

One of the conventions of the GEM menu system is
that menu items that can be selected appear in normal
brightness on the screen. If the menu item is not select
able, then by convention the menu item should appear at
a dimmed brightness level. GEM does not enforce this
because it cannot know when a menu item is selectable
or not for your GEM application; only the application
itself can know that. But GEM does provide a function
called menuJenable() to aid the application in dimming or
brightening a menu item.

As the application receives information from the Screen
Manager concerning the user's choice of menu items, the
application knows whether or not each menu item in each
menu is selectable. When an item is no longer selectable,
the application uses menu_ienable() to signal GEM to dim
that item's brightness the next time that it appears on the
screen. The reverse occurs when the menu item becomes
selectable again. The initial brightness of a menu item is
governed by the value of its object flag and state (see Fig
ure 2.10). Thus, menuJenableQ changes the state and flag of
the object that describes the menu item. The Screen Mana
ger uses that information when it displays the menu the
next time that the user chooses the menu.

It's interesting to note here that while Chapter 5's
DEMO program does not use menu_ienable() to highlight
the menu list, DEMO does in fact highlight the menu list
without using the Menu Library. Quite simply, all that
DEMO does is to modify directly the object flag and state
fields of the object that describes the menu item. DEMO
thus avoids the overhead of using an additional A E S func
tion. S e e Chapter 5 for a more complete discussion.

The other major menu function is menujcheck(), which

PROGRAMMER'S GUIDE TO GEM

either places a check mark next to a selected menu item
or erases a check mark. The use of check marks in
menus is a way that GEM allows the application to show
to the user what options are currently active. For instance,
in GEM Draw, if the user wants boldfaced type, then Draw
places a check mark next to that menu item in the Text
menu. Every time that the user selects the Text menu, he
will see the check mark next to the active items that he
has selected. If the user changes the selection, then Draw
erases the old check mark and displays a check mark
next to the newly selected item.

Menu Library Syntax Summary

This section is a short reference guide to all the func
tions of the Menu Library. All the object trees that are
referenced in the summaries must be loaded using the
rsrcJood() function (documented in the section on the
Resource Library).

Displaying the Menu Bar: m e n u _ b a r ()

The m e n u _ b a r () function shows or erases the menu bar.
To use this function, see the following syntax summary.

WORD ret_code = m e n u _ b a r (obj_tree, action);

Input:

WORD action

LPTR obj_tree Address of object tree that
produces this menu.

0—Erase the menu bar.
1—Show the menu bar.

Output:

WORD ret_code If > 0, then no error. If
then an error occurred.

= 0,

Appücation Environment Services 97

Displaying or Erasing a Check Mark

on a Menu Item: m e n u _ i c h e c k ()

T h e menu_icheck() function p l a c e s or e r a s e s a c h e c k
m a r k next t o the spec i f i ed m e n u i tem in order to indica te
m e n u se lec t ion . To u s e this function, s e e the fol lowing
s y n t a x s u m m a r y .

WORD r e t _ c o d e = m e n u j c h e c k (ob j_ t ree , item, check) ;

Input:

LPTR o b j _ J r e e

WORD item

WORD check

Output:

WORD ret c o d e

Address of the object tree that
produces this menu.

Menu item identifier.

0—Erase a visible check mark
next to specified item, or
do not display a check
mark next to item.

1—Place a check mark next to
item.

If > 0, then no error. If = 0,
then an error occurred.

Enabling or Disabling a Menu Item: m e n u j e n a b l e ()

T h e menu_ ienab le () function e n a b l e s or d i s a b l e s a m e n u
item. In this way, the applicat ion controls what m e n u i tems
c a n b e s e l e c t e d . To u s e this function, s e e the fol lowing
syntax s u m m a r y .

WORD r e t _ c o d e = menu_ienable (ob j_ t ree , i tem, e n a b l e) ;

Input:

LPTR o b j _ t r e e Address of object tree that
produces this menu.

PROGRAMMER'S GUIDE TO GEM

WORD item Menu item identifier.

WORD enable 0—Disable the menu item by
dimming its characters.

1—Enable the menu item by
displaying it in normal
brightness.

Output:

WORD ret code If > 0, then no error. If = 0,
then an error occurred.

Registering a New Desk Accessory: m e n u _ r e g i s t e r ()

The m e n u _ r e g i s t e r () function adds a name to the desk
accessory Desk menu list. Since only six desk accessories
can be loaded, only six menu items may appear in the
Desk menu. To use this function, see the following syntax
summary.

Replacing the Text of a Menu Item: m e n u _ t e x t ()

The m e n u _ t e x t () function replaces the text of the speci
fied menu item. To use this function, see the following
syntax summary.

WORD m e n u j d = menu__register (DAJd, DA_txt);

Input:

WORD DA_id Desk accessory ap_id.

LPTR DA_txt Address of desk accessory's
Desk menu test string.

Output:

WORD ret_code If > 0, then no error. If = 0,
then an error occurred.

WORD menu_id Desk accessory's menu item
identifier (0 - 5):
- 1 means no room in the
Desk menu for this item.

AppUcation Environment Sewices 99

WORD r e t _ c o d e = menu_tex t (obj__tree, item, text) ;

Input:

LPTR o b j _ t r e e

WORD item

LPTR text

Output:

WORD ret c o d e

Address of object tree that
produces this menu.

Menu item identifier.

Address of a text string to
replace the string currently in
the menu object tree. The new
string cannot be longer than
the old string.

If > 0, then no error. If = 0,
then an error occurred.

Displaying Menu in Reverse

or Normal Video: m e n u J n o r m a l ()

T h e menu_tnormal () function d i s p l a y s the m e n u title in
rever se or n o r m a l v i d e o m o d e s . To u s e this function, s e e
the fol lowing s y n t a x s u m m a r y .

WORD r e t _ c o d e = m e n u t n o r m a l (ob j_ t ree , title, norm_vid) ;

Input:

LPTR o b j _ t r e e

WORD title

WORD norm vid

Address of the object tree that
produces this menu.

Menu title identifier.

0—Display the title in reverse
video.

1—Display the title in normal
video.

Output:

WORD ret c o d e If > 0, then no error. If = 0,
then an error occurred.

100 PROGRAMMER'S GUIDE TO GEM

THE FORM LIBRARY

S o far, we have studied objects, resources, and menus,
all of which are pieces of the jigsaw puzzle of A E S re
sources. We need to complete the puzzle by looking at the
Form Library, which essentially presents two types of
frameworks to handle user interaction. The two types are
dialogs and alerts. First, let's deal with the simplest one,
alerts.

Alerts

An alert is usually issued when an error condition is
encountered in the application. For instance, the applica
tion might get an error trying to load the .RSC file; per
haps the file couldn't be found. In the typical application
environment, the program would probably print out an
error message before terminating. An alert is a standard
ized form of a mes sage that serves the s ame function. In
DEMO, alerts are used in exactly this fashion, as you can
see if you look at the use of the f o r m _ a l e r t () at the top of
Listing 5.3, where DEMO trys to load the .RSC file and
fails. DEMO uses an alert to notify the user that it cannot
successfully load the .RSC file.

The mes sage that an alert displays has a particular for
mat, as follows:

[icon #] [message text] [exit buttons]

Each part of the alert mes sage is separated by square
brackets. The icon # refers to the fact that there are four
defined icons for an alert:

0—no icon
1—NOTE icon

Application Environment Services

2—WAIT icon
3—STOP icon.

A NOTE icon should be used when you just want to pass
some information on to the user. An alert that uses a WAIT
icon is forcing the user to pause in processing, while a
STOP alert indicates to the user that bad things could hap
pen if the user continues. STOP alerts are used to indicate
that data could be lost if the user continues. See Figure
2.14 for an example of an alert that is used by Draw to
warn a user that the current picture has not been saved.

F i g u r e 2 . 1 4 : Sample Alert from Draw

There is only a small space for the message in any
alert: 5 lines of text with at most 40 characters per line.
To force line breaks, use the vertical bar (the logical OR
symbol).

An exit button is the G_BUTTON object type, and it
returns the user to the application that invoked the alert.
The text for each exit button is limited to less than 20

PROGRAMMER'S GUIDE TO GEM

characters. There can be at most three exit buttons used,
with the text for each button separated by a vertical bar.

A dialog is a superset of an alert. Where an alert usu
ally tells the user something and allows the user to make
s o m e restricted, predefined response, a dialog is more
flexible. Many dialogs allow the user to enter s o m e text
(see the section on the File Selector Library later in this
chapter) and edit it. The chief characteristic of a dialog,
however, is that it allows the user to provide answers to
several questions at once.

For example, a menu called Text in the GEM Draw
application allows the user to change the text font, the
point size, or the font style (to bold, italic, and so on).
Because this is a menu rather than dialog, however, only
one item can be selected at any one time. Thus, to set
the text to a bold face, 20-point, Dutch font, the user
must enter the Text menu 3 times. Contrast this with the
Pencil/Eraser Selection dialog of DEMO (shown in Figure
5.9), where the user can select one of the pencil or eraser
thicknesses, a s well a s what color to use.

Unlike alerts, dialogs require more overhead. Dialogs
use object trees to manifest themselves. The object tree
format is covered in detail in Chapter 5 along with
examples of dialogs used by DEMO. The point is that
alerts can be as easy to use as the standard C output rou
tine, p r in t f () , whereas dialogs require more planning and
more steps.

Dialogs are typically displayed in the center of the screen
by means of the form_center() function (see the syntax sum
mary section). It is important to note that displaying dialogs
in the center of the screen is really not just a convention.
The root of a dialog object tree is set to 0, which means
that if you do not use form_center() , the dialog will appear in

Application Environment Services 103

the left-hand corner of the screen. Since the whole point of
a dialog is to grab the user's attention, the upper left corner
of the screen is not generally where you will want the dialog
to appear. The form__center() call sets the coordinates of the
root of the dialog object tree to make sure that the dialog
appears in the center of the screen. Note that instead of
using form_center(), you can directly set the coordinates of
the root to any place on the screen at which you want the
dialog to appear.

f o rm_d ia l () is another function that has been modified
by DRI because of the Apple disagreement. In the past,
form_dial showed an expanding box or a shrinking box. In
the newer version of GEM, however, both these visual
effects were eliminated. Old programs that use those func
tions will still work, but the visual effect will not appear. It
is no longer clear as to the functions of f o rm_d ia l .

Here is a summary of the steps required for displaying
a dialog:

Use the f o rm_center () function to set the coordinates
of the dialog so that it is displayed in the center of
the screen.

Display the dialog and process user input using the
f o r m _ d o () function.

Form Library Syntax Summary

This section is a short reference summary of all the
functions in the Form Library.

Displaying an Alert: f o r m _ a l e r t ()

The f o rm_a le r t () function displays the specified string
as a GEM alert. The string must conform to the format
described above. To use f o r m _ a l e r t () , see the following syn
tax summary.

104 PROGRAMMERS GUIDE TO GEM

WORD exit_button = fo rm_a le r t (def_button, string);

Input

WORD def button

LPTR string

Output:

WORD exit button

The default exit button:

0—No default button

1—First exit button

2—Second exit button

3—Third exit button.

Address of the alert string.

Identifies which exit button
was selected.

Centering the Dialog on the Screen: f o r m _ c e n t e r ()

T h e f o r m _ c e n t e r () function returns the a p p r o p r i a t e coor
d i n a t e s s u c h that when the spec i f i ed o b j e c t is drawn, it is
c e n t e r e d o n the s c r e e n . To u s e it, s e e the fol lowing syntax
s u m m a r y .

WORD d u m m y = f o r m c e n t e r (tree, &X, &Y, &width,
&height) ;

Address of object that
describes object tree to be
centered.

Always 1.

X value of centered coordinates.

Y value.

Width of centered object.

Height.

Input:

LPTR tree

Output:

WORD d u m m y

WORD X

WORD Y

WORD width

WORD height

Application Environment Semices 105

Reserving and Freeing Screen Space for Dialogs:
formed i a I

T h e fo rm_dia l () p e r f o r m s o n e of two t a s k s a s def ined by
o n e of its input a r g u m e n t s , flag. To u s e fo rm_dia l (), s e e the
fol lowing s y n t a x s u m m a r y .

WORD retcode = f o r m

Input:

WORD flag

WORD smallx

WORD smally

WORD smallw

WORD small h

WORD bigx

WORD bigy

WORD bigw

WORD bigh

Output:

WORD ret_code

_dlal (flag, smallx, smally, smallw,
smallh, bigx, bigy, bigw, bigh);

The action of f o r m _ d i a l () .

0—Reserve the screen space
for dialog

3—Free reserved screen space.

X coordinate of smallest box.

Y coordinate.

Width.

Height.

X coordinate of largest box.

Y coordinate.

Width.

Height.

If > 0, then no error. If = 0,
then an error occurred.

Executing the Displayed Dialog: f o r m _ d o ()

T h e f o r m _ d o () function p r o c e s s e s all the u se r input for
the d i s p l a y e d d i a log , a n d only returns to the ca l l ing pro
g r a m when the u se r s e l e c t s o n e of the d i a l o g s exit but
tons . To u s e form__do(), s e e the fol lowing s y n t a x s u m m a r y .

WORD exit_obj = f o rm do (tree, object);

PROGRAMMER'S GUIDE TO GEM

Input:

LPTR tree

WORD object

Output:

WORD exit__obj

Address of tree that contains
the displayed dialog.
The starting object within this
tree that accepts user input
(must be an editable text
field). If 0, then displayed
object doesn't contain any
editable text fields.

Object index of the object that
caused the exit from the
dialog.

Displaying DOS Errors: f o r m _ e r r o r ()

The f o rm_er ro r () function displays an alert identifying a
DOS error. To use it, see the following syntax summary.

WORD exit_button = f o rm_er ro r (DOS_code);

Input:

WORD DOS_code DOS error code.

Output:

WORD exlt_button Exit button identifier:

1—First exit button.

2—Second exit button.

3—Third exit button.
•

THE APPLICATION LIBRARY

At this point we have examined all of the major A E S
libraries. The remaining libraries provide some key func
tions for a GEM application, although not all of the

Application Environment Services 107

functions in each of these minor libraries are immediately
useful. Let's start with the Application Library.

The seven Application Library routines provide for

Sharing of the A E S libraries with other processes
(app l jn i t () and appLexit()).

Using the message system to send or receive mes
sage s to or from other processes (appl_read(),
appl_write(), and appl_find()).

Recording or playing back a GEM A E S session
(appl_trecord() and appl__tplay()).

By far the most important function in the Application
Library is appl_inlt(). Each application that uses the A E S
must register itself with the A E S by calling app l jn i t () . The
app l jn i t () function reserves some space in the Screen
Manager's data area that the Screen Manager then uses
for application-specific information. The reason for this is
the limited multitasking environment of GEM. All multi
tasking operating systems allocate a process descriptor in
memory for the very s ame reasons.

The second most useful functions of the Application
Library are appl_read() and appl_write(). These functions
are used to send or receive messages between processes.

Application Library Syntax Summary

This section is a short reference section to all the func
tions in the Application Library.

Cleaning Up an Application Environment: appLexit()
The appl__exit() function cleans up the resources

reserved when the application first registered with the
A E S by calling appl_init(). To use it, see the following
syntax summary.

PROGRAMMER'S GUIDE TO GEM

WORD ret_code = appLexit ();

Input:

None

Output:

WORD ret_code If > 0, then no error. If
then an error ocurred.

= 0,

Finding the ID of Another

Active Application: appLfind()
The appl_find() function gets the ap_id of another active

GEM application. This function is used in the procedure to
establish communication with another application, because
before an application can send mes sages to another appli
cation, both applications need to know about each other
(each application needs to have the other's ap_id). To use
appLfind, see the following syntax.

WORD s e a r c h j d = appLfind (ap_name);

Input:

LPTR ap_name Address of e Address of a null-terminated
file name of an application.
The file name must be eight
characters long (unused char
acters must be filled by
blanks).

Output:

WORD s e a r c h j d The ap_id associated with the
named application. If the appli
cation is not running, then - 1
is returned.

Registering an Application: appLinit()
The app l jn i t () function registers the application with

the A E S , which initializes any resources that are specific

Application Environment Semices 109

to this invocation of the application. To use it, see the
following syntax.

WORD a p _ i d = app l jn i t () ;

Output:

WORD a p _ i d The a p _ i d associated with this
invocation of the application.

If the application cannot be
registered with AES, then
ap_id = - 1 on return.

Reading a Message: appLread()
The appl_read() function reads a mes sage of specified

length into the specified buffer. This function is usually
used to read messages that are larger than the GEM stan
dard of 16 bytes. Remember that the first 16 bytes of the
mes sage are sent a s a mes sage event (see the discussion
of evnt_mesag() in the Event Library section). To use
appl_read(), see the following syntax summary.

WORD r e t _ c o d e = appK__read (p i p _ a p _ i d , length,
r e a d _ b u f f e r) ;

Input:

WORD p i p e _ a p _ j d ap__ld of the application process
that owns the pipe to read.

WORD length Number of bytes to read from
the pipe.

Output:

WORD r e t _ c o d e If > 0, then no error. If = 0,
then an error occurred.

read_buf fe r Address of a buffer to contain
the message.

Replaying a Recorded AES Session: appl_tplay()
The appLtploy() function replays a previously recorded

110 PROGRAMMER'S GUIDE TO GEM

set of user GEM A E S activity. To use it, see the following
syntax summary.

WORD dummy = appl_tplay (LPTR ap_tpmem, WORD
ap_tpcount, WORD ap_tpscale);

Input:
LPTR record Address of buffer that holds

the recording of the user's
actions.

WORD nurrweplay Number of user's actions to
replay.

WORD speed Speed of replay (1-10,000) .

Output:
WORD dummy Always 1.

Recording an AES Session: a p p l _ t r e c o r d ()

The appl_record() function produces a record of the
user activity with the application. The actual number of
events that are recorded is dependent on the size of the
buffer and the number of events that the user creates. To
use it, see the following syntax.

WORD num_evnts = appLtrecord (LPTR ap_trmem, WORD
ap__trcount);

Input:

LPTR record_buf Address of a buffer to hold the
recording of the user's actions.
Each recorded action requires
6 bytes, a WORD and a
LONG.

WORD type = > 0—timer
event

1—button

Application Environment Semices

2—mouse

3—keyboard

The LONG value depends on
the type of event:

timer— Number of elapsed
milliseconds.

button— The low word is the
button state (0/1, up/
down). The high word
is the number of
clicks.

mouse— The low word is the
mouse's X coordinate,
and the high word is
the mouse s Y corrdi-
nate.

keyboard—The low word is the
character that was
typed, and the high
word is the key
board state.

WORD capacity The number of events that can
be stored in the buffer (size of
buffer or 6 bytes).

Output:

WORD num_evnts The actual number of events
that was recorded.

Sending a Message: a p p l _ w r i t e ()

T h e app l_wr i te () function s e n d s a m e s s a g e of spec i f i ed
length to a spec i f i ed app l i ca t ion p r o c e s s . To u s e it, s e e the
fol lowing syntax s u m m a r y .

WORD ret_code = opp l_wr i te (write_id, length,
write_buffer);

PROGRAMMER'S GUIDE TO GEM

Input:

WORD w r i t e j d The ap__id of the destination
application process.

WORD length Number of bytes in the
message.

LPTR write_buffer Address of a buffer that con
tains the message .

Output:

WORD ret_code If > 0, then no error. If = 0,
then an error occurred.

THE GRAPHICS LIBRARY

GEM A E S provides a set of eight routines to assist you
in manipulating rectangles on the screen. Examples of
these routines include g ro f_ rubberbox() , which produces an
expanding and contracting box, g ra f_dragbox() , which drags
a box around the screen, or g ro f_mbox() , which moves a
box on the screen. Two routines that used to be in this
library—namely, g ro f_g rowbox () and grof_$hr inkbox()—have
been removed because of the Apple-DRI imbroglio. You
will notice that DEMO still uses these routines, but they
have no action; no expanding box or shrinking box
appears on the screen when DEMO is used on the latest
version of GEM.

One important contribution made by the Graphics
Library is to return the VDI handle to the currently open
screen workstation via the g ra f_hand le() function. The main
use for g ra f_handle() is to uniquely identify the open physi
cal workstation, although g r o f j i a n d l e also returns the size
of the system font on the open workstation. This handle is
converted to a virtual workstation identifier by the VDI

Application Environment Semices 113

open virtual workstation function, v _ o p n v w k () . Chapters 4
and 5 provide examples of the g ra f_handle() function.

Another useful Graphics Library function is the
gro f_mouse() routine that is used to change the mouse cur
sor form or mouse form. For instance, when the user
selects the text mode in GEM Draw, the representation of
the cursor changes from an arrow to cross hairs. Thus,
the mouse form often signals a particular function. The
Graphics Library also provides a function that returns the
current mouse position, the current button, and the cur
rent keyboard state (g ra f_mksta te()) .

The last group of Graphics Library functions that we
will discuss deals with movement of a box on the screen.
We have already mentioned the functions in this group.
gro f_dragbox() is used to get the effect of dragging a rec
tangle around the screen. In the GEM Desktop, for
instance, when a user drags a folder to another window by
clicking on the folder icon, holding down the mouse but
ton, and moving the mouse to the next window, the folder
looks like it is dragged across the screen. g ra f_dragbox()

produces this effect.
Another useful effect is that of the rubber box outline.

GEM Draw uses this most effectively when the user wants
to draw a rectangle on the screen. The user holds the but
ton down and moves the mouse on the screen. Draw
shows a box that has one vertex at the point where the
mouse button was first clicked and the opposite vertex at
the current position of the mouse. As long as the button
is depressed, Draw continues to show a box that expands
and contracts a s the mouse moves across the screen;
hence the term "rubber box."

Graphics Library Syntax Summary

This section is a short reference summary of all the
functions in the Graphics Library.

PROGRAMMER'S GUIDE TO GEM

Dragging a Box Around the Screen: g r a f _ d r a g b o x ()

The g ra f_dragbox() function drags a specified box within
a specified boundary rectangle. The mouse cursor position
is kept constant relative to box's upper left corner through
out the dragging. To use this function, see the following
syntax summary.

WORD r e t _ c o d e = grcrf_dragbox (width, height, startx,
starty,boundx, boundy,
b o u n d w , boundh , &finishx,
&finishy);

Input:

WORD width

WORD height

WORD startx

WORD starty

WORD boundx

WORD boundy

WORD b o u n d w

WORD boundh

Output:

WORD r e t _ c o d e

WORD finishx

WORD finishy

Width of box being dragged.

Height of box.

X coordinate of starting point.

Y coordinate.

X coordinate of boundary
rectangle.

Y coordinate.

Width of boundary rectangle.

Height of boundary rectangle.

If > 0, then no error. If = 0,
then an error occurred.

X coordinate of the box at the
end of the dragging.

Y coordinate.

Getting the Opened Workstation Handle: g r a f _ h a n d l e ()

The g r a f j i a n d l e () function returns the VDI handle for
the currently opened physical workstation, a s well a s the
system font character size. To use this function, see the
following syntax summary.

Application Environment Services 115

WORD vdi_handle = graf handle (&char_width, &char_height,
&box_width, &box_height) ;

Input:

WORD char width

WORD c h a r j i e i g h t

WORD box width

WORD box_he ight

Output:

WORD vdi hand le

Width of a character cell used
in the system font (in pixels).

Height of a character cell used
in the system font (in pixels).

Width of a square box that
holds a system font character
(in pixels).

Height of a square box that
holds a system font character
(in pixels).

GEM VDI handle.

Moving a Box: g r a f _ m b o x ()

T h e g r a f _ m b o x () m o v e s a box from the s o u r c e coordi
nates to the destination without chang ing the size of the
box. To u s e this function, s e e the following syntax summary .

WORD r e t _ c o d e = grcrf_mbox (width, height, f rom_x,
from_y, to_x , t o_y) ;

Input:

WORD width

WORD height

WORD f rom_x

WORD f rom_y

WORD to_x

WORD to_y

Width of a box at (from_x,
from_y).

Height of box.

X coordinate of box.

Y coordinate.

Destination x coordinate.

Destination y coordinate.

116 PROGRAMMER'S GUIDE TO GEM

Output:

WORD ret code If > 0, then no error. If = 0,
then an error occurred.

Finding the Current Mouse Position: g r a f _ m k s t a t e ()

The g r a f _ m k s t a t e () function gets the current mouse
position, button state, and keyboard state. To use this
function, see the following syntax.

WORD dummy = g r a f _ m k s t a t e (&mouse_x, &mouse_y,
&mouse_state, &kb_state);

Output:

WORD dummy

WORD mouse_x

WORD mouse_y

WORD mouse_state

WORD kb state

Always 1.

X coordinate of current mouse
position.

Mouse y coordinate.

The current mouse button
state.

0x0001—-Button on left.

0x0002—Second button from
left.

0x0003—Third button from left,

etc.

0—Means button up.

1—Means button down.

State of the keyboard's Shift
keys, Ctrl key, and Alt key.

(0—key up, 1—key down)

0x0001—Right Shift

0x0002—Left Shift

0x0004—Ctrl

0x0008—Alt

Application Environment Services 117

Changing the Mouse Form: g r a f _ _ m o u s e ()

The g ra f_mouse() function changes the mouse form into
the specified form, hides the mouse form, or shows it. To
use this function, see the following syntax summary.

WORD ret_code = g r a f m o u s e (form, mfdb);

Input:

WORD form

LPTR mfdb

Output:

WORD ret code

Mouse form code:

0—Arrow.

1—Text cursor (vertical bar).

2—Hour glass.

3—Hand with pointing finger.

4—Flat hand, extended fingers.

5—Thin cross hairs.

6—Thick cross hairs.

7—Outline cross hairs.

255—Use form described in
MFDB.

256—Hide mouse form.

257—Show mouse form.

Address of a 35-word mouse
form definition block, which
specifies a user-defined mouse
form.

If > 0, then no error. If = 0,
then an error occurred.

Drawing a Rubber Box: g r a f _ r u b b e r b o x ()

The g ra f_rubberbox() function draws a rubber box on
the screen. To achieve this, the user presses the mouse

PROGRAMMER'S GUIDE TO GEM

button , a n d d r a g s the rubber b o x out l ine . T h e u p p e r left
corner is f ixed at the point o n the s c r e e n where the u ser
first d e p r e s s e d the but ton , but the lower right corner c a n
b e d r a g g e d . When the user lets u p o n the but ton, the new
b o x s ize is re turned.

WORD r e t _ c o d e = grcrf_rubberbox (box_x , box_y, min_width,
min_height , &last_width,
&las t_height) ;

Input:

WORD box

WORD box

WORD min.

WORD min

Output:

WORD ret_

WORD last.

WORD last

x

_ y

width

_ h e i g h t

c o d e

_width

_height

X coordinate of box.

Y coordinate.

Minimum width (in pixels).

Minimum height (in pixels).

If > 0, then no error. If = 0,
then an error occurred.

Width of box when user lets
button go.

Height of box when user lets
button go.

Finding the Center of the Slider: g r a f _ s l i d e b o x ()

T h e g r a f _ s l i d e b o x () re turns the center of the s l ider a s it
m o v e s within the parent box . T h e user h o l d s d o w n the
but ton while m o v i n g the m o u s e in the s l ider a r e a . T h i s
m o v e s the s l ider a r o u n d the s l ider box .

WORD cent_s l ide = g r o f _ s l i d e b o x (ob j_ t ree , parent , object ,

directions-

Input:
LPTR obj_tree Address of object tree contain

ing the slider and the parent.

Application Environment Services 119

WORD parent

WORD object

WORD direction

Output:

WORD cent slide

Index of the parent in the
object tree.

Index of the slider object.

0—Horizontal slider movement.

1—Vertical slider movement.

Location of the center of the
slider relative to the parent.
If slider moves horizontally
within the parent box, then 0
is the leftmost position and
1000 is the rightmost. If the
slider moves vertically within
the parent box, then 0 is the
topmost position, while 1000
is the bottom.

Tracking Mouse Movement
in a Marked Box: g r a f _ w a t c h b o x ()

T h e g r a f _ w a t c h b o x () function a l lows a b o x to b e m a r k e d
a n d then t r a c k s the m o u s e m o v e m e n t into a n d o u t of this
box . T h e u s e r m u s t h a v e d e p r e s s e d the but ton a n d held it
d o w n t h r o u g h o u t this call . g r o f _ w a t c h b o x () re turns the final
pos i t ion relat ive to the w a t c h b o x of the m o u s e when the
but ton is r e l e a s e d .

WORD mouse = g r a f _ w a t c h b o x (obj_tree, object,
inner_state, outer_state);

Input

LPTR obj_tree Address of the object tree that
produces the specified box.

WORD object Index of object in object tree.

WORD inner_state State of box when mouse is
inside:

120 PROGRAMMER'S GUIDE TO GEM

WORD outer_s ta te

Output:

WORD m o u s e

0x0000—NORMAL

0 x 0 0 0 1 — S E L E C T E D

0 x 0 0 0 2 - C R O S S E D

0x0003—CHECKED

0x0004—DISABLED

0x0005—OUTLINED

0x0006—SHADOWED.

State of box when mouse is
outside.

Mouse cursor position when
user lets go of the button. If 0,
then the mouse is outside the
box. If 1, then the mouse is
inside the box.

THE FILE SELECTOR LIBRARY
Because G E M is an operating environment and not an

operating system, it does not supply all the services that
an application might need. In particular, G E M does not
provide a file system but instead relies on the underlying
DOS file system. There are therefore no direct file system
functions in G E M , such as functions for opening, reading,
or writing disk files. There is, however, one function in the
File Selector Library—a function called f s e l J n p u t () — w h o s e
purpose is to display the File Selector dialog box (see
Figure 2 .15) . f s e l j n p u t () provides an adequate interface
between the user and the underlying file system since
most G E M users need only to identify file names, leaving
G E M to do the reading or writing.

When an application requires the user to provide a file
name, the application calls f se l_ input () to display the con
tents of a directory where the user can select one of the

Application Environment Services 121

ITEM SELECTOR

Directory: C:\PICTURESVi.GEH.
[Ml tt.CEH Selection: I

• BOOK ,

m
I Cancel I

F i g u r e 2 . 1 5 : File Selector Dialog

existing files or create a new file. For example, GEM Draw
allows the user to save the work area into a file by click
ing on the File menu's "Save As " item. GEM Draw then
invokes f se l_ input () with the pictures directory a s input.

The File Selector dialog box allows the user to choose
any displayed file either by clicking on the file name and
then clicking on the OK button or by double-clicking on
the file name. As the File Selector dialog box only shows
nine files at a time, the user may scroll through the re
maining files. In addition, the user may also type in a new
file name or directory.

To change the directory, the user needs only to posi
tion the mouse cursor at the directory field location that
should be changed and then click. This will move the text
cursor (the cross hairs) to the click position. For example,
if the directory field shows "C : \p i c ture s \ * . gem" and the
user wants " C : \ g e m a p p s \ * . g e m " , the user can move the
mouse cursor to the second backslash (just before * .gem),
delete the string "pictures", and then type in "gemapps" .
The display should change to reflect the new directory
selections. f s e l_ input () will return the full file name for the
file that was selected, a s well a s which button was
selected (OK or Cancel).

file://C:/PICTURESVi.GEH

PROGRAMMER'S GUIDE TO GEM

File Selector Library Syntax Summary

This section is a short reference summary for the
single function in the File Selector Library.

Displaying the File Selector Dialog Box: fseLinput()
The f se l_ input () function displays the File Selector

dialog box and returns the results of the user interaction.

WORD ret_code = f s e M n p u t (dir_spec, file_.se!, &exit_but);

Input:

LPTR dir_spec

LPTR file sei

Output:

WORD ret__code

WORD exit but

Pointer to a string that con
tains the original directory
path specification. Upon exit
from this function, dir_spec
points at the final selected
directory specification.

Pointer to a string that con
tains the first selected item.
Upon exit from this function,
file_sel points at the final
selected item.

If > 0, then no error. If = 0,
then an error occurred.

Identifies which button was
selected on exit:

0—Cancel button

1—OK button.

http://file_.se

VIRTUAL
D E I K

N 1 E A M
THE IIB

PROGRAMMER'S GUIDE TO GEM

THE PURPOSE OF THE VDI 127

A SHORT PRIMER O N GRAPHICS 130

CONTROL FUNCTIONS 140

POINTS A N D MARKERS 161

LINES A N D POLYLINES 169

GRAPHICS TEXT 170

RECTANGLES A N D FILLED RECTANGLES 200

DRAWING SHAPES: GENERALIZED DRAWING PRIMITIVES 209

RASTER OPERATIONS 220

THE EXTENDED INQUIRE FUNCTION 238

SUMMING UP 240

Virtual Device Interface—The VDI 127

n this chapter we describe the "G"—for
"graphics"—part of GEM, called the Virtual
Device Interface, or VDI. The VDI is a collection
of drawing functions. A virtual device is an

abstraction of physical graphics devices, such as screens,
printers, or plotters. The purpose of the VDI is to allow
you to control many different graphical devices with the
s ame set of functions. For example, the VDI has a func
tion that lets you draw a line from one corner of your pic
ture to the other corner without having to know whether
the device is a screen or a printer.

In this chapter, we will first introduce you to some of
the concepts and vocabulary that are useful in describing
the VDI. Then we will describe the control functions that
perform certain housekeeping chores for virtual devices.
Next, we will explain how to output various graphical
items, such as points, markers, lines, and shapes. We will
also discuss how to display graphical text with the VDI.
Next, the chapter will focus on the special raster opera
tions of the VDI. Finally, we will touch on functions that
will allow you to get additional device-specific information.

THE PURPOSE OF THE VDI

One of the primary goals of the designers of GEM was
to make it a s easy as possible for programmers to write
efficient and portable graphics-based applications. To
make the graphics application easier to write, the VDI pro
vides a large number of powerful functions. To make the
graphics application portable, the VDI defines an abstrac
tion of a graphics device, which in turn allows your pro
gram to control different physical devices with the s ame
set of functions. Finally, to make the graphics application
efficient, the VDI requires that certain conventions be fol
lowed. (If these conventions are not adhered to, they can

128 PROGRAMMER'S GUIDE TO GEM

in fact cause the computer to crash.) All of these features
of the VDI will be described in this chapter.

The GEM VDI can be viewed as a set of functions that
perform graphical input and output with devices, which are
also known as workstations. Examples of devices include
screens (which are usually a combination of a monitor, key
board, and a mouse), printers, plotters, and film recorders.
Another kind of "device" is a metafile, which is a disk file
containing a series of graphics commands that can be
input to other GEM applications (such as GEM DRAW or
OUTPUT). In Chapter 6 we recommend that your program
draw to a metafile for hard-copy output instead of drawing
directly to a hard-copy device like a printer. The purpose of
this is to maximize the flexibility of your programs output,
since metafiles can be displayed on any device using the
OUTPUT utility.

Although the VDI also provides functions that accept
input from keyboards, mice, graphic tablets, and other
pointing devices, if your program uses any A E S functions,
it must use A E S functions (covered in Chapter 2) for
accepting input. This is because the A E S installs special
input handling routines into the VDI and maintains sepa
rate processes, such as the Screen Manager, which may
also be accepting input.

Figure 3.1 illustrates a way of viewing the VDI. Your
application program communicates with the VDI through a
set of function calls, or bindings. These bindings load their
parameters into the contrl, intin, and ptsin arrays and then
cause the GEM VDI to be called with a software interrupt
on the Intel 8088 processor or with a software trap on the
Motorola 68000. The VDI may perform some manipula
tion to the information before passing it on to the work
station specified by the workstation selector or device
handle. The workstation consists of a piece of code called
a device driver, which translates the abstract VDI command
into whatever device-specific actions may be necessary to

Virtual Device Interface—The VDI 129

p r o d u c e the d e s i r e d display. If a n y informat ion is to b e

p a s s e d b a c k to the app l i ca t ion (for e x a m p l e , the d e v i c e

APPLICATION
PROGRAM

control input ptsin output ptsout

physical screen printer plotter metafile

F i g u r e 3 . 1 : Programmer's View of the VDI

PROGRAMMER'S GUIDE TO GEM

resolution), it is loaded into the intout and ptsout arrays
and made available to the application program through
the bindings.

A SHORT PRIMER ON GRAPHICS

The subject of drawing pictures with computers is a
rich and complex one. This section introduces you to
some of the concepts and buzzwords associated with the
VDI. The VDI is based on the work of an ANSI Standards
Committee (committee number X3H3.6 CG-VDI), and to
some degree attempts to be all things to all people. This
book presents a less rigorous and, we believe, a more
practical and illustrative view of the VDI than either the
ANSI Standards Committee or the DRI documentation has
given. Our goal is to give you an intuitive grasp of the
components of the VDI that you will need most in order
to write GEM programs.

Vector vs Raster Graphics

One basic approach to constructing images is called
vector graphics. In vector graphics, the primary method of
drawing is to construct images with lines (that is, vectors)
and planes. This method is ideally suited to hardware
devices like plotters and to specialized (and expensive)
screen display devices called vector storage displays.

Another approach utilizes raster operations. Raster graph
ics uses one or more rectangular arrays of bits (called bit
planes or frame buffers) to represent tiny pieces of the image
to be constructed. When the memory bit is on (that is, when
it has a value of 1), the image has a tiny bit of color in the
position corresponding to that bit. When the bit is off (that
is, when it has a value of 0), the image has a tiny white

Virtual Device Interface—The VDI 131

spot. If there is only a single plane of color information, the
image is called a monochrome image, and the colors dis
played are called black and white (even though they may be
displayed as black and green, for example, on your display
screen). S o m e devices support multiple bit planes, in which
case each point in the image consists of a color specified by
a combination of the bits in each of the different color
planes. Each addressable point in the display plane is called
a pixel (or pel), which is short for "picture element."

The GEM VDI supports many different devices and has
a number of vector operations as well as a number of ras
ter operations. S o m e of the operations are device-specific:
that is, they only work on certain classes of graphic
devices. For example, one of the raster operations known
as a BITBLT (pronounced "bit-blit") transfers a block of
bits from one part of the display to another (this operation
will be discussed later in the chapter). It would be very
difficult or even impossible for a hard-copy device like a
plotter to support this function directly.

Although much of what we describe can be applied to
many of the devices supported by GEM, this book focuses
primarily on the screen and metafile devices supported by
GEM. Screen devices are important because they are the
devices that microcomputer applications use the most, in
order to interact with the user. Screen devices also happen
to be the closest to the abstract virtual device and thus
support most of the VDI functions. Metafiles are the most
general and useful way of producing hard-copy output
from your program.

Workstations

A graphical device in GEM is called a workstation.
The workstation has a number of characteristics, which
describe what the workstation can display, as well as a
number of attributes, which control certain options of the

PROGRAMMER'S GUIDE TO GEM

display functions on that workstation. An example of char
acteristics is the number of addressable pixels that can be
displayed vertically and horizontally. An example of attrib
utes is the color and thickness of a line. As attributes,
color and thickness can be changed for each new set of
lines your program wants to display. Thus, while character
istics are fixed for each device, attributes can be changed.

In your GEM program, you deal with workstations in a
manner analogous to dealing with disk files. First, you
specify the desired workstation and open it, then you out
put display information to the workstation, and finally you
close the workstation when you are finished. Most work
stations can only handle one set of input and output oper
ations. For example, if two different programs tried to
display to the printer at the s a m e time, the printer output
would become very confused. GEM provides spooler pro
grams (OCJTPGT.APP and a Print Spooler desk accessory)
to handle sharing devices like printers and plotters by
allowing one process at a time to use the device.

The screen device, however, needs to be shared by your
program, the Screen Manager, and various desk accessories
all at the same time. In order to allow different programs to
share the screen, the GEM VDI supports virtual workstations.
A virtual workstation is an independent collection of device
attribute values. In almost every way, a virtual workstation
resembles a physical workstation, except that first, there
may be more than one virtual workstation sharing and
displaying information on the same physical screen work
station, and second, you use different VDI calls to open and
close virtual workstations than physical workstations. Since
your program has opened a virtual workstation to the screen
device, your program can change any of the drawing attrib
utes on the screen without needing to worry about other
processes changing the screen attributes for their purposes.

One way to think of virtual workstations is to think
about time-sharing computers that support a number of

Virtual Device Interface—The VDI 133

different users, each running their own program on their
own terminals. Each user is controlling the computer and
making it behave in a way that may be different from the
way other users are making the computer behave. For
instance, one user might be running an editor while
another user is running a spreadsheet. In Figure 3.2, one
GEM process (the Screen Manager, for example) might
a s sume it is writing to the menu bar in a small typeface.
In the figure, the Screen Managers view of the physical
workstation is represented by virtual workstation # 1 . At
the s ame time, your text editor program might be display
ing text in a larger typeface on virtual workstation # 2 . By
opening its own virtual workstation onto the screen, your
program can set the VDI attributes without worrying that
they might be altered by other parts of GEM that also
write to the screen.

WORKSTATIONS, VIRTUAL WORKSTATIONS, AND WINDOWS

It is important to be clear about the difference between a workstation
and a window. A workstation is a device, such as a screen or printer,
whereas a window is the reservation of a portion of the device (in GEM,
only the screen device has windows). The VDI provides functions that deal
with workstations and virtual workstations. The AES provides functions to
manage windows. GEM allows your program to display information any
where on the workstation; your program by convention limits its display to
the reserved area inside its windows.

When your GEM program displays information in a window, what it is
really doing is displaying information to a particular location on a virtual
workstation, which is either set by your program or controlled by the user.
The program usually models what is displayed in the window as informa
tion displayed on a piece of paper and thus gives the user the capability of
choosing which part and how much of the piece of paper to look at by
using the scroll bars. The real power of windows is to allow the user of
your program to tailor to his or her needs the amount of information pre
sented by your program.

134 PROGRAMMER'S GUIDE TO GEM

When your program opens a workstation (or a virtual
workstation), GEM returns a value known as a device handle
or a VDI handle (we called it a device handle or "workstation

Virtual Workstation #1 Virtual Workstation # 2

File Page Modify ln fo \

f o u r s c o r e a n d s o m e

o d d y e a r s a g o ,

f o u r s c o r e a n d s o m e

o d d y e a r s a g o ,
/

Physical Screen Device

F i g u r e 3 . 2 : Virtual Workstations Allow the Screen To Be Shared

selector" in Figure 3.1). Because this handle uniquely identi
fies the device and its current attributes, it is a required
parameter for every VDI function.

Virtual Device Interface—The VDI 135

Coordinate Systems

When your program opens a workstation, GEM allows
it to choose between two different methods of specifying
points on the screen. The first way is called normalized
device coordinates or NDC NDC allows you to visualize
the screen as a collection of points 32768 wide by 32768
high, with the origin (0,0) point in the lower left corner
of the device. When you choose to use the NDC system
(in the Open Workstation calls v _ o p n w k () and v _ o p n v w k () ,
discussed later in the section on "Control Functions"), the
collection of all points on the screen is called NDC space.
You can use the NDC method to make your programs
simpler (with certain limitations, as we'll explain later)
since the coordinate ranges are constant.

The second method is called raster coordinates or RC
With raster coordinates, the screen is presented as a col
lection of points with a device-specific number of points in
width and height. This collection is known as RC space.
The origin (0,0) is in the upper left corner of the screen;
the X (first) coordinate specifies how many bit columns
to the right, and the Y (second) coordinate specifies how
many bit rows down from the top of the screen. The
width and height of the screen are made available when
your program opens the virtual workstation or through a
call to a device information inquiry function.

At first glance, the NDC system seems more attractive
because it is simpler and constant from device to device.
The RC system has several advantages, however. First, all
coordinates must eventually be translated into coordinates
that the device can deal with. This translation is performed
by the VDI when you use NDC space. Complex figures can
be drawn faster in RC space, however, because the coordi
nate translation is unnecessary. Second, the RC system is
more natural for raster operations, for specifying coordi
nates more precisely, and for calculating raster image

136 PROGRAMMER'S GUIDE TO GEM

(0 ,32767)

Y increasing

(32767 ,327b /)

(0 , 0)

Normalized Device
Coordinates
NDC Space

X increasing (32767,0)

(U,U) (Screenwiatn,u)

X increasing

Raster Coordinates
RC Space

Y increasing

(0,ScreenDepth) (ScreenWidth,ScreenDepth)

F i g u r e 3 . 3 : Normalized Device Coordinates and Raster Coordinates

Virtual Device Interface—The VDl 137

memory requirements. Third, the A E S uses raster coordi
nates exclusively in all screen references, so that if your
program uses many of the A E S functions, it won't be able
to use the o b j c _ d r a w () (Object Draw) function with NDC.

In Figure 3.3, we show the placement of different
points in NDC space and RC space. As you can see by
the arrows, the X coordinates increase in the right-hand
direction for both coordinate systems, but the Y coordi
nate values increase in different directions in each system.

More sophisticated graphical applications use yet
another coordinate system called world coordinates or
image coordinates. World coordinates represent whatever
coordinate system is most appropriate for the particular
task at hand. For example, a drawing application might
best use a coordinate system measured in inches (or frac
tions thereof). To work with the VDI, the application must
then translate each point from world coordinates to either
NDC or RC. In this case, RC is much more appropriate
because it allows the application more control over round
off error. If the application translates first to NDC, the VDI
then translates to RC, and the error accumulates.

Aspect Ratio

In high school geometry class, we learned that a circle
is an object that consists of a set of points all a certain
distance (called the radius) away from a single point
(called the center of the circle). In GEM (and most other
graphics computer systems), however, a circle is some
thing slightly different. Put another way, if we try to draw
a circle the way we learned in high school, we'll likely find
ourselves drawing an ellipse.

The reason for this peculiar behavior is that in the
coordinate systems and graphics devices we use in GEM,
a fixed number of units in one direction is not the s ame
length as the fixed number of units in the perpendicular

PROGRAMMER'S GUIDE TO GEM

direction. In NDC space, for example, the entire screen
width measures 32768 units, a s does the entire screen
height. The only way that these units would in fact mea
sure the s a m e in height a s they do in width would be if
your display screen were square, and few common graphic
display screens available today are square. The ratio of
height to width is called the aspect ratio. Figure 3.4 illus
trates the aspect ratio in NDC space.

< diameter is 24000 units

/ X diameter is 24000 units

r Illustration of Aspect Ratio in NDC space

1

F i g u r e 3 . 4 : Aspect Ratio in NDC Space

As it turns out, most graphics devices have rectangular
pixels instead of square pixels, which means that the
aspect ratio is rarely equal to 1 in RC space either. GEM
provides the pixel width and height, in microns, in the
v _ o p n w k () and v _ o p n v w k () functions. This allows your pro
gram to calculate the aspect ratio in RC space, so that it
can adjust the shapes of the figures it draws. Figure 3.5

Virtual Device Interface—The VDI 139

/
\

Illustration of Aspect Ratio in RC space
\

X diameter units \

_Y diameter units

F i g u r e 3 . 5 : Aspect Ratio in RC Space

illustrates the aspect ratio in RC space for a specific
device (in this case, the IBM Enhanced Graphics Adapter
in monochrome mode).

Now for s o m e good news for you programmers who
want to draw circles (and parts of circles) without calculat
ing the aspect ratio: GEM also provides some functions
that take aspect ratio into account. Specifically, GEM pro
vides generalized drawing primitives or GDPs, which draw
circles and pie slices that appear circular, and not ellip
tical. These functions are discussed later in this chapter.

Clipping

One of the most useful functions in the VDI is the clip
ping function. This function allows you to specify a clip
rectangle, which is like a rectangular stencil that is laid
upon the display plane. Any part of the image that you

140 PROGRAMMER'S GUIDE TO GEM

draw outside of the clipping rectangle falls upon the sten
cil and is not displayed on the screen. This makes it
much easier for your program to share the screen with
other parts of GEM (such as desk accessories or the
Screen Manager) and display its image only in the areas
allocated to it. The clipping function is used extensively in
GEM to support windows.

Figure 3.6 shows how a clipping rectangle works. Sup
pose your program normally displays the drawing shown
in a), the screen at the top of the figure. Next, let us say
that you only wanted to display that part of the drawing
that is inside the unshaded region in b), perhaps because
your program is drawing to a window on the screen. By
setting the clipping rectangle with the v s _ c l i p () function
before drawing the figure, the output of your program will
look like c) of Figure 3.6.

One of the conventions for efficiency that we men
tioned earlier involves the clipping rectangle: your pro
gram runs faster if you leave clipping off. If you do this,
however, you must be very careful that your program does
not draw to coordinates outside the screen coordinates,
since in doing so your program and the VDI could write
over sensitive portions of memory and could cause the
computer to crash. Most applications will choose to accept
the performance impact in order to eliminate the need to
be concerned about only drawing in certain areas.

At this point, you have been introduced to number of
concepts and capabilities of the VDI. Let us now discuss
the individual VDI functions, starting with the fundamental
VDI workstation control functions.

CONTROL FUNCTIONS

Since your program needs to open the workstation before
it can display to it, this first section contains information

F i g u r e 3 . 6 : How a Clipping Rectangle Works

PROGRAMMER'S GUIDE TO GEM

on the VDI control functions, which open and close worksta
tions (and virtual workstations). We will also discuss other
control functions that clear (erase) the workstations, set the
clipping rectangle, and change writing modes.

In this section, we cover the following functions:

v _ o p n w k ()

v_c l swk()

v _ o p n v w k ()

v_c l svwk()

v_clrwk()

v s _ c l i p ()

v s w r _ m o d e ()

Open Workstation

Close Workstation
Open Virtual Screen Workstation
Close Virtual Screen Workstation
Clear Workstation
Set Clipping Rectangle
Set Writing Mode

Opening the Workstation: v_opnwk()

The Open Workstation call v__opnwk() initializes a work
station and returns a VDI device handle, which is used in
all other VDI calls that deal with the workstation. Your
program uses this function to establish a connection with
a physical device. The device driver for the workstation is
loaded and certain device attributes are initialized (some
with input parameters and others with predefined default
values). Besides the handle, the Open Workstation call
returns a large amount of device-specific information.

Call v _ o p n w k () a s follows:

VOID v_opnwk(work_in, phandle, work_out)

WORD work_ in [l l] ;

WORD *phandle;

WORD work_out[57];

The w o r k j n array contains the desired initial attributes
for the device. These are listed in Table 3 .1 . The Device

Virtual Device Interface—The VDl 143

ID number specifies what kind of physical device is to be
opened, and the appropriate values are listed in Table 3.2.
Appropriate values for line, marker, text, and fill attributes
can be found in this chapter in the individual sections
dealing with these attributes. The values for the color
attributes, however, can be found in Table 3.3. The coordi
nate system parameter should be 0 in order to indicate
that normalized device coordinates (NDC) will be used to
specify all point coordinates. Use 2 to select raster coordi
nates (RC).

I n p u t
P a r a m e t e r D e s c r i p t i o n

work_Jn[0) Device ID number

work_in[l] Line type

work_in[2] Line color

work_in[3] Marker type

work_in[4] Marker color

work_in[5] Text face

work_Jn[6] Text color

work_in[7] Fill type

work_in[8] Fill style

work_in[9] Fill color

work_jn[10] Coordinate system

T a b l e 3 . 1 : workjnf] Input Parameters

The default color values for monochrome and color
devices are shown in Table 3.3.

Notice that the second parameter, p h a n d l e , is a pointer
to the VDI handle. This allows the v _ o p n w k () function to

PROGRAMMER'S GUIDE TO GEM

D e v i c e T y p e D e v i c e I D N u m b e r s

Screen 1

Plotter 11

Printer 21

Metafile 31

Camera 41

Tablet 51

T a b l e 3 . 2 : Device Identification Numbers

return the VDI handle value. If the value assigned is 0, the
v _ o p n w k () was unable to open the workstation. Any other
value indicates that the workstation was successfully
opened, and this value becomes the handle to be passed
into any succeeding VDI calls on this workstation.

WHATS IN A HANDLE?

By now you may wonder how many different kinds of handles there
are in GEM programs. The VDI handle is used to specify which work
station to use in VDI functions. The AES has window handles to specify
which window to use in Window Library functions. DOS has file handles
to specify which file to use in DOS file functions. Each of these different
kinds of handles are unrelated to each other, and we use the term "handle"
as a generic type of identification information.

As we can see in Table 3.4, the work_out array contains
two basic types of information. The first 45 words (0-44)
contain information about device characteristics. The last

Virtual Device Interface—The VDl 145

M o n o c h r o m e D e v i c e C o l o r I n d i c e s

White

Black

C o l o r D e v i c e C o l o r I n d i c e s

0 White

1 Black

2 Red

3 Green

4 Blue

5 Cyan

6 Yellow

7 Magenta

8 White

9 Black

10 Dark Red

11 Dark Green

12 Dark Blue

13 Dark Cyan

14 Dark Yellow

15 Dark Cyan

16-n Device-dependent

T a b l e 3 . 3 : Color Index Values

0

1

12 words (45-56) contain sizing information in whichever
coordinate system you have chosen (in work_in[10]) for the
workstation—that is, NDC or RC.

146 PROGRAMMER'S GUIDE TO GEM

V a l u e D e s c r i p t i o n

work_out[0] Last addressable pixel column (X)

work_out[l] Last addressable pixel row (Y)

work_out[2] Precision scaling flag (0 = yes, work_out[2]
l = n o)

work_out[3] Width of one pixel in microns

work_out[4] Height of one pixel in microns

work_out[5] Number of character heights - 1 -

work_out[6] Number of line types

work_put[7] Number of line widths - 1 -

work_out[8] Number of marker types

work_out[9] Number of marker sizes - 1 -

work__out[10] Number of text faces

work_out [l l] Number of patterns

work_out[12] Number of hatch styles

work_out[13] Number of s imultaneous colors work_out[13]
(monochrome = 2) -2-

work_out[14] Number of Generalized Drawing work_out[14]
Primitives (GDPs)

work_out[15] to work_out[24] First 10 GDPs supported -3-

work__out[25] to work_out[34] Attribute set of associated GDP
-3-

work_put[35] Color capability flag (0 = No, work_put[35]
l = Y e s)

work__out[36] Text rotation capability flag (0 = work__out[36]
No, l = Y e s)

work_out[37] Fill area capability flag (0 = No, work_out[37]
l = Y e s)

work_out[38] Cell array capability flag (0 = work_out[38]
No, l = Y e s)

work_out[39] Number of total colors -2-

Virtual Device Interface—The VDI 147

Value D e s c r i p t i o n

work_out[40] Number of locator devices -3-

work__out[41] Number of valuator devices -3-

work_out[42] Number of choice devices -3-

work_out[43] Number of string devices -3-

work_out[44] Workstation type -4-

work_out[45] Minimum character width

work_out[46] Minimum character height

work_out[47] Maximum character width

work_put[48] Maximum character height

work_out[49] Minimum visible line width

work_out[50] 0

work_out[51] Maximum line width in X axis

work__out[52] 0

work_out[53] Minimum marker width

work_out[54] Minimum marker height

work_put[55] Maximum marker width

work_out[56] Maximum marker height

T a b l e 3 . 4 : work__out[] Output Values

A few words of explanation might be helpful as you
look over this table. S o m e devices support continuous
sizes for certain drawing primitives, while other devices
have a set of discrete sizes for markers, line widths, and
character heights (marked with - 1 - in the table). A value
of 0 indicates continuous scaling is supported. The num
ber of simultaneous colors (characteristics marked by - 2 -)
supported by the device just refers to the number display-
able at any given moment. S o m e devices have color
tables (or palettes) that can be changed to different

148 PROGRAMMER'S GUIDE TO GEM

combinations of red, green, and blue and that can thus
produce many more colors than can otherwise be dis
played at any single time.

Much ot the intormation in this array is included either
for completeness or to solve a particular problem for a
somewhat esoteric purpose. Those items marked by - 3 -
are explained in more detail in the DRl GEM Developer's
Kit and are not commonly needed by GEM applications.

Appropriate values for the workstation type (-4-) are as
follows:

0 : o u t p u t only
1: input on ly
2 : input /ou tput
3 : r e s e r v e d
4 : m e t a f i l e

We do not recommend using the v _ o p n w k () function to
open the screen device, because the screen device has
already been opened by GEM when your program gets
control. Instead, use the Open Virtual Screen Workstation
function, v _ o p n v w k () , which we will discuss in a moment.

Closing the Workstation: v_clswk()

This function flushes any pending output to the work
station, closes it, and frees up the memory allocated to the
device driver. Any further output to the device is ignored.

Call this function as follows:

VOID v_cl$wk(handle)

WORD handle;

Opening the Virtual Screen Workstation: v_opnvwl

The Open Virtual Screen Workstation is very similar to
the Open Workstation a v _ o p n w k () call. The main differences

Virtual Device Interface—The VDI 149

are that v_opnvwk() only works for screen devices and that it
expects handle to be the value of the physical workstations
VDI handle returned by a previous call to v _ o p n w k () . As we
mentioned in the discussion of workstations at the beginning
of this chapter, virtual workstations allow several processes
to share the screen. Since the Desktop opens the physical
workstation first, you must get the handle of the physical
screen device from the A E S using the gr<rf_handle() call. Our
example in Listing 3.1 at the end of this section shows how
graf_handle() is used.

Here is the procedure prologue for v _ o p n v w k () :

VOID v_opnvwk(work__in, phandle, work__out)

WORD work_ in [l l] ;

WORD *phandle;

WORD work_put;

The WORD value pointed to by p h a n d l e must contain
the handle value returned by the g r a f _ h a n d l e () call, and it
is replaced with a different handle value that identifies it
as a virtual workstation. The handle is set to 0 if the vir
tual screen workstation cannot be opened.

Closing the Virtual Screen Workstation: v_clsvwk()

The v_c l$vwk() function signals the end of output to the
virtual device, and is just like v_c l$wk() . Any further output
is ignored. The functions prototype looks like this:

VOID v__dtvwk(handle)

WORD handle;

Clearing a Workstation: v__clrwk()

For a screen device, Clear Workstation clears the
screen to white (the background color). A printer ejects

150 PROGRAMMER'S GUIDE TO GEM

the current page, a plotter ejects the current page or
prompts the operator for a new sheet of paper. The func
tion is declared as follows:

VOID v_clrwk(handle)

WORD handle;

Since the screen device is shared by more than one
process in GEM, we recommend that you do not use
v _ c l r w k () on the screen workstation or virtual workstations.
To clear part of the screen (such as a window), use the
vr_recf l () or v _ b a r () functions (covered in section "Rec
tangles and Filled Rectangles" later in this chapter).

Setting the Clipping Rectangle: vs_clip()

We discussed the purpose of the clipping rectangle in
the "Short Primer on Graphics" earlier in this chapter.
Clipping is very useful in that it allows your program to
draw an entire figure onto the screen while clipping out
everything outside of, for example, the window your pro
gram may be displaying into. Clipping is used extensively
in the Demo program in Chapter 5. Although it may be
expensive and less efficient in terms of compute time, it
greatly simplifies your programs code to draw on the
screen, especially inside windows.

The v s _ c l i p () procedure prototype looks like this:

VOID vs_clip(handle, clip__flag, xy_array)

WORD handle;

WORD clip_flag;

WORD xy_array[4];

The v s _ c l i p () function turns clipping on or off, depend
ing on the value of clip_flag: 0 means turn clipping off,
and nonzero means turn clipping on. You can set the

Virtual Device Interface—The VDI 151

clipping area as often as your program requires: that is, you
can turn on clipping as often as you want, and you must
turn clipping off only when you are finished drawing.

The xy_array[0] contains an X coordinate and the
xy_array[l] contains a Y coordinate of a corner of the clip
ping rectangle. Values xy_array[2] and xy_array[3] contain the
X and Y coordinates, respectively, of the opposite corner of
the clipping rectangle. The coordinates are assumed to be in
NDC or RC space, depending on how the workstation was
opened. See Figure 3.6 for an illustration of how the clip
ping rectangle works.

We strongly suggest that you turn on clipping, espe
cially in the early s tages of developing your program. If
you write to coordinates which are outside your screen
coordinates, you can cause sensitive areas of memory to
be overwritten, causing the computer to crash. The rule is:
When in doubt, clip.

Setting the Writing Mode: vswr_mode()

The writing mode refers to how the VDI will place the
image your program is drawing onto the device. The writ
ing mode in the GEM VDI affects almost all of the VDI
functions except for the raster operations, which allow you
to specify the writing mode separately.

When we draw an image with a pencil on a piece of
paper, we have essentially two writing modes, correspond
ing to the lead and eraser ends of the pencil: the mode
where we draw over whatever is on the paper, and the
mode where we erase whatever is on the paper. For
almost everything you draw with the VDI, the v s w r _ m o d e ()
function gives you this capacity, and more. Given the fact
that the image on the device consists of a large array of
pixels, we can say that the writing mode controls how
the pixels of the figure to be drawn will affect the pixels
that are already displayed.

PROGRAMMER'S GUIDE TO GEM

To understand the writing mode more clearly, we need
to examine how each mode affects the VDI drawing func
tions. The call to v $ w r _ m o d e () looks like this:

WORD vswr_mode(handle, mode)

WORD handle;

WORD mode;

Table 3.5 shows the different writing modes for this
function.

M o d e D e s c r i p t i o n

1 Replace

2 Transparent

3 XOR

4 Reverse transparent

T a b l e 3 . 5 : Writing Modes

Let's discuss each of these modes in turn, and study
some examples of how the writing mode affects the VDI
drawing functions at the pixel level. Figure 3.7 contains a
background image and a drawing shape. In the next four
figures (Figures 3.8 through 3.11), the s ame drawing
shape is drawn on top of the background image in the
s ame relative location in each different writing mode.
The background image is a s sumed to be divided into two
colors: black on the top and white on the bottom. The
drawing shape consists of four bits, where the shaded
blocks represent a bit with a 1 value and the white blocks
represent a bit of value 0.

Virtual Device Interface—The VDI 153

As we will find out in the remainder of this chapter,
each class of shape (markers, lines, text, and so on) has

F i g u r e 3 . 7 : The Background Image and the Drawing Shape

its own separate function to set the drawing or foreground
color. We will demonstrate how each 1 and 0 bit in the
drawing shape will change the color of a pixel in the
background image.

Replace Mode

This mode is the simplest to understand. When the VDI
displays an image in replace mode, it writes over anything on
the foreground color for each 1 bit in the drawing shape and
places a pixel of value 0 (white) for each 0 bit. Figure 3.8

F i g u r e 3 . 8 : Replace Mode

154 PROGRAMMERS GUIDE TO GEM

shows what happens when the drawing shape is displayed
on the background image in replace mode.

Transparent Mode

Transparent mode tells the VDI to ignore the 0 bits in
the drawing shape and just display the 1 bits in the fore
ground color. One way to think about transparent mode
drawing compared to replace mode drawing is to imagine
that in replace mode the drawing shape is drawn on a
piece of white paper and that you are pasting the piece of
paper over whatever is already there. In transparent mode,
the drawing shape is drawn on a transparent piece of plas
tic, and only the lines (or 1 bits) of the drawing shape
affect the image.

Figure 3.9 illustrates what would result from displaying
the drawing shape in transparent mode.

F i g u r e 3 . 9 : Transparent Mode

Reverse Transparent Mode

Reverse transparent mode only affects the image where
the bits in the drawing shape are 0 (instead of where the
bits are 1 as in transparent mode). Any 0 bits in the
image we are drawing are changed to the current

Virtual Device Interface—The VDI 155

foreground color. Figure 3.10 shows the drawing shape
after it has been displayed in reverse transparent mode.

F i g u r e 3 . 1 0 : Reverse Transparent Mode

This writing mode is very rare, but it does have some
interesting uses. You can use reverse transparent mode
along with transparent mode to create two-color dashed
lines by first using transparent mode to draw the line in one
color and then using reverse transparent mode to draw the
line in the second color. You can also create a "backdrop"
color for writing text by using transparent mode, writing the
text in one color, and then using reverse transparent mode
and writing the text in another color.

XOR Mode

XOR mode is best for drawing something you may
want to move or remove without otherwise disturbing the
contents of the screen. This writing mode works by apply
ing an exclusive OR (XOR) operation on the bits in the
drawing shape and on the pixel bit values on the back
ground image. Figure 3.11 demonstrates the result of dis
playing the drawing shape in XOR mode.

This mode has a very interesting property. If you dis
play the drawing shape a second time in XOR mode, the

PROGRAMMER'S GUIDE TO GEM

drawing shape is cancelled out—that is, the shape is
removed from the screen. The mathematical reason for
this is that the XOR Boolean operation happens to be its

F i g u r e 3 . 1 1 : XOR Mode

own inverse; however, this interesting bit of knowledge is
not important here. The important fact can by summed
up as, "Now you see it, now you don't."

You might use this mode for displaying simple anima
tion effects, like a movable rubber box or flashing icon.
The reason this mode is used for movable objects is that
you can

1 Display the object.

2 Display it again, thus restoring the previous
image (that is, youve erased it).

3 Change the object (that is, make it bigger, move
it, and so on).

4 Go to step one.

The overall effect is a very inexpensive method for
turning an image on and off. One side effect of this, how
ever, is that the effect works best on a solid background.
If the background is dithered (that is, patterned in a way

Virtual Device Interface—The VDI 157

that produces a gray halftone), the drawing shape dis
played in XOR mode may not be recognizable.

Examples of Opening
a Virtual Screen Workstation

At this point, we're ready to look at some examples of
opening a virtual screen workstation. Although the two
procedures we will present here are different, they do
almost the same thing. These procedures are used over
and over again in the rest of this chapter. These two pro
cedures open and clear a screen workstation, and then
call an example procedure. In one case (ctrlndc.c), the vir
tual workstation is opened using normalized device coordi
nates (NDC). The actual display procedure, called from the

/ * CTRLNDC.C - main driver for drawndcO examples *•/
#include "portab.h"
WORD contrl[l2], intin[l28], ptsin[l28], intout[128], ptsout[l28];

#define M O F F 256
#define NDCCOORDS 0
#define R I G H T A L I G N E D 2
#define BOTTOM_ALIGNED 3

V O I D G E M A I N O

WORD handle, work_in[ll], work_out[57];
WORD ii;

handle = graf_handle(&ii,&ii,&ii,&ii);
graf_mouse(M O F F , NULL) ;
v_clrwk(handle);

appl_init(); /* init AES for next call */
/* get screen handle */
/* hide mouse */
/* clear workstation */

for(ii=0; ii<ll; ++ii) work_in[ii]=1;
work_in[lO] = N D C C O O R D S ;
v_opnvwk(workin, &handle, workout);

/* init work_in array */
/* use NDC coordinates */
/* open the workstation */

draw_ndc(handle); /* do the example routine */

vst_alignment(handle,RIGHTALIGNED,BOTTOM_ALIGNED,&ii,&ii);
v_gtext(handle,32767,0,"Press any key to continue");
evnt_keybd(); /* pause for viewing */
v_clsvwk(handle); /* close the workstation */
applexitO; /* tell AES we're through */

L i s t i n g 3 . 1 : CTRLNDC.C: Main Driver for draw_ndc() Examples

PROGRAMMER'S GUIDE TO GEM

program in Listing 3 .1 , is called d r a w _ n d c () , and the only
parameter is the device handle . We use NDC coordinates
to simplify some examples. In the other case (ctrlrc.c), the
virtual workstation is opened using raster coordinates (RC).
The example drawing procedure in Listing 3.2 is called
d r a w _ r c () , and it takes a hand le , a starting position X and
Y, a s c reen_width , and a screen__height. This information is
required for working with windows; we use it because your
program should only be writing to a portion of the screen

/* CTRLRC.C - main driver for d r a w r c O examples */
^include "portab.h"
WORD contrl[l2], intin[l28], ptsin[l28], intoutt128], ptsoutt128];

#define MOFF 256
#define RCCOORDS 2
#define RIGHT_ALIGNED 2
#define BOTTOMALIGNED 3

VOID GEMAINO
{

WORD handle, work_in[ll], work_out[57], max_w, max_h;
WORD ii;

appl_init(); /* init AES for next call */
handle = graf_handle(&ii,&ii,&ii,&ii); /* get screen handle */
graf_mouse(M_OFF, NULL); /* hide mouse */
v_clrwk(handle); /* clear workstation */

for(ii=0; ii<10; ++ii) work_in[ii]=1; /* init work_in array */
work_in[lO] = RC_COORDS; /* use RC coordinates */
v_opnvwk(work_in, &handle, workout); /* open the workstation */

max_w = work_out[0]; max_h = work_out[l];
draw_rc(handle,0,0,max_w,max_h); /* do the example routine */
vst_alignment(handle,RIGHTALIGNED,BOTTOM_ALIGNED,&ii,&ii);
v_gtext(handle,max_w,max_h,"Press any key to continue");
evnt_keybd(); /* pause for viewing */
v_clsvwk(handle); /* close the workstation */
appl_exit(); /* tell AES we're through */

L i s t i n g 3 . 2 : CTRLRC.C: Main Driver for draw_rc() Examples

(the portion inside the window). In order to be able to
work with windows, we recommend that you use raster
coordinates for your programs.

Virtual Device Interface—The VDI 159

These procedures use a number of A E S calls that were
documented in Chapter 2 . These calls are

Two of the functions, g r a f _ m o u s e () and e v n t _ k e y b d () ,
were used to hide the cursor and to let the program
pause. Your GEM program needs to hide the cursor when
ever it draws anything to the screen because of the way
GEM draws the cursor. Specifically, GEM saves an area of
the screen before drawing the cursor, and restores it when
the cursor is moved or hidden. If your program doesn't
hide the cursor, then any new drawing in the area around
the cursor form will be destroyed when the cursor is next
moved. Note that although there are equivalent input
functions in the VDI, you must use A E S functions for
input in order to remain consistent with the services that
the A E S offers, including event handling and the Screen
Manager.

We used the other three A E S functions because GEM
starts an application with the physical screen already
opened. If we tried to use the Open Workstation call
v _ o p n w k () , it would have failed because the screen was
already open. Thus, we called the g r a f _ h a n d l e () function to
ask the A E S for the physical VDI handle of the screen. We
used the a p p M n i t () function so that the A E S would be
properly initialized for the g r a f _ h a n d l e () call. Finally, we
used the a p p l _ e x i t () call to balance out the a p p U n i t () call
and release allocated resources.

What about the rest of the code in the sample
procedures?

app l_ in i t () Initialize a p p l i c a t i o n

G e t s c r e e n h a n d l e

Turn m o u s e c u r s o r off (or o n)

Wait for s o m e t h i n g to b e t y p e d
o n t h e k e y b o a r d

T e r m i n a t e a p p l i c a t i o n

g ra f_hand le ()

g r a f _ m o u s e ()

evnt__keybd()

appl_exi t ()

160 PROGRAMMER'S GUIDE TO GEM

First, note the initial declaration of the arrays contr l [] ,
intin[] , p t s in [] , intout[] , and p t sout [] . These arrays are used
by the VDI interface routines, called bindings. The main
reason that the bindings require you to declare these
arrays explicitly is that some of the VDI functions allow
you to pass in a varying number of points or characters.
Since you declare the arrays, you can make sure they are
large enough to handle the largest number of input values
that you plan to pass into any of the VDI routines.

Next, on line 6, the name of the main function is
GEAAAIN(). GEM programs are usually linked without the
rest of your C compilers run-time library, and so we don't
use the symbol m a i n () in case your compiler does some
thing special with that symbol. For more information on
how a GEM program is compiled and linked together, see
Chapter 6.

The a p p l _ m i t () call registers the program as an A E S
application. This call is required before we make the sec
ond call to g r o f _ h a n d l e () to obtain the screen VDI handle.
The gro f_hond le () function, a s we shall see in the next
chapter, also returns some information about the character
size. Since we do not need this information, we pass in
four pointers to the s ame variable. The g r o f _ m o u s e () call
makes the mouse form disappear so that it does not
obscure any of the graphics in our examples, and the
v _ c l r w k () call sets the entire screen to white. The reason
we use this function in ctrlndc.c (even though we told you
not to) is that the ctrlndc.c routine a s sumes total control
over the screen and does not share the screen with the
A E S menu bar or windows.

Next, we initialize the w o r k j n f] array to all ones (1),
except for work_in [10] , which is set to 0 in ctrlndc.c and 2 in
ctrlrc.c. This value determines the coordinate system: 0 for
NDC, or 2 for RC. The reason we set all other values to 1
is that for drawing purposes, 1 is usually a more visible
default. For example, 1 means black for color indices; if

Virtual Device Interface—The VDI 161

we used 0, we would not be able to find the white line
we've just drawn on a white background. Finally, we make
the Open Virtual Screen Workstation call v_opnvwk(), pass
ing in the physical screen handle and getting back the
virtual screen handle. If we wanted to be very careful, we
would test to make sure this value is not 0, which would
mean that the call had failed.

We are almost ready to call the example procedure. In
ctrlrc.c, however, we must first obtain the width and height
of the screen to pass this information into the RC
examples. This is unnecessary in NDC examples because
we use the entire screen and, according to the definition
of NDC, the screen size is always 32768 by 32768.

When the example procedure is finished, vst_alignment()
sets up the text alignment so that the point we specify in
v__gtext() is in the lower right-hand corner of the block of
displayed text. For more information on what the param
eters mean, see the discussion in the section called "Set
ting Graphics Text Alignment: vst_alignment()" later in the
chapter. Next, we display a nice message , and then we
wait for a keyboard event, in order to allow the user some
time to study the marvelous graphic. Finally, we close the
virtual workstation with v_clsvwk() and then use appl_exit()
to notify the A E S that we are terminating.

