1 Applications

GUIDE

Simon Field,
Kathleen Mandis,
and Dave Myers

A clear and comprehensive
guide to writing Atari ST
applications in C.

)

COMPUTE!
LIBRARY

SELECTION |

COMPUTE"’s

ST Applications

PROGRAMMING IN C

Simon Field,
Kathleen Mandis,
and Dave Myers

COMPUTE! Publico’rions,lnc.@

Part of ABC Consumer Magazines, Inc.
One of the ABC Publishing Companies

Greensboro, North Carolina

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the
United States Copyright Act without the permission of the copyright owner is unlawful.

Printed in the United States of America
10987654321

ISBN 0-87455-078-5

The authors and publisher have made every effort in the preparation of this book to insure the accuracy of the programs and
information. However, the information and programs in this book are sold without warranty, either express or implied. Nei-

ther the authors nor COMPUTE! Publications, Inc. will be liable for any damages caused or alleged to be caused directly, in-
directly, incidentally, or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of COMPUTE! Publica-
tions, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-9809, is part of ABC
Consumer Magazines, Inc., one of the ABC Publishing Companies, and is not associated with any manufac-
turer of personal computers. Atari, Atari 520ST, Atari 1040ST, and TOS are trademarks or registered trade-
marks of Atari Corporation. GEM is a trademark of Digital Research, Inc.

Contents

FOIOWORE .5 oo ioh o h e sl n v dodas s s s ks ke 4 S v
e ns 1l n, | R A A s oo A S R S e M e S o vii
1. C Programming and the Atari ST 1
2. Creating the GEM Programming Envelope 9
3. Simple Line Graphicsooiiiiiiiiiiiieiiiiiinennn 47
4, Business Graphicscooviiiiiiiiriiiiiiiiiiiinn, 59
5. Creating Menus, Dialog Boxes, and Graphics 85
6. Building a Command Shell Desk Accessory 125
7. Changing a Desk Accessory to a Regular Program 165
8. Programming the Sound Chip, 173
9. ADebugging Aidc.coiiiiiiiiiiiiiiiiiiiiiiie e 221
10. A DISABONIMDISE < ., « i pninmsis g s Do gnny s an 3o os o s0008 50 261
Appendix: World Map Dataccoiiniiiiiiiiniiinnens 301
O SRR S S SR T s T S R e T s e 322

i kot m i L : =
Sl 1! SO Sgathe: o PRSI T

T

Foreword

s The Atari ST has a user interface called GEM. GEM’s features in-

clude pull-down menus, icons, sliders to scroll data, mouse-activated
BN s reen selection, the ability to move and rearrange windows, and so
on. In short, GEM is how users get the ST to work. But how do programmers
get GEM features to work in their application programs?

COMPUTE!"s ST Applications Guide: Programming in C is written for C
programmers. It does not teach C programming, but rather includes a library of
functions that makes using GEM routines easier to access from your own C
programs. Each function in the library is fully explained and easy to use.

The book begins by introducing the library of routines, called the enve-
lope library. You can write application programs within the envelope and then
use the envelope’s functions to access GEM and make its features part of your
program. The rest of the book gives you a series of example application pro-
grams that use the envelope library to interface with GEM.

Examples of the application programs included are a Mandelbrot set of
fractal graphics that takes only minutes, rather than hours, to draw completely;
a Command Shell which allows you to execute the commands copy, move, re-
move, print, list (print with filename), dir, and chdir from a desk accessory; a
debug program that will help you analyze the reason a program crashed; plus a
sound program and graphing applications.

COMPUTE!"s ST Applications Guide: Programming in C requires a working
knowledge of C programming and a C compiler for your Atari ST. All the pro-
grams are ready to type in and use. Also available, on a double-sided 3%2-inch
disk, are all the programs from the book. To order the disk, use the coupon in
the back of the book or call 1-800-346-6767 (in New York 212-887-8525).

Introduction

msmmsmmm Many programmers learn best by example. As with music, where no

amount of discussion is as good as hearing a performance, seeing ex-
BN mples of good programming is much more useful than reading dry
descriptions of functions and interfaces.

Starting with that premise, this book does not simply describe a function
and list its arguments, leaving you to puzzle over how it is meant to be used.
That'’s the realm of reference books and dictionaries. Instead, it discusses the
insides of programs, showing how functions fit together to create working
applications for business, art, graphics, and music.

To use this book you'll need an understanding of C programming. This
book is written for programmers who know the C programming language—it is not
intended for the beginning C programmer.

The programs in this book are about the programming interface—known
as GEM—on the Atari 520 and 1040ST. GEM is a rich environment, with hun-
dreds of routines enabling you to program sophisticated, powerful applications.
GEM’s features include pull-down menus, icons, sliders to scroll screen data,
mouse-activated screen selections, the ability to move and rearrange windows,
and so on. But that richness has a price. GEM can be complicated and intimi-
dating, hard for all but the most dedicated to program. How do you, the pro-
grammer, get GEM features to work in your applications programs? That’s
what this book is about.

Much of the information available about GEM comes from the Atari ST
Software Developer’s Kit, which consists of 400-plus pages of technical notes,
and which costs about $300. Although the Kit is designed for developers, as it
is now organized, vital information is dispersed in various nooks, crannies, and
dark corners of the notes. Even more serious is the lack of a clear “system” for
GEM programming in the sense that many procedures needed to program GEM
are either not readily identifiable or are described at a low level of program-
ming. Finally, those procedures and routines that are well documented may
contain errors or other quirks you should know about.

This book rectifies those problems. We build a set of high-level routines
that simplify working with GEM by avoiding the errors and automating much
of GEM’s complexity. The routines make the computer take care of the ordi-
nary trivia, and let you concentrate on your applications programming. Think
of the set of routines as an envelope around GEM. You can write applications
programs within the envelope and then use the envelope’s routines to access
GEM, coupling its features to your program.

vii

At its simplest level, the envelope provides so much of the user interface
that your application program may never need to interact directly with the user
at all. Whether responding to items selected from a menu, typed characters, or
mouse moves, the envelope calls the appropriate routines to handle the input.
Moreover, all procedures to manage windows or refresh the screen are done
automatically.

Each of the programs in this book uses the envelope routines. Rather
than just presenting the programs, however, we take them apart to show how
their envelope routines control GEM. Piece by piece, the programs unfold to
show how the routines interconnect to create a realistic, working application.

Use the routines, modified or not, in your own programs. They were
written with the idea that you'll want to lift sections of code directly and put
them into other routines or programs. You can also modify the routines to cre-
ate new ways of working with GEM, knowing beforehand what works.

The information in this book comes from many hours of testing and
evaluating the routines in the Atari ST Software Developer’s Kit. You do not need
the Kit for programming with GEM. All of the currently available C compilers
for the ST include the libraries and routines necessary for the envelope and for
writing ST applications programs. But, if you don’t have the Developer’s Kit,
you will need one of the other C compilers. Some of the routines’ names may dif-
fer with the various compilers, but the changes should be noted in the compilers’
documentation. If you use another compiler, especially one that cannot link pro-
grams with more than 32K of data, you'll need to make some additional
changes to the routines included in this book; please see the last section of
Chapter 1 for instructions.

By the way, for simplicity we use the term GEM to refer to all of the
software in the ST’s ROM and subroutine libraries. If a subroutine or macro is
part of the BIOS, the VDI, the AES, or GEMDOS, we lump it in the class GEM
because the differences are usually irrelevant for what we're doing in this book.
The important distinction is between the routines available to everyone from
Atari or the C compiler, and the routines available only in this book.

This book builds on itself after Chapter 1. That is, the procedures devel-
oped in Chapter 2 are essential for Chapter 3; those in Chapter 3 for Chapter 4,
and so on. The biggest, and most important, chapter is Chapter 2. It is there
that we describe the envelope that is used in every subsequent applications
program in the book. Therefore, once you get through with Chapter 2, you
might be tempted to write your own ST applications program right away. Re-
sist for a while anyway. Later chapters reveal many simplified programming
techniques and may solve some vexing problem you're facing. Then, by the
end of the book, you'll be able to write an ST applications program with a
minimum of fuss.

viii

=1

C Programming
and the Atari ST

1c Programming
and the Atari ST

mmmm—— How a programmer writes a program can often have quite an effect

on the success of the program. If a program is easy to read, unam-
SN Dbiguous, and modular, then it is easier to debug, easier to maintain,
easier to build and understand, and easier to share with other programmers.
While style is often a personal matter, and discussions of where to place C’s
curly braces often sound like religious arguments, in practice, if a programmer’s
style is consistent, then a reader can learn to read it with little trouble.

In this book, the programs were written in a style designed to make pro-
gramming errors less likely to occur, and to make the code as readable and un-
derstandable as possible. Some aspects of this style may be summarized as
follows.

1. Indentation is rigorously used to clearly mark which control statements gov-
ern each block of code. Control statements like if and while always control a
statement or group of statements that is indented on the following line, not
on the same line. Thus you can use

if(index > MAX_INDEX)
return;

instead of placing the return on the same line as the if. Doing otherwise can
lead the reader to think that the wrong statement is being controlled, as in

while(*p++ = *q++)
putc'har(' \n');

where, if the semicolon was not on a line by itself, the reader might think
the putchar was controlled by the while.

2. Modules are used to make code more understandable and to make the code
re-usable. Functions are, in general, kept short and given meaningful names,
so that the reader can think about them clearly in terms of their function, in-
stead of wrestling with routines that do several different jobs while wearing
one hat.

Some of the longer routines in this book are based on the C switch
statement. Each case in the switch acts like a named subroutine, in that the

8

s CHAPTER 1

code is broken down into manageable parts and named by the case it
handles.

Re-usability means that, once a function has been written, it can be
used for more than one purpose or used by more than one program. This
not only makes new programs quicker to write, but it makes them less error-
prone, and more understandable. If a function has been fully debugged in
one program, it’s less likely to introduce problems in another program than a
function which has been written from scratch. If the person reading the code
has seen a function before in another program, it’s easier for him to under-
stand the new program, since he is on familiar ground, with less new infor-
mation to learn.

3. Global variables are used sparingly. In this book, globals are used carefully,
and are hidden from functions that do not need to know about them. There
are no header files full of external statements, but instead each function de-
clares its own external variables to keep the information close by, where the
reader can refer to it easily, and to make it obvious which functions use a
particular global variable.

The concept of locality helps keep the reader’s mind on the task at
hand. If the interface between a subroutine and the outside world is clearly
defined, then the subroutine can be understood by itself. Global variables
muddle this interface, and the reader must know the current state of some
other part of the program in order to understand the subroutine at hand.

4. Braces are placed consistently throughout the book. Open curly braces are
placed at the end of the control statement that governs a block, and end
curly braces are on a line by themselves, indented with the block of state-
ments they terminate. Other styles that are popular have the open brace on a
line by itself, or have the end brace indented at the level of the control state-
ment. If the programmer is consistent, then any of these styles is readable.

5. The use of the goto statement is another “religious” issue. None are used in
this book, but only because none were needed. The use of a goto should be
a flag to the programmer that a function should be split into two functions to
make the code more readable. In cases where speed is of paramount impor-
tance (which is actually quite rare) a well-commented goto statement might
be the best choice.

The goto statement should not be used where structured statements
such as while or break could be used instead. However, since C cannot use
the break statement to get out of a nested loop, a goto is often used when
this needs to be done. When a few extra microseconds will not be missed,
however, it is usually better to put the inner loop in a separate subroutine,
and end the outer loop if the subroutine returns a FALSE when called.

EEsmm—
EEEETwE S
Compiling and Linking s

Using Libraries

Libraries of functions are a logical outgrowth of the need for modularity and re-
usability. Libraries allow the programmer to save useful functions in a place
where the linker can find them, and to include them in any program that needs
their functionality. If a program needs a slightly different version of a function
in the library, the programmer can merely include the altered function in the
list of files given to the linker, and the linker will use the new version, and not
get the old version from the library.

Such flexibility is used throughout this book to make programming the
ST remarkably easy. As you develop your own functions, you are encouraged
to make them generic and re-usable, and to put them in a library where they
will be easily accessible for future programs.

Programming on the ST

The programs in this book were written with Alcyon C, the C compiler included
in the Atari ST Software Developer’s Kit, although other compilers should
present no problem since the programs adhere strictly to the Kernighan and
Ritchie standard for C. In the two last chapters, a very small amount of ma-
chine language is used when the code gets very machine-specific in dealing
with issues of debugging, but converting to another assembler should be trivial.

The Atari ST Software Developer’s Kit compiler is somewhat cumbersome
to use, since there is no single command that will compile a C program. The
compiler comes in pieces, and the programmer must use a batch program to ex-
ecute the parts of the compiler in sequence from a script file. Atari supplies
such a batch file, called C.BAT, to be used to compile programs. The C.BAT file
produces object files, which are then linked by another batch file which calls
the linker and a post processor called relmod.prg.