POINTS AND MARKERS

Now that we have discussed the VDI functions that
your program will use to control how things get drawn, it
is time to talk about drawing things on the workstations.
This section will cover the VDI functions that draw points
(that is, dots) and markers. A marker is a generic term for
a number of different shapes. S e e Table 3.6 for the differ
ent marker types supported. The type, size, and color of

PROGRAMMER'S GUIDE TO GEM

markers are set by calls to attribute functions. Here are
the functions we will cover in this section:

v s m _ t y p e () S e t M a r k e r T y p e

vsm__height() S e t M a r k e r Height

v s m _ c o l o r () S e t M a r k e r C o l o r

v _ p m a r k e r () O u t p u t P o l y m a r k e r s

Va lue M e a n i n g

1 Dot

2 Plus S ign

3 Asterisk

4 Square

5 Diagonal Cross

6 Diamond

7 Device-dependent

T a b l e 3 . 6 : Marker Types

Setting the Marker Type: vsmJype()

The vsm_type () function sets up which type of marker will
be displayed on subsequent calls to v__pmarker(). There can
be device-dependent markers, but the GEM VDI always
defines at least six marker types, as shown in Table 3.6. The
procedure prototype for this function looks like this:

WORD v$m_type(handle, marker_type)

WORD handle;

WORD marker_type;

Virtual Device Interface—The VDI 163

If the value of marker_type is not supported on the
device, the default marker type (3, an asterisk) will be
used. The marker_type selected (or the default) will
be returned by the function.

Setting Marker Height: vsm_height()

The VDI allows your program to change the size of the
markers drawn by v _ m a r k e r () by calling the v sm_he ight ()
function. The v sm_height () procedure prototype has this form:

WORD vsm_height(handle, desired__height)

WORD handle;

WORD desired_height;

Set the desired_height to the height you want in Y axis
units (NDC or RC). Remember that a distance in Y units
may be different than a distance in X units because of
aspect ratio (see the section on "Aspect Ratio" earlier in
this chapter). In addition, you need to know that most
screen devices do not support arbitrary sizes of markers, a
feature that is also known as continuous scaling. The screen
driver will, however, usually be able to draw a small num
ber of discrete marker sizes. If the screen driver can't draw
the size you requested, it selects the next smaller height it
does know how to draw. The selected height is returned by
the function.

If you examine Figure 3.13, which appears later in this
chapter, you will note that the dot marker (type 1) never
gets any bigger (look carefully, a s the dots may be hard to
see: they're in the top row).

Setting Marker Color: vsm^color()

The v $ m _ c o l o r () function causes succeeding markers to
be drawn in the color you select. If the color jndex is out

164 PROGRAMMER'S GUIDE TO GEM

of range, GEM selects 1". The actual selected value is
returned. S e e Table 3.4 for the list of default colors.

Here is the prototype for this procedure:

WORD vsm_color(handle, color_index)

WORD handle;

WORD color_index;

Drawing Polymarkers: v_pmarker()

Finally, let's talk about the function that actually causes
the markers to be displayed on the workstation. The func
tion is called v _ p m a r k e r () , and it looks like this:

VOID v_pmarker(handle, count, xy__array)

WORD handle;

WORD count;

WORD xy_array[2 * count];

This function displays a number (count) of markers of
the type, size, and color currently selected. The term poly
markers just means "many markers": in effect, this func
tion allows you to specify a number of vertices in one
call. Notice that the size of the x y _ a r r a y [] must be large
enough to contain an X,Y pair of points (specified in the
current coordinate system, NDC or RC) for each desired
marker. The first X and Y points are in xy_array[0] and
xy_array[l], respectively. The second pair of X and Y points
are in xy_array[2] and xy_array[3] , and so on. This function
makes it easy, for example, to display just one or an
entire series of markers. The X,Y pair always specifies the
center of the marker.

Examples of Marker Output

To see how the marker functions might be used in a
program, lets take a look at a couple of examples. Our

Virtual Device Interface—The VDI 165

first e x a m p l e , s h o w n in List ing 3.3, d e m o n s t r a t e s how to
s h o w a s i n g l e dot . O n m o s t s c r e e n s , it will b e hard to find

/* MARKONE.C - display a single dot on the device */
#include "portab.h"
#define DOT 1
^define BLACK 1

VOID draw_ndc(handle)
WORD handle;
{

WORD xy_array[2];

xy_array[0] = 32767/2;
xyarraytl] = 32767/2;
vsm_type(handle, DOT);
vsm_color(handle, BLACK);
v_pmarker(handle, 1, xyarray);

/* x coordinate */
/* y coordinate */
/* set marker type */
/* set marker color */
/* output polymarker */

L i s t i n g 3 . 3 : MARKONE.C: Display a Single Dot

F i g u r e 3 . 1 2 : MARKONE.C Output: Display of a Single Dot

PROGRAMMER'S GUIDE TO GEM

the dot unless you know where to look. In our example, it
is in the center. The output of the program is shown in
Figure 3.12.

Note that the procedure GEAAAIN(), which was presented
earlier in the chapter (in the section entitled "Examples of
Opening a Virtual Screen Workstation"), calls the proce
dure draw_ndc() in Listing 3.3. handle contains the device
handle returned by v _ o p n v w k () . If you want to duplicate

/* MARKPLYl.C - display polymarkers 1-6 using search technique */
/* Note - this technique won't work on metafiles */

#include "portab.h"

VOID draw_rc(handle, dx, dy, screenwidth, screenheight)
WORD handle, dx, dy, screen width, screen height;
{

WORD xy_array[A];
UWORD cur_x, cur_y, height, save_height, hh;
WORD marker;
extern WORD ptsout[];

cury = dy+screen_height/16; /* starting vertical place */
for(marker = 1; marker < 7; ++marker) /* for each marker type */
{

vsm_type(handle,marker);
cur_x = dx+screen_width/16;
save_height = 1;
while(TRUE)
{

xy_array[0] = cur_x;
xy_array[l] = cur_y;

/* use this polymarker */
/* starting horizontal place */
/* initial smallest height value */
/* repeat until largest is found */

/* set up output coords */
/* x coordinates */
/* y coordinate */

/* find next big polymarker */
for(hh • saveheight; hh < screenheight; hh++)

if((height=vsm_height(handle,hh)) > saveheight)
break; /* found it */

if(hh >= screen_height) break; /* no larger polymarkers */

curx += ptsout[0];
saveheight = height;

/* ptsout[0] is vsm_height's*/
/* undocumented return val */
/* move over by disp. width */

v_pmarker(handle, 1, xyarray); /* output polymarker */
} /* end line display loop */
cury += 2+(screen_height/7); /* minimum distance between rows */

/* end marker display loop */

L i s t i n g 3 . 4 : MARKPLYl.C: Display Markers 1 through 6 Using Search
Technique

Virtual Deuice Interface—The VDl 167

the examples on your computer as you proceed through
the chapter, please note that we use one or the other
of the different versions of GEAAAIN() given in that earlier
section in all of the remaining VDI examples.

The next example, shown in Listing 3.4, prints each
different marker in as many sizes a s will fit on the screen.
This procedure a s sumes that the device only handles a
discrete number of marker sizes. It uses raster coordinates
because there are fewer raster coordinates than normal
ized device coordinates, which means that the algorithm
has fewer sizes to search through. To find out what the
program draws, see Figure 3.13.

The search algorithm for a new marker size is very
simple: it keeps calling vsm_height () until the height returned
is different from the previous height. The procedure uses the
marker width (returned in ptsout[0]) to move the display of
the next marker enough to avoid overwriting the previous
marker.

The global p t sout [] array was discussed in an earlier
section called "Examples of Opening a Virtual Screen
Workstation." Most of the useful information returned by

*+++ + +

x x x x x X X X
»ooo o O O O

F i g u r e 3 . 1 3 : MARKPLY1.C Output: Display Markers 1 through 6

PROGRAMMER'S GUIDE TO GEM

the VDI is passed back by the bindings either directly
by the function, or, if more than one value is to be returned,
by calling the functions with pointers to the information.
This is the only instance where we felt that we needed some
additional information from the VDI that was not passed
back through the bindings.

The next program, shown in Listing 3.5, works in NDC
space and draws many markers whose sizes are contained
in a table of marker height values. The values in the table
were achieved by trial and error, and they display different
sizes of markers on different devices. You may need to play

/* MARKPLY2.C - display polymarkers 1-6 from a table, using NDC */
/* Note - this technique is device-specific; the table values */
f* were calculated by trial and error, for EGA mono card*/

#include "portab.h"

#define NMarks 6
WORD m_sizes[NMarks] = { 500, 1000, 2000, 3000, 5000, 6000 };

VOID draw_ndc(handle)
WORD handle;
{

WORD pxy[4];
UWORD curx, cur_y, height;
WORD marker;
WORD ii;

cury = 32767/16; /* starting vertical place */
for(marker = 1; marker < 7; ++marker) /* for each marker type */
{

vsm_type(handle,marker); /* use this polymarker */
curx = 32767/16; /* starting horizontal place */
for(ii=0; ii<NMarks; ++ii) /* for each height in table */
{

height = m_sizes[ii];
vsm_height(handle, height);
pxy[0] = curx; /* x coordinates */
pxy[l] = cury; /* y coordinate */
v_pmarker(handle, 1, pxy); /* output polymarker */

c u r x += 32767/9; /* move over by disp. width */
} /* end line display loop */
cury += 2+(32767/7); /* minimum distance between rows */

} /* end marker display loop */

L i s t i n g 3 . 5 : MARKPLY2.C: Display Markers 1 through 6 Using Table

Virtual Device Interface—The VDI

around with the values in the table in order to display differ
ent sized markers on your system.

The main reason we defined a table of values in this
program is that v s m _ h e i g h t () cannot return accurate infor
mation about marker heights in metafile devices. Thus,
the program listed in Listing 3.5 could also output to a
metafile, whereas the program in Listing 3.4 could not.
The output of the program in Listing 3.5 is very similar
to that shown in Figure 3.13.

LINES AND POLYLINES

Up to this point, we have only told you how to draw
markers. In this section, we will talk about drawing lines.
The GEM VDI has a generalized line output function,
v _ p l i n e () , that allows you to connect a series of points with
line segments and that also controls a number of attrib
utes of those line segments. This allows you to specify a
complex shape a s a series of points and to display the
shape in a single call.

Here are the line drawing functions we cover in this
section:

vsl__color()

v s l_width()

v s l _ t y p e ()

v s l _ e n d s ()

v _ p l i n e ()

Setting Polyline Color: vsl_color()

The functions for setting line attributes are analogous to
the VDI functions for setting marker attributes. The function

S e t Poly l ine C o l o r

S e t Poly l ine L ine Width

S e t Poly l ine L ine T y p e

S e t Poly l ine E n d S t y l e s

O u t p u t Poly l ine

PROGRAMMER'S GUIDE TO GEM

to set the color of the line to be displayed, v$Lcolor(), is
almost exactly the same as its counterparts for markers and,
as we will see later in this chapter, for text and fill areas.

The vsl_color() procedure prototype looks like this:

WORD vsl_color(handle, color_Jndex)

WORD handle;

WORD color_index;

This function makes your lines colorful. Consult Table
3.4 for the values for c o l o r j n d e x .

Setting the Line Width of Polylines: vsl_width()

In our discussion of drawing markers, we explained
how the VDI allows your program to set the height of
markers. The VDI also allows your program to change the
width (or thickness) of the lines it draws. The function to
set the line width, v$Lwidth(), has a prototype that looks
like this:

WORD vsl_width(handle, line_width)

WORD handle;

WORD line_width;

The Mne_width is in X units of magnitude (NDC or RC),
which is important when you are dealing with aspect ratio.
This is why the function is called vsLwidth() instead of
vsLheight. Note that while the VDI specifies text and
marker sizes by height, lines are specified by width.

Since many devices do not continuously scale the line
widths, the VDI provides the number of available line widths
to your program in work_out[7] when your program opens
the workstation (see Table 3.3). The actual line_width that
gets set is returned by the function. It equals the closest
line width supported by the device driver that is less than

Virtual Device Interface—The VDI 171

or equal to the requested line_width. The exception here
is when you try to set line_width to a size smaller than a
pixel (such as 0), whereupon the VDI uses a width of at
least one pixel.

For a sample of v s l_wid th () in action, see linestyl.c in
Listing 3.6. The output is shown in Figure 3.14.

/* LINESTYL.C - display various polyline widths and styles */

#include "portab.h"
#define SQUARED 0
#define ARROWED 1
#define ROUNDED 2

WORD thick_tab[4] = { 1, 4, 8, 16 }; /* use multiples of these widths */

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

WORD pxy[4], cur x, cur y, m c r x, incr y, sep y;
WORD tt, thickness, begin_style, endstyle;

thickness = swidth / 600; /* magic multiplier: system dependnt*/
for(tt = 0; tt < 4; ++tt)

thick_tab[tt] *= thickness;

incrx = swidth / 10; /* column width */
incr_y = sheight / 4; /* row height */
sepy = incr_y / 6; /* distance to separate rows */
cur_y = dy + sheight - sepy / 2; /* display at bottom of screen */

for(tt = 0; tt < 4; tt++)
{

thickness = thick_tab[tt];
vsl_width(handle, thickness);
curx = dx + incrx / 2;
for(endstyle = SQUARED; end_style <= ROUNDED; end_style++)

for(begin style=SQUARED; begin style <= ROUNDED; begin_style++)
{

vsl ends(handle, beginstyle, endstyle);
pxyTo] = curx;
pxy[l] = cury;
cur x += incrx;
pxy^] = curx;
pxy[3] = cury - (incry-sepy){
v_pline(handle, 2, pxy);

}
cur y -= incr y;

}
vsl_width(handle, 1); /* reset line thickness */
vsl_ends(handle, SQUARED, SQUARED);

Li s t ing 3 .6 : LINESTYL.C: Sketch Various Line Widths and Styles

172 PROGRAMMER'S GUIDE TO GEM

/////////
/////////

F i g u r e 3 . 1 4 : UNESTYL.C Output: Various Une Widths and Styles

Setting the Line Type of Polylines: vsl_type()

The VDI displays solid lines in any size. For some line
widths (usually only the single-pixel width), the VDI provides
several different types of line patterns. These line types can
be set with the v s l_ type() function, whose prototype looks
like this:

WORD vsl_type(handle, line_Jype)

WORD handle;

WORD line_type;

S e e Table 3.7 for the different types of lines your pro
gram can specify. If the l ine_type value is out of range, it
defaults to a solid line. Furthermore, if you set the width
(with vs l_width()) to a thicker line, the Hne_type value may
be reset to solid.

Virtual Device Interface—The VDI

T y p e N a m e

1 6 b i t s

M S B L S B

1 solid * * * * * * * * * * * * * * * *
2 l o n g d a s h * * * * * * * * * * * *
3 d o t 3§C 5§€ SJC s|c 9|C 5JC

4 d a s h , d o t * * * * * * * * * *
5 d a s h * * * * * * * *
6 d a s h , dot , d o t * * * * ** **
7 user-de f ined

8 - n d e v i c e - d e p e n d e n t

T a b l e 3 . 7 : linejtype Values

In Table 3.7, the asterisks represent "on" bits (with value
1) and the underscores represent "off" bits (with value 0).
When a line__type is selected from one of these combinations,
the 16-bit pattern shown in this table is replicated over and
over again along the length of the line, starting with the
most significant bit (MSB). Thus, if your program specifies a
line drawn in line type 6 (dash, dot, dot), for example, the
bit pattern for the line will look like this:

111100011001100011110001100110001111000110011000

+ + +

The ruler line with plus and minus signs serves to delimit
the start of each word.

We used the asterisk and underscore convention in
Table 3.7 to try to illustrate the results more clearly. For
example, the above example will look as follows:

174 PROGRAMMER'S GUIDE TO GEM

/* LINETYPE.C - displays line types 1-6 */

^include "portab.h"
BYTE *labels[] = { " 0", " 1", " 2 " , " 3", " 4"

VOID draw_rc (handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

WORD pxy[4], cur_y, incry, linetype?

incr_y = sheight / 7;
cur y = dy + incry;
p x y T 2] = dx + swidth / 8;
pxy[0] = dx • 6 * (swidth / 8);

for(linetype = 1; linetype < 7; ++line_type)
{

}

vsl type(handle, line_type);
pxyll] = pxy[3] = cur_y;
v_pline(handle, 2 , pxy);
v~gtext(handle, pxy[0], pxy[l], labels[linetype]);
cury += incry;

/* reset to default */ vsl_type(handle, 1);

L i s t i n g 3 . 7 : LINETYPE.C: Draw linejtype 1 through 6

F i g u r e 3 . 1 5 : LINETYPE.C Output: line_type 1 through 6

Virtual Device Interface—The VDI 175

Gser-defined line styles and device-dependent line
styles are not a s commonly used as the other line types.
S e e the DRI Developers Kit documentation for more infor
mation on these line types.

For an example of what these line types look like, see
the program in Listing 3.7, which draws the first six types.
The output of the program is shown in Figure 3.15.

Setting Polyline End Styles: vsLends()

Another line attribute supported by the VDI is called
end styles. End styles come in three different flavors:

0 S q u a r e (default)
1 Arrow
2 R o u n d e d

The function v s l _ e n d s () , which is responsible for giving
your program prettier line beginnings and endings, is
called a s follows:

VOID vsl_ends(handle, beg__style, end_style)

WORD handle;

WORD beg_style;

WORD end_style;

S e e Listing 3.6 for a sample of v s l _ e n d s () in use. The
output of this program is shown in Figure 3.14.

Drawing Polylines: v_pline()

Having discussed the line attributes, we are now ready
to consider the function that actually draws the lines. This
function, v _ p l i n e () , has the following prototype:

PROGRAMMER'S GUIDE TO GEM

VOID v_pline(handle, count, xy__array)

WORD handle;

WORD count;

WORD xy_array[2 * count J;

Your program uses v_pl ine() to display simple line seg
ments by setting xy__array[0] and xy_array[l] to the X and Y
coordinates, respectively, of the starting point, by setting
xy_array[2] and xy_array[3] to the X and Y coordinates of the
end point of the line segment, and by setting count to 2.
More complex shapes can be defined by specifying each of
the polygon's vertices. (Don't forget to specify the starting
point again at the end, if you want to close the polygon.) As
in v_pmarker () , you fill the xy_array with pairs of points, and
set count to the total number of pairs. Use the various line
attribute functions discussed earlier in this section before
calling v_pl ine() to vary the color, width, type, and end styles
of the line your program wants to draw.

/* LINEDIAG.C - draw a single diagonal line */

#include "portab.h1

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;

WORD pxy[4];

pxy[0] = dx?
pxy[l] = dyj
pxy[2] = dx+swidthj
pxy[3] = dy+sheight;
v_pline(handle, 2, pxy);

/* x coordinates */
/* y coordinate */

/* output polyline */

L i s t i n g 3 . 8 : LINEDIAGC: Draw a Diagonal Line

Here are a few examples. The first example, Listing
3.8, draws a line diagonally across the screen. Figure 3.16
shows the output.

Virtual Device Interface—The VDI 177

F i g u r e 3 . 1 6 : LINEDIAG.C Output: Diagonal Line

Next, lets display a polygon, a s in Listing 3.9. The out
put is shown in Figure 3.17. Note that this example is
very similar to the example given in the VDI section of
the DRI Developer's Kit, although our example has been
modified to work with the AES .

Still pretty boring. Let's draw something a bit fancier
through the code shown in Listing 3.10 (its output is
shown in Figure 3.18). Notice that it doesn't take many
VDI commands to draw interesting shapes.

/* LINEPOLY.C - draw the polygon from VDI Toolkit Example, Chapter 2 */

#include "portab.h"

VOID drawndcChandle)
WORD handle;
{

WORD pxy[l2];

pxy[0] = 12000;
pxy[l] = 12000;
pxy[2] = 12000;

PROGRAMMER'S GUIDE TO GEM

pxy[3] = 20000;
pxy[4] = 14000;
pxy[5] = 21000;
pxy[6] = 16000;
pxy[7] = 20000;
pxy[8] = 16000;
pxy[9] = 12000;
pxy[l0] = 12000;
pxy[ll] = 12000;
v_pline(handle, 6, pxy); /* Output polyline */

L i s t i n g 3 . 9 : LINEPOLYC: VDI Developer's Kit Example

F i g u r e 3 . 1 7 : UMEPOLYC Output: VDI Developer's Kit Example

/* LINEWALK.C - displays a "walking line " */

#include "portab.h"

VOID draw_ndc(handle)
WORD handle;
{

WORD pxy[4];
UWORD xl, yl, x2, y2, incr;

Virtual Device Interface—The VDI 179

x2=32767;
y2=32767;
incr = 1000;
while(xl < 32767)
{

pxy[0] = xl;
pxy[l] = yl;
pxy[2] = x2;
pxy[3] = y2;
v_pline(handle, 2, pxy); /* Output 2 point polyline */
xl += incr;
yl •= incr;
x2 -= incr;

}
}

L i s t i n g 3 . 1 0 : UNEWALK.C: Draw a "Walking Line"

F i g u r e 3 . 1 8 : LIMEWALK.C Output: A "Walking Line"

GRAPHICS TEXT

GEM offers two levels of functions for displaying
graphics text on devices. The first level consists of the
VDI functions, many of which are described in this

PROGRAMMER'S GUIDE TO GEM

section. The second level of text functions can be found
in the Forms Library of the AES , which makes it easier to
construct dialogs (that is, screen forms) for information
display and input.

The VDI graphics text functions give you a lot of con
trol over the appearance of the text that your program
displays. You can control the font type, size, color, align
ment, and the rotation of the text. These functions were
designed to be portable between many different devices.

GEM provides a number of different styles of type,
called fonts or faces. The lowest common denominator is
the system font, which is available on all devices. The dis
play of the system font has been optimized to make com
mon operations that require text (such as menus and
dialogs) perform as quickly a s possible. These optimiza
tions are discussed in Chapter 6.

It's important to note that GEM is very weak on text
processing functions: that is, functions which display
blocks of text and manage selection, insertion, and dele
tion of this text. App le s Macintosh, for example, provides
Text Edit Record functions to manipulate the entry, selec
tion, and display of large chunks of text; these kinds of
functions are not available from within GEM. To develop a
GEM word processing application, for example, you must
provide your own functions to manage the display of
blocks of text. Discussion of the development of these
functions is beyond the scope of this book.

The graphics text functions we will cover in this section
include

v _ g t e x t () Output Text
v s t _ c o l o r () Set Graphics Text Color
v s t _ h e i g h t () Set Character Height, Absolute

Mode
v s t _ p o i n t () Set Character Cell Height, Points

Mode

Virtual Device Interface—The VDI 181

vqt_ex ten t ()

v s t_a l ignment ()

v$t_effects()

v j u s t i f i e d ()

v s t_ load_font$()

v s t_ fon t ()

v s t_un load JFonts ()

Inquire Text Extent

Set Graphics Text Alignment

Set Graphics Text Special Effects

Output Justified Graphics Text

Load Fonts

Set Text Face

Unload Text Fonts

Displaying Graphics Text: v_gtext()

We have already used the v _ a t e x t () function in a num
ber of examples. The procedure prototype for the v _ g t e x t ()
function looks like this:

VOID v_gt«xt(handle, X, Y, string)

WORD handle;

WORD X, Y;

BYTE *string;

As you may have noticed, the X and Y parameters are
specified in the current coordinate system (NDC or RC),
and string is a null-terminated sequence of characters,
which is the convention that the C language uses to repre
sent strings. The initial text color and face are determined
by the w o r k _ i n [] parameters in the Open Workstation call.
We will discuss graphics text attributes and how they can
be changed in the next few pages .

Setting Graphics Text Color: vst_color()

Ju s t a s GEM provides functions for setting markers
and lines (which we've covered in previous sections) and
fill regions (which are discussed in the next section), so it
also provides a function that allows your program to set

182 PROGRAMMER'S GUIDE TO GEM

the color of the graphics text displayed by your program.
The procedure prototype for this function, v s t _ c o l o r () , is as
follows:

WORD v$t_color(handle, color_index)

WORD handle;

WORD color_index;

S e e Table 3.4 for a list of colors.

Setting Character Height: vs t j ie igh t () and
vst_points()

The next thing to understand is how the VDl deals with
character sizes—that is, with how much room characters
take up on the screen or with how big the letters are.
Before we can do this, however, we need to discuss how
graphics text is measured.

To get a sense of this, envision each character being
displayed in its own character cell. The character cell has a
line called the baseline running somewhere across the
lower half of the cell. The base part of the letters rest on
this line (except for the descenders, the bottom parts of
lowercase letters like " j " and "p" , which drop below the
baseline). The character is centered horizontally within the
character cell to give enough space around the edges for
readability. Figure 3.19 illustrates the various aspects of a
characters placement in a character cell.

The VDI has two functions that allow you to vary the
height (and thus change the size) of the characters you dis
play: vs t_height() and vsf_point() . The v s t j i e i g h t () function uses
device coordinates (either NDC or RC), while the vst_point()
function allows you to specify character heights in points.
(One point is 1/72 inch; thus, 36-point type is one-half inch
high.) The vs t_height() function is used to set character

Virtual Device Interface—The VDI 183

F i g u r e 3 . 1 9 : The Character Cell

height in absolute mode—that is, in NDC or RC coordinates.
The vs t_point() function operates in points mode.

The prototypes for these two functions look very similar:

VOID vst_height(handle, coord_height, pchar_width, pchar__height,

pcell_width, pcell_height)

WORD handle;

WORD coordj ie ight ;

WORD *pchar_width, *pchar_height;

WORD *pcelLwidth, *pcell_height;

VOID v$t__point$(handle, point_height, pchar__width, pchar —height,

pcell__width, pcell_height)

WORD handle;

WORD point_height;

WORD *pchar_width, *pchar_height;

WORD *pcell_width, *pcell_height;

PROGRAMMER'S GUIDE TO GEM

Since the requested character size may not be avail
able, these functions return the resulting character cell
size. The VD1 scales fonts up to as much as twice their
original size in order to comply with your request. The
reason it limits the scaling to twice the original size is to
reduce the effect of aliasing. Aliasing is the jagged or
staircase effect that happens to diagonal lines when they
are expanded.

Note that the requested height is in Y-axis units, which, be
cause of the aspect ratio, may be different from X-axis units.

Calculating the Length of a String: vqt_extent()

The width of a string of characters displayed on the
screen is a factor of the height and the font. If the font is
monospaced, each character cell has the s ame width. This
makes it easy to line up columns of text, for example, or
to know exactly where the fifth character in a string is
displayed.

Note that the system font is monospaced. Many fonts,
however, are proportionally spaced, which means that, for
example, the character cell for an "m" takes up more width
than an "i". This makes text look nicer, but it makes it
harder to calculate how much text fits on a display line
(among other things). The VDI uses the term text extent to
mean the width of a string displayed in the current font and
height, and it provides the function vqt_extent () (Inquire Text
Extent) to calculate the text extent value. The procedure
prototype for vqt_extent () looks like this:

VOID vqt_extent(handle, string, extent)

WORD handle;

BYTE *string;

WORD extent[8];

Virtual Device Interface—The VDI 185

The null-terminated string value is measured according
to the current font and height. The extent array contains
four vertices that specify the coordinate positions of the
smallest rectangle that would completely enclose the string
as it would appear on the display. As Figure 3.20 shows,
the vertices start at the lower left corner of the rectangle
and proceed counterclockwise around the rectangle. The
reason this function specifies four vertices (rather than
two) is that the text may have been rotated.

X - a x i s
TEXT

X
©

03
I

F i g u r e 3 . 2 0 : Points Returned in extentf] Array

Setting Graphics Text Alignment: vst_alignment()

Another important factor in graphics text display is
text alignment. The VDI prints out text strings relative to
a given point. The relationship to that point is called the
alignment, and it comes in two basic varieties: horizontal
alignment and vertical alignment. The function to set the
graphics text alignment is called v s t_a l i gnment (), and its

PROGRAMMER'S GUIDE TO GEM

prototype is as follows:

VOID vst_alignment(handle, hor_in, vert_Jn, phor_out, pvert_out)

WORD handle;

WORD hor_Jn, v e r M n ;

WORD *phor_out, *pvert_out;

Horizontal alignment can be specified as shown in
Table 3 .8 :

Value M e a n i n g

0 Left-justified (default)

1 Center-justified

2 Right-justified

T a b l e 3 . 8 : Horizontal Alignments

The vertical alignment is slightly more complicated, as it
allows alignment by six different possibilities, as shown in
Table 3 .9 :

Value M e a n i n g

0 Baseline (default)

1 Half line

2 Ascent line

3 Bottom line

4 Descent line

5 Top line

T a b l e 3 . 9 : Vertical Alignments

Virtual Device Interface—The VDI 187

Note that not all alignments are available for every
device. Therefore, the v s t _ a l i g n m e n t () function returns the
final alignment chosen into the variables pointed to by
phor_out and pver__out.

Text alignment gives you a lot of flexibility in how you
can label objects on the screen. We have already demon
strated a use of v s t _ a l i g n m e n t () , in the example driver code
in Listing 3 .1 . In that example, we wanted to display a
message in the lower right-hand corner of the screen. By
setting the alignment to right and bottom, we can print
the m e s s a g e to the point at the lower right-hand corner
of the screen without worrying about where the left-hand
portion of the mes sage starts.

:i 2:nght

4:descent I

5:top —~~*

ion
A l i g n
A l i g n

A l i h r ^ A I
r r

A l i g n
A l i g n

A l i g n A l i g n A l

A r t

A I
A I

A l i g n A l i g n A l
g n

g n

g n

F i g u r e 3 . 2 1 : How Text AUgnment Works

In Figure 3 .21, we display a single word, "Align", at all
possible alignments. Each intersection of a horizontal and

PROGRAMMER'S GUIDE TO GEM

. 2'. ascent

. 1:half

0: baseline
4: descent

I I I I M S I * ft

uvwxyz.
. 2'.ascent 3:botton
. 1:half

s. 8:baseline
_ 4:descent

baseline
descent

3: bottom

F i g u r e 3 . 2 2 : Text AUgnment Lines for Swiss Font

a vertical line in the figure represents the X,Y position
that the word was output to. As you can see, the v$t_align-
m e n t () function lets us place the text at almost any arbi
trary position relative to what we might be trying to label.

In Figure 3.22 we display the Swiss font lowercase let
ters relative to the different alignment lines. The reason
that the top line is missing from the picture is that for the
Swiss font, the top line is the s ame as the ascent line. To
gain maximum control over the exact placement of text,
the GEM DRAW application uses only one type of align
ment and calculates text placement itself with help from
the v q t _ e x t e n t () and vqt_fontinfo() functions (discussed
shortly). You will probably not need the s ame degree of
control over your text placement, but you should be
aware that the alignment lines may vary in their relation
to different fonts.

Setting Special Effects for Graphics Text:
vst_effects()

Another factor affecting text display are special effects,
which are set by calling the vst_effects() function, as follows:

Virtual Device Interface—The VDI 189

WORD vst_effects(handle, effect)

WORD handle;

WORD effect;

The VDI is able to transform text slightly to produce
the special effects listed in Table 3.10 and illustrated in
Figure 3.23.

Normal S t r i n g
Thickened S t r i n g

Light S t r i n g
Skewed String

Underlined S t r i n g
Outlined S t r i n g

Shadowed S t r i n g

F i g u r e 3 . 2 3 : Graphics Text Special Effects

In order to combine different effects, the value passed
into the function in effect is a bit map of requested effects.
The effect of bit flag values is documented in Table 3.10.
If you want your program to display text in a bold (thick
ened) and italic (skewed) style, for example, the correct
value for effect would be 0x05 (which equals 0x1 OR 0x4).
The last two effects (outlining and shadowing) are not
available on the current 8086/8088 versions of GEM.
Shadowing is not available on the current Atari S T version

\

PROGRAMMER'S GUIDE TO GEM

of GEM. The vs t_e f fec t s () function returns those effects
that are actually available.

B i t H e x Va lue D e s c r i p t i o n

0 0x01 Thickened

1 0x02 Lightened Intensity

2 0x04 Skewed

3 0x08 Underlined

4 0x10 Outlined

5 0x20 Shadowed

T a b l e 3 . 1 0 : Bit Flag Values for effect

Getting Information about Special Effects:
vqt_fontinfo()

If you look closely at Figure 3.23, you will notice that
some of the effects take more room to display. This is not
taken into account in the v q t _ e x t e n t () function. In order to
adjust for special text effects, you must use the v q M o n t -
info() function. The vqt_fontinfo() function also returns
other useful information, and its prototype looks like this:

VOID vqt_fontinfo(handle, pmin_ade, pmax_ade, distances,

pmax_width, effects)

WORD handle

WORD *pmin_ade, *pmax_ade, *pmax__width;

WORD distances[5];

WORD effects[3];

When the function returns, the variables pointed to
by pmin__ade and p m a x _ a d e contain the ASCII decimal

Virtual Device Interface—The VDl 191

equivalent values of the first and last characters available,
respectively, for this type face. The variable pointed to by
p m a x _ w i d t h contains the maximum cell width, not includ
ing special effects.

The d i s t a n c e s f] array contains offsets of the alignment
lines (see Figure 3.21 and Figure 3.22) relative to the
baseline of the character cell. All relative distances are
positive numbers in the current coordinate system (NDC
or RC). The organization of the d i s t a n c e s f] array is shown
in Table 3 .11 .

distancesf] I n d e x D e s c r i p t i o n

0 Bottom line to baseline

1 Descent line to baseline

2 Half line to baseline

3 Ascent line to baseline

4 Top line to baseline

T a b l e 3 . 1 1 : Contents of distances[]

The e f f ec t s f] array contains adjustments to make for
the current special effects mode. These values are inter
preted as in Table 3.12. Be careful when you use graphics

effectsf] I n d e x D e s c r i p t i o n

0 Current increase of character width due
to special effects

1 Left offset

2 Right offset

T a b l e 3 . 1 2 : Contents of effects[]

PROGRAMMER'S GUIDE TO GEM

text effects on text that you output to a metafile because
the offsets may be very different on different devices. This
is why the skewed text displayed by GEM DRAW may
appear differently on a screen than it does when the
DRAW metafile is output to a printer.

The left and right offsets in the e f f ec t s [] array are
shown in Figure 3.24.

F i g u r e 3 . 2 4 : Left and Right Offset for effectsf]

Displaying Justified Graphics Text: v_justified()

To make the job of displaying high-quality graphics
text a little bit easier, the VDI provides the function
v_just i f ied() . The purpose of this function is to display a
text string with extra spacing added or removed between
letters and words in the string so that the string's width
(also known as extent) is of the length specified. The
prototype for this procedure is a s follows:

VOID v_justified(handle, X, Y, string, length, word__space,

char__space)

WORD handle;

WORD X, Y;

BYTE *string;

WORD length;

WORD word_space, char_space;

Virtual Device Interface—The VDI 193

The contents of string are printed at position X and Y,
as in v _ g t e x t () . However, this function expands or contracts
the printed text so that it is as long as the specified length.

v j u s t i f i e d () can insert or remove spacing between
words or characters. You enable word spacing by setting
w o r d _ s p a c e to a nonzero value. Setting it to 0 tells the
function to disable word spacing: that is, to keep the spac
ing width between words at the normal default value. Sim
ilarly, you enable character spacing by setting c h a r _ s p a c e
to a nonzero value, and disable spacing between charac
ters by setting it to 0. If you set both w o r d _ s p a c e and
char__space to 0, this function is the equivalent of v _ g t e x t () .

As you examine Figure 3.25, you will notice that if

This example: WordSpace = 0 and CharSpace = 0

ThiexampleWordSpace = tmdCharSpace = 0

This example: WordSpace=0 and CharSpace = 1

This example: WordSpace = 1 and CharSpace = 1

This example: WordSpace = 0 and CharSpace = 0

This example: WordSpace = 1 and CharSpace = 0

Th i s e x a m p l e : W o r d S p a c e = 0 and CharSpace = 1

T h i s e x a m p l e : W o r d S p a c e = 1 and C h a r S p a c e = 1

This example: WordSpace = 0 and CharSpace = 0

This example: WordSpace = 1 and CharSpace = 0

T h i s e x a m p l e : W o r d S p a c e = 0 a n d C h a r S p a c e = 1

T h i s e x a m p l e : W o r d S p a c e = 1 a n d C h a r S p a c e = 1

F i g u r e 3 . 2 5 : Illustration of v_Justified()

v j u s t i f i e d () has to remove too much space between char
acters, the characters may overlap each other.

194 PROGRAMMER'S GUIDE TO GEM

The v j u s t i f i e d () procedure is actually a generalized draw
ing primitive (GDP). We discuss GDPs in greater depth in
the section entitled "Drawing Shapes—Generalized Drawing
Primitives" later in this chapter.

Loading Fonts: vstJoad_fonts()

GEM allows your program to display graphics text in a
variety of different type faces or fonts. Different fonts are
supplied with different devices, although at least one type
face (the Swiss font) should be available on all devices.
Unfortunately, because of device characteristics (especially
aspect ratio), the s ame font may have a slightly different
appearance on different devices. This will be most notice
able when special graphics text effects are used.

Digital Research currently supplies three different fonts
for the screen device with GEM, and it may someday
supply more. The system font is loaded with the screen
driver, so that you can do quite a bit of programming in
GEM without ever needing to explicitly load additional
fonts. The system font is monospaced and looks some
thing like a typeface known as Courier.

The other two screen fonts are Swiss and Dutch.
These are proportionally spaced fonts. You can count on
the Swiss font to be supplied for most devices. In fact, the
Swiss font is the default font for most printer devices.

In order to avoid imposing the overhead of having the
lengthy font files in memory for all GEM applications,
the VDI requires programs that use different fonts to load
them first with the v s t J o a d _ f o n t s () function. The prototype
for this function looks like this:

WORD vst_Joad_fonts(handle, select)

WORD handle;

WORD select;

Virtual Device Interface—The VDI 195

This function allows you to load all of the fonts associ
ated with the device pointed to b y hand le . The function
returns the number of additional fonts made available by
this call. The se lect parameter is reserved for future use
and should be set to 0 .

Setting the Text Face: vst_font()

Once your program has loaded the fonts, it may select
between them by using the v s t_ font () call. This function's
prototype is as follows:

WORD v$t_font(handle, font__type)

WORD handle;

WORD font_type;

Since different devices have different fonts, the valid
f o n t _ t y p e va lues may vary. For the screen, valid values
for font_type are

1 S y s t e m f a c e
2 S w i s s 7 2 1
14 D u t c h 8 0 1

Unloading Fonts: vst_unloadJonts()

If your program has called v s t J o a d _ f o n t s () , it should
call v s t _ u n l o a d _ f o n t s () before it terminates, in order to sig
nal that it no longer needs the fonts. This will let GEM
free up the memory used by the fonts if no other process
is using the fonts. The procedure prototype is as follows:

VOID vst_unload_fonts(handle, select)

WORD handle;

WORD select;

PROGRAMMER'S GUIDE TO GEM

The se lect parameter should be equal to the value used
for the v s t J o a d _ J o n t s () se lect parameter (0 for current ver
sions of GEM).

Examples of Text Display

This section contains the programs used to produce
some of the figures in this portion of the chapter. We have
saved the examples for the end because most of them use
several of the functions we have presented.

The first example, shown in Listing 3 .11, produced Fig
ure 3 .21, "How Text Alignment Works." The program illus
trates the use of v s t _ a l i g n m e n t () a s well as v q t _ e x t e n t () .

/* TEXTALGN.C - display text alignment example */

^include "portab.h"

BYTE *x_labels[3] = { " 0:left ", " l:center ", " 2:right " };
BYTE *y_labels[6] = { " 0:baseline " l:half line ", " 2:ascent line ",

" 3:bottom ", " 4:descent ", " 5:top " };
#define LEFT 0
#define CENTER 1
#define HALF 1
#define TOP 5

#define PATTERN 2
#define LIGHT_DITHER_PATTERN 1
#define BLACK 1

#define BIG_LETTERS 36
#define SMALLLETTERS 10

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

WORD pxy[4], junk, curx, cury, incrx, incr_y, startx;
WORD horin, ver_in;
WORD y_lines[6]; /* table of row positions */

/* set screen to background dither pattern to highlight text */
pxy[0] = dx;
pxy[l] = dy}
pxy[2] = dx+swidth;
pxy[3] = dy+sheight;
vsf interior(handle, PATTERN);
vsf_style(handle, LIGHT_DITHER_PATTERN);
vsf_color(handle, BLACK);
v_bar(handle, pxy);

Virtual Device Interface—The VDI 197

incrx = swidth / 3;
startx = dx + (2*incr_x) / 3;
incr_y = sheight / 7;

/* set up row positions to make text display more pleasing */
for(cury = dy+incr_y. verin = 0; ver_in < 6; ++ver_in, cur_y +=incr_y)

y_lines[ver_in] = cur_y;
y_lines[l] -= incr_y/3; /* move these up to make room */
y_lines[2] -= incr_y/3;
y_lines[3] += incr_y/2; /* and move these down */
y_lines[4] += incr_y/2;

/* display text in different alignments */
vst_point(handle, BIG_LETTERS, &junk, &junk, &junk, &junk);
for(cur_x=dx+start_x, hor_in=0; horin < 3; ++hor_in, curx += incrx)

for(ver in = 0; ver in < 6; ++ver_in)
{

vst_alignment(handle, hor_in, ver_in, &junk, &junk);
v gtext(handle, cur x, y 1ines[ver_in], "Align");

} "

/* draw alignment grid and label everything */
vst_point(handle, SMALLLETTERS, &junk, &junk, &junk, &junk);

/* draw and label vertical alignment lines */
vst alignment(handle, CENTER, TOP, &junk, &junk);
for(cur x=dx+start x, hor in=0; horin < 3; ++hor_in, curx += incrx)
{

pxy[0] = pxy[2] = curx;
pxy[l] = dy;
pxy[3] = dy+sheight;
v_pline(handle, 2, pxy);
v gtext(handle, cur x, dy, x labelsthor in]); /* label columns */

} "
/* draw and label horizontal alignment lines */
vst_alignment(handle, LEFT, HALF, &junk, &junk);
for(ver in = 0; ver in < 6; ++ver in)
{

pxy[l] = pxy[3] = y_lines[ver_in];
pxy[0] = dx;
pxy[2] = dx+swidth;
v_pline(handle, 2, pxy);
v gtext(handle,dx,y lines[ver in],y labels[ver in]); /* label rows"/

}

L i s t i n g 3 . 1 1 : TEXTALGN.C: Display Text AUgnment Example

Our next example, Listing 3.12, loads and selects the
Swiss font, and was used to produce Figure 3.22, "Text
Alignment Lines for Swiss Font." This example illustrates
how v s t _ l o a d _ f o n t s () and vs t_ font () are used.

198 PROGRAMMER'S GUIDE TO GEM

/* TEXTSWIS.C - display text alignment for SWISS font lower case letters */

#include "portab.h"

#define SYSTEM_FONT 0
#define SWISS_FONT 2
#define LEFT_ALIGN 0
#define BASELINE 0
#define SMALLLETTERS 10
#define BIG_LETTERS 72

BYTE *y_labels[6] = { " 0:baseline " l:half ", " 2:ascent M ,
" 3:bottom M , " 4:descent ", " 5:top 11 };

WORD print_line(handle, text, cur_x, cur_y, point_size, font_type)
WORD handle, cur_x, cur_y, point_size, font_type;
BYTE *text;
{

WORD pxy[4], junk, ver_in;
WORD y_lines[6]; /* table of row positions */
WORD distances[5], effects[3]; /* for vqtfontinfo() */
WORD extents[8]; /* for vqtextentO */

vst_font(handle, font_type) ; /* use requested font */
vst_alignment(handle, LEFTALIGN, BASELINE, &junk, &junk);
vst_point(handle, pointsize, &junk, &junk, &junk, &junk);
v_gtext(handle, c u r x , cury, text); /* display the text */

vqt_font_info(handle, &junk, &junk, distances, &junk, effects);
y_lines[0] • cur_y; /* baseline position */
y_lines[l] = cur_y - distances[2]; /* halfline position */
y_lines[2] = cur_y - distances[3]; /* ascent line position */
y_lines[3] = cur_y + distancesCO] ; /* bottom line position */
y_lines[4] = cur_y • distances[1]; /* descent line position */
y_lines[5] = cur_y - distances[4]; /* top line position */

vqt extent(handle, text, extents);
pxyTo] = curx;
pxy[2] = cur_x + extents[2]; /* right edge of text string */
vst_font(handle, SYSTEMFONT);
vst_point(handle, SMALL_LETTERS, &junk, &junk, &junk, &junk);
for(ver_in = 5; verin >= 0; — v e r i n) {

pxy[l] = pxy[3] = y_lines[verin];
v_pline(handle, 2, pxy);
v_gtext(handle, pxy[2], pxy[3], y_labels[ver_in]) ;

}
return distances[0]+distances[4]; /* distance bottom to top lin */

VOID draw_rc(handle, dx, dy, screenw, screenh)
WORD handle, dx, dy, screenw, screenh;

{
WORD cur_x, cur_y;

vst_load_fonts(handle, 0); /* load all available fonts */

curx = dx + (screenw / 3.2);
cury = dy + (screenh / 4) ;

Virtual Device Interface—The VDI 199

cur_y += print_line(handle, "abcdefghijkl", cur_x, cury,
BIGLETTERS, SWISS FONT);

cur_y += print_line(handle, "mnopqrst11, cur_x, cur_y,
BIG_LETTERS, SWISS_FONT);

print line(handle, "uvwxyz", cur_x, cury, BIGLETTERS, SWISSFONT);
}

L i s t i n g 3 . 1 2 : TEXTSWIS.C: Text Alignment for Swiss Font

Finally, in Listing 3.13 we show the code that used
v s t _ e f f e c t s () to produce Figure 3.23, "Graphics Text Special
Effects."
/* TEXTEFCT.C - illustrate different Graphic Text Special Effects */

^include "portab.h"
#define SYSTEM_FONT 1
#define SWISS_FONT 2
#define LEFT 0
#define RIGHT 2
#define BASELINE 0

BYTE *labels[] = { "Normal", "Thickened", "Light", "Skewed", "Underlined",
"Outlined", "Shadowed" };

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

WORD ii, curx, cury, incr_x, incr_y, junk, effect;

vst_load_fonts(handle, 0); /* load all available fonts */
incr_x = swidth/40;
incr_y = sheight/8;
cur_x = dx + swidth/4;
cur_y = dy + incr_y;

for(ii = 0, effect = 1 ; ii < 7; ++ii, cur_y += incry) {
vst_font(handle, SWISS_FONT);
vst_point(handle, 36, &junk, &junk, &junk, &junk);
vst_alignment(handle, LEFT, BASELINE, &junk, &junk);
if(ii>0) /* no call for normal effect */
{

junk = vst_effects(handle, effect);
effect *= 2; /* shift left effects bit by 1 */
if(effect != junk*2)

continue; /* don't print lines without effect */
}

v_gtext(handle, cur_x+incr_x, cur_y, "String");

vst_font(handle, SYSTEM_FONT);
vst_point(handle, 14, &junk, Sjunk, &junk, &junk);
vst_alignment(handle, RIGHT, BASELINE, &junk, &junk);
v gtext(handle, cur x, cur y, labels[ii]);

} "
vst_effects(handle, 0); /* turn off special effects */
vst_unload_fonts(handle, 0); /* clean up fonts */

L i s t i n g 3 . 1 3 : TEXTEFCT.C: Graphics Text Special Effects

PROGRAMMER'S GUIDE TO GEM

RECTANGLES AND
FILLED RECTANGLES

The VDI provides a number of functions that display
rectangles or affect the way in which rectangular objects
are drawn. This section will introduce the most important
of these functions.

The functions covered in this section are

vsf__interior()

v s f_ s ty l e ()

vsf_color()

v s f_per imeter ()

vr_recf l()

v _ b a r ()

v_ f i l l a rea ()

Set Fill Interior Style

Set Fill Style Index

Set Fill Color

Set Fill Perimeter Visibility

Output Rectangle Fill

Output Bar (Rectangle)

Output Complex Polygon Fill

Setting the Fill: vsf_interior() and vsf_style()

The main new idea in this section has to do with shad
ing or fill. The VDI allows you to specify how the interior
of certain shapes (including rectangles) is drawn. If you
want your program to look colorful on a color device and
also look readable on a monochrome device, you might
be able to use the rectangle fill functions along with color
to achieve portability across machines with different color
capabilities.

Here is an example of how the fill capability can help
your program be portable across color and monochrome
devices. Suppose you wanted your program to display a
pie chart (like, for instance, the chart shown in Figure
3.31). If the chart is drawn with a solid white interior and

Virtual Device Interface—The VDI 201

black perimeter for each slice, the pie chart would be
readable on a color or a monochrome device. If your pro
gram were to set the interior to solid nonwhite colors,
however, they would be unreadable on monochrome
devices because all of the nonwhite colors would be dis
played as black and the pie slices would blend together.

You can solve this problem in several ways. The first is
to always a s sume your program will be working with
monochrome devices. The disadvantage with this solution
is that your program won't be able to use the visually
appealing color capabilities of color screens and printers.

The second solution is to check for the number of col
ors that the screen device supports using the Extended
Inquire function vq_ex tend() , discussed later in this chapter.
This function returns the number of color planes on the
device in work_out[4]. If the device has color, you can print
each pie slice in the pie chart in different or alternating
colors. If the device doesn't have color or if i ts a metafile
device, your program can use a solid white interior.
Although the solid colors may present the most appealing
display on color devices, however, this approach makes
your program slightly more complicated. Furthermore, the
monochrome metafiles will not display as well if they are
displayed on color devices.

A third solution to the problem of portability across
color and monochrome devices uses the fill capabilities of
the VDI. Instead of drawing the interior of shapes such as
pie slices or rectangles in solid colors, the VDI allows your
program to specify that the interior is to be filled with a
pattern or a type of line hatching. Each pie slice in our
example can be filled with different patterns as well as
different colors, which would present an effective display
on both color and monochrome devices.

The VDI function to set the interior drawing style is
called v s M n t e r i o r () . If the interior fill style you select is the
pattern or hatch style, you can choose between a variety

202 PROGRAMMER'S GUIDE TO GEM

of different patterns or hatchings with the vsf_style() func
tion. The prototypes for the vsf Jnter ior() and vsf_style()
functions look like this:

VOID vsf_interior(handle, fill_style)

WORD handle;

WORD f i lLstyle;

VOID vsf_$tyle(handle, style_index)

WORD handle;

WORD style_index;

The interior fill styles you can choose between with the
vsMnterior() function are listed in Table 3.13.

Value M e a n i n g

0 Hollow

1 Solid

2 Pattern

3 Hatch

4 Used-Defined style

T a b l e 3 . 1 3 : Possible Values for the Tdl__style Parameter

Let s discuss each of these patterns briefly. Refer to
Figure 3.26 for an illustration of what the different fill
styles look like.

In the Hollow fill style, the interior of the rectangle is
filled in with white, so that the interior is, in effect, "hol
low." This has the s ame effect as using the Solid fill style
with the color set to white. To achieve the effect of only
drawing the perimeter of the shape, use Hollow style and
Transparent writing mode (set with vswr_mode()).

Virtual Device Interface—The VDI 203

F i g u r e 3 . 2 6 : VDI Fül Styles: HoUow, Soüd, Pattern, and Hatch

Next, the Solid fill style sets the interior fill area to the
color specified by v s f _ c o l o r () .

The Pattern and Hatch styles cause different bit pat
terns to be displayed in the fill area, giving a "shading"
effect. The bits are displayed in the fill color (specified
with vsf_color()) . This kind of shading is particularly appro
priate for the kind of problem we just presented—that is,
for differentiating regions of the screen for monochrome
devices, such as a printer or a black and white screen.

If you use the Pattern or Hatch interior styles, you
get to choose the kind of pattern or hatching. The GEM
VDI supports a rich variety of 24 different Pattern styles
and 12 different Hatch styles (see Figure 3.26). Use the
vs f_ s ty l e () function to select between these different
Pattern and Hatch styles.

Finally, the User-Defined style allows you to create your

204 PROGRAMMER'S GUIDE TO GEM

own bit pattern. The array of bits used to define the pat-*
tern is 16 by 16 by N, where N is the depth of the display
(that is, the number of color planes). For more informa
tion, see the DRI Developers Kit.

Setting Fill Color: vsf_color()
Suppose that you have used the v s M n t e r i o r () and

v s f _ s t y l e () functions to specify certain patterns to be drawn
as interior fill. You can set the color of those patterns with
vs f_co lor () as follows:

VOID vsf_color(handle, co lor jndex)

WORD handle;

WORD color jndex;

The color jndex value (see Table 3.4) is used as the
color of the filling pixels. If the color jndex is out of range,
the VDI uses color jndex 1 (black).

Setting Fill Perimeter Visibility: vsf_perimeter()

With the v s f _ p e r i m e t e r () function, the VDI allows your
program to specify whether or not to draw a border
around the rectangular shape. The perimeter will be drawn
in the fill color set by v$f_color() , and it will always be 1
pixel in width. The procedure prototype for vsf J n t e r i o r () is
a s follows:

VOID vsf_perimeter(handle, v is ib le j lag)

WORD handle;

WORD v is ib le j lag ;

Use this function with v is ib le j lag set to 1 (or any non
zero value) to cause subsequent VDI rectangular fill func
tions to draw a visible outline around the fill area. Using a

Virtual Device Interface—The VDI 205

value of 0 will turn off drawing of the visible perimeter.
Note that the vr_recf l () fill function, discussed next,

does not support visible outlining.

Outputting Rectangle Fill: vr_recfl()

The v r_rec f l () function fills a rectangular area with the
currently defined area color and style. It is almost equiva
lent to the v _ b a r () generalized drawing primitive (which
will be discussed later). The two differences between
vr_rec f l () and v__var() are first that with vr__recfl(), the perim
eter never gets outlined (that is, v s f _ p e r i m e t e r () is not sup
ported), and second, vr_recf l () may not work on nonscreen
devices (like metafiles). The main purpose of this function
is to provide a quicker rectangle fill than v _ b a r () for clear
ing rectangular regions such as windows on the screen.

The v r_rec f l () function can be called like this:

VOID vr_recfl(handle, xy__array)

WORD handle;

WORD xy__array[4];

Drawing a Bar: v_bar()

v _ b a r () is the general-purpose function for drawing rec
tangles. It is a generalized drawing primitive that is avail
able for any device. In this respect, v _ b a r () is unlike
vr_rec f l () , which you should only count on for screen
devices. Furthermore, v _ b a r () also has a visible perimeter
when so specified with the v s f _ p e r i m e t e r () function.

The prototype for this procedure is as follows:

VOID v_bar(handle, xy_array)

WORD handle;

WORD xy_array[4];

PROGRAMMER'S GUIDE TO GEM

S e e Listing 3.14 and Figure 3.27 for an example of
how v _ b a r () works and what it can do.

F i g u r e 3 . 2 7 : RECTSQAR.C Output: Concentric Squares

/* RECTSQAR.C - draw concentric squares with v_bar() */

•include "portab.h"
#define HOLLOW 0
#define BLACK 1

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

WORD pxy[4], x incr, y incr;

xincr = swidth/30;
y_incr = sheight/30;
pxy[0] = dx;
pxy[l] = dy;
pxy[2] = dx+swidth;
pxy[3] = dy+sheight;
vsf_interior(handle, HOLLOW);
vsf_perimeter(handle, TRUE);
vsf color(handle, BLACK);

Virtual Device Interface—The VDI 207

while(pxy[0] < pxy[2])
{

v_bar(handle, pxy); /* output hollow square */
pxy[0] += xincr;
pxy[l] += yincr;
pxy[2] -= x_incr;
pxy[3] -= y incr;

}
}

L i s t i n g 3 . 1 4 : RECTSQAR.C: Draw Concentric Squares

Outputting Complex Polygon Fill: v j i l l a r e a ()

The next function, v_ f f l l a rea () , is one of our personal
favorites. This function fills the inside part of an arbitrarily
complex, possibly self-intersecting polygon with the cur
rent fill attributes. The reason it is one of our favorite
functions is that the "complex polygon" can look like a
child's scribbling, and v_ f i l l a rea () will choose to fill some
of the loops a s the "inside" of the figure and leave other
loops a s the "outside". This function is fun!

The prototype for this function looks like this:

VOID v_fillarea(handle, count, xy_array)

WORD handle;

WORD count;

WORD xy_array[2*count];

To make certain that the points that have been input in
the xy_array contain a polygon, the v_ f i l l o rea () function
causes the last point to be connected with the first. The
v_f i l l a rea () function does not display a polygon with only
one point. If the polygon has no area, it will be displayed
as a dot when the fill perimeter visibility is on, and it will
not be displayed at all when the perimeter visibility is off.

Listing 3.15 and Figure 3.28 demonstrate the
v_f i l l a reo () function and its results.

PROGRAMMER'S GUIDE TO GEM

F i g u r e 3 . 2 8 : RECTAREA.C Output: Demonstrate ujülareaf) Function

/* RECTAREA.C - demonstrate v_fillarea() function */

•include "portab.h"
•define PATTERN 2
•define BLACK 1

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

WORD pxy[8];

pxy[0] = dx + swidth / 8; /* specify "hourglass" polygon */
pxy[l] = dy + sheight / 8;
pxy[2] = dx + 7 * (swidth / 8);
pxy[3] = dy + 7 * (sheight / 8);
pxy[A] = dx + swidth / 8;
pxy[5] = dy + 7 * (sheight / 8);
pxy[6] = dx + 7 * (swidth / 8) ;
pxy[7] = dy + sheight / 8;
vsf interior(handle, PATTERN);
vsf_style(handle, 9);
vsf_color(handle, BLACK);
v_fillarea(handle, 4, pxy);

L i s t i n g 3 . 1 5 : RECTAREA.C: Demonstrate ujillarea() Function

Virtual Device Interface—The VDI 209

DRAWING SHAPES: GENERALIZED
DRAWING PRIMITIVES

The VDI provides a number of higher level functions
that draw shapes and justified text. These functions handle
a considerable amount of detail (including aspect ratio),
and they make certain high-level shapes and graphics
effects easy to produce. GDPs work with text, line, or rec
tangle fill attributes, depending on the individual GDR
These functions allow you to specify relatively complicated
images with less effort.

We have already introduced two of these functions—
v_|ust i f ied() and v _ b a r () — i n previous sections. The general
ized drawing primitives covered in this section are

v_arc () Output an Arc

v_pies l ice() Output a Pie Slice

v_circle() Output a Circle

v_el larc () Output an Elliptical Arc

v _ e l l p i e () Output an Elliptical Pie Slice

v_el l ipse() Output an Ellipse

v _ r b o x () Output a Rounded Rectangle

v _ r f b o x () Output a Filled Rounded Rectangle

Drawing an Arc: v_arc()

The v__arc() function displays a circular arc, corrected
for aspect ratio, and is called a s follows:

VOID v_arc(handle, X, Y, radius, beg_ang, end_ang)

WORD handle;

WORD X, Y;

210 PROGRAMMER'S GUIDE TO GEM

WORD radius;

WORD beg_ang, end_ang;

The b e g _ a n g and e n d _ a n g values specify the starting
and ending angles of the arc, respectively, in tenths of
degrees, where 0 degrees is at 3 o'clock and 90 degrees
is at 12 o'clock (see Figure 3.29). Note that v _ a r c () cor
rectly handles aspect ratio to produce a circular arc. The
radius is in X units, which may be different than the Y-unit
radius (refer to the discussion of aspect ratio at the begin
ning of this chapter). The arc itself is drawn with line
attributes.

900~1

I °
| 1800 | | 1800 |

| 2700 |

F i g u r e 3 . 2 9 : Specification of Angles in the VDI

Drawing a Pie Slice: v_pieslice()

v _ p i e s l i c e () is similar to v _ a r c () , except that it uses the
rectangle fill attributes to fill in the area between the

Virtual Device Interface—The VDI 211

center and the edge of the specified arc. The functions
prototype is as follows:

VOID v_pieslice(handle, X, Y, radius, beg__ang, end_ang)

WORD handle;

WORD X, Y;

WORD radius;

WORD beg__ang, end_ang;

Drawing a Circle: v_circle()

This function draws a circle at position X,Y in the cur
rent coordinate system (RC or NDC), corrected for aspect
ratio, with a radius in X-coordinate units. It can be called
a s follows:

VOID v_circle(handle, X, Y, radius)

WORD handle;

WORD X, Y;

WORD radius;

GDPCIRCL

F i g u r e 3 . 3 0 : GDPCIRCL.C Output: Circle, Pie SUce, and Arc

212 PROGRAMMER'S GUIDE TO GEM

Listing 3.16 and Figure 3.30 show examples of what
the last three functions can produce. Notice that the arc
has been drawn with a thicker line to emphasize that it
uses line attributes. Also notice that the pie slice and
circle are using rectangle fill attributes.

/* GDPCIRCL.C - draw circle, pieslice, and arc */

#include "portab.h"
#define PATTERN 2
#define BLACK 1

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

/* v_circle() and v_pieslice() uses FILL Attributes */
vsf_interior(handle, PATTERN);
vsf_color(handle, BLACK);
vsf_perimeter(handle, TRUE);
vsf_style(handle, 1);
v_circle(handle, dx+swidth/4, dy+sheight/2, swidth/5);
vsf_style(handle, 4);

v_pieslice(handle, dx+swidth/2, dy+sheight/2, swidth/5, 0, 700);

/* v a r c O uses LINE Attributes */
vsl_width(handle, swidth/60); /* thick line for effect */
vsl_color(handle, BLACK);

v_arc(handle, dx+3*(swidth/4), dy+sheight/2, swidth/5, 0, 700);

vsl width(handle, 1); /* reset line thickness */
}

L i s t i n g 3 . 1 6 : GDPCIRCLC: Circle, Pie Slice, and Arc

Figure 3.31 and Listing 3.17 demonstrate some of the
ability of the VDI GDP functions to produce aesthetic
effects with small amounts of code.

/* GDPPIE.C - draw a pie chart */

#include "portab.h"
#define HATCH 3
#define BLACK 1

#define NSLICES 7
WORD slice_angles[NSLICES] = { 0, 850, 1600, 2250, 2800, 3250, 3500 };

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

Virtual Device Interface—The VDI 213

WORD ii;
WORD x_center, y_center, x_incr, y_incr, slice_size, beg_angle, endangle;

xcenter = dx + swidth/2;
y_center = dy + sheight/2;
x_incr = swidth/30;
y_incr = sheight/18;
slicesize = swidth / A;
vsf color(handle, BLACK);
vsf_interior(handle, HATCH);

/* first slice draw apart */
vsf_style(handle, 1);
v_pieslice(handle, xcenter • xincr, y_center - y_incr, slice_size,

slice_angles[0], slice_angles[l]);

for(ii=l; ii<NSLICES; ++ii) /* the rest of the slice angles */
{

vsf_style(handle, ii+1); /* different interior pattern */
begangle = sliceanglestii];
if(ii < NSLICES-1)

endangle = slice_angles[ii+1];
else endangle = slice_angles[0];

v_pieslice(handle, x_center, y_center, slicesize,
begangle, end angle);

}
}

L i s t i n g 3 . 1 7 : GDPPIE.C: Draw a Pie Chart

F i g u r e 3 . 3 1 : GDPPIE.C Output: Draw a Pie Chart

PROGRAMMER'S GUIDE TO GEM

Drawing an Elliptical Arc: v_ellarc()

This function corresponds roughly to v _ a r c () except
that the arc is not corrected for aspect ratio. Thus, you
must specify both the x_radius and the y_radius. The proto
type for this function is:

VOID v_ellarc(handle, X, Y, x__radius, y__radius, beg_ang,

end_ang)

WORD handle;

WORD X, Y;

WORD x_radius, y_radlus;

WORD beg__ang, end_ang;

When it is important for your application to draw dif
ferent shapes next to each other, you may want to use the
elliptical functions to draw circular shapes so that you can
adjust all of your shapes for aspect ratio. This technique is
used by GEM DRAW, for example, so that if you make a
line tangent to a circle, the program can preserve that
tangential relationship across different devices. For simple
charts and graphs, however, you can probably use the cir
cular functions.

Drawing an Elliptical Pie Slice: v_ellpie()

The v _ e l l p i e () function corresponds to v _ p i e s l i c e () ,

except that it allows you to specify both the x_radius and
the y_radius in order to handle aspect ratio. Call the func
tion a s follows:

VOID v_ellpie(handle, X, Y, x__radius, y_radius, beg_ang,

end_ang)

WORD handle;

WORD X, Y;

Virtual Device Interface—The VDI 215

WORD x_radius, y_radius;

WORD beg_ang, end_ang;

Drawing an Ellipse: v_ellipse()

We wrap up our presentation of the circular/elliptical
functions with v _ e l l i p s e () . Call this procedure a s follows:

VOID v_ellipse(handle, X, Y, x_radius, y_radius)

WORD handle;

WORD X, Y;

WORD x_radius, y_radius;

Figure 3.32 and Listing 3.18 demonstrate the work of
some of the circular/elliptical generalized drawing primi
tives we have just discussed.

F i g u r e 3 . 3 2 : GDPEUPS.C Output: Ellipse, Elliptical Pie Slice, and Arc

PROGRAMMER'S GUIDE TO GEM

/* GDPELIPS.C - draw ellipse, elliptical pieslice, and elliptical arc */

#include "portab.h"
#define PATTERN 2
#define BLACK 1

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

/* vellipseO and vellpieO uses FILL Attributes */
vsf_interior(handle, PATTERN);
vsf_style(handle, 1);
vsf color(handle, BLACK);
vsf_perimeter(handle, TRUE);
v_ellipse(handle, dx+swidth/4, dy+sheight/2, swidth/5, sheight/5);
v_ellpie(handle, dx+swidth/2, dy+sheight/2, swidth/5, sheight/5, 0, 700);

/* v_ellarc() uses LINE Attributes */
vsl_width(handle, swidth/60);
vsl_color(handle, BLACK);
v_ellarc(handle, dx+(3*swidth)/4, dy+sheight/2, swidth/5, sheight/5, 0,

700);

vsl_width(handle, 1); /* reset line width */

L i s t i n g 3 . 1 8 : GDPELIPS.C: Draw Elliptical Figures

Virtual Device Interface—The VDI 217

The next listing, Listing 3.19, presents some code that
demonstrates the creation of different elliptical shapes.
Figure 3.33 shows the output.

/* GDPEMANY.C - draw many ellipses */

#include "portab.h"
#define NUM_ELIPS 16
#define FUDGE 3
#define HOLLOW 0
#define BLACK 1
#def ne MD REPLACE 1
#define MDTRANSPARENT 2

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

WORD ii, x_center, y_center, x_incr, y_incr, x_size, y_size;

xcenter = dx • swidth/2;
y_center = dy + sheight/2;
x_incr = swidth / (3 * NUM_ELIPS);
y_incr = sheight / (3 * NUM_ELIPS);
xsize = swidth / 6 - FUDGE; /* leave a bit of room */
y_size = sheight / 2 - FUDGE;
vsf_interior(handle, HOLLOW);
vsf_perimeter(handle, TRUE);
vsf_color(handle, BLACK);

vswr_mode(handle, MDTRANSPARENT); /* TRANSPARENT for hollow ellipses */

for(ii = 0; ii < NUM ELIPS; ++ii)
{

v_ellipse(handle, xcenter, y_center, xsize, y_size);
x_size •= xincr;
y size -= y incr;

}
vswr_mode(handle, MD_REPLACE); /* reset to default */

L i s t i n g 3 . 1 9 : GDPEMANY.C: Draw Lots of Ellipses

Drawing a Rounded Rectangle: v_rbox()

The v _ r b o x () function draws rectangles with rounded
corners. As in v _ b a r () , your program calls the function
with diagonally opposite corner points.

Here is the procedures prototype:

PROGRAMMER'S GUIDE TO GEM

VOID v_rbox(handle, xy_array)

WORD handle;

WORD xy_array[4];

Unfortunately, you cannot specify the radius of the
rounded corners, which means that if your rectangle is too
small, it won't look very much like a rectangle except on
higher resolution devices like printers. This function uses
the line attributes, and thus allows you to draw rounded
rectangles out of dashed lines. We use different line types
in Listing 3.20 and the resulting Figure 3.34 to demon
strate how v _ r b o x () uses line attributes.

F i g u r e 3 . 3 4 : GDPRBOX.C Output: Concentric Rounded Rectangles

/* GDPRBOX.C - draw concentric rounded rectangles with v r b o x O */

^include "portab.h"
#define LINE TYPE MAX 6

- -
VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;

Virtual Device Interface—The VDI 219

WORD pxy[4], xincr, yincr, line_type;

line_type = 1;
xincr = swidth / 20;
y_incr = sheight / 20;
pxy[0] = dx;
pxy[l] = dy;
pxy[2] = dx+swidth;
pxy[3] = dy+sheight;
while(pxy[0] < pxy[2])
{

pxy[0] += xincr;
pxy[l] += y_incr;
pxy[2] -= xincr;
pxy[3] -= y_incr;

vsl_type(handle, line_type); /* use different linetypes */
v_rbox(handle, pxy); /* output rounded rectangle */

if(++line_type > LINE_TYPE_MAX)
line type = 1;

}
vsl type(handle, 1); /* reset to default */

}

L i s t i n g 3 . 2 0 : GDPRBOX.C: Concentric Rounded Rectangles

Drawing a Filled and Rounded Rectangle:
v_rf box()

Use the v _ r f b o x () function to draw a rounded rectangle
using the rectangle fill attributes. S e e Figure 3.35 for an
example of this functions use. Note that if you want to
draw a rounded, filled rectangle with a border thicker than
one pixel, your program could first call v _ r f b o x () to draw
the inside in the desired fashion, and then call v _ r b o x ()

after having set a thicker line width. Note also that we
have not included a listing with Figure 3.35 because the
program differs only in two lines from Listing 3.20.

The prototype for v _ r f b o x () is:

VOID v_rfbox(handle, xy_array)

WORD handle;

WORD xy_array[4];

F i g u r e 3 . 3 5 : Rounded Filled Rectangles

RASTER OPERATIONS

Raster operations work on groups of rasters or pixels
and are used for icon display, window scrolling and place
ment, movable cursors, and complex image manipula
tions. You may know of raster operations by the term
BITBLT, which we mentioned earlier and which stands for
BIT BLock Transfer.

The VDI raster operations are used to move blocks of
pixels from one part of the screen to another. These oper
ations can also move bit images between the screen and
your program's data area, so that your program can effi
ciently perform direct manipulation of the images.

These raster operations can be very complicated because
they offer a lot of function and because they try to be as

Virtual Device Interface—The VDI 221

device-independent a s possible. The trouble is that there
are so many different ways that pixels are displayed and
operated on that it is very inefficient to hide very much
detail. For example, vro__cpyf m () requires you to know how
many color planes exist on your display device if you
want to move bit blocks onto or off the screen. To make
it easier to write GEM programs, we might prefer to have
the memory allocated automatically when we move screen
images into our data area. This, however, would impose a
level of memory management that the GEM designers felt
was not acceptable for all GEM programs, and therefore
all of the memory management details are left up to you.

The solution that the GEM designers used to deal with
this inherent device diversity was to abstract a certain
level of detail and provide the device-specific information
in standard forms. To deal with bit images in a standard
way, the VDI has the function v r_ t rn fm() , which allows you
to transform the bit blocks from a standard, device-
independent format into an efficient device-dependent for
mat, and back again. This means that you can always
count on a standard pixel representation for complex
image manipulation while still enjoying the efficiency of
device-specific format. To deal with device-specific infor
mation, the VDI provides an inquire function that gives
you the information you need. (See the section called
"The Extended Inquire Function" later in this chapter for a
discussion of this function.)

How GEM Describes a Bit Block: MFDBs

To use the raster operations, you need a way to describe
blocks of bits. GEM uses a data structure called a memory
form definition block (MFDB) to describe a bit block. Most of
the VDI raster operations require a source MFDB and a des
tination MFDB. The MFDB either describes a portion of
memory called a raster area or specifies the physical device
(that is, the screen).

222 PROGRAMMER'S GUIDE TO GEM

Figure 3.36 contains a C structure definition for the
MFDB.

struct MFDB {

LONG mem_j>tr;

WORD form_width_pixels;

WORD form_height_pixels;

WORD form__width_words;

WORD is_standard__format;

WORD num__planes;

WORD reserved_l;

WORD reserved_2;

WORD reserved_3 ;

};

F i g u r e 3 . 3 6 : Memory Form Definition Block

mem_ptr is a long (32-bit) value that points to the start
of the raster area. The LONG type can represent an
address anywhere in the addressing space of the 8088 or
68000 architectures. (The structure of the raster area is
covered in more detail in the next section, "What the Ras
ter Area Looks Like.") If this value is NOLL (0), it means
that the VDI handle (passed into the function, along with
the MFDB pointer) specifies a physical device, and the
rest of the MFDB is ignored. Put another way, if mem_ptr
is NULL, your source or destination for the BITBLT is the
screen. If mem_ptr contains a non-NGLL value, on the

Virtual Device Interface—The VDl 223

other hand, the MFDB describes a raster area that is not
on the screen but is somewhere in addressable memory.

The form_width_pixels and form_height_pixels parameters
are the width and height of the memory area in pixels.
The width must be an integral multiple of 16 (the size of
a WORD), to allow for bit string alignment on byte boun
daries, and thus more efficient data movement. If you are
concerned about being limited to WORD-sized bit blocks,
take heart. The BITBLT operations vro_cpy fm() and vrt__
cpyfm() allow you to specify bit areas (rectangles) in any
resolution you choose.

form_width_words equals form_width_pixels divided by the
WORD size in bits (16) rounded up. Although this informa
tion may appear to be redundant, it has been included
because this data structure is also used in several internal
GEM functions to represent device-specific information that
may require extra padding words for raster area alignment.

is_standard_format should contain a nonzero value if the
raster area is in standard format (which we'll describe
shortly). This flag is reset (to 0) when you use the
vr_t rnfm() function to transform the raster area to device
specific format. Unfortunately, the VDI does not check this
flag before copying this area to the screen, so if you try
to BITBLT the raster area before you transform it to
device-dependent format, it usually looks strange (how
strange depends on your screen device). The reason that
the VDI won't transform the raster area while it copies is
that some devices have device-specific formats that are
very difficult to convert to standard format during a copy
operation (most notably the Atari ST). For performance
reasons, these devices require transforming from one ras
ter area into another before the copy can take place.
Since the VDI tries to minimize the amount of memory
management it needs to perform and since the designers
of the VDI didn't want the copy functions to fail unexpect
edly on different devices, they have left the transformation
up to you.