Each program in this book will be presented with a batch file that shows
how to link the program, and which libraries are needed to link with the file.
The batch files are specific to the Atari ST Software Developer’s Kit, but can be
used as guidelines for other compilers and linkers, since library names are sur-
prisingly consistent among compilers. To make conversion easier, the library
names and a description of their contents are given here:

Name Contents

gemlib printf, open, sprintf, etc. (C library)
aesbind wind_get, evnt_multi, etc. (AES library)
vdibind v_pline, v_circle, etc. (VDI library)

libf fpadd, fpmul, etc. (floating-point library)
osbind.o gemdos(), bios(), and xbios() routines

meees CHAPTER 1

Modifications to Atari-Supplied Routines

If you are using the Atari ST Software Developer’s Kit to compile the programs in
this book, you will need to make some modifications to two of the routines
Atari supplies. These are startup routines that need to be linked as the first
thing in any program. The accstart.o routine is the one you choose for acces-
sories and the gemstart.o routine is for regular programs.

Our reason for recommending that you modify these routines is that
they define very small amounts of stack space (by normal C programming stan-
dards). Good C programs minimize the use of global variables, and instead
make use of local variables on the program’s stack. The two startup routines
can be modified so they define about 32K of stack, which is more than ade-
quate for most programs. If you write programs that need more space, you can
increase the size with the following procedure.

In the GEMSTART.S file on the Developer’s Kit disk is some code that
looks like this:

move.l a7,a5 * save a7 so we can get the basepage address

move.l 4(a5),a5 * a5=basepage address

move.l a5,_base * save for C startup

move.l $c(a5),d0

add.l $14(a5),d0

add.l $1c(a5),d0

add.l #8$500,d0 * d0O=Dbasepage-textlen+datalen+bsslen (plus 1K of user

stack)
move.l d0,d1
addl a5.d1 * compute stack top
andl #-2,d1 * insure even byte boundary
move.l dl1,a7 * set up user stack, 1K above end of BSS

You need to change the #$500 to #$8100 as is done in the following
code. The comments have also been changed to reflect the code change.

move.l a7a5 * save a7 so we can get the basepage address

move.l 4(a5),a5 * a5=basepage address

move.l a5,_base * save for C startup

move.l $c(a5),d0

add1l $14(a5),d0

add.l $1c(a5),d0

add.l #$8100,d0 * d0=basepage+textlen+datalen+bsslen (plus 32K of user

stack)
move.l do0,d1
addl a5,d1 * compute stack top
and.l #-2,d1 * insure even byte boundary
move.l d1,a7 * set up user stack, 1K above end of BSS

Compilihg and Linking e

The Atari version of ACCSTART.S defines only 256 bytes of stack. You
can redefine the stack space to 32K bytes with the following changes. First, find
the lines in the ACCSTART.S file that look like this:

.bss

.even
retsav: .ds.l 1

.dsl 256

ustk: .dsl 1
and change the 256 to 32768 like this:

.bss

.even
retsav: .ds.l 1

.dsl 32768

ustk: el a1

Last, you need to assemble the files ACCSTART.S and GEMSTART.S
using the as68.prg program supplied with the Developer’s Kit. From
command.tos, give the following commands:

as68 -1 -u accstart.s
as68 -1 -u gemstart.s

The option —1 tells the assembler to make all address constants 32 bits
instead of 16 bits, and the —u option causes any undefined variables to be de-
clared as global variables. The files ACCSTART.O and GEMSTART.O are
produced.

Other Compilers

If your compiler cannot link programs with more than 32K of data, then some
of the large arrays used in the programs in this book will have to be changed
to use the malloc () subroutine to allocate the memory at runtime. Some of the
programs declare arrays to hold copies of the ST’s screen (which is 32,000
bytes long), and some others declare arrays that hold text to be printed (200
lines of 80 characters each). Using malloc () is slightly less efficient, and more
cumbersome, but necessary for some compilers not designed to take advantage
of the ST’s 512K (or more) of memory.

The procedure for using the malloc () subroutine to allocate memory for
an array in excess of 32,000 bytes at runtime is to change the array into a
pointer to an array. For example, the line

long int screen[200][40];
will become

long int *screen = 0;

= CHAPTER 1

Then, before the array (now a pointer) is first referenced, some code like

if (screen == 0)
screen = (long int *) malloc (200 * 40 * 4);

must be added to initialize the pointer to point to 32,000 bytes of memory
freshly allocated by the malloc routine.

2 Creating the
GEM Programming
Envelope

2 Creating the GEM
Programming
Envelope

mmmmmmm GEM provides a large number of basic operations for controlling the

computer and creating simple-to-use, graphic user interfaces. Al-
E—— though GEM is somewhat complicated to use, the sophisticated re-
sults you can achieve with it are evidence of its quality as a programming tool.
To make programming easier, you can construct higher-level routines that deal
with GEM.

This chapter simplifies the task of creating new programs with GEM by
creating a set of routines for dealing with GEM on a higher level. You'll be able
to use these routines with any C program; the chapter will explain how to set
the appropriate variables in the routines to change certain GEM interface fea-
tures to suit your particular application program. In effect, your C program
code will be surrounded by these routines, which take care of windows, mice,
keyboard input, and messages from GEM.

This set of routines which surrounds your program is referred to as the
envelope library, or just envelope.

Since the envelope library is general-purpose and knows little about the
program it surrounds, you must provide some routines that connect your pro-
gram with the higher-level envelope routines. These connecting routines are:

got_key Called when a key is pressed

mouse_hit Called when a mouse button is pressed

doit Called when the screen needs refreshing
open_data Deals with input files

build_tree An alternative to RCS for menus

do_menu Called when a menu item has been selected

You can change the default versions provided for these routines accord-
ing to the functions your program needs, such as menus, or mouse and key-
board input.

One more file is necessary for the envelope. That file—config.c—tailors,

11

meeem CHAPTER 2

or configures, the envelope’s behavior and appearance to a particular applica-
tion. The config.c file is explained below.

Conceptually, when you execute your application program in the GEM
environment, the various routine sets will look like Figure 2-1.

Figure 2-1. Your C Program and the Envelope Library

Application Program

Connecting Routines, config. C

Envelope Library

GEM

TOS

The config.c File

The config.c file contains the settings for interface variables such as the window
name and size and how the program should react to keyboard and mouse in-
put. Not all the variables in Program 2-1 are used by every program; for ex-
ample, some only apply to a desk accessory and are ignored. However, the
config.c file is designed to contain all the variables that need to be individually
set for each application program.

The first line in config.c specifies the name that is to appear in the top of
a program window. The variable is called wind_name and in the example file
the name of the window is Command Shell.

Next, to make it convenient to choose between building menus with the
GEM Resource Construction Set or to build menus dynamically using our own
functions, the constant USE_RCS is used to initialize the variable named re-
source. If resource is 0, we’ll build our own menus; if it is set to a filename,
we'll read menus from a file. In our example, if you type

#define USE_RCS =1

as the first line in the config.c file, the menus will be read from a file named
SHELL.RSC.

Next, we'll define variables used to define a particular program as a desk
accessory application. Setting up the envelope library in this fashion means it
will work for either type of program—a desk accessory or a regular program—
without modification. The config.c file is the only part that changes. The vari-
able access_name is set to Command Shell, the name which will appear in the
Desk menu on the desktop if this program is a desk accessory. To define this
program as a desk accessory, the i_am_accessory is defined as 1; otherwise it
is 0 for a program.

12

The GEM Programming Envelope

Since desk accessories usually appear in windows that are smaller than
full-screen, window size and placement need to be defined. These small win-
dow variables are only used if i_am_accessory is set to 1. If i_am_accessory is
set to something other than 1, the variables that set the window to a smaller
size are ignored. The variables used are sx, sy—for the x and y coordinates—
and sh, sw—for the height and width. The initial positions of the slider boxes
within the window slider areas are controlled by slv, slh, svs, and shs.

Usually, there is a minimum useful size for an application window. The
min_high and min_wide variables control how small a user can size the pro-
gram window.

For programs that use time intervals, such as some games or a clock, the
interval variable defines the milliseconds between messages from GEM that a
Timer Event has occurred. If interval is set to 0, no timing occurs.

GEM manages the screen windows and input devices such as the mouse
and keyboard. When GEM detects an event, such as a mouse click or a window
being closed or resized on the screen, it will send a message about the event.
The event variable is set to the constants as defined in the GEM Software Devel-
oper’s Kit, produced by Digital Research Incorporated, that represent the events
you want for your program. MU_MESAG lets the envelope receive GEM mes-
sages—for example, a message that it's time to repaint the screen.
MU_BUTTON and MU_KEYBD let the envelope receive mouse clicks and
keypresses, respectively. MU_M1 and MU_M2 allow the envelope to receive a
message if the mouse enters a rectangular area you've defined.

This configuration file serves all of our purposes for the library of enve-
lope routines in this book. Since the envelope produces a fairly robust use of
the GEM interface capabilities, and you can replace our C programs with those
of your own, our config.c example file may be adequate for your needs. How-
ever, our example should give you the idea of how to create your own configu-
ration file if you should add new variables or modify the envelope routines.

Program 2-1. config.c

i1include <{gemdefs.h>

char Xwind_name = " Command Shell ";
ifdef USE_RCS
char kresource
else

char f¥resource maly
endif USE_RCS

“"SHELL.RSC";

char Xaccess_name
int i_am_accessory

Command Shell ";
13

int sx = 2@; /% small window size %/

int sy = 50;

int sw = 250;

int sh = 125;

int slv = @3 /% small window vertical slider pos %/
int slh = @3 /% small window horizontal slider pos %/
int svs = 1000; /% small window vertical slider size ¥/

13

memmm CHAPTER 2

int shs

int min_wide
int min_high =1 H

int interval I0000;

int events = MU_MESAG | MU_BUTTON | MU_KEYBD | MU_M1 | MU_M2;

100@; /% small window horizontal slider size ¥/
109;

The main.c Routine

The first routine in the library is main, Program 2-2. main will set up the
screen so that what is written appears in the GEM desktop interface. The func-
tion calls in main will set up a window with sliders, a title, and so on; handle
all the keyboard and mouse input; change the mouse cursor to a pointing fin-
ger; hide the TOS cursor; and then exit.

The main routine sets up the screen by calling the setup_screen function
(described in detail later), which returns an integer used by GEM to identify the
virtual workstation. There can be several virtual workstations, and each time
setup_screen is called it returns a different one, but we’ll use only one virtual
workstation in our program.

The virtual workstation is a concept that allows both you and GEM to
perform graphics operations without knowing what the display device is. By
using a virtual workstation, you can use the same commands to draw on a
plotter as for the screen, even though the pixel resolution, color capabilities,
and drawing methods may be totally different. At display time, GEM does the
appropriate display technique for the device. For example, for printers or plot-
ters, GEM may buffer commands so plotting can be done without having to
reverse the paper. On the screen, the commands are executed immediately and
quickly. When the program says to clear the virtual workstation, GEM issues a
command to the actual device, to either clear the screen or eject a page.

The integer that is returned by the setup_screen call is stored as the vir-
tual workstation handle in the variable vw_hand. This handle is passed to sub-
sequent functions so they can put their windows and graphics on the virtual
workstation screen.

Since these envelope routines work with either desk accessory programs
or regular programs, the type of program must be distinguished in order to
properly set up the desktop. Recall in the config.c file that i_am_accessory is
set to 1 for a desk accessory and 0 for a regular program. If the program is a
desk accessory, the window will be opened only if the user selects the name
from the Desk menu; otherwise, the window should be opened immediately on
running the program.

If this is a regular program, the GEM wind_get function is called to get
the size of the desktop’s work area. Normally wind_get is called with a win-
dow handle as its first argument. Here, however, the desktop is always window
number 0.

The setup_window function is called to create a window that contains
our work area. The setup_window function always creates a window that’s ca-

14

The GEM Programming Envelope s

pable of being full-size, but the window that appears first is the size dictated in
the variables fx, fy, fw, and fh.

Next, the GEM functions graf_mouse and Cursconf are used to change
the mouse to a pointing finger and to hide the TOS text cursor, which doesn’t
have any meaning in the GEM desktop environment.

Desk accessory programs need to behave differently: They must continu-
ously run in the background, only appearing in a window when selected from
the Desk menu. To make certain an accessory program never exits, these lines
are added to stay in a loop:

do {
if(open_data(wh,vw_hand,file))
multi (events,&wh,interval, wind_name,&vw_hand);
} while (i_am_accessory);

In the loop are calls to the function open_data, which handles any data files
for this program, and multi, which handles all input from the mouse or the
keyboard, or messages from GEM that an environment event has occurred
(such as a window being resized). If the multi subroutine returns, and
i_am_accessory is true (1), multi will be called again.

The do_cleanup routine is called whenever there are some application-
specific tasks that must be performed before the program can exit, such as sav-
ing a game score, closing files, and updating records.

do_cleanup(whand,vw)
int whand, vw;{

The code for do_cleanup supplied here doesn’t do anything, since it's
only useful for an individual program’s cleanup requirements and must be tai-
lored to that program. It’s only included here as a dummy routine to give our
library a complete set of routines.

For a regular program, don't loop, but rather call the close_all function
to close the window, and the GEM v_clsvwk function to close the virtual
workstation. Last, call GEM's appl_exit to exit our application program.

Program 2-2. main.c

/%

k% This is where we begin.

k% We set up the screen so we can write things on it.

k% We save the old color map so we can reset it before we exit.