224 PROGRAMMER'S GUIDE TO GEM

Finally, the num_plcmes field is the number of planes of
color information. Monochrome raster areas only have one
plane, while raster areas that handle color information
have more than one.

What the Raster Area Looks Like

Let's assume that your MFDB points to a raster area
somewhere in memory. This raster area might contain an
icon that you've constructed, or it might contain a piece of
the screen that you've copied into the raster area. There are
two different formats that this raster area might be in.

The first format is device-dependent, and the ordering
and state of the bits depends on how your screen device
represents its images. The MFDB flag i s_ s t andard_format
contains 0.

The second format is a standard format. You can
manipulate it to suit the needs of your application. This
format consists of a set of bit planes (one for mono
chrome, several for color). Each bit plane is a number
(form__width_words) of words of bits for the first row of
pixels in the image, followed by the s ame number of bit
words for the second row of pixels, and so forth until
there are f o r m _ h e i g h t _ p i x e l s groups of words. In each word,
the most significant bit (MSB) corresponds to the leftmost
bit for that group of bits. The sequence of words that
make up one bit plane is immediately followed by the
sequence of words for next bit plane.

Color screens require multiple planes to represent color
components of individual pixels. Thus, to get the pixel
value of the pixel in the top-left corner of a raster area,
we collect the first bit in the first plane, and the first bit in
the second plane, and the first bit in the third plane, and
so forth.

The size of the raster area (in bits) for either device-
specific or standard formats equals

Virtual Device Interface—The VDI 225

form__width_pixels * form_height_pixels * num__planes

For a picture of the standard raster area format, see
Figure 3.37. The relationship of pixel values to color
values can be found in Table 3.14 for three-plane devices,
and Table 3.15 for four-plane devices.

Pixel Value

0 1 1 1

Most Significant Bit
Byte 0, Plane 0

^ > Plane 2

Plane 1

N * — Plane 0

F i g u r e 3 . 3 7 : Standard Raster Area Format

We will cover the following raster operations in this
section:

vro_cpyf m()

vrt_cpyf m()

vr_trnf m()

Copy Raster, Opaque
Copy Raster, Transparent
Transform Form

PROGRAMMER'S GUIDE TO GEM

Pixe l Va lue C o l o r I n d e x C o l o r

0 0 0 0 White

001 2 Red

0 1 0 3 Green

o n 6 Yellow

100 4 Blue

101 7 Magenta

110 5 Cyan

111 1 Black

Table 3 . 1 4 : Pixel Value-to-Color Mappings for Eight-Color, Three-Plane Screens

Copying a Raster Form (Opaque): vro_cpyfm()

Use the vro_cpyfm() function to move areas of the
screen from one part of the screen to another. This can be
useful when you want to scroll a screen area within a win
dow. It can help you to speed up the display part of your
program by allowing you to move part of the existing win
dow and to redraw the smaller portion.

This function can also be used to allow you to perform
complex manipulations of your image, such as inversion or
"flipping" of the image. For example, GEM PAINT uses
vro_cpyfm() to copy large parts of your picture between the
screen device and memory. It then transforms the image
into standard format with the vr_trnfm() function, and it
moves bits around to accomplish the manipulation. After the
manipulation, PAINT calls vr_trnfm() on the image and then
copies it back onto the screen device with vro_cpyfm() .

Call the Opaque Copy Raster Form function as follows:

VOID vro_cpyfm(handle, copy_logic, xy_array, psource__mfdb,

pdest_mfdb)

Virtual Device Interface—The VDI 227

WORD handle;

WORD copy jog ic ;

WORD xy_array[8];

AAFDB *psource_mfdb, *pdest_mfdb;

Pixe l Va lue C o l o r I n d e x C o l o r

0 0 0 0 0 White

0001 2 Red

0 0 1 0 3 Green

0011 6 Yellow

0 1 0 0 4 Blue

0101 7 Magenta

0 1 1 0 5 Cyan

0111 8 Low white

1000 9 Grey

1001 10 Dark red

1010 11 Dark green

1011 14 Dark yellow

1100 12 Dark blue

1101 15 Dark magenta

1110 13 Dark cyan

1111 1 Black

T a b l e 3 . 1 5 : Pixel Value-to-Color Mappings for Sixteen-Color, Four-Plane
Screens

B y the way, don't u s e this function to c o p y i cons a n d
s imi lar m o n o c h r o m a t i c i m a g e s o n t o your s c r e e n (the next
function we will d i s c u s s , vr t_cpyfm() , is u s e d for that). T h e
r e a s o n for this is that vro__cpyf m () d o e s not know how to

PROGRAMMER'S GUIDE TO GEM

map a single monochrome plane into a multiple plane
(color) raster area. The vro_cpyfm() function affects all the
planes of color information (via the c o p y j o g i c parameter,
a s we describe next), which means that if you want to
copy from the screen, you should make sure youve
accounted for all the planes of color when you calculate
your memory requirements. Your application can find out
how many color planes your screen supports by using the
Extended Inquire function, v q _ e x t e n d () . (As explained later
in the discussion of the Extended Inquire function, the
number of color planes is in work_out [4] .) The GEM DEMO
program in Chapter 5 contains a good example of using
v r o _ c p y f m () and v q _ e x t e n d () in this way.

The c o p y j o g i c parameter specifies one of 16 different
logical operations that can be performed on the bit planes
a s they get copied from source to destination. S e e Table
3.16 for the list of allowable values to this function. List
ing 3.21 and Figure 3.38 illustrate the effect of each logic
operation obtained by copying the simple "X" figure onto

CPVOPAQ

F i g u r e 3 . 3 8 : CPYOPAQ.C Output: Demonstrate vro_cpyfm() Operations

Virtual Device Interface—The VDI 229

a b a c k g r o u n d gr id . You s e e it here in b l a c k a n d white, but
it really g e t s tr icky in color, s i n c e the log ic o p e r a t i o n s a r e
h a n d l e d o n a p lane-by-plane b a s i s .

/* CPYOPAQ.C - illustrates different effects available in vrocpyfmO */

^include "portab.h"
#include "obdefs.h"

#define RIGHT 2
#define BOTTOM 3
#define SQUARE 0
#define ARROW 1

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

MFDB smfdb;
WORD pxy[8]j
WORD cur_x, cury, x_incr, yincr, ii, jj, wrmodej
BYTE letter[2];

xincr = swidth / 6;
yincr = sheight / 4;

pxy[0] = dx + 2*x_incr - 12;
pxy[l] = dy;
pxy[2] = dx+swidth;
pxy[3] = dy+sheight;
vsf_interior(handle, FISHATCH);
vsf_style(handle, 6);
vsf_color(handle, BLUE);
v_bar(handle, pxy);

letter[0] = '0';
letterfl] = 0;
vst_alignment(handle, RIGHT, BOTTOM, &ii, &ii);
cur_y = dy + yincr + 1;
for(ii=0; ii<4; ++ii)
{

c u r x = dx + 3*x_incr;
for(jj=0; jj<4;)
{

v_gtext(handle, c u r x , cury, letter);
cur_x += xincr;
if(*letter == f9')

^letter = 'A';
else (*letter)++;

}
cur_y += y_incr;

/* prepare backdrop area for exampls*/
/* using rightmost 2/3 screen */

/* label lower right corner of each */
/* destination area */

}

vsl_width(handle, 5);
vsl_ends(handle, ARROW, ARROW);
vsl_color(handle, RED);

/* draw big red x in uppr 1ft corner*/

/* color it RED */

230 PROGRAMMER'S GUIDE TO GEM

pxy[0] = dx+3; pxy[l]
pxy[2] = dx+x incr - 12; pxy[3]
v_pline(handle, 2, pxy);
pxy[0] = dx+x_incr - 12; pxy[l]
pxy[2] = dx+3; pxy[3]
v_pline(handle, 2, pxy) ;

cur_y = dy + 1}
wr_mode = 0;
s_mfdb.mp = OL;
pxy[0] = dx+3; pxy[l]
pxy[2] = dx+x_incr - 12; pxy[3]
for(ii=0? ii<4; ++ii) {

cur_x = dx+2*x_incr;
for(jj=0; jj<4; ++jj) {

pxy[4] = cur_x;
pxy[6] = cur_x+x_incr;
vro_cpyfm(handle, wrmode,
wr_mode++;
cur x += x incr;

}
cur y += y incr;

}
vsl_ends(handle, SQUARE, SQUARE);

= dy+3;

= dy+y_incr - 12;

= dy+3;
= dy+y_incr - 12;

/* copy big X onto backdrop area */
/* in every writing mode there is */
/* Screen MFDB points to phys dev */

= dy+3;
= dy+y_incr - 12;

pxy[5] = cur_yj
pxy[7] = cur_y+y_incr;
pxy, &s_mfdb, &s_mfdb);

L i s t i n g 3 . 2 1 : CPYOPAQ.C: Demonstrate vro_cpyfm() Operations

Table 3.16 illustrates the extensive variety of these
functions. Most GEM applications will use only a few of
these operations with vro_cpy fm() , and we have described
the more useful operations in a terminology consistent
with our earlier discussion of writing modes.

You specify the source and destination rectangles within
the areas specified by the MFDBs by using the xy_array: the
first two vertices (xy_array[0-3]) specify the (X,Y) coordinates
of opposite diagonal corners of the source rectangle, and
the next two vertices (xy_array[4-7]) specify the destination
rectangle. The width of the rectangles does not have to be a
multiple of the WORD size (as does the MFDB parameter
form__width_pixels).

Don't forget: to make an MFDB point to the screen
device, set the mem_pt r field to NULL (0).

Now that weve outlined the major features of this
function, what about the fine print? If your rectangles

Virtual Device Interface—The VDI 231

M o d e Def in i t ion

0 D' = 0 (clears destination)

1 D' = S AND D

2 D' = S AND [NOT D]

3 D' = S (replace mode)

4 D' = [NOT S] AND D (erase mode)

5 D' = D

6 D' = S XOR D (xor mode)

7 D' = S OR D (transparent mode)

8 D' = NOT [S AND D]

9 D' = NOT [S XOR D]

10 D' = NOT D

11 D* = S OR [NOT D]

12 D' = NOT S

13 D' = [NOT S] OR D (reverse transparent mode)

14 D' = NOT [S AND D]

15 D' as 1

S = Source Pixel, D = Destination Pixel, D' = New Destination Pixel

T a b l e 3 . 1 6 : copyjlogic Values for vro_cpyfm()

overlap, the VDI does the right thing: it copies either
from the beginning of the rectangles or from the end so
that the source image is preserved. If the source and des
tination rectangles aren't the s ame size, you will probably
be okay on the Intel machines, as the size of the source
rectangle is used. On the Atari ST, however, you will find
unpredictable results.

PROGRAMMER'S GUIDE TO GEM

Copying a Raster Form (Transparent):
vrt_cpyfm()

Compared to vro_cpyfm() , the vr t_cpyfm() function is
really easy. You should use this function only to copy
monochrome (single plane) images, such as icons, onto
color planes, such as screens. You should use the
v r o _ c p y f m () function to move rectangular areas from or
around the screen. Call the function a s follows:

VOID vrt_cpyfm(handle, writing__mode, xy_array, psource_mfdb,

pdest_mfdb, color__index)

WORD handle;

WORD writing_mode;

WORD xy__array[8];

MFDB *psource_mfdb, *pdest_mfdb;

WORD color_index;

This function is different from many of the rest of the
VDI functions because you specify the writing mode and
pixel color all in one function call. For other groups of VDI
operations (for example, displaying polymarkers), the VDI
provides separate functions to set these attributes. The
vrt_cpyfm() function rolls it all into one function.

The w r i t i n g _ m o d e parameter is just like the Set Writing
Mode function, v s w r _ m o d e () , discussed earlier in this chap
ter, in that it uses the s ame four writing modes . The
c o l o r j n d e x specifies the foreground color, that is, the color
that each 1 bit in the source image takes in the destina
tion image (see Table 3.4).

Transforming a Form: vr_trnfm()

Earlier in this discussion of VDI raster operations, we
pointed out the differences between device-specific format

Virtual Device Interface—The VDI 233

and standard format for bit images. The v r_ t rnfm() func
tion is used to convert back and forth between these two
formats. Most applications that don't do complicated
image transformations only use v r_ t rn fm() in the initializa
tion stage to convert icon images from standard to device-
specific form.

The procedure prototype for v r_ t rnfm() looks like:

VOID vr__trnfm(handle, psource__mfdb, pdest__mfdb)

WORD handle;

MFDB *psource_mfdb, *pdest__mfdb;

We need to warn you about doing transforms in-
place—that is, calling vr_trnfm() with psource__mfdb equal to
p d e s t _ m f d b . This technique is safe for small raster areas
(like icons), but some machines (most notably the Atari
ST) are very slow when you transform areas that are sig
nificant in size. The reason for this slowness is simply that
the color information in these systems is stored in a way
that makes it exceedingly difficult to do in-place trans
forms. You can work around this problem by transforming
from one raster area to another, which does, however,
require more memory than an in-place transform.

Examples of Raster Operations

Here are a couple of examples demonstrating raster
operations. Figure 3.39 displays an expanded graphic rep
resentation of the bit image used in Listing 3.22 and List
ing 3.23. Listing 3.22 displays this bit image in the middle
of the screen, which is shown in Figure 3.40.

Next, Listing 3.23 does some simple animation using
vr t_cpyfm() and three related versions of the bit image.
This program shows the effects of different writing modes,
namely replace mode and XOR mode, in Figure 3 .41. Two
copies of the small bit image start out on the left edge of

MSB Word 0

F i g u r e 3 . 3 9 : Expanded View of Bit Image

F i g u r e 3 . 4 0 : CPYTRAN1.C Output: Display Typical Bug with
vrt__cpyfm()

the s c r e e n . T h e p r o g r a m then c o p i e s re la ted i m a g e s o n
t o p of e a c h p r e v i o u s i m a g e (for a total of three different
i m a g e s) to g ive the v i sual effect of tiny m o v i n g l e g s to the

Virtual Device Interface—The VDI 235

/* CPYTRAN1.C - display a bit image on the screen */

^include "portab.h"
^include "obdefs.h"
^include "machine.h"

^define ImageBytes 2 /* # bytes in raster area */
#define ImageRows 10 /* # rows in raster area */
#define ImageBitWidth 11 /* # significant bits */
WORD image[l0] = { 0x9200,0xA900,0x2480,0x3f80,0x7fd0,

0x7fd0,0x3f80,0x2480,0x4900,0x9200 };

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

MFDB img m, scrm;
WORD px yr8], colors[2];

imgjn.mp = ADDR(image);
imgm.fwp = ImageBytes«3;
img_m.fh = ImageRows;
img_m,fww = ImageBytes»l ;
img_m.ff = 1;
imgjn.np = 1;
img_m.rl = img_m.r2 = img_m.r3

/* point to image */
/* 32 pixels wide */
/* 10 pixels high */
/* 2 words wide */
/* standard format */
/* only one plane */

: 0; /* reserved info */

scrjn.mp = 0L; /* Screen MFDB points to phys. dev. */

colors[0] = 1; colorstl] = 0; /* Black and White */

vr_trnfm(handle, &img_m, &img_m); /* in place transform */

pxy[0] = 0; /* source 'location1: only size is */
pxy[l] = 0; /* important because bit image is */
pxy[2] = pxy[0] + ImageBitWidth -1; /* off of the screen */
pxy[3] = pxy[l] • ImageRows - 1;
pxy[4] = dx+swidth/2; f* destination on screen */
pxy[5] = dy+sheight/2;
pxy[6] = pxy[4] + ImageBitWidth;
pxy[7] = pxy[5] + ImageRows;
vrt_cpyfm(handle, MDREPLACE, pxy, &img_m, &scr_m, colors); /* BITBLT */

L i s t i n g 3 . 2 2 : CPYTRAN1.C: Display Bug with vrt_cpyfm()

image of the bug. The copying location is then moved
one pixel to the right and the process is repeated, until
the image has "crawled" half way across the screen.

In the XOR mode, each image is copied twice so that
the effect of undoing the display is illustrated. As you can
see in the figure, the replace mode bug has left a broad
track across the carpet, whereas the track of the XOR bug
is invisible.

PROGRAMMER'S GUIDE TO GEM

€This line uses REPLACE MODE

«This line uses XOR MODE

F i g u r e 3 . 4 1 : CPYTRAN2.C Output: Demonstrate Replace and XOR Copy

/* CPYTRAN2.C - display two moving bit images on the screen */

^include "portab.h"
^include "obdefs.h"
#include "machine.h"

#define LEFT 0
#define TOP 5

#define ImageBytes 2
#define ImageRows 10
#define ImageBitWidth 11

/* # bytes in raster area */
/* # rows in raster area */
/* # significant bits */

WORD image1[10] = {

WORD image2[l0] = {

WORD image3[l0] = {

0x9200,0x4900,0x2480,0x3f80,0x7fd0,
0x7fd0,0x3f80,0x2480,0x4900,0x9200 };
0x2480,0x2480,0x2480,0x3f80,0x7fdO,
0x7fdO,0x3f80,0x2480,0x2480,0x2480 };
0x0920,0x1240,0x2480,0x3f80,0x7fdO,
0x7fd0,0x3f80,0x2480,0x1240,0x0920 };

VOID draw_rc(handle, dx, dy, swidth, sheight)
WORD handle, dx, dy, swidth, sheight;
{

MFDB img_m[3], scrm;
WORD ii, curx, cury, y_incr, pxy[8], colors[2j;

y_incr = sheight / 3;
cury = dy + yincr;
vst_alignment(handle, LEFT, TOP, &ii, &ii)*

/* label different writing modes */

Virtual Device Interface—The VDI 237

v_gtext(handle, dx+swidth/2, cury, "This line uses REPLACE MODE");
v_gtext(handle, dx+swidth/2, cury+yincr, "This line uses XOR MODE");

pxy[0] = dx+swidth/20; /* display backdrop to march thru */
pxy[l] = dy+sheight/10;
pxy[2] = dx+(swidth/2)-(swidth/20);
pxy[3] = dy+sheight-(sheight/10)j
vsf_color(handle, BLACK);
vsf_interior(handle, FISPATTERN);
vsf_style(handle, 3);
v_rfbox(handle, pxy);

/* initialize MFDBs */
img_m[0].mp = ADDR(image1); /* point to imagel */
img_m[l].mp = ADDR(image2); /* point to image2 */
img_m[2].mp = ADDR(image3); /* point to image3 */
for(ii=0; ii<3; ++ii)
{

img_m[ii].fwp = ImageBytes«3; /•* 32 pixels wide */
img_m[ii].fh = ImageRows; t* 10 pixels high */
img_m[ii].fww = ImageBytes»l ; /* 2 words wide */
img_m[ii].ff = 1 ; f* standard fmt (needs transform) */
img_m[ii].np = 1 ; /* only one plane */
img_m[ii].rl = img_m[ii].r2 = img_m[ii].r3 = 0; /* reserved info */

vr_trnfm(handle, &img_m[ii], &img_m[ii]); /* in place transform */

scr_m.mp = 0L; /* Screen MFDB points to phys. dev. */

colors[0] = BLACK; colorstl] = WHITE;

pxy[0] = 0; /* source 'location': only size is */
pxy[l] = 0 ; /* important because bit image is */
pxy[2] = pxy[0] + ImageBitWidth -1; /* off of the screen */
pxy[3] = pxy[l] + ImageRows - 1;

for(cur x = dx; cur x < (dx+swidth/2) - ImageBitWidth; ++cur_x)
{

pxy[4] = cur x;
pxy[6] = pxylU] + ImageBitWidth;
for(ii=0; ii<3; ++ii)
{

pxy[5] = cur y + yincr;
pxy[7] = pxyr5] + ImageRows;
vrt cpyfm(handle, MDXOR, pxy, &img_m[ii], &scr_m, colors);
pxyf5] = cur y;
pxy[7] = pxyr5] + ImageRows;
vrt cpyfm(handle, MDREPLACE, pxy, &img_m[ii], &scr_m, colors);
pxyF5] = cur y + yincr;
pxy[7] = pxyT5] + ImageRows;
vrt cpyfm(handle, MD XOR, pxy, &img m[ii], &scr m, colors);

}
}
/* display one last time to leave image on screen */
vrt_cpyfm(handle, MDXOR, pxy, &img_m[2], &scr_m, colors);

L i s t i n g 3 . 2 3 : CPYTRAN2.C: Demonstrate REPLACE/XOR Copy

PROGRAMMER'S GUIDE TO GEM

THE EXTENDED INQUIRE
FUNCTION

This section contains only one topic: namely, the
Extended Inquire function, vq_ex tend() . This function doesn't
fit very well with any of the other sections in this chapter,
but it was too important to leave out. We have left out
many other VDI functions in order to focus on the most
useful. The main reason we have included v q _ e x t e n d () is to
show you where to find the number of color planes.

The procedure prototype looks like this:

VOID vq_extend(handle, info_type, work_out)

WORD handle;

WORD info_type;

WORD work_out[57];

Use v q _ e x t e n d () with info_type set to 0 to get the same
values that were available when you opened the workstation
with v_opnwk() or v_opnvwk() (see Table 3.3). If you have set
info_type to a nonzero value, v q _ e x t e n d () will return the
extended device-specific information, shown in Table 3.17.
Note that some of these values (for example, work_out[5])
only make sense with VDI functions we have not covered.
See the DRI Developer's Kit for more information.

w o r k out[] V a l u e D e s c r i p t i o n

work_out[0] Screen Type: 0—Not a screen.

1—Separate alpha and
graphic screens.

2—Separate alpha and
graphic controllers
with c o m m o n screen,

Virtual Device Interface—The VDI 239

w o r k out[] V a l u e D e s c r i p t i o n

3—Common alpha and
graphic controller with
separate image
memory.

4—Common alpha and
graphic controller with
common image
memory.

work__out[l] Number background colors in color
palette.

work_out[2] Which text effects are supported.

work_out[3] 0 = scaling not possible, 1 = scaling
possible.

work_out[4] Number of color planes.

work_out[5] 0 = lookup table supported, 1 = not
supported.

work_out[6] Performance factor: number of 16 x 16
pixel raster operations per second.

work__out[7] Contour fill capability.

work__out[8] Character rotation capability: 0 = none,
1 = 90 degree increments only, 2 =
arbitrary angles.

work_out[9] Number of writing m o d e s available.

work_out[10] Highest level of input m o d e available.

work__out[ll] Text alignment capability: 0 = no,
1 = yes.

work_out[12] Inking capability flag.

work_out[13] Rubberbanding capability flag.

work_out[14] Maximum vertices for polyline, poly
marker, or filled area: -1 = no max.

T a b l e 3 . 1 7 : Extended Inquire Information (continued)

PROGRAMMER'S GUIDE TO GEM

w o r k _ o u t [] V a l u e D e s c r i p t i o n

work__out[15] Maximum size for intin[]: -1 = no max.

work_put[16] Number of keys on the mouse .

work_out[17] Line styles available for wide lines: 0 =
no, 1 = yes.

work_out[18] Writing Modes for wide lines.

work_put[19-57] Contains zeros.

T a b l e 3 . 1 7 : Extended Inquire Information

SUMMING UP

In this chapter we have discussed the VDI functions
you can use to produce quality graphic images from your
GEM programs. We have grouped together functions by
the type of graphical object they deal with: control func
tions, markers, lines, text, rectangles, generalized drawing
primitives, and raster operations. We have provided
examples of what these functions produce and the code
required to produce them.

In this chapter we have also presented two small driver
routines (e x a m p r c . c and e x a m p n d c . c) that call the small
example routines displayed throughout the chapter. We
heartily recommend that you use these routines and cre
ate your own small VDI examples, or experiment with
those we have provided, in order to fully appreciate the
power of the VDI. In Chapters 4 and 5 , we present specific
examples of small GEM applications that use s o m e of
these VDI functions (primarily text and raster operations).

" i

244 PROGRAMMER'S GUIDE TO GEM

THE STRUCTURE A N D SIZE OF GEM HELLO 246

HELLO HIGH-LEVEL ENTRY POINT 248

HELLO EVENT HANDLER 249

HELLO MESSAGE HANDLER 251

HELLO INITIALIZATION A N D TERMINATION 255

HELLO DISPLAY ROUTINES 264

GENERAL-PURPOSE ROUTINES 268

S U M M I N G UP 269

245

/

n this chapter we look at one of the simpler
programs that run under GEM—a program
called HELLO. The GEM HELLO program is
designed to open a window, display the words

"Hello World" in the window, and allow the user to either
move the window around the screen or to close the win
dow, in which case the program exits. S e e Figure 4.1 for
a picture of HELLO in action.

F i g u r e 4 . 1 : HELLO Appäcation During Execution

The main purpose of this chapter is to demonstrate the
fundamental concepts involved in writing a GEM applica
tion that uses windows. We've divided up the HELLO pro
gram into several sections, so that we can talk about each
section separately. All of these separate pieces are grouped
together into a single compiled module using the C prepro
cessor command, #include. We have used the ".CI" file
extension in the name of any C include files containing
source code. We have also used certain header files from
the GEM Developers Kit, identified with the ".H" file exten
sion. These files contain a number of macro definitions of

246 PROGRAMMER'S GUIDE TO GEM

constants (also known as magic numbers) that GEM uses to
specify the behavior of certain functions. We have used all
uppercase letters to emphasize that these are constants.

THE STRUCTURE AND SIZE
OF GEM HELLO

Before we discuss the specific parts of HELLO, how
ever, we'd like to say a few words about the overall struc
ture and size of the program. Our version of HELLO has
been changed slightly from the version provided by DRI in
the Developer's Kit. In order to make our HELLO as
simple a s possible, we have removed s o m e of the com
plexity of DRI's HELLO—specifically, the conditionally
compiled code to make HELLO a desk accessory. Several
topics relevant to HELLO are covered in Chapter 6, in
cluding the A E S and VDI bindings, and the start-up and
support routines that are written in assembler.

The general structure of the GEM HELLO application is
similar to the structure of the GEM DEMO application in
Chapter 5. The HELLO program contains a main entry
point that calls an initialization routine, the main applica
tion code, and a termination routine. The main application
code consists primarily of a single loop that waits for
events and delegates these events to the appropriate han
dling routine. The only events that HELLO waits for are
mes sage s from the Screen Manager. Thus, the only event-
handling routine in HELLO is a message-handling routine.
Finally, GEM HELLO contains code to actually display the
message , along with s o m e general-purpose routines.

The GEM HELLO program is based upon a simple pro
gram presented in the classic Kernighan and Ritchie text,

GEM Sample Program: HELLO 247

The C Programming Language Their HELLO.C program has
become a standard benchmark used to measure the over
head of a simple prints) statement on Unix and DOS C
compilers. Here is the entire benchmark HELLO program:

main()

pr intf fhel lo, wor ld\n") ;

}

The GEM HELLO program is quite a bit longer than
this for several reasons, one of which is that it does more
than simply print a line of text. In effect, GEM HELLO
must be able to display its mes sage over and over again,
so that the user may move the mes sage window around
the screen. The benchmark HELLO program only writes
its mes sage once to the screen, and then terminates.

Another reason for the size and complexity of GEM
HELLO is that GEM was designed to facilitate writing appli
cations that work on many different kinds of machines. This
means working with different byte orderings and pointer
sizes, as well as working on the smallest machines possible.
The original GEM developers felt that the overhead of stan
dard C run-time library support should be eliminated when
ever possible. Thus, GEM HELLO doesn't use any of the
standard C run-time functions (printf(), for example).

The novice programmer may be surprised by the size
of the executable file of the benchmark HELLO program
when it runs on DOS. This is because the printf() routine
calls in many other run-time library routines to give the
programmer as much flexibility a s possible. Depending on
which C compiler you use, the final executable files for
the DOS HELLO program and the GEM HELLO program
can be very similar in size.

PROGRAMMER'S GUIDE TO GEM

HELLO HIGH-LEVEL ENTRY POINT

Now that weve presented the overall structure and pur
pose of the program, we're ready to examine GEM HELLO
piece-by-piece. The first piece we'll study is the main high-
level entry point routine, called GEAAAIN(), which is shown
in Listing 4 .1 . Standard C compilers use a routine called
main() to be the entry point of the program. HELLO uses
another name because we want to ensure that we are not
running with the standard run-time library of our C com
piler, along with its associated overhead.

1 /*
2 ** File: hmain.ci
3 ** Purpose: Provides high level entry point for application.
4 */
5
6 VOID
7 GEMAINO

9 WORD init_level; /* Level of successful init */
10
11 init_level = hello_init(); /* How successful was init? */
12 if (init level == 2) /* 2 == completely successful */
13 helloO; /* Main loop */
14 hello term(init level); /* Terminate appropriate inits */
15 }

L i s t i n g 4 . 1 : HELLO Entry Point

The variable in i t jevel , which is returned by hello_init(),
refers to the amount of initialization completed. As we
shall see when we examine the hello__init() routine, the ini
tialization of a GEM program can fail in several places.
For example, the initialization routine may fail when it
tries to open a window. Although this is unlikely in the
current single-tasking versions of GEM, it may be more
likely in future multitasking versions. The technique

GEM Sample Program: HELLO 249

illustrated here allows the hello_term() routine to know how
much of the initialization process was performed so that it
won't try, for instance, to close a window that was never
opened.

If hello_init() returns a value of 2, the initialization pro
cess succeeded, in which case the main body of code in
the hel|o() routine is called.

HELLO EVENT HANDLER

The main loop in the HELLO application is the event
handler in the hello() routine shown in Listing 4.2. In this
routine, the program waits only for a mes sage event and
turns the event over to a message handler. This loop con
tinues until the mes sage is decoded to mean that the user
wants to terminate the program.

This routine illustrates a couple of important concepts

1 /*
2 ** File: hevent.ci
3 ** Purpose: Application's main loop; handle events.
4 */
5
6
7 VOID
8 helloO
9 {

10 BOOLEAN done;
11
12 done = FALSE; /* loop handling user */
13 while(Idone) /* input until done */
14 {
15 evntmesag(ADDR((BYTE *) glrmsg));/* wait for message */
16 windupdate(BEGUPDATE); /* begin window update */
17 done = hndl_mesag(){ /* handle event message*/
18 wind update(END UPDATE); /* end window update */
19 } 20 }

L i s t i n g 4 . 2 : HELLO Event Handler

PROGRAMMER'S GUIDE TO GEM

covered in Chapter 2. First, note that the program waits
(or blocks) on the call to the e v n t _ m e s a g () routine, which
means that the instructions following the routine are not
executed until after the mes sage is received. This blocking
is far more efficient than a polling method.

Second, remember that when HELLO calls the
w i n d _ u p d a t e () routine, GEM locks out any other screen
update operations until HELLO releases the screen
resource. This synchronization method prevents the inter
ruption of graphics operations that may depend on an
uninterrupted series of commands to the VDI. When the
call signalling the beginning of an update region is made,
the A E S checks to see if any other task has also signalled
that it is updating the screen. If the update has already
been reserved by another task (for example, by a desk
accessory or one of the A E S services), the call does not
return until the other task completes its use of the screen
and signals an end to the update region. When the appli
cation's turn has come to update the screen, the A E S
locks out any other w i n d _ u p d a t e () request until the applica
tion has signalled that it has completed its VDI operations.

There are a couple of important things to remember
about using update regions. First, if the application forgets
the wind_update(BEG_UPDATE) call, it may seem to work cor
rectly when it is running by itself. If it is working with
other GEM tasks such a s desk accessories, however, your
program may display unpredictable results if another task
is also writing to the screen.

Second, if your application returns to the event handler
without signalling wind_update(END_UPDATE), the A E S may
behave abnormally and be unable to function properly
because it will not be able to write to the screen. One of
the symptoms of the update region not being terminated
is that you can move the mouse around but none of the
window controls seem to work. The reason is that the
Screen Manager is blocked, waiting to update the screen.

GEM Sample Program: HELLO 251

This can happen when you are debugging your program
and the program terminates while in the middle of the
update region.

Another important detail about this function is that it
illustrates one of the main requirements for writing port
able GEM programs. Specifically, most A E S functions
require that any pointers to strings (or, in this case, to the
mes sage return buffer) be LONG values. Thus, the ADDR
routine is used to convert a pointer ((BYTE *) gl_rmsg) to a
LONG value. Briefly, the reason for this is that GEM A E S
functions deal with data anywhere in the machine, which
requires a 32-bit pointer for the 8086 architecture used by
the IBM PC. The whole concept of passing in LONG
values into GEM A E S bindings is very important and a
little tricky. This concept is covered in more detail in
Chapter 6.

HELLO MESSAGE HANDLER

Listing 4.3 contains the instructions that decode the
received message . Note that HELLO is only interested in a
small number of mes sages sent from the Screen Manager;
it ignores any other messages . The Screen Manager has
many more mes sages that it is capable of sending to an
application. The kinds of mes sages sent to an application
depend on what window features the application uses. We
will describe the window features used by HELLO in a
moment. Now we will discuss the mes sages that HELLO
expects to handle.

2 ** File: hmessag.ci
3 ** Purpose: Handles all messages sent to application from AES.
4 */

PROGRAMMER'S GUIDE TO GEM

6 BOOLEAN
7 hndlmesagO /* Returns TRUE if message indicates */
8 { /* user is finished (closes window).*/
9 BOOLEAN done;
10 WORD wdwhndl;
11
12 done = FALSE;
13 wdw_hndl = gl_rmsg[3]; /* wdw handle of mesag */
14 switch(gl rmsg[0]) /* switch on type msg */
15 {
16
17 case WMREDRAW: /* do redraw wdw contnt*/
18 if (wdw_hndl == appl_whndl)
19 do_redraw ((GRECT *) &gl_rmsg[4]);
20 break;
21
22 case WM_TOPPED: /* do window topped */
23 wind_set(wdw_hndl, WFTOP, 0, 0, 0, 0) ;
24 break;
25
26 case WMCLOSED: /* do window closed */
27 wind_close(appl_whndl);
28 done = TRUE;
29 break;
30
31 case WMMOVED: /* do window move */
32 wind_set(wdw_hndl, WF_CXYWH, gl_rmsg[4], gl_rmsg[5],
33 gl_rmsg[6], gl_rmsg[7]);
34 wind_get(appl_whndl, WF_WXYWH,
35 &work_area.g_x, &work_area.g_y,
36 &work_area.g_w, &work_area.g_h);
37 break;
38
39 default: /* ignore any other messages*/
40 break;
41 } /* switch */
42 return(done);
43 }

L i s t i n g 4 . 3 : HELLO Message Handler

The Window Redraw Message

WM_REDRAW is a mes sage that any GEM application
with windows must be prepared to handle. This mes sage
is sent to the application whenever the A E S discovers that
the contents of a window have changed. Since the pro
gram must always be able to redisplay its output, you
probably need to spend a lot of time carefully designing

GEM Sample Program: HELLO 253

this part of your program. We discuss the d o _ r e d r a w () rou
tine later in this chapter in the section on "HELLO Display
Routines."

While we're talking about the WAA_REDRAW message , it
might be useful to understand when GEM will ask your
program to redraw its display. GEM tries to minimize the
redraw requests to your application because it a s sumes
that your program takes a relatively long time to redraw
the display. When the user moves the window, GEM tries
first to BITBLT (block transfer) the window image from
one part of the screen to the new part of the screen. This
is possible when the image moves to the right or down
ward, and when part of the image gets chopped off on the
right or bottom edges of the screen. However, when the
image moves onto the screen from a position that is off
the screen, GEM must send the redraw message to redraw
the part of the window that was off the edge.

GEM also has a save buffer that it uses with the menus
and alerts. When an alert pops up on the screen, GEM
saves the screen area under the alert first. When the alert
is finished, this screen area is restored from the save
buffer. This allows GEM to avoid sending the redraw mes
sage . Due to memory constraints, however, the size of the
save buffer is limited to one quarter of the entire screen
area. This means that any pull-down menus must be
smaller than one quarter of the area of the screen.

When a window is opened with the w i n d _ o p e n () call, or
when all or part of a window reappears from underneath
another window (which happens when the top window is
closed or moved away), GEM sends the redraw message .
Somet imes an application sends a redraw message to
itself using the A E S a p p l _ w r i t e () function, in order to
update a window that has changed. Since the program
must handle redraw requests from GEM, it may be sim
pler to send a mes sage than to call the application's
redraw routine directly.

254 PROGRAMMER'S GUIDE TO GEM

Window Control Messages

The other two messages , WAA_CLOSED and WMJWDVED,
are sent when the user interacts with the window control
points. HELLO specifies two window control points: a
CLOSER and a MOVER.

The CLOSER control point allows the user to click on a
part of the window to signal that the window is to be
closed. When the user moves the cursor onto the CLOSER
control point and presses the button, the Screen Manager
inverts (turns the white to black, and vice versa) the con
trol point to signal to the user exactly what is being
requested. If the user moves the cursor before releasing
the button, the Screen Manager returns the control point
to its original image and the HELLO application never
knows that anything happened. Only when the user
presses and releases the button while the cursor rests on
the control point will the Screen Manager send the
WM_CLOSED mes sage to the application.

For HELLO, closing the window means that the user
wants to terminate the program. The w i n d _ c l o s e () routine
removes the window and its contents from the screen.
Later, in the termination code, the window is deleted. To
signal an end to the program, the d o n e flag is set and
later returned to the caller of the h n d l _ m e s a g () routine.

The MOVER control point allows the user to click-drag
on the title bar of the window to move the window to
another portion of the screen. The user moves the cursor
to the title bar of the window, presses the button, and
then moves the cursor to where she wants the window
and releases the button. The Screen Manager handles the
visual feedback of a window outline moving with the cur
sor. Since the window outline follows the cursor around
the screen, the user gets the (intentional) impression that
she is dragging the box around the screen (hence the
term "click-drag"). The Screen Manager handles all of the

GEM Sample Program: HELLO 255

visual feedback, and only sends the WM_MOVED mes sage
when the user releases the button.

The w i n d _ $ e t () call tells GEM that the application wants
to move the window. GEM does not move the window
until the application has told it to with this call. Once the
window has been moved, the w i n d _ g e t () call gets the new
work area values. This call is much easier than having the
program recalculate the position of the new work area, as
GEM knows how big the windows borders are and the
application does not.

TWO DIFFERENT KINDS OF WINDOW COORDINATES

One of the tricky aspects about working with windows is distinguishing
between the outside coordinates of the window (WFJCXYWH) and the
inside coordinates (the working area, WF^WXYWH,). The outside coordi
nates are generally used to position the entire window on the screen. The
inside coordinates are used to set clipping rectangles during display.

HELLO INITIALIZATION
AND TERMINATION

We've examined events and messages , and weve men
tioned that the way in which the windows are created
determines what mes sages the application should be pre
pared to handle. In this section, we will be looking at the
initialization routine itself. Understanding this routine
reveals a great deal about how the application meshes
with the GEM environment.

PROGRAMMER'S GUIDE TO GEM

Because they are so closely interrelated, the global vari
ables, definitions, initialization, and termination routines are
all grouped together in Listing 4.4. The hello_jnit() and hel-
lo_term() routines work together to initialize and clean up the
GEM environment in a coordinated fashion. The coordina
tion is provided via the return value of hel lojni t () and input
parameter of hello_term() (see the init jevel variable in
GEMAIN()).

/************************************^^^
/* File: hello.c */
/***/
/*
/*
/*

*/
The source code contained in this listing is a non-copyrighted */
work which can be freely used. In applications of this source
code you are requested to acknowledge Digital Research, Inc. as
the originator of this code.

Author: Tom Rolander
PRODUCT: GEM Sample Desk Top Accessory
Module: HELLO
Version: November 15, 1985
Mods by: Bill Fitler

*/
* /
*/
*/
*/
*/
* /
*/
*/
* /

1
2
3
4
5
6
7 /*
8 /*
9 /*
10 /*
11 /*
12 /*
13 /*
14 /*
15 /*
16 /*******************#**#*****
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#include "portab.h"
^include "machine.h"
#include "obdefs.h"
#include "gembind.h"

#if 000
#include "tgembind.h"
#include "tvdibind.h"
#endif

#include "hdefines. ci"
^include "hdecls.ci"

^include "hlocal.ci"
#include "hdisplay.ci"
^include "hmessag.ci"

/* GEM Toolkit standard include files *
/********************^
/* Portable coding conventions *
/* Machine dependent conventions *
/* Object definitions *
/* GEM magic numbers *
/***************
/* Prototype function declarations *.
/ * * * * * * * * * * * * * * * * * * v.- * * v.- * * * * * * * * * * * * * * *

/* Tiny GEM bindings prototypes *
/* Tiny VDI bindings prototypes *

I **** * * * * * * * * * * * * * * * .< * * * * * * * * * * * * * * * * * * *
/* Appl's definitions & declarations *
/ * - v * * v.- * * * * * * * * * * * * *

/* Application specific magic numbers *
/* Application's global variables *
J * * * * * * * * * -,V * * * * * * * * * * * * * * -A- * * * * * * * * * * * *

/* Application's main code *
/ * * * * * * * * * V f * * * * * * * * * * * * * * * * * « V * * * * * * * * * * *

/* Application support routines *
/* Application display routines *
/* Application message handling *

GEM Sample Program: HELLO 257

45 #include "hevent.ci"
46 ^include "hinit.ci"
47 #include "hterm.ci"
48 #include "hmain.ci"
49

/* Application event handling */
/* Application initialization routine */
/* Application termination routine */
/* Application entry point */

1 /*
2 ** File: hdecls.ci
3 ** Purpose: Provides global variables for application.
4
5

*/

6 WORD glwchar; /* character width */
7 WORD gl hchar; /* character height */
8 WORD gl wbox; /* box (cell) width */
9 WORD gl hbox; /* box (cell) height */
10 WORD gem handle; /* GEM vdi handle */
11 WORD vdi handle; /* hello vdi handle */
12 GRECT work area; /* current window work area */
13 WORD gl rmsg[8]; /* message buffer */
14 WORD gl xfull; /* full window 'x' */
15 WORD glyfull; /* full window *y' */
16 WORD gl wfull; /* full window 'w' width */
17 WORD glhfull; /* full window 'h' height */
18 WORD appl whndl = 0 ; /* hello window handle */
19 WORD type size; /* system font cell size */
20 #define MESS NLINES 2 /* maximum lines in message */
21 #define MESSWIDTH 7 /* maximum width of message */
22 BYTE *message[] = /* message for window */
23 {
24 " Hello
25 " World
26
0 7

0 /* null pointer terminates : Lnpt*/
/ /

28 5 i
BYTE

wdw_title = ""; / blank window title */

/*
** File: hdefines.ci
** Purpose: Provide meaningful symbols for magic numbers. Note
** that 'gembind.h' provides these symbols for most AES
** specific values.
*/

^define ARROW 0
#define HOUR GLASS 2

#define DESK

#define END_UPDATE 0
#define BEG UPDATE 1

#define V O V W I N S I Z E 11
#define V OVW OUT SIZE 57

/* 1graf_mouse()' mouse shape equates */

/* handle of Desktop */

/* 'wind_update()1 state values */

/* 1v_openvwk()' paramater array sizes */

#define W FEATURES
/* application uses these window features */

(NAME+CLOSER+MOVER)

PROGRAMMER'S GUIDE TO GEM

1 /*
2 ** File: hinit.ci
3 ** Purpose: Initialize application and its environment.
4 */
5
6 WORD
7 helloinitO /* Returns number of successful*/
8 { /* init operations: max==2 */
9 WORD ii;
10 WORD work_in[V_OVW_IN_SIZE]; /* Input values for v_opnvwk() */
11 WORD work_out[V_OVW_OUT_SIZE];/* Return val for v_opnvwk() */
12 GRECT box;
13
14 if(applinitO == -1) /* Initialize AES libraries */
15 return 0; /* Return initlevel 0 if fail */
16
17 for (ii=0; ii<10; ii++) /* 'vopnvwkO' input parms */
18 work_in[ii] = 1 ; /* Use default values */
19 work_in[l0] = 2; /* Use Raster Coordinates */
20 gemhandle = grafhandleC&glwchar,&gl_hchar,&gl_wbox,&gl_hbox);
21 vdihandle = gemhandle;
22 v_opnvwk(work_in,&vdi_handle,work_out); /* open virtual workstn*/
23 type_size = work_out[48]; /* Get system font hbox size */
24 if (vdihandle == 0) /* Make sure v_opnvwk() was ok */
25 return 0; /* Return initlevel 0 if fail */
26 /* Get the desktop coords */
27 wind_get(DESK, WFWXYWH,
28 &gl_xfull, &gl_yfull, &gl_wfull, &gl_hfull);
29 /* Set up the appl's window */
30 graf_mouse(HOUR_GLASS, 0L); /* This may take a while */
31 applwhndi = wind_create(W_FEATURES,
32 gl_xfull, gl_yfull, gl_wfull, glhfull);
33 if (appl whndl == -1) /* If wind_create() failed */
34 {
35 form alert(1,ADDR(
36 "[3]rFatal Error !|Window not available|for Hello.][Abort]"
37));
38 return 1; /* Return level 1 on failure */
39 }
40 wind_set(appl_whndl, WFNAME,
41 LLOWD(ADDR(wdw_title)), LHIWD(ADDR(wdw_title)),
42 0, 0) ;
43 wdw_size(&box, MESSWIDTH, MESSNLINES);
44 wind_open(appl_whndl, box.gx, box.gy, box.gw, box.g_h);
45 wind_get(appl_whndl, WFWXYWH, &work_area.g_x, &work_area.g_y,
46 &work_area.g_w, &work_area.g_h);
47 disp_mesag(message, &work_area);
48 graf mouse(ARROW,0L);
49 return 2; /* Return level 2 if all okay */
50 }
51
1 /*
2 ** File: hterm.c
3 ** Purpose: Cleanup and terminate the program.
4 */

GEM Sample Program: HELLO 259

6 VOID
7 hello_term(i_lev)
8 WORD i lev; /* How much of init worked */
9 (
10 switch(ilev) /* NOTE! This switch statement *
11 { /* contains no 'breaks' - fall*,
12 /* through is intentional. *,

14 case 2: /* Complete initialization *
15 wind_delete(appl_whndl);/* Delete application's window *,
16 /*******************************
17 case 1: /* Failed on wind_create() *
18 v_clsvwk(vdi_handle); /* Close virtual work station *
19 applexitO; /* AES library termination *
20 /*******************************
21 case 0: /* Failed on v_opnvwk() *
22 ;
23 } 24 }
25

L i s t i n g 4 . 4 : HELLO Global Variables, Initialization, and Termination

GEM HELLO uses many global variables, as seen in
lines 1 through 28 of file HDECLS.CI. The program might
have used fewer global variables by passing more parame
ters into each routine. You must be careful, however, when
you pass many parameters or declare many local variables
in C, because all local variables are allocated on the stack.
In order to minimize the size of your program, you will
want to minimize the amount of space allocated to your
programs stack in the start-up code. If your program uses
more local variables and thus more stack space, you must
make sure that there is sufficient room for the stack allo
cated in your start-up code. We used the PROSTART.A86
module in the Developer's Kit for the start-up code for
HELLO.

S o m e of the # def ines could have been in the file GEM-
BIND.H, specifically the # def ines in lines 9 through 21 of
the file HDEFINES.CI. Although the GEM developers did
not add these definitions, you might want to add them to
your copy of GEMBIND.H. The source code was included
as a tool for building GEM programs, and we believe that
adding appropriate definitions to these files is like sharp
ening your tools.

260 PROGRAMMER'S GUIDE TO GEM

Any application that uses the GEM A E S calls must use
appl_ jni t () (see line 14 of file HINIT.CI) to initialize internal
A E S data structures. appl_inSt() returns ap_id, which is an
integer that uniquely identifies the current instance of pro
gram execution. ap_id can be used for interprocess com
munication or to make unique temporary file names, and
it should be tested (as shown in this example) in case the
appl_ini t () function fails. Although the call doesn't fail in
current versions of GEM, a p p l j n i t () may fail in future ver
sions of GEM where the user has started up a number of
other applications and there are too many for the internal
A E S structures to accommodate .

Opening the Virtual Workstation

The code in lines 17 through 25 initializes the virtual
workstation that the application uses and also inquires
about device-dependent information. As explained in
Chapter 3, the purpose of the virtual workstation is to
simulate complete ownership of the screen device for the
application. The Open Virtual Workstation call, v _ o p n v w k () ,
is required in order to make any output calls to the VDI.

The input to the v_opnvwk() routine requires three param
eters. The first of these is work_ in[] , an array of parameters
that initializes the characteristics of the VDI variables such as
line type and color. The default value of 1 is intended to be
a "lowest common visible denominator" of workstation
attributes. In other words, setting the value to 1 is the con
vention for "do something predictable," like setting the line
type to solid and the color to black. The work_in[l0] parame
ter indicates what coordinate system is to be used for the
screen. Raster coordinates are preferable to normalized
device coordinates, and they should be used in order to give
your program access to efficient raster operations.

The second parameter is used both as an input and an
output parameter. The value passed into the routine is

GEM Sample Program: HELLO 261

gemj iand le , which is the physical VDI handle of the screen
device returned from g r a f _ h a n d l e () in line 20. The value
returned from v _ o p n v w k () is the handle of the virtual work
station created by the call. This handle is used, of course,
for all of the rest of the VDI calls to identify the appropri
ate virtual workstation. Thus, an application could conceiv
ably open up several virtual workstations on the screen
device in order to, for example, use several different type
sizes and/or colors without having to reset the device
attributes each time.

The third input parameter is an array of output values
that describes the physical device. In particular, work_out[48]
contains the maximum height (in pixels, as HELLO speci
fied raster coordinates) of any character in the default sys
tem font. This value is used to calculate the size of
HELLO'S window.

THE TWO KINDS OF INFORMATION IN work_out []

The DRI GEM Developer's Kit documentation has an interesting
method of documenting the v__opnwk() and v__opnvwk() output parame
ters. Specifically, the work__out[] array is divided into two arrays: intout[]
and ptsout[]. The main reason for two arrays was that the intout[] array
contains control/status information, whereas the ptsout[] array contains
coordinate values. For efficiency reasons, the normalized device coordinate
values were chosen to fit in WORD (16-bit) values, and most devices sup
ported by GEM have pixel ranges that can also be represented as WORD
values. Since both coordinates and control information are WORD values,
these arrays were concatenated together, also for efficiency reasons.

Watch out! Since intout[] stops at element 44, work_put[48] corres
ponds to ptsout[3] in the document.

Building the Window

After opening a virtual workstation, the program gets the
DESKTOP screen coordinates (lines 27 and 28) in order to get

262 PROGRAMMER'S GUIDE TO GEM

the size of the screen. A GEM application can assume that
there is always one opened window with window handle 0
and a visible arrow cursor. The DESKTOP window is never
closed. This window represents the largest window that an
application can display on the screen. (Note that the DESKTOP
here is not the GEM DESKTOP application but the window
with a handle of 0. The DRI documentation also refers to
this window as the DESK window.)

In lines 29 through 48, HELLO creates the window and
writes the initial mes sage onto the screen. First, it
changes the shape of the cursor from an arrow to an hour
glass by calling g ra f_mouse() to indicate that a time-
consuming operation will be occurring. This is a GEM
convention (as opposed to a requirement) that should be
used whenever the application performs an operation that
may take a noticeable amount of time. S e e Chapter 6 for
more information on GEM program conventions.

Next, HELLO creates a window with the wind__create()

call. Nothing is displayed on the screen, however, nor is a
window opened. Instead, w ind_crea te () reserves space in
the Screen Manager's data structures and initializes inter
nal variables, a s well a s specifying the features of the win
dow. For HELLO, these features include a title bar (NAME)
and two control points, a CLOSER and MOVER, and the fea
tures indicate what is drawn in the borders around the
window, as well as which mes sages can be sent from the
Screen Manager to the application. (We talked about these
mes sages in an earlier section called "Window Control
Messages.") The return value (appl_whndl) is used whenever
the program refers to the window. Your application can
open more than one window, if the windows are available—
that is, if they are not used up by desk accessories or
other applications.

Should the window be unavailable, the application noti
fies the user with the f o rm_a le r t () function, which specifies
a very rigid format for giving textual feedback to the user.

GEM Sample Program: HELLO 263

Figure 4.2 shows what this particular alert looks like. The
format for these parameters was discussed in Chapter 2.

F i g u r e 4 . 2 : form_jalert() Sample Output

Once the window has been created, the application
uses a w ind_se t () call to set the NAME region to a string
value. In HELLO, the string wdw_t i t le is empty (that is, it
contains a NULL character). Although it seems redundant
to give the window a null name, the reason for this is that
the MOVER control point requires that the NAME region
exist and have some value.

w d w _ s i z e () is a local routine that calculates the size of
the window required to display a message and makes the
appropriate window calls. It also sets the initial window
position to the center of the DESKTOP window. w d w _ s i z e () is
found in Listing 4.5, which contains the display routines
and which we'll discuss in a moment.

Finally, on line 44, the window is opened and displayed
for the first time. However, only the windows borders are
drawn. HELLO must first find the region actually inside
the windows borders with the w i n d _ g e t () call, and then
draw the inside of the window with the d i s p _ m e s a g () rou
tine, called at line 47. The mouse form is then turned
back into an arrow, and the initialization routine signals a
successful completion.

PROGRAMMER'S GUIDE TO GEM

HELLO Termination

The hello_term() routine in Listing 4 .4 cleans up the
internal GEM data areas. The i j e v variable specifies how
much of the initialization was successfully completed, and
thus how much has to be done to clean up. For instance,
a value of 2 means that the window was successfully
created and must be deleted with the wind_delete() call.
v_cl$vwk() then closes and releases the virtual workstation.
Finally, the appl_exit() call should be used to notify the
A E S that the application is terminating. This allows
the A E S to perform certain housekeeping chores, such as
deallocating internal data structures.

HELLO DISPLAY ROUTINES

A number of routines are involved with the details of
the screen display. These routines, listed in Listing 4 .5,
include the following:

w d w _ s i z e () C a l c u l a t e s t h e n e c e s s a r y window
s i ze .

d i sp__messag () C a l l s VDI t o d i s p l a y text s t r i n g s
in window.

d o _ r e d r a w () C a l l s d i s p _ m e s s a g () rout ine a s
n e e d e d w h e n redrawing t h e
s c r e e n .

1 /*
2 ** File: hdisplay.c
3 ** Purpose: Routines to display the message
4 */
5
6 VOID
7 wdw_size(box, w, h) /* Compute window size for given w * h chars */
8 GRECT *box;
9 WORD w, h;

10 {
11 WORD pw, ph;
12
13 vst_height(vdi_handle, typesize,
14 &gl_wchar, &gl_hchar, &gl_wbox, &gl_hbox);

GEM Sample Program: HELLO 265

15 pw = w * gl_wbox + 1;
16 ph = h * glhbox + 1;
17 wind_calc(WC_BORDER, WFEATURES,
18 gl_wfull/2-pw/2, gl_hfull/2-ph/2, pw, ph,
19 &box->g_x, &box->g_y, &box->g_w, &box->g_h);
20 }
21
22
23
24 VOID
25 disp_mesag(strptr, clip_area) /* Display message applying input clip *'
26 BYTE **strptr;
27 GRECT *clip_area;
28 {
29 WORD pxy[4];
30 WORD ycurr;
31
32 set_clip(vdi_handle, TRUE, cliparea); /* Turn clipping on */
33 vsf_interior(vdi_handle, 1); /* l==lowest intensity pattern */
34 vsf_color(vdi_handle, WHITE); /* Color for polygon fill */
35 grect_to_array(&work_area, pxy);
36 vr_recfl(vdi_handle, pxy); /* Clear entire message area */
37
38 vsl_color(vdihandle,BLACK)} /* Color for line drawing */
39 vswr_mode(vdi_handle,MD_REPLACE);/* Use REPLACE writing mode */
40 vsltype (vdi_handle,FIS_SOLID);/* Use SOLID line type */
41 ycurr « work_area.g_y - 1; /* Start typing here */
42 while (*strptr) /* Loop through text strings */
« {
44 ycurr += glhbox;
45 v_gtext(vdi_handle, work_area.g_x, ycurr, *strptr);
46 strptr++;
47 }
48 set_clip(vdi_handle, FALSE, clip_area); /* Turn clipping off */
49 }
50
51
52
53 VOID
54 doredraw (area) /* Walk rectangle list and display message */
55 GRECT *area;
56 {
57 GRECT box;
58
59 graf_mouse(M_OFF, 0L);
60 wind_get(appl_whndl, WFFIRSTXYWH,
61 ibox.gx, &box.g_y,
62 &box.g_w, &box.g_h);
63 while (box.g w != 0 && box.g h !=*0)
64 {
65 if (rc_intersect(area, &box))
66 disp_mesag(message, &box);
67 wind_get(appl_whndl, WFNEXTXYWH,
68 &box.g x, &box.g y, &box.g w, &box.g h);
69 } "
70 graf_mouse(M_ON, 0L);
71 }

L i s t i n g 4 . 5 : HEULO Display Routines

PROGRAMMER'S GUIDE TO GEM

The he l lo_ in i t () routine calls the wdw_s ize () routine to
determine the appropriate window size and initial location
to display the text message . The call to v s t _ h e i g h t () noti
fies the VDI to use a character set with a height equal to
the type_size value. Since this value was the system font
height returned from the v _ o p n v w k () call, the VDI uses the
system font. The remaining four parameters contain the
character cell sizing information, which is used to calcu
late the internal window work area size, as seen in lines
15 and 16. Once the desired internal window size has
been calculated, the external window size is calculated by
calling w i n d _ c a l c () with the windows features (the internal
window size plus border). This information, which is stored
in the box structure, is used to size and locate the window
when the window is opened in the initialization routine.

disp_message() actually displays the message inside the
window, sets a number of device characteristics, and
finally outputs the text. Since device characteristics never
change throughout the course of the HELLO application,
it might have been more efficient to make these calls in
the initialization routine (or in wdw_s ize () , a s was done
with the call to vs t_height ()) . However, the technique of
grouping VDI attribute settings with VDI output calls
makes a program easier to understand. This grouping
technique is also a good idea in case the program is ever
modified to display other kinds of information using VDI
calls, in which case all of the relevant VDI calls will be
grouped together.

The call to set_cl ip() on line 32 defines the clipping
region of the screen. The clipping function makes it much
easier to display information in windows, since you can
clip a portion of your display in case another window
overlaps yours. This very powerful technique is used again
in the DEMO program presented in Chapter 5.

In lines 33 through 36, the background of the window
is set to white. The local routine grect__to__array() changes

GEM Sample Program: HELLO 267

the coordinate system from the GRECT rectangular specifi
cation (top-left x and y, with width and height) to the array
specification used by the VDI (top-left x and y, bottom-
right x and y).

It may seem unfortunate that the A E S uses a rectangu
lar specification method that must be regularly converted
to the array specification used by the VDI. The main rea
son for this is that the A E S uses mostly rectangular
objects (like windows and forms), while the VDI was built
to handle general-purpose polygonal shapes.

The next three lines (38 through 40) set the color and
writing mode of the text. The mode used here is replace
(MD_REPLACE) mode, which draws over whatever is currently
on the screen. These modes were covered in Chapter 3 s
discussion of the VDI control functions.

Next, a while loop at line 42 calls the v _ g t e x t () routine
to display each line of text. The final call to set_cl ip() turns
off clipping in order to spare later VDI calls the clipping
overhead.

The d o _ r e d r a w () routine illustrates how your GEM appli
cation must draw its information in order to peacefully
coexist with many other windows. First, g r a f _ m o u s e ()
removes the mouse form (the cursor) from the screen. The
mouse form is displayed by saving a portion of the screen
underneath the mouse form. Thus, if you don't turn off
the mouse and you overwrite the mouse form area, the
previous contents of the saved area are restored as soon
as the mouse is moved, which leaves unpredictable results
on the screen.

Next, w i n d _ g e t () returns the start of a rectangle list,
where each rectangle in the list defines a clipping area
and is handed to the d isp_mesag() routine. A null rectangle
(whose width or height is 0) defines the end of the rectan
gle list. As we mentioned in Chapter 2, the rectangle list
is how GEM supports overlapping windows. By dividing
the screen into a series of rectangles, GEM can specify to

PROGRAMMER'S GUIDE TO GEM

each application the exact part(s) of the screen which need
to be drawn into. The program uses the rectangle as a
clipping region and redraws the entire window on top of
each clipping rectangle, so that only the information
inside the clipping region reaches the screen.

GENERAL-PURPOSE ROUTINES
In Listing 4 .6, we present the final few routines used in

GEM HELLO. These routines compute maximum and min
imum values and the intersection of rectangles, such as
the clipping area and the work area. They also translate
from rectangular coordinates to array coordinates.

1 /*
2 ** File: hlocal.ci
3 ** Purpose: Most generalized low level routines.
4 */
5
6 #define min(xx,yy) ((xx) < (yy) ? (xx) : (yy))
7 #define max(xx,yy) ((xx) > (yy) ? (xx) : (yy))
8
9
10 WORD
11 rc_intersect(pl, p2) /* Compute intersection of two rectangles */
12 GRECT *pl, *p2;
13 {
14 WORD tx, ty, tw, th;
15
16 tw = min(p2->g_x + p2->g_w, pl->g_x + pl->g_w);
17 th = min(p2->g_y + p2->g_h, pl->g_y + pl->g_h)j
18 tx = max(p2->g_x, pl->g_x);
19 ty = max(p2->g_y, pl->g_y);
20 p2->g_x = tx;
21 p2->g_y = ty;
22 p2->g_w = tw - tx;
23 p2->g_h = th - ty;
24 return((tw > tx) && (th > ty));
25 }
26
27
28 VOID
29 grect_to_array(area, array) /* Convert x,y,w,h to upr It x,y and */
30 GRECT *area; /* lwr rt x,y */
31 WORD *array;
32 {

GEM Sample Program: HELLO 269

33 *array++ = area->g_x;
34 *array++ = area->g_y;
35 *array++ = area->g_x + area->g_w - 1;
36 *array = area->g_y • area->g_h - 1;
37 }
38
39
40
41
42 VOID
43 set_clip(vdi_handle, clipflag, sarea) /* Set clip to specified area */
44 WORD vdihandle;
45 WORD clip_flag; /* 0 to disable clipping, o.w. enable */
46 GRECT *s area;
47 {
48 WORD pxy[4];
49
50 grect_to_array(s_area, pxy);
51 vs_clip(vdi_handle, clip_flag, pxy);
52 }

L i s t i n g 4 . 6 : General-Purpose HELLO Routines

SUMMING UP

This chapter has presented a simple GEM application
called HELLO. The simplistic event handler in h e l l o () and
message handling routine h n d l _ m e s a g () represent the basic
concepts of event and window handling. We also provided
some extremely fundamental examples of using the VDI
to display the text and inside of the window.

PROGRAMMER'S GUIDE TO GEM

WHAT DEMO DOES 273

DEMO START UP 274

DEMO TERMINATION 275

DEMO INITIALIZATION 276

THE MAIN EVENT HANDLER: demo() 288

USING OBJECTS IN DEMO 307

GEM DEMO 273

f n this chapter we examine in detail the sample
program called DEMO in the DRI GEM Devel
o p e r s Kit. The version that we use here is a
reorganized version of the one found in the Kit,

but it is still essentially the same. Our version is organized
so that in the complete listing, which can be found in
Appendix D, each function after GEMAIN() is listed alpha
betically, which makes it easier to find any particular func
tion. In addition, we have added commentary and cleaned
up the code. By studying DEMO, you will learn how to
use menus and dialogs, how to save and restore the
screen, and how to process user input.

For reasons of brevity, the listings that appear in this
chapter do not contain any of the comments that appear in
the actual source. That source—the complete listing for
DEMO—appears in Appendix D. We hope that our discus
sion alongside the code provides enough insight to compen
sate for the absence of comments in the listings themselves.
To make the texts analysis of different portions of the pro
gram easier to follow, we have broken the listings of some
of the longer functions into several pieces. In this way, the
discussion and the listing can be kept close together in the
chapter, which minimizes the number of times that you have
to turn back to a listing as you read. Finally, to make the
chapter simpler and easier to read, we also decided not to
show all the routines that make up DEMO, but instead to
concentrate on the most important ones. Thus, the listings
in this chapter represent a selection from the complete pro
gram shown in Appendix D.

WHAT DEMO DOES

DEMO is a program that permits the user to draw (or
doodle) on the screen using the mouse a s a drawing
instrument. The user depresses the leftmost mouse button,
and holding it down, moves the mouse around the work

PROGRAMMER'S GUIDE TO GEM

area of the DEMO window. As the mouse moves, DEMO
traces a line. DEMO is thus a simple drawing program—in
effect, a simpler version of a sophisticated drawing pro
gram like GEM Draw.

DEMO uses menus and dialogs to provide additional
services such a s

Saving the current screen to a disk file.

Recalling a previously drawn doodle.

Erasing the entire window.

Changing line thickness.

Changing from pencil to eraser mode so that the
user can erase a portion of the drawing.

All in all, DEMO presents a consistent and complete
model of pencil and paper.

DEMO START UP

As in GEM HELLO, the main routine is called GEMAIN()

to avoid linking in all the normal C compiler run-time
library overhead. The DEMO GEMAIN() shown in Listing 5.1
is very simple. It calls only three other routines: demo_in i t () ,

d e m o () , and demo__term().

GEMAINO
{

WORD term_type;

if (!(term_type = demo_init())) demoO;
demo term(term type);

}

L i s t i n g 5 . 1 : GEMAI!i()

GEM DEMO 275

The initialization routine, d e m o _ J n i t () , returns certain
values that indicate how far the d e m o _ i n i t () routine pro
ceeded. Various error conditions can force d e m o _ i n i t () to
stop and return to GEAAAIN() with DEMO only partly initial
ized. Depending on the return code (shown in Table 5.1),
GEMAIN() either continues and invokes the main body of
the DEMO code, or terminates.

d e m o _ i n i t ()

R e t u r n Va lue M e a n i n g

0 Normal initialization (no errors).

1 Could not load .RSC file, or could not
open virtual workstation.

2 Could not allocate enough contiguous
memory for screen buffer.

3 Could not create DEMO window because
there were no more available windows.

4 Could not reserve any A E S resources.

T a b l e 5 . 1 : Meaning of Initialization Return Codes

Let s take a quick look at the termination procedure.

DEMO TERMINATION

Depending on how far along the initialization pro
ceeded before either encountering an error or completing
d e m o _ i n i t () , demo__term() needs to release any allocated
resources that it obtained in d e m o _ i n i t () . For instance, if
d e m o _ i n i t () indicates that the resource file could not be
loaded (return code = 1), the A E S routines app l_ in i t () and

PROGRAMMER'S GUIDE TO GEM

w i n d _ u p d a t e () have been invoked. Before DEMO exits, the
window must be unlocked and the resources allocated by
app l_ in i t () must be freed, which is exactly what d e m o _ t e r m ()
does. Thus, d e m o _ t e r m () makes sure that the GEM envi
ronment is all cleaned up before DEMO exits.

Listing 5.2 shows the code for d e m o _ t e r m () .

demo_term(term_type)
WORD termtype;

WORD x, y, w, h;

switch (termtype) /* NOTE: all cases fall through */

case (0): /* Normal termination. */

wind_get(demo_whndl, WFCXYWH, &x, &y, &w, &h);
wind_close(demo_whndl);
graf_shrinkbox(full_width/2, full_hite/2, 21, 21,

x, y, w, h) ;
wind_delete(demo_whndl);

case (3): /* No more windows available. */

menu_bar(0x0L, FALSE);
do s_f ree(drawmfdb.mp);

case (2): /* Couldn't open device. */

v_clsvwk(vdihandle);

case (1): /* Couldn't find RSC file. */

wind_update(END_UPDATE);
applexitO;

case (4): /* Error on appl_init(). */

break;
}

1

L i s t i n g 5 . 2 : DEMO Tenrunation

DEMO INITIALIZATION

demo__init() is more extensive than the initialization rou
tine for GEM HELLO, because DEMO uses a number of

GEM DEMO 277

GEM capabilities that weren't used by GEM HELLO. Let's
go through this routine, which is shown in Listing 5.3,
step-by-step.

WORD demoinitO {

WORD work_in[ll];
WORD i;

if (applinitO == -1) return(A);
wind_updat e(BEG_UPDATE);
graf_mouse(HOUR_GLASS, OxOL);

if (!rsrc_load(ADDR("DEMO.RSC"))){
graf mouse(ARROW, OxOL);
form_alert(l,

ADDR("[3][Fatal Error !|DEMO.RSC|File Not Found][Abort]"));
return(l);
1

vdi_handle=graf_handle(&char_width,&char_hite,&box_width,&box_hite);

for (i=0; i<10; i++) {
work in[i]=l;

}

work_in[l0]=2; /* Use RC coordinates */
v_opnvwk(work_in,&vdi_handle,work_out);
if (vdihandle == 0) return(l);

drawmfdb.fwp = work_out[0] + 1;/* screen width in pixels */
draw_mfdb.fh = work_out[l] + 1; /* screen height in pixels */
scrnxsize = work_out[3]; /* width (raster) aspect ratio */
scrn_ysize = work_out[4]; /* height (raster) aspect ratio */
char_fine = work_out[46]; /* min char height ptsout(l) */
charjnedium = work_out[48]; /* max char height ptsout(3) */
charbroad = charmedium * 2;

L i s t i n g 5 . 3 : DEMO Initialization, Part 1

A Walk Through d e m o j n i t ()

The first three statements (the a p p l _ i n i t () , w i n d _ u p d a t e () ,
and g r a f _ m o u s e () calls) allocate A E S resources, obtain per
mission to update the screen, and change the mouse cur
sor form to an hourglass, respectively. All these functions
have been dealt with before. As we discussed in Chapter
2, the call to r s r c _ l o o d () loads all the object-oriented data

PROGRAMMER'S GUIDE TO GEM

for DEMO into memory. (We will spend much of this
chapter talking about objects later on.) r s r c J o a d () loads
the object tree for the menu bar at the top of the DEMO
window and all the associated submenus and dialogs. If an
error occurs in loading this file, DEMO displays an alert
telling the user that it could not find the resource file
(.RSC) for DEMO, and d e m o _ i n i t () returns.

CHANGES IN HOW A GEM MENU BAR LOOKS

Because of the changes to GEM in the last few months, the appear
ance of the menu bar depends on which version of GEM you are running.
Thus, in the old GEM (version 1), DEMO has three menus: Desk, File, and
Options, each of which have submenus. The order in which they appear in
GEM version 1 is as in Figure 5.1. However, when DEMO runs on the
later version of GEM (version 2), you will see a File and Options menu,
and to the far right a DEMO menu, as shown in Figure 5.2. The DEMO
menu is the same as the prior versions Desk menu, only with a different
main menu title. None of the data inside the object tree has changed. The
only change is in the way the items are displayed, which means that old
.RSC files are usable in the latest GEM.

Desk File Uieu Options

i 159448 bytes used in 30 itens.
rrt* r~7fcn m * m *

F i g u r e 5 . 1 : Menu Bar for Version 1

File Options Arrange DESKTOP

C:\GEMAPPSN

B B B B b b B
NtwFMîr BORDERS POINT PATTERNS PICTLIB1 PICTLIB2 PICTU63

F i g u r e 5 . 2 : Menu Bar for Version 2

file://C:/GEMAPPSN

GEM DEMO 279

DEMO is now ready to open the virtual workstation.
First DEMO gets the physical device handle (the call to
grc i f_hand!e()) , and then it sets the other virtual workstation
parameters to their defaults, mainly in order to use the
raster coordinates. The call to v _ o p n v w k () changes the
v d i _ h a n d l e into the virtual workstation handle. v _ o p n v w k ()
returns other information about the physical screen that
must be preserved in local variables since the next call to
the VDI will overwrite those values.

Before we begin to discuss how d e m o _ i n i t () sets up the
DEMO window, you need to understand how DEMO saves
and restores the screen. To this end, we will first explain
the data structures used by DEMO to handle the screen,
and then we will show you how DEMO uses them to
manipulate the image in the window.

DEMO Screen Handling

DEMO allows the user to size the DEMO window, as
well a s move the DEMO window around the physical
screen. This means that a s the user sizes the window
smaller, DEMO must be able to change the view of what
is displayed in the smaller window. The images that
appear on the screen are stored in RAM. DEMO copies
them to the screen and back again, thus managing the
display. It is the responsibilty of all applications to handle
all the memory management of their data structures in
order to manage the screen.

Screen Data Structures

DEMO uses the six following data structures for win
dow management:

scrn_area and scrn_mfdb

draw__area and draw_mfdb

PROGRAMMER'S GUIDE TO GEM

work_area

save__area

s c rn_mfdb and d r a w _ m f d b are Memory Form Descriptor
Block structures (see Chapter 3 for a discussion of MFDBs
and how to use the VDI raster copy functions). The other
four s t ructures—draw_area , s c r n _ a r e a , work__area and
s a v e _ a r e a — a r e GRECT structures (x, y, width, and height) a s
discussed in Chapter 4.

s c r n _ a r e a and s c m _ m f d b always refer to the actual physi
cal screen (including borders) and are never changed after
initialization. s c r n _ a r e a and s c rn_mfdb are used to provide
the information about the physical screen size that is
needed when the window gets changed: that is, either
when the screen needs to be redrawn, when the user has
finished drawing something on the screen, or when the
user erases the entire screen. s c r n _ a r e a is used to calculate
the intersection of rectangles that have changed with the
actual physical screen, while s c rn_mfdb is used exclusively
in the actual raster operation of copying from either the
physical screen to the d r a w buffer or from the d r a w buffer
to the screen.

d r a w _ a r e a refers to the GRECT description of the total
screen area that is actually allocated for drawing upon,
and d r a w _ m f d b is the VDI description of that s ame area.
Somewhat different information is included in d r a w _ m f d b
than in draw__area: for example, where the screen data is
actually stored in RAM, the screen width both in pixels
and words, and so on.

s a v e _ a r e a is used to flip between full-screen and non-
full-screen configurations. s a v e _ a r e a contains the previous
values of d r a w _ a r e a .

We'll talk about w o r k _ a r e a shortly, but first let's discuss
how DEMO computes the size of the screen buffer.

GEM DEMO 281

Calculating the Size of the Screen Buffer

The draw__area and d r a w _ m f d b structures relate to the
actual window work area in RAM that is allocated to
DEMO. The call to the operating system memory alloca
tion function (do s_a l loc () in the middle of Listing 5.4)
establishes the buffer of the required size by using the
following equation:

width of physical s c reen T 8 x height x n u m b e r of p l anes

The width is divided by 8 because it is measured in
pixel units, and d o s _ a l l o c () uses bytes.

vq_extnd(vdi_handle, 1, work_out);
draw_mfdb.np = work_out[4]; /* number of planes */

drawmfdb.fww = drawmfdb.fwp>>4;
drawmfdb.ff = 0;

buff size = (L0NG)(draw_mfdb.fwp»3) *
(LONG)drawmfdb.fh *
(LONG)draw_mfdb.np;

buff_location = drawmfdb.mp = dos_alloc(buff_size);

if (drawmfdb.mp == 0) return(2);

scrn_area.g_x = 0 ;
scrn_area.g_y = 0;
scrnarea.gw = drawmfdb.fwp;
scrn_area.g_h = drawmfdb.fh;
scrnmfdb.mp = OxOL;

L i s t i n g 5 . 4 : DEMO Initialization, Part 2

dos_a l loc () returns either a pointer to a contiguous area in
RAM that is as large as requested or else an error code. The
pointer is saved in the d r a w _ m f d b structure, as well as the
other descriptors of the screen. Notice that the size of this
area is as large as the physical screen. As Figure 5.3 shows,
once borders are included, the d r a w _ a r e a does not fit on top
of the physical screen window area.

PROGRAMMER'S GUIDE TO GEM

p h y s i c a l
s c r e e n
scrn a rea

draw a r e a

F i g u r e 5 . 3 : Physical and Logical screen

Relationships Between the Data Structures

In Figure 5.3, the physical screen is the background
image which looks like a GEM window on a physical screen.
Remember that scrn__area represents the physical screen
including window borders, menu bars, and so on. What the
dotted lines show is the mapping of the d r a w _ a r e a onto the
physical screen (scrn_area) . In effect, DEMO asks for enough
space to allow a draw__area equal to the size of the physical
screen, but GEM adds slider bars, a menu bar, and other
window components, reducing the actual size of the picture
that can appear on the screen at any one time. The slanted-
line pattern indicates the greatest amount of d r a w _ a r e a that
can appear, which also represents w o r k j a r e a (displayed as
dashed lines). While there is more to d r a w _ a r e a that can

GEM DEMO 283

appear on the screen in the window (w o r k j a r e a) , to see it the
user must use the sliders to scroll the window.

The relationship between the scrn and the draw structures
is similar to that between the physical and the logical.
s c m _ m f d b and scrn_area describe the physical area, while
d r a w _ m f d b and d r a w _ a r e a describe the logical area. At any
time during the execution of DEMO, a portion of the logical
draw buffer is displayed on the physical screen described by
the scrn structures. A good way to think of the relationship
between these data structures is to imagine that a light is
played through the draw__area and projects an image on the
physical screen, much as a slide is projected on the movie
screen. Ignoring the issue of focus, we can make the pro
jected image smaller or larger by moving the projector
backwards or forwards. Additionally we can project the
image onto a small area of the screen; that is, we can make
the image small and point the lens at a corner of the screen
rather than projecting it onto the entire screen.

Now lets vary our analogy a little so that we can pay
attention to focusing details. To keep the displayed image
sharp and clear, let's keep the projector stationary. In
order to get the effect of making the displayed image
smaller and larger, imagine a rectangular gizmo in front of
the lens that can expand along the width and the length
of the rectangle. Thus by manipulating the sides of our
elastic frame, we can size the image on the screen without
losing the focus.

By the way, DEMO does not provide a "magnifying
glass" feature. The image may change on the screen, but
you cannot blow up a part of the image: it always appears
at the s ame magnification level. In addition, DEMO also
does not allow you to erase (undo) the last drawn line.
One of the features of GEM Paint and Draw is an undo
function, allowing the user to restore the picture as it
appeared just before the last change.

Returning to our metaphor, scrn_mfdb and sc rn_area

PROGRAMMER'S GUIDE TO GEM

describe the screen, d r a w _ a r e a and d r a w _ m f d b describe the
image in the projector, and work__area correlates to the elas
tic frame. d r a w _ a r e a defines the part of the image that can
be displayed on the screen and that can fit through the
frame of w o r k _ a r e a . The image is controlled by the window
sliders, whereas the size of the work area of the DEMO
window is controlled by the size box and the move bar.

How w o r k _ a r e a and d r a w _ a r e a Work Together

In a full-screen window configuration with no slider
movement, the GRECTs of w o r k j a r e a and d r a w _ a r e a are the
same. If the user moves the window down on the physical
screen, then the coordinates for the area that is to be dis
played on the screen (d r a w _ a r e a) haven't changed. The
coordinates for w o r k _ a r e a , however, now reflect the new
position of the work area on the screen. The coordinates
of the displayed image are the same. The image is
clipped at the bottom of the window. If the user moves
the slider positions, then the d r a w _ a r e a x and y coordi
nates change.

Most of the time the values of w o r k _ a r e a and d r a w _ a r e a
will be equal, if the user hasn't moved the window, resized
it, nor changed the sliders—in other words, if the user
keeps the initial configuration. w o r k _ a r e a changes when
the user moves or resizes the window. d r a w _ a r e a changes
when the user wants to display a different part of the
complete picture by moving the sliders.

Completing the Initialization: demo_init()

Now that we have explained the data structures that
DEMO uses to manipulate the image on the screen, we
can return to the d e m o j n i t () routine and finish initializing
the DEMO environment as shown in Listing 5.5. What
mainly remains to be done is to create, open, and display
the DEMO window.

GEM DEMO 285

rc_copy(&scrn_area, &draw_area);

rast_op(0,&scrn_area,&scrn_mfdb,&draw_area,&draw_mfdb);

pictinit();

addrmsg = ADDR((BYTE *) &msg_buff[O]);

wind_get(DESK, WF_WXYWH, &full_x, &full_y, &full_width, &full_hite);

rsrc_gaddr(R_TREE, DEMOMENU, &addr_menu);

menu_bar(addr_menu, TRUE);
demowhndl = wind_create(OxOfef, fullx - 1, fully,

full_width, full_hite);
if (demowhndl == -1)
{ /* No more windows available */

form_alert(1, stringaddr(DEMONWDW));
return(3);

}

wind_set(demo_whndl, WFNAME, ADDR(wdwtitle), 0, 0);

fullx = alignx(fullx);

graf_growbox(full_width/2, full_hite/2, 21, 21,

full_x, full_y, full_width, fullhite);

wind_open(demo_whndl,full_x,full_y,full_width,fullhite);

setwork(TRUE);

rc_copy (&draw_area, &save_area);
graf_mouse(ARROW,OxOL); /* Restore arrow cursor */
wind_update(END_UPDATE);/* Unlock update region */
return(O);

/* end demo init */

L i s t i n g 5 . 5 : DEMO Initialization, Part 3

We left demo_ in i t () after it had reserved the necessary
buffer space for the picture. demo_in i t ()'s next action is to
clear the screen RAM area by using a VDI raster copying
function (see Chapter 3). r a s t_op() converts the source and
destination coordinates into the form that the VDI needs
(refer to the discussion of the g rec t_ to_array () function in
Chapter 4) and then calls vro_cpyfm() with a logic opera
tion number of 0, which clears the destination bits. As we
have said in Chapter 3, the logic operation number of 0 is

PROGRAMMER'S GUIDE TO GEM

like magic. It totally ignores whatever is in the source and
just zeros out the destination.

pict_init() initializes the user-defined objects in the
object tree. DEMO uses user-defined objects and bit
images in the dialog to get the new pencil or eraser set
tings invoked from the Options menu. We will defer our
discussion of this function until we cover objects in a later
section of this chapter.

We are now at the point in d e m o _ i n i t () at which it
builds the window and displays its menu. First, d e m o _ i n i t ()
gets the address of the object tree that was earlier loaded
into memory through the r $ r c _ l o a d () . This object tree con
tains all the menu information for DEMO. r $ r c _ g a d d r ()
returns the address of that object tree in the parameter
a d d r _ m e n u . Once d e m o _ i n i t () has that address, it calls
m e n u _ b a r () to display the menu. Notice that a window han
dle is not specified. GEM only allows you one menu bar
per screen, no matter how many windows you create.

The function w i n d _ g e t () with a value of WFJ/VXYWH

(window work area) returns the coordinates of the indi
cated window, DESK, which is the largest window that can
fit on the physical screen. DEMO uses the size of the
work area of this window as the size of D E M O s work
area. This is important because w i n d _ c r e a t e () requires the
size of the window at its fullest. You don't have to open
the window at that size, but the A E S needs to initialize
certain internal variables.

DEMO builds a window that has everything except an
information line: that is, the window includes a title bar, a
move bar, full, close, and size boxes, horizontal and verti
cal sliders, and left, right, up, and down arrows. Please
note that nothing has appeared on the screen yet but the
cursor and the menu bar.

Finally, we are ready to open and display the initial
DEMO window. The g r o w _ b o x () call is purely for effect. It
draws an expanding box defined by the given parameters,

GEM DEMO 287

giving the illusion that a tiny box on the screen grows into
a large box. Unfortunately, you will not be able to see this
effect on GEM version 2 or later versions since both this
and the shrinking box effect have been removed from
GEM (see Chapter 2's discussion of the Graphics Library).
The entire call can be removed without damage .

The w i n d _ o p e n () call actually opens the window with
the specified size, and draws the window control points.
The elements that should so far have appeared on the
screen are

The DEMO menu bar.

Hourglass mouse cursor.

An expanding box in the middle of the physical

screen (prior to version 2).

Background dark hash pattern.

The window control points, including the slider areas.

The screen shows nothing else. The next function call to
s e t _ w o r k () sets the work coordinates and updates the slider
area. The only time that the slider area is not updated is
when the window is only moved, because the slider posi
tions have not changed. Do not confuse resizing the win
dow with window movement. The user moves a window
by dragging the move bar around the screen, whereas
resizing happens when the user drags on the size box in
the lower right corner of the window.

When the window is opened, w i n d _ o p e n () sends a
WM_REDRAW mes sage to DEMO. It is not until DEMO
receives and processes this mes sage that the initialized
work area of the window is displayed.

At this point the initialization of the DEMO window is
complete. Figure 5.4 shows how the screen looks.

288 PROGRAMMER'S GUIDE TO GEM

File Options DEMO
Ml New DEMO

\

mm

•

4 | y >

F i g u r e 5 . 4 : The Initial DEMO Screen

THE MAIN EVENT HANDLER: d e m o ()

DEMO is now ready to begin processing of the user
input. All control is passed through the main event han
dling routine, d e m o () , which contains evnt_mul t i () . As the
user initiates some sort of GEM event with the mouse, the
evnt_mul t i () in d e m o () catches it and activates the appropri
ate series of function calls. The main actions that DEMO
waits for are the following:

1 The user selects a menu item.

2 The user clicks on the close or full box, moves
or clicks on the sliders, moves the window,
resizes the window, or used a desk accessory.

3 The user presses the far left button on the
mouse.

4 The mouse moves out of the work area.

GEM DEMO 289

The Screen Manager sends DEMO a mes sage when the
first two actions occur. The d e m o () function, a s shown in
Listing 5 . 6 , receives the mes sage and passes control to
the routine h n d l _ m s g () . As we will see, this routine sits on
top of a very deep tree of routines that handle all the
actions requested by the messages . d e m o () treats the last
two items in the event list separately as a button and a
mouse event, respectively, which are handled by the func
tions hndl_but ton() and h n d l _ m o u s e () .

demo()
{

WORD junk;

FOREVER
{

/* Wait for mouse, message events only,
left button goes down, mouse
exits rectangle.
addrmsg = address of message buffer */

ev_which = evnt_multi(MU_BUTTON | MU_MESAG | M U M 1 ,
0x02, 0x01, 0x01,
mout,
(UWORD) workarea.gx, (UWORD) work_area.g_y,
(UWORD) workarea.gw, (UWORD) work_area.g_h,
0, 0, 0, 0, 0,
addrmsg, 0, 0,
&mousex, &mousey, Sbstate, &kstate,
&junk, &bclicks);

wind_update(BEG_UPDATE);

if (evwhich & MUMESAG) if (hndljnsgO) break;

if (evwhich & MUBUTTON) hndl_button();

if (ev_which & M U M 1) hndl_mouse();

wind update(END UPDATE);
}

}

L i s t i n g 5 . 6 : DEMO Main Event Handler

As d e m o () contains a forever loop, the only way that a
user can break out of DEMO is to click on the Quit item
in the File menu, or click on the close box of the window.

290 PROGRAMMERS GUIDE TO GEM

This information is sent back to d e m o () a s a mes sage that
h n d l _ m s g () then interprets, returning a true value to
d e m o () . None of the other user handlers called in d e m o ()
return anything.

Finally, notice that d e m o () locks the screen from being
updated throughout the duration of handling the user
input. DEMO must do this becuase it is going to change
the screen upon processing the user input. Of course, you
can move the w i n d _ u p d a t e () calls down into the actual rou
tines that actually make the changes, but placing the
w i n d _ u p d a t e () calls at this level is more than adequate.
It is simple and does not require you to chase down an
unmatched w i n d _ u p d a t e () through the code, which is a real
advantage when you consider how hard it is to debug
code with unmatched stack operations (which is similar
to turning on or off the update region).

Now lets examine the evnt_mul t i () call. Only three
events are of interest in this version of DEMO: messages ,
button action, and mouse movement out of the the mouse
rectangle. The coordinates of the mouse rectangle corres
pond to the GRECT w o r k _ a r e a . Any mes sage is stored in the
16-byte mes sage buffer pointed at by a d d r _ m s g , which was
initialized in d e m o _ J n i t () .

Mouse Rectangle Event Handler: hndLmouse()

Let s look at the simplest of the events that DEMO
waits for: the mouse moves out of the rectangle defined
by w o r k j a r e a . Quite simply, this event occurs when the
user moves the mouse to the border area of the window,
which activates the Screen Manager to handle all the user
I/O. By convention, when the mouse is outside the work
area of the applications window, the mouse cursor form is
changed to an arrow. (This is only a convention and is not
required by GEM.) Thus, DEMO changes the mouse cur
sor form to an arrow as shown in Listing 5.7. When the

GEM DEMO 291

mouse comes back into the work area, DEMO changes it
back to the cross hairs form (see Chapter 6 for more dis
cussion of GEM conventions).

VOID hndl mouse()
{

if (m_out) graf_mouse(ARROW, OxOL);
else graf_mouse(monumber, mofaddr)}
m out = !m_out;

L i s t i n g 5 . 7 : DEMO Mouse Handler

Mouse Button Event Handler: hndl_button()

Next let's examine the procedure that DEMO goes
through to draw a picture on the screen. The depression
of the leftmost mouse button while the mouse is in the
work area triggers DEMO to begin tracing a line on the
screen. If the mouse is in the border area of the screen,
DEMO is asleep while the Screen Manager runs. Now the
first thing that hndLbutton() does is test to see if the cur
rent mouse coordinates are within the work area (see List
ing 5.8). How can the mouse not be in the work area, and
not be handled by the Screen Manager? What if the work
area is smaller than the maximum window work area size?

VOID hndl buttonO
{

if ((mousex >= work._area.g_x) && (mousey >= work._area.g_y) &&
(mousex < (work_area.g_x + work_area.g_w)) &&
(mousey < (work_area.g_y + work_area.g_h)))

draw_pencil(mousex, mousey);

L i s t i n g 5 . 8 : DEMO Mouse Button Handler

http://work._area.g_x
http://work._area.g_y

PROGRAMMER'S GUIDE TO GEM

Imagine that the user has resized the window to a size
so that it sits in the center of the screen with lots of
unused space between it and the physical screen edges.
The mouse can be in that area of the screen where it is
outside the work area, yet not in the border area where
the Screen Manager will begin handling it. This no-man's-
land is not available to DEMO as a drawing area. Further
more, the Screen Manager does not process user input
when the button is down before the mouse cursor moves
over the menu bar or border area. (Try it. Hold the button
down and run the mouse over the menu bar. No drop
down menus appear.) Finally, notice that DEMO is in a
w i n d _ u p d o t e () region, preventing any other process from
modifying the screen. It is for this reason that hndLbutton()
tests to see if the mouse is in the work area before hand
ing over control to draw_pencil() to trace a figure.

Drawing a Picture: d r a w _ _ p e n c i l ()

The first things that draw_pencil() does are to set the clip
ping rectangle to that of the work area (because the mouse
can move outside the DEMO work area) and to draw a line
(as shown in Listing 5.9). The clipping rectangle forces all
drawing to stay within the confines of the work area.
The code that is missing (see the complete listing in
Appendix D) does some general maintenance things like
setting the line style or eraser fill pattern. These tasks
aren't important to our discussion of drawing on the
screen, while the use of evnt_mul t i () is.

The evnt_mul t i () call is within a loop that tracks the
mouse a s the user moves it around the screen without
releasing the button. This evnt_mul t i () call looks for one of
the following events:

The user releases the left mouse button (a button up
event).

GEM DEMO 293

A tinner interrupt of 125 milliseconds.

The mouse leaves the rectangle described by its last
known position.

In Listing 5.10, we show the code that handles these three
events.

WORD drawpenciKx, y)
UWORD x, y;
{

UWORD pxy[4];
WORD done;
UWORD mflags;
UWORD locount, hicount;
UWORD ev_which, bbutton, kstate, kreturn, breturn;
GRECT tmp_area;

set clip(TRUE, &work_area);
pxyTo] = x; /* Save old mouse position */
pxy[l] = y;

...REFER TO APPENDIX D FOR MISSING CODE...

done = FALSE;
while (!done){

ev_which = evnt_multi(mflags,
0x01, 0x01, 0x00,
1, pxy[0], pxy[l], 1, 1,
0, 0, 0, 0, 0,
addr msg, locount, hicount,
fcpxyfc], &pxy[3], &bbutton, &kstate,
&kreturn, &breturn);

L i s t i n g 5 . 9 : DEMO Drawing Routine, Part 1

if (ev which & MU BUTTON)
{

if (!(mflags & MUTIMER)) graf_mouse(M_OFF, OxOL);
if (demoshade != PENERASER)

v_pline(vdi_handle, 2, (WORD *) pxy);
else

eraser((WORD) pxy[2], (WORD) pxy[3]);

}
else

graf_mouse(M_ON, OxOL);
done = TRUE;

if (ev which & MU TIMER)
{

graf_mouse(M_ON, OxOL);
mflags = MU BUTTON | MU Ml;

294 PROGRAMMER'S GUIDE TO GEM

if (Kmflags & MUTIMER))
graf_mouse(M_OFF, OxOL);

if (demo shade != PEN ERASER)
{

v_pline(vdi_handle, 2, (WORD *) pxy);
mflags = MU BUTTON|MU M1|MU TIMER;

}
else {

eraser((WORD) pxy[2], (WORD) pxy[3]);
graf mouse(MON.OxOL);

}

pxy[0] = pxy[2];
pxy[l] = pxy[3];

/* ends while */

L i s t i n g 5 . 1 0 : DEMO Drawing Routine, Part 2

First, if the user released the button, then d raw_penc i l ()
draws a line between the old mouse position and the new
mouse position using the VDI line-drawing primitive,
v_pl ine{) . This is true if the cursor is really a pencil. If it is
an eraser, then draw_penc i l () draws instead a filled rectangle
of the currently selected size with a fill color of white,
thereby erasing anything on the screen at those coordinates.

When the user releases the left button, control must be
returned to the main event handler (that is, to d e m o ()) , a s
this signals the end of drawing. The flag d o n e controls the
while loop in d r a w _ p e n c i l () and is set after d r a w _ p e n c i l ()
finishes tracing a line or erasing to ensure exit from the
event loop of d r a w _ p e n c i l () .

The second event that d r a w _ p e n c i l () waits for is a timer
interrupt. This interrupt is used because DEMO turns the
mouse cursor form, the cross hairs, off while the user
traces on the DEMO work area (the call to g ra f_mou$e() to
turn off the cursor is in the complete listing of d r a w _ p e n -
ci l () in Appendix D). DEMO makes the mouse form invisi
ble so that the mouse form doesn't get in the way of the
drawing. However, it is difficult to draw without a cursor,
because the user cannot see where on the screen the

}
else {

GEM DEMO 295

mouse is pointing to. S o DEMO makes the mouse cursor
form visible every 125 milliseconds or so. The mouse cur
sor form is turned off again a s soon as one of the other
events happen. This now-you-see-me-now-you-don't use of
the cursor form is merely a stylistic device that the crea
tors of DEMO chose. You must make your own decisions
about what looks good in your own application.

Finally, the last event that d r a w _ p e n c i l () handles is
mouse movement out of the specified rectangle (the l x l
rectangle at the old mouse coordinates). The button is still
down, but the user is moving the mouse, so that DEMO
must show the new line being drawn. The smoothness of
the line can be used to measure the speed at which
mouse interrupts are being handled in GEM; the choppier
the line, the more missed interrupts.

While the button is depressed, the event loop of
d r a w _ p e n c i l () is still active. Thus, the new mouse position
is saved a s the old position and control is passed to the
top of the event loop of evnt_mul t i () .

Finishing the Picture

Only when the user releases the left button does control
break out of the while loop of draw_penci l () , prepatory to
returning back to d e m o () . Before it does, the environment
must be cleaned up and the picture on the screen saved
into the draw buffer. Listing 5.11 shows these actions.

The reason d r a w _ p e n c i l () turns off clipping is that we
don't want to incur the overhead associated with clipping

set_clip(FALSE, &work_area);

graf_mouse(M_OFF, OxOL);
rast_op(3, &tmp_area, &scrn_mfdb, &draw_area, &draw_mfdb);
graf_mouse(M_ON, OxOL);

L i s t i n g 5 . 1 1 : DEMO Drawing Routine, Part 3

PROGRAMMER'S GUIDE TO GEM

if we don't need it. Clipping was necessary during the
actual drawing, but DEMO will not need it until control
returns to the drawing routine, d r a w _ p e n c i l () .

Finally, the new data must be copied from the screen
area to the draw buffer. The last several lines of code in
d r a w _ p e n c i l () are important in illustrating the use of the
various screen data structures. In this case, DEMO must
copy the information drawn on the screen into the RAM
buffer described by d r a w _ a r e a .

Notice that DEMO turns off the mouse cursor form
before the actual raster copy of the screen. When the
mouse form is on, the area of the screen that the form
lies on top of is saved into a save area managed by the
GEM VDI. This is exactly similar to what happens when a
drop-down menu is enabled. If we copy the screen to a
buffer, we want to copy everything that should be on the
screen, and nothing else. Unfortunately the mouse form
hides the underlying data, and it must therefore be turned
off so that the entire image is present on the screen.
Using g r a f _ m o u s e () to turn off the cursor restores the
image that was underneath the cursor. When DEMO
finishes copying, grcr f_mouse() turns the mouse cursor
back on.

The r a s t _ o p () call shows a logic operation of 3, a
source rectangle of the w o r k _ a r e a , and the destination
described by d r a w _ a r e a . All this means that we want to
copy the source to the destination, replacing the values of
the destination with the values of the source.

Message Handler: hndl_msg()

We are now ready to discuss the remaining type of
event that d e m o () waits for: mes sage events. A great deal
of DEMO concerns itself with processing messages . Most
of the routines that h n d l _ m s g () invokes are self-explanatory
and have already been covered to some extent either earlier

GEM DEMO 297

in the chapter (set_work()) or in Chapter 2 (wind_set() and
wind_calc()). It will nevertheless be informative to discuss
the application of these functions to the problem of man
aging user input. Before we do, it would be a good idea
to review the material in the section on GEM message
events in Chapter 2.

In Listing 5.12, notice first that the structure of
hndl_msg() is that of a large switch statement, governed by
the value of the mes sage (msg_buff[0]). unlike any of the
other handlers that are called from demo(), hndLmsg()
returns a Boolean value. If this value is true, then the user
either clicked on the close box or selected the "Quit" item
in the File menu. In either case, DEMO terminates, leav
ing the switch loop either through a break statement,
which signals that a false value was returned, or by return
ing directly from the switch with a true value.

BOOLEAN hndl msg()
{

WORD wdw_hndl;
GRECT work.;

wdw_hndl = msgbuff[3];

switch(msg_buff[0]) /* Message type */
{

case MN_SELECTED: /* Mouse moved to menu */

return(hndl_menu(wdw_hndl, msgbuff[4]));

case WM_REDRAW:
do_redraw(wdw_hndl, (GRECT *) &msg_buff[4]);
break;

case WMTOPPED: /* Place window on top */

wind_set(wdw_hndl, WFTOP, 0, 0, 0, 0) ;
break;

case WMCLOSED: /* Close the window */

return(TRUE);

case WM_FULLED: /* Full button clicked */

do_full(wdw_hndl);
break;

L i s t i n g 5 . 1 2 : DEMO Message Handler, Part 1

298 PROGRAMMER'S GUIDE TO GEM

h n d l _ m s g () examines ten messages , eight of which are
window-related. One more is menu-related, and the final
one is the screen redraw message . We will discuss those
mes sage s that effect a change in the window (including
the redraw message) before looking at the menu selection
message .

DEMO Window Management

Remember that all the window control points are out
side the work area of the window and are handled by the
Screen Manager. The Screen Manager sends mes sages to
the application, indicating what the user wants to do.
S o m e of the actions associated with the window-related
mes sage s include clicking on the window control points,
slider movement, window movement, window resizing, and
so on. First let's look at what happens when the user
clicks on the full box.

DEMO Full Message Handler: do_ fu l l ()

When the user clicks on the full box, three things can
happen: the window can be redrawn at its largest size, the
window can be redrawn at its previous size, or nothing
can happen. If the window is already at its largest size
when the full box is clicked on, the window is redrawn to
the immediately previous size. If the window is at some
size other than full, it is redrawn to its largest size. Noth
ing happens when the window has never been sized differ
ently from its initial state, and the window is at its largest
size. Only one level of past window sizing information is
kept, with the result that the application cannot select
through a complete size history of the window. GEM
maintains information about three states of the window
sizes: current, previous, and full.

GEM DEMO 299

When the full box is clicked on, the Screen Manager
sends a WMJ=ULLED mes sage to the waiting application. In
DEMO, hndl_msg() then invokes the do_full() function to
process the request (Listing 5.13).

VOID dofull(wh)
WORD wh;
{

}

GRECT prev;
GRECT curr;
GRECT full;

graf mouse(M_OFF,0x0L);

wind_get(wh, WF_FXYWH, &full.g_x, &full.g_y, &full.g_w, &full.g_h);
wind_get(wh, WFCXYWH, &curr.g_x, &curr.g_y, &curr.g_w, &curr,g_h);

if (rcequaK&curr, &full)){

wind_get(wh, WF_PXYWH, &prev.g_x, &prev.g_y,
&prev.g_w, &prev.g_h);

if (!(rcequaK&prev, &full))) {

graf_shrinkbox(prev.g_x, prev.gy, prev.g_w, prev.gh,
full.gx, full.gy, full.gw, full.gh);

wind_set(wh, WF_CXYWH, prev.gx, prev.g_y,
prev.gw, prev.g_h);

rc_copy(&save_area, &draw_area);
set work(TRUE);

}
}

else { /* Not full... */

rc_copy(&draw_area, &save_area);
graf_growbox(curr.g_x, curr.g_y, curr.gw, curr.gh,

full.g_x, full.g_y, full.g_w, full.g_h);
wind_set(wh, WF_CXYWH, full.g_x, full.g_y, full.g_w, full.g_h);
set work(TRUE);

}
graf mouse(M_ON,0x0L);

L i s t i n g 5 . 1 3 : DEMO Change to Full Screen and Back

do_full() immediately obtains information about the
previous and current window size and determines which
one of two states the present window is in: full or less
than full. If the window is currently full and the previous

300 PROGRAMMER'S GUIDE TO GEM

state was also full, then nothing needs to be done. How
ever, if the current size is the s a m e size a s the full size
and the previous size is not the full size, then DEMO must
redraw the window in the smaller, previous size.

The use of the routine g ra f_shr ink b o x () is again just for
effect, and the routine will only show the shrinking box
effect on the GEM version 1 system. It looks good to
show the outline of shrinking box just before sizing the
window down.

Now for the real magic, the call to w i n d _ s e t () , which sets
the values that define the current work area. In the process
of changing the values, the A E S also makes the necessary
changes to the values associated with the previous window
size (the full size never changes after window creation), but
this does not change the window on the screen. Instead, the
A E S sends a WM_REDRAW message to any waiting applica
tion. It's important to remember that all GEM applications
must be prepared to redraw the screen.

Although a redraw message has been sent, DEMO
won't receive it until control returns to the topmost loop
in d e m o () . Before this happens, DEMO must update the
value of d r a w _ a r e a to reflect the previous size, and update
the work area. s e t _ w o r k () issues a wind__get() to obtain the
size of the work area of the current window. But notice
that the calls to w i n d _ s e t () just prior to s e t _ w o r k () forced
these values to reflect the new size. Thus s e t _ w o r k ()
updates the values in w o r k _ a r e a with those of the newly
sized window. (Note that the window still hasn't been
redrawn to actually show this.)

Finally, control is passed back to h n d l _ m s g () , which
returns to the main event loop, d e m o () , in order to wait
for any new messages , one of which will be the WM_RE-
DRAW. Upon receiving this message , d e m o () pas ses control
to h n d l _ m s g () , which calls d o _ r e d r a w () to rewrite the
screen.

GEM DEMO 301

Redrawing the DEMO Window: do_redraw()

The problem at this point is that the image on the
screen has changed and the window needs to be redrawn.
We presented an overview of this process in the section
on window redrawing in Chapter 2 and through a code
example in Chapter 4. What happens is that the applica
tion walks down the list of rectangles that make up the
image on the screen. For each rectangle, if there is any
intersection between it and the area that has changed
(that is, the dirty rectangle), then that intersection is
redrawn. Listing 5.14 shows the DEMO redrawing routine.

do_redraw(wh, area)
wh;
*area;

GRECT box;
GRECT dirty_source;

graf_mouse(M_OFF, OxOL);

wind_get(wh, WFFIRSTXYWH, &box.g_x, &box.g_y, &box.g_w, &box.g_h);
while (box.g_w && box.g_h){

if (rc_intersect(area, &box)){
if (rc_intersect(&work_area, &box)){

dirty_source.g_x = (box.g_x - work_area.g_x) +
drawarea.gx;

dirty_source.g_y = (box.gy - work_area.g_y) •
draw_area.g_y;

dirty_source.g_w = box.g_w;
dirty_source.g_h = box.g_h;

rast_op(3, &dirty_source, &draw_mfdb,
&box, &scrn mfdb);

}
}
wind_get(wh, WFNEXTXYWH, &box.g_x, &box.g_y, &box.g_w, &box.g_h);

} /* end while more rectangles... */
graf_mouse(M_ON, OxOL);

L i s t i n g 5 . 1 4 : DEMO Redraw Routine

do_redraw() in DEMO is the routine that performs this
function. It is only called from hndLmsg() when a WM_RE-

DRAW mes sage is received. The redraw operation continues
while there is a rectangle in the list of rectangles for the

VOID
WORD
GRECT
{

}

302 PROGRAMMER'S GUIDE TO GEM

screen. w i n d _ g e t () returns width and height values of 0 to
signal the end of the rectangle list. The d o _ r e d r a w () func
tion follows the procedure a s already outlined in Chapters
2 and 4, but it may be difficult to follow the normalization
of the dirty coordinates. L e t s briefly look at this process.

The equation for the x and y points follows the s a m e
pattern a s

s o u r c e = dirty - w o r k + d r a w

What is happening here is that the point is being normal
ized to the draw buffer. Thus, the first calculation (dirty -
work) normalizes the point within the movement of the
w o r k _ a r e a on the screen. We know that the dirty rectangle
must have a coordinate value that exceeds the corre
sponding w o r k _ a r e a coordinate (for example, b o x . g _ x >
work__area .g_x) . Subtracting the dirty point away from
the work area point therefore gives an absolute value
for the coordinate, which when added to the corres
ponding d r a w _ a r e a coordinate gives us the actual point
in draw__area that describes the area that changed.

DEMO Slider Activity

The next three messages that hnd l_msg () processes are
WM_ARROWED, WAA_HSLID, and WM_VSLID. First, let's look at
what DEMO does when the user clicks on the slider area,
which results in a WM_ARROWED message. Listing 5.15 shows
the section of hnd l_msg () that deals with this activity.

case WM_ARROWED: /* Mouse touched slider area */

switch(msg buff[A])
{

case WAUPPAGE:
drawarea.gy = max(draw_area.g_y-draw_area.g_h, 0) ;
break;

case WADNPAGE:
draw_area.g_y += draw_area.g_h;
break;

GEM DEMO 303

case WAUPLINE:
drawarea.gy = max(draw_area.g_y - YSCALE(16), 0) ;
break;

case WADNLINE:
drawarea.gy += YSCALE(16);
break;

case WALFPAGE: /* Page left */
draw_area.g_x = max(draw_area.g_x-draw_area.g_w, 0) ;
break;

case WARTPAGE: /* Page right */
draw_area.g_x += draw_area.g_w;
break;

case WA_LFLINE: /* Column left */
draw_area.g_x = max(draw_area.g_x - 16, 0) ;
break;

case WA_RTLINE: /* Column Right */
draw_area.g_x += 16;
break;

}

set_work(TRUE);
restore_work();
break;

L i s t i n g 5 . 1 5 : DEMO Message Handler, Part 2

Depending on what part of the slider area the user
clicked on, different actions take place—for example, the
actions of moving up or down a page or line. In this situa
tion, the contents of msg_buf f [4] provide the subcode nec
essary to identify what to do, which is either to add or
subtract the appropriate value from the right point. For
instance, if user wants to move the image up one page
unit, then all that has to happen is that d r a w _ a r e a . g _ y be
shifted by a value equal to d r a w _ a r e a . g _ h . Of course, the
new value of d r a w _ a r e a . g _ y cannot be less than 0.

Remember that as h n d l _ m s g () shifts the values in dra-
w _ a r e a DEMO eventually will have to show the new image
area in the work area on the screen. The call to s e t _ w o r k ()
at the end of the switch in the WM_ARROWED section really
only updates the position of the sliders, a s w o r k _ a r e a has
not changed. It is not until the call to re s to re_work () that
the screen gets changed.

PROGRAMMER'S GUIDE TO GEM

Finally, lets examine how DEMO updates the slider posi
tion in the slider area. This position reflects how much of
d r a w _ a r e a is visible. If the slider is in the center of the slider
box, only the edges of d r a w _ a r e a are not visible. The A E S
returns the new relative position of the slider in msg_buff[4]
with the messages WA/LHSLID and WAA_VSLID. msg_buff[4] is an
integer value from 0 to 1000 that represents the position of
the slider.

In our discussion of Listing 5.16, we will talk only
about moving the horizontal slider since the explanation
will be relevant to moving the vertical slider a s well. When
the WMJHSLID mes sage is received, a new d r a w _ a r e a . g _ x
value must be calculated. UMUL_DIV(x,y,z) computes the
value of (x*y)/z. DEMO calculates the new x position by
adjusting the x position first within the physical screen
(draw__mfdb.fwp - d raw_area . g__w) , multiplying that figure
by the new relative slider position (msg_buf f [4]) , and then
normalizing that number back within the range of 1000.

case WMHSLID: /* Horizontal slider position changed */

drawarea.gx = align_x(UMUL_DIV(draw_mfdb.fwp-draw_area.g_w,
msg_buff[4], 1000));

setwork(TRUE); /* Get new work area and update slider */
restore_work();
break;

case WMVSLID: /* Vertical slider position changed */

draw_area.g_y = UMUL_DIV(draw_mfdb.fh - draw_area.g_h,
msg_buff[4],1000);

setwork(TRUE);
restore_work();
break;

L i s t i n g 5 . 1 6 : DEMO Message Handler, Part 3

We have finished discussing what DEMO does with
respect to slider activity. The next two mes sage s that
h n d L m s g () processes are WM_SIZED and WMJWDVED, which

GEM DEMO 305

means that the user either clicked on the size button and
resized the window or dragged the move bar around the
screen, moving the window.

Sizing the DEMO Window

If the size button (or the move bar) has been clicked
on, then the A E S will draw the outline of a rubber box
around the work area. The rubber box is visible a s long as
the user holds down the left button. The rubber box
changes shape to reflect the movement of the mouse a s
the user resizes or moves the window. When the user
releases the button, the Screen Manager sends either the
WMJVAOVED mes sage or the WM_SIZED mes sage to the
owner of the window that was resized or moved, along
with the new coordinates.

When a window is resized, the application must recom
pute the size of the window, whereas when a window is

case WM_SIZED: /* Size button clicked. */

windcalcd, OxOfef, msg_buff[4], msg_buff[5], msg_buff[6],
msgbuff[7], &work.g_x, &work.g_y, &work.g_w,
&work.g_h);

work.gx = align_x(work.g_x);
work.gw = align_x(work.g_w);

wind_set(wdw_hndl, WF_CXYWH, msg buff[4],
msg_buff[5], msg_buff[6T, msgbuff[7]);

setwork(TRUE);
break;

case WM_M0VED: /* Window has been moved */

msg_buff[4] = align_x(msg_buff[4]);
wind_set(wdw_hndl, WF_CXYWH, align_x(msg_buff[4]) - 1,

msg_buff[5], msg_buff[6], msg_buff[7]);
set_work(FALSE);
break;

} /* End switch */
return(FALSE);

}

L i s t i n g 5 . 1 7 : DEMO Message Handler, Part 4

PROGRAMMER'S GUIDE TO GEM

moved, the application justs resets the work area coordi
nates. Listing 5.17 shows the section of h n d l _ m s g () that
handles window movement and resizing.

In the case of WM_SIZED, h n d l _ m s g () must recalculate
the size of the window using wind_ca l c () instead of
w i n d _ g e t () , because the new sizes haven't been set yet.
w i n d _ c a l c () also computes the theoretical sizes from the
number of components in the window (an input parameter
to w i n d _ c a l c ()) . w i n d _ g e t () does not compute the sizes, but
instead returns the values from internal variables.

The new coordinates (in msg_buf f [4]) that are passed
along with the WAA_AAOVED mes sage include the border
area. Thus the call to w i n d _ c a l c () a sks for the new work
area coordinates given the new border area coordinates.
From these coordinates, the values for the current window
configuration are set, which automatically updates the
remaining two sets of window sizes (previous and full). In
addition, as soon as the current window size is set, the
A E S sends a WM_REDRAW mes sage to the owner of the
window, resulting in the new work area being drawn on
the screen. But before that mes sage can be received and
responded to, h n d l _ m s g () updates the new value of the
work area using the s e t _ w o r k () call both in the WM_SIZED
and the WM_AAOVED messages .

Notice that in Listing 5.17, the calls to s e t_work() in the
WAA_SIZED case and the WAA_MOVED case have different input
parameters. The parameter to se t_work() relates to the updat
ing of the slider area. When a window is resized, the sliders
need to be updated too, because the amount of d r a w _ a r e a
that is now visible in the work area has changed. When a
window moves, the slider area does not need to change
because the entire window moved, not some piece of it
within the work area. Thus the sliders still show the correct
ratio of visible to nonvisible image in the window. (Note that
this is the only place in DEMO that se t_work() is ever called
with a value of false.)

GEM DEMO 307

USING OBJECTS IN DEMO

Now that we have discussed how DEMO uses windows,
events, messages , and so on, we are ready to talk about
objects, which provide the basis for a lot of the user's
input into DEMO. The topic of objects will concern us for
the rest of this chapter. In contrast to the more academic
treatment of objects in Chapter 2 , we are now going to
see how objects get used within the context of a working
application. DEMO uses objects extensively a s the sole
means of offering a choice of menus and dialogs to the
user. This is hardly surprising since both menus and
dialogs are another manifestation of objects. In fact,
almost half of the A E S libraries—the Object, Menu, Form,
Resource, and File Selector Libraries—deal with objects in
some way.

All the object trees that DEMO uses are contained
within one resource file (DEMO.RSC) created by the
Resource Construction Set. Appendix C shows you how to
create some of the object trees for DEMO step-by-step.
Appendix D shows you the complete listing of the DEMO
resource file created by the RCS. Appendix D lists not
only the object tree r s_object , but the bit image for the
pencil and eraser and the strings that the object specifica
tion fields will point at. For now, we will begin by examin
ing the structure of the object trees for DEMO.

DEMO Object Header File: demo.h

It is possible to associate defined names with each
object in a tree. These names are another way of repre
senting the indices of each object in the tree, but humans
remember names better than numbers. Thus the RCS
allows you to name an object, and then produces a .H file

PROGRAMMER'S GUIDE TO GEM

containing those names so that you can use the names in
your program.

#define DEMOMENU 0 /* TREE */
#define DEMOINFO 8 /* OBJECT in TREE #0 */
#define DEMODESK 3 /* OBJECT in TREE #0 */
#define DEMOFILE 4 '/* OBJECT in TREE #0 */
#define DEMOOPTS 5 /* OBJECT in TREE #0 */
#define DEMOLOAD 17 /* OBJECT in TREE #0 */
#define DEMOSAVE 18 /* OBJECT in TREE #0 */
#define DEMOSVAS 19 /* OBJECT in TREE #0 */
#define DEMOABAN 20 /* OBJECT in TREE #0 */
#define DEMOQUIT 21 /* OBJECT in TREE #0 */
#define DEMOPENS 23 /* OBJECT in TREE #0 */
#define DEMOERAP 25 /* OBJECT in TREE #0 */
#define DEMOINFD 1 /* TREE */
#define DEMOOK 6 /* OBJECT in TREE #1 */
#define DEMOPEND 3 /* TREE */
#define DEMOPSOK 10 /* OBJECT in TREE #3 */
#define DEMOCNCL 12 /* OBJECT in TREE #3 */
#define DEMOOVWR 0 /* STRING */
#define DEMONWDW 1 /* STRING */
#define DEMOSVAD 2 /* TREE */
#define DEMOSOK 2 /* OBJECT in TREE #2 */
#define DEMOSCNL 3 /* OBJECT in TREE #2 */
#define DEMONAME 4 /* OBJECT in TREE #2 */
#define DEMOIMG 3 /* OBJECT in TREE #1 */
#define DEMOPCLR 18 /* OBJECT in TREE #3 */
#define DEMOPFIN 3 /* OBJECT in TREE #3 */
#define DEMOPMED 4 /* OBJECT in TREE #3 */
#define DEMOPBRD 5 /* OBJECT in TREE #3 */
#define DEMOEFIN 6 /* OBJECT in TREE #3 */
#define DEMOEMED 7 /•* OBJECT in TREE #3 */
#define DEMOEBRD 8 /* OBJECT in TREE #3 */

L i s t i n g 5 . 1 8 : DEMO Object Header File

The file DEMO.H, shown in Listing 5.18, was created
by the RCS and lists all the named objects in the resource
tree for DEMO. Notice that there are four defined trees
and two alerts (the alerts are really trees):

DEMOMENU (tree 0).

DEMOINFD (tree 1).

DEMOSVAD (tree 2).

DEMOPEND (tree 3).

1

2

3

4

GEM DEMO 309

5 Alert for overwriting an existing file.

6 Alert for using all the windows.

Instead of looking at each tree, we will only concen
trate on the main menu tree (DEMOMENU) and the tree for
the Pencil/Eraser Selection dialog (DEMOPEND). You will be
able to understand the others after we finish with DEMO
MENU and DEMOPEND.

A Detailed Look at the Object Trees

Tables 5.2, 5.3, 5.4, and 5.5 show the object trees for
DEMO. We have only shown the first six elements of the
actual object, leaving off the object specification field and
the x, y, width, and height fields in order to allow for
space in the tables to show the strings that the specifica
tion field might point to. Appendix B shows the full and
unedited object tree listing. Please remember that while
the object specification field may contain a pointer, un
til the program gets loaded into memory there is no way
that the tree can contain an actual valid pointer. There
fore, some object specification fields may look funny.

bject N e x t H e a d Tail T y p e F l a g s S t a t e A s s o c i a t e d S t r i n g

0 - 1 1 6 G J B O X NONE NORMAL

1 6 2 2 G _ B O X NONE NORMAL

2 1 3 5 G J B O X NONE NORMAL

3 4 - 1 - 1 G_TITLE NONE NORMAL Desk

4 5 - 1 - 1 G_TITLE NONE NORMAL File

5 2 - 1 - 1 G_TITLE NONE NORMAL Options

6 0 7 22 G J B O X NONE NORMAL

7 16 8 15 G _ B O X NONE NORMAL

PROGRAMMER'S GUIDE TO GEM

O b j e c t N e x t H e a d Tail T y p e F l a g s S t a t e A s s o c i a t e d S t r i n g

8 9 - 1 - 1 G_STR1NG SELECT. NORMAL About GEM Demo . . .

9 10 - 1 - 1 G_STRING NONE DISABLED

10 11 - 1 G_STRING NONE NORMAL 1

11 12 - 1 - 1 G_STRING NONE NORMAL 2

12 13 - 1 - 1 G_STRING NONE NORMAL 3

13 14 - 1 - 1 G_STRING NONE NORMAL 4

14 15 - 1 - 1 G_STRING NONE NORMAL 5

15 7 - 1 - 1 G__STRING NONE NORMAL 6

16 22 - 1 - 1 G _ B O X NONE NORMAL

17 18 - 1 - 1 G_STRING SELECT. NORMAL Load

18 19 - 1 - 1 G_STRING NONE DISABLED S a v e

19 20 - 1 - 1 G_STRING SELECT. NORMAL S a v e as . . .

20 21 - 1 - 1 G_STRING NONE NORMAL Abandon

21 16 - 1 - 1 G_STRING SELECT. NORMAL Quit

22 6 23 2 5 G _ B O X NONE NORMAL

2 3 24 - 1 - 1 G_STRING NONE NORMAL Pencil/Eraser
Selection

24 2 5 - 1 - 1 G_STRING NONE DISABLED

2 5 22 - 1 - 1 G_STRING L A S T O B NORMAL Erase Picture

T a b l e 5 . 2 : DEMOMENÜ Object Tree

GEM DEMO

O b j e c t N e x t H e a d Tail T y p e F l a g s S t a t e A s s o c i a t e d S t r i n g

0 - 1 1 4 G J B O X NONE OUTLINED

1 2 - 1 - 1 G_STRING NONE NORMAL S a v e GEM Demo
Pictures a s

2 3 - 1 - 1 G_BCJTTON 0x7 NORMAL OK

3 4 - 1 - 1 G_BCJTTON 0x5 NORMAL Cancel

4 0 - 1 - 1 G _ F T E X T 0x28 NORMAL .DOO

T a b l e 5 . 3 : DEMOSVAD Object Tree

O b j e c t N e x t H e a d Tail T y p e F l a g s S t a t e A s s o c i a t e d S t r i n g

0 - 1 1 11 G _ B O X NONE OUTLINED

1 2 - 1 - 1 G_STRING NONE NORMAL GEM Demo

2 1 - 1 G_STRING NONE NORMAL GEM S a m p l e
Application

3 4 - 1 - 1 G J M A G E NONE NORMAL (DRI Logo)

4 5 - 1 - 1 G_STRING NONE NORMAL Authors

5 6 - 1 - 1 G_STRING NONE NORMAL

6 7 - 1 - 1 G_BUTTON 0x7 NORMAL OK

7 8 - 1 - 1 G_STRING NONE NORMAL Tom Rolander

8 9 - 1 - 1 G_STRING NONE NORMAL Tim Oren

9 10 - 1 - 1 G_STRING NONE NORMAL Phillip Balma

10 11 - 1 - 1 G_STRING NONE NORMAL Version 1.2, February
1, 1986

11 12 - 1 - 1 G_STRING L A S T O B NORMAL Digital Research, Inc.

T a b l e 5 . 4 : DEMOINFD Object Tree

PROGRAMMER'S GUIDE TO GEM

O b j e c t N e x t H e a d Tail T y p e F l a g s S t a t e A s s o c i a t e d S t r i n g

0 - 1 1 13 G _ B O X NONE OUTLINED

1 2 - 1 - 1 G_STRING NONE NORMAL GEM Demo
Pencil/Eraser Selec.

2 9 3 8 G J B O X NONE NORMAL

3 4 - 1 - 1 G J M A G E 0x11 NORMAL

4 5 - 1 - 1 G J M A G E 0x11 NORMAL

5 6 - 1 - 1 G J M A G E 0x11 NORMAL

6 7 - 1 - 1 G J M A G E 0x11 NORMAL

7 8 - 1 - 1 G J M A G E 0x11 NORMAL

8 2 - 1 - 1 G J M A G E 0x11 NORMAL

9 10 - 1 - 1 G__STRING NONE NORMAL Pens:

10 11 - 1 - 1 G_BCJTTON 0x7 NORMAL OK

11 12 - 1 - 1 G_STRING NONE NORMAL Erasers:

12 13 - 1 - 1 G_B(JTTON 0x5 NORMAL Cancel

13 14 - 1 - 1 G J B O X NONE NORMAL

14 15 - 1 - 1 G_STRING NONE NORMAL Pen Colors:

15 18 16 17 G J B O X NONE NORMAL

16 17 - 1 - 1 0x1 I B TOCJCHEXIT NORMAL

17 15 - 1 - 1 0x21B TOCJCHEXIT NORMAL

18 23 19 22 G J B O X NONE NORMAL

19 20 - 1 - 1 0x31B TOCJCHEXIT NORMAL

20 21 - 1 - 1 0 x 3 1 B TOCJCHEXIT NORMAL

21 22 - 1 - 1 0 x 3 1 B TOCJCHEXIT NORMAL

2 2 18 - 1 - 1 0x31B TOCJCHEXIT NORMAL

23 24 - 1 - 1 G_BOXCHAR NONE- NORMAL

24 2 5 - 1 - 1 G_STRING LASTOB NORMAL Selected:

T a b l e 5 . 5 : DEMOPEND Object Tree

GEM DEMO 313

It's important to note that the Resource Construction
Set builds the tree in the order that you process the
objects, which may not necessarily be the way that they
appear on the display.

THE USEFULNESS OF THE RCS

Lets reemphasize the utility of the RCS. While some of you might not
think it an arduous task to build these trees, consider the level of detail
involved in just placing the object on the actual screen (these coordinates
are the final four words in the object descriptor). The RCS allows you to
move the object around on the screen and expand it or contract it until
you are satisfied with its appearance on the screen. Then it automatically
fills in the x, y, width, and height values associated with that object with
respect to the root object in the tree. This feature alone is invaluable, as
without it you would have to calculate by hand the coordinates of the final
location of the root of the object tree. Then you would have to go through
each of the objects in the tree and set their coordinates relative to the coor
dinates of the root.

DEMOMENU Object Tree

First lets look at the simpler of the two trees we will
be discussing, DEMOMENU. It has 26 objects, 19 of which
are strings of some sort (either titles or strings). Figure 5.5
shows the way the tree looks with respect to pointers to
objects. The text ("Desk," "Quit," and so on) is placed
there to give you a reference point. To save space, we
have left out the pointer to the next sibling between the
G_STRING objects themselves (object 3 points to object 4,
object 4 points to object 5, and so on). The objects that
touch in Figure 5.5 indicate a sibling relationship.

PROGRAMMER'S GUIDE TO GEM

Selection

F i g u r e 5 . 5 : DEMOMEMU Object Tree I

Referring to Table 5.2 again, notice that all the object
types are defined by GEM (either G_BOX, GJBOX, GJTITLE,
or G_STRING). In the DEMOPEND tree, we will see some user-
defined objects. If the flags field shows SELECTABLE, that
means the object can be selected. Notice that object 1 8 s
state is DISABLED. This means that upon the initial invoca
tion of this menu, the user cannot save the doodle into a
known file. This makes sense a s the user has not opened
a file and identified it to DEMO, so DEMO has no name
under which to save it. When the user either opens a file
or saves the doodle using the "Save As . . ." menu item,
DEMO has a file name to use a s the name of the file in
which to save the doodle. Of course, as soon as that hap
pens, the state of this object will change from DISABLED,
and its flags field will become SELECTABLE. We want to
make it clear that GEM does not do any of this for you
automatically. The application must perform all this object
manipulation and changing of states itself.

GEM DEMO 315

A lot of the code of DEMO concerns itself with turning
on or off various fields of DEiMO's object trees. The Screen
Manager selects the item in the menu, for instance, and it is
the application's job to "deselect" it, since you certainly don't
want to the user to see the last selected item highlighted
the next time the menu drops down.

This brings up the point that the ability to select some
thing in GEM is indicated by the appearance of the item.
If it is not selectable, then it appears in a lighter shade
than the selectable counterpart. This use of highlighting is
a GEM convention (see Chapter 6 for more information
about conventions).

While Figure 5.5 does not show the type of object, in
Figure 5.6 the object tree is restructured to show the rela
tionship between the types. The boxes formed by dashed
lines are G J B O X s , and solid-lined boxes are G_BOXs. The
small numbers indicate the object index.

3 Desk v F ') e " ! "̂ "pX'™?:

s About GEM DEMO

t 0 1
11 2

1 2 3

7 5 6

"Load
'•Save
T 9Save As..
2 0Abandon
2 , Qui t

[22
^Pencil/Eraser Selection
24
2 5Erase Picture

F i g u r e 5 . 6 : DEMOMEMU Object Tree (II)

DEMOPEND Object Tree

Refer to both Table 5.5 and Figure 5.7 to see the last
example of an object tree that we will study. The dialog
DEAAOPEND, shown in Figure 5.7, is important because of

PROGRAMMER'S GUIDE TO GEM

the way in which DEMO manipulates the elements of the
tree and also because it is an example of user-defined
objects.

GEM Deno Pen/Eraser Selection

Pens: , # nn

Erasers: 0 D n I Cancel I

Pen Colors: \¥§wmmu]

Selected: Q

F i g u r e 5 . 7 : Pencil/Eraser Selection Dialog

DEMOPEND uses some different object types than DEMO-
MENU: GJMAGE, G_BUTTON, G_BOXCHAR, and three user-
defined types. The GJMAGE objects refer to the bit pattern
that appears on the screen to denote the thickness of either
the pencil or eraser. The patterns used here were built using
the GEM Icon Editor and were included by the RCS when it
built the DEMO.RSC file. The object specification field
points to the bit pattern that is to be displayed.

The G_BUTTON objects are types that contain text within
a box and are usually used by the radio buttons to display
"OK" and "Cancel". The object specifications of these
objects point to a null-terminated string.

G_BOXCHAR types are very similar to G_BUTTON, except
that G_BOXCHAR objects contain only one character, and
the object specification contains the character as well a s
information about the color of the character, instead of a
pointer to text.

The three user-defined objects refer to the color selec
tor of the dialog. Here the forward and backward arrows,
as well a s the four visible color choices, are user-defined.
By that we mean that they cannot be manipulated directly
by the AES , but are controlled by the application. In this

GEM DEMO 317

case, there are three things that happen when the user
clicks on the color selector.

First, if the forward arrow is selected, then the four
choices must be moved ahead by one item. Thus, a field
of showing " 2 3 4 5 " shifts to "3456" . As there are only 15
colors to choose from, when the last color becomes vis
ible in the selector, the next color to be displayed must be
the first or " 1 " . Thus, "CDEF" gets changed to " D E F 1 " .
The forward arrow is a user-defined object type of 0x1 IB .

Second, if the backward arrow is selected, then the
logically similar thing must occur: " 2 3 4 5 " gets changed to
"1234" . When the first color becomes visible, the next
color to be displayed must be the last color, "F" . Thus,
"1234" gets changed to "F123" . The backward arrow
object type is a 0 x 2 I B .

Third, if a particular visible color gets clicked on, then
object 23 (see Table 5.5), which is a G_BOXCHAR that
shows which color is currently selected, must be changed
to show the new currently selected color. This user-defined
object type is a 0 x 3 I B .

Now let's look at s o m e of the code and see exactly
how DEMO manipulates objects. We will first consider the
DEMOMENU tree manipluation, and then move on to the far
more complicated DEMOPEND tree.

A Walk Through DEMOMENU

The object handler code starts off innocently enough.
In a very top-down fashion, a MN_SELECTED mes sage is sent
from the Screen Manager to DEMO that something hap
pened in the menu bar area of the screen. As shown in
Listing 5.12, h n d l _ m s g () passes the mes sage on to
h n d l _ m e n u () , which is shown in Listing 5.19.

PROGRAMMER'S GUIDE TO GEM

WORD hndl_menu(title, item)
WORD title, item;
{

LONG tree;
GRECT box;

graf_mouse(ARROW, OxOL);
switch (title) {
case DEMODESK:

if (item == DEMOINFO) {
objc_xywh(addr_menu, DEMODESK, &box);
rsrc_gaddr(R_TREE, DEMOINFD, &tree);
hndldiaKtree, 0, box.gx, box.gy, box.gw, box.gh);
desel obj(tree, DEMOOK);

}
break;

...REFER TO APPENDIX D FOR MISSING CODE ...

case DEMOOPTS:
switch (item) {
case DEMOPENS:

do_penselect();
break;

case DEMOERAP:

rast_op(0, &scrn_area, &scrn_mfdb,
&scrn_area, &draw_mfdb);

restore_work();

break;
1

}
menutnormal(addrmenu,t i 11e,TRUE);
graf_mouse(monumber, mofaddr);
return (FALSE);

}

L i s t i n g 5 . 1 9 : DEMO Menu Handler

For the sake of illustration, let's suppose that the user
clicked on the "About GEM Demo . . ." item in the DEMO
DESK menu. (This menu will be in a different place on the
screen and titled differently depending on the version of
GEM that the user is running. S e e Figures 5.1 and 5.2.)
DEMO must now display the information in the DEMOINFD
dialog.

Please be careful not to get confused between the the
DEMOINFD tree and the DEMOINFO menu item in the DEMO
DESK menu. It is easy to misread the " D " for an "O" . The

GEM DEMO 319

DEMOINFD tree is the name of the dialog that is displayed
when the DEMOINFO menu item is selected.

There are two values passed to hndl_menu(): the object
index of the menu that was selected (DEMODESK), and the
object index of the item that was selected (DEMOINFO) in
that menu.

First hndl_menu() changes the mouse cursor to an
arrow form, in keeping with the GEM convention of using
an arrow mouse form when dealing with the application's
resources. Using a switch statement, hndLmenu decodes
the message . In our example, we will look only at the first
part of the switch, corresponding to the DEMODESK case.

There is only one selectable item in this menu that
concerns DEMO: DEMOINFO. The other items refer to any
desk accessories that get loaded. An application does not
have to worry about managing any of the desk accesso
ries resources, so DEMO just ignores any other item
selection.

The next four lines of code reveal the basic set of
activities that must occur when a dialog gets put on the
screen. (Note that o b j c _ x y w h () is not an A E S function. It
has an unfortunate name in that while it is descriptive, it
looks too much like the C binding names of the A E S
Object Library.) o b j c _ x y w h () returns the coordinates of the
DEMODESK tree relative to the screen. The only reason for
getting this information is to have a starting point when
we draw an expanding/shrinking box later on. The entire
call can be excised without danger.

The call to r s r c _ g a d d r () returns the address of the
DEMOINFD tree in the resource tree. DEMO uses this infor
mation in the next routine that is called, hndl_djal().

Dialog Handler: hndl_dial()

hndl_dial()t shown in Listing 5.20, is called by all
the routines in DEMO that use dialogs: hndl_menu(),

PROGRAMMER'S GUIDE TO GEM

diaLname() , and do_penselect(). The way that DEMO dis
plays a dialog demonstrates all the steps necessary for
handling objects, as well as some optional steps to make
things look good.

There have been some changes to the form_dial() func
tion in version 2 . As mentioned in Chapter 2 s discussion
of the Form Library, form_dial() no longer draws an
expanding or shrinking box. Neither does it reserve or
release space. In fact, it has become quite unclear what
purpose form_dial() serves in the new version of GEM.

WORD hndldiaKtree, def, x, y, w, h)
LONG tree;
WORD def;
WORD x, y, w, h;
{

WORD xdial, ydial, wdial, hdial, exitobj;
WORD xtype;

form_center(tree, &xdial, &ydial, &wdial, &hdial);
form_dial(0, x, y, w, h, xdial, ydial, wdial, hdial);
f ormdiaK1, x, y, w, h, xdial, ydial, wdial, hdial);

objc_draw(tree, ROOT, MAXDEPTH, xdial, ydial, wdial, hdial);

FOREVER /* Get the user's input */
{

exitobj = form_do(tree, def) & 0x7FFF;
xtype = LWGET(OB_TYPE(exitobj)) & OxFFOO;
if (Ixtype) break;
xtend_do(tree, exitobj, xtype);

form_dial(2, x, y, w, h, xdial, ydial, wdial, hdial);
form_dial(3, x, y, w, h, xdial, ydial, wdial, hdial);

return (exitobj);
}

L i s t i n g 5 . 2 0 : DEMO Dialog Handler

DEMO also centers the dialog and draws expanding/
shrinking boxes (in version 1). The call to f o r m _ c e n t e r ()
gets the screen coordinates so that the DEMOINFD tree is
displayed in the center of the screen.

The dialog still has not appeared on the screen. The
call to o b j c _ d r a w () does the final drawing, and displays the
dialog. This routine only displays a s much of the tree a s

GEM DEMO 321

you specify in the third parameter (here AAAX__DEPTH). None
of the trees in DEMO exceed a depth of 10.

All the user interaction that is not controlled by the
user-defined objects is handled by the f o r m _ d o () . (The
source code for this routine is distributed with the Devel
oper's Kit.) Because DEMOINFD only allows the user to
select the OK button, f o r m _ d o () will not return until that
has happened. The index of the selected object is the
return value.

Let's defer most of the discussion about the code
inside the forever loop of hndl_dial() until we discuss the
user-defined objects. Right now, DEMO masks off the sign
bit of the returned object index value, and then finds the
type of selected object. All the predefined object types are
masked off by the mask OxFFOO. Since the object type of
the OK button in DEMOINFD is a G_BUTTON (OxOOlA),
DEMO breaks out of the loop.

Now all that has to be done is to back out, restoring
the environment a s we go. hndl_dial() returns to the
hndl_menu(), which deselects the DEMOINFO item in the
DEMODESK menu.

Handling User-Defined Objects

We have just seen the basic model of how object trees
are handled, and how a user interacts with them. In some
circumstances, you will need to use your own defined
objects because GEM may not supply what you need.
DEMO demonstrates such a case. In DEMO the color
selection bar is not one of the tools supplied by GEM.
Let's look at this user-defined object now.

User-Defined Color Selection

When hndl_menu() identifies that the object DEMOPENS
was selected, it passes control to the routine do_pense-
lect(), which is shown in Listing 5 .21 . As in the previous

PROGRAMMER'S GUIDE TO GEM

section, DEMO obtains the coordinates of the DEMOPENS
object relative to the screen, and uses them solely to draw
an expanding/shrinking box for effect later on (in version
1 only). And again, r s r c _ g a d d r () returns the address in
memory of the root of the DEMOPEND tree.

VOID dopenselectO /* use dialog box to input selection */
{ /* of specified pen/eraser */

WORD exitobj, psel_obj, color;
LONG tree, bind[2];
GRECT box;

objc_xywh(addr_menu, DEMOPENS, &box);
rsrc_gaddr(R_TREE, DEMOPEND, &tree);

switch (demopen) {
case PEN_FINE:
sel_obj(tree, (demoshade != PEN_ERASER)?DEMOPFIN:DEMOEFIN);
break;

case PEN_MEDIUM:
sel_obj(tree, (demoshade != PEN_ERASER)?DEMOPMED:DEMOEMED);
break;

case PENBROAD:
selobjTtree, (demoshade != PEN_ERASER)?DEMOPBRD:DEMOEBRD);
break;

}
set_select(tree, DEMOPCLR, penshade - 1, bind, colorsel);

exit_obj = hndl_dial(tree, 0, box.g_x, box.g_y, box.gw, box.g_h);

for (pselobj = DEMOPFIN; psel_obj <= DEMOEBRD; pselobj**)
if (LWGET(OB_STATE(psel_obj)) & SELECTED)

desel_obj(tree, pselobj);
break;

}

...REFER TO APPENDIX D FOR MISSING CODE...

L i s t i n g 5 . 2 1 : DEMO Pencil/Eraser Selection

The next set of instructions essentially does the following:

- 1 Set the object state of the currently selected
pencil or eraser shade to SELECTED.

- 2 Do the dialog.

GEM DEMO 323

3 Clear the newly selected object (turn off the
SELECTED state).

4 Save the new input in nonobject variables.

DEMO seems to be turning things on, and then turn
ing them off again, because of the data structures that are
being used. Objects extract a toll in overhead, and that
overhead is very evident here. Before d o _ p e n s e l e c t () exe
cutes the actual user input routine (in h n d l _ d i a l () and
fo rm_do()) and changes the values of some the object vari
ables, DEMO needs to have a known state to start from.
All this model is doing is ensuring that we only have one
selected object to choose from.

S o lets go on to the s e t _ s e l e c t () function call, a s this is
critical for the proper function of the DEMOPEND dialog.
Please refer to the declarations at the front of the com
plete listing of DEMO in Appendix D. J u s t before the
GEMAIN() routine is a block of MFDBs for the mouse cur
sor form when the eraser is selected, and just before that
is a LONG array called c o l o r _ s e l [] . These are the values of
the numbers displayed within the color selector in DEMO
PEND. If you look closely at them, you will see that the
values obey the rules for values pointed at by the G_BOX-
CHAR. The high byte of the high word is the actual charac
ter value (in ASCII), and the low byte of the high word is
the thickness of the borders. An OxFF indicates the thick
est inside border. The low word is the color word, a s
described in Figure 2.9. There are 16 values in co lor_se l .
The first value is the actual number of colors contained in
the array; thus, there are only 15 colors, 0x1 through OxF

Now look closely at set_select () , shown in Listing 5.22.
This procedure sets the colors into the DEMOPEND tree.
DEMOPCLR is the head of the objects that comprised the color
selector, and it is a G J B O X object type. DEMO overwrites its
object specification field with the address of the beginning
of the color_sel array. set__select() also changes the object flag

324 PROGRAMMER'S GUIDE TO GEM

for DEMOPCLR to INDIRECT, indicating that the value in the
object specification is a pointer to the actual object specifi
cation. In fact, there are two values that the object specifica
tion is pointing at: the original object specification and the
address of the color array. Notice that set_select() stores
these values in the local array bind[]. It does this so that
these values are available for the duration of the operation
of the dialog. The routine move_do() in fact uses the values
in bind to shift the visible color selector.

VOID set_select(tree, obj, initno, bind, arry)
LONG tree, bind[], arry[];
WORD obj, init no;
{

WORD n, nobj, cobj, count;

indir_obj(tree, obj);
bind[0] = LLGET(OB_SPEC(obj));
LLSET(OB_SPEC(obj), ADDR(bind));
bind[l] = ADDR(arry);

n = (WORD) arry[0];
count = 0;
for (cobj = LWGET(OB_HEAD(obj)); cobj != obj;

cobj = LWGET(0B NEXT(cobj)))
{

indir obj(tree, cobj);
LLSET(0B SPEC(cobj), ADDR(&arry[count + l]));
count = Tcount + 1) Z n;

}
nobj = LWGET(OB_NEXT(obj));
indir obj(tree, nobj);
LLSETfoB_SPEC(nobj), ADDR(&arry[l + initno Z n]));

L i s t i n g 5 . 2 2 : DEMO Color Selection

set__select() also sets the first four values of the user-
defined objects (objects 19 through 22 in DEMOPEND).
Again, the object specification of the user-defined objects
is replaced by the address of the appropriate color in the
array. The flags of each object are changed to reflect the
indirect nature of the object specification. In this case,
however, the pointer in the object specification field really

GEM DEMO 325

does point to a data type that is expected and defines the
character that appears in the selector.

Finally, set_select() changes the object that displays the
currently selected color (object 23 in DEMOPEND).

Another way to do this would be not to depend on the
actual parentage of any of the objects in the tree. Being
dependent in this manner is not that terrible in light of
the fact that DEMO is dealing with user-defined objects.
However, there is nothing lost by being direct and naming
the actual objects to be changed. The main advantage
of the approach used by DEMO is that it provides you
with valuable insight into the object system of GEM. By
being more direct, however, you make your code more
understandable and easier to change.

Now let's talk about the hndl_dial() associated with the
DEMOPEND tree.

Handling User Input with User-Defined Objects

DEMO enters the hndl__dial() routine from pen_select()
right after the call to set__select(). We have discussed the
main features of hndLdial () in the section dealing with
DEMOMENU, but we need to discuss the code inside the
forever loop shown in Listing 5.23.

FOREVER /* Get the user's input */

exitobj = form_do(tree, def) & 0x7FFF;

/* Mask out any non-user defined objects.

All user defined objects have high byte.*/

xtype = LWGET(OB_TYPE(exitobj)) & OxFFOO;

/* Get out if not user defined */

if (Ixtype) break;

/* Go to user defined interpreter */

xtend_do(tree, exitobj, xtype);

L i s t i n g 5 . 2 3 : DEMO User-Defined Input

PROGRAMMER'S GUIDE TO GEM

Remember that DEMO differentiates between user-
defined object selection and GEM object selection through
three specially defined object types (0x1 IB , 0 x 2 I B ,
0x3IB) . The only exitobj values that are returned from the
form__do() are

The object index of the OK button (object 10)

The object index of the Cancel button (object 12)

One of the user-defined object indices.

Note that the user-defined objects must have object flags
of TOUCHEXIT, a s this is the only way for f o r m _ d o () to know
to return when these objects are selected.

By getting the object type associated with the returned
object index, DEMO determines if a user-defined object
was selected. (In effect, the masking of the object type will
zero out all the predefined object types, thus allowing the
break to take effect.) If a user-defined object was selected,
DEMO calls x tend_do() to process the request, and then
because the user may not be finished selecting, reexecutes
the f o r m _ d o () . The only way for the forever loop to stop is
for the user to click on the OK or the Cancel button.

User-Defined Command Processing

The routine x tend_do() , shown in Listing 5.24, takes the
comment we made about being dependent on the struc
ture of the object to extremes. It is totally dependent on
the structure of the object tree. S o be careful if you
choose to emulate the style of this code.

VOID xtend_do(tree, obj, xtype)
LONG tree;
WORD obj, xtype;
{

LONG obspec;

switch (xtype) {

GEM DEMO 327

case XSEL: /* 0x300 - Color selected */
obspec = LLGET(OB_SPEC(obj));

obj = get_parent(tree, obj);
obj = LWGET(OB_NEXT(obj));

LLSET(OB_SPEC(obj), obspec);

redraw_do(tree, obj);
break;

case X_FWD: /* 0x100 - Forward arrow selected */

move_do(tree, obj, 1);
redraw_do(tree, obj);
break;

case XBAK: /* 0x200 - Backwards arrow */

move_do(tree, obj, - 1) ;
redraw_do(tree, obj);

L i s t i n g 5 . 2 4 : DEMO User Defined Processor

Since x t e n d _ d o () only handles the user-defined objects
0x1 IB , 0x21B, 0x31B, it can be considered the command
processor for the user-defined selections. If the user
selected one of the visible colors in the selector, then
x t e n d _ d o () must show that selection in the color selection
G_BOXCHAR object. x t e n d _ d o () does this by first obtaining
the address of the color pointed at in the object specifica
tion field. Then DEMO takes advantage of the object tree
structure by getting the parent of the selected object, and
uses the NEXT pointer to get the object index of its
brother, the G_BOXCHAR color selection object. Given this
object index, x t e n d _ d o () replaces the object specification
with the saved object specification of the selected object.
The r e d r a w _ d o () only redraws the G_BOXCHAR object.

The other two user-defined selections deal with clicking
on the arrows of the color selector. The call to m o v e _ d o ()
adjusts the items in the selector either one item left or
one item right. We won't go into any detail with this code,
as it follows the s ame pattern as s e t _ s e l e c t i o n () .

PROGRAMMER'S GUIDE TO GEM

Highlighting Selected Items

The final topic in our discussion of manipulating
objects concerns highlighting selected objects. As we men
tioned earlier, these objects are GJAAAGEs, and their object
specification fields point to a BITBLK structure that defines
the actual image on the screen. DEMO shows that a parti
cular object has been selected by drawing a small box
around it throuqh an interestina indirection.

Earlier in the chapter when we discussed demo_init(), we
deferred the explanation of the internals of a function called
pict_init() because we weren't ready to talk about user-defined
objects. We are now ready to analyze pict_init(), shown in
Listing 5.25. pict_init() initializes all the GJMAGE objects in
DEMOPEND and DEMOINFD. Actually, all it has to do with the
GJMAGE from DEMOINFD is to transform the format of the
BITBLK of the DRI logo to a device-specific format. While it
does the same for the images in DEMOPEND, there are addi
tional things that need to be done with these images.

VOID pict_init() {

LONG tree;
WORD tr_obj, nobj;

rsrc_gaddr(R_TREE, DEMOINFD, &tree);
trans_gimage(tree, DEMOIMG);

rsrc_gaddr(R_TREE, DEMOPEND, &tree);
for (trobj = DEMOPFIN; tr_obj <= DEMOEBRD; tr_obj++){

trans_gimage(tree, t r o b j) ;

LWSET(OB_TYPE(trobj), GUSERDEF);

nobj = tr_obj - DEMOPFIN;

brushub[nobj].ub_code = drawaddr;

brushub[nobj].ub_parm = LLGET(OB_SPEC(trobj));

LLSET(OB SPEC(tr obj), ADDR(&brushub[nobj]));
}

L i s t i n g 5 . 2 5 : DEMO User-Defined Initialization

GEM DEMO 329

All the object handling and user input is handled in
the f o r m _ d o () in the A E S . When the user selects a pencil
or eraser form, the A E S does not return to the calling
program, a s it would if the user had selected the OK but
ton or the forward arrow on the color selector. The follow
ing mechanism shows how DEMO draws a box around the
selected object, while the A E S controls the screen
(f o r m _ d o () is active).