£% We set up windows with sliders, a title, etc.

%% We change the mouse from an arrow to a pointing finger (for fun).
k% We call multi() to handle all of the mouse and keyboard input.

£: Then we restore the color map and exit.

%/

include <osbind.h>
include <gemdefs.h>

define HIDE_CURSOR]

15

e CHAPTER 2

define SHOW_CURSOR 1

main(ac,av)
int acj;
char X%av;{

extern struct object ¥main_addr;

extern int i_am_accessory, interval, events;
extern char fwind_name;

char *filej;

int wh, vw_hand, fx, fy, fw, fhj;

vw_hand = setup_screen();
wh = -1;
if(i_am_accessory == @){
wind_get (@, WF_WORKXYWH, &fx, &fy, &fw, &fh);
wh = setup_window(wind_name,®,0, 1000, 1000, fx, fy, fw,fh);
graf_mouse(POINT_HAND, oL);
Cursconf (HIDE_CURSOR, @) 3
3

if(ac > 1)
file = aviil;
else
file = "";
do {
if(open_data(wh,vw_hand,file))
multi (events, &wh, interval ,wind_name, &vw_hand) ;
} while(i_am_accessory)j
do_cleanup (wh, vw_hand) ;
close_all (main_addr,wh)j
v_clsvwk {vw_hand) ;
appl_exit();
3

The setup_screen Function

To set up the screen, GEM must be informed that libraries are being used. Next
the virtual workstation must be opened, which tells GEM the screen is being
used, and the types of lines and colors to use. Program 2-3 is the program
which does this.

The main routine calls the setup_screen function in order to open a win-
dow on the screen in which our C program can display its screen output.

The setup_screen function uses several GEM-supplied functions to ob-
tain certain information about the screen. First, it calls appl_init to initialize
GEM’s internal state so that it’s possible to call other GEM functions. Next,
setup_screen calls graf_handle, which returns the width and height of a char-
acter in the font used in menus and dialog boxes, the width and height of a
box large enough to hold a few characters in one of the screen “buttons,” and
an integer that represents a GEM Virtual Device Interface workstation handle.
This integer is passed to our open_vwork function, which converts it into a vir-
tual workstation handle the C program will use, such as for screen drawing and
clearing operations. Then, setup_screen returns all this information to the main
routine.

For a desk accessory program, setup_screen calls the GEM menu_register
function, which enters the accessory’s name (specified in the config.c file) into
the Desk menu on the desktop.

16

The GEM Programming Envelope

A virtual workstation for an accessory program is opened only after the
user has clicked on the accessory name in the Desk menu. (Regular applications
open the virtual workstation immediately.) Because some routines need to
know when the virtual workstation is open, setup_screen returns —1 to main,
where main puts it into the vw_hand variable to let other routines know that
it's closed.

Program 2-3. setscrn.c

s

k% To set up the screen, we must inform GEM that we are using its
%% libraries. Then we must open the "virtual workstation", which
£t tells GEM that we are using the screen, and what types of lines
#% and colors we want. To open the virtual workstation, we need to
£%x get a "handle" from graf_handle() which points to the screen.
5/

include <gemdefs.h>

define NO_VWS -y
int gl_hchar, gl_wchar, gl_wbox, gl_hbox; /% size of characters %/
int menu_id; /% accessory handle &/

setup_screen() {

extern int i_am_accessory, gl_apid;
extern char faccess_name;
int gr_handlej;

appl_init();
gr_handle = graf_handle{&gl_wchar,%gl_hchar,&gl_wbox, &gl _hbox)j
if(i_am_accessory){
menu_id = menu_register (gl_apid,access_name);
return (NO_VWS) ;
3
return(open_vwork (gr_handle));
}

The open_vwork Function

The open_vwork function, Program 2-4, tells GEM how to set up the virtual
workstation: which colors to use, graphics characteristics, and device type.

Eleven input parameters are defined and stored in an array whose ad-
dress is passed to open_vwork. A loop is used to set all the values to one, and
then the first and last items are set to different values. The 11 parameters in the
array are:

0 The device ID number. Use V_SCREEN for the screen. Printers, plotters, cameras,
files, and other devices can be specified if they are supported. The constants de-
fined at the beginning of the routine listing use the device ID numbers that are
listed in the Atari ST Software Developer’s Kit documentation.

Linetype 1 is a solid line
Poly Line color 1 is black
Poly Marker type 1 is a dot

QN =

17

e CHAPTER 2

The open_vwork function calls the GEM function v_opnvwk, which, be-
sides putting the 11 parameter values into an array, converts the Virtual Device
Interface handle returned by graf_handle in setup_screen to a GEM virtual
workstation handle. This handle value is returned to main for use with subse-
quent subroutines. This GEM function also returns 58 values—in an array—
that tell the height and width of the screen in pixels, the total number of line

4

5 Typeface

6 Text color

7 Fill interior style
8 Fill style

9 Fill color

Poly Marker color 1 is black

1 is the system type, as in menus

1 is black

1 is hollow

1 is an empty pattern (no pixels on)
1 is black

10 This is the flag for Normalized Device Coordinates (NDC) or Raster Coordinates
(RC). A value of 2 selects RC and a value of 1 selects NDC. We'll use RC, even
though it requires that we know the exact screen size since the raster coordinates
correspond to physical positions. Graphics operations are faster with RC because
coordinates don’t need converting for the output device. With NDC, coordinates are
given in numbers between 0 and 32767 and produce a graphically correct image on
any peripheral device. However, NDC takes longer because the coordinates must
be converted to the appropriate raster coordinates.

type choices, fill patterns, and so forth.

Program 2-4. openvwrk.c

define
define
define
define

v

V_METAFILE

define V_SCREEN
define V_PLOTTER

PRINTER

open_vwork (handle)
int handlej ¢

register int ij;

1

11
21
31
41
51

static int inC111],

for{ i = @3 i < 105 i++)

infil = 13
inl@] = V_SCREEN;
inf1@]1 = 2;

/%
¥4

¥% handle comes in a graf_handle, and goes out a vw_handle

v_opnvwk {in, &handle,out);

return{ handle)j;

>

18

===~ ==
([T
The GEM Programming Envelope s

The setup_window Function

Whenever a routine wants to open a window, complete with sliders and menus,
it can call the setup_window function, Program 2-5. In the envelope library,
main calls this function for regular programs and the was_msg function (dis-
cussed below) calls it for desk accessory programs.

The setup_window parameters are the window name and the size of the
desktop work area and of the window slider boxes. For a desk accessory pro-
gram, which doesn’t use menus, these arguments are simply passed to
open_window, which then opens the accessory window.

For regular programs, usually you'll want to add menus, messages, and
dialog boxes to the program window. GEM needs to know the address of the
text and graphic items. For menu structures and other items constructed with
the Resource Construction Set from the Atari ST Software Developer’s Kit, load
the resource file for the menu tree structure and get the address of the root of
the menu tree using the GEM functions rsrc_load and rsrc_gaddr. If the menus
were constructed using the build_tree function (discussed below), then call
build_tree, which returns the starting address of the tree.

The data file is read into an area of RAM allocated by GEM in the free
memory left over beyond your program, and then the file is closed.

The address of the menu tree root is placed in the variable main_addr
by rsrc_gaddr.

Note that you have the option of making build_tree return 0, in which
case the program has no menus. This might be useful for very simple pro-
grams; however, the user probably should be given access to the Desk and File
menus to start desk accessories and quit the program.

Program 2-5. setwind.c

/%

%% There are two ways to handle menus.

%% One way is to define the menu structure

&% yourself in an array of object structures.

t% The other way is to construct a resource file

%% with the Resource Construction Set.

%% Using RCS is easy, defining your own structures
£ can be tedious. However, defining the structures
%% in your own program means that you only need one file
£t instead of two, and it has the advantage of being
%% printable.

x/

include <{gemdefs.h>
include <obdefs.h>

struct object ¥main_addr = @;

include <window.h>
setup_window(name,vp,hp,vs,hs,dx,dy,dw,dh)
char Xname;

int vp, hp, vs, hs, dx, dy, dw, dh;{

extern char fresource;

19

ssees CHAPTER 2

extern int i_am_accessoryj
struct object fbuild_tree();

if(i_am_accessory == 0)(

if(resource){
rsrc_load{(resource)j;
rsrc_gaddr(R_TREE, MAINMENU, &main_addr)j
3}

else {
main_addr = build_tree()j
3}

if(main_addr){
menu_bar (main_addr, 1);
3
3
return(open_window(name, vp, hp, vs, hs, dx, dy, dw, dh));
3}

The open_window Function

The open_window function, Program 2-6, is called by setup_window to create
an open window on the screen by expanding a box outline to the correct win-
dow size, placing horizontal and vertical slider boxes in position, and returning
the initial values.

Program 2-6. openwind.c

Ia

*x Create the window, grow a box for effect,and open the window.
XX Arrange for horizontal and vertical sliders

%X to exist, and set them to initial values passed to us.

x/

include <gemdefs.h>
include <osbind.h>
include <{wfparts.h>

open_window(name, vertical ,horizontal,vsize,hsize,dx,dy,dw,dh)
char Xnamej;
int vertical, horizontal, vsize, hsize, dx, dy, dw, dh;{

int wi_handle, fx, fy, fw, fhj

wind_get (@, WF_WORKXYWH, &fx, &fy, &fw, &Ffh);
wi_handle = wind_create(WF_PARTS, fx,fy,fw,fh);
wind_set (wi_handle, WF_NAME,name,d,9);

wind_set (wi_handle, WF_VSLSIZE,vsize,?,9);

wind_set (wi_handle, WF_HSLSIZE,hsize,?,d);

wind_set (wi_handle, WF_VSLIDE, 100@-vertical ,9,9,0,9);
wind_set (wi_handle, WF_HSLIDE,horizontal ,d,d);
graf_growbox(dx + dw/2, dy + dh/2, 2, 2, dx, dy, dw, dh);
wind_open (wi_handle,dx,dy,dw,dh);

return(wi_handle);

2

The arguments used by open_window are the window name, window
size, and the size of the slider boxes.

First, open_window calls GEM’s wind_get function to get the size of the
desktop’s work area. This will be the maximum size of the window that is cre-
ated. Note that a window is created with the potential to be full-size, even for a

20

The GEM Programming Envelope s

desk-accessory type of program which usually opens in a small window. This is
done so a user can resize a small window to the full desktop size.

wind_create is called to set up the data structure for the window and
store the window handle returned by this function so this window can be re-
ferred to later. This window handle is distinct from the virtual workstation han-
dle, which is used for graphics operations. The handle created by wind_create
is used by the GEM wind_get and wind_set functions to control the window.

The wind_set routine tells GEM how long to make the slider boxes and
where to place them in the window that’s been created.

To display an expanding box that simulates an enlarging window when
the window is opened, we call the graf_growbox function.

Finally, GEM opens a window on the screen with the wind_open func-
tion that corresponds to the size passed to it by open_window, which has had
its arguments passed from the setup_window subroutine.

The window size information used by wind_open and graf_growbox
may be different depending on whether this is a regular program or an acces-
sory. For a regular program, the window opens to the full desktop area. For a
desk accessory, which usually appears in a smaller window, the window size
specified in the config.c file is used. Although a desk-accessory window usually
is small when it opens, the user can still expand it to fill the desktop because
the window was created full size earlier in this subroutine.

The window handle created by wind_create is returned to
setup_window, which returns it to main.

The open_data Function

Programs frequently need to open data files, initialize data, ask for input, and
perform other similar operations while they are executing. With the open_data
function, Program 2-7, a C program using the GEM interface can communicate
with TOS or call other GEM routines.

If your C program requires a data file, you can enter the argument for
the data file in the program’s open_data subroutine. An example of this can be
found in the PLOT program which appears later in this book. This routine
serves to “connect” the C application program to GEM and TOS.

The open_data routine is called from main and is passed an argument
that is either a null string or the string that is entered as a parameter on the
command line when the program is run. You can make your program be a
TOS-Takes-Parameters program by adding the .TTP extension to its name; then
your application will accept filenames from the command line. For example,
with the program PLOT.TTP, you could type on the command line:

plot expenses.dat

and the plot program would know that the file named expenses.dat holds its
data values.

21

s CHAPTER 2

If your application program requires this function, you have to create it
for the specific application. Later, when the PLOT program is discussed, we’ll
explain how to write this routine.

For our purposes of having a prebuilt library of functions that generate a
general-purpose GEM interface, we've included a version that does nothing ex-
cept return a value of 1 to indicate the routine was successful. Zero is returned
if it was not.

This default version of open_data makes it convenient to compile and
link application programs that don’t use the function. If you do not supply your
own version, the linker will find this default version in the library, and use it. If
you do have your own version, then the linker will know not to look for an-
other copy in the library. This way, the linker never has to be changed to work
with applications that don’t use this function.

Program 2-7. opendata.c

open_data(whand, vw,file)
int whand, wvw;
char %file;(

return(l);
b

The multi Function

Application programs generally require some input—such as a mouse click,
keypress, or mouse movement—while running. After finishing with the
open_data function instructions, the main routine calls the multi function, Pro-
gram 2-8, to handle all input. In main, the statement

multi(events,&wh,interval, wind_name,&vw_hand)

passes the multi event variables defined in the config.c file to specify the input
types multi should respond to. Our file lists messages from GEM
(MU_MESAG), mouse clicks (MU_BUTTON), keypresses (MU_KEYBD), and
special rectangles on the screen (MU_M1 and MU_M2) as types of input
multi should recognize.

Also passed to multi are addresses of the handles for the window and
the virtual workstation so that functions called by multi can change these val-
ues as new windows or virtual workstations are created. The address of the
value for the handle, rather than a copy of the value, is passed because you
can’t change the handle if you don’t know its memory location. The other two
arguments for the multi function are the variables from the config.c file that de-
fine the window name and the timer interval.

The multi function is essentially a loop that calls the GEM function
evnt_multi, which monitors the system waiting for an input signal. When an
input event occurs, evnt_multi passes the information to multi, which deter-
mines the proper function to call for the input type.

22

The GEM Programming Envelope e

First, multi considers the interval period that originated in the config.c

file and is now stored in the variable milli_secs, and if it isn't 0, the GEM
MU_TIMER routine is added to the list of events to monitor. Fine and coarse
clock settings are created as timer_high and timer_low, to be used by
evnt_multi in waiting for input events. Note that our routines use only one 16-
bit word for the interval, so intervals can be a maximum of only 65 seconds.

This is generally enough time for most waiting periods, but if you want

a longer interval, you can change the code to make the interval and milli_secs
variables 32-bit numbers.

7
8. The addresses of the variables that will hold the x and y coordinate values

9.
10.
11,
12.

The multi function passes to evnt_multi a long list of parameters:

. Which events to wait for: those listed in the config.c file and the timing in-

terval (if it isn’t 0).

. How many mouse clicks to wait for before responding. Two allows double

clicks to be recognized. Note that one mouse click consists of a button-
down and a button-up signal.

. Which mouse buttons to respond to: 1 is the left button, 2 is the right but-

ton, and 3 is both buttons.

. What button action to wait for (up or down). Since we usually want to

know about any mouse button activity, we define the btn variable to be the
opposite of the current button state. If the button is down, btn is set to
“wait for button to come up.” If the button is up, btn is set to ““wait for the
button to go down.”

. Two sets of mouse rectangles are definable. A mouse rectangle is an area

on the screen that sends an event signal when the mouse cursor enters the
area—for example, when the cursor points to a command. Since mouse
rectangles are not used, zeros are placed here. If valid values x, y, w, and h
were placed here, GEM would send a message each time the mouse cursor
entered the rectangle.

. m is a variable in an array of 8, where interprocess communication (mes-

sages from GEM) and timer messages are stored. These are GEM messages
communicating that a window has been either moved, resized, or closed, or
that a slider box has been moved, and so on.

The timer_low and timer_high variables.

for the mouse after an event has occurred.

The state of the mouse buttons after the latest mouse event.
The state of the shift keys.

The character that was typed for a keyboard event.

The number of mouse clicks.

After an event has occurred and evnt_multi has returned to multi, the mouse
is displayed with

show_mouse()

23

w— CHAPTER 2

just in case multi has been called from somewhere other than the main routine,
and the mouse is hidden.

Then multi decides what further action to take, based on which event
has occurred. The event may be a GEM message. The messages that multi re-
ceives from GEM consist of eight integers in the array m[8].

m[0] is the message type

m([1] is the application ID of the sender

m[2] if nonzero, then there is more data beyond the eight integers. With GEM itself
there never is, and this integer is always zero.

The remaining integers, m[3] to m[7], vary depending on the value in
m[0]. If m[0] is WM_REDRAW, WM_SIZED, or WM_MOVED:

m[3] is the window handle
m[4]-m[7] are the x, y, w, h values for the operation

If m[0] is WM_TOPPED, WM_CLOSED, WM_FULLED, or
WM_NEWTQOP, then

m([3] is the window handle
m[4]-m[7] are ignored

If m[0] is AC_OPEN, then

m[3] is ignored
m[4] is the menu ID
m[5]-m[7] are ignored

If m[0] is AC_CLOSE, then

m|[3] is the menu ID
m[4]-m([7] are ignored

If m[0] is WM_VSLID or WM_HLID, then

m[3] is the window handle
m(4] is the slider box position
m([5]-m[7] are ignored

If m[0] is WM_ARROWED, then

m[3] is the window handle

m[4] is the arrow that was clicked: page-up, page-down, and so on
If m[0] is MN_SELECTED, then

m(3] is the menu title

m[4] is the menu item

m([5]-m[7] are ignored

These last elements tell the program which menu tree has been chosen and the
index in the tree of the menu item.
If the event is one of the messages from GEM explained above, the

24

The GEM Programming Envelope

was_msg function is called and the relevant information about the message is
passed. The application ID and message length are not needed (the second and
third message fields, m[1] and m[2]), so they're omitted from the argument list.

If the event is a keystroke, multi calls gotkey. You define the gotkey func-
tion for a specific program so that it returns a nonzero value if the program
should exit when a key is pressed. The gotkey version (shown later) provided
with the envelope routines returns the value 1. If a program doesn’t define how
to handle keystrokes, it will exit when a key is pressed.

For a mouse button click, our mouse_hit function is called. This function
returns the new state of the mouse button—whether it’s up or down—so that
evnt_multi will be watching for the opposite button state.

Lastly, if evnt_multi detects an event that doesn’t correspond to any of
the events we've described, the program notifies us with “What?” in a window
created by the show_form function. A user should never see this message, but
during the development phases it will alert you (the programmer) that some-
thing is amiss and unplanned events are occurring.

Program 2-8. multi.c

/%

k% This is where all input is handled.

%% We worry about timer messages, mouse buttons, keyboard typing,
k¥ and messages about window activity.

2% We loop, calling evnt_multi (), until we get a message saying
£%x that the user clicked on the CLOSE patch in the upper left

t%x corner of the window.

K/

include <gemdefs.h>
include <osbind.h>

multi (events,wh,milli_secs,name, vw)
int eventsj

int %whj

int milli_secs;

char ¥namej

int fvwj(

static int event, timer_low, timer_high, mu_timer, m[81;
static int bbutton, kstate, nclick, mx, my, keycode, btn, rj

btn = 1;
fort 33) (
timer_high = &;
if{ milli_secs)(
timer_low = milli_secs;
mu_timer = MU_TIMER;
3}
else {
timer_low = @;
mu_timer = @;
3
event = evnt_multi (events | mu_timer,

23 /% how many clicks possible ¥/

3, /% any buttons can click &/

btn, /% if button down, wait for up, etc. ¥/
9,0,0,0,0, /% mouse rectangle 1 %/

9,0,0,0,0, /% mouse rectangle 2 %/

25

s CHAPTER 2

my /% ipc & timer messages %/
timer_low, /% low word of timer value %/
timer_high, /% high word %/

&mx , &my, /% mouse coordinates %/
&bbutton, /% mouse button states %/
kkstate, /% shift key states %/
&keycode, /% the key that was hit %/

&nclick /% number of mouse clicks hit %/
'

show_mouse () ;
if(event & MU_MESAG){
if(r=was_msg(m[@I,m[3]1,m[4],m(S],m(61,m[7],wh,name, vw))
returni(r);
¥
else if(event & MU_KEYBD) (
if(r = got_key(keycode, ¥wh, Xvw))
returni(r);
3
else if(event & MU_BUTTON)<
btn = mouse_hit(btn,mx,my,kstate,nclick, fwh, ¥vw);
3
else if(event & MU_TIMER) {
clock_ticks (Xwh, Xvw) ;
:
else (
show_form("What?");
do_display (¥wh, fvw) ;
b

The show_form Function

The more messages we can provide for ourselves while debugging a program,
the better. By using the show_form function, Program 2-9, we can put a mes-
sage in its own window when the screen may otherwise be busy or unavail-
able. It prints a string in the window along with an OK button and a CANCEL
button.

The show_form function calls GEM's sprintf function to put our string
into the form needed by the GEM form__alert function. The form_alert function
takes the string and a variable for the button that we want to be the default as
its arguments and returns the number of the button that was clicked. In this
program, the OK button returns 1 and the CANCEL button returns 2. The but-
ton value is converted to true/false by subtracting 1. Therefore, an if statement
can be used to decide what action to take, depending on whether show_form
returns true or false.

Program 2-9. showform.c

/%

kX Here is a small routine that shows some information in a window
X and waits for the user to read it.

K/

show_formi(s)
char ¥s;{

char str201281;

26

The GEM Programming Envelope

sprintf(str2,"[11[%s][l OK ! CANCEL 1",s);
return(form_alert(2,str2) - 1);
¥

The was_msg Function

The was_msg function, Program 2-10, is the heart of the envelope library. It
takes care of messages received by the GEM evnt_multi function and performs
the window management routines that characterize GEM programs.

In the following descriptions of the was_msg processes, numerous GEM-
defined constants are used as arguments. The discussion doesn’t go into much
detail about them except to explain their relationships to the functions in which
they are used. For a more detailed discussion see the developer’s documenta-
tion from Atari.

When the multi function calls was_msg, it passes all the information
about the event that occurred in a form that is ready to be processed. The pro-
cessing in was_msg is basically one switch statement in which the information
in the msg parameter determines the appropriate action.

GEM'’s wind_update routine is called with a 1 parameter to insure that
the window updates are not confused with window updates from other pro-
grams. The wind_update function locks out other window activity, from desk
accessories or GEM itself, until we're finished. At the conclusion of the switch
statement, wind_update is called again, this time with a 0 parameter, to unlock
the window updating. If the window updating isnt unlocked, the system can-
not change windows and will appear to be hung up, requiring a system reboot.
Note that for each case in the switch statement, the last action is to break out
of the switch to insure that wind_update is turned off.

If the user has clicked on the close box in the upper left corner of the
window, then evnt_multi returns the GEM message WM_CLOSED, which is
then passed to the current was_msg function. In

case WM_CLOSED:

the window is closed, the window handle is set to NO_WINDOW to prevent
its further use, and the exit flag is set to the value BYE_BYE, recognized by
multi as meaning exit. (Accessory programs don't really exit—main will refuse
to exit and will call multi again.)

When the user selects an item from the menu, GEM sends the message
MN_SELECTED to evnt_multi. In

case MN_SELECTED:

the application-specific do_menu function is called with the menu number and
the item within the menu. Later, we'll discuss how to write the do_menu func-
tion for a particular application. do_menu also determines whether or not the
menu item selected means to exit the program, like Quit in the File menu. If
do_menu returns a nonzero value, meaning to exit, then the exit flag is set and
we break out of the switch.

27

mee—m CHAPTER 2

If some other screen activity causes the program’s window to be over-
written, GEM returns the message WM_REDRAW. Then the program must re-
draw the part that was changed.

case WM_REDRAW:

calls the function do_redraw, which performs the complicated task of cleaning
up the screen after a window has been moved, resized, or closed. As usual, we
break out of this switch when done.

The next switch case,

case AC_CLOSE:

will be used only if the program is a desk accessory. When a user starts a pro-
gram, GEM automatically closes the desk-accessory window (although the ac-
cessory program still runs) to free up the window. Eight is the maximum
number of windows GEM allows and there’s no point in having one used up
when it isn’t visible. When the current program ends, or the screen is about to
be cleared, or GEM is re-initializing the window library data structures, GEM
sends the message AC_CLOSE to evnt_multi. If the title that is passed
matches the menu_id variable, then it knows that the window that was closed
belonged to the accessory program. Once this information is known, the deci-
sion to reopen the accessory window—by calling the setup_window subrou-
tine—or to take some other action can be made.

In our version of the was_msg function, the accessory window is left
closed. Both the window handle and the virtual workstation handle are closed
so the programs in the library don't try to use the nonexistent window. A spe-
cial code is returned so that the routine that originally called multi can take
application-specific action on AC_CLOSE if required.

When a user selects our accessory program from the Desk menu, GEM
sends the AC_OPEN message. In

case AC_OPEN:

the title variable is set to the window handle for a reason that is explained be-
low. First verify that the menu_id matches, then check that a virtual work-
station and window are not already open, and finally open a virtual
workstation and set up a window just as main does for regular programs. Last,
instead of breaking out of the switch, the execution continues into the code
which will make our window the topmost (active) window: WM_TOPPED and
WM_NEWTOP. The reason the title variable is set to the window handle is so
it can be used in WM_TOPPED.

GEM delivers the WM_TOPPED and WM_NEWTOP messages when
the program window has been made the topmost one either by clicking on it,
or by removing another window from the top:

case WM_NEWTOP:
case WM_TOPPED:

28

The GEM Programming Envelope e

The wind_set is called with the value WF_TOP to make the window
look like a top window by filling in its borders. The function do_display is
called to cause the application program to display the window contents.

Moving or resizing a window causes GEM to issue the WM_SIZED and
WM_MOVED messages. The code for

case WM_SIZED:
case WM_MOVED:

first constrains the window to the minimum size so the borders remain large
enough to use. Then, the current full window is set to the size passed in the
variables x, y, w, and h. The GEM WF_CURRXYWH function sets the values
for the current window, including borders. Using the new size, the actual size
of the work area is calculated and do_display is called to have the program
add the contents of the window. GEM’s WF_WORKXYWH function sets the
values for the current window, excluding the borders.