There is an entry point called d r a w a d d r that the A E S
uses to get back to DEMO. (See the assembler module
FARDRAW, Listing 5.26.). The address of d r a w a d d r is
placed in the APPLBLK that is pointed at by the object spe
cification of an object in an active dialog. When the user
selects the user-defined object, the A E S pas ses control to
the address in the APPLBLK, which points to code that
draws a box around the selected object. All this is rather
sophisticated, which means that a lot of details have to be
paid attention to.

;/* FARDRAW.A86 3/22/85 Tim Oren */
cseg
EXTRN dr_code:near
dseg
PUBLIC drawaddr
cseg

; far_draw()
J ax = hi part of long pointer to PARMBLK

bx = lo part of long pointer to PARMBLK

need to save the regs, get on a local stack, and call
the dr_code() routine with the parameters pointed at
in PARMBLK

far draw:
push
mov
push
push
push
push
mov

si
di
cx,ax
ax, ss
drawss,ax
ax,sp
drawsp,ax

bp
bp,sp
ds
es

; remember hi ptr to parm blk
mov
mov
mov
mov
cli

PROGRAMMER'S GUIDE TO GEM

mov ax,seg drawstk
mov ss, ax
mov ds ,ax
mov es ,ax
mov sp,offset drawstk
sti
push cx ;
push bx ;
call dr code ;
add sp,4
mov bx,ax ;
cli
mov ax,drawss
mov ss ,ax
mov ax,drawsp
mov sp,ax
sti
pop di
pop si
pop es
pop ds
mov ax,bx ;
pop bp
retf

dseg
• dw offset far draw
dw seg far draw
rw 256
dw 0

cseg
dw 0
dw 0
end

push hi ptr to parmblk
push lo ptr to parmblk
state = dr_code((LONG)pparmblk)

remember state

restore state

L i s t i n g 5 . 2 6 : DEMO FARDRAW Listing

Remember that we have to do a far call (on the Intel
architectures) to get back and forth from the A E S using
this technique. For this reason, the stack is set up in a
particular way. As DEMO does not know how much room
is left on the A E S stack, d r a w a d d r sets up its own stack to
be safe, before calling the code to draw the box. In
DEMO, the code that gets executed to handle the drawing
is called d r _ c o d e () and is shown in Listing 5.27. d r a w a d d r
provides the connection from the A E S , and by declaring
d r _ c o d e () a s an external in the FARDRAW code, the A E S
finally gets a entry into DEMO.

GEM DEMO 331

WORD drcode(pparms)
LONG pparms ;
{

PARMBLK
WORD
LONG

/* Code to handle user defined objects */

pb;
pxyClO], hi, wb;
taddr;

LBCOPY(ADDR(&pb), pparms, sizeof(PARMBLK));

taddr = pb.pb_parm;
userbrushmfdb.mp = LLGET(BI_PDATA(taddr));
hi = LWGET(BI_HL(taddr));
wb = LWGET(BI_WB(taddr));
userbrush_rafdb.fwp = wb « 3;
userbrushmfdb.fww = wb » 1 ;
userbrush_mfdb.fh = hi;
userbrush_mfdb.np = 1;
userbrushmfdb.ff = 0;

pxy[0] = pxy[l] = 0;
pxy [2] = (wb « 3) - 1;
pxy[3] = hl - 1;
pxy[4] = pb.pb_x;
pxy[5] = pb.pb y;
pxy[6] = pxy[4j + pb.pb_w - 1;
pxy[7] = pxy[5] + pb.pb_h - 1;

vrt_cpyfm(vdi_handle, 2 , pxy, &userbrush_mfdb, &scrn_mfdb,usercolor);

if((pb.pb_currstate!=pb.pb_prevstate)||(pb.pbcurrstate&SELECTED)) {
if (pb.pb_currstate & SELECTED)

vsl_color(vdi_handle,1) ;
else

vsl_color(vdi_handle,0) ;
vsl_width(vdi_handle, 1);
vsl_type(vdi_handle, FISSOLID);

pxy[0]
pxy[l]
pxy [2]
pxy[3]
pxy[4]
pxy[5]
pxy[3]
pxy[6]
pxy[7]
pxy[8]
pxy[9]

—pb.pb_x;
— p b . p b y ;
pb.pb_x + +
pb.pb y + +
pxy [2Tî
pxy[3]j
pxy[l]j
pxy[0];
pxy[5];
pxy[0];
pxytl];

/* Draw a rectangle */

*-pb.pb_w
^pb.pb_h

i;
i;

}
return (0);

_pline(vdi_handle, 5, pxy);

L i s t i n g 5 . 2 7 : DEMO User-Defined Drawing Code

This mechanism provides, in effect, a way for you to
write extensions to the A E S . Because dr_code() runs as an

332 PROGRAMMER'S GUIDE TO GEM

e x t e n s i o n to the A E S , n o A E S c a l l s c a n b e m a d e within
the s c o p e of dr_code(). If your app l i ca t ion d o e s i s s u e a n
A E S call , the s t a c k c a n b e c o m e cor rupted . F o r a n y graph
ics function, u s e only the VDI.

T h e for l o o p in pict_jnit() d o e s four th ing s to e a c h of
the six GJMAGE o b j e c t s . First , pict_init() t r a n s f o r m s e a c h
o b j e c t to a device-spec i f ic format . S e c o n d , it c h a n g e s e a c h
GJMAGE to a user-def ined ob jec t . Third, pict_init() c h a n g e s
the APPLBLK s t ructure for e a c h o b j e c t s o that e a c h APPLBLK
p o i n t s at drawaddr, a n d e a c h APPLBLK p a r a m e t e r is the
o b j e c t spec i f i ca t ion of the GJMAGE. Finally, p i c t jn i t () s a v e s
the a d d r e s s e s of e a c h of the APPLBLKs in the o b j e c t specifi
ca t ion of e a c h of the GJMAGEs .

E a c h of the APPLBLK ' s is s tored in an array of structures
cal led brushub. By following this mode l , you should b e ab le
to provide similar functions in your own application.

PROGRAMMERS GUIDE TO GEM

DESIGN CONSIDERATIONS 337

C O D I N G TOPICS 359

H O W T O USE METAFILES FOR HARD-COPY OUTPUT 367

DEBUGGING GEM APPLICATIONS 377

THE GEM BINDINGS 379

A BRIEF SURVEY OF GEM PROGRAMMING TOOLS 382

GEM DEMO 337

/

n previous chapters, we have discussed the
pieces of GEM and how they were used in two
small applications. This chapter presents a num
ber of topics that are designed to put the pieces

together. The purpose of this chapter is to present certain
"nuts and bolts" topics that can help you design, build,
and debug your own GEM program.

In this chapter, we first discuss program design consid
erations. We present a number of guidelines for designing
the user interface of your program, and we show how
GEM supports these guidelines. We talk about the two
factors underlying the typical GEM applications: the need
to create event-driven programs, and the requirement that
the program be able to redraw the screen at any time.

The chapter also covers certain coding topics and tech
niques. We explain how you can make your programs
more portable to different screen devices and even differ
ent microprocessors. We present information about speed
ing up certain parts of your program, most notably the
text display. We also discuss desk accessories.

In addition, the chapter presents examples of how to
send graphic output to metafiles (and from there to GEM
Draw and OCJTPCIT.APP). We give you information on
debugging your application with GEMSID and tracepoirits.
We talk about the bindings, and we survey the C compilers
available in the different environments.

DESIGN CONSIDERATIONS

The design of a computer program or application is still
far from an exact science. Perhaps because good design is
so difficult, many programmers prefer to leap into the cod
ing of a program before spending an appropriate amount of
time on planning and specifying what the program is to do,
or how the program is to accomplish the assigned task.
Obviously, there is no substitute for careful and thorough

338 PROGRAMMER'S GUIDE TO GEM

program design. The best programs, and usually the easiest
to build and maintain, are well-designed.

Once you know what you are planning to make your
program do, GEM provides some implementation aids and
offers some clear and consistent philosophy on how your
program should be structured. If you follow our guidelines
on designing your program's user interface, you can make
your program easier to use.

Principles of User Interface Design

The historical antecedents for GEM were the Xerox
Star and the Apple Macintosh. The main historical contri
bution of these products was to make human factors engi
neering a focus of the microcomputer industry.

The human factors engineering approach to software
design is based on a number of principles. If your pro
gram adheres to these principles, it will be easier to learn
and use. Here are some of these principles and how they
are supported by GEM facilities.

Program with Pictures

One of the guiding principles behind GEM's inception
and design is the old adage that "a picture is worth a
thousand words." A closely related principle might be
stated as "Seeing and pointing is better than remembering
and typing." GEM is oriented towards producing high-
quality pictures on a variety of computers. For example,
GEM supports intensive use of icons. You can use the Icon
Editor to create these icons. Your program can display
them with either the VDI v r t_ c p y fm() function, or a s bit
image objects placed in object trees.

Program for External Consistency and Predictability

The next guiding principle you should follow is that your
program should behave in a consistent manner. Consistency

Advanced GEM Topics 339

in a GEM application means external as well as internal con
sistency. A GEM program is externally consistent if it looks
like other GEM applications and is controlled in a similar
manner. This is easier when you use features from the A E S
such as menus and the file selector (fsel__input()). Menu
design is covered later in this chapter. The file selector pro
vides a standard method for the user to specify an input or
output file (see Figure 6.1). It also allows the user to search
anywhere on disk.

ITEM SELECTOR

Directory: C:\GEMAPPS*.GEM_

.GEM

ANGLES .GEM
CELL .GEM
EXTENT .GEM
GRID .GEM
GRID? .GEM
MFDB .GEM
OFFSETS .GEM
0FFSETS2 .GF.M
RASTERC .GEM

CIO
| Cancel |

F i g u r e 6 . 1 : fsel_Jnput() in Action

Internal consistency is achieved when your program
behaves in each situation in a predictable manner. This
principle might be called the "principle of least astonish
ment" because it seeks to eliminate surprises from soft
ware. An example of inconsistent behavior would be a
control key, such as Escape, that signals an orderly
acceptance of some operations and for other operations
signals an exit that would abandon the information
entered during the operation.

Use Metaphors

Internal consistency might best be achieved by estab
lishing a metaphor for the presentation of your program

340 PROGRAMMER'S GUIDE TO GEM

and adhering strictly to your metaphor. The GEM Desktop
is built around the metaphor of a per sons desk, with
screen icons representing common objects found around
the office that are manipulated in a predictable fashion. A
folder, for example, can be opened and closed, and can
contain documents or other folders. GEM Draw is built on
a drafting table metaphor. Draw contains objects such as a
ruler and pieces of paper of different sizes. A graphic
interface is well suited to creating a variety of metaphors.

The key principle is to present your program's controls
in terms of concepts with which the user is already famil
iar so that the user might then be able to predict what the
control does. To this end, it is also important to suit the
metaphor you use to the applications intended user. A
program for the office environment might be the ideal
place for a program that looks like a desktop, but a pro
gram for a laboratory might beg for a different kind of
desk, such as a lab workbench, especially if the computer
is used to monitor and control instrumentation. To support
metaphorical programming, GEM provides comprehensive
icon support in the VDI, a s well as forms and dialogs in
the AES .

Keep It Simple

An overly complicated metaphor is difficult to under
stand. Your program should keep simple operations
simple, and ideally it should also make complex opera
tions possible. One method of adhering to this rule is to
keep the menu selections relatively brief. Our experience
is that seven (plus or minus two) different options is about
a s many as the average user is able to remember and
deal with effectively. Another way to ensure simplicity is
to keep the display as uncluttered as possible.

Allow Shortcuts

To speed up the manipulation of your application for your
more experienced user, we recommend that you implement

Advanced GEM Topics 341

keyboard shortcuts for various menu commands. The short
cut for a given menu selection should be displayed to the
right of the selection name in the menu. Your program must
be prepared to accept menu message events as well as syn
onymous keyboard events. For further information on design
of keyboard shortcuts, see the section called "Other Menu
Conventions" later in this chapter.

Provide Feedback

GEM provides many mechanisms for consistent and
timely feedback. One mechanism is the mouse form, which
you can set to one of several shapes. If your application is
accepting text, you may wish to change the mouse form to
an I-beam whenever it is in the text acceptance area to
indicate this. If your program is about to become compute-
bound and thus unresponsive, you should change the
mouse form to the hourglass shape before the operation
starts. If possible, try to prevent long, unresponsive periods
during compute-intensive portions of your program by
making regular calls to evnt__timer(0) to give other A E S
processes a chance to share the computer. (This was dis
cussed in Chapter 2.)

Another GEM device for providing appropriate feed
back is the form alert mechanism. The alert mes sages
come with one of three different icons (NOTE, WAIT, or
STOP) to indicate the severity of the condition.

What You See Is What You Get

Feedback is also provided when you fully utilize GEM's
graphics capabilities to display the final result of what
the user is trying to produce. S o m e t i m e s this is called
WYSIWYG, which stands for "what you see is what you
get." Many early text processing programs expected compli
cated text formatting commands (which looked suspiciously
like programming commands) interspersed throughout the

PROGRAMMER'S GUIDE TO GEM

text file. When you sent the file to a printer, the commands
would be processed and the text would be formatted. The
problem was that this made it impossible to know certain
things about the final product until it was printed. Because,
for example, the user couldn't know where the text would
cross a page, the process of correctly locating text around
page breaks might take several printings. The WYSIWIG
feedback rule allows the user to account for things like
page breaks early in the document creation process. G E M s
graphic text capability allows your program to create the
exact image that is created on the output device, whether
it be a printer or a film recorder.

Ask for Confirmation

A principle that is similar to feedback is that the appli
cation should ask for confirmation. Specifically, your pro
gram should allow the user to make reversible decisions
quickly, but make irreversible decisions slowly. An ex
ample of this principle put into practice can be found in
the Desktop. Since DOS does not provide an "undelete"
capability, the Desktop has the capability of asking for
confirmation whenever the user wishes to delete a file.
The Desktop also allows you to disable this capability,
which is more friendly for the experienced user.

Another way this principle is applied is when the user
is about to exit a program that uses a work area that can
be saved to disk. If the user has modified the work area
and tries to leave the program, the program may want to
check with the user to confirm whether or not the user
wants to save the work area. Judicious use of GEM form
alerts help keep the user from making a mistake.

Minimize Irreversible Actions

A better approach to handling irreversible decisions or
actions is to minimize the actions that cannot be reversed.

Advanced GEM Topics 343

GEM Draw has an "Undo" option which allows the opera
tor to take one step backwards and reverse the conse
quences of the latest change made to the work area.

Prevent Inappropriate Actions

Another way to prevent mistakes as well as teach the
user about how to operate your program is to disable
menu items when they are not appropriate. GEM provides
the m e n u j e n a b l e () command to help you do this. When
your program has disabled a menu selection, it is printed
at a lower brightness level and is not selectable when the
user points to it with the mouse. Informing the user before
an action rather than after is usually preferable to beeping
at the user or displaying an error message when the user
has chosen an inappropriate command. Although the user
may still wonder why an action is disabled, the way in
which you have set up the menu may help them to figure
it out for themselves. For example, if they have not yet
opened a window by selecting an "Open" item, then you
should make sure that the "Close" action is disabled.

Don't Mode Me In

One of the more controversial issues in human factors
engineering involves what are called modes. A computer
has different modes to allow similar keyboard and mouse
input to be interpreted differently at different times. A
very simple example would be a computer running a
calculator program accepting a series of numbers and
adding them all together to produce a single answer, and
then running a word processor and accepting the s ame
series of numbers and listing them on a page. Another
example might be when the user presses Ctrl-C: some pro
grams interpret Ctrl-C as a command to scroll a page (for
example), while other programs might expect to be termi
nated when the user presses Ctrl-C.

Since the computer has only a limited number of

PROGRAMMER'S GUIDE TO GEM

inputs, it must use modes to interpret the user's input.
The trouble for the user arises when the commands in
one mode are inconsistent with the commands in another
mode, and when it is not clear to the user at any given
time how input will be interpreted by the computer. The
proper use of modes is closely related to keeping pro
grams internally consistent.

Use Menu Sidebars

In order to facilitate "modeless" programming, GEM
provides menus and windows, and encourages the use of
pointing and selection techniques. You can emphasize a
certain interpretation of the user's input by tailoring the
information displayed in a window. A good example of
this can be found in the Draw and Paint applications,
which display menu sidebars containing icons representing
different input states along the left side of the window.
The Draw user can then tell when a click-drag draws a
line or a rectangle, for example, by which icon has been
selected and displayed in reverse video (see Figure 6.2).

File Page Moi

F i g u r e 6 . 2 : GEM Draw Menu Sidebar

Advanced GEM Topics 345

Consider the Construction Set

Consider using the GEM Resource Construction Set as
a model for how you design your program. The Resource
Construction Set uses a technique of allowing the sophisti
cated user to choose from a selection of building blocks
at the bottom of the window. This technique makes it
very easy to build and organize GEM resources. As the
user opens up certain objects to "look inside," the graphi
cal menu changes to reflect a different set of building
blocks available. Figure 6.3 shows what some of the RCS
building blocks look like. The topmost graphical menu in

[113 mm >l*ü] fr-HSCII
FREE

T I T L E ENTRY

| BUTTON | STRING E D I T :
E D I T : 1 1 1

TEXT | C | | B 0 X T E X T | \ (~ | |
|i c n im 1 flu]

IMflCE
flu]
IMflCE

B u t t o n J M e s s a g e L i n e ^ *? wL

n o t e rcnTïi STOP

F r e e - s t r i n g HQ)

F i g u r e 6 . 3 : RCS Building Blocks

346 PROGRAMMER'S GUIDE TO GEM

the figure contains the five basic building blocks of a
GEM resource. When the user selects any of these build
ing blocks, the graphical menu is replaced by a new
graphical menu appropriate for constructing the building
block. For example, when the menu building block is
opened, the graphical menu is changed so that it shows
only the menu components a s in the second graphical
menu in Figure 6 .3 .

Here is an example of how your program might use a
RCS model for generating the format of a report. Your
program could display building blocks appropriate for
reports (titles, column headers, data fields, sort param
eters, and the like) in the menu sidebar. The user could
then select these objects and build a sample report. This
might be a much easier way to build a report than using
some of the report-generator languages.

A Closer Look at GEM Menu Design

The design of GEM menus can allow you to greatly
enhance the external consistency of your program. The
A E S builds one of the titles in the menu bar—namely, the
D e s k title. This pull-down menu will contain at most
seven selections: one for your program and six for desk
accessories. By convention, the single menu selection for
your program should contain general information about
the program, such as version, author, and copyright infor
mation. The remaining six selections get filled in when
GEM is loaded into memory. GEM looks for desk acces
sory programs and loads them into memory, if there is
sufficient memory. GEM depends on each desk accessory
to register with the A E S via the m e n u _ r e g i s t e r () call."

In older versions of GEM, the D e s k title was situated
in the farthest left portion of the menu bar. When you
build a menu with the Resource Construction Set, you can
notice that a menu always contains the D e s k title a s the

Advanced GEM Topics

first, leftmost menu title. Starting with version 2 of GEM,
this title is automatically moved to the far right of the
menu bar by the A E S after the program has been loaded,
and the name of the program is substituted for "Desk".
S e e Figure 6.4 for an illustration of the D e s k pull-down
menu in version 2 of GEM. Figure 6.5 illustrates the
single menu selection specific to the Desktop.

DESKTOP
Desktop Info... 'n

ScneenGrabber
Calculator
Clock
Print Spooler
Snapshot

F i g u r e 6 . 4 : The Desk Pull-Down Menu from the GEM Desktop

1
GEH Desktop 2.0, Beta 1 .6 2/24/86

AUTHORS

Lee Jay Lorenzen
Gregg Morris & Lowell Webster

Copyright (c) 1985, Digital Research Inc.

F i g u r e 6 . 5 : The 'About the Desktop" Selection Dialog

While the remaining menu titles and selections are up to
you, in the following pages we will give you some guidelines
that have been distilled from several existing DRI applica
tions, including Desktop, Draw, Paint, and Graph.

The File Menu

Since many applications deal with input and output
files, we recommend a F i le pull-down menu as the first

PROGRAMMER'S GUIDE TO GEM

(or, on older versions of GEM, the second) title in the
menu bar. This menu a s sumes your program has a work
area in memory where the user interacts with your pro
gram to do some given task, and that the work area can
be read in from and saved out to a disk file. A model of
the F i l e menu appears a s in Figure 6.6.

Le t s take a brief look at each selection in the menu.

New
Open...

Save
Save as...
Abandon

To Output...
Quit

F i g u r e 6 . 6 : Contents of the File Menu ,

The New Option

The New option should clear your p r o g r a m s work area
and create a new, untitled work area. You should disable
inappropriate menu selections such as S a v e and Aban
d o n because there is no current, named work area to save
or abandon.

The Open . . . Option

The O p e n . . . selection should allow the user to open
an existing data file and read it into the work area. The
three dots after a menu selection are a GEM convention
indicating that there is further dialog (or a submenu)
should the user select this option. In this case, a file selec
tor dialog is displayed to allow the user to select an
appropriate input file.

Advanced GEM Topics 349

The Save Option

The S a v e option should cause your program to save
the current work area. If the work area is untitled (that is,
if it hasn't been saved before) or if the work area has not
been modified since it was read in, this item should not
be selectable. Instead, the user should use the S a v e A s . • .
menu selection, in order to be able to name the data file
(and work area).

The Save As . . . Option

This selection should ask for a file name by using the
f s e l_ input () function, and save the work area to the chosen
file name. Additionally, it should name the work area and
put the name of the work area in the work a r e a s title bar.
As the work area may have been previously untitled, the
S a v e and A b a n d o n selections should be enabled once
this item has been selected and after the user has modi
fied the work area.

The Abandon Option

If a work area has been saved or was opened from a
disk file, it should have a title. In this situation, the user
should be able to abandon any modifications made to
the work area since the open or last save, and to get a
fresh copy of whatever was in the file, by selecting this
menu item.

The To Output . . . Option

Any program that produces information that can be
directed to a hard-copy device should have this menu
selection. The easiest way for your program to handle this
hard-copy requirement is to output a metafile and chain
to OUTPCIT.APP. We cover these topics in more detail later
in this chapter.

PROGRAMMER'S GUIDE TO GEM

The Quit Option

For the sake of consistency, the user should be able to
terminate any GEM program by selecting the Quit option
in the menu. Your program should check to see if there
are any unsaved modifications to the work area and (per
haps optionally) confirm that the user wants to quit with
out saving.

The Preferences Menu

We recommend one more menu for the main menu
title bar: the P r e f e r e n c e s menu. This menu allows the
user to configure the behavior of the program. For
example, your program might want to preselect a certain
configuration for menu selections, or it might want to
allow the user to turn off the behavior of confirming aban
donment of unsaved work areas when Quit is selected.
We recommend that your program allow these user prefer
ences to be specified in the P r e f e r e n c e s menu.

We also recommend that you save program configura
tion information in a known directory such as the direc
tory from which the program was loaded, and that the
preferences file has a name of the form filename. INF The
command used to load your program (as well as the direc
tory that contained your program) is available via the
s h e l _ r e a d () function of the A E S .

Other Menu Conventions

Most of the rest of the menu options vary too widely
between different applications to be standardized. You
should, of course, choose menu titles that are consistent
with your application's main metaphor.

Another menu convention concerns keyboard short
cuts. We recommend the convention of placing the key

Advanced GEM Topics 351

sequence of the shortcut to the far right of the selection
item. Its also a good idea to have key sequences use the
Alt key and to use the convention of combining the small
diamond character (ASCII code 7) with the capital letter of
the shortcut key. Figure 6.7 shows an example of this.

EEflBI Delete *D
Undelete

Make copy *C
Select all *S

Rotate *R
Flip horizontal *H
Flip vertical

F i g u r e 6 . 7 : Menu with Shortcuts

Conventions for the Mouse Form

The mouse cursor form can give the user valuable
feedback on what the program is doing. Here are some
conventions for mouse form control.

The mouse form should be turned off during draw
operations (including those performed by any VDI com
mands or objc__draw()). The reason for this is that GEM
saves a small block around the mouse form and restores
this area whenever it moves the mouse or turns off the
mouse form. If the program has changed the area around
the mouse, it gets overwritten by the contents of the small
block when the mouse is next moved.

The mouse form is controlled by calling g r a f _ m o u s e (),

whose prototype we show below. g r a f _ m o u s e () takes two
parameters. The first parameter, g r _ m o n u m b e r , contains

PROGRAMMER'S GUIDE TO GEM

values as defined in Table 6 .1 . The second parameter,
gr__mofaddr, is a pointer to a memory form definition block
(MFDB) describing the mouse form, which is used only for
user-defined mouse forms. For more information on the
mouse form, see the DRI GEM Developers Kit.

VOID graf mouse(gr__monumber, gr_mofaddr)

WORD gr_monumber;

MFDB *gr_mofaddr;

gr_monumber F o r m N a m e F o r m P u r p o s e

0 a r row G e n e r a l - p u r p o s e

1 vert ical ba r Text input c u r s o r

2 h o u r g l a s s C o m p u t e r b u s y s i g n a l

3 p o i n t i n g h a n d S e l e c t i o n / S i z i n g m o d e

4 flat h a n d S e l e c t i o n / P l a c e m e n t m o d e

5 thin c r o s s ha i r s S e l e c t i o n / Drawing m o d e

6 th ick c r o s s ha i r s A p p l i c a t i o n - d e p e n d e n t

7 out l ine c r o s s ha ir s A p p l i c a t i o n - d e p e n d e n t

2 5 5 user-def ined A p p l i c a t i o n - d e p e n d e n t

2 5 6 h ide m o u s e f o r m Al low d r a w i n g o p e r a t i o n s

2 5 7 s h o w m o u s e f o r m R e s t o r e m o u s e after drawing

T a b l e 6 . 1 : Mouse Forms and Their Uses

In order for the mouse to interact with the Screen
Manager and desk accessories in a predictable manner,
your application should change the mouse form if it goes
outside of your application's window work area. If the
mouse form is an hourglass or an arrow, it should be left

Advanced GEM Topics 353

alone, but any other mouse form should be changed to an
arrow. This means that your application must be waiting
for a mouse rectangle event (using evnt_mult i ()) , with the
rectangle set to the window work area. When the mouse
leaves the work area, your program should call graf-
_ m o u s e () to set the form to an arrow. When the mouse
comes back into the work area, your application should
set the mouse form back to the appropriate cursor form
for your application. S e e the GEM DEMO program in
Chapter 5 for an example of this behavior.

The primary mouse form is the arrow, which has
g r _ m o n u m b e r 0 . When in doubt, this is the form to use.

The hourglass (gr__monumber 2) should be used when
ever your application is performing a time-consuming
operation, such as a file open, read, or write. This is to
make sure the user is informed that the application is
very busy.

Other mouse forms, their g r _ m o n u m b e r s , and their
intended uses can be found in Table 6 .1 .

Conventions for Mouse Techniques

There are a number of well-established conventions for
keyboard usage on computers, such as using the Shift
and Ctrl keys to change the meaning of other keys. Other
conventions are less firmly established, such as interrupt
ing a program by pressing Ctrl-C. Since the mouse is a
relatively new input device, we have included information
here about what kind of behavior with the mouse has
been given meaning by various applications.

The mouse is used as a pointing device, and GEM
takes care of the correspondence between mouse and cur
sor movement. We as sume that there is only one button
on the mouse because we can be fairly certain that there
will always be at least one button, and also because we

354 PROGRAMMER'S GUIDE TO GEM

feel that it is easier for the user to use if there are a mini
mal number of controls. We will therefore only talk about
one-button mouse techniques.

The single-click technique involves pressing the mouse
button once and then letting up. We suggest that your
program handle this as the u ser s way of indicating selec
tion of an object or control, and that your program cause
whatever is under the mouse to be displayed as selected.
Once an object has become selcted, certain actions in the
p rograms menu may become appropriate (or not). As dis
cussed in the section called "Prevent Inappropriate
Actions", your program should enable or disable the vari
ous menu items which are appropriate to use with the
selected object. Use the A E S function m e n u - i e n a b l e () to do
this.

The double-click technique requires the user to press
the button twice in a row, very quickly. The evnt_mul t i ()
function is configured to wait for a certain amount of time
once it detects a single-click, in order to see if the user
wants to double-click. The user can set this waiting period
from the Desktop, or your program can set it with the
evnt_dc l ick() call: longer periods make it easier to do the
double-click, but they impede the more sophisticated user
of your program. The double-click is usually taken to indi
cate the equivalent of an Open menu request on the
object under the cursor.

S o m e programs may attach meaning to more than two
clicks, but we have not found it easy to triple-click with
very great accuracy.

Another technique is called a click-drag, which refers to
the action of positioning the mouse cursor, pressing the
button, moving the mouse cursor, and releasing the but
ton. This technique is often used for several different
actions, depending on what the mouse cursor is posi
tioned on as well as on the state of the program. Possible
meanings of the click-drag include

Advanced GEM Topics 355

Select an object and move or copy it.

Select a group of objects.

Draw a shape, or track and draw at the cursors
position.

There are many variations on the click-drag technique,
most of which involve pressing a key on the keyboard
(like Shift or Ctrl) before pressing the mouse button. The
Resource Construction Set and Draw, to name two ex
amples, use these techniques to aid power-users. These
techniques are harder to document and remember, and so
they should be used sparingly.

Some Ideas on How To Indicate Selection

This section presents some ideas for indicating object
selection. We use the term "object" loosely here, as we
mean what appears a s an object to the user (which may
or may not be an A E S object). There are many different
ways of indicating object selection, partly because what
you can do with selected objects varies from application
to application. Thus, what we will present here constitutes
ideas rather than conventions.

An A E S object has a "selected" attribute, and when
the A E S draws a selected object, it inverts the object. For
bit images and simple rectangles, an object can be
inverted by calling vro_cpy fm() with the XOR logic opera
tion (see Chapter 3). An example of this can be found in
the Desktop, which uses this technique extensively to indi
cate selected file icons.

Another method of indicating selection is to enclose
the object with a rectangle (drawn in XOR mode, so that
it can easily be removed). The rectangle may have a num
ber of control points which are represented as very small
filled rectangles located in strategic parts of the rectangle.
For example, placing the control points in the corners of

PROGRAMMER'S GUIDE TO GEM

the rectangle indicates a movable object. Placing control
points in the midpoints of the rectangle segments is a
good way to indicate scaling points that allow the object
to grow or contract.

GEM Graph draws control points around the shape of
the object (instead of enclosing the object in a rectangle)
to define the selected object a s precisely as possible.

Still another method of indicating object selection might
be to change the mouse cursor form whenever the mouse
moves over the top of the selected object. This would be
difficult to do with multiple object selection in GEM,
because evnt_multi () can only wait on two mouse rectangle
events. Draw uses a related technique to indicate whether
the point the user has selected on the object moves the
object (Draw uses the flat hand mouse form) or scales it
(Draw uses the finger pointer).

GEM Program Structure

In the two sample applications in Chapters 4 and 5, we
have already introduced the structure that is implied by an
event-driven program. We are distilling this program struc
ture again here to emphasize the effect it has on the
design of your GEM program.

The most noticeable detail about the structure of our
examples is that they consist of the following components:

initialization);

while(not__done)

{
evnt__multi(. . .) , *

handle_the_events();

}
termination);

Advanced GEM Topics 357

Much of the input for a GEM program is received in
one place: namely, the evnt_mul t i () call. This leads to a
relatively clean, flat design that minimizes the number of
different modes your program contains.

You may want to pay particular attention to where your
program design deviates from this model. You may notice
that calls to f o r m _ d o () and f o r m _ a l e r t () are obvious devia
tions from the modeless model. These are clear examples
of program modes, where the user is required to respond
immediately to the dialog or alert, and the input is inter
preted in a manner unique to each form. Another ex
ample of modal input comes in the DEMO program when
the program is actually drawing on the screen. These are
necessary parts of the program, but we highly recommend
that these modal parts of your program be as isolated and
as cleanly defined as you can make them. In other words,
keep the modal behavior in your program focused towards
a single purpose.

One other requirement of GEM markedly affects pro
gram design. Since GEM is multitasking and since the
user may open a number of windows besides the win-
dow(s) of your application, your program may be required
to redraw its display at any time. The flat, modeless pro
gram structure we demonstrated above is ideally suited to
handling arbitrary redraw messages .

This differs from a simpler program output model in
which once your program outputs something to the
screen, you expect it to stay put. Your GEM program must
be prepared to rebuild the sand castle any time a wave
has washed it away. You should use the w i n d _ u p d a t e
(BEGJJPDATE) call around the handle_the_events() code to
prevent any waves from coming in while the program is
building or changing the sand castle. In order to share
the beach, however, the program must release the up
date region after it has finished by calling w i n d _ u p d a t e
(END_UPDATE).

358 PROGRAMMER'S GUIDE TO GEM

To put this more directly, the program structure we
recommend isolates all of the dedicated modal behavior
inside the h a n d l e _ t h e _ e v e n t s () code and thus inside the
w i n d _ u p d a t e () protected area. This is another reason to
keep the program modes focused and single-purposed, as
the time the program spends in the protected region is a
time when other applications cannot display information.
Thus, you may want to use modeless windows for time-
consuming input operations (for example, extended text
input) instead of modal dialogs, so that the user can
access other parts of GEM (like the desk accessories).

There are a number of possibilities for how your pro
gram can handle the redraw requirement. Perhaps the
most simplistic method is illustrated by the DEMO appli
cation. DEMO draws to the screen and then saves the
entire screen area after each modification of the screen
area (using a BITBLT VDI operation, vro_cpyfm()) . This pro
vides for a simple redraw model, at the cost of large areas
of memory, for the screen save area.

Another method is the extensive use of object trees.
Object trees are ideal for holding rectangularly oriented
text displays (like forms), and they have the hooks to han
dle bit images (icons) and user-defined objects. The user-
defined objects are like wildcards, in which a procedure in
your program is called whenever the object is to be
drawn. The procedure is called with a pointer to a data
structure containing the screen location where your pro
gram should draw the object. A big advantage of manag
ing your display with object trees is that the Resource
Construction Set can help you build a prototype of the
display before you even start to write any code. Another
advantage of objects is that they make it easier for your
program to determine what the user has selected because
the ob jc_ f ind() function accepts the current mouse coordi
nates and returns a pointer to the object at those coordi
nates. The drawback of object tree display is the limited

Advanced GEM Topics 359

variety of drawing objects, the relatively slow pace of
object drawing, and the difficulty you may have in making
your program output the contents of the object tree to a
metafile.

Programs like Draw manage their own display data
structures and make extensive use of the VDI for their
display. Draw collects lists of display items, and it per
forms all selection and redraw tasks based on its own data
structures. Your application can do this, too, especially if it
has requirements for more sophisticated graphics output
than the object trees can reasonably support.

In general, we recommend that you use objects (and
user-defined objects) to display simple items like boxes
and text a s well as selectable items such as icons. We sug
gest that you use regular VDI commands for other kinds
of displays, such as charts and graphs.

CODING TOPICS

In this portion of the chapter, we will discuss a number
of topics that may affect how you code your program.
Once you've decided what you want your program to do
and how you want your program to do it, you still have to
make many smaller decisions, such as what colors to use
or how to have your program produce printed output. In
the pages that follow, we will present information that will
aid you in making those decisions.

You may or may not be interested in having your pro
gram run on more than one machine, or in having your
program produce high quality output on many kinds of
devices. In this section we discuss how you can write pro
grams to be portable, because we have found that writing
portable programs from the start is only slightly more dif
ficult than writing nonportable programs, but that porting

PROGRAMMER'S GUIDE TO GEM

a nonportable program once it has been written is much
harder. Furthermore, the microprocessor industry is still
changing quickly enough to justify a little extra effort, just
in case your computer supplier goes out of business, or in
case somebody builds a computer that works much better
than the one youve got now. The odds are that GEM will
work on it—why not your program, too?

We will also talk about how you can make your pro
gram run faster, often with only a little more effort if you
know how from the start. We will discuss desk accessories
because they are only slightly different than normal GEM
programs.

Making Graphics Programs Device-Portable

One of the most important design goals of GEM has
been to make it possible to write graphics-based programs
that are portable to many different machines. This porta
bility is possible to achieve, but it can be a bit tricky. Here
are some of the things that you have to be careful about.

First, we recommend that your program use its own
world coordinate system and that it translate its coordi
nates into raster coordinates when displaying to the screen
device. Although this is more difficult than using straight
raster coordinates, it is especially important when your
program wants to output the image to a metafile, since
metafiles can accept your world coordinates directly (with
v m _ c o o r d s ()) , and since you can achieve higher quality out
put when you map higher resolution world coordinates
onto different devices that have lower (and varying)
degrees of resolution.

Since aspect ratio differs from device to device, you
also need to account for it. Thus, you will probably want
to use generalized drawing primitives like v _ e l l i p s e ()
instead of v_c irc le () so that you can control aspect ratio

Advanced GEM Topics 361

from your program. It is especially important to use world
coordinates and account for aspect ratio in order to main
tain relationships between graphical objects on the screen.
For example, if you use v_circ le () and don't adjust for
aspect ratio, a line drawn tangent to a circle on one
device may not be tangent to the circle when you draw
these objects on a device with a different aspect ratio.

GEM makes it easy to write programs that have color
ful graphics, but not all devices have the s a m e colors. By
planning carefully, you can write programs that work on
both color and black-and-white systems. If you use color
to differentiate information, you may also plan on how
you might communicate the s ame information in black-
and-white. GEM offers a variety of pattern fill functions
that work well in black-and-white environments.

The raster operations require a certain amount of care.
If you closely examine different screen devices, you may
be surprised to find out how many kinds of different
methods there are to do raster graphics. Without GEM, it
would be extremely difficult to write programs that per
form fast raster operations on more than a single type of
machine. With GEM, your program can be made to run
on very different machines, if you watch out for some
details. One of these is screen resolution, since an icon
may look very different on a low-resolution screen than on
a high-resolution screen. (The Desktop has two sets of
icons—one for low resolution screens and another set for
high-resolution screens.) Another detail is programming in
color environments, where you must be careful to allocate
enough memory for more than one bit plane. A third
detail is knowing about the standard format that GEM
uses to hide device representation details covered in the
section on raster operations in Chapter 3.

Although GEM supports many different devices, the
capabilities of these different devices causes GEM to offer
different levels of support for different devices. For

PROGRAMMER'S GUIDE TO GEM

example, raster operations are only supported on screen
devices. GEM also allows you to direct graphics opera
tions to metafiles, which programs like GEM Draw can
accept a s input. Metafiles can also be taken by the OUT
PUT application and displayed on screen, printer, plotter,
or film recorder. We will discuss metafile output later in
this chapter.

Making GEM Programs Processor Portable

There are a number of significant differences between
the Intel 8086/88 microprocessor found in the IBM PC
and compatibles and the Motorola 68000 found in the
Atari ST. Nevertheless, there are programming conven
tions and techniques you can use to make it relatively
easy to port your program between these two different
kinds of machines.

First, lets talk about the portability conventions file,
PORTAB.H. This header file contains a number of syno
nyms for common C data types, including

WORD A s i g n e d shor t in teger (16-bit)

quantity.

LONG A s i g n e d 32-bi t integer.

NULLPTR 0 c a s t to a pointer .

The main reason for these synonyms is that different
compilers may implement integers in different lengths.
For example, some C compilers on the 68000 implement
type Int a s a 16-bit quantity, while others use 32 bits.
PORTAB.H provides synonyms that you can redefine to
whatever the compiler requires to make the data type
truly (in the example of WORD) a signed, 16-bit value.

The LONG values are frequently used as pointer values
in the A E S . The reason for this is to allow your program

Advanced GEM Topics 363

to be compiled in the most efficient memory model for
the 8086 (called the small model because all of the
pointers are 16 bits) and still have access to resources,
which may be loaded outside of the 64K area addressable
by 16-bit pointers. On the 68000, all pointers are treated
as 32-bit values, which allows very easy access to the
resource values. The LONG pointers correspond to the
mixed memory model constructs (most notably, the far
pointer) found in a few of the 8086 C compilers.

The NULLPTR is provided for use in place of NULL or 0
for situations in which the integer size is 16 bits, but the
pointer size is 32 bits. Consider what happens when pass
ing in a 16-bit NULL value when the procedure is expect
ing a 32-bit pointer; your C compiler simply extracts the
16-bit NULL plus whatever 16-bit value follows the NULL on
the stack, and would construct a value which was not
NULL and not a valid pointer. Always use NULLPTR instead
of NULL or 0 when you want to pass or test for a pointer
type with value 0.

Another useful header file is MACH1NE.H which con
tains processor-dependent declarations for routines such as
ADDR(). On the 8086, ADDR() is a LONG-valued function
that takes a 16-bit pointer (in small model) and adds the
segment value to return a full 32-bit pointer. On the
68000, ADDR() is defined as the original pointer, which is
already 32 bits. Several other functions are declared that
allow you to copy, set, or access values that may be any
where in memory on an 8086. All of these routines are
greatly simplified with the flat addressing space of the
68000.

Another useful fact to remember when porting pro
grams is that the byte ordering is different on the two

364 PROGRAMMER'S GUIDE TO GEM

machines. Consider the following fragment of C code:

WORD ival;

BYTE *pival ;

ival = 1 ;

pival = (char *) &ival;

On the 8086, *pival points to a byte with a value of 1; on
the 68000, * pival points to a byte with a value of 0. This
is because the 8086 always stores the low-order byte first
in memory, while the 68000 always stores the high-order
byte first. MACHINE.H contains a number of macros that
allow you to pack and unpack byte values into WORD and
LONG values in a manner independent of the processor.

One of the problems that we encountered in the develop
ment of our VDI examples in Chapter 3 was when we tried
to create bit images using LONG values in CPYTRAN1.C
and CPYTRAN2.C. This technique worked on the 8086
GEM. Since raster images are WORD-aligned in standard
format, however, the words were swapped (relative to the
8086), and these programs failed on the 68000. Always
use WORD values to initialize bit images.

Atari Hints
We found a difference in GEM on the Atari S T that can

be very puzzling. The older versions of Atari GEM do not
include the GDOS, which is a part of the VDI that is
designed to make the VDI more device-independent.
Because this was left out, older Atari computers cannot
run any of our VDI examples that used NDC space or any
examples that loaded fonts with the v s t J o a d _ f o n t s () call.
The way to know if the GDOS is loaded correctly is to
watch for the words "GEMVDI resident" when you are
booting your system. The GDOS load file we used was
called "ATARIGD.PRG" in the \ auto directory on the boot
disk. As of this writing, Atari has indicated that they will

file:///auto

Advanced GEM Topics 365

ship the GDOS, and we a s sume that they will use the con
ventions we have described.

We found a couple of other inconsistencies in the Atari
port. First, f s e l_ input () automatically converts a file name
to uppercase on the 8086 version of GEM that we used,
but not on the Atari. In fact, the Atari version will only
accept uppercase letters and will not display any lower
case letters in the f s e l j n p u t () call! Second, vro__cpyfm()
ignores the destination rectangle size on the 8086 GEM
we used, but the destination rectangle had to be the s ame
size as the source rectangle on the Atari.

Making GEM Programs Faster

Because many GEM functions need to display textual
information, the VDI has been extensively optimized in
order to be able to display text in the system font a s
quickly as possible. The VDI allows you to display text
with a large degree of control over the detailed appear
ance of the text. If you just want to display text as quickly
a s possible and you're not concerned about varying the
font or type size, here are some things you can do to take
advantage of the extensive text optimizations.

The first and most important improvement you can
make to your program is to use the optimized system
font and to display text on byte boundaries (or, better yet,
word boundaries). What this means is that you should
make certain that the raster address of the starting pixel
in the horizontal (x) direction is evenly divisible by 8 (or
16, for word alignment). This alignment facilitates transfer
ring the font information because the screen driver doesn't
need to do as many shifting and logic operations.

The second improvement you can make is to be cer
tain that your text does not get clipped. The screen driver
checks to see if it needs to clip part of the text of your
program. If it does need to clip your program's text, it

PROGRAMMER'S GUIDE TO GEM

must handle the boundary conditions very carefully to
transfer portions of the clipped characters. If, however,
your program checks the length of the string and only
displays the number of characters that are fully display-
able within the clipping area on the screen, the text dis
play is noticeably quicker.

Making GEM Desk Accessories

GEM desk accessories are similar to normal GEM
applications with a number of exceptions. These programs
are identified by having a file extension .ACC, and they
must be placed in the \ g e m b o o t directory in the 8086
environment and in the \auto directory on the Atari. The
programs are loaded when GEM is loaded, and if there is
not enough memory, they do not get loaded.

To allow the user to run a desk accessory, the desk
accessory program must use the m e n u _ r e g i s t e r () call to
inform the A E S that it is loaded and ready to be called.
The application program must also display a menu bar in
order to give the user a means of invoking the desk
accessories from within the application. The VDI example
programs we presented in Chapter 3 (CTRLNDC.C and
CTRLRC.C) do not show a menu bar, and thus desk acces
sories cannot be used when these programs are running.
We present another driver program here in Chapter 6,
called CTRLMETA.C, that allows you to run desk accesso
ries while the VDI example programs are running.

Only three total desk accessory programs can be
loaded in current versions of GEM. Each desk accessory
can make one or more calls to m e n u _ r e g i s t e r () , however.
This means that one desk accessory could conceivably use
all six slots in the Desk menu.

In versions of GEM prior to 1.2 (including the Atari
version, a s of this writing), desk accessories could not use
menus. Thus, your desk accessory needed to be controlled

file:///gemboot
file:///auto

Advanced GEM Topics 367

either through the keyboard or through the user's selec
tion of icons in the desk accessory window, as does the
GEM Desk Calculator.

A desk accessory starts up like a normal application,
except that it calls m e n u _ r e g i s t e r () and evnt_mul t i () before
opening a window. Upon receipt of an AC_OPEN message ,
your application should open the window and do its thing.
Upon receipt of the AC_CLOSE message , your desk acces
sory program must a s sume that the user has finished run
ning an application, and that the A E S is also wiping out
all of the windows (including your program's), which
means that your desk accessory must create and open a
window again after every AC_CLOSE message .

The best way to debug a desk accessory is to first de
velop it as a normal GEM application. This allows you to
use either of DRI's symbolic debuggers, SID or GEMSID.
Then, when your program is working, insert the extra state
ments (that is, menu_reg i s ter () and the code to handle AC_0-
PEN and AC_CLOSE), rename the file, and place it in the
appropriate boot directory. The sample program in Chapter
4, HELLO, is included as a desk accessory in the DRI Devel
oper's Kit with conditional compile indicators (which we
removed to simplify our example) around the code neces
sary to turn it into a desk accessory. See the DRI Devel
oper's Kit for more information.

HOW TO USE METAFILES
FOR HARD-COPY OUTPUT

Metafiles are the best way in GEM to get hard-copy out
put from your program. Although you can open the printer
device, for example, directly from your program, we do not
recommend this. Instead, if you produce a metafile, you can

PROGRAMMER'S GUIDE TO GEM

pass this file to OUTPCJT.APR which can then display it on a
printer, a plotter, a film-recorder, or as a part of a slide show
on the screen. We explore here a few of the issues involved
in drawing your output to metafiles.

A metafile is a recording mechanism (that is, a disk
file) that allows graphical images to be specified in a
device independent fashion. The primary purpose of meta
files is to contain graphical information that can be trans
ferred between different devices or applications. In this
way, metafiles are to GEM what text files are to word pro
cessing programs.

The main reason that metafiles are difficult to use is that
you must have a clear understanding of the different coordi
nate systems involved. You must also realize that aspect
ratios are different in other devices, and thus you must use
the VDI calls with a lot of attention to portability if you want
your images to look similar from device to device.

A metafile consists of a page size, a coordinate system,
and a series of graphics commands . A metafile worksta
tion is opened in a manner very similar to opening a
screen workstation, with the device id (in workin[0]) specify
ing that this device is a metafile (see Table 3.2 for device
ids). You should then set up the page size and coordinate
systems for the metafile, and draw your figure much a s
you would to the screen. Finally, make sure you close the
metafile workstation so that the file gets closed properly.

We will discuss the following functions in this section:

v m _ f i l e n a m e () C h a n g e G E M VDI F i le N a m e

vm_pagesize() Def ine Phys ica l P a g e S i z e for
Metaf i le

v m _ c o o r d s () Def ine C o o r d i n a t e S y s t e m for
Metaf i le

Advanced GEM Topics 369

Changing the GEM VDI
File Name: v m j i l e n a m e ()

The standard destination of a metafile is to a file called
GEMFILE.GEM in the default directory. Use the v m j i l e -
n a m e () function immediately after you open the metafile
workstation to direct metafile output to the file you spec
ify in the null-terminated f i l e _ n a m e variable. The prototype
for the v m _ f i l e n a m e () function looks like this:

void vm_filename(m_handle, fi le_name)

WORD m__handle;

BYTE *f i le_name;

For an example of v m _ f f l e n a m e () in use, see the
o p e n _ m e t a () function in Listing 6.1 later in this chapter.

Note that vm_f i l ename() closes the current metafile and
reopens the file you specify. Thus, any output to the
metafile before this call is lost in the previous metafile
(GEMFILE.GEM).

Defining a Coordinate System
for a Metafile: vm_coords ()

One of the nicest aspects of drawing to metafile
devices is that you can specify an arbitrary world coordi
nate system. Thus, most applications use the world coordi
nates that are most convenient for the application to work
in, which means that applications don't have to specify
arbitrary raster coordinates. If you don't specify a coordi
nate system in a metafile, NDC space is assumed.

To specify metafile coordinates, give the x and y posi
tions of the lower left and upper right corners of your
image. Most VDI functions behave the same whether you
give lower left and upper right diagonal endpoints, or upper
left and lower right diagonal endpoints. The v m _ c o o r d s ()

PROGRAMMER'S GUIDE TO GEM

function actually causes OCJTPUT.APP to rotate your image
to make the first point you specify appear in the lower left
corner of the final image.

Call the v m _ c o o r d s () function as follows:

void vm_coords(m_handle, low_left_x, low_Jeft__y, hi right x,

hi right y)

WORD m_handle;

WORD low_left_x, lowJef t_y ;

WORD hi_right_x, hi_right_y;

Here are a couple of examples. Both of these a s sume
that your image uses NDC space a s your world coordi
nates. In the first case, suppose you make the following
call before writing the rest of the image to the metafile:

vm_coords(m j i o n d l e , -32768, -32768, 32767, 32767);

When OGTPGT.APP displays the metafile, all of the NDC
coordinates of your image are mapped into the upper
right quarter of the page.

In our second example, suppose you use this call:

vm_coords(m_handle, 0, 32767, 32767, 0);

OUTPUT.APP displays the metafile so that the 0,0 point is
in the upper left corner. This orientation corresponds to
the RC method.

Defining Physical Page Size
for a Metafile: vm_pages ize()

The v m _ p a g e s i z e () function stores information in the
metafile to indicate that the image is intended to be

Advanced GEM Topics 371

reproduced on a page of the indicated size. Call this func
tion as follows:

void vm__pagesize(m_handle, width, height)

WORD m j i a n d l e ;

WORD width, height;

The setting of the page size can be a bit of a chal
lenge. The units of measure used for setting the page size
are tenths of millimeters (.1 mm). This unit was chosen
because there are 254 tenths of millimeters per inch, and
thus conversion between metric and English measures is
fairly easy. The OUTPUT application of GEM is fairly ver
satile and partitions the image into page-sized pieces if
the image is too large for a single page and the user
hasn't specified the "Best Fit" option of OUTPUT. The
GEM Draw application uses several different page sizes,
starting from 7V2 inches by 10 inches.

The page size and coordinate system you use deter
mine the aspect ratio of the image. Thus, if you're using
NDC coordinates as your world coordinates, you can spec
ify a square image with an aspect ratio of 1 (equal height
and width). This leaves you with an image, however, that
does not fill your typical 8V2 by 11 inch piece of paper.

HOW TO SET THE METAFILE WORLD
COORDINATES CORRECTLY

When setting your metafile world coordinates, make sure that the
numerical value of your coordinate scaling is greater than the numerical
value of the page size (in tenths of millimeters). This gives the OUTPUT
application greater accuracy in its scaling. Furthermore, older versions of
OUTPUT.APP crash if you ignore this restriction. This is most likely to hap
pen if you try to map the raster coordinates of your screen directly onto a
metafile.

372 PROGRAMMER'S GUIDE TO GEM

Unfortunately, the GEM designers didn't include the
functions v m _ p a g e s i z e () and v m _ c o o r d s () in the VDI bind
ings in the Developer's Kit. You will, however, find the
bindings in source form in Listing 6 .1 .

Some Guidelines for Using Metafiles

Because metafiles can be directed to any device sup
ported by GEM, you need to be careful about which VDI
functions you use with metafiles. Here is an account of
some of the things to be careful about when performing
output to a metafile:

First, don't depend on all return values from functions
such as v _ o p n w k () or v s t _ h e i g h t () , since metafiles don't
really have discrete line thicknesses, polymarker heights,
or character heights. Use functions like vst__point(), which
sets the character height in absolute terms (that is, in
points, where 1 point equals V 7 2 inch).

Second, try to use GDP functions, which are supported
on all devices. Specifically, the fill value in v r_rec f l () is
ignored in a metafile, whereas v _ b a r () can probably pro
duce an equivalent effect.

Third, you should note that while the A E S has a num
ber of useful output functions, including o b j c _ d r a w () (which
is covered in Chapter 2), there is no way in the current
version of GEM to output A E S information into a meta
file. This means that to output any objects that you nor
mally draw with o b j c _ d r a w () to a metafile, you will have to
write your own routine to walk the A E S data structures
and output the items individually to your metafile.

Fourth, it's important to note that raster operations are
totally unsupported in metafiles. S e e Appendix B for a list
of VDI functions supported by the metafile driver.

Finally, although GEM Draw will accept metafiles and
allow the user to change them, there are some VDI functions

Advanced GEM Topics 373

that are supported in metafiles but that are not supported
by Draw. Specifically, Draw does not support clipping
(vs_cl !p{)) and different writing modes (v$wr_mode()) .

An Example of a Metafile Output Routine

In Listing 6 .1 , we present a program called CTRL-
META.C that is a replacement for the CTRLRC.C module
presented in Chapter 3. The purpose of the program is to
set up an environment for calling d r a w _ r c () , with a few
changes. The major change is to add a menu bar and to
make the routine draw within a window. We also have
used an evnt_mult i () call to allow the user to terminate the
program with either a mouse button or a keyboard event.

/* CTRLMETA.C - routine to call draw_rc() routine (using Raster Coords);
- provide a simple menu to enable access to Snapshot Accessory
- provides meta file output from menu */

#include "portab.h"
#include "machine.h"

WORD contrl[l2], intin[l28], ptsin[l28], intout[l28], ptsout[l28];

#define SOLID 1
#define WHITE 0
#define SQUARED 0
#define BEGJJPDATE 1
#define ENDJJPDATE 0
#define WFTOP 10
#define RTREE 0
#define OBJSIZE 24

/* "ctrlmeta.h"
#define CTRLMENU 0
#define TITLEOBJ 3
#define MFILEOBJ 6

- built by RCS */
/* TREE */
/* OBJECT in TREE #0 */
/* OBJECT in TREE #0 */

/* write the page size to the metafile header */
VOID

vm_pagesize(handle, pgwidth, pgheight)
WORD handle, pgwidth, pgheight; /* in .1 millimeters */
{

contrl[0] = 5; /* opcode */
contrl[l] = 0 ; /* # input vertices */
contrl[3] = 3; /* len intin array */
contrl[5] = 99; /* function id */
contrl[6] = handle;

PROGRAMMER'S GUIDE TO GEM

I

intin[0] = 0;
intin[l] = pgwidth;
intin[2] = pgheight;

vdi();

/* sub opcode */
/* width in .1 mm */
/* len in .1 mm */

/* write the world coordinate system to the metafile header */
VOID

vm_coords(handle, llx, lly, urx, ury)
WORD handle, llx, lly, urx, ury;
{

contrl[0] = 5;
contrlfl] m 0;
contrl[3] = 5;
contrl[5] = 99;
contrl[6] = handle;
int
int
int
int

in[0] = 1;
n[l] = llx;
n[2] = lly;
n[3] = urx;
n[4] = ury;

/* opcode */
/* # input vertices */
/* len intin array */
/* function id */

/* sub opcode */
/* lower left x coord */
/* lower left v coord */
/* upper right x coord */
/* upper right y coord */

vdi();

/* open a metafile and change its name to whatever the menu's name is */
VOID open_meta(work_in, pmhandle, workout)
WORD *work in, *pm handle, *work out;
{

BYTE fname[20];
LONG mobj, nmptr;
WORD fnlen;

rsrc_gaddr(R_TREE, CTRLMENU, &mobj); /* grab 1st tree (menu) */
mobj += TITLEOBJ * OBJSIZE + 1 2 ; /* go grab OB_SPEC of 4th object */
LBC0PY(ADDR(&nmptr), mobj, 4); /* grab the 4 bytes of OBSPEC */
fnlen = LSTRLEN(nmptr); /* find its length */
LBC0PY(ADDR(fname), nmptr, fnlen) ; / * copy the name to local area */

/* eliminate trailing blanks */
/* append extension ".GEM" */

while(fnamet—fnlen] == ' ')
fnameO+fnlen] = '.'
fname[++fnlen] = 'G'
fname[++fnlen] = ' E'
fname[++fnlen] = 'Mf

fname[++fnlen] = 0;
for(fnlen=0; fname[fnlen] == 1 1; ++fnlen)

; /* eliminate leading blanks */
v_opnwk(work_in, pm_handle, workout);
vm_filename(*pm_handle, fname+fnlen) ; / * go change its name */

/* set up for metafile output and call draw_rc routine */
VOID meta_out(width, height)
WORD width, height;
{

WORD m_handle, work_in[ll], work_out[57];
WORD ii, junk;

Advanced GEM Topics 375

WORD maxw_m, maxh_m, swidth_tmm, sheight_tmm;
WORD pxy[lO];

for(ii=0; ii<ll; ++ii) work_in[ii]=1;/* init work_in array */
work_in[lO] = 2; /* use RC coordinates */
work_in[0] = 3 1 ; /* Metafile device number */
open_meta(workin, &m_handle, work_out) ; / * open the metafile */

maxw_m = 10*width; maxh_m = 10*height;
swidthtmm = (254*15)/2; /* 25.4 mm/inch, 7.5 inches */
sheighttmm = (254*10)/2; /* 5.0 == 10/2 */
vm_pagesize(m_handle, swidth_tmm, sheight_tmm);
vm_coords(m_handle, 0, maxh_m, maxwm, 0);

pxy[0] = pxy[l] = 0;
pxy[2] = maxwm; pxy[3] = maxh_m;
vs_clip(mhandle, 1, pxy); /* safety precaution: do clip */
vst_point(m_handle, 14, &junk, &junk, &junk, &junk);

draw_rc(m_handle,0,0,maxw_m,maxh_m) ; / * do it to metafile */

pxy[0] = pxy[l] = pxy[8] • pxy[9] = 0;
pxy[2] = maxwm; pxy[3] = 0;
pxy[4] = maxwm; pxy[5] = maxhm;
pxy[6] = 0; pxy[7] = maxhm;
vsl_ends(mhandle, SQUARED, SQUARED) ; / * reset to default */
v_pline(mhandle, 5, pxy); /* delimit screen with a box */

vs_clip(m_handle, 0, pxy); /* safety precaution: end clip*/
v clswk(m handle); /* flush it and close */

/*/\/*/

VOID GEMAINO
{

WORD handle, work_in[ll], work_out[57], whandle;
WORD posx, posy, maxw, max_h, pxy[l0];
WORD i i, ev_whi ch, junk;
LONG mbar, pevbuff, mobj;
WORD evbuff[8];

applinitO; /* init AES for next call */
if(! rsrc_load(ADDR("CTRLMETA.RSC"))) { / * built with RCS */

form_alert(1, ADDR("[3][Unable to 1oad|CTRLMETA.RSC][Abort]"));
return;

}
rsrc_gaddr(0, 0, &mbar); /* Tree 0 is menu */
pevbuff = ADDR(evbuff); /* need this later */

handle = graf_handle(&ii,&ii,&ii,&ii); /* get screen handle */
v_clrwk(handle); /* clear workstation */

for(ii=0; ii<ll; ++ii) work_in[ii]=1; /* init workin array */
work_in[l0] = 2 ; /* use RC coordinates */
v_opnvwk(workin, &handle, workout); /* open the workstation */

menu_bar(mbar,1); /* display BEFORE windopen*/
wind_get(0,4,&pos_x,&pos_y,&max_w,&max_h) ; / * find Desktop work area */

PROGRAMMER'S GUIDE TO GEM

m a x w -= 1; /* leave room for border */
m a x h -= 1;
w_handle = wind_create(0, pos_x, pos_y, max_w, max_h); /* use window */
wind_open(whandle, pos_x, pos_y, maxw, m a x h);

/* WMREDRAW msg will be waiting */
do {

ev which = evnt multi(
1+2+0x10, /* MU KEYBD I MU BUTTON | MU MESAG */

/* MU_BUTT0N */
1, /* number of button clicks to wait for */
OxF, /* buttons to wait for — 0x1 Leftmost */
1, /* button state to wait for — 1 pressed */

/* MU_M1: mouse 1 event */
0, /* which event to return on - 0 entr 1 ext *
0, /* X pixel position of mouse event rect. */
0, /* Y pixel position of mouse event rect. */
0, /* width pixels of mouse event rectangle */
0, /* height pixels of mouse event rectangle */

0,
o ,
o ,
o ,
o ,

/* M U M 2 : mouse
/* */
/* */
/* */
/ * it I
/* */

2 event */

/* MUMESAG */
pevbuff, /* message buffer — 16 bytes */

/* MU_TIMER */
0, /* timer value (millisecs): low word */
0, /* timer value (millisecs): hi word */

/* pointers to output vars */
&junk, /* X pixel position of mouse at event */
&junk, /* Y pixel position of mouse at event */
&junk, /* mouse button state: 0x1 leftmost, 0x2...*/
&junk, /* kb state: 1-Rshift 2-Lshift 4-Ctrl 8-Aux*/
&junk, /* scan code of returned value */
&junk /* # times button entered desired state */

junk = 0;
if(evwhich & 0x10) { /* Message event? */

if(evbuff[0] == 20) { /* WMREDRAW msg? */
windupdate(BEGUPDATE);
graf_mouse(256,0L); /* hide mouse */
pxy[0] = pos x+1; pxy[l] = pos_y+l;
pxy[2] = pxy^] + max_w-2;
pxy[3] = pxy[l] + max_h-2;
vsf_style(handle, SOLID);
vsf_color(handle, WHITE);
vr_recfl(handle, pxy); /* set background */
draw_rc(handle, pos_x+l, pos_y+l, max_w-2, max h-2);
graf_mouse(257,0L); /* show mouse *7
windupdate(ENDUPDATE);
junk = 1; /* continue looping */

} else if (evbuff[0] == 21) { /* WMTOPPED msg? */
wind_set(whandle, WFTOP, 0,0,0,0); /* get control of kb*/

Advanced GEM Topics 377

} else if (evbuff[0] == 10) { /* MN_SELECTED msg? */
meta_out(max_w, m a x h);
rsrc_gaddr(R_TREE, CTRLMENU, &mobj) ; / * grab menu */
menu_tnormal(mob j, TITLEOBJ, 1);
junk = 1 ; /••* continue looping */

}
} while(junk);

wind_close(whandle);
wind_delete(w_handle);
v_clsvwk(handle); /* close the workstation */
appl exitO; /* tell AES we're through */

}

L i s t i n g 6 . 1 : CTRLMETA.C: Screen and Metafile Output Routine

The menu bar allows the user to access the Desk menu,
which contains the desk accessory commands, along with
the single command for this program. This command
causes the drawing on the screen to be output to a metafile.
Our "world coordinate system" for the metafile is a simple
expansion of the native raster coordinates of the device. The
reason we do not use raster coordinates is that raster coordi
nates generally produce smaller numbers in magnitude than
page widths and heights as measured in Vio millimeters.
This causes the OGTPGT.APP to fail (this is probably a bug).
In this example, we multiply the raster coordinates by the
constant 10 in order to work around the problem.

DEBUGGING GEM APPLICATIONS

Debugging your GEM application is similar to debug
ging any application, except that there are a few twists.
You can't use print statements (an old trick from BASIC
programming days), but if the bug isn't too serious or
subtle, you can compile in a call to a routine that you
write—called, for example, chkpoint()—which displays a
form alert, along with any information that you want to
build into the alert string. Listing 6.2 shows sample
chkpoint () .

378 PROGRAMMER'S GUIDE TO GEM

/* CHKPOINT.C - uses f o r m a l e r t O to display a debugging message */

#include "portab.h"
#include "machine.h"

#define CHMARK 15
/* CHMARK is first location to replace in following template string */
char *chk_template=

"[1][Checkpoint|1234567890123456789012345678901234567890][cont]";

VOID chkpoint(msg) /* for debugging purposes */
char *msg;
{

char *tt; int cnt;

for(tt=chk_template+CHMARK, cnt=0; *msg && cnt<40; ++cnt)
*tt++ = *msg++;

while(cnt++ < 40)
*tt++ = ' ';

form alert(l,ADDR(chk template));
}

L i s t i n g 6 . 2 : Sample chkpoint() Routine for Tracing a Program

You can scatter calls to this routine in your program if
you want a more detailed look at how the program is
behaving. This technique can be very awkward, however,
when your program is very large or very complicated. It
also won't help much with subtle bugs that occur a s a
result of pointer corruption, which is fairly common with
C programs.

In order to have the most debugging control, we sug
gest you use GEMSID on an 8086. This debugger has
fairly good symbol handling, and the DRI Developers Kit
contains a program that maps output from other linkers
(like DOS LINK) into a symbol format that GEMSID will
understand.

A useful set of commands in GEMSID is the graphics
extensions to the debugger, all of which start with the let
ter "Y". The command we use the most is YME (Multi
graphics screens Enable), which makes it possible to
debug on multiple screens, where the GEMSID debugging
output is displayed on a separate screen from your pro
gram's graphic output.

Advanced GEM Topics 379

Debugging on the Atari is a bit more difficult because
the SID68K isn't quite a s sophisticated as its 8086 cousin,
GEMS1D. Both debuggers are documented in their respec
tive versions of the DRI Developers Kit.

THE GEM BINDINGS

The GEM C binding routines include routines such as
app l_ in i t () and v _ o p n w k () that you call from your program
to invoke GEM functions. We have delayed our discussion
of the bindings because most GEM programmers can
safely depend on the bindings as a "black box": a s long
as you use a C compiler recommended in the DRI Devel
o p e r s Toolkit (Lattice C on the 8086, and DRC on the
68000), you may never need to know any more about
bindings. If you are using a different compiler, however,
you may need to know more about the bindings in order
to use GEM with your compiler. In this section, we will
talk about the bindings to give you a better understanding
of what they are and how your program uses them.

What Are Bindings?

To understand binding routines, you need to under
stand how your C program interfaces with the computer.
Most C compilers come with a set of library routines, such
as open() and printf(), that you call from your program to
handle input and output and other well-defined tasks.
Many of these routines eventually call the operating sys
tem that comes with your computer. Examples of operat
ing systems include PC-DOS, MS-DOS, Concurrent
PC-DOS, TOS, and GEMDOS. The operating system con
trols hardware devices like the screen and the disk drive.

380 PROGRAMMER'S GUIDE TO GEM

There are two main reasons for using library routines:
first, to make it easier for you to write programs, and sec
ond, to make it easier to move your program from one
computer to another.

GEM should be thought of a s an extension to your
computers operating system. GEM provides two kinds of
routines: the A E S routines correspond roughly to the
high-level library routines that come with your compiler,
and the VDI routines correspond to the operating system
routines. Both of these sets of routines are bound together
in one package. The method your program uses to call
these routines is very similar to the method your program
uses to call the operating system. Your program must fill
certain data structures and initialize certain machine regis
ters. It must also invoke an interrupt on the 8086, or, on
the 68000, a trap.

In this book, we have almost completely ignored this
level of detail because it is hidden in the bindings. The
binding routines fill the data structures with the values
you pass in the parameters, and then call a small routine
written in assembler to set up the machine registers and
invoke the interrupt or trap. The DRI Developer's Kit docu
ments the assembler interface in greater detail.

Different Kinds of Bindings

Binding routines come in several flavors. Because each
language has its own set of procedure calling conventions,
each language has its own set of bindings. Because of
different naming conventions between compilers (the most
notable differences being between Lattice C and Microsoft
C), each different compiler may need its own bindings.
What is more, if you program in different memory models
on the 8086, you will find that each different memory
model has its own binding routines. From each high-level
language, the calls to these binding routines looks the
same, but the bindings themselves have been constructed

Advanced GEM Topics 381

differently in order to hide detail that you don't need to
know about to write your GEM program.

As of this writing, the DRI Developer's Kit provides
bindings only for Lattice C (small model) on the 8086 and
for DRC on the 68000. Support for two different 8086
assemblers (DRI's RASM86 and Microsoft's MASM) are
included in the Developer's Kit. Binding support for large
model Lattice C, Microsoft C, DR Pascal, and Turbo Pascal
should be available from the DRI GEM Programmer's Sup
port account (type "GO DRI") on CompuServe.

More Bad News About Bindings

Unfortunately, some of the ordinary library routines
provided by your compiler are not compatible with GEM.
Specifically, most compiler library routines that print infor
mation on the screen a s sume that the screen is in charac
ter mode, whereas GEM uses graphics mode. Another
thing to know is that there is a certain amount of over
head associated with the standard library, and the DRI
Developer's Kit is oriented for the professional application
writer who wants to minimize such overhead. For these
reasons, the DRI Developer's Kit provides bindings that do
not use any of the compiler's standard library routines.

This incompatibility with your compiler's standard library
is possible to overcome, as long as you are willing to avoid
using incompatible standard library functions (that is, library
functions that write to the console). Another problem you
may run into if you try to use your compiler's standard
library concerns memory management. Several GEM func
tions allocate memory from the operating system, most
notably vst_ load_fonts () and r s r c J o a d () . Your compiler's stan
dard library initialization routine needs to deallocate memory
that is not needed; if it does not, the GEM functions that
require memory fail. For an example of how to deallocate
memory in the initialization routine, see the startup module

PROGRAMMER'S GUIDE TO GEM

examples in the DRI Developer's Kit (PROSTART.A86 or
PROSTART.ASM on the 8086, or TCS.S on the Atari).

The fact that DRls GEM bindings are not easy to use
with the standard library for your compiler may be good
news to some of you, especially if you are developing a pro
gram for sale. S o m e compilers, most notably Microsoft C,
have some peculiar legal requirements for selling programs
that have been linked with their standard libraries. Read the
license agreement of your compiler very carefully for this
kind of pitfall if you plan to sell your program.

A BRIEF SURVEY OF GEM
PROGRAMMING TOOLS

This section provides information on where to get the
GEM Developer's Kit, as well as a brief survey of some of
the compilers that we have used. GEM was designed to
work with many different languages and compilers, but a s
we pointed out in the previous section on bindings, there
are no compilers currently available that are well-oriented
to GEM programming, especially for less sophisticated
programmers. Hopefully, this will be corrected in the
near future.

As of this writing, the 8086 version of the GEM Devel
oper's Kit does not include a compiler. It also a s sumes
that you have the DRI Assembler Plus Tools (RASM86 and
LINK86) or that you have the Microsoft Assembler
(MASM) and LINK. It does contain a complete set of bind
ings for Lattice C, sample programs, GEMSID, and refer
ence documentation.

To get more information on the GEM Developer's Kit
for the IBM PC and 8086 computers, contact

Advanced GEM Topics 383

P e r DuLifcfayiil

Digital Research, Inc.
60 Garden Ct, Box DRI
Monterey, CA 93942

o44 fcf # 7 3

(408) 649-3896

The Atari GEM Developer's Kit includes DRC-68K,
which was an early 68K compiler developed originally by
Alcyon, Inc., and originally used on DRI's CP/M-68K. It
also contains associated tools (AS68, LO68, and LINK68).
Contact Atari for information on the Atari GEM Devel
oper's Kit:

Atari Corp.
1196 Borregas Ave.
Sunnyvale, CA 94088
(408) 745-2000

For the 8086, DRI originally developed most of its
GEM applications using Lattice C, Version 2 .11 , and the
bindings in the Developer's Kit can be used directly with
this compiler. Lattice C was one of the first C compilers
for the 8086 that produced good quality code and that
was robust and easy-to-use. For more information on the
compiler itself, contact

Lattice, Incorporated
RO. Box 3072
22W600 Butterfield Road
Glen Ellyn, IL 60137
(312) 858-7950 (Sales)
(312) 858-0073 (Support)

We have also used a couple of other compilers. We
have found that the Microsoft 3.0 C (MS-C) compiler pro
duces excellent, high-quality code and that the product is
fairly easy to use. We needed to modify the bindings, how
ever, because MS-C has a different naming convention for

PROGRAMMER'S GUIDE TO GEM

external n a m e s than Lat t ice C (it a d d s a l ead ing under
score) . Another p r o b l e m w e h a v e h e a r d a b o u t is the
restrictive l i cense a g r e e m e n t for se l l ing p r o g r a m s that con
tain any c o d e f rom the M S - C s t a n d a r d library. You c a n
contac t Microsoft at

Microsoft Corporation
Customer Sa les and Service
16011 NE 36th Way
Box 97017
Redmond, WA 98073-9717
(206) 882-8080
(206) 882-8088

O u r p e r s o n a l favorite C c o m p i l e r is the MetaWare High
C compi ler . Th i s c o m p i l e r p r o d u c e s excel lent , high-quality
c o d e . It a l s o h a s a g rea t dea l of flexibility, a n d y o u c a n
c o m p i l e rout ines in High C a n d link t h e m with rout ines
c o m p i l e d by Lat t ice or Microsoft , a s well a s o ther lan
g u a g e s l ike Pa sca l . It is the b e s t c o m p i l e r for bui ld ing pro
fes s iona l a p p l i c a t i o n s o n the 8086 . Th i s flexibility,
however, is difficult to u s e , a n d the c o m p i l e r requ i re s a
hard d i sk s y s t e m . We r e c o m m e n d it for pro fe s s iona l soft
ware d e v e l o p e r s . High C is ava i l ab le f rom

MetaWare Inc.
412 Liberty Street
Santa Cruz, CA 95060
(408) 429-META

PROGRAMMER'S GUIDE TO GEM

The vocabulary of GEM programming and the GEM
Developers Kit is very rich with jargon and technical
terms that were meant more for systems programmers
with extensive backgrounds in graphics programming. We
offer this glossary of a s many GEM buzzwords a s we
could find in the Developers Kit. S o m e of the terms refer
to obsolete VDI functions that may no longer be sup
ported. We define them here mostly to satisfy your curi
osity (and ours).