When a user clicks in either the shaded area of the sliders or on the ar-
row icons at either end of the icons, GEM delivers the WM_ARROWED mes-
sage. The switch code in

case WM_ARROWED

simply calls the do_arrows routine to take the proper action, and then
do_display is called to redraw the screen.

If the GEM message is WM_VSLID or WM_HSLID, the user has moved
one of the slider boxes. In

case WM_VSLID
and
case WM_HSLID

we call GEM routine wind_set with the window handle (stored in the title vari-
able), the GEM-defined constant WF_VSLIDE or WF_HSLIDE, and the integer
which represents where in the slider area the user has positioned the slider
box. The slider box is set to the new value, and the application-specific func-
tions, v_touched and h_touched, are called to make a particular program be-
have appropriately for the slider action—for example, scrolling text in an
editor. do_display then redraws the screen.

When the user wants to expand a window to its largest size, or to return
it to its previous size if it’s already full-sized, he or she clicks on the icon in the
upper right corner of the window. This causes GEM to send the message
WM_FULLED. In the switch code for

case WM_FULLED

the GEM function wind_get returns the current window size using the GEM-
defined constant WF_CURRXYWH as the parameter for the current window.

29

e CHAPTER 2

Likewise, by using the GEM constant WF_WORKXYWH as a parameter, you
get the size of the desktop’s work area. These two sizes are compared, and if
they are equal, the program window is already full-size. To return the window
to its previous size and location, wind_get is called again with the GEM con-
stant WE_PREVXYWH as a parameter and the returned values are put into the
X, ¥, w, and h variables. If the two windows are not equal size, simply set the
current window to the variables x, y, w, and h (which were set to be equal to
the size of the desktop’s work area when we compared them), recalculate the
size of the work area, and then set the size of the work area. GEM will send a
WM_REDRAW message if the new window needs to be redrawn.

Program 2-10. wasmsg.c

/%

% Here we handle messages received by evnt_multi ().

% If we were asked to close the main window, then we

2% return non-zero, which will eventually cause us to exit.

L ¥4

include <gemdefs.h>

include <osbind.h>

include <wfparts.h>

define MIN_WIDTH 1@
define MIN_HEIGHT 19
define NO_WINDOW -1
define NO_VWS -1
define BYE_BYE -1
define OBLIVION =

was_msg (msg,title,x,y,w,h,whand, name, vw)
int msg, title, x, y, w, h, fwhand;

char Xname;

int ®vwy {

int exit_flag; /% @ = continue, BYE_BYE = exit %/
int xc, yc, wc, hc, ij
extern int menu_id, slv, slh, svs, shs, SX, Sy, sw, shj

exit_flag = @;
wind_update(1);
switch(msg){
case WM_CLOSED:
close_window(title);
¥whand = NO_WINDOW;
exit_flag = BYE_BYE;
break;
case MN_SELECTED:
if(do_menuititle,x, t*whand, vw))
exit_flag = BYE_BYE;
breaks
case WM_REDRAW:
do_redraw(x,y,w,h,title, fvw);
break;
case AC_CLOSE:
if(title == menu_id) ¢(
fwhand = NO_WINDOW;
if(Tvw !'= NO_VWS)
v_clsvwk(kvw);
Evw = NO_VWS;
exit_flag = OBLIVION;

30

The GEM Programming Envelope

break;

case AC_OPEN:

case
case

case
case

case

case

case

case

.

title = ¥whand;
if{ x !'= menu_id)
breaks
if(Svw == NO_VWS)
fvw = open_vwork(graf_handle(&i,%i,&j,&i));
if(gtwhand == NO_WINDOW) ¢
title = swhand = setup_window(name,
slv,slh,svs,shs,sx,sy,sw,sh);
break;
3
/% Fall through to top the window %/

WM_NEWTOP:
WM_TOPPED:

wind_set (title,WF_TOP,8,9,98,8);
do_display(title, fvw);
breaks;

WM_SIZED:
WM_MOVED:

if{ w < MIN_WIDTH)
w = MIN_WIDTH;
if(h < MIN_HEIGHT)
h = MIN_HEIGHT;
wind_set (title,WF_CURRXYWH,x,y,w,h);
wind_calc (WC_WORK,WF_PARTS,x,y,w,h, 8, &y, &w,&h) 3
wind_set (title, WF_WORKXYWH,x,Yy,w,h);
do_display(title,fvw);
break;

WM_ARROWED:

do_arrows(x,title, fvw);
do_display(title, fvw)j
break;

WM_VSLID:

wind_set (title,WF_VSLIDE,x,9,0,0);
v_touched(title, ¥vW,x);
do_display(title, fvw);

break;

WM_HSL ID:

wind_set(title,WF_HSLIDE,x,9,8,0);
h_touched(title, Evw,x)}
do_display(title, ¥vw);

break;

WM_FULLED:

wind_get (title, WF_CURRXYWH, 8xc, &yc, &wc, &hc) ;
wind_get (@, WF_WORKXYWH, &x , &y, &w,&h) ;
if(wec == w && hc == h)

wind_get (title, WF_PREVXYWH, &, &y, &w, &h) ;
wind_set (title, WF_CURRXYWH,x,y,w,h);
wind_calc (WC_WORK,WF_PARTS,x,y,w,h, %, &y, &w,&h) ;
wind_set (title, WF_WORKXYWH,x,y,w,h);
break;

wind_update(@);
return(exit_flag);

¥

The do_menu Function

This function, Program 2-11, must be written for a specific application program.
The envelope library contains the following default version, which simply re-
turns a value of 0 to indicate that the user did not select “exit” or “quit.”

Later, you'll see how to develop this function for programs that need menus.

31

e CHAPTER 2

Program 2-11. domenu.c

do_menu(title,item)
int title,item; {

return(@);
3

The do_redraw and just_draw Functions

Because GEM allows multiple overlapping windows, it can be a fairly complex
task to redraw a program application’s window when it is all or partly obscured
by other windows. To handle this situation, GEM creates a list of subwindows,
each of which is a rectangle.

do_redraw, Program 2-12, figures out what part of the application win-
dow is newly exposed after a covering window has been moved away. Then it
sets a clipping window to the size and location of the part that will be redrawn,
so that only the points within the rectangle will appear on the screen. All
others are “clipped off”” and not drawn.

At the start of this function, the mouse is hidden to prevent its being
drawn over. If it isn’t hidden, it will leave traces of the old window behind it
when it is moved.

Another important precaution is to set the wind_update function to 1, to
lock out all other processes until this one is finished. The window will be un-
locked before exiting this routine.

In the do_redraw code, the declaration

GRECT t1, t2;

specifies a particular data structure for rectangles. This structure is used later in
do_redraw by the GEM rc_intersect routine. The rectangle represented by t2 is
the part of our application window that was covered by the window that’s now
gone. GEM has told us about the intersecting area of our window and the cov-
ering window. During the redrawing process, GEM subdivides the window into
subrectangles.

The t2 rectangle is then compared to each of the rectangles in GEM’s list
to see if they intersect. When a t1 rectangle intersects a t2 rectangle, just_draw,
Program 2-13, is called to redraw the part of the screen defined by the t1 rect-
angle. rc_intersect changes the t1 rectangle to be the intersection of the old t1
and t2.

Program 2-12. redraw.c

/%

¥x This routine worries a lot about how to clean up the screen after
%% a window has re-sized, moved, or disappeared. Since there can be
£X many overlapping windows, the task is not trivial. The trick used
¥ is to define a list of rectangles formed wherever the window is
X% visible, and then to refresh each rectangle (using the clipping
¥ functions) wherever it overlaps the dirty rectangle passed to us.
k% rc_intersect returns TRUE if there is an overlap, and it puts the
¥% overlap into its second argument.

a2

The GEM Programming Envelope s

£X The function wind_get() is used to get the FIRST rectangle in the
%% list, then used again in a loop to get each NEXT rectangle.
| ¥4

include <obdefs.h>
include <gemdefs.h>

do_redraw(xc,yc,wc,hc,whand, vw)
int xc, yc, wc, hc, whand, vw;{

int clipC4];
BRECT ti, t2;

hide_mouse();
wind_update(l);
t2.g_x = xcj
t2.g_y = yc3y
t2.g_w = wcj
t2.g_h = hcj;
wind_get (whand, WF_FIRSTXYWH,&t1.g_x,&%t1.g_y,%tl.g_w,&tl.g_h);
while (t1.g_w && ti.g_h) (
if (rc_intersect (&t2,&t1)) (
clipl@i = t1.g_x;
clipl1] = til.g_y;
clipl2] = t1l.g_x + tl.g_w - 13
clipl3] = t1.g_y + ti.g_h - 1;
vs_clip(vw,1,clip);
just_draw(whand,tl.g_x,tl.g_y,tl.g_w,tl.g_h,vw);
3
wind_get (whand,WF_NEXTXYWH,&t1.g_x,&%t1.g_y,&ti.g_w,&tl.g_h);
>
wind_update(8);
show_mouse () 3
3

Program 2-13. justdraw.c

just_draw(whand,x,;y,;w;h,vw)
int whand, %, y, w, h, vw;{

do_display(whand,vw) ;
b]

The do_arrows Function

This function, Program 2-14, isn’t limited to arrows, as its name implies. It han-
dles the positioning of the slider boxes and screen scrolling that occurs when a
user clicks on the arrow icons at either end of the slider areas, or clicks on the
gray portion of the slider area.

In most programs, the screen contents appear to move up or down, right
or left when the user clicks in the slider area. Clicks on the arrow icons in the
vertical slider area cause the window to move one row up or one row down. In
the horizontal slider area, the arrows move the window one column to the
right or left. In the same way, clicks in the gray areas of the vertical and hori-
zontal slider areas move the window one page up or down and one page right
or left.

33

e CHAPTER 2

This do_arrows function calculates the values for window movements
and slider box positioning.

Using GEM’s wind_get function to find out the current size of the work
area, do_arrows calculates just how many lines and columns of text fit in the
current window.

A GEM message is passed from the was_msg function to the do_arrows
function, declaring that there’s been an event in the slider area such as
PAG_UP, ROW_DN, and PAG_RT. You can see these messages used in the
switch statement in this function.

Depending on the event, the current line and column positions are calcu-
lated in the switch statement. Line and column operations only require incre-
menting or decrementing the cur_line and cur_col variables by 1, whereas
page operations require using the numbers that were calculated for the current
window size.

After setting cur_line and cur_col to their new values, do_arrows calls
our function slide_pos to calculate the new positions of the slider boxes, and
then calls GEM’s wind_set subroutine to set the sliders.

Program 2-14. doarrows.c

include <document.h>
include <gemdefs.h>

L

L]

define PAG_UP
define PAG_DN
define ROW_UP
define ROW_DN
define PAG_LF
define PAG_RT
define COL_LF
define COL_RT

NrUbUWUN-S

int xlines;
int cur_line, cur_col;

do_arrows (operation,whand, vw)
int operation, whand, vwj{

int x, y, w, h, wlines, wcols;
extern cur_line, cur_col, gl_wchar, gl_hchar, xlines;
int vertical, horizontalj

wind_get (whand, WF_WORKXYWH, &x , &y, &w, &h) 3
wlines = h / gl_hcharj;
wcols = w / gl _wchar;
switch (operation) (
case PAG_UP:
cur_line —= wlines;
if{ cur_line < @)
cur_line = @;
break;
case PAG_DN:
cur_line += wlines;
if(cur_line > NLINES - wlines)
cur_line = NLINES - wlines;
break;
case ROW_UP:
cur_line——;

34

The GEM Programming Envelope ws

if(cur_line < @)
cur_line = @3
break;
case ROW_DN:
cur_line++;
if(cur_line > NLINES - wlines)
cur_line = NLINES - wlinesj
break;
case PAG_LF:
cur_col —= wcols;
if(cur_col < @)
cur_col = 8;
break;
case PAG_RT:
cur_col += wcols;
if(cur_col > NCHARS - wcols)
cur_col = NCHARS - wcols;
break;
case COL_LF:
cur_col--3
if(cur_col < @)
cur_col = @;
break;
case COL_RT:
cur_col++j
if{ cur_col > NCHARS - wcols)
cur_col = NCHARS - wcols;
break;
)
slide_pos(wlines, xlines, cur_line, &vertical);
slide_pos(wcols, NCHARS, cur_col, &horizontal);
wind_set (whand, WF_VSLIDE, vertical, @, 8, @);
wind_set (whand, WF_HSLIDE, horizontal, @, &, @);
3}

The slide_pos Function

One of the particularly nice features about GEM'’s sliders is that the slider box
is proportional to the total size of the document being scrolled. Placing the box
requires that both the size and position for each slider box be computed. Both
the slider area and the box range from 1 to 1000 in size. The slider box size is
computed in the slide_size function. The position of the slider is calculated in
slide_pos.

In slide_pos, Program 2-15, the function takes the line number of the
document and calculates the position of the top of the slider box in the range of
1 to 1000. Keep in mind that the range is always measured to the top of the
vertical slider box and to the left edge of the horizontal slider box. It is this part
of the box that is positioned within the range.