A b s o l u t e M o d e A method of setting text character height in terms of
raster or normalized device coordinates using vst_height() ; to be
compared with points mode, where the text height is specified in
points (1/72 inch) using v$t__point$().

A c t i v e Window The window "on top" of any other window on the
Desktop; the process owning the active window receives all
m o u s e and keyboard input.

.ACC GEM desk accessory executable file.

A le r t A standardized m e s s a g e to the user, consisting (usually) of an
icon specifying NOTE, WAIT, or STOR plus a short mes sage ,
plus one or more boxes to let the user acknowledge the alert by
clicking in one of the boxes.

A l i a s i n g An effect that is the by-product of scaling bit images such
a s letters. A greater amount of aliasing will cause objects drawn
with diagonal lines, such a s the letter "N", to display a j agged
or staircase effect on the diagonal lines.

. A P P GEM application executable file.

A p p l i c a t i o n E n v i r o n m e n t S e r v i c e s (A E S) A part of the resident
GEM services containing subroutines that define the user inter
face. The A E S is a set of operations including windows, forms,
and menus. S e e Chapter 2.

Glossary 389

A p p l i c a t i o n Id A WORD value returned by the appl_init() call that
uniquely identifies each application; can also be used for
interprocess communication in sending m e s s a g e s to other GEM
processes .

A r r o w A form of the cursor, the arrow is displayed on the Desktop
and moves in direct relationship with the mouse or pointing
device to indicate the focus of the user's interaction with GEM
or the GEM application.

A s p e c t R a t i o The ratio of height to width of a rectangle that
appears on the graphics device to be a square.

A S S I G N . S Y S Data file used by the GEM VDI to determine the con
figuration of the system.

A t t r i b u t e s Variables set by VDI functions that determine how VDI
output functions will display an image. Examples of text attrib
utes that can be set include text color (vst_color()) and size
(vst_height()). S e e also characteristics.

IS B i n d i n g s The subroutine calls that the programmer uses to invoke
GEM or D O S operations. Bindings are the high-level language
interface to the functions; they vary from language to language.

B I T B L T Bit image block transfer; an action denoting moving part of
the bit m a p to another part of the bit map; see raster operation.

Bi t M a p A bit m a p is a collection of pixels used to represent an
image.

B l o c k i n g The act of calling a synchronization routine and not return
ing from the call until s o m e specified event has occurred; see
polling.

r
C a r p Official mascot of the Digital Research GEM team.

Cel l A r r a y A precursor to BITBLT, this was a data structure that was
used for producing scaled bit block transfers on raster screens.

PROGRAMMER'S GUIDE TO GEM

The cell array operation in the VDI is not supported on very
many c o m m o n devices, and will probably be removed from
the VDI.

C h a r a c t e r B a s e l i n e V e c t o r An imaginary vector that defines the
bottom line for text display. All of the characters in a string of
text will be displayed resting on the baseline (descenders,
though, will cross the baseline).

C h a r a c t e r S n a p An RCS term for the optimization of aligning and
displaying all text and bit image objects on byte (or character)
boundaries. This optimization greatly enhances the time it takes
to display the text or bit image.

C h a r a c t e r i s t i c s What a device is capable of displaying. Examples of
characteristics include the number of addressable units of verti
cal and horizontal display. S e e also attributes.

C l i c k A m o u s e technique: the user guides the m o u s e to a desired
location on the screen, presses the button, and (without moving
the mouse) releases the button.

C l i c k - d r a g A mouse technique in which the user positions the
mouse , presses the button, and moves the mouse to another
location on the screen before releasing the button. S e e click.

C l i p p i n g R e c t a n g l e A rectangle defining the bounds of the allow
able display region. Any graphics output that would occur out
side of the clipping rectangle will not be displayed.

C o n t r o l A r r a y One of the arrays used by the VDI bindings.

C o n t r o l P o i n t S e e window control point.

C o o r d i n a t e S c a l i n g The process of transforming coordinates from
the current coordinate system (for example, NDC) to the dev ices
coordinate system (for example, RC).

C o o r d i n a t e S y s t e m s A means of specifying the location of graph
ical objects. Coordinate systems c o m e in several flavors, specifi
cally device-independent (normalized device coordinates or
image coordinates) or device-dependent (raster coordinates).

391

C u r s o r Point on the screen where the next screen I/O will take place.
Usually there is s o m e sort of indicator pointing at this posi
tion—for example, an arrow, a flashing block, or an underline.

. D E F Resource companion file, produced by Resource Construction
Set to provide additional information on resource (.RSC) files;
used by Resource Construction Set only.

D e f a u l t D e v i c e Dr iver First driver named in the ASSIGN.SYS file;
must be the largest driver that will be loaded.

D e f a u l t D i r e c t o r y An operating system term referring to the disk
and directory on that disk in which a file is opened or created,
unless the disk and/or directory are explicitly specified.

DEFACILT.OPT Data file used by OUTPCIT.APP to maintain option
settings.

D e s c e n d e r s The lower part of lowercase letters, such a s " j " and "q" .

D e s k A c c e s s o r y A GEM application that does not take over the
entire screen, but uses only a small window. They can be
invoked from any running GEM application. At present, the
desk accessories are Calculator, Clock, and a Printer Spooler.

D e s k t o p 1) GEM user interface from DRI that uses the office a s a
metaphor. It provides file/directory information by means of
icons. 2) The default display when an application starts up,
usually a grey rectangle which fills the screen.

D E S K T O R I N F Data file produced by the Desktop which contains
the user's Preferences data—for example, which directory is to
be displayed when the Desktop starts up, button timing, and
so on.

D e v i c e C o o r d i n a t e s Coordinates used by a particular device; see
raster coordinates.

D e v i c e Dr iver Software module that provides the interface between
the operating system and the device.

D e v i c e H a n d l e S e e VDI handle.

PROGRAMMER'S GUIDE TO GEM

D e v i c e I d e n t i f i c a t i o n N u m b e r ID number ass igned to a device in
the ASSIGN.SYS file. This number is used in the Open Work
station Call to specify which device driver is to be used.

. D F N The .replacement extension for .DEF for version 2 of the RCS.

D i a l o g A special kind of form (built with the RCS and used with the
form_do() call) whose purpose is to accept input from the user.
A dialog may contain most of the general object types (boxes,
text, input fields, bit images , and so on). The RCS will align the
display of these objects on character boundaries for performance
reasons; see character snap and panel.

D i s a b l e d An object state where the object is drawn faintly, usually
to indicate that the object is not available (enabled) for user
selection.

D i s p a t c h e r Component of GEM that removes the currently running
process from the top of the Ready list, places it on the Not
Ready list or at the bottom of the Ready list, and moves all the
processes on the Ready list up one position. The process on top
of the Ready list is currently executing.

D O S The disk operating system; most often equated with PC-DOS
(DOS on the IBM PC).

D o u b l e - c l i c k The physical act of clicking twice on an object or an
icon. The Desktop uses this technique a s a shortcut for opening
an object: that is, if the object is a folder, its contents replace
the objects in the window; if it's a data file for an installed appli
cation, the application is invoked, and so on.

D r o p - d o w n M e n u The menus in GEM A E S are known a s drop-down
menus, because a s soon a s the m o u s e moves into the menu's
screen area, the menu is "dropped" onto the screen. Other simi
lar systems use pull-down menus, where the menus must be
click-dragged down.

E n t r y P o i n t In a computer program, an instruction, statement, or pro
cedure that is first to receive control.

Glossary 393

E s c a p e A mechanism to indicate special handling; usually used in
the context of a special sequence of control characters sent to a
device or of a special function call.

E v e n t The occurrence of s o m e well-defined action, such a s the user's
activation of a window control point or clicking the mouse but
ton inside the application's window.

F
m F a c e Short for "type face"; a particular style of letters used for the

display of textual information.

F a r P o i n t e r A far pointer consists of a LONG (32-bit) value consist
ing of two word values, an offset and a segment value, and can
address any location in the 8 0 8 6 physical memory. The GEM
A E S uses far pointers into resources to maximize flexibility and
minimize copying information. S e e memory model.

F i l e H a n d l e The value that is returned from an open or create file
D O S function call. The file handle is used by all the other D O S
I/O routines to identify a particular file. (You open/create using
file names, but you read/write using file handles.)

Fil l P a t t e r n A rectangular sequence of bits that is repeated over and
over again to fill a specified area. A gray fill pattern, used to fill
the Desktop surface, for example, has every other bit set.

f o r m _ d o () An A E S function call used to activate forms and dialogs
to m a n a g e user interaction in a consistent fashion.

F r e e S t r i n g s An RCS term indicating a group of string objects built
into a resource file, and thus editable by the RCS. An applica
tion that uses free strings can remove any language dependen
cies in the user interface from the compiled part of the
program. This means that an application's resource file can be
edited by a nonprogrammer to allow the application's user inter
face to be tailored for a foreign language.

Ful l B o x A window control point whose activation indicates that the
user wants to m a k e the window as large a s it can get or that
the user wants to return it to its former (nonfull) size.

PROGRAMMER'S GUIDE TO GEM

F u n c t i o n C o d e A parameter to the VDI or A E S that indicates the
desired GEM service.

. G E M A metafile, containing VDI operations; data file type for GEM
DRAW picture files.

G E M D e v e l o p e r ' s K i t A product from Digital Research that pro
vides you with the necessary tools to build GEM applications,
such a s the Resource Construction Set, the Icon Editor, and the
language bindings for the A E S and VDI services.

G E M P r o g r a m m e r S u p p o r t (G P S) A service offered by Digital
Research that gives the GEM programmer a CompuServe
account for 24-hour acces s to GEM programming information,
and a hotline number to call for questions still unanswered.

G E M S I D A version of Digital Research's SID86 (Symbolic Instruction
Debugger) modified to m a k e use of the GEM environment.

G E M Toolk i t S e e GEM Developer's Kit.

G e n e r a l i z e d D r a w i n g Pr imi t ive (G D P) A series of routines in the
VDI that displays shapes such a s circles, ellipses, and arcs.

G r a p h i c C u r s o r Usually in the shape of a small diagonal arrow, it is
moved about the screen in correspondence with the mouse
movements or under keyboard control and is used to indicate a
position on the screen. Different shapes for the graphic cursor
can be used to indicate program states; for example, an hour
glass may indicate that the program is performing a lengthy
calculation and will be temporarily unresponsive. The graphic
cursor is controlled by the graf_mouse() function.

G r a p h i c a l K e r n e l S y s t e m (G K S) The VDI's predecessor, the G K S
was a system of device-independent graphical display functions.

G r a p h i c s C o m m a n d The means of specifying to a graphics device
exactly what is to be displayed.

G r a p h i c s D e v i c e A piece of hardware designed to display pictures
or images, or to accept two-dimensional (pointer-oriented) input.

Glossary 395

G r a p h i c s D e v i c e O p e r a t i n g S y s t e m (G D O S) That portion of the
VDI that interprets the requested c o m m a n d and pas se s it to the
appropriate device driver. The G D O S handles translation of nor
malized device coordinates to raster coordinates, and also han
dles loading and unloading text fonts.

G r a p h i c s P r i m i t i v e s C o m m a n d s to display fundamental graphics
shapes , such a s lines, markers, text and rectangles.

G R E C T A data structure used to specify the location of a rectangle
on the screen.

H H a n d l e The value returned by the Open Workstation function; used
like a file handle, except that the object in question is not a file,
but a graphics workstation.

H o m e D i r e c t o r y S e e default directory.

H o t S p o t The location in the m o u s e form that gets sent to the
application when the user presses the button; in the arrow
mouse form, the hot spot is in the upper left corner.

GEM Icon Image file; output by Icon Editor, used by Resource
Construction Set.

I con A rectangular sequence of bits that forms a tiny picture.

I con E d i t o r GEM application that allows a user to create or modify
icons.

I m a g e C o o r d i n a t e s Device-independent coordinate system used by
an application; other coordinate systems used in GEM program
ming are normalized device coordinates and raster coordinates.
Image coordinates must be transformed to raster coordinates
before they are passed into the VDI. Also known a s world
coordinates.

PROGRAMMER'S GUIDE TO GEM

. IMG A bit image file; data file type for GEM Paint image files.

Input L o c a t o r A generic term for a graphical input device that
returns a two-dimensional quantity, usually a cursor position on
the screen.

Input V a l u a t o r A generic term for a one-dimensional graphics input
device that returns the position of s o m e measuring device on
a linear scale. The VDI supported input valuators on s o m e un
c o m m o n devices, such a s dials on older graphics devices, but
you should not count on VDI support for input valuators. The
sliders on GEM window control points are examples of A E S
input valuators.

Inver t The process of switching foreground and background colors,
usually used to indicate object selection.

j u s t i f i c a t i o n The process of causing a number of objects, usually
words, to line up; left justification would cause the leftmost
word or object to line up, and right justification does the s a m e
for the rightmost word or object.

L a r g e M o d e l Large model has large code pointers, large data
pointers, and each compiled module can contain up to 64K of
static data (as opposed to big model, where all of the compiled
modules together must be less than 64K). S e e memory model

L a r g e P o i n t e r S e e far pointer.

L O N G A compiler independent declaration for a 32-bit integer. S e e
PORTAB.H.

L o n g P o i n t e r S e e far pointer.

Glossary 397

M
I T I M A C H I N E . H A set of macros designed to hide certain detail involv

ing processor-dependent operations. For example, MACHINE.H
contains macros allowing the programmer to acces s the high-
order byte of a WORD value regardless of the byte ordering of
the processor.

.MAP Linker output file listing program modules and where they are
located within the executable file.

M e d i u m M o d e l Medium model has large code pointers, thus allow
ing a program's code to be more than 64K, and small data
pointers. S e e memory model.

M e m o r y M o d e l A program organization on the Intel 8086 seg
mented architecture. The term refers to how the code and data
portions of the program are addressed. Each portion of the
program can be addressed by short (16-bit) or long (32-bit)
pointers. Short pointers are more efficient but can only acces s
up to 64K of code or data, whereas long pointers can acces s
any location in physical memory. Programs using long pointers
are, however, less efficient in space and time. S e e segmented
architecture, big model, compact model, far pointer, large model,
and small model.

M e n u A c o m m a n d or option selection mechanism provided by GEM;
allows the user to choose from a list of text or bit image
descriptions of c o m m a n d s or options.

M e n u B a r An area of the screen reserved for menu selection. The
menu bar is controlled by the process but is independent of any
of the process 's windows.

M e n u S i d e b a r A portion of a window (as opposed to the screen) set
as ide by an application for a graphical selection of c o m m a n d s
or options.

M e s s a g e A data structure passed from one process in GEM to
another (possibly itself). Many GEM m e s s a g e s contain event
information.

Meta f i l e A file containing graphics c o m m a n d s that can be displayed
(by OCJTPUT.APP) on any of the devices supported by GEM. The
GEM Draw application uses metafiles for input and output.

PROGRAMMER'S GUIDE TO GEM

M e m o r y F o r m Def in i t ion B l o c k (M F D B) A VDI data structure
whose purpose is to define how a sequence of words in memory
gets mapped onto a raster (screen) device.

M o d e A program state that governs how the program interprets
input from the user.

M o u s e Popular pointing device that allows the user to move the
cursor around on the screen.

M o u s e B u t t o n A control button on the mouse device. Once the
mouse has been positioned on the screen, one of the mouse
buttons can be pressed to select the object pointed at by the
mouse . The number of buttons on a m o u s e may vary. Typically,
there are one to three.

M o u s e T e c h n i q u e A method of using or operating the mouse ; for
examples , see click and shift-click.

^Sf N o r m a l i z e d D e v i c e C o o r d i n a t e s (N D C) A device-independent coor
dinate system that specifies 3 2 7 6 8 horizontal degrees of resolu
tion by 3 2 7 6 8 vertical degrees of resolution. Generally, applica
tions will prefer to use their own application-specific image
coordinate system, partly because normalized device coordinates
don't help much with aspect ratio. Transformation of NDC points
to the device adds overhead to the drawing functions.

N D C S p a c e The collection of all possible normalized device coordi
nates for a given device.

NCILLPTR A compiler-independent declaration of a pointer with
value 0. S e e PORTAB.H.

O b j e c t An A E S data item used to m a n a g e part of the graphics dis
play. Objects are organized recursively into trees, where a
display object may contain other objects (or object trees).

O b j e c t T r e e A recursive, hierarchical organization of objects.

O b s p e c Short for "object specification"; a LONG (32-bit) field in the
object data structure containing additional, object-specific infor
mation, such a s color, or a pointer to additional information.

O p e r a t i o n C o d e s (o p c o d e s) The particular bit sequences that spec
ify certain commands , either machine opcodes (processor-
specific commands) or graphics opcodes (graphics commands) .

OCITPCIT.APP A GEM application that transfers the file types .GEM
or .IMG to output devices such a s a printer, plotter, or film
recorder.

P a n e l An RCS term for a collection of objects, similar to a dialog;
differs from a dialog because character snap is not enforced,
thus allowing fine placement of objects at the cost of increased
display time.

P a t h When dealing with hierarchical file systems (such a s DOS), a
path or path name is the complete file name that absolutely
identifies where in the file tree the file exists. Thus, root/dira/
dirb/filea is different from root/dira/dirc/filea, where each direc
tory is specified by the name within s lashes (/).

Pe l S e e pixel

Pixe l A pixel is a picture element. If the picture is in black-and-white,
then a pixel may be just a bit. However, a s color is added, the
size of a pixel may be measured in several bits, depending on
the number of colors.

P o i n t M o d e Device-independent method of specifying text character
height in 1/72 inch increments known a s "points"; s ee the
vtt_point$() function.

Po l l ing The action of a program whereby the program a sks if s o m e
event such a s keyboard input has occurred. A more efficient
method for GEM programs to get input is called blocking, which
means calling one of GEM's event handling routines, such a s

PROGRAMMER'S GUIDE TO GEM

evnt_multi(), and letting the system suspend your process until
the event has happened.

P o l y g o n A many sided, two-dimensional figure. For instance, the
following are polygons: rectangles, squares, pentagons, and
duodecahedrons.

P O R T A B . H A file containing C language data type declarations. The
data type declarations in the file can be modified for different
compilers, in order to allow the data types declared in the file to
always be the s a m e size. For example, the C data declaration
integer may be 16 bits or 3 2 bits, depending on compiler. The
PORTAB.H declaration for WORD can be changed so that WORD
always specifies a 16-bit quantity.

P r o g r a m m e r - d e f i n e d O b j e c t A graphical data item (object) that will
be drawn by a subroutine supplied by the GEM application pro
grammer. This is essentially an "e scape hatch" that allows the
programmer to supply custom drawing routines for special
objects and still use most of the standard A E S routines for stan
dard object display.

Pul l -down M e n u A type of menu that requires the user to click on
the menu area and drag it down. S e e drop-down menu.

R a d i o B u t t o n A type of object, considered with a collection of
objects, where one and only one of the objects in the collection
can be selected at any time.

R a s t e r A r e a A collection of pixels used to represent a picture or a
portion of the display.

R a s t e r C o o r d i n a t e s (RC) Device-specific coordinate system; the
finest positions of addressability for the device.

R a s t e r O p e r a t i o n s VDI functions that operate on raster areas, usu
ally by copying or transforming them. An example is
vro_cpyfm().

R a s t e r F u n c t i o n s S e e raster operations.

Glossary 401

R C S p a c e The collection of all raster coordinates of a device.

R C S S e e Resource Construction Set.

R e c t a n g l e 1) A portion of the screen, specified either by diagonally
opposite corners of a rectangular region or by the upper left
corner plus a width and height. 2) A data structure containing
the information necessary to specify a portion of the screen.

R e c t a n g l e L i s t The series of rectangles, returned by succesive calls
to wind__get(), that define the portion of the screen that needs to
be redrawn.

R e s o u r c e A collection of data objects used by the A E S functions.
S o m e examples of resources include forms, dialogs, and alerts.
A resource allows the data objects to be modularized (relative to
the programmer's code) and manipulated separately by the
Resource Construction Set . This allows the data displays to be
designed separately from the program. It also allows the data
displays to be changed independently of the program (thus
allowing a nonprogrammer to translate the program's displays
into a foreign language, for example).

R e s o u r c e F i l e A collection of resources, grouped into a single file,
usually having the file type .RSC.

R e s o u r c e C o n s t r u c t i o n S e t A program in the GEM Developer's Kit
that allows the programmer to graphically construct the compo
nents in the resource file.

R o o t The first object in an object tree. Also known a s a "root node."
S e e tree.

. R S C Resource file, output of Resource Construction Set, containing
GEM resource and image information to be loaded by an
application.

R u b b e r B o x A graphical display provided by the A E S to indicate a
changeable area of the screen. The rubber box is used by the
Window Manager, for example, to give the user the currently
selected screen size when the user is resizing the window. A
rubber box is also used by the Desktop to allow the user to
select a number of objects in the window. The rubber box is
implemented with the graf_rubberbox() A E S call.

PROGRAMMER'S GUIDE TO GEM

Run- t ime L i b r a r y (RTL) General-purpose subroutines. Usually a pro
gramming language like C provides an extensive number of run
time library routines that the programmer calls explicitly to
perform tasks such a s disk I/O. The run-time library also con
tains subroutines that the compiler calls implicitly, rather than
generating in-line code, to handle more complicated tasks such
a s multiplication and division. S ince a run-time library is usually
general-purpose, its routines can contain code that would never
be used by the application. (For example, the printf() function in
C must be able to print floating point numbers, which may
never be used by your program but which would require large
amounts of code.) The GEM Developer's Kit provides special
purpose run-time libraries in place of the more general-purpose
language run-time libraries.

S c r a p Information passed between applications that is stored on disk
and manipulated by GEM programs through the Scrap Library
Manager.

S c r e e n M a n a g e r The part of the A E S that handles the GEM win
dows; provides functions for the application to create, open, move,
and size windows as well as a standardized mechanism whereby
the user can specify window operations to the application.

S c r o l l B a r A window control point (vertical or horizontal) contained
in the window border (rightmost for vertical, bottom for horizon
tal). The scroll bar, along with its slider, gives the user an idea
of how much the window displays of the total possible display,
and approximately where the window displays into the total
possible display.

S e g m e n t e d A r c h i t e c t u r e An addressing organization of a computer.
A segmented architecture divides up the computer's main mem
ory into pieces (segments) that can be used independently of
other pieces. For example, the computer may have certain parts
of memory dedicated for program code and other parts for pro
gram data. In a segmented architecture, these pieces are strictly
limited in size (64K on the Intel 8 0 8 6 architecture). A different
addressing method is called a "flat addressing space , " whereby

Glossary 403

all code and data is referenced uniformly (as in the Motorola
6 8 0 0 0 architecture).

S e l e c t A user action whereby the user chooses which object (for
example, an icon) is to be manipulated, or which action (for
example, a menu item) is to be performed. When the user has
clicked on the object, the application can choose to change its
state to selected to indicate the selection.

S e l e c t e d An object state in which the object is highlighted by being
drawn with its foreground and background colors reversed.

S h e l l The part of the operating system that interprets user requests;
usually the shell accepts typed c o m m a n d s from the user and
executes a program. In GEM, the shell can be used to run a
non-GEM program (with the shel_write() function).

S h i f t - d r a g A mouse technique whereby the user positions the mouse
in a desired area (object), presses the mouse button, moves the
pointer to s o m e new location, and releases the mouse button.
The user uses this technique, for example, to drag a file icon to
the trash can to indicate file deletion.

S i d e b a r S e e menu sidebar.

S i z e B o x A window control point allowing the user to request that
the size of the display window be changed.

S l i d e r A rectangular-shaped window control point contained in the
vertical or horizontal scroll bar. Under programmer control, the
slider indicates the relative amount of total possible display area
currently on the screen (this is indicated by the size of the
slider, relative to the scroll bar), a s well the location in the total
display area of the screen display (this is indicated by the loca
tion of the slider relative to the scroll bar). The slider can be
manipulated by the user to indicate a request for moving the
screen display to another portion of the total display area.

S m a l l M o d e l Small code and data pointers, where code and data are
limited to 64K each; the most efficient programming model for
the Intel 8 0 8 6 architecture. S e e memory model.

S o f t w a r e P e r f o r m a n c e R e p o r t (S P R) A form to be submitted to
Digital Research describing incorrect or anomalous system pro
gram behavior; a program bug report.

PROGRAMMER'S GUIDE TO GEM

S t a c k A LIFO (last in, first out) data structure manipulated implicitly
from the C language and containing the return addresses for
functions and subroutines, a s well a s any local s torage allocated
within a function. A stack is often compared to the push-down,
pop-off dish storage device commonly used in cafeterias.

S t a r t - u p M o d u l e The routine that first receives control on program
initialization (start up). Usually written in assembler code, the
start-up module sets up the stack and heap, and calls the main
user entry point.

. S Y M Linker output file listing symbols and their locations within the
executable file.

T i m e r An A E S mechanism allowing the programmer to schedule cer
tain events. The timer is usually used to generate s o m e well-
defined response if no other user-generated event occurs. The
timer is also used to allow the program to sample the values of
the m o u s e or the keyboard at a certain well-defined rate in
order to perform graphics input.

T i t l e B a r A window control point, found in the top border of the
window, which contains a string value supplied by the program.
The title bar is also used a s the place from which the user click-
drags in order to move the window.

T r a n s f o r m a t i o n M o d e The method specified for translating the cur
rent coordinate system (NDC or RC) to the device's coordinate
system. In raster coordinates (RC), the transformation mode is
1 to 1—that is, there is no transformation. In normalized device
coordinates (NDC), the coordinates must be mapped (trans
formed) into the device's coordinate system.

T r a s h C a n A graphical icon denoting a deletion operation. The GEM
Desktop contains a trash can to which the user can drag objects
(other icons) on the screen to indicate that the objects repre
sented by the icons are to be deleted.

Tree A linked data structure that defines a hierarchical organization
of the data. In GEM, the tree structure is used to display groups

Glossary 405

of related graphical objects, where each object in the hierarchy
is a s sumed to completely contain (graphically enclose) all of the
objects that are below it in the hierarchy. This relation is called
a "visual hierarchy" in the Resource Construction Set. Another
fact about trees is that all objects below the root node of the
tree are located relative to the root node; this makes it very
simple to relocate the tree simply by changing the position of
the root node.

^LJ U p d a t e R e g i o n The part of a program that updates the graphical
images on the screen. This part of the program needs to have
s o m e method of reserving the screen for itself in order to keep
from conflicting with other sequences of VDI commands . The
update region is delimited by calls to the wind update()
function.

U s e r - d e f i n e d O b j e c t S e e programmer-defined object

U s e r I n t e r f a c e The presentation part of a computer and its applica
tion that the user sees and interacts with, including the screen
display, keyboard, mouse , and any other physical device that the
user either receives information from or uses to input informa
tion to the computer. The user interface also includes the soft
ware that controls these interactions.

\f V a l u a t o r S e e input valuator.

Val ida t ion The process of checking to see whether user input follows
certain criterion, such a s being a well-formed number. Validation
is provided by the Form library function form_do().

VDI H a n d l e The value returned by the VDI function v__ppnvwk(),
which uniquely identifies a workstation.

Vir tual D e v i c e I n t e r f a c e (VDI) A set of routines that allow display
commands to be sent to graphic devices in a device-

PROGRAMMER'S GUIDE TO GEM

independent manner, thereby enabling the programmer, for
example, to write a single routine that would draw a figure on a
screen or on a graphics printer.

Vir tua l W o r k s t a t i o n A graphics device and its attributes that can be
modified independently of other virtual workstations open on a
physical workstation. Virtual workstations constitute a method of
sharing a physical device between several independent programs
or subprograms. S e e workstation.

Visua l H i e r a r c h y The relationship of visual containment for graphics
objects; see tree.

^ Window A region of the screen managed in a standard way. Win
dows facilitate management of the display, giving the user the
tools to customize his display in a manner that is consistent
across applications.

Window C o n t r o l P o i n t One of several components of a window, a
window control point is displayed in the border of the window
and provide a standard graphical way of specifying window oper
ations to the application. S o m e c o m m o n window control points
include CLOSER and MOVER.

Window H a n d l e The value returned by the Window Manager func
tion wind_create() to identify a window for succeeding window
operations.

Window M a n a g e r S e e Screen Manager.

W O R D A compiler independent declaration for a 16-bit integer value.
S e e PORTAB.H.

W o r k s t a t i o n A graphics device and its attributes. S o m e graphic
devices include the screen or a printer. S o m e attributes for
workstations include line color, background color, and type size.
A workstation is to graphics a s a file is to disk I/O. S e e virtual
workstation.

World C o o r d i n a t e s S e e image coordinates.

PROGRAMMER'S GUIDE TO GEM

To give you a quick way of looking up a function's
parameters, this appendix contains an alphabetical list of
all the functions of the GEM bindings covered in this
book, along with parameter declarations.

WORD appl_exit()

WORD appl_find(pname)

LONG pname;

WORD a p p l j n l t ()

WORD appl_read(rwid, length, pbuff)

WORD rwid, length;

LONG pbuff;

WORD appl_tplay(tbuffer, tlength, tscale)

LONG tbuffer;

WORD tlength, tscale;

WORD appl_trecord(tbuffer, tlength)

LONG tbuffer;

WORD tlength;

WORD appl_write(rwid, length, pbuff)

WORD rwid, length;

LONG pbuff;

WORD evnt_button(clicks, mask, state, pmx, pmy, pmb, pks)

WORD clicks, *pmx, *pmy, *pmb, *pks;

UWORD mask, state;

WORD evnt_dcllck(rate, setit)

WORD rate, setit;

UWORD evnt__keybd()

WORD evnt_mesag(pbuff)

LONG pbuff;

AES and VDI Quick Reference Guide 411

WORD evnt mouse(flags, x, y, width, height, pmx, pmy, pmb,

pks)

WORD flags, x, y, width, height, *pmx, *pmy, *pmb, *pks;

WORD evnt_multi(flags, bclk, bmsk, bst, mlflags, mix, mly, m lw ,

m lh , m2flags, m2x, m2y, m2w, m2h, mepbuff,

tic, the, pmx, pmy, pmb, pks, pkr, pbr)

UWORD flags, bclk, bmsk, bst, mlflags, mix, mly, m lw, m l h ;

UWORD m2flags, m2x, m2y, m2w, m2h, tic, the,

UWORD *pmx, *pmy, *pmb, *pks, *pkr, *pbr;

LONG mepbuff;

WORD evnt_timer(loent, hicnt)

UWORD loent, hicnt;

WORD form_alert(defbut, astring)

WORD defbut;

LONG astring;

WORD form_center(tree, pcx, pcy, pew, pch)

LONG tree;

WORD *pcx, *pcy, *pcw, *pch;

WORD form_dial(dtype, ix, iy, iw, ih, x, y, w, h)

WORD dtype, ix, iy, iw, ih, x, y, w, h;

WORD form_do(form, start)

LONG form;

WORD start;

WORD form_error(errnum)

WORD errnum;

WORD fsel_input(pipath, pisel, pbutton)

LONG pipath, pisel;

WORD *pbutton;

VOID graf_dragbox(w, h, sx, sy, xc, yc, wc, he, pdx, pdy)

WORD w, h, sx, sy, xc, yc, wc, he, *pdx, *pdy;

VOID graf_growbox(orgx, orgy, orgw, orgh, x, y, w, h)

WORD orgx, orgy, orgw, orgh, x, y, w, h;

412 PROGRAMMER'S GUIDE TO GEM

WORD graf_handle(pwchar, phchar, pwbox, phbox)

WORD * pwchar, * phchar, * pwbox, * phbox;

VOID graf_mbox(w, h, srcx, srcy, dstx, dsty)

WORD w, h, srcx, srcy, dstx, dsty;

WORD graf_mk$tate(pmx, pmy, pmstate, pkstate)

WORD *pmx, *pmy, * pmstate, * pkstate;

WORD graf mouse(m_number, m_addr)

WORD m_n umber;

LONG m_addr;

VOID graf_rubbox(xorigin, yorigin, wmin, hmin, pwend, phend)

WORD xorigin, yorigin, wmin, hmin, *pwend, *phend;

VOID graf_shrinkbox(orgx, orgy, orgw, orgh, x, y, w, h)

WORD orgx, orgy, orgw, orgh, x, y, w, h;

VOID graf_slidebox(tree, parent, obj, isvert)

LONG tree;

WORD parent, obj, isvert;

VOID graf_watchbox(tree, obj, instate, outstate)

LONG tree;

WORD obj;

UWORD instate, outstate;

WORD menu„bar(tree, showit)

LONG tree;

WORD showit;

WORD menu_icheck(tree, itemnum, checkit)

LONG tree;

WORD itemnum, checkit;

WORD menu ienable(tree, itemnum, enableit)

LONG tree;

WORD itemnum, enableit;

AES and VDI Quick Reference Guide 413

WORD menu__register(pid, pstr)

WORD pid;

LONG pstr;

WORD menu_text(tree, inum, ptext)

LONG tree, ptext;

WORD inum;

WORD menu_tnormal(tree, titlenum, normalit)

LONG tree;

WORD titlenum, normalit;

WORD objc_add(tree, parent, child)

LONG tree;

WORD parent, child;

WORD objc_change(tree, drwob, dpth, xc, yc, wc, he, newstate,

redraw)

LONG tree;

WORD drwob, dpth, xc, yc, wc, he, newstate, redraw;

WORD objc_delete(tree, delob)

LONG tree;

WORD delob;

WORD ob|c_draw(tree, drawob, depth, xc, yc, wc, he)

LONG tree;

WORD drawob, depth, xc, yc, wc, he;

WORD ob|c_edit(tree, obj, inchar, idx, kind)

LONG tree;

WORD obj, inchar, *idx, kind;

WORD ob|c_find(tree, startob, depth, mx, my)

LONG tree;

WORD startob, depth, mx, my;

WORD objc__offset(tree, obj, poffx, poffy)

LONG tree;

WORD obj, * poffx, * poffy;

PROGRAMMER'S GUIDE TO GEM

WORD ob|c_order(tree, mov_obj, newpos)

LONG tree;

WORD mov_obj, newpos;

WORD rsrc_free()

WORD rsrc_gaddr(rstype, rsid, paddr)

WORD rstype, rsid;

LONG * paddr;

WORD r$rc_load(rsname)

LONG rsname;

WORD rsrc_obfix(tree, obj)

LONG tree;

WORD obj;

WORD rsrc_saddr(rstype, rsid, Ingval)

WORD rstype, rsid;

LONG Ingval;

WORD scrp__read(pscrap)

LONG pscrap;

WORD scrp_write(pscrap)

LONG pscrap;

WORD thel_envrn(ppath, psrch)

LONG ppath, psrch;

WORD shel_find(ppath)

LONG ppath;

WORD shel_get(pbuffer, len)

LONG pbuffer;

WORD len;

WORD shel_put(pdata, len)

LONG pdata;

WORD len;

AES and VDI Quick Reference Guide 415

WORD shel_read(pcmd, ptail)

LONG pcmd, ptail;

WORD shel_write(doex, isgr, iscr, pcmd, ptail)

WORD doex, isgr, iscr;

LONG pcmd, ptail;

VOID v_arc(handle, xc, yc, rad, sang, eang)

WORD handle, xc, yc, rad, sang, eang;

Available for metafiles.

VOID v_J>ar(handle, xy)

WORD handle, xy[] ;

Available for metafiles.

VOID v_circle(handle, xc, yc, rad)

WORD handle, xc, yc, rad;

Available for metafiles.

VOID v_clrwk(handle)

WORD handle;

Available for metafiles.

VOID v_clsvwk(handle)

WORD handle;

VOID v_clswk(handle)

WORD handle;

Available for metafiles.

VOID v_ellarc(handle, xc, yc, xrad, yrad, sang, eang)

WORD handle, xc, yc, xrad, yrad, sang, eang;

Available for metafiles.

VOID v_ellipse(handle, xc, yc, xrad, yrad)

WORD handle, xc, yc, xrad, yrad;

Available for metafiles.

VOID v_ellpie(handle, xc, yc, xrad, yrad, sang, eang)

WORD handle, xc, yc, xrad, yrad, sang, eang;

Available for metafiles.

PROGRAMMER'S GUIDE TO GEM

VOID v__fillarea(handle, count, xy)
WORD handle, count, xy[] ;
Available for metafiles.

VOID v_gtext(handle, x, y, string)
WORD handle, x, y;
BYTE *string;
Available for metafiles.

VOID v jus t i f i ed(handle, x, y, string, length, word_space,
char_space)

WORD handle, x, y, length, word__space, char__space;
BYTE strings-
Available for metafiles.

VOID v_opnvwk(work__in, handle, work__out)
WORD work__in[], *handle, work_put[] ;

VOID v_opnwk(work_in, handle, work_out)
WORD work_Jn[], *handle, work_out[] ;
Available for metafiles.

VOID v_pieslice(handle, xc, yc, rad, sang, eang)
WORD handle, xc, yc, rad, sang, eang;
Available for metafiles.

" ^ - ^ ...

VOID v__pline(handle, count, xy)
WORD handle, count, xy[] ;
Available for metafiles.

VOID v__pmarker(handle, count, xy)
WORD handle, count, xy[] ;
Available for metafiles.

VOID v__rbox(handle, xy)
WORD handle, xy[];
Available for metafiles.

VOID v_rfbox(handle, xy)
WORD handle, xy[] ;
Available for metafiles.

AES and VDI Quick Reference Guide 417

VOID vm_filename(handle, filename)

WORD handle;

BYTE *fi lename;

Available for metafiles.

VOID vq__extnd(handle, owflag, work_out)

WORD handle, owflag, work__out[];

VOID vqt_extent(handle, string, extent)

WORD handle, extents-

BYTE string[];

VOID vqt_font_info(handle, minADE, maxADE, dists, maxwidth,

effects)

WORD handle, *minADE, *maxADE, dists[], *maxwidth,

effects [] ;

WORD vqt_width(handle, character, cell__width, left_delta,

right_delta)

WORD handle, *cell_width, *left_delta, *right_delta;

BYTE character;

VOID vr_recfl(handle, xy)

WORD handle, *xy;

Available for metafiles.

VOID vr_trnfm(handle, srcAAFDB, desAAFDB)

WORD handle;

MFDB * srcAAFDB, * desAAFDB;

VOID vro_cpyfm(handle, wr_mode, xy, srcAAFDB, desAAFDB)

WORD handle, wr_mode, xy [] ;

AAFDB * srcAAFDB, *desAAFDB;

VOID vrt_cpyfm(handle, wr_mode, xy, srcAAFDB, desAAFDB, index)

WORD handle, wr_mode, xy [] , *index;

AAFDB * srcAAFDB, * desAAFDB;

VOID v$_clip(handle, clip_flag, xy)

WORD handle, clip_flag, xy [] ;

Available for metafiles.

PROGRAMMER'S GUIDE TO GEM

WORD vsf_color(handle, index)

WORD handle, index;

Available for metafiles.

WORD v$f_interior(handle, style)

WORD handle, style;

Available for metafiles.

WORD v»f_perimeter(handle, per_vis)

WORD handle, per_vis;

Available for metafiles.

WORD v$f_ttyle(handle, index)

WORD handle, index;

Available for metafiles.

WORD vtl_color(handle, index)

WORD handle, index;

Available for metafiles.

VOID vsl_ends(handle, beg_style, end_style)

WORD handle, beg__style, end_style;

Available for metafiles.

WORD v$l__type(handle, style)

WORD handle, style;

Available for metafiles.

WORD vtl_width(handle, width)

WORD handle, width;

Available for metafiles.

WORD vfm_color(handle, index)

WORD handle, index;

Available for metafiles.

WORD vsm_height(handle, height)

WORD handle, height;

Available for metafiles.

WORD vsm_type(handle, symbol)

AES and VDI Quick Reference Guide 419

WORD handle, symbol;

Available for metafiles.

VOID vst_alignment(handle, hor_in, v e r t j n , hor_out, vert_out)

WORD handle, hor_in, v e r t j n , *hor_put, *vert_out;

Available for metafiles.

WORD v$t_color(handle, index)

WORD handle, index;

Available for metafiles.

WORD vtt_effectt(handle, effect)

WORD handle, effect;

Available for metafiles.

WORD vtt_font(handle, font)

WORD handle, font;

T h e fol lowing funct ions a r e ava i l ab le for meta f i l e s .

VOID vst_height(handle, hght, ch_wdth, ch_hght, cell_wdth,

celLhght)

WORD handle, hght, *ch_wdth, *ch_hght, *cell__wdth,

*cell_hght;

Available for metafiles.

WORD vst_load_fonts(handle, select)

WORD handle, select;

Available for metafiles.

WORD vst__point(handle, point, ch_wdth, ch_hght, celLwdth,

cell_hght)

WORD handle, point, *ch_wdth, *ch_hght, *cell_wdth,

*cell_hght;

Available for metafiles.

VOID vt_unload_font(handle, select)

WORD handle, select;

Available for metafiles.

420 PROGRAMMER'S GUIDE TO GEM

WORD v$wr_mode(handle, mode)

WORD handle, mode;

Available for metafiles.

WORD wind_calc(wctype, kind, x, y, w, h, px, py, pw, ph)

WORD wctype, x, y, w, h, *px, *py, *pw, *ph ;

UWORD kind;

WORD wind_close(w j i a n d l e)

WORD w j i a n d l e ;

WORD wind_create(kind, wx, wy, ww, wh)

UWORD kind;

WORD wx, wy, ww, wh;

WORD wind_delete(w j i a n d l e)

WORD w j i a n d l e ;

WORD wind_find(mx, my)

WORD mx, my;

WORD wind_get(w_handle, w j i e l d , p w l , pw2, pw3, pw4)

WORD w j i a n d l e , w_field, * p w l , *pw2, *pw3, *pw4;

WORD wind_open(w j i a n d l e , wx, wy, ww, wh)

WORD w_handle, wx, wy, ww, wh;

WORD wind_set(w_handle, w__field, w2, w3, w4, w5)

WORD w_handle, w_f ield, w2, w3, w4, w5;

WORD wind_update(typ_update)

WORD typ_update;

A p * e * h

r

M C E
QONSnUCfDN

SEI
T U M

PROGRAMMER'S GUIDE TO GEM

In this appendix we are going to build the DEMOMENU
object tree in a step-by-step fashion. With the information
you get from doing this, you should be able to build the
other object trees. We assume that you have some knowl
edge of how to use the Resource Construction Set (RCS).
This tutorial does not presume to be the final lesson on
using the RCS.

In order to duplicate this tutorial, you must be running
the GEM Desktop and be in a directory that has the RCS.
We used the second version of the RCS called RCS2.
Since the RCS changed a great deal from version 1 to
version 2 of GEM, this tutorial will be of minimal use if
you have the older version.

Double-click on the RCS2 icon, which loads the RCS.

Move the mouse cursor to the bottom part of the screen to the
Parts Box. To see what the Parts Box looks like, see Figure 6.5.

Drag the MENU part to the work area, and release the button. A
dialog requesting that you enter a name for the new tree should
appear.

Backspace over the default name ("TREE1"), and enter "DEMOMENCT.
Either click on the OK button or press the Enter key.

Double-click on the MENU part in the work area.

The work area will change and show the menu bar with just the Desk
and File menus on top and a darker window area underneath them.

Double-click on the the Desk menu name.

An "Edit Unformatted String Object" dialog (EUSO) should appear.
Move the text cursor (the vertical bar,]) to the optional object
name field by either pressing the down cursor key or by moving
the mouse to the position just after the "Object Name: " field and
by then clicking the m o u s e button. Enter "DEMODESK" and press
Return. The E U S O will disappear.

Resource Construction Set Tutorial 425

!J Double-click on the Desk menu item. The menu will drop showing
"Your m e s s a g e here" and six empty slots for the desk accessory's
names .

10 Double-click on the "Your m e s s a g e here" item.

11 A ECJSO appears asking for a Text and a Name. Backspace over "Your
message here" and enter "About GEM Demo . . .". Then move the
cursor down and enter "DEMOINFO" for the optional name.

12 Double-click on the File title (not the RCS File menu, but the one
in the work area of the RCS).

13 An EC1SO appears . Enter the optional name of "DEMOFILE" and
press Return.

14 Click on the Quit item in File menu. Drag on the small dark rec
tangle in the bottom right corner to the left, so that the you expose
a corner of the underlying box. Release. Drag the exposed corner
down and to the right, until you have resized the File menu box.
The largest string that we are going to add in this box is " Save
As . . .". If you don't m a k e a box large enough to hold the largest
string, the RCS will display an alert complaining about the auto-
sizing violating the visual hierarchy. Click on the Go Ahead button,
and resize the large box later.

15 Drag the Quit item to the bottom of the large box. Click in center
of Quit box. An open hand will appear during the drag operation.

16 Drag an ENTRY Part to the top of the large box. Release.

17 Shift-click on the new ENTRY in the large box (hold the Shift key
down before clicking). Drag the cursor down below the first ENTRY.
Release the button. A second ENTRY should appear. Repeat until
there are four ENTRYs in the File box. You could also simply
repeat step 16, four times, instead of shift-clicking.

18 Double-click on the first ENTRY. An ECJSO should appear. Back
space over "ENTRY", and enter "Load". Type in "DEMOLOAD" for
the object name, and return.

19 Repeat the last step for each ENTRY, entering

Text: "Save" , Optional Name: "DEMOSAVE"
Text: " Save As . . ." Optional Name: "DEMOSVAS"
Text: "Abandon" Optional Name: "DEMOABAN"

PROGRAMMER'S GUIDE TO GEM

Click on the Quit item and name it "DEMOQCJIT".
We have entered all the File menu items.

Click on the work area to close the File menu.

Drag a TITLE part next to the File menu. Release.

Double click on the TITLE part. An ECJSO appears . Backspace over
"TITLE" and enter "Options" for the text and "DEMOOPTS" for a
name.

Click on Options menu. Click on the empty box underneath
Options name.

Size this box so that we can fit in the largest string—"Pencil/Eraser
Selection".

Drag an ENTRY part to the Options menu box. Repeat until three
ENTRYs are in the Options menu.

Double-click on the first ENTRY, and enter the text of "Pencil/
Eraser Selection" and the name of "DEMOPENS" .
Now change the string in the second ENTRY to " ",
and no name.
Finish with the last ENTRY and change the text string to "Erase
Picture" with a name of "DEMOERAP".

Now that we have entered all the data, we must align the entries.
Select the three entries, move the cursor to the far left where the
Tools are displayed. Click on the icon showing all the arrows
(column 1, row 3). A menu of different alignments should appear.
Select the "Align Left".
Now we must set the state and flags field for these objects.

Click on the work area to clear the current selection. Click on the
first item ("Pencil/Eraser. . .") and then move to the far left again.
Select the icon with the "A", (column 2, row 3). A large menu
should appear with two halves. The topmost half sets the object
flag and the bottom half sets the object state. For the DEMOPENS
object, click on the "Selectable" item. The state is left alone.

Click on the item consisting of the row of dashes, and set its state
to "Disabled".

Resource Construction Set Tutorial 427

31 Click on DEMOERAP item, and make its flag "Selectable" .
We are finished with the Options menu. Now let's go set the flags
and states of the File menu.

32 Click on the File menu. Click on DEMOLOAD, and set its flag to
"Selectable" . Set the rest of the items as follows:

DEMOSAVE—No flag change, state = "Disabled".
DEMOSVAS—Flag = "Selectable" , no state change.
DEMOABAN—Flag = "Selectable" , no state change.
DEMOQCIIT—Flag = "Selectable" , no state change.

33 Now change the DEMOINFO to flag = "Selectable" .

34 We have finished creating the DEMOMENCJ menu. Click on the
Close item in the RCS File menu. The work area should clear and
change to show the MENU part.
The default action when we finish with building something in the
RCS is to create a .RSC file, a .DFN file, and a .H file. If you also
want to see the kind of information as in Appendix G, you must
select the Output option in the RCS Global menu. In the displayed
dialog, click on the "Source file for resource" button to create
.RSH file.

35 To finish, use the "Save As . . ." item in the RCS File menu. The
RCS will display various m e s s a g e s telling you that it is writing out
information about objects, TEDINFOs, and so on. After it is fin
ished, click on Quit in the File menu to leave the RCS.
If you search your directory, you will find at least three new files (four
if you elected to build a .RSH file). They are name.H, name.DFN, and
name. RSC, depending on what name you chose to save this work.

f

PROGRAMMER'S GUIDE TO GEM

#define
/

mc68k 0

PORTAB.H

*
•

C P / M C R U N T I M E L I B H E A D E R F I L E

* Copyright 1982 by Digit; il Research Inc :. All rights reserved.
* This is an include file for assisting the user to write portable
* programs j for C.
-frkiciticiriei

#define UCHARA] L /* if char is unsigned
kick/

*l
/* Standard type definitions */
#define BYTE char /* Signed byte */
#define BOOLEAN int /* 2 valued (true/false) */
#define WORD int /* Signed word (16 bits) */
#define UWORD unsigned int /* unsigned word */

#define LONG long /* signed long (32 bits) */
#define ULONG long /* Unsigned long */
#define REG register /* register variable */
#define LOCAL auto /* Local var on 68000 */
#define EXTERN extern /* External variable */
#define MLOCAL static /* Local to module */
#define GLOBAL /**/ /* Global variable */
#define VOID /**/ /* Void function return */
#define DEFAULT int /* Default size */
#ifdef UCHARA
#define UBYTE
#else
#define UBYTE
#endif
l'
/*

char

unsigned char

I*
Miscellaneous Definitions:

/* Unsigned byte

/* Unsigned byte

*/

*/

*/
*/
*/
*/
*/
*/

#define FAILURE (-1) /* Function failure return val
#define SUCCESS (0) /* Function success return val
#define YES 1 /* "TRUE"
#define NO 0 /* "FALSE"
#define FOREVER for(;;) /* Infinite loop declaration
#define NULL 0 /* Null pr;ater value
#define NULLPTR (char *) 0 /*
#define EOF (-1) /* EOF Value
#define TRUE (1) /* Function TRUE value
#define FALSE (0) /* Function FALSE value

MACHINE.H 09/29/84-02/08/85 Lee Lorenzen */

#define PCDOS 1 /* IBM PC DOS */
#define CPM 0 /* CP/M version 2.2 */

#define HILO 0 /* how bytes are stored */

#ifndef 18086
#define 18086 1 /* Intel 8086/8088 */
#endif

Listing of DEMO 431

#define MC68K 0

#define ALCYON 0

#define ALPHA 1

#define LINKED 0

#define UNLINKED 1

/* Motorola 68000 */

/* Alcyon C Compiler */

/* if character screen */

/* if desktop linked with GEM */

EXTERN BYTE
EXTERN BYTE
EXTERN BYTE

*strcpy();
*strcat();
*strscn();

EXTERN WORD LSTRLEN();

EXTERN WORD LWCOPY();

EXTERN BYTE LBCOPYO;

EXTERN WORD LBWMOVO;

EXTERN WORD LSTCPYO;

#define LW(x) ((LONG)((UWORD)(x)))

#define HW(x) ((LONG)((UWORD)(x)) « 16)

#define LLOWD(x) ((UWORD)(x))

#define LHIWD(x) ((UWORD)(x » 16))

#define LLOBT(x) ((BYTE)(x & OxOOff))

#define LHIBT(x) ((BYTE)((x » 8) & OxOOff))

in OPTIMIZE.C */

/* in LARGE.A86 */
/* return length of */
/* string pointed at */
/* by long pointer */

/* copy n words from */
/* src long ptr to */
/* dst long ptr i.e., */
/* LWCOPY(dlp, sip, v i) * /

/* copy n words from */
/* src long ptr to */
/* dst long ptr i.e., */
/* LBCOPY(dlp, sip, n)* /

/* move bytes into wds* /
1* from src long ptr to*/
/* dst long ptr i.e., */
1* until a null is */
1* encountered, then */
/* num moved is returned*/
/* LBWMOV(dwlp, sbip)*/

/* coerce short ptr to */
/* low word of long */

/* coerce short ptr to */
/* high word of long */

/* return low word of */
/* a long value */

/* return high word of */
/* a long value */

/* return low byte of */
/* a word value */

/* return high byte of */
/* a word value */

PROGRAMMER'S GUIDE TO GEM

Hi 18086

EXTERN LONG ADDR();

EXTERN LONG LLDS();

EXTERN LONG LLCS();

EXTERN BYTE LBGET();

EXTERN BYTE LBSET();

EXTERN WORD LWGET();

^EXTERN WORD LWSETO;

EXTERN LONG LLGETO;

EXTERN LONG LLSET();

#define LBYTEO(x) (*x)

#define LBYTEl(x) (*(x+l))

#define LBYTE2(x) (*(x+2))

#define LBYTE3(x) (*(x+3))

#endif

/* return long address */
/* of short ptr */

/* return long address */
/* of the data seg */

/* return long address */
/* of the code seg */

/* return a single byte */
/* pointed at by long */
/* ptr */

/* set a single byte */
/* pointed at by long */
/* ptr, LBSET(lp, bt) */

/* return a single word */
/* pointed at by long */
/* ptr */

/* set a single word */
/* pointed at by long */
/* ptr, LWSETUp, bt) */

/* return a single long */
/* pointed at by long */
/* ptr */

/* set a single long */
/* pointed at by long */
/* ptr, LLSET(lp, bt) */

/* return 0th byte of */
/* a long value given */
/* a short pointer to */
/* the long value */

/* return 1st byte of */
/* a long value given */
/* a short pointer to */
/* the long value */

/* return 2nd byte of */
/* a long value given */
/* a short pointer to */
/* the long value */

/* return 3rd byte of */
/* a long value given */
/* a short pointer to */
/* the long value */

Listing of DEMO 433

#if MC68K

#define ADDR /**/

/* return a long address*/
/* of a short pointer */

#define LBGET(x) ((UBYTE) *((BYTE *)(x)))

#define LBSET(x, y) (*((BYTE *)(x)) = y)

#define LWGET(x) ((WORD) *((WORD *)(x)))

#define LWSET(x, y) (*((WORD *)(x)) = y)

#define LLGET(x) (*((LONG *)(x)))

#define LLSET(x, y) (*((LONG *)(x)) = y)

#define LBYTEO(x) (*((x)+3))

#define LBYTEl(x) (*((x)+2))

#define LBYTE2(x) (*((x)+l))

#define LBYTE3(x) (*(x))

/* return a single byte */
/* pointed at by long */
/* ptr */

/* set a single byte */
/* pointed at by long */
/* ptr, LBSETdp, bt) */

/* return a single word */
/* pointed at by long */
/* ptr */

/* set a single word */
/* pointed at by long */
/* ptr, LWSET(lp, bt) */

/* return a single long */
/* pointed at by long */
/* ptr */

/* set a single long */
/* pointed at by long */
/* ptr, LLSET(lp, bt) */

/* return Oth byte of */
/* a long value given */
/* a short pointer to */
/* the long value */

/* return 1st byte of */
/* a long value given */
/* a short pointer «fc> */
/* the long value */

/* return 2nd byte of */
/* a long value given */
/* a short pointer to */
/* the long value */

/* return 3rd byte of */
/* a long value given */
/* a short pointer to */
/* the long value */

#endif

PROGRAMMER'S GUIDE TO GEM

/ * TREEADDR.H 04/11/84 - 09/11/84 Gregg Morris * /

#define OBNEXT(x) (t r e e + (x) * sizeof(OBJECT) + 0)
fde f ine OBHEAD(x) (t r e e • (x) * sizeof(OBJECT) + 2)
#define OBTAIL(x) (t r e e • (x) * sizeof(OBJECT) + 4)
#define OBTYPE(x) (t r e e + (x) * sizeof(OBJECT) • 61
#define OBFLAGS(x) (t r e e + (x) * sizeof(OBJECT) + 8)
#define OBSTATE(x) (t r e e + (x) * sizeof(OBJECT) + 10)
#define OBSPEC(x). (t r e e • (x) * sizeof(OBJECT) + 12)
#define OB_X(x) (t r e e + (x) * sizeof(OBJECT) + 16)
#define OB_Y(x) (t r e e • (x) * sizeof(OBJECT) + 18)
#define OBWIDTH(x) (t r e e + (x) * sizeof(OBJECT) + 20)
#define OB HEIGHT(x) (t r e e • (x) * sizeof(OBJECT) + 22)

/* OBDEFS.H 03/15/84 - 11/22/84 Gregg Morris */

#define ROOT 0
#define NIL -1

#define MAXLEN 81

#def ine MAXDEPTH 10

#define IP HOLLOW 0
#define IP IPATT 1
#define IP 2PATT 2
#define IP 3PATT 3
#define IP 4PATT 4
#define IP 5PATT 5
#define IP 6PATT 6
#define IPSOLID 7

#define SYSFG 0x1100

#define WTS_FG Oxl la l

#define WTNFG 0x1100

• d e f i n e MD REPLACE 1
#define MD TRANS 2
#define MD XOR 3
#define MDERASE 4

#define FIS HOLLOW 0
#define FIS SOLID 1
#define FIS PATTERN 2
#def ine FIS HATCH 3
#define FISUSER 4

#define ALL WHITE 0
#define S AND D 1
#define S ONLY 3
#define NOTS AND D 4
#define S XOR D 6
#define S OR D 7
#define D INVERT 10

/ * max s t r i n g length * /

/ * max depth of search * /
/ * or draw for o b j e c t s * /

/ * in s ide pa t te rns */

/ * system foreground and * /
/ * background r u l e s * /

/ * window t i t l e s e l e c t e d * /
/ * us ing pat tern 2 & * /
/ * rep lace mode text * /
/ * window t i t l e normal * /
/ * gsx modes * /

/ * gsx s t y l e s

/ * b i t b i t ru l e s

*/

*/

Listing of DEMO 435

#define NOTS OR D 13
#define ALLBLACK 15

#define IBM 3
#de£ine SMALL 5

/ * Object Drawing Types */

#define GBOX 20
#define G TEXT 21
#define G BOXTEXT 22
#define G IMAGE 23
#define G USERDEF 24
#define G IBOX 25
#define G BUTTON 26
#define G BOXCHAR 27
#define G STRING 28
#define G FTEXT 29
#define G FBOXTEXT 30
#define G ICON 31
#define G TITLE 32

#define NONE 0x0
#de£ine SELECTABLE 0x1
#de£ine DEFAULT 0x2
#de£ine EXIT 0x4
#de£ine EDITABLE 0x8
#de£ine RBUTTON 0x10
#de£ine LASTOB 0x20
#define TOUCHEXIT 0x40
#define HIDETREE 0x80
#de£ine INDIRECT 0x100

#de£ine NORMAL 0x0
#de£ine SELECTED 0x1
#de£ine CROSSED 0x2
#de£ine CHECKED 0x4
#define DISABLED 0x8
#define OUTLINED 0x10
#define SHADOWED 0x20

#define WHITE 0
#define BLACK 1
#define RED 2
#define GREEN 3
#define BLUE 4
#define CYAN 5
#define YELLOW 6
#define MAGENTA 7
#define LWHITE 8
#define LBLACK 9
#define LRED 10
#define LGREEN 11
#define LBLUE 12
#define LCYAN 13
#define LYELLOW 14
#define LMAGENTA 15

/ * font types * /

/ * Graphic types of obs * /

/ * Object f l a g s * /

/ * Object s t a t e s * /

/ * Object c o l o r s * /

#define OBJECT s t ruc t ob ject

PROGRAMMER'S GUIDE TO GEM

OBJECT
{

WORD
WORD
WORD
UWORD
UWORD
UWORD
LONG
UWORD
UWORD
UWORD
UWORD

ob next ; / * -> o b j e c t ' s next s i b l i n g * /
o b h e a d ; / * -> head of o b j e c t ' s chi ldren * /
o b t a i l ; / * -> t a i l of o b j e c t ' s chi ldren * /
o b t y p e ; / * type of o b j e c t - BOX, CHAR,. . . * /
o b f l a g s ; / * f l a g s * /
o b s t a t e ; / * s t a t e - SELECTED, OPEN, . . . * /
o b s p e c ; / * " o u t " > anything e l s e * * /
ob_x; / * upper l e f t corner of object * /
o b y ; / * upper l e f t corner of ob ject * /
ob_width; / * width of obj * /
o b h e i g h t ; / * height of obj * /

#define ORECT s t ruc t orect

ORECT
{

ORECT
WORD
WORD
WORD
WORD

* o _ l i n k ;
o x ;
o_y;
o_w;
o h;

#define GRECT s t ruc t greet

GRECT
{

WORD g_x;
WORD g_y;
WORD g_w;
WORD g_h;

•de f ine TEDINFO s t ruc t text edinfo

TEDINFO
{

LONG
LONG
LONG
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD

te_ptext ; / * ptr to text * /
t e p t m p l t ; / * ptr to template * /
t e p v a l i d ; / * ptr to v a l i d a t i o n chr s . * /
te_font ; / * font * /
te_ junkl ; / * junk word * /
t e j u s t ; / * j u s t i f i c a t i o n - l e f t , r i g h t . . . * /
t e c o l o r ; / * color information word * /
te_junk2; / * junk word * /
t e t h i c k n e s s ; / * border thickness * /
t e _ t x t l e n ; / * length of text s t r i n g * /
t e t m p l e n ; / * length of template s t r i n g * /

• de f ine ICONBLK s t r u c t icon_block

ICONBLK
{

LONG ibpmask ;

Listing of DEMO

};

LONG
LONG
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD

bpdata;
b_ptext ;
b_char;
b_xchar;
b_ychar;
b_xicon;
b_yicon;
b^wicon;

_b_hicon;
i b x t e x t ;
ib_ytext ;
ib_wtext;
i b h t e x t ;

#define BITBLK s t ruc t b i t b l o c k

BITBLK
{

LONG
WORD
WORD
WORD
WORD
WORD

bipdata;
b i w b ;
b i h l ;
b i_x ;
b i y ;
bi r u l e ;

/ * ptr to b i t forms data
/ * width of form in bytes
/ * height in l i n e s
/ * source x in b i t form
/ * source y in b i t form
/ * b i t rule to use

#define USERBLK s t ruc t u s e r b l k
USERBLK
{

LONG ub_code;
LONG ubparm;

};
#define PARMBLK s t ruc t parmblk
PARNBLK
{

#define
MFDB
{

LONG pb_tree ;
WORD pb_obj ;
WORD pb_prevs ta te ;
WORD pb_curr s t a te ;
WORD pb_x, pb_y, pb_w, pb_h;
WORD pb_xc, pb_yc, pb_wc, p b h c
LONG pbparm;

MFDB s t ruc t memform

LONG mp;
WORD fwp;
WORD fh ;
WORD fww;
WORD f f ;
WORD np;
WORD n ;
WORD r2;
WORD r3;

PROGRAMMER'S GUIDE TO GEM

• de f ine FILLPAT s t r u c t patarray
FILLPAT
{

WORD patword[l6] ;
};
• de f ine EDSTART 0
•de f ine EDINIT 1
•de f ine EDCHAR 2
•de f ine EDEND 3

•de f ine TELEFT 0
• d e f i n e TERIGHT 1
•de f ine TECNTR 2
/*

DEMO.H
*/
•de f i ne DEMOMENU 0 /* TREE * /
• d e f] .ne DEMOINFO 8 /* OBJECT in TREE • 0 */
• de f] .ne DEMODESK 3 /* OBJECT in TREE #0 */
•def i .ne DEMOFILE 4 /* OBJECT in TREE #0 */
• de f] .ne DEMOOPTS 5 /* OBJECT in TREE #0 */
• de f] .ne DEMOLOAD 17 /* OBJECT in TREE #0 */
• 4 e f] me DEMOSAVE 18 /* OBJECT in TREE • 0 */
•de f] me DEMOSVAS 19 /* OBJECT in TREE #0 */
•de f] ine DEMOABAN 20 /* OBJECT in TREE • 0 */
• de f] me DEMOQUIT 21 /* OBJECT in TREE • 0 */
•de f] me DEMOPENS 23 /* OBJECT in TREE • 0 */
•de f] me DEMOERAP 25 /* OBJECT in TREE #0 */
•de f] me DEMOINFD 1 /* TREE * /
•de f] me DEMOOK 6 /* OBJECT in TREE #1 */
• de f] me DEMOPEND 3 /* TREE * /
•de f] me DEMOPSOK 10 /* OBJECT in TREE • 3 */
•def : me DEMOCNCL 12 /* OBJECT in TREE • 3 */
•def : me DEMOOVWR 0 /* STRING * /
• de f me DEMONWDW 1 /* STRING */
• de f me DEMOSVAD 2 /* TREE * /
• de f me DEMOSOK 2 /* OBJECT in TREE • 2 */
• de f me DEMOSCNL 3 /* OBJECT in TREE • 2 */
• de f me DEMONAME 4 /* OBJECT in TREE • 2 */
• de f me DEMOIMG 3 /* OBJECT in TREE #1 */
•de f me DEMOPCLR 18 /* OBJECT in TREE • 3 */
• de f me DEMOPFIN 3 /* OBJECT in TREE • 3 */
•de f Lne DEMOPMED 4 /* OBJECT in TREE • 3 */
•de f Ine DEMOPBRD 5 /* OBJECT in TREE •3 */
•de f Lne DEMOEFIN 6 /* OBJECT in TREE • 3 */
•de f Lne DEMOEMED 7 /* OBJECT in TREE • 3 */
•de f Lne DEMOEBRD 8 /* OBJECT in TREE • 3 */

/ * GEMBIND.H 05/05/84 - 08/13/85 Lee Lorenzen * /

/ * Appl icat ion Manager * /
• de f ine APPL INIT 10
• d e f i n e APPL READ 11
• d e f i n e APPL WRITE 12
• d e f i n e APPL FIND 13
• d e f i n e APPL TPLAY 14
• d e f i n e APPL TRECORD 15
• d e f i n e APPL BVSET 16
• d e f i n e APPL EXIT 19

Listing of DEMO

#define EVNTKEYBD 20
• d e f i n e EVNTBUTTON 21
• d e f i n e EVNTMOUSE 22
#define EVNTMESAG 23
#define EVNTTIMER 24
• d e f i n e EVNTMULTI 25
#define BVNTDCLICK

#define MENUBAR 30
#define MENUICHECK 31
#define MENUIENABLE 32
#define MENUTNORMAL 33
#define MENUTEXT 34
#define MENUREGISTER 35
#define MENUUNREGISTER 36

#define OBJCADD 40
#define OBJC__DELETE 41
#define OBJCDRAW 42
#define OBJCFIND 43
• d e f i n e OBJCOFFSET 44
#define OBJCORDER 45
#define OBJCEDIT 46
#define OBJCCHANGE 47

#define FORMDO 50
#define FORM_DIAL 51
#define FORMALERT 52
#define FORMERROR 53
#define FORMCENTER 54
• d e f i n e FORMKEYBD 55
• d e f i n e FORMBUTTON 56

• d e f i n e GRAFRUBBOX 70
• d e f i n e GRAFDRAGBOX 71
• d e f i n e GRAFMBOX 72
• < e f i n e GRAFGROWBOX 73
• d e f i n e GRAFSHRINKBOX 74
• d e f i n e GRAFWATCHBOX 75
• d e f i n e GRAFSLIDEBOX 76
• d e f i n e GRAFHANDLE 77
• d e f i n e GRAFMOUSE 78
• d e f i n e GRAFMKSTATE 79

• d e f i n e SCRPREAD 80
• d e f i n e SCRPWRITE 81

• d e f i n e FSELINPUT 90

• d e f i n e WINDCREATE 100
• d e f i n e WINDOPEN 101
• d e f i n e WINDCLOSE 102
• d e f i n e WINDDELETE 103
• d e f i n e WINDGET 104
• d e f i n e WINDSET 105
• d e f i n e WINDFIND 106
• d e f i n e WINDUPDATE 107
• d e f i n e WINDCALC 108

• d e f i n e RSRC LOAD 110

/ * Event Manager

/ * Menu Manager

/ * Object Manager

/ * Form Manager

/ * Graphics Manager

/ * Scrap Manager

/ * F i l e Se lec tor Manager

/ * Window Manager

/ * Resource Manager

PROGRAMMERS GUIDE TO GEM

• d e f i n e RSRCFREE
• d e f i n e RSRCGADDR
• d e f i n e RSRCSADDR
• d e f i n e RSRCOBFIX

• d e f i n e SHEL_READ
• d e f i n e SHELWRITE
• d e f i n e SHELGET
• d e f i n e SHELPUT
• d e f i n e SHELFIND
• d e f i n e SHELENVRN

• d e f i n e CSIZE
• d e f i n e GSIZE
• d e f i n e I S I Z E
• d e f i n e OSIZE
• d e f i n e AIS IZE
• d e f i n e AOSIZE

• d e f i n e OPCODE
• d e f i n e IN_LEN
• d e f i n e OUTLEN
• d e f i n e AINLEN

• d e f i n e RET CODE

• d e f i n e AP
• d e f i n e AP-

• d e f i n e AP"
• d e f i n e AP
• d e f i n e AP"
• d e f i n e AP-

• d e f i n e AP]
• d e f i n e AP
• d e f i n e AP~
• d e f i n e AP~
•def ine AP
•def ine AP~
•de f ine AP~
•de f ine AP"
•de f ine AP~

VERSION
COUNT
ID
LOPRIVATE
HIPRIVATE
LOPNAME
HIPNAME
LOIRESV
HI1RESV
L02RESV
HI2RESV
L03RESV
HI3RESV
L04RESV
HIARESV

•de f ine AP GLSIZE

•de f ine
•def ine
•def ine

AP_RWID
APLENGTH
AP PBUFF

111
112
113
114

120
121
122
123
124
125

15
16
7
2
1

/ * Shel l Manager

/ * max s i z e s for arrays

*/

*/

/ * GEM function op code * /
c o n t r o l [0]
c o n t r o l [1]
c o n t r o l [2]
c o n t r o l [3]

•def ine AP PNAME

int_out [0]

g l o b a l [0]
globalC1]
g l o b a l [2]
g l o b a l [3]
g l o b a l [4]
g l o b a l [5]
g l o b a l [6]
g l o b a l [7]
g l o b a l [8]
g l o b a l [9]
g l o b a l [l 0]
g l o b a l t l l]
g l o b a l [l 2]
g l o b a l [l 3]
g l o b a l ï 1 4]

i n t _ o u t [l]

i n t _ i n [0]
i n t _ i n [l]
addr_in[0]

addr in [0]

/ * app l i ca t ion l i b parameters * /

/ * long p t r . to t r e e base in r s c * /

/ * long address of memory a l l o c . * /

/ * length of memory a l l o c a t e d * /
/ * co lor s a v a i l a b l e on screen * /

•def ine
•def ine
•def ine

•def ine
•def ine

•def ine

•def ine

AP_TBUFFER
APTLENGTH
AP_TSCALE

APBVDISK
APBVHARD

SCRMGR

AP MSG

a d d r i n t O]
in t_ in [0]
i n t i n î l]

in t_ in [0]
i n t i n î l]

0x0001

0

/ * pid of the screen manager*/

Listing of DEMO

•def ine HN SELECTED 10

•def ine
•def ine
•de f ine
•def ine
•def ine
•de f ine
•de f ine
•def ine
•de f ine
•de f ine

WMREDRAW
WMTOPPED
WMCLOSED
WM_FULLED
WMARROWED
WM_HSLID
WM_VSLID
WMSIZED
WMMOVED
WM NEWTOP

•def ine ACOPEN
•de f ine ACCLOSE

•def ine CT_UPDATE
•def ine CTMOVE
•de f ine CTNEWTOP

•def ine IMFLAGS

•def ine BCLICKS
•def ine BMASK
•def ine BSTATE

•def ine MOFLAGS
•def ine MOX
•def ine MOY
•def ine MOWIDTH
• d e f i n e MO_HEIGHT

• d e f i n e ME_PBUFF

• d e f i n e T_LOCOUNT
• d e f i n e T_HICOUNT

• d e f i n e MU_FLAGS
• d e f i n e EV_MX
• d e f i n e EV_MY
• d e f i n e EV_MB
• d e f i n e EV_KS
• d e f i n e EV^KRET
• d e f i n e EV BRET

20
21
22
23
24
25
26
27
28
29

40
41

50
51
52

in t_ in [0]

in t_ in [0]
i n t _ i n [l]
in t_ in [2]

in t_ in [0]
i n t _ i n [l]
in t_ in[2]
in t_ in[3]
i n t _ i n [4]

addr_in[0]

i n t _ i n [0]
i n t _ i n [l]

i n t _ i n [0]
i n t _ o u t [l]
in t_out [2]
in t_out [3]
in t_out [4]
in t_out [5]
int out [6]

/ * event l i b parameters

• d e f i n e MBCLICKS
• d e f i n e MBMASK
• d e f i n e MB_STATE

• d e f i n e MMOIFLAGS
• d e f i n e MMOIX
• d e f i n e MMOIY
• d e f i n e MMOIWIDTH
• d e f i n e MMOIHEIGHT