To calculate the actual position of the top (or left side) of the slider box,
the function multiplies the line number by the maximum slider position of 1000
and divides by the total document size minus the part that’s visible. The result
is returned to the GEM wind_set routine to plot the slider box in its new posi-
tion, reflecting the position of the document fraction in the window with re-
spect to the total document.

35

e CHAPTER 2

Program 2-15. slidepos.c

e

L33 Map a line number into a slider position between
3] @ and (1080 - the width of the slider)

kX Line numbers are numbered from @ to nlines-1.

X Works for columns also.

| ¥4
slide_pos(visible, total, line, pos)
int visible, total, line, %¥pos;(

fpos = 1000L % line / (total - visible);
3

The h_touched, v_touched, and pos_slide Functions

Another method by which the user scrolls the contents of a program window is
“grabbing” the slider box with the mouse and sliding it in the slider area. For
your program, the problem becomes how to tell which lines of the document
correspond to the position of the top of the slider box (or the left edge of the
horizontal slider).

To solve the problem, the functions h_touched and v_touched (Pro-
grams 2-16 and 2-17) are called to alter the global variables cur_line and
cur_col whenever the user moves the slider box. Then cur_line and cur_col
are used by application programs to display the relevant part of scrollable ob-
jects, such as a document.

To determine the new line or column positions from the slider box’s po-
sition in the possible range of 1-1000, pos_slide function is called. This func-
tion reverses the operation completed earlier in the slide_pos function
(Program 2-15). It calculates the new line or column number based on the
number of lines or columns in the document and the window, and the maxi-
mum position of the top (or left) of the slider box.

Program 2-16. htouched.c

include <gemdefs.h>
include <document.h>

h_touched {(whand, vw,horizontal)
int whand, vw, horizontalj{

int %, y, w, h, wcols;
extern int gl_wchar, cur_colj

wind_get (whand, WF_WORKXYWH, &x , &y, &w, &h) ;

wcols = w / gl_wcharj
pos_slide(wcols, NCHARS, &cur_col, horizontal);
b

36

The GEM Programming Envelope

Program 2-17. vtouched.c
include <gemdefs.h>

v_touched (whand, vw, vertical)
int whand, vw, verticalj;(

int x, y, w, h, wlines;
extern int gl_hchar, cur_line, xlines;

wind_get (whand, WF_WORKXYWH, 8ot , &y, &w, &h) ;

wlines = h / gl_hchar;

pos_slide(wlines, xlines, &cur_line, vertical);
i

Program 2-18. posslide.c

/%

kX Map a slider position into a line number (or column)
%/

pos_slide(visible, total, line, pos)

int visible, total, %fline, pos;(

tline = (pos % (total - visible)) / 1600L;
3

The hide_mouse and show_mouse Functions

As a programming convenience—so we don’t have to worry about how many
times the mouse has been hidden or exposed—we keep the hide_mouse and
show_mouse functions in our envelope library (Program 2-19).

Whenever you want to be sure the mouse is either hidden or displayed,
call one of these functions. These two functions track the status of the mouse
by setting the mouse_gone variable to the current mouse condition. When
either of the routines is called, it first checks this variable to determine whether
the current mouse state is the one called for the program. If it is, the routine
does nothing and returns.

Program 2-19. hidemous.c

/%

¥ These routines keep us from having to worry about how many
2% times we hid the mouse, and how many times we tried to show
kK it.

L ¥4

include <{gemdefs.h>

static int mouse_gone; /% is mouse visible? &/
hide_mouse () {
if (! mouse_gone) {

graf_mouse (M_OFF, @x@L) ;
mouse_gone = ! mouse_gone;j
3}

37

memms CHAPTER 2

show_mouse () {

if (mouse_gone) {
graf_mouse (POINT_HAND, #x0L) ;
graf_mouse (M_ON, #x@L) j
mouse_gone = ! mouse_gone;
3

The do_display and doit Function

These two functions are used in conjunction with one another. The small
do_display function, Program 2-20, makes sure the mouse is hidden before any
screen redrawing occurs with the doit function. If the mouse is showing when
the screen is redrawn, then a fragment of the earlier screen will be seen when
the mouse is moved.

As you can see, do_display begins with a call to hide the mouse; then it
calls the application-specific doit routine with the window handle and the vir-
tual workstation handle, and redisplays the mouse when doit is finished.

The doit function, Program 2-21, is responsible for drawing the screen. It
must be defined for each program’s screen output needs. For many applica-
tions, especially those that only return information like maps and pictures, this
is where most of the program’s work occurs. In our envelope library, we in-
clude the following default version, which only clears the screen.

Elsewhere in this book, there are several examples of more complicated
versions of this function.

Program 2-20. dodisp.c

/%

k% Call the user’s paint-screen routine "doit()” to put

%% something on the screen. We hide the mouse while it does it
kX so that the mouse won’t leave a stain.

x/

do_displ ay (whand, vw)
int whand, wvwj{

hide_mouse();
doit (whand, vw) j

show_mouse () ;
3}

Program 2-21. doit.c

doit (whand, vw)
int whand, vwj{

just_clear (whand, vw);
3}

38

The GEM Programming Envelope

The just_clear Function

The purpose of just_clear, Program 2-22, is to clear the work area by drawing a
white bar the width and length of the work area or a subwindow rectangle
used by just_draw.

First, as a precaution in case just_clear has been called by a routine that
didn’t hide the mouse, just_clear calls the hide_mouse function.

Then some GEM routines are called to set the interior fill style to 2 (for
pattern), the fill style index to 8 (for solid color), and the fill color to white.
wind_get is used to get the size of the work area and to call the GEM v_bar
routine to generate a rectangle that fills our program’s work area with white.
Before exiting just_clear, the fill color is set back to black (1) to show the
mouse.

Program 2-22. justclr.c

Id s

¥% Clear the display by drawing a white bar whose width is the screen
2% width and whose length is the screen length.

&/

include <gemdefs.h>
include <obdefs.h>

just_clear (whand,vw_handle)
int whand, vw_handle;{

int templ[41;
int x, y, w, hj

hide_mouse();

vsf_interior(vw_handle, 2)j;
vef_style(vw_handle, 8);
vef_color(vw_handle, WHITE);
wind_get (whand, WF_WORKXYWH, &x , &y, 8w, &h) ;
temp(@] = xj

templ1] = y;

temp[2] = x + w - 1;

temp[3] =y + h - 1;

v_bar{ vw_handle, temp);
vsf_color (vw_handle, 1);
show_mouse () j

3

The clr_display and clip_work Functions

These functions, Programs 2-23 and 2-24, are used when you know you want
to clear the entire work area of a program window. They reset the clipping
window to be the size of the work area. You would not call these functions
from just_draw, which needs to be sensitive to the subwindow rectangles
formed by overlapping windows. It is called when you know you really want
to clear the entire screen, regardless of previous clip settings. If you want to
clear the subwindow rectangles made by overlapping windows, call the
just_clear function.

In clr_display, clip_work is called to set the clipping window to the size

39

s CHAPTER 2

of the entire work area, and just_draw is called to draw a white rectangle over
the entire work area.

The simple clip_work function is used to get the size of the work area of
the program window and then to reset the clipping window to be the entire
work area.

Program 2-23. clrdisp.c
include <gemdefs.h>
include <obdefs.h>

clr_display(whand, vw_handle)
int whand, vw_handle;{

clip_work(whand, vw_handle)j
just_clear (whand, vw_handle);
3

Program 2-24. clipwork.c

include <gemdefs.h>
include <obdefs.h>

define NO_CLIP @
define CLIP 1

clip_work{(whand, vw_handle)
int whand, vw_handlej{

int templ4];
int x, y, w, hj

wind_get (whand, WF_WORKXYWH, &x , &y, &w, &h) ;
templB] = x3;

temp[1] = y;

temp[2] = % + w — 13}

templ3]1 =y + h - 13

vs_clip(vw_handle, CLIP, temp);

>

The close_all and close_window Function

When the user selects the command to quit or exit a program, these functions,
Program 2-25 and 2-26, take care of it.

The close_all function is called by main to close the window. close_all
calls close_window, which deletes the window and draws a shrinking box for
effect.

Last, close_all tidies up by removing the menu bar and freeing up any
resources that were used for RCS data files.

40

The GEM Programming Envelope e

Program 2-25. closeall.c
include <gemdefs.h>

close_all {(main_addr,whand)
struct object Emain_addr;
int whand; {

close_window(whand)3j
if(main_addr)
menu_bar (main_addr, @);
rsrc_free();
¥

Program 2-26. closewindow.c
include <gemdefs.h>

close_window(whand)
int whandj (

int x, y, w, h, foo, err;

if(whand != -1){
wind_get (whand, WF_WORKXYWH, &x , &y, &w, &h) ;
wind_close(whand)j;
graf_shrinkbox (x+w/2,y+h/2,2,2,%,y,w,h);
wind_delete(whand)j
¥

Miscellaneous Routines and Arrays

Different startup functions are used for a desk accessory and regular application
programs. In the case of a desk accessory, the Atari startup routine that initially
calls GEM is called accstart. The startup routine for a regular program is called
gemstart. The accstart routine is a much-shortened startup routine that must be
supplemented with some of the variables from gemstart so that all the func-
tions and variables used in the envelope library are defined.

The accsup.c (““accessory support”) file, Program 2-27, defines several
variables we need, the brk function, and a dummy exit function. The brk func-
tion is used to allocate memory for some of the routines in the GEM libraries.
The dummy exit routine is included because a desk accessory might call a func-
tion that exits if it encounters an error. A desk accessory program is never sup-
posed to exit, so the accstart file doesn’t include exit. However, if exit is called,
it must be defined, so this exit definition is included as a placebo for the linker,
to keep it from generating an error message.

Program 2-27. accsup.c

include <osbind.h>

define BRK_SIIZE { 256)
long int __cpmrv = @;
char __pnamel] = "Accessory"j

char __tnamel] "CON: "}

41

meees CHAPTER 2

char __lnamel] = "L8T:";
char __xeofl] = "\@g32"3

char brk_mem[BRK_SIZEI];
char ¥_break = brk_mem;

brki{val)
char ¥valj{

if(val < &brk_memI[BRK_SIZE-161){
_break = valj;
return(d);
>
return(-1)j;
}
_exit() {}

The vdidata.c file, Program 2-28, defines some arrays where the VDI
routines keep their input and output variables. They are only used by VDI to
link; the application programs never use them directly.

Program 2-28. vdidata.c

4

ik These are arrays that VDI should have declared for itself,

%% but didn’t. This is possibly because the user could declare

X them to be smaller than this if he knew he was only going to use
kX functions that need the first few elements of each one.

¥k We have LOTS of memory on the ST, so lets not be lazy.

| ¥4

int contrlC121;
int intinC1281;
int intoutlf1281;
int ptsin[1281;
int ptsoutf1283;

Additional Envelope Functions

In addition to the functions described, the following functions and header files
are part of the envelope library. addit will be discussed in Chapter 5 and
newwind will be discussed in Chapter 6.

Program 2-29. addit.c

include <obdefs.h>
include <osbind.h>
include <gemdefs.h>

define MAXTREE 64
define LEN -2
define CONSOLE 2

int next_item = @;

addit (tree_list,parent,type,spec,x,y,w,h)
struct object ftree_list;

int parent, type, x, y, w, hj

char &spec;{

int max_x, max_y;

42

The GEM Programming Envelope

extern int Wc, Hc;

if(next_item >= MAXTREE)
return{(-1);

if(w == LEN)
w = strlen(spec);

if(tree_listlparentl.ob_head == -1)
tree_list[parentl.ob_head = next_item;

max_x = x % Wc + w ¥ Wcj

max_y = y & Hc + h ¥ Hcs;

if(parent > @ && max_x > tree_list[parentl.ob_width){
printf("Parent %d’s width adjusted to %d\n",parent,max_x);
Bconin (CONSOLE) ;3
tree_listlparentl.ob_width = max_xj;
]

if(parent > @ && max_y > tree_listlparentl.ob_height){

printf("Parent %d’s height adjusted to Xd\n",parent,max_y);

Bconin (CONSOLE) 3

tree_list(parentl.ob_height = max_y;

¥
tree_listinext_iteml.ob_next = —-1;
tree_listlnext_iteml.ob_head = -1;
tree_listCnext_iteml.ob_tail = -1;
tree_listinext_iteml.ob_type = typej;
tree_listlnext_iteml.ob_flags = NONE;
tree_listinext_iteml.ob_state = NORMAL;
tree_listlnext_item].ob_spec = specj;
tree_listlnext_iteml.ob_x = x ¥ Wcj
tree_listlnext_iteml.ob_y = y % Hcj;
tree_listinext_iteml.ob_width = w ¥ Wc;
tree_listlnext_iteml.ob_height = h ¥ Hcj;
if(objc_add(tree_list,parent,next_item) == @){

printf(“Can’t add object ¥%d to parent %d\n",next_item,parent);
3

returni(next_item++);
3

Program 2-30. bldtree.c

include <gemdefs.h>
include <obdefs.h>

struct object x
build_tree(){

return(2L);
3}

Program 2-31. clocktic.c

/%
i
xx
1§
%
X/

Here we handle anything we need to do when we get a clock message
in multi(). Right now, we just ignore them. Later we might want
to put some code here to do something automatically every so
often.

clock_ticks (wh,vw)
int wh, vwj{

}

43

e CHAPTER 2

Program 2-32. doclean.c

do_cleanup (whand, vw)
int whand, wvwj{

}

Program 2-33. gotkey.c

got_key (ch,whand, vw)
int ch, whand, wvwj{

return(l)j
3

Program 2-34. mousehit.c

include <osbind.h>
include <obdefs.h>
include <gemdefs.h>

mouse_hit (butdown,x,y, kstate,num_clicks, vw)
int butdown, x, y, kstate, num_clicks, vwj{

if(butdown == @)
return{i);

return(d))

3

Program 2-35. newwind.c

include <obdefs.h>
include <gemdefs.h>

new_window (name, vp,hp, ve,hs,x,y,w,h, vw)
char ¥namej
int vp, hp, vs, hs, x, y, w, h, Svwj {

int whand, junk, grj

show_mouse () j

whand = setup_window(name,vp,hp,vs,hs,x,y,w,h)j
wind_set (whand, WF_TOP,3,9,8,8))
clr_display(whand,vw);

return(whand)j;

}

Program 2-36. pad.c

padisi,s2,cnt)
char &sl1, ¥s2;
int ent; (

while(cnt——)
if(%82)
Isl++ = E82++;
else
Esl++ = 7 ';
sl = @;
¥

44

The GEM Programming Envelope

Program 2-37. slidsize.c

slide_size(visible, total, size)
int visible, total, $sizej({

ksize = 1000L X visible / total;
if(¥size <=0)
isize = -1;
if(ssize > 1000)
tsize = 1000;
3

Program 2-38. window.h

define MAINMENU @

Program 2-39. wfparts.h

% define PARTSA (VSLIDE | HSLIDE | UPARROW | DNARROW | LFARROW ! RTARROW)
define PARTSB (SIZER!MOVER:FULLERiCLOSER | NAME)
define WF_PARTS (PARTSA I PARTSB)

How to Build the Library

All of these separate functions must be grouped into the envelope library so
they can be linked with programs. The linker (link68.prg is the name of the
linker in the Atari ST Software Developer’s Kit) can look through libraries for
functions and data structures that are not defined in the program. The linker
then selects from the library only those files it needs. In this way, the library
can contain functions that are used only if they are not defined in an applica-
tion program. This is why the application-specific functions have default values
that do nothing.

If the program defines one of these routines, the program’s version is
used instead of the default library version. If the program doesn’t define an
application-specific program, the linker will find a usable version in the library.

To create or add to a library using Alcyon C, which comes with the Atari
ST Software Developer’s Kit, we must first compile the source code files created
with a text editor into object code (.O files); then we use the archiver program,
called ar68.prg in the Developer’s Kit. We build a batch file to call the archiver
and to give it the names of all the compiled files we want in the library. This
batch file is shown in Program 2-40. If you are using another version of C, re-
fer to your User’s Manual for instructions on creating a library.

The archiver program is called with the r flag (for replace), and the v
flag (for verbose; omit the v flag to stop the screen chatter while the library is
being created).

Then the name for our library, env.a, is given and followed by a list of
filenames to be put in the library.

45

s CHAPTER 2

We use several calls to ar68.prg to avoid exceeding the limit on the num-
ber of arguments to a program and also because our preferred programming
style is not to wrap arguments across lines.

When we run this batch file by running batch.ttp from the desktop and
giving archive.bat as the parameter, the file env.a is created. This file is ready
to be used by the linker, as we shall see in the next chapter.

Program 2-40. archive.bat

art8 rv env.a MAIN.O MULTI.O WASMSG.O ADDIT.O CLOSEALL.O

aréB rv env.a CLRDISP.O DODISP.0 DOIT.D DOMENU.O NEWWIND.O

aré8 rv env.a SETSCRN.O SETWIND.O OPENWIND.O SHOWFORM.O REDRAW.O DOARROWS.O
aré68 rv env.a CLOSWIND.O CLIPWORK.O JUSTCLR.O JUSTDRAW.O

aré8 rv env.a HTOUCHED.O VTOUCHED.O SLIDEPOS.O0 SLIDSIZE.O OPENVWRE.D

aré8 rv env.a CLOCKTIC.O OPENDATA.O PAD.O HIDEMOUS.O GOTKEY.O MOUSEHIT.O
aré8 rv env.a POSSLIDE.O DOCLEAN.O BLDTREE.O VDIDATA.O ACCSUF.O

wa:t

46

3 Simple Line
Graphics

g

b
; .%.u

e

3 Simple Line
Graphics

s The previous chapter described the envelope library which gives you
a ready-made, general-purpose way to build applications programs

I with the GEM user interface. Using the envelope can make program-
ming easier. The remainder of this book shows you how easy it is to write
applications programs using the envelope.

The simple line graphics example demonstrating the envelope routines is
a map of the world drawn on the screen. Because the envelope routines are
written to be device-independent, they can draw the map in all three of the
Atari’s resolution modes:

low 320 X 200 16 possible colors
medium 640 X 200 4 possible colors
high 640 X 400 2 colors

We begin by customizing the routines specific to the world map pro-
gram. As a brief review of Chapter 2, the nine files that “connect” the envelope
library to an application follow.

config.c file defines global data items used by the library to control the
look and operation of the user interface.

do_menu, defined in domenu.c, determines how the program responds
when a menu item is selected.

just_draw, defined in justdraw.c, redraws the portions of the screen that
are affected when a window is moved, resized, or removed from the desktop.

doit, defined in doit.c, draws the whole screen. You may sometimes de-
cide to use it instead of the just_draw function (which is more complex) if you
determine that doit can draw the screen within a second or two.

do_cleanup, defined in doclean.c, is called before a program exits to let
the program close files, print score results, or reset colors to their original states.
If no cleanup is required, do_cleanup does nothing.

got_key, defined in gotkey.c, is called for every keystroke received from
the keyboard; it controls how the program responds to the keystroke.

build_tree, defined in bldtree.c, builds menu trees for the pull-down
menus. If you use the Resource Construction Set from the Atari ST Software De-
veloper’s Kit to build your menus, then this routine is never called.

49

memmm CHAPTER 3

mouse_hit, defined in mousehit.c, determines what to do whenever a
mouse button is pressed.

open_data, defined in opendata.c, opens files and does any other setup
tasks necessary before the program is passed any other input.

All of these connecting routines have default versions in the library. This
means you only have to modify the code of those that need to change for your
particular applications program. The default versions of the unchanged routines
will link in automatically.

For the world map program you only need to redefine the config.c file
(Program 3-1) and doit.c (Program 3-2).

First, the file defines the window name to be “World Map.” Then, be-
cause the map won’t use RCS, the USE_RCS variable is undefined and the re-
source variable is set to 0.

Continuing through the program, setting the i_am_accessory variable to
0 indicates that this is a regular program and not an accessory. For the purpose
of illustration, the accessory name variable is set to be World Map, which
would appear in the Desk menu if this program were a desk accessory. Al-
though the eight variables that control the appearance of the small (accessory)
window aren’t used (because this isn’t an accessory program), they must still be
defined for the linker to link the program properly. The program ieaves them
set to their default values.

The minimum window size is set to 100 pixels wide and 50 pixels high
so that the smallest possible window will still be large enough for the border
elements to be operable. Since a timer is not needed for this program, the tim-
ing interval is set to 0. Finally, the events variable is set to receive information
about all input events.

Program 3-1. config.c (Map version)

include <gemdefs.h>
char Xwind_name = " World Map "j

ifdef USE_RCS

char fresource = "WORLD.RSC"j;
else
char *resource = @3

endif USE_RCS

char Xaccess_name
int i_am_accessory

" World Map "3
a3

int sx 20; /% small window size %/

int sy =1

int sw 250;

int sh 125;

int slv @3 /% small window vertical slider pos %/
int slh [“H /% small window horizontal slider pos &/
int svs 100@; /% small window vertical slider size %/
int shs 1000; /% small window horizontal slider size %/

int min_wide 1003
int min_high 503
int interval -H

int events MU_MESAG | MU_BUTTON ! MU_KEYBD ! MU_M1 ! MU_M2;

50

Simple Line GraphicS

The doit Function for the Map Application

The code below for the doit function is so simple that you may wonder why it
is needed for this program.

This version does only one thing: calls the map function, which is where
all the map-drawing work is done. The reason doit is included in the map pro-
gram is in case you want to expand it to do something more with the map after
it is drawn.

Program 3-2. doit.c
doit (whand, vw)
int whand, wvw;{

map (whand, vw) §
3

Drawing the Map

The map is drawn by connecting a series of points outlining the coastlines of
the world’s continents and main islands. The data defining the points is in a
file called world.c. That data is a long series of numbers that has been packed
in order to save space (and typing). The packing method is: multiply each y co-
ordinate by 640 (the number of columns on the screen) and then add the x co-
ordinate value to it. This converts each point’s x and y coordinates into one
integer, which is why the data for the points does not appear to have x and y
coordinates. To make the data a bit more manageable, continuous lines are
marked with —1 at their beginning.

The data for world.c is listed in the Appendix. If you decide to type the
data in instead of purchasing the disk with the data, you may want to draw
only certain coastlines to save time (and finger fatique, not to mention bore-
dom). You can type in any part of the data you wish; just be sure you type in
an entire segment. Each segment begins with a —1 and continues up to, but
not including, the next —1. Type in as many segments as you wish. As you
look through the data segments you’ll notice that they have been printed in or-
der of size, starting with the largest coastlines. Remember, though, that the
more segments you type in, the more of the world will appear on the screen.

Program 3-3 draws the map.

In the program, map calls the GEM routine v_pline, which plots lines
between sets of points in an array. Since there are a great many points, we
want to find out how many points v_pline will accept before we call it.

The GEM vqg—extnd function tells us the number of points, as well as a
lot of other information we don’t need to know right now. It returns 57 values
into the array we pass to it. What those values are depends on the second
argument in the parameter list. We have defined WORKVALS and INQUIRE to
values that point to the values we want. If vq_extnd is given the argument
WORKVALS, the function gives us the same output as opnvwk in multi. If
given the INQUIRE value, the function returns 19 new values (and zeros filling

51

e CHAPTER 3

out the array to 57). With these statements the fourteenth item in the INQUIRE
array is located, and that item indicates how many vertices v—pline can accept.

vq—extnd(vw, INQUIRE, info);
max = info[14];

This corresponds to a little more than 100 points on the computer. Larger sys-
tems may differ, as may future machines or ROMs. Note that because of the
data packing, points are constructed from two values: one each for the x and y
coordinates.

The program starts unpacking the data in the world array, converting the
packed numbers back into the original x and y coordinates. A concise method
of unpacking the coastline data should be possible; however, due to some bugs
in the way the compiler handles long integers, some creative programming is
necessary. To work around the bugs, you can define two temporary variables,
row and col, and do each arithmetic operation on a separate line, avoiding the
% operator on long integers. This is not a recommended coding style, but
serves a short-term purpose until the bugs are fixed.

As each integer in the world array is converted to its two corresponding
values, each of the values is placed into the points array and the count variable
is incremented by one.

Then the v_pline routine is called and given the handle of the virtual
workstation, the number of points to be passed to it (one point is two values;
therefore we divide the count by 2), and the address of the array where the x
and y values are stored.

If v_pline could accept a large number of vertices, you could just pass it
all the points between the —1 markers, calling v_pline once for every —1
found in the array. But since v_pline accepts just over 100 points, a second if
statement is added to handle long coastlines. The count variable, whose value
equals the number of values in the points array, is compared to the maximum
points v_pline will accept—again multiplied by two since there are two values
per point.

Program 3-3. map.c
include <gemdefs.h>

define FUDGEX 6401
define FUDGEY 4901
define WORKVALS]
define INQUIRE 1

static int points(512]1;

map (whand, vw)
int whand, wvw;{

extern long int worldC1;

unsigned int infol&dl;

int wx, wy, ww, wh;

static int old_w = -1, old_h = -1;
long int row, colj

register int x, count, max;

52

Simple Line Graphics e

wind_get (whand, WF_WORKXYWH, &wx, &wy, %ww, &wh);
if(ww == old_w && wh == old_h)
returnj
old_w = wwj
old_h = whj;

clr_display(whand, vw);
vq_extnd{ vw, INQUIRE, info)j
max = infol14]; /% max points per v_pline &/
hide_mouse();
count = @3
for(x = @; worldix]; x++){
if(worldix] == -1){
if(count)
v_pline(vw, count/2, points);
count = @;
continuej
3
if(count >= (max-1)32){
if(count)
v_pline(vw, count/2, points)j
x=—3 /% use last vertex again %/
count = @;
}
/% Compiler bugs prevent this from working as originally written.
%% (Alcyon C compiler, very early developer’s kit)
%% This version of the compiler cannot do remainder operations on
%% long integers, and cannot do more than one or two long integer
%% operations in one expression without getting confused.