• d e f i n e MM02FLAGS
• d e f i n e MM02X
• d e f i n e MM02Y
• d e f i n e MM02WIDTH
• d e f i n e MM02 HEIGHT

int_ i n [l]
int" " in[2]
int_ > [3]

int_ i n [4]
int" ' in [5]
int] i n [6]
int] "int 7]
int] > [8]

int in [9]
int] " i n [l 0]
int] " i n [l l]
int] " i n [l 2]
int" " i n [l 3]

PROGRAMMER'S GUIDE TO GEM

•define MMEPBUFF addr_in[0]

•define MT LOCOUNT int_in[l4]
•define MT_HTCOUNT intinf15]

/*
•define MU KEYBD 0x0001
•define MU BUTTON 0x0002
•define MU Ml 0x0004
•define MU M2 0x0008
•define MU MESAG 0x0010
•define MUTIMER 0x0020

•define EV DCRATE int in[0]
•define EVDCSETIT intinCl]

/*

•define MMITREE addr in[0] /*

•define MMPSTR addr_in[0]

•define MM_PTEXT addr in[l]

•define SHOWIT int_in[0] /*

•define ITEM NUM int_in[0] /*
•define MM PID intinf0] /*
•define MM MID int in[0] /*
•define CHECK IT int infl] /*
•define ENABLE IT intinîl] /*

•define TITLE NUM int_in[0] /*
•define NORMALIT intinîl] /*

•define FM FORM addr_in[0]
•define FMSTART int_in[0]

•define FMTYPE int in[0]

•define FMERRNUM int_in[0]

•define FM DEFBUT int_in[0]
•define FMASTRING addr in[0]

•define FM IX int_in[l]
•define FM IY int inÎ2]
•define FM IW int_inÎ3]
•define FM IH int_in[4]
•define FM X intinf5]
•define FM Y int in[6]
•define FM W int inÏ7]
•define F M H int_inÎ8]

•define FM XC int_out[l]
•define FM YC int_outÎ2]
•define FM WC int_outÎ3]
•define F M H C int_out[4]

•define FMD START 0
•define FMD GROW 1
•define FMD SHRINK 2

/* mu_flags

/* form library parameters

*/

*/
*/
*/
*/
*/

*/
*/

*/

Listing of DEMO 443

• de f ine FMDFINISH 3

•de f ine FMD FORWARD 0
•de f ine FMD BACKWARD 1
•de f ine FMDDEFLT 2

•de f ine FM OBJ in t_ in [0]
•de f ine FM ICHAR i n t i n f l]
•de f ine FMINXTOB in t_ in [2]

•de f ine FM ONXTOB i n t _ o u t t l]
•de f ine FMOCHAR int_out[2]

•de f ine FMCLKS i n t _ i n [l]

•de f ine OBTREE addr_in[0]

•de f ine OBDELOB in t_ in [0]

•de f ine OB DRAWOB in t_ in [0]
•de f ine OB DEPTH int i n [l]
•de f ine OB XCLIP in t_ in [2]
•de f ine OB YCLIP in t_ in [3]
•de f ine OB WCLIP in t_ in [4]
•de f ine OBHCLIP in t_ in [5]

•de f ine OB STARTOB in t_ in [0]
•de f ine OB MX int in [2]
•de f ine OBMY in t_ in [3]

•de f ine OB PARENT in t_ in [0]
•de f ine OB CHILD i n t _ i n [l]
•de f ine OB OBJ in t_ in [0]
•de f ine OB XOFF i n t _ o u t [l]
•de f ine OB YOFF int_out [2]
•de f ine OBNEWPOS i n t _ i n [l]

•de f ine OB CHAR i n t i n t l]
•de f ine OB IDX int i n [2]
•de f ine OB KIND i n t _ i n [3]
•de f ine OBODX i n t _ o u t [l]

•de f ine OB NEWSTATE in t_ in [6]
•de f ine OBREDRAW i n t _ i n [7]

•de f ine GR 11 in t_ in [0]
•de f ine GR 12 i n t _ i n [l]
•de f ine GR 13 in t_ in [2]
•de f ine GR 14 in t_ in [3]
•de f ine GR 15 in t_ in [4]
•de f ine GR 16 in t_ in [5]
•de f ine GR 17 int i n [6]
•de f ine GRI8 in t_ in [7]

•de f ine GR 01 i n t _ o u t [l]
•de f ine GR02 int_out [2]

•de f ine GR TREE addr_in[0]
•de f ine GR PARENT int i n [0]

/ * ob ject l i b r a r y parameters * /

/ * a l l ob procedures * /

/ * ob_delete * /

/ * obdraw, ob_change * /

/ * o b f i n d * /

/ * o b a d d * /

/ * ob_o f f se t , o b o r d e r * /

/ * o b o r d e r * /

/ * ob_edit * /

/ * obchange * /

/ * graphics l i b r a r y parameters * /

PROGRAMMER'S GUIDE TO GEM

•de f ine GR OBJ i n t _ i n [l]
•de f ine GR INSTATE i n t _ i n [2]
•de f ine GR_OUTSTATE i n t _ i n [3]

•de f ine GR_ISVERT i n t _ i n [2]

•de f ine M OFF 256
•de f ine MON 257

• d e f i n e GR MNUMBER int in [0]
• d e f i n e GRMADDR addr_in[0]

• d e f i n e GR WCHAR i n t _ o u t [l]
• d e f i n e GR HCHAR int out [2]
• d e f i n e GR WBOX int_out [3]
• d e f i n e GRHBOX int out [4]

• d e f i n e GR MX i n t _ o u t [l]
• d e f i n e GR MY int out [2]
• d e f i n e GR MSTATE int_out [3]
• d e f i n e GRKSTATE int out [4]

• d e f i n e SCPATH addr_in[0]

• d e f i n e FS IPATH addr_in[0]
• d e f i n e F S I S E L addr_ in [l]

• d e f i n e FSBUTTON i n t _ o u t [l]

• d e f i n e XFULL 0
• d e f i n e YFULL g l h b o x
• d e f i n e WFULL gl width
• d e f i n e HFULL (g l h e i g h t

• d e f i n e NAME 0x0001
• d e f i n e CLOSER 0x0002
• d e f i n e FULLER 0x0004
• d e f i n e MOVER 0x0008
• d e f i n e INFO 0x0010
• d e f i n e SIZER 0x0020
• d e f i n e UPARROW 0x0040
• d e f i n e DNARROW 0x0080
• d e f i n e VSLIDE 0x0100
• d e f i n e LFARROW 0x0200
• d e f i n e RTARROW 0x0400
• d e f i n e HSLIDE 0x0800

• d e f i n e WF KIND 1
• d e f i n e WF NAME 2
• d e f i n e WF INFO 3
• d e f i n e WF WXYWH 4
• d e f i n e WF CXYWH 5
• d e f i n e WF PXYWH 6
• d e f i n e WF FXYWH 7
• d e f i n e WF HSLIDE 8
• d e f i n e WF VSLIDE 9
• d e f i n e WF TOP 10
• d e f i n e WF FIRSTXYWH 11
• d e f i n e WF NEXTXYWH 12

/ * scrap l i b r a r y parameters * /

/ * f i l e s e l e c t o r l i b r a r y parms * /

/ * window l i b r a r y parameters * /

gl_hbox)

Listing of DEMO 445

• d e f i n e WF IGNORE 13
• d e f i n e WF NEWDESK 14
• d e f i n e WF HSLSIZ 15
• d e f i n e WF VSLSIZ 16
• d e f i n e WF SCREEN 17
• d e f i n e WFTATTRB 18

• d e f i n e WA UPPAGE 0
• d e f i n e WA DNPAGE 1
• d e f i n e WA UPLINE 2
• d e f i n e WA DNLINE 3
• d e f i n e WA LFPAGE 4
• d e f i n e WA RTPAGE 5
• d e f i n e WA LFLINE 6
• d e f i n e WARTLINE 7

• d e f i n e WMJCIND int _in[0]

•de f ine WMHANDLE int _in[0]

• d e f i n e WM WX int i n [l]
• d e f i n e WM WY int" " in[2]
• d e f i n e WM WW "in[3]
• d e f i n e WMWH int"] in[4]

• d e f i n e WM MX int in [0]
• d e f i n e WMMY int"] i n [l]

• d e f i n e WC BORDER 0
• d e f i n e WC WORK 1
• d e f i n e WM WCTYPE int in [0]
• d e f i n e WM WCKIND int^ ~ in[l]
• d e f i n e WM WCIX int" " in[2]
• d e f i n e WM WCIY int^ ~in[3]
• d e f i n e WM WCIW int" " in[4]
• d e f i n e WM WCIH int] " in[5]
• d e f i n e WM WCOX int] o u t [l]
• d e f i n e WM WCOY int] "out[2]
• d e f i n e WM WCOW int]]out[3]
• d e f i n e WMWCOH int]]out[4]

• d e f i n e WM BEGUP int in [0]

/ * arrow message */

/ * wm_create * /

/ * wmopen, c l o s e , del * /

/ * wmopen, wm_create * /

/ * wm_find

/ * wm c a l c

*/

*/

/ * wm_update */

• d e f i n e WMWFIELD i n t _ i n [l]

• d e f i n e WM_IPRIVATE in t_ in [2]

• d e f i n e WM_IKIND in t_ in [2]

• d e f i n e WMIOTITLE addr_in[0]

• d e f i n e WM IX
• d e f i n e WM IY
• d e f i n e WM IW
•de f ine WMIH

in t_ in [2]
in t_ in [3]
int in[4]
in t_ in [5]

•de f ine WM OX
•de f ine WM OY
•de f ine WM OW
•de f ine WM OH

i n t _ o u t [l]
int out [2]
int_out [3]
int out [4]

/ * for name and info * /

PROGRAMMER'S GUIDE TO GEM

• d e f i n e WM_ISLIDE int_ in [2]

• d e f i n e WMIRECTNUM int_ in [6]

• d e f i n e RS PFNAME addr_ in [0]
• d e f i n e RS TYPE in t_ in [0]
• d e f i n e RS INDEX int i n [l]
• d e f i n e RS INADDR addr i n [0]
• d e f i n e RSOUTADDR addr_out[0]

• d e f i n e RS TREE addr i n [0]
• d e f i n e RSOBJ int_ i n [0]

• d e f i n e R TREE 0
• d e f i n e R OBJECT 1
• d e f i n e R TEDINFO 2
• d e f i n e R ICONBLK 3
• d e f i n e R BITBLK 4
• d e f i n e R STRING 5
• d e f i n e R IMAGEDATA 6
• d e f i n e R OBSPEC 7
• d e f i n e R TEPTEXT 8 /*
• d e f i n e R TEPTMPLT 9
• d e f i n e R TEPVALID 10
• d e f i n e R IBPMASK 11 /*
• d e f i n e R IBPDATA 12
• d e f i n e R IBPTEXT 13
• d e f i n e R BIPDATA 14 /*
• d e f i n e R FRSTR 15 /*
• d e f i n e R FRIMG 16 /*

/ * resource l i b r a r y parameters * /

/ * r s i n i t , * /

/ * sub p t r s in TEDINFO * /

/ * sub p t r s in ICONBLK * /

*/
*/
*/

/ * s h e l l l i b r a r y parameters * /
• d e f i n e SH DO EX int in [0]
• d e f i n e SH~ "ISGR i n t i n t l]
• d e f i n e SH~ "ISCR i n t _ i n [2]
• d e f i n e SH~ "PCMD addr in [0]
• d e f i n e SH ~PTAIL a d d r _ i n [l]

• d e f i n e SH PDATA addr_in[0]
• d e f i n e SH~ "PBUFFER a d d r i n f O]

• d e f i n e SH LEN i n t _ i n [0]

• d e f i n e SH PATH addr_in[0]
•de f ine SH" "SRCH addr i n [l]

/ * End GEMBIND.H * /

Listing of DEMO 447

/ * P i l e : demo.c Re-ordered functions & cleaned code * /

/* */
/* GGGGG EEEEEEEE MM MM * /
/ * GG EE MMMM MMMM * /
/ * GG GGG EEEEE MM MM MM * /
/ * GG GG EE MM MM * /
/* GGGGG EEEEEEEE MM MM * /
/* _ _ _ _ _ _ _ */
/* */
/ * + • * /
/ * | D i g i t a l Research. Inc . | * /
/* I 60 Garden Court I */
/* I Monterey, CA. 93940 | * /
/* + + */
/* */
/ * The source code contained in t h i s l i s t i n g i s a non-copyrighted * /
/ * work which can be f r e e l y used. In a p p l i c a t i o n s of t h i s source * /
/ * code you a r e requested to acknowledge D i g i t a l Research, Inc . as * /
/ * the o r i g i n a t o r of t h i s code. * /
/* */
/ * Author: Tom Rolander, Tim Oren * /
/ * PRODUCT: GEM Sample Appl icat ion * /
/ * Module: DEMO, Version 1.1 * /
/ * Version: March 22, 1985 * /

/* _ _ _ _ _ __________________ */
/* */
/ * Modified by P h i l l i p Balma and B i l l F i t l e r * /
/ * February, 1986 * /
/ *

Page*/
/* */
/ * inc ludes * /
/* */

• inc lude " p o r t a b . h " / * por tab le coding conv * /
• inc lude "machine.h" / * machine depndnt conv * /
• inc lude " o b d e f s . h " / * ob jec t d e f i n i t i o n s * /
• inc lude " t r e e a d d r . h " / * t r e e address macros * /
• inc lude "gembind.h" / * gem binding s t r u c t s * /
• inc lude "demo.h" / * demo resources * /
/ * * / / * f i l e o f f s e t s * /

/* */
/ * de f ines * /
/* */

•de f ine ARROW 0
•de f ine HOURGLASS 2

•de f ine DESK 0

•de f ine ENDUPDATE 0
•de f ine BEG UPDATE 1

PROGRAMMER'S GUIDE TO GEM

•de f ine PEN INK BLACK
•de f ine PENERASER WHITE

•de f ine PEN FINE 1
•def ine PEN MEDIUM 5
•def ine PENBROAD 9

•def ine X FWD 0x0100 / * extended object types */
•de f ine X BAK 0x0200 / * used with s c r o l l i n g */
•de f ine X SEL 0x0300 / * s e l e c t o r s */
•de f ine NCOLORS 15L

•de f ine YSCALE(x) UMUL_DIV(x, scrn x s i z e , s c r n y s i z e)

•de f ine TE TXTLEN(x) (x • 24)
•de f ine BI PDATA(x) (x)
•de f ine BI WB (x) (x • 4)
•de f ine BI HL(x) (x • 6)

/* */
/ * External Functions * /
/* */

EXTERN LONG dos a l l o c O ;

/*

Page*/
/ * * * * * * * * A ft ft ft ft ft ft ft * /
/ * ft ******* ft ft ft A ft A A A * » * /

/ * * * * * * * * /

/ * * * * Data S t ruc ture s * * * * /
/**** ****/
/ * ft ft ft ft A A A * /

/ ******** ft ft ft ft ft ft *********************** * * * ft ft ft *************** * ft ft ft ********** /

/* */
/ * External Data S t ruc tures * /
/ * * /

EXTERN UWORD DOSERR;
EXTERN LONG drawaddr;

/* */
/ * Global Data S t ruc ture s * /
/ * * /

GLOBAL WORD contr i t 1 1] ;
GLOBAL WORD i n t i n [8 0] ;
GLOBAL WORD p t s i n t 2 5 6] ;
GLOBAL WORD i n t o u t [4 5] ;
GLOBAL WORD p t s o u t [l 2] ;

/ * control inputs * /
/ * max s t r i n g length * /
/ * polygon f i l l points * /
/ * open workstat ion output * /

/* */
/ * Local Data S t ruc tures * /
/ * * /

Listing of DEMO

WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
GRECT
GRECT
GRECT
GRECT
WORD
LONG
LONG
WORD
WORD
WORD
WORD
WORD
WORD
UWORD
WORD
UWORD
UWORD
UWORD
MFDB

MPDB
LONG
LONG
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
LONG
WORD
BYTE
BOOLEAN
WORD
WORD
WORD
WORD

BYTE

char_width;
char_hi te ;
box_width;
box_hite ;
space_hi te ;
gem_handle;
vdi_handle;
work_out[57];
scrn_area ;
work_area;
draw_area;
s a v e a r e a ;
msg_buff [8] ;
addr_msg;
addr_menu;
f u l l x ;
f u l l y ;
ful l_width;
f u l l _ h i t e ;
s c rn_xs i ze ;
s c rn_ys ize ;
m out 3

ev_which;
mousex, mousey;
b s t a t e , b c l i c k s ;
k s t a t e , kreturn;
drawmfdb;
scrn_mfdb;
b u f f _ s i z e ;
buff l o c a t i o n ;
demowhndl;
demoshade =
penshade •
demo pen =
demoheight =
char_f ine ;
charmedium;
char_broad;
monumber =
mofaddr =
f i l e h a n d l e ;
f i le_name[64] =
key_input;
k e y x b e g ;
k e y y b e g ;
key_xcurr;
key_ycurr;

FALSE;

PEN_INK;
PEN_INK;
i ;
A;

5 ;
OxOL;

*wdw t i t l e = " New DEMO " ;

/ * character width * /
/ * character height * /
/ * box (c e l l) width * /
/ * box (c e l l) height * /
/ * height of space between l i n e s * /
/ * GEM vdi handle * /
/ * demo vdi handle * /
/ * open v i r t workstation values * /
/ * whole screen area * /
/ * drawing area of main window * /
/ * area equal to work area * /
/ * save area for f u l l / u n f u l l i n g * /
/ * message buffer * /
/ * LONG pointer to message bfr * /
/ * menu t r e e address * /
/ * f u l l window ' x ' * /
/ * f u l l window ' y ' * /
/ * f u l l window 'w' * /
/ * f u l l window ' h ' * /
/ * width of one p ixe l * /
/ * height of one p ixe l * /
/ * mouse in/out of window f l a g * /
/ * event multi return s t a t e (s) * /
/ * mouse x ,y p o s i t i o n * /
/ * button s t a t e , & # of c l i c k s * /
/ * key s t a t e and keyboard char * /
/ * draw buffer mmry frm def blk * /
/ * screen memory form defn blk * /
/ * buffer s i z e req 'd for screen * /
/ * screen buffer pointer * /
/ * demo window handle * /
/ * demo current pen shade * /
/ * saved pen shade * /
/ * demo current pen width * /
/ * demo current char height * /
/ * character height for f ine * /
/ * character height for medium * /
/ * character height for broad * /
/ * mouse form number * /
/ * mouse form address * /
/ * f i l e handle -> p i c t l d / s v * /
/ * current p i c t f i l e name * /
/ * key inputt ing s t a t e * /
/ * x pos i t ion for l i n e beginning* /
/ * y pos i t ion for l i n e beginning*/
/ * current x pos i t i on * /
/ * current y p o s i t i o n * /
/ * demo window t i t l e * /

WORD u s e r c o l o r [2] = { 1 , 0 } ;
MFDB userbrush mfdb;
USERBLK brushub[6l ;
LONG color sel[N COLORS+l] * { / * data for s c r o l l i n g color s e l e c t o r

NCOLORS,
0x31FF1071L,
0x32FF1072L,
0x33FF1073L,
0x34FF1074L,
0x35FF1075L,
0x36FF1076L,
0x37FF1077L,

PROGRAMMER'S GUIDE TO GEM

0x38FF1078L,
0x39FF1079L,
0x41FF107AL,
0x42FF107BL,
0x43FF107CL,
0x44FF107DL,
0x45FF107EL,
0x46FF107FL};

/* */
/ * Mouse Data S t ructures * /
/ * * /

WORD era se broad[37] •
{

7, 7, 1, 0 , 1,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, OxlffO, OxlffO,. OxlffO,
OxlffO, OxlffO, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x7f fc , 0x600c, 0x600c, 0x600c,
0x600c, 0x600c, 0x7 f f c , 0x0000,
0x0000, 0x0000, 0x0000, 0x0000

} ;
WORD era se medium[37] -
{

7, 7, 1, 0 , 1,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x07c0, 0x07c0,
0x07c0, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, OxlffO, 0x1830, 0x1830,
0x1830, OxlffO, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000

} ?

WORD era se f ine [37] =
{

7, 7, 1, 0 , 1,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0100,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x07cO, 0x06c0,
0x07cO, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000

LONG s t r i n g _ a d d r () ;

/ * mouse form for broad e r a s e r * /

/ * mask * /

/ * data * /

/ * mouse form for medium e r a s e r * /

/ * mask * /

/ * data * /

/ * mouse form for f i n e e r a s e r * /

/ * mask * /

/ * data * /

/* */
/ * GEMAIN * /
/* */
GEMAIN()
{

Listing of DEMO

WORD term_type;

if (Ktermtype • demo_init())) demoO;
demo_term(termtype);

}

/* */
/* add file name */
/* */
VOID
add_file_name(dname, fname) /* replace name at end of input file spec*/
BYTE *dname, *fname;
{

BYTE c;
WORD ii;

i i • s t r len(dname) ;
while (i i && (((c = dname[i i - l]) != ' \ V) && (c != ' : ')))

i i — I
dnametii] • 'NO';
strcat(dname, fname);

}

/* */
/ * a l i gn x * /
/* */
WORD
a l i g n x(x) / * forces word alignment for column pos i t i on * /
WORD x; / * rounding to neares t word * /
{

re turn((x & OxfffO) + ((x & 0x000c) ? 0x0010 : 0)) ;
}

/* */
/ * cursor * /
/* */
VOID
c u r s o r (c o l o r) / * turn cursor on, color = BLACK * /
WORD co lor ; / * or cursor o f f , color • WHITE * /
{

WORD p x y [4] ;

pxy [0] • key_xcurr • i f pxy[l] • key_ycurr + s p a c e h i t e ;
pxy[2] • key_xcurr • I ;
pxy[3] • key_ycurr - box_hite;

v s l _ c o l o r (v d i _ h a n d l e , c o l o r) ;
vswrmode(vd ihand1e,MDREPLACE);
v s l t y p e (vdi_handle,FIS_SOLID);
v s l w i d t h (vdi_handle,PEN_FINE);
graf_mouse(M_OFP, OxOL);
v_pl ine(vdi_handle , 2 , pxy) ;
graf mouse(M_ON, OxOL);

PROGRAMMER'S GUIDE TO GEM

I* curs on * /
/* */
VOID curs on() / * Turn ' s o f t ' cursor 'on' * /
{

cursor(pen shade) ;
}
/* */
/ * curs of f * /
/* */
VOID curs o f f () / * Turn ' s o f t ' cursor ' o f f * /
{

cursor(PEN ERASER);
}

/* */
/ * demo * /
/* */
demo()
{

WORD junk; / * only used a s a placeholder for the AES
b ind ings . I t i s used in the e v n t m u l t i
c a l l in p lace of an address of a
keyboard handler , because such addres se s
cannot be a NULLPTR!I! * /

FOREVER
{

/ * Wait for mouse, message events only ,
l e f t button goes down, mouse
e x i t s r e c t a n g l e .
addrmsg • address of message buffer * /

ev_which = evnt_multi(MU_BUTTON | MUMESAG | MUM1,
0x02, 0x01, 0x01,
m_out,
(UWORD) work_area.g_x, (UWORD) work_area.g_y,
(UWORD) work_area.g_w, (UWORD) work_area.g_h,
0, 0 , 0 , 0 , 0 ,
a d d r m s g , 0 , 0 ,
&mousex, &mousey, &bsta te , &ksta te ,
&junk, & b c l i c k s) ;

windupdat e(BEGUPDATE);

/ * I f hndl_msg returns TRUE then the user
e i t h e r c l i c k e d on the c l o s e button, or
s e l e c t e d the QUIT option in the FILE menu '

if (evwhich & MUMESAG) if (hnd l m s g O) break;

if (evwhich & MUBUTTON) hndl_button();

if (evwhich & MUM1) hndl_mouse();

wind update(END UPDATE);
1

Listing of DEMO 453

/* */

/ * demo i n i t
Z */

WORD d e m o i n i t O {

WORD w o r k _ i n [l l] ;
WORD i ;

/ * I n i t i a l i z e l i b r a r i e s , i f e r r o r , b a i l out * /

i f (a p p l i n i t O == -1) re turn(A) ;

/ * Lock screen to begin update * /

windupdate(BEGUPDATE);

/ * Change mouse form to hour g l a s s * /

graf_mouse(HOUR_GLASS, OxOL);
/ * Load the Resource Construction Set

information contained in DEMO.RSC;
Menu bar , t i t l e s , i n f o , e t c . * /

i f (! r s r c _ l o a d (ADDR("DEMO.RSC"))){

/ * Error trying to load f i l e .
Restore mouse form * /

graf_mouse(ARROW, OxOL);
f o r m _ a l e r t (l ,

ADDR("[3][Fatal Error !|DEMO.RSC|File Not Found][Abort] ")) ;
r e t u r n (l) ;
}

/ * Get the physical device handle,
character c e l l s i z e , and s i z e
of box that holds c e l l of
system f o n t . * /

vdi jhandle • graf_handle(&char_width,&char_hite,&box_width,&box_hite);

/ * Set v i r t u a l workstat ion values
to de f au l t s * /

for (i = 0 ; i<10 ; i++) {
work i n [i] = l ;

}

work_in[l0]-2 ; / * Use RC coordinates * /
/ * Open v i r t u a l work s t a t i o n .

Changes the physica l handle to a
v i r t u a l handle . * /

v_opnvwk(work_in,&vdi_handle,work_out);

/ * Ba i l out i f device cannot be opened * /

i f (vdi_handle = = 0) r e t u r n (l) ;

/ * Save work va lues in loca l temps before

PROGRAMMER'S GUIDE TO GEM

making next VDI c a l l and blowing them
away. * /

drawmfdb.fwp = work_out[0] • 1 ; / * screen width in p i x e l s * /
drawmfdb.fh • work_out[l] • 1; / * screen height in p i x e l s * /
scrn_xs ize = work_out[3] ; / * width (r a s t e r) aspect r a t i o * /
scrn_ys ize • work_out[4] ; / * height (r a s t e r) a spect r a t i o * /
char_fine • work_out[46]; / * min char height p t s o u t (l) * /
charjnedium = work_out[48]; / * max char height p t s o u t (3) * /
char_broad • charjnedium * 2 ;

/ * Get number of planes * /

vq_extnd(vdi_handle, 1, w o r k o u t) ;
drawmfdb.np = work_out[4] ; / * number of planes * /

/ * screen width in words * /

drawjnfdb.fww = draw_mfdb.fwp»4;
drawmfdb. f f = 0;

/ * Compute s i z e of screen buffer (b y t e s) :
width (p i x e l s) / 8 * height * p lanes * /

buff s i z e - (LONG)(draw_mfdb.fwp»3) *
(LONG)drawmfdb.fh *
(LONG)drawmfdb.np;

/ * Al loca te a screen buffer * /

buf f_ locat ion = drawmfdb.mp = d o s a l l o c (b u f f s i z e) ;

/ * Enough Contiguous Memory?*/

i f (drawmfdb.mp -= 0) r e t u r n (2) ;

scrn_area .g_x • 0 ;
scrn_area .g_y = 0;
scrn_area.g_w = drawmfdb.fwp;
s c r n a r e a . g h = drawmfdb. fh ;

scrnmfdb.mp = OxOL;

/ * Set to phys ica l screen, so ignore
other parameters on vro_cpyfm * /

/ * Clear the screen buffer so that
demo d i s p l a y s a c lean i n i t i a l
s c reen . F i r s t copy the GRECTs
and then do a b i t by b i t copy. * /

rc_copy(&scrn_area, &draw_area);

/ * Now c l e a r a l l the b i t s in draw.
The source i s the scrn a r e a , and the
d e s t i n a t i o n i s draw. The l o g i c a l
operat ion i s c l e a r the d e s t i n a t i o n b i t s ,
and because there i s a 0 in the pointer
f i e l d of the scrn jnfdb , a l l the other mfdb
parameters are ignored, and the source i s
i s t r e a t e d as the phys ica l d e v i c e . * /

Listing of DEMO 455

rast_op(0,&scrn_area,&scrn_mfdb,&draw_area,&draw_mfdb);

/ * Transforms user defined o b j e c t s * /
p i c t _ i n i t () ;

/ * Address of 16 byte message buffer * /

addrmsg = ADDR((BYTE *) fensgbuff[0]);

/ * Get the s i z e of the. DESKTOP
window. Make DEMO window same s i z e . * /

wind_get(DESK, WFWXYWH, &ful l_x, &full_y, &full_width, & f u l l _ h i t e) ;

/ * Get the addr of the menu t r e e in the ob jec t
t r e e for DEMO. This t r e e i s loaded in
memory by the r s rc_ load c a l l a t the
beginning of th i s r o u t i n e . * /

rsrc_gaddr(R_TREE, DEMOMENU, &addr_menu);

/ * Show the menu for DEMO * /

menubar(addrmenu, TRUE);

/ * Create DEMO window with fo l lowing:

FEF means
F00 - v e r t i c a l and hor izonta l

s l i d e r , l e f t and r ight arrows

EO - Up and down arrows, s i z e box

F - Move, f u l l , and c l o s e
boxes, and t i t l e bar * /

demowhndl • wind_create(OxOfef, fu l l_x - 1, f u l l y ,
f u l l w i d t h , f u l l h i t e) ;

i f (demo_whndl == - 1)
{ / * No more windows a v a i l a b l e * /

f o r m a l e r t (1 , stringaddr(DEMONWDW));
r e t u r n (3) ;

}
/ * Enter name of window.

Last 2 parameters (0 , 0) must
be there because of syntax . * /

wind_set(demo_whndl, WFNAME, ADDR(wdwtitie), 0 , 0) ;

fu l l_x • a l i g n _ x (f u l l _ x) ;

/ * Display an expanding box. The i n i t i a l
values are a r b i t r a r y . * /

graf_growbox(ful l_width/2, f u l l _ h i t e / 2 , 2 1 , 2 1 ,

f u l l x , f u l l y , f u l l w i d t h , f u l l j i i t e) ;

/ * F i n a l l y open and d i s p l a y the demo window * /

wind_open(demo_whndl , ful l_x, ful l_y, ful l_width,ful l_hi t e) ;

PROGRAMMER'S GUIDE TO GEM

se t work(TRUE);

/ * s e t w o r k wi l l get the a c t u a l s i z e of
the window work a r e a , and update the
draw a r e a . The TRUE r e f e r s to whether the
s l i d e r area needs to be updated. The
only time set_work i s not c a l l e d to
update the s l i d e r a rea i s when the window
has been moved (d o e s n ' t change s l i d e r ' s
r e l a t i v e p o s i t i o n within the window). * /

/ * Save current draw area in previous
v a r i a b l e . Used in do f u l l . * /

rc_copy (&draw_area, &save_area) ;

graf mouse(ARROW,OxOL); / * Restore arrow cursor * /
wind_update(END_UPDATE);/* Unlock update region * /
re turn(O) ;

} / * end d e m o i n i t * /

/* */
/ * demoterm * /
/* */

demo_term(term_type)
WORD term_type;

WORD x, y, w, h;

switch (term_type) / * NOTE: a l l ca ses f a l l through * /

case (0) : / * Normal terminat ion.
Get the current GRECT, c l o s e the
window, d i s p l a y a shrinking box, and then
free a l l AES window r e s o u r c e s . * /

wind_get(demo_whndl, WFCXYWH, &x, &y, &w, &h);
wind_close(demo_whndl);
gra f_shr inkbox(ful l_width/2 , f u l l _ h i t e / 2 , 2 1 , 2 1 ,

x, y , w, h) ;
wind_delete(demo_whndl);

case (3) : / * No more windows a v a i l a b l e . We have loaded
menu and a l l o c a t e d memory for s c reen . * /

menu_bar(0x0L, FALSE);
dosfree(draw_mfdb.mp);

case (2) : / * Couldn't open dev ice . * /

v clsvwk(vdi handle) ;
— —

case (1) : / * Couldn't f ind RSC f i l e . * /

}

wind_update(ENDUPDATE);
a p p l e x i t O ;

case (4) : / * Error on a p p l i n i t O . * /

break;

Listing of DEMO 457

/* */

/* */
/ * d i a l name * /
/* */
WORD diai_name (name)
BYTE *name;
{

LONG tree ;
LONG t e d a d d r ;
BYTE c ;
WORD i , j ;
GRECT box;

}

/* */
/ * d i r o b j * /
/* */
VOID
d i r _ o b j (t r e e , which)
LONG t r e e ;
WORD which;
{

/ * d ia logue box input fi lename * /

= c ;

objc_xywh(addr_menu, DEMOFILE, &box);
rsrc_gaddr(RTREE, DEMOSVAD, &tree) ;
tedaddr = LLGET(OBSPEC(DEMONAME));
LLSET(tedaddr, ADDR(name)) ;
LWSET(TE_TXTLEN(tedaddr),8);
name[0] - 'XO';
if (hndldiaKtree, DEMONAME, box.g_x, box.g_y,

box.gw, box.gh) == DEMOSOK)

i - j s 0 ;
while (TRUE)
{

c • name[i++];
if (!c) break ;
if ((c • •) && (c != '_•)) name[j++]

if (*name) strcpy(&name[j], ".DOO") ;
desel_obj(tree, DEMOSOK);
return (TRUE);

}
else
{

desel_obj(tree, DEMOSCNL);
return (FALSE);

1

/ * dese l obj * /
/ * I * /
VOID
d e s e l _ o b j (t r e e , which) / * Turn off s e l e c t e d b i t of specf ied ob jec t * /
LONG t r e e ;
WORD which;
{

undo o b j (t r e e , which, SELECTED);
}

PROGRAMMER'S GUIDE TO GEM

unflag o b j (t r e e , which, INDIRECT);
}

/* */
/ * do f u l l * /
/* */

VOID
do_full(wh) / * Depending on current window s t a t e , e i t h e r make window*/
WORD wh; / * f u l l s i z e - o r - return to previous shrunken s i z e * /

{
GRECT prev;
GRECT curr ;
GRECT f u l l ;

graf mouse(M_OFF,0x0L);
/ * Get fu l l & current screen s i z e * /

wind_get(wh, WFFXYWH, &ful l .g_x , &fu l l . g_y , &full .g_w, & f u l l . g _ h) ;
wind_get(wh, WFCXYWH, &curr.g_x, &curr.g_y, &curr.g_w, &curr .g_h) ;

i f (rc_equal(&curr, &ful l))
{ / * Full now, so change to previous s i z e ,

s e t t i n g current s i z e to p r e v i o u s . * /

wind_get(wh, WFPXYWH, &prev.g_x, &prev.g_y,
&prev.g_w, &prev.g_h);

/ * I f previous = f u l l •> current , then do
nothing. * /

i f (! (r c e q u a K & p r e v , &ful l))) {

graf_shrinkbox(prev.g_x, prev.g_y, prev.g_w, prev .g_h,
f u l l . g x , f u l l . g y , f u l l . g w , f u l l . g h)

wind_set(wh, WFCXYWH, p r e v . g x , p r e v . g y ,
p r e v . g w , p r e v . g h) ;

rc_copy(&save_area, &draw_area);
set work(TRUE);

}
}
e l s e
{ / * Not f u l l , so make i t f u l l . Set the

max window s i z e as the f u l l s i z e .

Save the current area , in case we togg le
between f u l l and non-full s i z e s * /

rc_copy(&draw_area, &save_area) ;
graf_growbox(curr.g_x, curr .g_y , curr.g_w, curr .g_h,

f u l l . g x , f u l l . g y , f u l l . g w , f u l l . g _ h) ;

wind_set(wh, WFCXYWH, f u l l . g x , f u l l . g y , fu l l .g_w, f u l l . g h)
se t work(TRUE);

}
graf mouse(M_ON,0x0L);

Listing of DEMO 459

/* */

{
graf_growbox(org_x, o r g y , 2 1 , 21 , x, y, w, h) ;
wind_open(wh, x, y, w, h) ;

/* */
/ * do_load * /
/* */

VOID d o l o a d (n e e d n a m e) / * load demo p ic ture f i l e * /
BOOLEAN need name;
{

i f (Ineed name | | get f i le(TRUE))
{

i f (!DOS ERR)
{

d o s _ r e a d (f i l e h a n d l e , bu f f_ s i ze ,bu f f l o c a t i o n) ;
d o s _ c l o s e (f i l e h a n d l e) ;
enabmenu(DEMOSAVE);
enabmenu(DEMOABAN);
re s tore_work() ;

/* */
/ * do penselect * /
/* */

VOID do_pense lect () / * use d ia log box to input s e l e c t i o n * /
{ / * of s p e c i f i e d pen/eraser * /

WORD e x i t _ o b j , p s e l _ o b j , co lor ;
LONG t r e e , b i n d [2] ;
GRECT box;

/ * Get the coordinates of the pen/eraser
s e l e c t i o n item in OPTIONS menu. Only used
to d i sp lay a growing/shrinking box * /

objc_xywh(addr_menu, DEMOPENS, &box);

/ * Get the address of the p e n c i l / e r a s e r
d ia log that has a l ready been loaded in
memory (see demo_init) * /

rsrc_gaddr(R_TREE, DEMOPEND, &tree) ;

/ * F i r s t determine and se t the current

/ * do open * /
/* */

VOID do_open(wh, o r g x , o r g y , x, y, w, h)
/ * grow and open s p e c i f i e d window * /

WORD wh;
WORD org_x, o r g y ;
WORD x, y, w, h;

PROGRAMMER'S GUIDE TO GEM

s e l e c t i o n s t a t e * /

switch (demo_pen) {
ca se PEN PINE:

s e l o b j T t r e e , (demoshade ! * PENERASER)? DEMOPFIN: DEMOEFIN)
break;

case PEN MEDIUM:
s e l o b j T t r e e , (demoshade != PENERASER)? DEMOPMED: DEMOEMED)
break;

ca se PEN BROAD:
s e l o b j T t r e e , (demoshade ! * PENERASER)? DEMOPBRD: DEMOEBRD)
break;

}
/ * Put the address of the color t a b l e s in

the ob jec t spec of GIBOX parent of the
color s e l e c t i o n panel * /

s e t _ s e l e c t (t r e e , DEMOPCLR, penshade - 1, bind, c o l o r s e l) ;

/ * Display the d i a log and get the user
s e l e c t i o n (e x i t o b j) * /

ex i t_ob j * h n d l d i a K t r e e , 0 , b o x . g x , box.g_y, box.g_w, box.g_h) ;

/ * Clear the s e l e c t e d ob jec t i tem. Note
that when the loop i a e x i t e d , we are
point ing a t the l a s t s e l ec ted ob jec t * /

for (pse l_ob j » DEMOPFIN; p s e l o b j < * DEMOEBRD; pse l_ob j++)
i f (LWGET(OB STATE(psel o b j)) & SELECTED)
{ "

d e s e l _ o b j (t r e e , p s e l _ o b j) ;
break;

}
color * g e t _ s e l e c t (t r e e , DEMOPCLR) • 1;

i f (e x i t obj • » DEMOPSOK)
{

switch (p s e l _ o b j) {
ca se DEMOPFIN:

set_pen(PEN_FINE, c h a r f i n e) ;
demoshade = c o l o r ;
break;

case DEMOPMED:
set_pen(PEN_MEDIUM, charmedium);
demoshade * c o l o r ;
break;

case DEMOPBRD:
8et_pen(PEN_BROAD, char_broad) ;
demoshade * c o l o r ;
break;

case DEMOEFIN:
set_eraser(PEN_FINE, char_f ine ,

(BYTE *) e r a s e _ f i n e) ;
break;

case DEMOEMED:
set_eraser(PEN__MEDIUM, char_medium,

(BYTE *) e ra semedium) ;

Listing of DEMO 461

e l s e

break;
case DEMOEBRD:

set_eraser(PEN_BROAD, char_broad,
(BYTE *) e r a s e b r o a d) ;

break;
}
penshade • co lo r ;
d e s e l _ o b j (t r e e , DEMOPSOK);

}
d e s e l _ o b j (t r e e , DEMOCNCL);

/* */
/ * do redraw * /
/* Z */

VOID
do_redraw(wh, a r e a) / * Redraw s p e c i f i e d area from draw buffer * /
WORD wh;
GRECT * a r e a ;
{

}

GRECT box, d i r ty_source ;

graf_mouse(M_OFF, OxOL);

wind_get(wh, WF_FIRSTXYWH, &box.g_x, &box.g_y, &box.g_w, &box.g_h);
while (box.g_w && box.g_h) {

i f (r c _ i n t e r s e c t (a r e a , &box)){
i f (rc_intersect(&work_area , &box)){

d i r ty_source .g_x - (box.g_x - work_area.g_x) •
draw_area.g_x;

d i r ty_source .g_y • (box.g_y - work_area.g_y) •
draw_area.g_y;

dirty_source.g_w • b o x . g w ;
d i r ty_source .g_h - b o x . g h ;

r a s t _ o p (3 , &dirty_source , &draw_mfdb,
&box, Äsern mfdb);

^ }

wind_get(wh, WFNEXTXYWH, Ä b o x . g x , Ä b o x . g y , &box.g_w, i b o x . g h) ;
} / * end while more r e c t a n g l e s . . . * /
graf_mouse(M_ON, OxOL);

/* */

/ * do save * /
/* " */

VOID do_save() / * Save current named DEMO p ic ture * /

i f (* f i l e name)
{

f i l e h a n d l e = dos_open(ADDR(fi lename),2) ;
i f (DOSERR) f i l e h a n d l e = dos_crea te (ADDR(f i l ename) ,0) ;
e l s e

i f (f o r m _ a l e r t (l , stringaddr(DEMOOVWR)) == 2) r e turn ;
dos_wri te (f i l e_handle , b u f f _ s i z e , b u f f _ l o c a t i o n) ;
enab menu(DEMOSAVE);
enabmenu(DEMOABAN);
dos c l o s e (f i l e handle) ;

PROGRAMMER'S GUIDE TO GEM

*/

*/
draw_pencil * /

* /
RD draw_pencil(x, y)
ORD y;

/ * Left button i s down. Trace l i n e s * /
UWORD pxy[4] ;
WORD done;
UWORD mflags ;
UWORD locount, hicount;
UWORD ev_which, bbutton, k s t a t e , kreturn , breturn ;

/ * Cl ip a l l l i n e s a t borders of work a r e a .
I f t h i s i s not se t here , then user can draw
over the border areas of the window. * /

se t clip(TRUE, &work_area);
pxyt"0] * x; / * Save old mouse pos i t i on * /
pxy[l] * y ;

/ * Set co lor to current shade (could be
e r a s e r) , r ep l ace wri t ing mode and s o l i d
l i n e s t y l e . * /

vs l_color(vd i_handle,demo_s ha d e) ;
vswr_mode(vdi handle,MD_REPLACE);
v s l t y p e (vdi_handle,FIS_SOLID);

i f (demo shade != PEN ERASER)
{

vsl_width (vdi_handle,demo_pen);

/ * Set for rounded ends s t y l e * /

vs l_ends(vdi_handle , 2 , 2) ;
hicount = 0;
locount • 125;
mflags = MUBUTTON | MUM1 I MUTIMER;
graf_mouse(M_OFF, OxOL);

}
e l s e {

/ * Set f i l l s t y l e to s o l i d * /

do save as * /

- */
ID d o s v a s O / * Save DEMO p ic ture as named * /

BYTE name[l3] ;
i f (d i a l name(&name[0]))
{

a d d f i l e name(f i l ename, name);
do save(T;

}

Listing of DEMO

v s f _ i n t e r i o r (v d i _ h a n d l e , 1) ;

/ * Set co lor to white * /

v s f_co lor (vd i_handle , WHITE);
mflags = MU BUTTON | MU Ml;

}
done = FALSE;
while (Idone)
{

/ * Wait for mouse to
1. Leave the rec tang le

a t (p x y [0] , p x y [l]) ,
no double c l i c k s ,

2 . Left button up (button i s down)
3 . Wait for timer to exp i re

(125 m i l l i s e c s) . * /

ev_which * e v n t j n u l t i (m f l a g s ,
0x01, 0x01 , 0x00,
1, p x y [0] , p x y [l] , 1, 1,
0 , 0 , 0 , 0 , 0 ,
addr msg, locount , hicount ,
ftpxyfc], &pxy[3], Sbbutton, S k s t a t e ,
&kreturn, &breturn) ;

i f (ev which & MU BUTTON)
{

/ * Left button up * /

i f (! (mf lags & MUTIMER)) graf_mouse(M_OFF, OxOL);

/ * Connect the dot s (o ld & new mouse p o s .)
i f (demoshade != PENERASER)

v_pl ine(vdi_handle , 2 , (WORD *) pxy) ;
e l s e

eraser((WORD) p x y [2] , (WORD) p x y [3]) ;

}
e l s e

graf_mouse(M_ON, OxOL);
done = TRUE;

i f (evwhich & MUTIMER)
{

/ * Timer expired , no mouse movement,
t ry a g a i n . * /

}
e l s e {

graf_mouse(M ON, OxOL);
mflags - MU BUTTON | MUM1;

/ * Mouse moved , but l e f t button s t i l l
down, so continue t rack ing mouse. * /

i f (! (mf l ag s & MUTIMER))
graf_mouse(M QEF» OxOL);

i f (demo shade PENERASER)

PROGRAMMER'S GUIDE TO GEM

}
e l s e {

v_pl ine(vdi_handle , 2 , (WORD *) pxy) ;
mflags = MUBUTTON | MU Ml | MU TIMER;

eraser((WORD) p x y [2] , (WORD) p x y [3]) ;
graf mouse(M ON,OxOL);

/ * Use new pos i t i ons as old points
and s t a r t over * /

pxy[0] = pxy[2] ;
p x y [l] = pxy[3] ;

} / * ends while * /

set_cl ip(FALSE, &work_area);

graf_mouse(M_OFF, OxOL);

/ * Copy new screen to draw buf fer ,
r ep lace mode (vrocpyfm) * /

r a s t _ o p (3 , &work_area, &scrn_mfdb, &draw_area, &draw_mfdb);
graf_mouse(M ON, OxOL);

/* */
/ * dr_code * /
/* */
WORD dr_code(pparms)
LONG pparms;
{

/ * Code to draw a box out l ine around the
se l ec ted user defined o b j e c t . See the
FARDRAW code. * /

PARMBLK pb;
WORD pxy[10] , h i , wb;

LONG taddr ;

LBCOPY(ADDR(&pb), pparms, sizeof(PARMBLK));

taddr = pb.pb_parm;
userbrushmfdb.mp = LLGET(BI_PDATA(taddr));
hi = LWGET(BI_HL(taddr));
wb * LWGET(BI_WB(taddr));
userbrushmfdb.fwp = wb « 3;
userbrushmfdb.fww « wb » 1;
userbrushjnfdb. fh • h i ;
userbrushmfdb.np • 1;
u serbrushmfdb . f f • 0 ;
pxy[0] * p x y [l] = 0 ;
pxy[2] = (wb « 3) - 1;
pxy[3] - hi - 1;
pxy[4] = pb.pb_x;
pxy[5] • pb.pb y ;
pxy[6] = pxy[4T • pb.pb_w - 1;
pxy[7] • pxy[5] • p b . p b h - 1;

listing of DEMO
465

vrt_cpyfm(vdi_handle, 2 , pxy, &userbrush_mfdb, &scrn_mfdb, u s e r c o l o r) ;

i f ((p b . p b cur r s t a t e !=pb .pb p r e v s t a t e) | | (p b . p b currstate&SELECTED))
{

i f (p b . p b c u r r s t a t e & SELECTED)
vs l_co lor (vd i_handle , 1) ;

e l s e
v s l _ c o l o r (v d i _ h a n d l e , 0) ;

vs l_width(vdi_handle, 1) ;
vs l_ type(vdi_handle , F ISSOLID) ;

/ * Draw a r ec t ang le * /
pxy[0] = — p b . p b x ;
pxy [l] » — p b . p b y ;
pxy[2] * pb.pb_x • ++pb.pb_w - 1;
pxy[3] « pb.pb_y • ++pb.pb_h - 1;
pxy[4] * pxy [2] ;
pxy[5] * pxy [3] ;
pxy[3] = p x y [l] ;
pxy[6] * pxy [0] ;
pxy[7] * pxy [5] ;
pxy[8] - pxy [0] ;
pxy[9] « p x y [l] ;
v p l ine(vd i handle, 5 , pxy) ;

}
return (0) ;

/. ./
/ * enab menu * /

/* - */ #

VOID enabjnenu(which) / * Enable s p e c i f i e d menu item * /
WORD which;
{
}

undo_obj(addr_menu, which, DISABLED);

/. */
/ * e ra se r * /
/* */
VOID
e r a s e r (x , y) / * Erase r ec t ang le of e ra se r s i z e a t x ,y * /
WORD x, y;
{

WORD e r a s e _ x y [4] ;
i f (demo pen pen FINE)
{

erase_xy[0] = x - 2 ;
e r a s e _ x y [l] * y - 1;
erase_xy[2] = x + 2 ;
erase_xy[3] * y • 1; }

e l s e i f (demopen == PENMEDIUM)

erase_xy[0] * x - 4 ;
e r a s e x y t l] * y - 2 ;

PROGRAMMER'S GUIDE TO GEM

erase_xyL2J • s • 4 ;
erase_xy[3] = y • 2 ;

e l s e
{

erase_xy[0] = x - 6;
e r a se_xy[l] = y - 3;
erase_xy[2] = x • 6;
erase_xy[3] = y + 3;

v r r e c f K v d i h a n d l e , e r a s e _ x y) ;

/* */
/ * get f i l e * /
/* */

WORD g e t f i l e (l o o p) / * Use f i l e s e l e c t o r to get input f i l e * /
BOOLEAN loop;
{

WORD f s i e x b u t t o n ;
BYTE f s _ i i n s e l [l 3] ;

while (TRUE)
{

get_path(f i le_name, " * .DOO");
f s _ i i n s e l [0] = ' N O * ;

f se l_ input (ADDR(f i lename) , A D D R (f s i i n s e l) , & f s i e x b u t t o n) ;
i f (f s iexbutton)
{

addf i l e_name(f i l e_name , f s i i n s e l) ;
f i l e h a n d l e • dos_open(ADDRTfilename),2);
i f (Hoop | | (loop && ! DOSERR))

r e t u r n (l) ;
}
e l s e

return (0) ;

/ * end g e t _ f i l e * /

/* */
/ * get parent * /
/ * Z * /
/*

Routine that wi l l f ind the parent of a given o b j e c t . The
idea i s to walk to the end of our s i b l i n g s and return
our parent . I f ob ject i s the root then return NIL as parent .

*/
WORD g e t _ p a r e n t (t r e e , o b j)
LONG t r e e ;
WORD o b j ;
{

WORD pob j ;

i f (ob j NIL) return (NIL) ;
pobj • LWGET(0B NEXT(obj)) ;
i f (pobj != NILT
{

while(LWGET(OB_TAIL(pobj)) != obj)

Listing of DEMO

}
}
return(pobj);

obj = pobj;
pobj = LWGET(OB_NEXT(obj));

/*
/*
. / *

VOID
BYTE
{

/*
/*
/*
WORD
LONG
WORD
{

getpath

get_path(tmp_path, spec)
*tmp_path, *spec;

*/
-*/

/* Get directory path name

WORD cur drv;

cur_drv = d o s g d r v O ;
tmp_path[0] = cur_drv + 'A';
tmp_path[l] = ':';
tmp_path[2] = 'W';
dos gdir(cur drv+1, ADDR(&tmp path[3]));
if (strlen(tmp path) > 3) strcat(tmppath, " W ") ;
else tmp_pathl2] = '\0';
strcat(tmp_path, spec);

getselect

get_select(tree, obj)
tree;
obj;

-*/
*/

WORD
LONG

nobj, cobj;
bind, arry, temp;

bind = LLGET(OB_SPEC(obj));
dir_obj(tree, obj);
LLSET(OB_SPEC(obj), LLGET(bind));
arry = LLGET(bind + sizeof(LONG));

for (cobj = LWGET(OB_HEAD(obj)); cobj != obj;
cobj = LWGET(OB_NEXT(cobj)))
{

dir_obj(tree, cobj);
LLSET(OB SPEC(cobj), LLGET(LLGET(OB_SPEC(cobj))));

}

nobj • LWGET(OB_NEXT(obj))j
dir_obj(tree, nobj);
temp = IT.GET(OB_SPEC(nobj));
LLSET(OB_SPEC(nobj), LLGET(temp));
return (WORD) (temp - arry) / sizeof(LONG) - 1;

/*
/* grecttoarray
/*

PROGRAMMER'S GUIDE TO GEM

VOID
grec t_ to_ar ray (a rea , a r ray) / * convert x ,y ,w,h to upper l e f t x ,y & * /
GRECT * a r e a ; / * lower r i ght x , y * /
WORD * a r r a y ;
{

* array++ = area->g_x;
*array++ = area->g_y;
*array++ ~ area->g_x + area->g_w - 1;
* a r r a y = area->g_y + area->g_h - 1;

/* */
/ * hndl_button * /
/* */

VOID hndl buttonO
{

{

/ * A button event happened.
I f mouse pos i t i on i s in s ide the work
a r e a , then wait for mouse to move and then
draw a l i n e from old p o s i t i o n to new. * /

i f ((mousex >* work_area.g_x) && (mousey >* work_area.g_y) &&
(mousex < (work_area.g_x • work_area.g_w)) &&
(mousey < (work_area.g_y • work_area.g_h)))

draw_pencil(mousex, mousey);

/* */
/ * h n d l d i a l * /
/* */

WORD h n d l d i a K t r e e , def , x , y , w, h)
LONG t r e e ;
WORD def;
WORD x, y, w, h;

WORD x d i a l , y d i a l , wdia l , h d i a l , e x i t o b j ;
WORD xtype;

/ * Get the coordinates of where the d i a l o g
would be when centered on the screen * /

form_center(tree , &xdial , &ydial , &wdial, &hdial) ;

/ * Reserve the center of the screen * /

f o r m d i a K O , x , y , w, h, x d i a l , y d i a l , wdial , h d i a l) ;

/ * Draw and expanding rubber box from
s i z e of dia logue to center * /

f o r m d i a l (1 , x , y, w, h, x d i a l , y d i a l , wdial , h d i a l) ;

/ * Display the d ia log * /

objc_draw(tree , ROOT, MAXDEPTH, x d i a l , y d i a l , wdia l , h d i a l) ;

FOREVER / * Get the u s e r ' s input * /

Listing of DEMO 469

e x i t o b j = form_do(tree, def) & 0x7FFF;
/ * Mask out any non-user defined o b j e c t s .

All user defined o b j e c t s have high byte . * /

xtype = LWGET(OB_TYPE(exitobj)) & OxFFOO;

/ * Get out i f not user defined * /

i f (!x type) break;

/ * Go to user defined i n t e r p r e t e r * /

xtend d o (t r e e , e x i t o b j , x t y p e) ;
}

/ * Draws shrinking box * /

form_dial(2 , x, y, w, h, x d i a l , y d i a l , wdial , h d i a l) ;

/ * Release the reserved screen space * /

form_dial(3 , x, y, w, h, x d i a l , y d i a l , wdial , h d i a l) ;

return (e x i t o b j) ;

/* */
/ * hndl menu * /
/* */

WORD
hndl_menu(tit le , item)
WORD t i t l e , item;
{

LONG t r e e ;
GRECT box;

/ * A menu item was s e l e c t e d . * /

graf_mouse(ARROW, OxOL);
switch (t i t l e) {

case DEMODESK:

i f (item • * DEMOINFO) {
/ * d i s p l a y Demo I n f o . . .

Find the coordinates of the Desk menu
t i t l e r e l a t i v e to the screen. Only used
to show an expanding/shrinking box. * /

objc_xywh(addr_menu, DEMODESK, &box);

/ * Get the address of the info d i a log * /

rsrc_gaddr(R_TREE, DEMOINFD, &tree) ;

/ * Display the d i a l o g * /

h n d l d i a K t r e e , 0, b o x . g x , b o x . g y , b o x . g w , b o x . g h)

/ * R e - i n i t i a l i z e the ob ject * /

PROGRAMMER'S GUIDE TO GEM

desel_obj(tree, DEMOOK);

break;

case DEMOFILE:
switch (item) {
case DEMOLOAD:

do_load(TRUE);
break;

case DEMOSAVE:
do_save();
break;

case DEMOSVAS:
do_svas();
break;

case DEMOABAN:
filehandle = dos_open(ADDR(file name) , 2) ;
doload(FALSE);
break;

case DEMOQUIT:
return(TRUE);

case DEMOOPTS:
switch (item) {
case DEMOPENS:

do_penselect();
break;

case DEMOERAP:

/* Clear the screen and the draw buffer.
As we are always erasing the entire window
use scrnarea & scrnmfdb for the source. 1

rast_op(0, &scrn_area, &scrn_mfdb,
&scrn_area, &draw_mfdb);

restore_work();

break;
}

}
menu_tnormal(addr_menu,t i tle,TRUE);
graf_mouse(monumber, mofaddr);
return (FALSE);

/* */
/* hndl_mouse */
/* */
VOID hndl mouseO
{

if (mout) graf_mouse(ARROW, OxOL);
else graf_mouse(monumber, mofaddr);
m o u t = tm out;

Listing of DEMO

/* */
/ * h n d l j n s g * /
/* */
BOOLEAN hndl msg()
{

WORD wdwjindl;
GRECT work;

wdwhndl = msg_buff [3] ; / * Get window handle of any message that
may be window r e l a t e d . * /

switch(msg buf f [0]) / * Message type * /
{

case MNSELECTED: / * Mouse moved to menu * /

return(hndl_menu(wdw_hndl, msg_buf f [4])) ;

case WM_REDRAW: / * Window needs to be re-drawn
msg_buff[4-7] = GRECT (x ,y ,w,h) * /

do_redraw(wdw_hndl, (GRECT *) &msg_buff[4]);
break;

case WM_TOPPED: / * Place window on top * /

wind_set(wdw_hndl, WFTOP, 0, 0, 0, 0) ;
break;

case WM_CLOSED: / * Close the window * /

return(TRUE);

case WMFULLED: / * Ful l button c l icked * /

do_f u11(wdw_hnd1);
break;

case WMARROWED: / * Mouse touched s l i d e r area * /

switch(msg_buff[4])
{

case WAUPPAGE:
draw_area.g_y = max(draw_area.g_y - draw_area.g_h, 0)
break;

case WADNPAGE:
draw_area.g_y draw_area.g_h;
break;

case WAUPLINE:
d r a w a r e a . g y * max(draw_area.g_y - YSCALE(16), 0) ;
break;

case WADNLINE:
d r a w a r e a . g y YSCALE(16);
break;

case WALFPAGE: / * Page l e f t * /
draw_area.g_x = max(draw_area.g_x-draw_area.g_w, 0) ;
break;

case WARTPAGE: / * Page r ight * /
draw_area.g_x += draw_area.g_w;
break;

PROGRAMMER'S GUIDE TO GEM

case WALFLINE: / * Column l e f t * /
draw_area.g_x = max(draw_area.g_x - 16, 0) ;
break;

case WARTLINE: / * Column Right * /
d r a w a r e a . g x + = 1 6 ;
break;

}

/ * Get the current work area * /

setwork(TRUE);

/ * Restore the work area from draw buffer * /

res tore_work() ;
break;

case WMHSLID: / * Horizontal s l i d e r p o s i t i o n changed * /

d r a w a r e a . g x = align_x(UMUL_DIV(draw_mfdb.fwp - d r a w a r e a . g w
msg_buff [4] , 1000)) ;

setwork(TRUE); / * Get new work area and update s l i d e r * /
res tore_work() ;
break;

case WMVSLID: / * Ver t i ca l s l i d e r pos i t ion changed * /

d r a w a r e a . g y - UMUL_DIV(draw_mfdb.fh - draw_area.g_h,
msg_buff [4] ,1000) ;

setwork(TRUE);
res tore_work() ;
break;

case WMSIZED: / * S i ze button c l i c k e d .
The new window s i z e must be c a l c u l a t e d .
Use w i n d c a l c instead of w i n d g e t because
w i n d c a l c obtains the p o s s i b l e s i z e s ,
whereas wind_get obtains the a c t u a l .
Besides the values obtained by w i n d g e t
are not va l id unt i l we change them as the
window s i z e has j u s t been changed.

Calcula te the s i z e of the new work area * /

wind_calc(l , OxOfef, msg_buff[4] , msg_buff [5] , msg_buf f [6] ,
msg_buff [7] , &work.g_x, &work.g_y, &work.g_w,
&work.g__h);

work.g_x = a l ign_x(work .g_x) ;
work.g_w = al ign_x(work.g_w);

/ * Set the s i z e of the current window, which
automatical ly updates the previous and
work f i g u r e s . * /

wind_set(wdw_hndl, WFCXYWH, msg b u f f [4] ,
msg_buff [5] , msg_buff[6T, m s g b u f f [7]) ;

setwork(TRUE);
break;

Listing of DEMO 473

case WM_MOVED: / * Window has been moved * /

msg_buff[4] • a l i gn_x(msg_buf f [4]) ;
wind_set(wdw_hndl, WFCXYWH, a l ign_x(msg_buff [4]) - 1,

msg_buff [5] , msg_buff [6] , m s g b u f f [7]) ;
set_work(FALSE);
break;

} / * End switch * /
return(FALSE); / * I f hndljnsg returns TRUE then i t means

user c l i cked on c lo se box or wants to
q u i t . * /

/ * End hndljnsg * /

/* */
/ * indir obj * /
/* */
VOID i n d i r _ o b j (t r e e , which)
LONG t r e e ;
WORD which;
{

WORD f l a g s ;

f l a g s = LWGET(OB_FLAGS(which));
LWSET(OB FLAGS(which), f l a g s | INDIRECT);

}

/* */
/ * max * /
/* */

WORD max(a, b) / * Return max of two values * /
WORD a , b;
{

return((a > b) ? a : b) ;
}

/* */
/ * min * /
/* */
WORD min(a, b) I* Return min of two values * /
WORD a , b;
{

return((a < b) ? a : b) ;
}

/* */
/ * move do * /
/* */
VOID move_do(tree, o b j , inc)
LONG t r e e ;
WORD o b j , i n c ;
C

/* This routine s h i f t s the color s e l e c t i o n
panel depending on whether the forward
or the backward arrow was s e l e c t e d .
See the commentary for s e t _ s e l e c t i o n * /

PROGRAMMER'S GUIDE TO GEM

WORD c o b j ;
LONG n, bind, a r ry , l i m i t , obspec;

obj = g e t _ p a r e n t (t r e e , o b j) ;
obj = LWGET(OB_NEXT(obj));
bind = LLGET(OB_SPEC(obj));
arry • LLGET(bind + sizeof(LONG));
n = LLGET(arry) * sizeof(LONG);
l imi t = arry + n:

for (cobj = LWGET(OB_HEAD(obj)); cobj != o b j ;
cobj = LWGET(OB NEXT(cobj)))
{

obspec = LLGET(OB_SPEC(cobj));
obspec • » inc * sizeof(LONG);
while (obspec <= arry | | obspec > l i m i t)

obspec += n * ((obspec > l i m i t) ? -1: 1);
LLSET(OB SPEC(cobj), obspec) ;

}

redraw_do(tree, o b j) ;

/* */
/ * p i c t _ i n i t * /
/* */

VOID p i c t i n i t O {

LONG t r e e ;
WORD t r o b j , nobj ;

/ * I n i t i a l i z e a l l the user defined o b j e c t s .

Get the addr of the Info d ia log and
transform i t s G_IMAGE into device spec f i c
format. * /

rsrc_gaddr(R TREE, DEMOINFD, &tree);
transgimageTtree, DEMOIMG);

/ * There are 6 addi t ional G_IMAGEs in DEMO.
They are used in the PENCIL/ERASER d ia log
in the OPTIONS menu. When t h i s d ia log
i s displayed you wil l not ice that there
3 pencil and 3 eraser th icknesses
(6 in a l l) . DEMO wants to h ighl ight these
by drawing a small box around the se lec ted
one.
F i r s t change them to user defined o b j e c t s ,
transform them to device s p e c i f i c format,
and i n i t i a l i z e the APPLBLKs. See dr_code
and FARDRAW. * /

r s r c gaddr(R_TREE, DEMOPEND, &tree) ;
for Ttr_obj = DEMOPFIN; trobj <= DEMOEBRD; tr_obj++){

/ * Transform the image to device s p e c i f i c * /

t rans_g image(t ree , t r _ o b j) ;

Listing of DEMO 475

/ * Set the object type f i e l d to user defined *

LWSET(OB_TYPE(tr_obj), G_USERDEF);

nobj * t r o b j - DEMOPFIN;

/ * Save the address of the external rout ine * /

brushub[nobj].ub_code = drawaddr;

/ * Use the object spec which points to the
BITBLK that descr ibes the G_IMAGE as the
parameter to drawaddr. * /

brushub[nobj].ub_parm = LLGET(OB_SPEC(tr_obj));

/ * Now set the object spec to point to the
address of the appropr ia te APPLBLK * /

LLSET(OB_SPEC(trobj), ADDR(&brushub[nobj]));

/* */
/ * objc_xywh * /
/* */

VOID objc_xywh(tree, o b j , p) / * get x,y,w,h for s p e c i f i e d object * /
LONG t r e e ;
WORD o b j ;
GRECT * p ;
{

o b j c o f f s e t (t r e e , o b j , &p->g_x, &p->g_y);
p->g_w = LWGET(OB_WIDTH(obj));
p->g_h = LWGET(OB_HEIGHT(obj))$

/* */
/ * r a s t o p * /
/* */
VOID
rast_op(raode, s a r e a , s_mfdb, d a r e a , dmfdb) / * b i t block l eve l t rns * /
WORD mode ;
GRECT * s _ a r e a , *d_area ;
MFDB *s_mfdb, *d_mfdb;
{

WORD pxy[8];

grec t_ to_ar ray (s_area , pxy) ;
grect_to_array(d_area , &pxy[4]) ;
vro_cpyfm(vdi_handle, mode, pxy, s m f d b , d_mfdb);

/* *;
/ * rc_copy * /
/* */
VOID
rc_copy(psbox, pdbox) / * copy source to de s t ina t ion rec tang le * /
GRECT *psbox;
GRECT *pdbox;

PROGRAMMER'S GUIDE TO GEM

pdbox->g_x
pdbox->g_y
pdbox->g_w
pdbox->g_h

psbox->g_x;
psbox->g_y;
psbox->g_w;
psbox->g_h;

/* */
/ * rc equal * /
/* */

WORD
r c e q u a K p l , p2) / * t e s t s for two equal rec tangles * / GRECT * p l , * p 2 ;
{

i f (<pl->g_x != p2->g_x) | |
(pl->g_y != p2->g_y) I I
(pl->g_w != p2->g_w) I I
(pl->g_h != p2->g_h))

return(FALSE);
return(TRUE);

)

/* */
/ * rc i n t e r s e c t * /
/* */

WORD
r c _ i n t e r s e c t (p l , p2) / * compute i n t e r s e c t of two rec tang les * /
GRECT * p l , * p 2 ;
{

WORD tx , ty , tw, th ;
tw • min(p2->g_x • p2->g_w, pl->g_x + pl->g_w);
th = min(p2->g_y + p2->g_h, pl->g_y • p l - > g _ h) ;
tx = max(p2->g_x, p l - > g _ x) ;
ty = max(p2->g_y, p l ->g_y) ;
P 2->g_x - t x ;
p2->g_y = ty ;
p2->g_w - tw - t x ;
p2->g_h = th - ty ;
return((tw > t x) && (t h . > t y)) ;

}

/* */
/ * redraw do * /
/* */
VOID redraw_do(tree, ob j)
LONG t r e e ;
WORD o b j ;
{

GRECT o;

objc_xywh(tree, o b j , &o);
o . g x -= 3; o . g y -= 3; o.g_w += 6; o.g_h += 6;
objc draw(tree , ROOT, MAX DEPTH, o .g_x, o.g_y, o.g_w, o . g _ h) ;

}

Listing of DEMO

/* */
/ * r e s t o r e work * /
/* */

VOID r e s t o r e work() / * r e s t o r e work area from draw area * /
{ "

graf_mouse(M_OFF, OxOL);
r a s t _ o p (3 , &draw_area, &draw_mfdb, &work_area, &scrn_mfdb);
graf_mouse(M_ON, OxOL);

/* */
/ * s e l obj * /
/* Z */

VOID s e l _ o b j (t r e e , which) / * turn on se lec ted b i t of spec f i ed object * /
LONG t r e e ;
WORD which;
{

WORD s t a t e ;

s t a t e = LWGET(OB_STATE(which));
LWSEKOB STATE (which), s t a t e | SELECTED);

}

/* */
/ * set c l i p * /
/* Z */

VOID set c l i p (c l i p _ f l a g , s_area) / * s e t c l i p to s p e c i f i e d area * /
WORD c l i p f l a g ;
GRECT * s a r e a ;
{

WORD pxy[4] ;

g rec t_ to_ar ray (s_area , pxy) ;
v s_c l ip (vd i_handle , c l i p f l a g , pxy) ;

/* */
/ * s e t e r a s e r * /
/* */
VOID se t_era se r (pen , height , e r a s e r)
WORD pen, he ight ;
BYTE * e r a s e r ;
{

demopen * pen;
demo_height = height ;
deraoshade = PENERASER;
monumber • 255;
mofaddr • ADDR(eraser);

}

/* */
/ * set_pen * / /* */
VOID set_pen(pen, height)
WORD pen, height ;
{

demo_pen = pen;
demo_height • height ;

PROGRAMMER'S GUIDE TO GEM

monumber = 5 ;
mofaddr • OxOL;

}

/* */

/ * s e t _ s e l e c t * /
/* */
VOID s e t _ s e l e c t (t r e e , o b j , i n i t n o , bind, arry)
LONG t r e e , b i n d [] , a r r y U ;
WORD o b j , i n i t no;
{

/ * Se t s the address of the color s e l e c t i o n
array into the parent of the color
s e l e c t i o n panel o b j e c t . * /

WORD n, nob j , c o b j , count;

/ * F i r s t make the f l a g f i e l d INDIRECT * /
i n d i r _ o b j (t r e e , o b j) ;

/ * Save the old object spec into a loca l * /

bind[0] = LLGET(OB_SPEC(obj));

/ * Point to the loca l * /

LLSET(OB_SPEC(obj), ADDR(bind));

/ * Point to the color array * /
b i n d t l] = ADDR(arry);

/ * Set the f i r s t 4 TOUCHEXIT o b j e c t s to the
appropr ia te c o l o r . * /

n = (WORD) a r r y [0] ;
count = 0 ;
for (cobj = LWGET(OB_HEAD(obj)); cobj != o b j ;
cobj = LWGET(OB_NEXT(cobj)))

i n d i r _ o b j (t r e e , c o b j) ;
LLSET(OB_SPEC(cobj), ADDR(&arry[count + l])) ;
count = (count + 1) % n;

•

/ * Set the s e l ec ted GBOXCHAR to the
appropr ia te color and make i t INDIRECT * /

nobj = LWGET(OB_NEXT(obj));
indir o b j (t r e e , n o b j) ;
LLSETTOBSPEC(nobj), ADDR(&arry[l + i n i t n o % n])) ;

/* */
/ * set_work * / /* .*/
VOID s e t w o r k (s l i d e r u p d a t e) / * update draw a r e a , clamping to page *7
BOOLEAN s l i d e r u p d a t e ; / * edges , and update s l i d e r s i f req 'd * /
{

WORD i ;

Listing of DEMO 479

/ * Find s i z e of work area * /

wind_get(demo_whndl, WFWXYWH.&workarea.gx, &work_area.g_y,
&work_area.g_w, &work_area.g_h);

/ * Clamp work area to page edges * /

d r a w a r e a . g x = a l i g n x (d r a w a r e a . g x) ;
i f ((i • drawmfdb.fwp - (d r a w a r e a . g x • w o r k a r e a . g w)) < 0)

draw_area.g_x += i ;
i f ((i • draw_mfdb.fh - (draw_area.g_y + work_area.g_h)) < 0)

draw_area.g_y i ;
i f (s l i d e r update)
{
wind_set(demo_whndl, WFHSLIDE, UMUL_DIV(draw_area.g_x, 1000,

draw_mfdb.fwp - work_area.g_w), 0, 0, 0) ;
wind_set(demo_whndl, WFVSLIDE, UMUL_DIV(draw_area.g_y, 1000,

drawmfdb.fh - w o r k a r e a . g h) , 0, 0, 0) ;
wind_set(demo_whndl, WFHSLSIZ, UMUL_DIV(work_area.g_w, 1000,

drawmfdb.fwp), 0 , 0, 0) ;
wind_set(demo_whndl, WFVSLSIZ, UMUL_DIV(work_area.g_h, 1000,

drawmfdb. fh) , 0, 0, 0) ;

/ * Only use portion of work_area on screen * /

rc_ inter sec t (&scrn_area , &work_area);
draw_area.g_w * work_area.g_w;
draw_area.g_h = work_area.g_h;

/* */
/ * string_addr * /
/* */

LONG string_addr(which) / * Returns a tedinfo LONG s t r i n g addr * /
WORD which;
{

LONG where;

rsrc_gaddr(R_STRING, which, &where);
return (where);

}

/* */

/ * t r a n s g i m a g e * /
/ * transform a standard format to a device s p e c i f i c format * /
/ * * /
VOID trans_gimage(tree , ob j)

LONG t r e e ;
WORD o b j ;

{
LONG obspec;
WORD wb;
MFDB s r c , d s t ;

obspec = LLGET(OB_SPEC(obj));
src.mp • dst.mp = LLGET(BI_PDATA(obspec));

PROGRAMMER'S GUIDE TO GEM

wb = LWGET(BI_WB(obspec));
src.fwp = dst.fwp = w b « 3 ;
src.fww = dst.fww = w b » l ;
s r c . f h = d s t . f h = LWGET(BI_HL(obspec));

s rc .np = ds t .np = 1;
s r c . f f = TRUE;
d s t . f f = FALSE;
vr_trnfm(vdi_handle, &src, &dst) ;

f* */
/ * undo obj * /
/* Z */

VOID
undo_obj(tree, which, b i t) / * c l ea r spec i f i ed b i t in ob ject s t a t e * /
LONG t r e e ;
WORD which, b i t ;
{

WORD s t a t e ;

s t a t e = LWGET(OB_STATE(which));
LWSET(OB STATE(which), s t a t e & - b i t) ;

}
/* */

/ * unflag_obj * /
/* */

VOID u n f l a g _ o b j (t r e e , which, b i t)
LONG t r e e ;
WORD which, b i t ;
{

WORD f l a g s ;

f l a g s = LWGET(OB_FLAGS(which));
LWSET(OB FLAGS(which), f l a g s & - b i t) ;

}

/* */
/ * x t e n d d o * /
/* */

VOID xtend_do(tree , o b j , xtype)
LONG t r e e ;
WORD o b j , x type ;
{

/ * The user defined command in te rpre te r
There are only 3 types (forward,
backward arrow and an ac tua l color s e l e c t e d

*/
LONG obspec;

switch (xtype) {

case X S E L : / * 0x300 - Color s e l ec ted * /

/ * Get the color pointed at * /

obspec = LLGET(OB_SPEC(obj));

/ * Go back up the t r e e * /

Listing of DEMO

obj 38 g e t _ p a r e n t (t r e e , o b j) ;
/ * Parent points to next brother , color

s e l ec ted GBOXCHAR * /

obj = LWGET(OB_NEXT(obj));

/ * Set t h i s to the saved color * /

LLSET(OB_SPEC(obj), obspec) ;

/ * Now re-draw only t h i s box * /

redraw_do(tree, o b j) ;
break;

case X_FWD: / * 0x100 - Forward arrow se lec ted * /

move_do(tree, o b j , 1) ;
redraw_do(tree, o b j) ;
break;

case XBAK: / * 0x200 - Backwards arrow * /

move_do(tree, o b j , - 1) ;
redraw_do(tree, o b j) ;

is

PROGRAMMER'S GUIDE TO GEM

#define TOOBJ 0
#de-fine T10BJ 26
#de-fine T20BJ 38
#define T30BJ 43
#define FREEBB 7
#define FREEIMG 7
#define FREESTR 42

BYTE *rs_stringsC1
" Desk ",
" File ",
" Options ",

About GEM Demo .

" 1" ,
it yt ii

"4" .

"6" ,
" Load
" Save

Save As..
" Abandon

Quit
" Pen \ Eraser Selection

" Erase Picture
"GEM Demo ",
"GEM Sample Application".
"Authors",

"Ok" ,
"Tom Rolander",
"Tim Oren",
"Phillip Balma",
"Version 1.2, February, 1986",
"Digital Research, Inc.",
"Save GEM Demo picture as",
"Ok" ,
"Cancel" ,

" . D00" ,
"ANNNNNNN",
"GEM Demo Pen/Eraser Selection",
"Pens:",
"Ok" ,
"Erasers:",
"Cancel",
"Pen Colors:",
"Selected:",
" C23 C You are about!to write over S an existing -file.aCOk! Cancel 3",
"C33C GEM does not have! any windows left,! Dr Doodle abortingDC Sorry\

/• Image Block -for DRI logo /
WORD IMAG0C3 - i
0x0, 0x0, 0x3FFF, 0xFFF8,
0x7FFF, OxFFFC, OxEOOO, OxE,
OxCOOO, 0x6, OxCOOO, 0x6,

0xC7FC, 0x7FC6, 0xC3F8, 0x3F86,
0xC7FC, 0x60C6,
0xC7FC,
0xC7FC,
0xC7FC,
0xC7FC,

0x60C6,
0x60C6,
Ox 60C6,

0xC7FC,
0xC7FC,
0xC7FC,
0xC7FC,

0x60C6,
0x60C6,
0x60C6,
0x60C6,

Ox 60C6, O k C7FC, Ox 60C6,
0xC7FC, 0x60C6, 0xC7FC, 0x60C6,

Listing of .RSC Output File for DEMO 485

'OxC7FC, 0x60C6, 0xC7FC, 0x60C6,
0xC7FC, 0x60C6, 0xC7FC, 0x60C6,
OxC7FC, 0x7FC6, 0xC3F8, 0x3F86,
OxCOCO, 0x6, OxCOOO, 0x6,
OxEOOO, OxE, 0x7FFF, OxFFFC,
0x3FFF, 0xFFF8, 0x0, OxO>;

WORD IMAGIC3 = i
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
Ox 3, Ox 8000, Ox 0, Ox 0 ,
Ox 0 , Ox 0, Ox 0 , Ox O,
0x0, 0x0, 0x0, 0x0,
Ox O, Ox 0, 0x0, Ox O >;

WORD IMAG2C 3 = C
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,

0x0, 0x0, 0x0,
0x0, 0x7, OxCOOO,
Ox EOOO, 0x7, Ox COOO,
0x0, 0x0, 0x0,

0x0, 0x0,
0x0, OxO>;

0x0,
0x0,
OxF,
0x0,
0x0, 0x0,
0x0, 0x0,

WORD IMAG3C3 = i
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x7, OxCOOO, Ox IF, OxFOOO,
Ox3F, 0xF800, Ox IF, OxFOOO,
0x7, OxCOOO, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0>;

/* Image block -for fine pencil */

/* Image Block for medium pencil */

/* Image Block -for broad pencil */

/«Image Block -for -fine eraser */
WORD IMAG4C3 • i
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x7, OxCOOO, 0x4, 0x4000,
0x7, OxCOOO, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, OxO>;

/* Image Block for medium eraser */
WORD IMAG5C3 • i
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
OxO, 0x0, OxlF, OxFOOO,
Ox10, Ox1000, Ox10, Ox1000,
Ox10, Ox1000, Ox1F, Ox FOOO,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0)1

/* Image Block -for broad eraser */
WORD IMAG6C3 = i
0x0. 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,

PROGRAMMER'S GUIDE TO GEM

Ox7F, OxFCOO, 0x40, 0x400,
0x40, 0x400, 0x40, 0x400,
0x40, 0x400, 0x40, 0x400,
Ox7F, OxFCOO, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0> I

LONG rs_-frstrCD = i
42L,
43L> ;

BITBLK rs bitblkCD
OL, 4, 32,
IL, 4, 16,

4,
O, 0, 1

16, 0 , 0, 1
3L, 4, 16, 0, O, 1
4L, 4, 16, 0, 0, 1

4, 16, O, O, 1,
4, 16, 0, 0, l>i

2L,

5L,
6L,

LONG rs frimgC]
0>;

ICGNBLK rs iconblkCD
0>s

TEDINFO rs_tedinfoC3
32L, 33L, 34L, 3, 6, O, 0x1180, 0x0, - 1 , 1,13>;

OBJECT rs_objectC3 • <
- 1 , 1, 6, G.IBOX, NONE, NORMAL, OxOL, 0,0, 80,25,
6, 2, 2, G.BOX, NONE, NORMAL, OxllOOL, 0,0, 80,513,
1, 3, 5, G IBOX, NONE, NORMAL, OxOL, 2,0, 21,769,
4, -1, -1, G_TITLE, NONE, NORMAL, OxOL, 0,0, 6,769,
5, - 1 , -1, G_TITLE, NONE, NORMAL, OxlL, 6,0, 6,769,
2, -1, - 1 , G TITLE, NONE, NORMAL, 0x2L, 12,0, 9,769,
O, 7, 22, G Ï B O X , NONE, NORMAL, OxOL, 0,769, 80,19,
16, 8, 15, G.BOX, NONE, NORMAL, O x F F U O O L , 2,0, 20,8,
9, -1, -1, G_STRING, SELECTABLE, NORMAL, 0x3L, 0,0, 20,1,
10, -
11, ~
12, -
13, -
14, -
15, -
7, -1
22, 1
18, -
19, -
20, -
21 , -
16, -
6, 23
24, -
25, -
22, -

6
7
S
9
10

-1, G STRING, NONE, DISABLED, Ox4L, 0,1, 20,1,
-1, G_STRING, NONE, NORMAL, 0x5L, 0,2, 20,1,
-1, G_STRING, NONE, NORMAL, 0x6L, 0,3, 20,1,
-1, 6_STRING, NONE, NORMAL, 0x7L, 0,4, 20,1,
-1, G_STRING, NONE, NORMAL, 0x8L, 0,5, 20,1,
-1, G_STRING, NONE, NORMAL, 0x9L, 0,6, 20,1,
1, G_STRING, NONE, NORMAL, OxAL, 0,7, 20,1,
21, G„BOX, NONE, NORMAL, O x F F U O O L , 8,0, 13,5,

G_STRING, SELECTABLE, NORMAL, OxBL, 0,0, 13,1,
G_STRING, NONE, DISABLED, OxCL, 0,1, 13,1,
6„STRING, SELECTABLE, NORMAL, OxDL, 0,2, 13,1,
G_STRING, SELECTABLE, NORMAL, OxEL, 0,3, 13,1,
G_STRING, SELECTABLE, NORMAL, OxFL, 0,4, 13,1,

25, G_BOX, NONE, NORMAL, O x F F U O O L , 14,0, 25,3,
-1, G_STRING, NONE, NORMAL, OxlOL, 0,0, 25,1,
-1, G_STRING, NONE, DISABLED, OxllL, 0,1, 25,1,
-1, G_STRING, LASTOB, NORMAL, 0xl2L, 0,2, 25,1,

11, G BOX, NONE, OUTLINED, 0x21100L, 8,9, 38,15,
G_STRING, NONE, NORMAL, 0xl3L, 14,1, 9,1,
G_STRING, NONE, NORMAL, Oxl4L, 7,2, 22,1,
G_IMAGE, NONE, NORMAL, OxOL, 2,3, 4,4,
G_STRING, NONE, NORMAL, 0xl5L, 14,4, 7,1,
G_STRING, NONE, NORMAL, 0xl6L, 14,5, 7,1,
G_BUTTON, 0x7, NORMAL, 0xl7L, 27,5, 8,1,
G STRING, NONE, NORMAL, 0xl8L, 11,6, 12,1,
G_STRING, NONE, NORMAL, 0xl9L, 13,7, 8,1,

-1, G.STRING, NONE, NORMAL, OxlAL, 11,8, 13,1,

Listing of .RSC Output File for DEMO 487

11
0,

2,
3,
4,
0,

2,
9,
4,
5,
6,
7,
8,
2,
10, -
11, -
12, -
13, -
0, 14
15, -
18, 1'
17, -
15, -
23, V

20, -
21, -
22, -
18, -
24, -
13, -

, 6_STRING, NONE, NORMAL, OxlBL, 5,11, 27,1,
G_STRING, LABTOB, NORMAL, OxlCL, 8,12, 22,1,

G_BOX, NONE, OUTLINED, 0x21100L, 0,0, 43,7,
G_STRING, NONE, NORMAL, OxlDL, 3,2, 24,1,
G_BUTTON, 0x7, NORMAL, OxlEL, 32,2, 8,1,
G.BUTTON, 0x5, NORMAL,
G_FTEXT, 0x28, NORMAL,
G_BOX, NONE, OUTLINED,
G_STRING, NONE, NORMAL,

OxlFL, 32,4, 8,1,
OxOL, 8,4, 12,1,
0x21100L, 8,9, 47,1
0x23L, 8,1, 29,1,

8, G.IBOX, NONE, NORMAL, OxllOOL, 11,2, 22,7,
-1, G.IMAGE, Oxll, NORMAL, OxlL, 2,1, 4,2,
-1, G IMAGE, Oxll, NORMAL, 0x2L, 9,1, 4,2,
-1, G_IMAGE, Oxll, NORMAL, 0x3L, 16,1, 4,2,
-1, G IMAGE, Oxll, NORMAL, 0x4L, 2,4, 4,2,
-1, G.IMAGE, Oxll, NORMAL, 0x5L, 9,4, 4,2,
-1, G.IMAGE, Oxll, NORMAL, 0x6L, 16,4, 4,2,
-1, G STRING, NONE, NORMAL, 0x24L, 6,3, 5,1,
-1, G.BUTTON, 0x7, NORMAL, 0x25L, 36,3, 7,1,
-1, G_STRING, NONE, NORMAL, 0x26L, 3,6, 8,1,
-1, G.BUTTON, 0x5, NORMAL, 0x27L, 36,6, 7,1,

24, G IBOX, NONE, NORMAL, OxlOOL, 4,8, 29,5,
-1, G.STRING, NONE, NORMAL, 0x28L, 2,1, 11,1,
17, G.IBOX, NONE, NORMAL, OxllOOL, 15,1, 12,2,
-1, Ox IIB, TOUCHEXIT, NORMAL, 0x4FF1100L, 0,0,
-1, 0x21B, TOUCHEXIT, NORMAL, 0x3FF1100L, 10,0,
22, G.IBOX, NONE, NORMAL, OxllOOL, 17,1, 8,1,
-1, 0x31B, TOUCHEXIT, NORMAL, 0x31FF1071L, 0,0,
-1, 0x31B, TOUCHEXIT, NORMAL, 0x32FF1072L, 2,0,
-1, Ox31B, TOUCHEXIT, NORMAL, Ox33FF1073L, 4,0,
-1, 0x31B, TOUCHEXIT, NORMAL, 0x34FF1074L, 6,0,
-1, G BOXCHAR, NONE, NORMAL, Ox31FF1071L, 15,3,
-1, G.STRING, LASTOB, NORMAL, 0x29L, 4,3, 9,1>;

2,1,
2,1,

2,1 ,
2,1,
2,1 ,
2,1 ,
2,1 ,

LONG rs_trindexC3 = -C
OL,
26L,
38L,
43L>;

struct foobar i
WORD dummy;
WORD «images
> rs_imdopeC3 = <

O, &IMAG0C03I
O, &IMAG1C03,
0, ?/.IMAG2C0 3,
0, &IMAG3C03,
0, Ï/.IMAG4C03,
0, ?-<IMAG5C03 ,
O, &IMAG6C03};

#de-fine NUM_STRINGS 44
#de-fine NUM.FRSTR 2
#define NUM_IMAGES 7
#de-fine NUM.BB 7
#de-fine NUM.FRIMG 0
#de+ine NUM~IB 0
ttdefine NUM TI 1
#define NUM.OBS 68
#define NUM.TREE 4

BYTE pnameC3 = "DEMO.RSC";

PROGRAMMER'S GUIDE TO GEM

This appendix is a list of all functions you can use when
displaying to metafile devices. This information is also con
tained in the GEM Functions Summary in Appendix B.

v_arc ()

v_bar ()

v_clrcle()

v__clrwk()

v_clswk()

v_el larc()

v_el l ipse()

v_el lple()

v J i l l a r e a O

v_gtext ()

v j u s t i f ied()

v_opnwk()

v_pieslice

v_pllne()

v_pmarker()

v_rbox()

v_rfbox()

vm_fi lename()

vr_recfl()

vs_clip()

v$f__color()

vsf_interior()

vsf_perimeter()

v$f_$tyie()

v$l_color()

vs l_ends()

v$l_type()

vsl_width()

vsm_color()

vsm_height()

Functions Available in Metafiles

vtm_type()

vst alignment})

vtł_color()

V5t_ef fec ts ()

vtt_f ont()

vst _height()

vt t_Joad_fonts()

vtt_point()

vst _unload_fonts()

vswr_mode()

492

Index

Absolute mode, 183, 3 8 8
A C _ C L O S E , 43, 367
A C J D P E N , 43, 367
.ACC, 366, 3 8 8
ADDR(), 22 , 2 5 1 , 363
A E S , 8 - 1 1 , 1 3 - 1 5 , 3 8 8

application library, 106
components, 28
event library, 29
file selector library, 102,

120
form library, 100
graphics library, 112
menu library, 93
object library, 65
resource library, 86
user input, 30
window library, 50

Alert buffer. See Menu/alert
buffer

Alerts, 100-102 , 253, 3 8 8
and resources, 86
displaying, 103
form, 14, 253 , 3 4 1 , 377
format, 100
used for debugging, 377

Aliasing, 184, 3 8 8
Alignment, optimizing text,

3 6 5
Alt key, 351
Angles, 210
Animation, 156, 233
.APR 88, 3 8 8
APPLBLK, 75, 78, 329 , 3 3 2
Apple DRI disagreement, 103,

112
Applications

finding ap_id, 108, 3 8 9
initializing, 2 7 5
recording, 110
replaying, 1 0 9 - 1 1 0

Applications (cont.)
terminating, 107-108 , 2 7 5
work area, 3 4 8

appLex i t () , 107, 157-159 ,
161, 2 6 4

appl_find(), 1 0 7 - 1 0 8
a p p U n i t () , 108-109 ,

157-160 , 260 , 275 , 277
a p p L r e a d () , 4 1 , 4 3 - 4 4 , 107,

109
appLtp lay () , 107, 1 0 9 - 1 1 0
appL_trecord(), 107, 110-111
appLwrite() , 43, 107, 111,

253
Array coordinates, translation,

2 6 8
Arrow, 3 8 9
Aspect ratio, 137-139 , 3 8 9

and metafiles, 368, 371
and portability, 360
and vsm_height() , 163
effect on text, 194
using elliptical GDPs, 214

ASSIGN.SYS, 3 8 9
Atari ST, 223 , 2 3 1 , 362 , 364
Attributes, 131-132 , 3 8 9

Baseline, 182, 191
BEG _MCTRL, 6 5
BEG_CJPDATE, 6 5
Bindings, 16-17 , 20, 128,

160, 2 5 1 , 3 7 9 - 3 8 2 , 3 8 9
Bit image objects, 3 3 8
Bit image transformations,

233
Bit images

and object trees, 3 5 8
and resources, 86
copying, 2 3 2
word alignment of, 3 6 4

Bit maps , 3 8 9

Index 493

Bit planes, 130, 2 2 4
BITBLK, 75 , 9 1 , 3 2 8
BITBLT, 131 , 220 , 226 , 253 ,

358 , 3 8 9
Blocking, application, 34,

250 , 3 8 9
Boldface text, 189
Border thickness, 7 2 - 7 4 , 323
Boxes

dragging, 1 1 3 - 1 1 4
drawing a rubber, 1 1 7 - 1 1 8
expanding/shrinking, 103,

112, 287 , 300 , 3 1 9 - 3 2 0 ,
3 2 2

growing, 286
moving, 115
rubber, 305 , 401

BYTE, 2 2
Byte boundaries, 3 6 5
Byte ordering, 3 6 3 - 3 6 4

C
compilers, 3 8 3 - 3 8 4
include files, 8 8
language conventions, 22

Character baseline, 182, 191
Character cells, 182-183 , 191
Character heights, 182
Character scaling, 184, 266
Character snap, 3 9 0
Character spacing, 193
Click

double, 39 , 4 5
getting/setting interval, 39,

4 5 - 4 6
Click-drag, 254, 344, 3 5 4
Clip rectangle, 139, 255 , 390
Clipping, 139-140 , 150

and metafiles, 3 7 3
example usage , 267 ,

2 9 5 - 2 9 6
text optimizations,

3 6 5 - 3 6 6
Clipping area, 267
Clipping regions, 266
Close box, 50
CLOSER window control

CLOSER window control (cont.)
point, 254

Color palettes, 147
Color planes, 2 2 1 , 224, 2 3 9
Color tables, 147
Colors

compensating for lack of,
200

foreground, 153
initial settings, 143, 145
pixel, 153, 227
setting default, 160
setting line, 169
setting marker, 163
setting rectangle fill, 2 0 4
setting text, 181 , 267
using for portability, 361

Compilers, C, 3 8 3 - 3 8 4
CompuServe, 20, 381
Compute bound, sharing

CPU, 3 6
Concurrent D O S 286, 13
Concurrent PC-DOS, 7
Console input and output, 12
Continuous scaling, 163
contrl[], 128, 160
Control array, 3 9 0
Control functions, 140
Control points, 3 9 0

object, 3 5 6
see also Window control

points
Conventions, GEM, 2 6 2
Coordinate scaling, 390
Coordinate systems, 145, 368 ,

3 9 0
Coordinate translation, 135
Copy operations, 221
Copying icons, 232
Copying raster forms, 226
Cross hatchings, 201
Ctrl key, 353 , 3 5 5
CTRLMETA.C, 373
CTRLNDC.C, 157
CTRLRC.C, 158, 161
Cursor, 3 9 1 . See also Mouse

cursor form

494 PROGRAMMER'S GUIDE TO GEM

Debugging, 2 5 1 , 367 ,
3 7 7 - 3 7 9

.DEF; 391
Default device driver, 391
Default marker type, 163
DEFACJLT.OPT, 391
DEMO

color selection, 317 , 323
screen data structures, 2 7 9
screen handling, 2 7 9
window management , 2 9 8

DEMO.H, 307
DEMO.RSC, 307 , 316
Descenders, 182, 391
Deselecting, 3 1 5
Desk accessories, 3 9 1 , 4 2 5

and multitasking, 6, 3 5
and windows, 5 5
building, 3 6 6 - 3 6 7
example in Toolkit, 246
interactions with mouse ,

3 5 2
loading, 1 3 - 1 5
position in menu bar, 3 1 9
registering, 98, 3 4 6
sharing CPU with, 3 5 8
sharing the screen, 140,

2 5 0
Desk accessory area, 15
D E S K window, 286
DESKTORINF; 391
Device attributes, 132, 142,

2 6 1 , 266
Device characteristics, 132,

144
Device coordinates, 391
Device drivers, 9

and workstations, 128
default, 391
loading, 1 3 - 1 4
v_opnwk() , 142

Device handles, 128, 134,
3 9 1 . See also VDI
handles

Device identification numbers,
143-144 , 3 9 2

Device independence, 364,
3 6 8

Device-specific format, 2 2 1 ,
233 , 328 , 3 3 2

Device-specific information,
261

Device-specific operations,
131

Devices, portability, 360
.DFN, 427
Dialogs, 392 , 4 2 4

and resources, 86
centering, 1 0 2 - 1 0 3
DEMO's use of, 2 7 4
executing, 105
getting address of, 89
modal nature of, 3 5 8

Directory, default, 369 , 391
Disabled object state, 3 9 2
Dispatcher, 35 , 3 9 2
Dithered patterns, 156
Division of labor, 15, 18
DOS, 12, 3 9 2
dos_al loc() , 281
Double-click, 354, 3 9 2
drawaddr entry point, 3 3 0
Drawing

arcs, 209, 214
bars, 2 0 5
circles, 211
ellipses, 2 1 4 - 2 1 5
filled rectangles, 205 , 2 1 9
lines, 175
pie slices, 210 , 2 1 4
points and markers, 161
rounded rectangles, 217,

2 1 9
text, 179

draw_ndc() , 157, 166
draw_rc(), 158
Drop-down menus, 14, 36,

94, 296, 346 , 3 9 2

ED_CHAR, 84
E D _ E N D , 84
E D J N I T , 83

Index 495

ED_START, 83
Enabled object state, 3 4 9
END_MCTRL, 6 5
E N D J J P D A T E , 6 5
Entry points, 248 , 3 9 2
Event handler, 2 4 9 - 2 5 1 , 2 8 8
Event-driven programming,

19, 3 0
Events, 6, 2 9 - 4 9 , 3 9 3

button, 44
keyboard, 40
mes sage , 4 0 - 4 4 , 46, 246,

249 , 290 , 2 9 6 - 3 0 6
mouse button, 290 ,

292 , 2 9 4
mouse movement, 36, 47,

2 9 0 - 2 9 1 , 293 , 2 9 5
multiple, 3 1 , 4 7 - 4 9
timer expiration, 44, 49 ,

2 9 3 - 2 9 4
see also evnt_multi()

evnt_button(), 3 7 - 3 8 , 44, 47
evnt_dclick(), 3 9 - 4 0 , 4 5 - 4 6 ,

3 5 4
evnt_keybd() , 40 , 4 6
evnt_mesag() , 4 3 - 4 4 , 46,

250
evnt__mouse{), 37 , 47
evnt_multi(), 4 7 - 4 9

and efficient use of CPU,
3 1 - 3 4

a s used in CTRLMETA.C,
373

a s used in DEMO,
2 8 8 - 2 9 0 , 292 , 2 9 5

how it affects design,
3 5 3 - 3 5 4 , 3 5 6 - 3 5 7

using with desk accesso
ries, 367

evnt_timer(), 36 , 44, 49 , 341
Exclusive OR, 155
Extended inquire VDI func

tion, 2 3 8

Faces , type, 180, 3 9 3
Far pointers, 2 5 1 , 363 , 3 9 3

FARDRAW, 3 2 9
File handles, 3 9 3
File selector, 339 , 3 4 8
Fi lenames

inputting, 120
temporary, 2 6 0

Fill attributes, 2 0 0 - 2 0 5
pie slice & circle, 2 1 2
v_rfbox(), 2 1 9

Fill colors, 2 0 4
Fill patterns, 3 9 3
Fill styles, 2 0 0
Filled rectangles, 200 , 2 0 5
Finding current mouse posi

tion, 116
Fonts, type, 1 3 - 1 4

Atari ST, 3 6 4
loading, 194
monospaced, 184, 194
setting, 180, 195

Foreground colors, 153
Form alerts, 14, 253 , 3 4 1 ,

377
Forms, 107, 340 , 3 5 8
form_alert() , 100, 103, 262 ,

357
form_center() , 1 0 2 - 1 0 5 , 3 2 0
form_dial() , 103, 105, 3 2 0
form_do() , 89 , 103, 105-106 ,

3 9 3
how DEMO uses, 3 2 1 ,

323 , 326 , 329 , 357
form_error(), 107
Frame buffers, 130
Free strings, 3 9 3
f seLinput() , 120-122 , 339 ,

349 , 3 6 5
Full box, 50, 3 9 3

GDOS, 8 - 9 , 13-14 , 364, 3 9 5
GDP, 139, 2 0 9 - 2 2 0 , 360 , 3 7 2

v_bar() , 2 0 5
VJustif ied(), 194

.GEM, 3 9 4
GEM conventions, 133

496 PROGRAMMER'S GUIDE TO GEM

GEM conventions (cont.)
changing mouse form,

319 , 3 5 2
keyboard shortcuts, 351
menu design, 348 , 3 5 0
mouse techniques, 353

GEM Desktop, 10, 39, 55 ,
340 , 342 , 3 6 1 , 3 9 1 , 4 2 4

GEM Developers Kit, 7,
19-20 , 40, 273 , 3 2 1 , 3 9 4

GEM Draw
aligning text, 188
and mouse techniques,

3 5 5
and selection techniques,

356
handling aspect ratio, 214
input metafiles to, 128,

3 7 1 , 373
menu usage , 93, 96, 102,

3 4 4
redrawing display, 3 5 9
undo feature, 2 8 3
use of metaphor, 340
using f seMnput() , 121

GEM Graph, 356
GEM Icon Editor, 3 1 6
GEM Paint, 3 4 4

undo feature, 283
GEM Programmer Support

(GPS), 20, 3 8 1 , 394
GEM version 2, 347
GEMAIN(), 160, 166, 273 ,

2 7 5
GEMDOS, 12
GEMFILE.GEM, 3 6 9
GEMSID, 20, 378 , 3 9 4
Generalized Drawing Primi

tives. See GDP
graf_dragbox() , 1 1 2 - 1 1 4
graf_growbox(), 112
graf_handle(), 113, 149,

159-160 , 2 6 1 , 2 7 9
graf_mbox() , 112, 115
graf_mkstate() , 40 , 113

graf__mouse(), 113, 117
and mouse conventions,

3 5 1 - 3 5 3
and mouse cursor form,

38, 2 9 6
using, 160, 262 , 267, 277,

294
graf__rubberbox(), 112,

1 1 7 - 1 1 8
graf_shrinkbox(), 112, 300
graf_slidebox(), 118
graf_watchbox(), 1 1 9 - 1 2 0
Graphics Device Operating

System. See G D O S
Graphics text, 1 7 9 - 1 9 9
GRECT, 38 , 6 1 , 267 , 280 ,

284, 3 9 5
G_BOX, 72, 3 1 4 - 3 1 5
G_BOXCHAR, 72, 316 , 323 ,

327
G__BOXTEXT, 75 , 83
G_BCJTTON, 74, 101, 316, 321
G_FBOTEXT, 75
G_FTEXT, 7 5
G J B O X , 72 , 3 1 4 - 3 1 5 , 3 2 3
G J M A G E , 316, 328 , 3 3 2
G_STRING, 74, 314
G_TEXT, 75 , 83
G_TITLE, 74, 3 1 4

.H, 427
Halftones, gray, 157
Hard-copy output, 128, 349 ,

3 6 8
Header files, 2 4 5
Horizontal text alignment, 186
Hot spot, 3 9 5

.ICN, 3 9 5
Icon display, 220
Icon Editor, 20, 316 , 3 9 5
ICONBLK, 75 , 90
Icons, 3 9 5

affects of screen resolution,
361

Index 497

Icons (cont.)
and object trees, 3 5 8
and resources, 86
copying, 2 3 2
MFDBs, 224
use in program design,

338 , 340 , 3 4 4
Image coordinates, 137, 3 9 5
Image manipulations, 220
Image rotations, 3 6 9 - 3 7 0
Image transformations, 226 ,

233
Imaginary box, 72
.IMG, 3 9 6
MF, 350
In-place transformations, 233
Input handling routines, 128
Intel 8088 , 3 1 , 68, 2 3 1 , 2 5 1 ,

330 . See also Portability
Interprocess communications,

260
intin[], 128, 160
intout[), 128, 160
Inverting objects, 396
Italicized text, 189

Justified text, 192, 3 9 6

Kanji, 88
Kernel, 10, 2 8 - 2 9 , 3 4 - 3 6
Keyboard input, 12
Keyboard shortcuts, 3 4 0 - 3 4 1 ,

351

Language conventions, 22
Library routines, 381
Lightened text, 189
Limited multitasking, 28, 3 5

and events, 6
and Screen Mgr, 10, 357
task initialization, 107
update regions, 56

Lines, 1 6 9 - 1 7 9
and arcs, 212 , 2 1 8
attributes, 1 6 9 - 1 7 5
colors, setting, 169

Lines (cont.)
end styles, 175
types, 172
widths, 170

Loading fonts, 194
LONG, 22 , 222 , 2 5 1 , 3 6 2
Long pointers, 396

MACHINE.H, 22 , 3 6 4
Macintosh, 5, 3 1 , 94, 180
main(), 160
.MAP, 397
Markers, 1 6 1 - 1 6 9

colors, 163
heights, 163, 167
sizes, 167
types, 162

MD_REPLACE, 267
Memory addressing, 2 2
Memory Form Definition

Block. See MFDB
Memory management , 15,

381
Memory map, 14
Memory models , 380 , 397
Menu bar, 3 6 6 - 3 6 7 , 373, 397

and Screen Manager, 3 6
appearance, 2 7 8
displaying, 96
erasing, 96
registering a desk acces

sory, 98
Menu items

and keyboard shortcuts,
341

brightness, 9 5
check mark state, 96
disabled state, 97, 343 ,

3 5 4
enabled state, 97
highlighting, 95 , 3 1 5
replacing text, 98
selected state, 95 , 315 ,

319 , 340 , 3 4 8
Menu sidebars, 344, 397

498 PROGRAMMER'S GUIDE TO GEM

Menu titles, displaying
reverse/normal, 99

Menu/alert buffer, 1 3 - 1 5 , 53,
63, 253

Menus, 9 3 - 9 6 , 328 , 397
conventions, 3 5 0 - 3 5 1
design, 339, 3 4 6 - 3 5 1
drop-down, 14, 36, 94,

296, 346, 3 9 2
graphical, 3 4 5
in resource files, 86, 89
pull-down, 94

menu_bar() , 89, 94, 96, 286
menu_icheck() , 95 , 97
menu__ienable(), 95 , 97, 343
menu_register() , 43, 98, 346,

3 6 6 - 3 6 7
menu__text(), 9 8 - 9 9
menu_tnormal() , 99
Message events. See Events,

m e s s a g e
Messages , 19, 397

format of predefined,
4 1 - 4 3

reading, 109
redrawing, 2 5 2
sending, 111
waiting for, 246, 251

Metafile device, 131
Metafiles, 128, 3 6 7 - 3 7 7 , 397

and portability, 3 6 2
and world coordinates, 360
for hard-copy output, 3 4 9
supported functions, 2 0 5
text output to, 192

MFDB, 2 2 1 - 2 2 5 , 230 , 352 ,
3 9 8

a s used in GEM DEMO,
280 , 3 2 3

M N _ S E L E C T E D , 4 1 , 317
Modal behavior, 357
Modes, 19, 3 4 3 - 3 4 4
Monochrome images , 131,

232
Monospaced fonts, 184, 194
Mouse buttons, 38 , 3 9 8

Mouse cursor form, 38, 262 ,
2 9 1 , 3 1 9

and GEM conventions,
3 4 1 , 3 5 1 - 3 5 3

changing, 117
making visible, 294, 296
to indicate select, 356

Mouse input, 12, 3 9 8
Mouse movement, missed, 31
Mouse rectangle events, 356
Mouse techniques, 3 5 3 - 3 5 5 ,

3 9 8
Mouse tracking, 119
Move bar, dragging, 50, 287
MOVER window control point,

254
MS Windows, 6
Multitasking, preparing for

future, 248, 260
Multiple events. See Events,

multiple

NDC, 135-138 , 3 9 8
Atari ST, 3 6 4
default in metafiles,

3 6 9 - 3 7 0
initializing workstation to,

143
program examples using,

157, 168
vs. using RC, 260

NDC space, 138, 3 9 8
Normalized Device Coordi

nates. See NDC
Not Ready List, 3 4 - 3 5
Null terminated strings, 74,

181, 3 1 6
NCJLLPTR, 3 6 2

OBDEFS.H, 72
ob jc_add() , 80
objc_change() , 81
objc_delete() , 8 1 - 8 2
objc_draw(), 67, 8 2 - 8 3

metafile incompatibility,
3 7 2

Index 499

objc_draw() (cont.)
to display resources, 89
turning off mouse cursor,

351
use of in DEMO, 320
using with RC, 137

objc_edit() , 8 3 - 8 4
objc_find(), 55 , 72 , 8 4 - 8 5 ,

3 5 8
objc_offset(), 8 5
objc_order() , 86
Object index, 68, 313 , 315 ,

319 , 321
returned from form__do(),

3 5 5
Object trees, 6 7 - 7 0 , 3 9 9

and bit images , 3 3 8
and resources, 8 7 - 8 8 , 2 7 8
as used by GEM Desktop,

5 5
a s used in DEMO,

3 0 9 - 3 1 7
building with RCS, 4 2 4
depth of, 321
displaying/redrawing, 82 ,

3 5 8
getting address of, 286
name of, 89

Objects, 6 6 - 6 7 , 3 9 8
adding a child, 80
a s used in DEMO,

3 0 7 - 3 3 2
border color, 72
calculating screen coordi

nates, 8 5
changing TEDINFO, 83
composition of, 70
coordinates, 103
deleting, 81
enabled, 3 4 9
flag field, 70, 314 , 323 , 427
getting address of, 91
head field, 67
header file, 307
indirect specification,

3 2 4 - 3 2 5

Objects (cont.)
locating, 84
naming, 89, 3 0 7 - 3 0 8
next field, 67, 313 , 327
NIL, 69
parent field, 67, 325 , 327
reordering children, 86
repositioning, 70
root, 69, 80, 103
rules of dealing with,

7 9 - 8 0
selecting, 3 2 1 , 3 5 4 - 3 5 6
specification field, 7 0 - 7 5 ,

3 9 9
specification field used in

DEMO, 316 , 323 , 327 ,
329 , 3 3 2

state field, 70, 8 1 , 314 ,
3 2 2 - 3 2 3 , 427

tail field, 67
type field, 7 2 - 7 5 ,

3 1 4 - 3 1 5 , 317
user-defined, 286, 314 ,

316 , 3 2 1 - 3 3 2 , 359 ,
4 0 5

user-defined selection, 3 2 5
Obspec, 3 9 9
Operating environments, 3
Operating systems, 3, 1 1 - 1 2 ,

3 7 9
Optimizations, 2 5 9

application, 140, 180
GEM system, 14
text display, 3 6 5 - 3 6 6

Outlined text, 189
OCJTPCJT.APP, 3 9 9

and vm_coords () , 3 7 0
and vm__pagesize(), 371
a s a spooler application,

132
bugs , 377
chaining to, 3 4 9
for metafile output, 128,

362 , 3 6 8

Page eject, 1 4 9 - 1 5 0

500 PROGRAMMER'S GUIDE TO GEM

Page size, 371
PARMBLK, 75, 78
PC-DOS, 12
Perimeter visibility, 204
Physical devices, 127, 222
Physical workstations, 132
Picture elements. See Pixels
Pipes, 4 0 - 4 1
Pixels, 131, 3 9 9

colors, 153, 2 3 2
values, 2 2 5
width and height, 138

Point mode, 3 9 9
Pointers, 22 , 2 5 1 , 3 6 2 - 3 6 3 ,

393 , 396
Pointing device, 353
Points mode, 182
Polling, 3 0 - 3 1 , 250, 3 9 9
Polygon fill, 207
Polygons, 176, 400
Polylines, 169, 175
Polymarkers, 164
PORTAB.H, 22 , 3 6 2
Portability, 13, 18, 22, 247

68K, 3 6 2 - 3 6 4 , 380
8088 , 2 5 1 , 3 6 2 - 3 6 4 , 366,

378, 381
and metafiles, 192, 3 6 8
Atari ST, 364, 366, 3 7 9
coding practices, 3 5 9
graphics device, 127, 200
international, 8 7 - 8 8

Power users, 3 5 5
Print spooler, 132
Procedure calling conventions,

380
Process, 30 , 3 4 - 3 6 , 44
Process descriptor, 107
Program design, 3 3 8
Program structure, 356
Programmer-defined object,

400
Proportionally-spaced fonts,

184
Prototyping applications, 17,

3 5 8

ptsin[], 128, 160
ptsout[] , 130, 160, 167
Pull-down menus, 400

Radio buttons, 316, 400
Raster areas, 2 2 1 , 400
Raster Coordinates. See RC
Raster copy, 296
Raster functions, 400
Raster graphics, 130
Raster operations, 220, 260,

3 6 1 , 372 , 400
RC, 135, 4 0 0

and world coordinates,
360 , 369 , 371

example of usage , 2 7 9
initializing workstation to,

143
preferred over NC, 260
program examples using,

158, 261
RC space, 138-139 , 401
RCS, 17, 20, 87, 401

and bit images, 316
and power users, 3 5 5
a s an application model,

3 4 5
building blocks, 3 4 5
building menus, 94
building object trees, 79,

3 5 8
display of Desk menu title,

346
how to use, 4 2 4
used in DEMO, 307
usefulness, 313

RCS2, 4 2 4
Ready List, 34
Rectangle list, 5 6 - 5 7 , 267 ,

3 0 1 , 401
Rectangles, 2 3 0 - 2 3 1 , 401

clipping, 2 9 2
intersection, 2 6 8
sizing on Atari, 3 6 5
specifications, 267

Redraw, 18, 2 5 2 - 2 5 3 , 267

Index

Replace mode, 153-154 , 233
Resolution, 223

of screen device, 15
Resource Construction Set .

See RCS
Resource files, 17, 401
Resource library, 87
Resource locking mechanism,

6 5
Resources, 16-18 , 401

and objects, 66
freeing memory, 90
getting address of, 90
loading and freeing, 9 1 ,

2 7 5
storing free strings in, 91

Reverse transparent mode,
1 5 4 - 1 5 5

Right-justified text, 192
Round-robin dispatching, 34
.RSC, 8 7 - 8 9 , 100, 278 , 4 0 1 ,

427
.RSH, 427
rsrc_free(), 88, 90
rsrc_gaddr() , 88, 9 0 - 9 1 , 286,

319 , 3 2 2
rsrc_Ioad(), 88, 9 1 - 9 2 , 96,

278 , 286, 381
rsrc_objfix(), 92
rsrc_saddr() , 9 2 - 9 3
Rubber box, 305 , 401
Run-time Library (RTL), 16,

2 4 7 - 2 4 8 , 379 , 4 0 2

Save buffer. See Menu/alert
buffer

Saving a picture, 2 9 5
Scrap, 4 0 2
Screen device, 131, 3 6 2

and menu/alert buffer, 15
and MFDBs, 2 3 0
fonts supplied with, 194

Screen driver, optimized for
text, 3 6 5

Screen Manager, 10, 13-14 ,
18-19 , 402

Screen Manager (cont.)
and deselecting, 3 1 5
handling window control,

246, 2 5 1 , 254, 2 9 1 - 2 9 2 ,
2 9 8

initializing window, 262
interactions with mouse ,

289 , 352 , 3 0 5
sharing the screen, 132,

140
Screen output, 12
Screen resolution, 361
Screen workstation handle,

getting, 112
Screen, updating, 53, 56, 290
Scroll bar, 4 0 2
Scrolling, 226
SELECTABLE, 3 1 4 - 3 1 5
Setting fonts, 180, 195
Shadowed text, 189
Shell, 4 0 2
shel_read() , 350
Shift click, 4 2 5
Shift key, 353 , 355 , 4 0 2
SID68K, 3 7 9
Single-click, 3 5 4
Size box, 402
Skewed text, 189, 192
Slider area, 306
Slider movement, 53, 284,

3 0 2 - 3 0 4
Slider position, 53
Sliders, 4 0 2

finding center of, 118
updating position of,

3 0 3 - 3 0 4
Software Performance Report

(SPR), 4 0 2
Solid lines, 172
Stack, 259, 330 , 332 , 403
Standard format, 2 2 1 - 2 2 3 ,

361
Start-up modules , 16, 2 5 9
String length, 184
Swiss font, 188, 194, 197
.SYM, 4 0 4

502 PROGRAMMER'S GUIDE TO GEM

Synchronization, 250
Sys tem font, 13-14 , 180,

2 6 1 , 266, 3 6 5

Task, 30, 34
Technical support, 2 0
TEDINFO, 75 , 78, 427

and objc_edit() , 83
getting pointer to, 91
template, 76
validation string, 77

Text, 1 7 9 - 1 9 9
alignment, 185
attributes, 180
colors, 181
displays, 3 6 5
extent, 184, 192
height, 182
justified, 192, 3 9 6
rotation, 185
special effects, 188, 190

Text Edit Records, 180
Timer, 4 0 3
Title bar, 403
TopView, 5 - 6
TOUCHEXIT, 326
Transform text, 189
Transformation mode, 403
Transformations, in-place, 2 3 3
Transforming a form, 233
Transparent mode , 154
Trash can, 403
Type faces, 180, 393
Type fonts, 13-14 , 180, 195,

364

UMUL_DIV(), 304
Unloading fonts, 195
Update regions, 2 5 0 - 2 5 1 , 4 0 5
User input, 2 8 8
User-defined command pro

cessing, 3 2 6
User-defined input, 3 2 5
User-defined objects. See

Objects, user-defined

VDI, 8, 10, 1 3 - 1 4

VDI handles, 134, 2 6 1 , 279 ,
4 0 5

and graf_handle(), 112
Vector graphics, 130
Vertical text alignment, 186
Virtual Device Interface. See

VDI
Virtual devices, 127, 131
Virtual graphics machine, 9
Virtual workstation

closing, 149, 2 6 4
examples , 1 5 7 - 1 6 1 ,

2 6 0 - 2 6 1
opening, 148, 2 7 9

Visual hierarchy, 67, 7 1 , 4 0 6
vm_coords () , 360 , 3 6 9 - 3 7 0 ,

3 7 2
vm_fi lename() , 3 6 9
vm_pages ize() , 3 7 0 - 3 7 2
VOID, 2 2
vqt_extent() , 1 8 4 - 1 8 5 , 196
vqt_fontinfo(), 1 9 0 - 1 9 2
vq_extend() , 228 , 2 3 8 - 2 4 0
vro__cpyfm(), 2 2 1 , 2 2 6 - 2 3 1 ,

280 , 285 , 355 , 3 5 8
Atari ST, 3 6 5

vrt_cpyfm(), 2 3 2 - 2 3 3 , 3 3 8
vr_recfl(), 205 , 3 7 2

clearing the screen, 150
vr_trnfm(), 2 3 2 - 2 3 3

and bit images , 221
and raster areas, 223 , 2 2 6

vsf_color(), 2 0 4
vsf_interior(), 2 0 0 - 2 0 4
vsf_perimeter(), 2 0 4 - 2 0 5
vsf_style(), 2 0 0 - 2 0 4
v sLco lor () , 1 6 9 - 1 7 0
vs l_ends() , 175
vsl_type() , 1 7 2 - 1 7 5
vsl_width(), 170-171
vsm__color(), 1 6 3 - 1 6 4
vsm_height() , 163, 167
vsm__type(), 1 6 2 - 1 6 3
vst_alignment() , 161 ,

185-188 , 196
vst_color() , 1 8 1 - 1 8 2

Index 503

vst___effects(), 188-190 , 199
vst_font(), 195, 197
vst_height() , 182-184 , 266,

3 7 2
vst_load_fonts() , 1 9 4 - 1 9 5 ,

197, 364 , 381
vst_point() , 182-184 , 3 7 2
vst_unload_fonts() , 1 9 5 - 1 9 6
vswr_mode() , 151-157 , 3 7 3
vs_clip() , 140, 1 5 0 - 1 5 1 , 373
v_arc() , 2 0 9 - 2 1 0
v_bar() , 2 0 5 - 2 0 7 , 209, 372

clearing the screen, 150
v_circle(), 2 1 1 , 361
v_clrwk(), 149-150 , 160
v__clsvwk(), 150, 161, 264
v_clswk(), 148
v_ellarc(), 2 1 4
v_ellipse(), 215 , 3 6 0
v_ellpie(), 214
v_fillarea(), 2 0 7 - 2 0 8
v_gtext() , 161, 181, 267
v jus t i f i ed () , 192-193 , 2 0 9
v_opnvwk(), 1 4 8 - 1 4 9

and coordinate systems,
135

and vq_extend() , 2 3 8
example of use, 113, 161,

2 6 0 - 2 6 1 , 2 7 9
information returned by,

138, 2 6 6
v_ppnwk(), 1 4 2 - 1 4 8

and coordinate systems,
135

and vq_extend() , 2 3 8
example of use, 159, 261
information returned by,

138, 3 7 2
v_pieslice() , 2 1 0 - 2 1 1
v_pline(), 175-176 , 2 9 4
v_pmarker() , 164
v_rbox() , 2 1 7 - 2 1 9
v_rfbox(), 2 1 9

WF_CXYWH, 6 1 , 2 5 5
WF_FIRSTXYWH, 62

WF_FXYWH, 62
WF_HSLIDE, 62
WF_HSLSIZE, 62 , 6 5
W F J N F O , 64
WF. JSAME, 64
WF__NEWDESK, 64
WF_NEXTXYWH, 62
WF_PXYWH, 62
WF_SCREEN, 63
WF_TOP, 62, 64
WF__VSLIDE, 62, 64
WF^VSLSIZE, 63, 6 5
WF_WXYWH, 6 1 , 255 , 286
Window borders, 36, 2 5 5
Window control points, 19,

254, 262 , 287, 298, 4 0 6
Window coordinates, 2 5 5
Window handles, 53, 286,

406
Window information line, 50
Window management , 5 4 - 5 5
Window title bar, 2 6 2
Windows

active, 55 , 3 8 8
as used in GEM HELLO,

2 4 5
calculation, 58, 3 0 6
closing, 59, 2 4 9
compared to workstations,

133
contents of, 253
creation of, 60
current, 53, 298 , 3 0 0
deleting, 60
Desktop, 2 6 2
dragging, 50
features, 2 5 1 , 266
finding previous coordi

nates, 53
finding previous size, 298 ,

300
full size of, 298, 3 0 0
how to draw to, 158
movement, 284, 287,

3 0 5 - 3 0 6
opening, 63, 248, 263

504 PROGRAMMER'S GUIDE TO GEM

overlapping, 18, 54, 267
positioning of, 263
recalculating the position

of, 2 5 5
redrawing, 5 6 - 5 8 ,

3 0 0 - 3 0 2 , 357
resizing, 284, 287, 292 ,

3 0 5 - 3 0 6
scrolling, 220
setting attributes, 64
sizing, 53, 233 , 2 6 6
supporting VDI functions,

150
updating, 54, 56, 6 5
work area, 28 , 50, 53

wind_calc() , 5 8 - 5 9 , 266, 297,
3 0 6

wind_close() , 59, 254
wind_create(), 5 1 - 5 3 , 60,

262 , 2 8 6
wind_delete(), 60, 264
wind_find(), 55 , 61
wind_get() , 5 3 - 5 4 , 57, 6 1 - 6 3

getting rectangle list, 267,
3 0 2

getting window area, 263 ,
286, 300 , 306

wind_open() , 52 , 6 3 - 6 4 , 253 ,
287

wind_set() , 54, 6 4 - 6 5 , 255 ,
263 , 297

wind_update() , 5 6 - 5 8 , 6 5
and update regions, 250 ,

290 , 292 , 3 5 7 - 3 5 8
WM_ARROWED, 42 , 3 0 2 - 3 0 3
WM_CLOSED, 2 5 4

WM_FCJLLED, 42 , 2 9 9
WM_HSLID, 42 , 302 , 304
WM_MOVED, 43, 254,

3 0 4 - 3 0 6
WM_REDRAW, 4 1 , 2 5 2 - 2 5 3 ,

287 , 3 0 0 - 3 0 1 , 306
WM_SIZED, 42 , 3 0 4 - 3 0 6
WMJTOPPED, 4 1 , 2 5 2
WM_VSL1D, 42 , 302 , 3 0 4
WORD, 22 , 3 6 2
Word aligned, 3 6 5
Word spacing, 193
Workstations, 128, 131-134 ,

368 , 406
clearing, 149
closing physical, 148
opening, 142
physical, 142, 149

work_in[], 142-143 , 149,
160, 181, 260 , 3 6 8

work_put[] , 143-149 , 170,
2 0 1 , 2 3 8 - 2 4 0 , 261

World coordinate systems,
3 6 0

World coordinates, 137,
3 6 9 - 3 7 1 , 4 0 6

Writing modes , 151, 230 ,
232 , 267 , 373

WYSIWIG, 341

X-axis units, 170, 210
x coordinates, 136
XOR mode, 155-156 ,

2 3 3 - 2 3 5

Y-axis units, 163
coordinates, 136

Selections from
The SYBEX Library

Computer Specific
IBM PC AND

COMPATIBLES

OPERATING THE IBM P C
NETWORKS
Token Ring and Broadband
by Paul Berry
363 pp., illustr, Ret. 307-4
This tells you how to plan, install, and use
either the Token Ring Network or the PC
Network. Focusing on the hardware-
independent PCN software, this book
gives readers who need to plan, set-up,
operate, and administrate such networks
the head start they need to see their way
clearly right from the beginning.

THE A B C ' S OF THE IBM P C
by Joan Lasselle and Carol Ramsay
143 pp., illustr., Ret. 102-0
This book will take you through the first
crucial steps in learning to use the
IBM PC.

THE IBM PC-DOS HANDBOOK
by Richard Allen King
296 pp., Ref. 103-9

Explains the PC disk operating system.
Get the most out of your PC by adapting
its capabilities to your specific needs.

B U S I N E S S GRAPHICS FOR THE
IBM P C
by Nelson Ford
259 pp., illustr. Ref. 124-1

Ready-to-run programs for creating line
graphs, multiple bar graphs, pie charts
and more. An ideal way to use your PC's
business capabilities!

THE IBM P C CONNECTION
by J a m e s Coffron
264 pp., illustr., Ref. 127-6
Teaches elementary interfacing and
BASIC programming of the IBM PC for
connection to external devices and
household appliances.

DATA FILE PROGRAMMING ON
YOUR IBM P C
by Alan Simpson
219 pp., illustr., Ref. 146-2
This book provides instructions and
examples for managing data files in
BASIC Programming. Design and devel
opment are extensively discussed.

THE MS-DOS HANDBOOK
by Richard Allen King (2nd Ed)
320 pp., illustr, Ref. 185-3
The differences between the various ver
sions and manufacturer's implementa
tions of MS-DOS are covered in a clear
straightforward manner. Tables, maps,
and numerous examples make this the
most complete book on MS-DOS
available.

E S S E N T I A L PC-DOS
by Myril and Susan Shaw
300 pp., illustr., Ref. 176-4
Whether you work with the IBM PC, XT,
PC jr. or the portable PC, this book will be
invaluable both for learning PC DOS and
for later reference.

Languages
PASCAL

INTRODUCTION TO TURBO
PASCAL
by Douglas S. Stivison
268 pp., illustr., Ret. 269-8
This bestseller introduces Pascal pro
gramming in the environment of Turbo
Pascal, giving realistic examples from the
author's programming experience. The
focus is on how to get all the benefits
offered by this Pascal implementation.

INTRODUCTION TO PASCAL,
INCLUDING TURBO PASCAL
by Rodnay Zaks
464 pp., illustr., Ref. 319-8
This new version of the Sybex classic
book describes Pascal clearly and
quickly. There is a complete set of exer
cises and answers in both Turbo Pascal
and ISO Standard Pascal.

TURBO PASCAL LIBRARY
by Douglas S. Stivison
221 pp., illustr., Ref. 330-9
This presents a collection of proven pro
grams and procedures that express Tur
bo's style and power. The library includes
general-purpose procedures applicable
to a wide range of programming projects
including games, system utilities, and cal
culating routines for business and engi
neering applications. Ideal for students,
new programmers, and experienced pro
grammers looking to increase their Turbo
resources.

INTRODUCTION TO PASCAL
(Including U C S D P a s c a l)
by Rodnay Zaks
420 pp., 130 illustr., Ref. 066-0
A step-by-step introduction for anyone
who wants to learn the Pascal language,
describing UCSD and Standard Pascals.
No technical background is assumed.

THE PASCAL HANDBOOK
by J a c q u e s Tiberghien
486 pp., 270 illustr., Ref. 053-9
A dictionary of the Pascal language,
defining every reserved word, operator,
procedure, and function found in all major
versions of Pascal.

PASCAL PROGRAMS FOR
S C I E N T I S T S AND ENGINEERS
by Alan R. Miller
374 pp., 120 illustr., Ref. 058-X
A comprehensive collection of frequently
used algorithms for scientific and techni
cal applications, programmed in Pascal.
Includes programs for curve-fitting, inte
grals, stastical techniques, and more.

FIFTY PASCAL PROGRAMS
by Bruce H. Hunter
338 pp., illustr., Ref. 110-1
More than just a collection of useful pro
grams! Structured programming tech
niques are emphasized and concepts
such as data type creation and array
manipulation are clearly illustrated.

THE C LANGUAGE

UNDERSTANDING C
by Bruce H. Hunter
320 pp., Ref. 123-3
Explains how to program in powerful C
language for a variety of applications.
Some programming experience
assumed.

DATA HANDLING UTILITIES IN C
by Robert Radcliffe
and Thomas Raab
500 pp., illustr., Ref. 304-X
This is a "Software Toolkit" of useful C
functions, techniques and usable code for
commercial application programmers
and software developers. Because com
mercial programs require high user-
interaction and permanent files, the book
concentrates on data entry, validation,
display, and efficient data storage. There

is a comprehensive section all about logi
cal data types and another giving sample
applications.

MASTERING C
by Craig Bolon
400 pp., illustr., Ref. 326-0
Designed for the programming profes
sional, this gives a complete description
of C language programming, focusing on
how to get the most power, efficiency, and
portability out of C.

Technical

ASSEMBLY LANGUAGE

A S S E M B L Y LANGUAGE
TECHNIQUES FOR THE IBM P C
by Alan Miller
350 pp., illustr., Ref. 309-0
Any IBM PC user and programmer that
wants to learn techniques to get more
power from the PC will find the tutorial
and program library elements in this title
extremely valuable. Programs included in
the book allow the reader to do such tasks
as transferring WordStar to ASCII and
back, switch from color screens to mono
chrome screens and back, set the printer
to any typeface, and more. Techniques
are given for the programmer to generate
more programs.

PROGRAMMING THE 6 5 8 1 6
by William Labiak
350 pp., illustr., Ref. 324-4
Giving the latest in this hot new area of
development, this book teaches assem
bly language programming for the 65816,
65C816, 65S816, and 65SC816 chips.
The 65802 is also presented. Step-by-
step exercises and tutorials enable the
reader to write complete applications
programs.

PROGRAMMING THE A P P L E II
IN A S S E M B L Y LANGUAGE
by Rodnay Zaks
519 pp., illustr., Ref. 290-6
All elements of the art of assembly lan
guage programming for the current
Apple He and Apple lie are covered in
Zaks' classic style.

PROGRAMMING THE
MACINTOSH IN A S S E M B L Y
LANGUAGE
by Steve Williams
400 pp., illustr., Ref. 263-9
This is an up-to-date tutorial and reference
guide to programming the 68000 in the
Macintosh environment. Covering archi
tecture, instruction set, Toolbox, and
advanced programming concepts, this is
ideal for intermediate to professional
applications programmers.

HARDWARE

M I C R O P R O C E S S O R
INTERFACING TECHNIQUES
by Rodnay Zaks and Austin Lesea
456 pp., 400 illustr., Ref. 029-6
Complete hardware and software inter
facing techniques, including D to A con
version, peripherals, bus standards and
troubleshooting.

THE RS-232 SOLUTION
by J o e Campbell
194 pp., illustr., Ref. 140-3
Finally, a book that will show you how to
correctly interface your computer to any
RS-232-C peripheral.

MASTERING SERIAL
COMMUNICATIONS
by J o e Campbell
250 pp., illustr., Ref. 180-2
This sequel to "The RS-232 Solut ion"
guides the reader to mastery of more
complex interfacing techniques.

OPERATING SYSTEMS

REAL WORLD UNIX
by John D. Halamka
209 pp., Ref. 093-8
This book is written for the beginning and
intermediate UNIX user in a practical,
straightforward manner, with specific
instructions given for many business
applications.

THE PROGRAMMER'S GUIDE
TO TOPVIEW
by David K. Simerly
313 pp., illustr, Ref. 273-6
This guides the programmer through all
the major features of TopView for the
entire IBM PC line. This includes
examples of programs on TopView,
descriptions of subroutine calls and
macros, and instructions for writing
including assembly language program
ming. Special emphasis is given to writing
programs that run both with or without
TopView.

DATABASE
MANAGEMENT
SYSTEMS

UNDERSTANDING d B A S E III
by Alan Simpson
250 pp., illustr., Ref. 267-1
The basics and more, for beginners and
intermediate users of dBASEIII. This
presents mailing label systems, book
keeping and data management at your
fingertips.

UNDERSTANDING d B A S E III
P L U S
by Alan Simpson
415 pp., illustr., Ref. 349-X
Emphasizing the new PLUS features, this
extensive volume gives the database ter
minology, program management, tech
niques, and applications. There are hints

on fi le-handling, debugging, avoiding
syntax errors.

ADVANCED TECHNIQUES IN
d B A S E III
by Alan Simpson
505 pp., illustr., Ref. 282-5
Intermediate to experienced users are
given the best database design tech
niques, the primary focus being the devel
opment of user-friendly, customized
programs.

MASTERING d B A S E III:
A S T R U C T U R E D APPROACH
by Carl Townsend
338 pp., illustr., Ref. 301-5
Emphasized throughout is the highly suc
cessful structured design technique for
constructing reliable and flexible applica
tions, from getting started to advanced
techniques. A general ledger program is
used as the primary illustration for the
examples.

UNDERSTANDING d B A S E II
by Alan Simpson
260 pp., illustr., Ref. 147-0
Learn programming techniques for mail
ing label systems, bookkeeping, and data
management, as well as ways to interface
dBASE II with other software systems.

ADVANCED TECHNIQUES IN
d B A S E II
by Alan Simpson
395 pp., illustr. Ref., 228-0
Learn to use dBASE II for accounts
receivable, recording business income
and expenses, keeping personal records
and mailing lists, and much more.

INTEGRATED
SOFTWARE

MASTERING 1-2-3
by Carolyn Jorgensen
420 pp., illustr., Ref. 337-6

This book goes way beyond using 1-2-3,

adding powerful business examples and
tutorials to thorough explanations of the
program's complex features. Detailing
multiple functions, powerful commands,
graphics and database capabilities,
macros, and add-on product support
from Report Writer, Spotlight, and The
Cambridge Spread-sheet Analyst.
Includes Release 2.

S I M P S O N ' S 1-2-3 MACRO
LIBRARY
by Alan Simpson
300 pp., illustr., Ref. 314-7
This book provides many programming
techniques, macro examples, and entire
menu-driven systems that demonstrate
the full potential of macros. The full power
of 1-2-3 version 2 is laid out in powerful,
time-saving business solutions developed
by bestselling author Alan Simpson.

ADVANCED B U S I N E S S MODELS
WITH 1-2-3
by Stanley R. Trost
250 pp., illustr., Ref. 159-4
If you are a business professional using
the 1 -2-3 software package, you will find
the spreadsheet and graphics models
provided in this book easy to use "as is"
in everyday business situations.

THE A B C ' S OF 1-2-3 (New Ed)
by Chris Gilbert and Laurie Williams
225 pp., illustr., Ref. 168-3
For those new to the LOTUS 1-2-3 pro
gram, this book offers step-by-step
instructions in mastering its spreadsheet,
data base, and graphing capabilities.
Features Version 2.

MASTERING SYMPHONY
by Douglas Cobb (2nd Ed)
763 pp., illustr., Ref. 224-8
This bestselling book has been heralded
as the Symphony bible, and provides all
the information you will need to put Sym
phony to work for you right away. Packed
with practical models for the business
user. Includes Version 1.1.

A N D E R S E N ' S SYMPHONY
TIPS & TRICKS
by Dick Andersen
and Janet McBeen
325 pp., illustr. Ref. 342-2
Organized as a reference tool, this book
gives shortcuts for using Symphony com
mands and functions, with troubleshoot
ing advice.

B E T T E R SYMPHONY
S P R E A D S H E E T S
by Carl Townsend
287 pp., illustr., Ref. 339-2
For Symphony users who want to gain
real expertise in the use of the spread
sheet features, this has hundreds of tips
and techniques. There are also instruc
tions on how to implement some of the
special features of Excel on Symphony.

MASTERING FRAMEWORK
by Doug Hergert
450 pp., illustr. Ref. 248-5
This tutorial guides the beginning user
through all the functions and features of
this integrated software package, geared
to the business environment.

ADVANCED TECHNIQUES IN
FRAMEWORK
by Alan Simpson
250 pp., illustr. Ref. 257-4
In order to begin customizing your own
models with Framework, you'll need a
thorough knowledge of Fred program
ming language, and this book provides
this information in a complete, well-
organized form.

MASTERING THE IBM
ASSISTANT S E R I E S
by Jeff Lea and Ted Leonsis
249 pp., illustr., Ref. 284-1
Each section of this book takes the reader
through the features, screens, and
capabilities of each module of the series.
Special emphasis is placed on how the
programs work together.

DATA SHARING WITH 1-2-3 AND
SYMPHONY: INCLUDING
MAINFRAME LINKS
by Dick Andersen
262 pp., illustr., Ref. 283-3
This book focuses on an area of increas
ing importance to business users:
exchanging data between Lotus software
and other micro and mainframe software.
Special emphasis is given to dBASE II
and III.

MASTERING PARADOX
by Alan Simpson
350 pp., illustr, Ref. 334-1
Everyone's introduction to this unique,
menu-driven dbms, from essential opera
tions to complex uses including PAL pro
gramming techniques. There are valuable
real-world illustrations including a com
plete mailing lists system, and an inven
tory, sales, and purchasing system with
automatic multiple-table updating.

J A Z Z ON THE MACINTOSH
by Joseph Caggiano
and Michael McCarthy
431 pp., illustr, Ref. 265-5
Each chapter features as an example a
business report which is built on
throughout the book in the first section of
each chapter. Chapters then go on to
detail each application and special effects
in depth.

MASTERING EXCEL
by Carl Townsend
454 pp., illustr., Ref. 306-6
This hands-on tutorial covers all basic
operations of Excel plus in-depth cover
age of special features, including exten
sive coverage of macros.

A P P L E W O R K S : TIPS &
TECHNIQUES
by Robert Ericson
373 pp., illustr., Ref. 303-1
Designed to improve AppleWorks skills,
this is a great book that gives utility infor
mation illustrated with every-day manage
ment examples.

MASTERING A P P L E W O R K S
by Elna Tymes
201 pp., illustr, Ref. 240-X
This bestseller presents business solu
tions which are used to introduce Apple
Works and then develop mastery of the
program. Includes examples of balance
sheet, income statement, inventory con
trol system, cash-flow projection, and
accounts receivable summary.

PRACTICAL A P P L E W O R K S
U S E S
by David K. Simerly
313 pp., illustr., Ref. 274-4
This book covers a breadth of home and
business uses, including combined-
function applications, complicated tasks,
and even a large section on interfacing
AppleWorks with the outside world.

Software Specific

SPREADSHEETS

DOING B U S I N E S S WITH
MULTIPLAN
by Richard Allen King
and Stanley R. Trost
250 pp., illustr, Ref. 148-9
This book will show you how using Multi-
plan can be nearly as easy as learning
to use a pocket calculator. It presents a
collection of templates for business
applications.

MULTIPLAN ON THE
COMMODORE 64
by Richard Allen King
250 pp., illustr. Ref. 231-0
This clear, straightforward guide will give
you a firm grasp on Multiplan's function,
as well as provide a collection of useful
template programs.

MASTERING S U P E R C A L C 3
by Greg Harvey
300 pp., illustr., Ref. 312-0

Featuring Version 2 .1 , this title offers full
coverage of all the sophisticated features
of this third generation spreadsheet,
including spreadsheet, graphics, data
base and advanced techniques.

WORD PROCESSING

PRACTICAL WORDSTAR U S E S
by Julie Anne Area
303 pp., illustr. Ref. 107-1
Pick your most t ime-consuming office
tasks and this book will show you how to
streamline them with WordStar.

THE COMPLETE GUIDE TO
MULTIMATE
by Carol Holcomb Dreger
250 pp., illustr. Ref. 229-9
A concise introduction to the many practi
cal applications of this powerful word pro
cessing program.

THE THINKTANK BOOK
by Jonathan Kamin
200 pp., illustr., Ref. 224-8
Learn how the ThinkTank program can
help you organize your thoughts, plans
and activities.

PRACTICAL MULTIMATE U S E S
by Chris Gilbert
275 pp., illustr, Ref. 276-0
Includes an overview followed by practi
cal business techniques, this covers doc
umentation, formatting, tables, and Key
Procedures.

MASTERING WORDSTAR ON
THE IBM P C
by Arthur Naiman
200 pp., illustr., Ref. 250-7
The classic Introduction to WordStar is
now specially presented for the IBM PC,
complete with margin-flagged keys and
other valuable quick-reference tools.

MASTERING MS WORD
by Mathew Holtz
365 pp., illustr., Ref. 285-X

This clearly-written guide to MS WORD
begins by teaching fundamentals quickly
and then putting them to use right away.
Covers material useful to new and experi
enced word processors.

PRACTICAL TECHNIQUES IN
MS WORD
by Alan R. Neibauer
300 pp., illustr., Ref. 316-3
This book expands into the full power of
MS WORD, stressing techniques and pro
cedures to streamline document prepara
tion, including specialized uses such as
financial documents and even graphics.

INTRODUCTION TO WORDSTAR
2 0 0 0
by David Kolodnay
and Thomas Blackadar
292 pp., illustr., Ref. 270-1
This book covers all the essential features
of WordStar 2000 for both beginners and
former WordStar users.

PRACTICAL TECHNIQUES IN
WORDSTAR 2 0 0 0
by John Donovan
250 pp., illustr., Ref. 272-8
Featuring WordStar 2000 Release 2, this
book presents task-oriented tutorials that
get to the heart of practical business
solutions.

MASTERING THINKTANK ON
THE 5 1 2 K MACINTOSH
by Jonathan Kamin
264 pp., illustr., Ref. 305-8
Idea-processing at your fingertips: from
basic to advanced applications, including
answers to the technical question most
frequently asked by users.

Introduction to
Computers

THE S Y B E X PERSONAL
COMPUTER DICTIONARY
120 pp. Ref. 199-3

All the definitions and acronyms of micro
computer jargon defined in a handy
pocket-sized edition. Includes translations
of the most popular terms into ten
languages.

FROM CHIPS TO S Y S T E M S : AN
INTRODUCTION TO
M I C R O P R O C E S S O R S
by Rodnay Zaks
552 pp., 400 illustr, Ref. 063-6
A simple and comprehensive introduction
to microprocessors from both a hardware
and software standpoint: what they are,
how they operate, how to assemble them
into a complete system.

Special Interest

CELESTIAL BASIC
by Eric Burgess
300 pp. 65 illustr. Ref. 087-3
A collection of BASIC programs that rap
idly complete the chores of typical astro
nomical computations. It's like having a
planetarium in your own home! Displays
apparent movement of stars, planets and
meteor showers.

P E R S O N A L C O M P U T E R S AND
SPECIAL N E E D S
by Frank G. Bowe
175 pp., illustr. Ref. 193-4
Learn how people are overcoming prob
lems with hearing, vision, mobility, and
learning, through the use of computer
technology.

Computer Specific

AMIGA

PROGRAMMER'S R E F E R E N C E
GUIDE TO THE AMIGA
by Eugene Mortimore
530 pp., illustr., Ref. 343-0
Here is the singlular reference that puts
the Amiga's power at a programmer's fin
gertips. The detailed compendium of
Amiga system facilities gives all the facts
needed by software developers, working
programmers, and in-depth Amiga users,
in A-Z order. There are sections on the
ROM-BIO exec calls, Graphics Library,
Animation Library, Layers Library, Intuition
calls, and the Workbench.

APPLE II - MACINTOSH

THE PRO-DOS HANDBOOK
by Timothy Rice and Karen Rice
225 pp., illustr. Ref. 230-2
All Pro-DOS users, from beginning to
advanced, will find this book packed with
vital information. The book covers the
basics, and then addresses itself to the
Apple II user who needs to interface with
Pro-DOS when programming in BASIC.
Learn how Pro-DOS uses memory and
how it handles text files, binary files,
graphics and sound. Includes a chapter
on machine language programming.

$ 4 9 . 9 5
Introducing SYBEX Elf • • . ibm&cp/m v e r s i o n s

. . . a neiv standard in communications software

"Elf 2.06 is a good general-
purpose communications
program with some great
features/'

Online Today

Friendly and sophisticated, Elf provides auto
mated access to virtually any computer,
unlimited-size file transfer, and compatibility
with every conceivable operating system.

• Menu driven

• Easily customized

• Crash-proof error handling

• Password-protected host mode

• Supports XMODEM protocol

• Superb SYBEX documentation

• Send me more details on state-of-the-art communications with SYBEX Elf.

• Send my copy of Elf today!

• IBM PC version—$49.95 DCP/M version—$49.95 • Name of computer

Name

Address

City, state, ZIP

• Check enclosed • Charge my: • Visa • MasterCard • American Express
Credit card # _ _ _ _ _ exp. date

Signature

SYBEX Computer Books, 2344 Sixth Street, Berkeley, CA 94710

800-227-2346 415-848-8233

\

SYBEX Computer Books

are different
H e r e i s w h y . . .
At SYBEX, each book is designed with you in mind. Every manuscript is
carefully selected and supervised by our editors, who are themselves
computer experts. We publish the best authors, whose technical expertise
is matched by an ability to write clearly and to communicate effectively.
Programs are thoroughly tested for accuracy by our technical staff. Our
computerized production department goes to great lengths to make
sure that each book is well-designed.

In the pursuit of timeliness, SYBEX has achieved many publishing firsts.
SYBEX was among the first to integrate personal computers used by
authors and staff into the publishing process. SYBEX was the first to
publish books on the CP/M operating system, microprocessor interfacing
techniques, word processing, and many more topics.

Expertise in computers and dedication to the highest quality product
have made SYBEX a world leader in computer book publishing. Trans
lated into fourteen languages, SYBEX books have helped millions of
people around the world to get the most from their computers. We hope
we have helped you, too.

For a complete catalog of our publications:

SYBEX, Inc. 2344 Sixth Street, Berkeley, California 94710
Tel: (415) 848-8233 Telex: 336311

PROGRAMMER'S
GUIDE TO GEM

The Programmers Guide to GEM is a detailed introduction and reference guide for anyone wishing to
develop applications for the GEM operating environment. If you own, use, or program any computer using
GEM—from the Atari ST series to the IBM PC—this is one text you shouldn't be without.

You'll gain a solid grasp of the tools and concepts of GEM programming through detailed, function-by-
function discussions and clear illustrations. Step-by-step programming examples will show you how to put
this knowledge to work. You will design and build a full-featured GEM application—a simple doodling
program— using objects, events, windows, menus, alert boxes, and more. Throughout the text, the authors
stress concepts and techniques for high-quality GEM programming that are of value to any applications
developer:

• human factors in designing the user interface

• programming for presentation-quality graphics

• programming the VDI for truly portable graphics software

• using the Resource Construction Set for prototyping and easy software modification

Detailed appendixes make this the most complete and easy-to-use GEM reference guide for programmers, with

• a detailed GEM glossary

• a complete guide to VDI and AES functions

• a tutorial on the Resource Construction Set

• complete code for the sample application

All programming examples are in C.

AbOUt the Authors Phillip Balma is a former project manager, writer, and technical consultant for
Digital Research, Inc., the creators of GEM. He is now director of new product development at Sony Cor
poration. William Fitler was also a project manager and senior software engineer at Digital Research, and
worked on the early design and prototyping of pre-GEM user interfaces. He is now manager of applications
product development at Sony.

SYBEX books bring you skills—not just information. As computer experts, educators, and publishing profes

sionals, we care—and it shows. You can trust the SYBEX label of excellence.

I S B N 0 - 0 1 5 6 0 - 2 1 7 - 3