0 pointsfcount++] = wx + ((worldlx] % FUDGEX) % wwl) / FUDGEXj;
it pointslcount++] = wy + ((worldlx] / FUDGEX) % whl) / FUDBEY;
¥4

row = worldixl 7/ FUDGEX;
col = worldix] - row ¥ FUDGEXj;
col %= wwj
row ¥= whj
col /= FUDGEXj;
row /= FUDGEY;
pointslcount++] = wx + colj;
pointslcount++] = wy + row;
b

show_mouse();

3}

Buy an ST and See the World

You can now look at what happens in the program after it has been compiled,
and see what the envelope library does for simple programs. Figure 3-1 shows
what the program will display.

The first thing to appear when you run the program is the border area.
A title bar appears at the top, with a Close box in the upper left corner, a Full
box in the upper right corner, and a Size box in the lower right corner. Sliders
with arrows at either end appear; there are no gray areas visible because the
slider box is filling the whole area. If you click on the slider boxes or arrows,
the sliders flash, but nothing else happens.

The program then draws the map, starting with the long coastlines and
then outlining the lakes and islands.

To see GEM in action, place the mouse on the Size box in the lower

53

e CHAPTER 3

Figure 3-1. A Full-Screen Map

right corner and hold the mouse button down; collapse the window by moving
it to the upper left corner. GEM adds the “rubber band”” window frame for
some nice visual feedback. When you release the button, the map window
shrinks to its smallest size and the map is redrawn, scaled down to the tiny
window size.,

Place the mouse on the title World Map, and drag the window to the
center of the screen. Again, the map will redraw.

Try dragging the Size box to make a long skinny window. The map will
stretch and constrict to fit in the window, as if it were drawn on a stretched
sheet of rubber (see Figure 3-2).

To understand the part the envelope library plays in all of this activity,
you need to examine which library functions are operating and the parts they
are playing.

The main routine has called setup_window, which calls open_window
to put up the window. The open_window routine creates the window using
the constant WF_PARTS to define the border areas, and then adds the name
and sliders. The slider boxes fill the area because main passed the maximum
value 1000 through setup_window to vsize and hsize.

The main function calls the multi function. After the Size box is dragged
to the upper left corner and released, multi receives a message from GEM that
something has happened in the border areas. multi calls was_msg with the
contents of the message.

The switch code in was_msg is entered at the WM_SIZED entry point.
The minimum window size is checked; then the current size is set to the values

54

Simple Line Graphics s

Figure 3-2. The proportions of the map adjust to fit the dimensions
of the window.

MAP . PRG

55

s CHAPTER 3

passed from GEM. Using these values, the was_msg subroutine calculates the
size of the work area and sets it. It then redraws the display.

If the window is enlarged, GEM sends the same WM_SIZED message,
but follows it with a WM_REDRAW message. This causes the window to be
redrawn again because was_msg calls do_redraw, which calls just_draw,
which calls doit. To prevent unnecessary redrawing, map saves the width and
height of the window and only redraws the map when they change.

GEM sends a message to multi when you click on a slider or arrow.
multi sends it to was_msg, which enters the switch code at the
WM_ARROWED, WM_HSLID, or WM_VSLID points. These call routines to
move the sliders, but since our map slider boxes already fill the slider area,
nothing happens. The switch code in all three cases starts a series of calls: They
call do_display, which calls doit, which calls map. The map function deter-
mines that the window size hasn’t changed and returns.

Take a look now at how the Full box functions. Click on the Full box in
the upper right corner of the window when the window is small, and it quickly
fills the entire desktop work area. Click on the box again and the window
jumps back to its former size.

Because the Full box is part of the border, GEM sends a message to
multi, which passes it to was_msg, which switches to the WM_FULLED entry
point. Here the size and position of the current application window are put into
the xc, yc, we, and hc variables. The size and position of the desktop work area
(window 0 is the desktop) are put into x, y, w, and h. If the size of the two
windows match, the window is in its “full” state. x, y, w, and h variables are
set for the current size to be the previous state, which is what the window is to
become. Then the size of the work area is calculated and set. x, y, w, and h
variables are also set to be the size of the work area just calculated. This step
seems redundant, but without it, subsequent calls to wind_get won'’t return the
correct values for the new work area size.

Finally, you can trace what happens when the Close box in the upper
left corner of the window is clicked. GEM sends a message to multi, which calls
was_msg, which enters the switch code at WM_CLOSED. The close_window
function is called, which gets the window size, closes the window, draws a
shrinking box, and deletes the window. In was_msg, the window handle is set
to NO_WINDOW and the exit_flag variable is set to BYE_BYE, telling multi to
break out of its loop and return to main. The main routine checks whether this
program is a desk accessory and, since it isn’t, terminates the loop.

At the end of the map drawing, some cleanup routines are called. The
do_cleanup function is called, but since it is the default library version, it does
nothing. Then close_all is called, which calls close_window, which also does
nothing because was_msg has set the window handle to —1. Then the GEM
routines v_clsvwk and appl_exit are called to close the virtual workstation and
exit the program.

56

Simple Line GraphicS s

Users can also exit the program in two other ways. Pressing any key on
the keyboard will cause the program to exit, since our library default version of
got_key always returns 1, which means exit. Pressing a key will cause multi to
go through the same procedure it did when the Close box was activated. Like-
wise, if there are menus and QUIT is clicked, do_menu will return 1 for exit,
and the same path out of multi will be followed.

Later programs show both of these exiting methods in more detail.

Building the Map Program

After the four subroutines that generate the map are compiled, they are ready
to be linked with the envelope library to build the map program. To link them,
using the Atari ST Software Developer’s Kit, we build two files: linkit.bat, which
contains the commands that batch.ttp will execute, and link.arg, which contains
a list of the files the linker will link.

The linkit.bat file, Program 3-4, is only four lines long.

Program 3-4. linkit.bat

c:\bin\l1inké8 [undefined,symbols,commandllink.argl]
c:\bin\relmod a

ci:\bin\rm a.é&B8k

c:\bin\wait

By the way, our programs are written for an ST with a hard disk and we
keep our tools on disk C: in the folder \bin. If your system configuration dif-
fers (no hard disk, for instance), you'll need to change the lines in linkit.bat ac-
cordingly—for example,

A:link68[args].

The first line calls the linker program, link68, and includes arguments to
ignore undefined symbols, produce a symbol table for the debugger, and read
the file link.arg for the rest of the commands.

After linking, the linker’s output must be converted into a program that
TOS can run. The relmod program does this by reading the linker output in the
file a.68K and creating the program a.prg. We then remove the temporary a.68k
file and wait for a carriage return.

The second file, link.arg (Program 3-5), is only three lines long.

Program 3-5. link.arg

a.48k=c:gemstart.o,main.o,
CONFI1G.0,DOIT.0,MAP.0,WORLD.O,
env.a,vdibind,vdidata.o,gemlib,aesbind,osbind,lib¥f

The first line tells the linker to create the file a.68k and to put the file
gemstart.o at the beginning of the program, followed by main.o.
The second line lists the four files created in this chapter for the map

57

file://c:/bin/lin
file://c:/bin/relmod
file://c:/bin/rm
file:///bin/wai

e CHAPTER 3

program. Since the linker is not sensitive to upper- or lowercase, the filenames
are distinguished by uppercase.

The last line is the list of libraries necessary to link with our map sub-
routines, starting with the envelope library created in Chapter 2.

After linkit.bat and link.arg have been constructed, the program is linked
by clicking on batch.ttp and typing linkit as the argument. Messages appear on
the screen as A.PRG, the default name for the executable program file, is cre-
ated. When the map program has been linked, you may want to rename A.PRG
to WORLDMAP.PRG from the desktop menu. Then open WORLDMAP.PRG
by clicking on it, and see the world.

58

4 Business
Graphics

4 Business Graphics

msssmmmm This chapter explores the Virtual Device Interface (VDI) part of

GEM. The VDI routines are responsible for activities that involve
mE— i put/output devices, such as converting coordinates for a printer or
the screen, writing to a disk, or certain basic graphics operations like circles,
lines, and fill.

The program developed here prints presentation-quality line graphs, bar
charts, and pie charts. It will draw thin and wide lines with varying endpoints;
it will also draw rectangles and pie-chart slices, and scale the output to fit any
window size and resolution. In addition, you'll see how to fill pie slices and the
bars in a bar chart with various patterns such as stripes, bricks, hatches, and so

i In the course of showing how to create business graphs and charts, we’ll
also demonstrate how to open a file and read data from it. Two ways of giving
a filename to the program are shown: The first is when the filename is entered
as the parameter in a .TTP dialog when the user starts the program, and the
second is from a file-selector dialog box that opens after the program is started.
The two types of dialog boxes are shown in Figure 4-1.

This graphics program, like all the programs in this book, is linked with
the library of routines introduced in Chapter 2 which take care of most of the
GEM-interface behavior. As explained in Chapter 2, there are usually some
connecting routines required to tailor the GEM interface to a specific applica-
tion, and to let the application routines communicate with the GEM routines.
For this program we’ll write the following connecting routines:

config.c to give the window name, application type, and so on
open_data.c to find and open a data file so it can be read
doit.c to redraw the screen—for instance, after a window is resized

When all parts of the program are finally linked, there will be the con-
necting routines, the application routines that generate the business graphics
from the data given, and the envelope library routines (in the file named
env.a).

The envelope routines listed in Chapter 2 must be compiled and linked
into the env.a library before they can be used with this application program.

61

e CHAPTER 4

Figure 4-1. The Two Types of Dialog Boxes

Ilesk Flle Uieu Options

C:\BOOK\PLOTA
111266 bytes used in 29 it
STRIPCHT C 185
STRUAL C 278
PLOT] 21
BAR PLT 168
PLT 229
PLT 104

LINE PLT
: PIE PLT
FLﬂlK Plnr

OPEN APPLICATION
pLOT

JTTP

Name:
Parameters:

pie.pl
]

ITEM SELECTOR

Directory:
C:\BOOK\PLOT\¥,PLT

Selection!
BAR AL

LINE .PLT
PIE .PLT

The config.c File
As is normal, the config.c file requires a few changes for this application. Pro-
gram 4-1 indicates the changes

The window name is set to read ““Plots and Charts” and the i_am__
accessory variable is set to 0, since this will be a regular program (not a desk-
accessory program). Neither the Resource Construction Set (RCS) nor the acces-

62

Business Graphics s

sory window variables are used, but they are filled just in case we decide to
change things later. Filling these variables is optional, but the variables must be
present or the program won't link.

Program 4-1. config.c

include <gemdefs.h>
char ¥wind_name = " Plots and Charts "3

ifdef USE_RCS

char ¥resource = "PLOTS.RSC"3
else
char ¥resource = @;

endif USE_RCS

char ¥access_name " Plotting "3

int i_am_accessory = @3

int sx = 20; /% small window size X/

int sy = 5@3

int sw = 250;

int sh = 1253

int slv = O3 /% small window vertical slider pos X/
int slh = @; /% small window horizontal slider pos X/
int svs = 100@; /% small window vertical slider size %/
int shs = 1000; /% small window horizontal slider size x/
int min_wide = 109;

int min_high = 503

int interval = @3

int events = MU_MESAG ! MU_BUTTON ! MU_KEYBD ! MU_M1 | MU_M2;

Opening and Reading a Data File
The first step is to read the file containing the data to be plotted. This is done
with the functions open_data, select_file, and read_data.

The open_data function. The open_data function, Program 4-2, is one
of the programs that connect the application and the envelope library, and is
called by the main routine in the envelope library. If a filename exists, it is
passed to open_data in the file argument.

The filename can be passed to main as a parameter when the program is
started for either a .TTP program, or from COMMAND.TOS. If the argument
passed in the file variable is a filename, then the file is immediately opened
and read.

However, if there is no argument, then the file variable is passed as “* ”,
the null string, and the user must be prompted to enter a filename. This is done
with a file-selector dialog box, such as the one shown in Figure 4-1.

open_data calls the select_file function to produce this part of the user
interface. (select_file is discussed below.) select_file displays a dialog box and a
list of filenames, if any are present, and allows the user to select or enter a file-
name. This filename is put into the file variable, and then the GEM VDI func-
tion fopen tries to open it. If fopen can’t locate the file—for example, the user
entered the wrong filename or the file is on a different disk from the one in the
drive—select_file is called again to prompt the user for another filename. This

63

meees CHAPTER 4

continues until a file can be opened or the user selects the CANCEL button. Se-
lecting CANCEL causes select_file to return 0, which causes the program to
exit in the main function.

Once the file is open, open_data calls read_data to read it.

Program 4-2. opendata.c
include <stdio.h>
int data_count;

open_data(whand, vw,file)
int whand, wvwj
char filej(

extern int errnoj;
FILE xfd, sfopen();

if({ filel@] == @)(
if(select_file(file) == @)
return(@);
}
while((fd = fopen(file,"r")) <= @)({
form_error (errno)j
if({ select_file(file) == g)
return{ @);
b]
return{ data_count = read_data(whand, vw, fd))j;
b]

The select_file function: Getting the filename. The purpose of this
function, Program 4-3, is to display the file-selector dialog box and return the
name of the file the user enters to open_data, so the data in the file can be
read.

These few lines of code accomplish quite a bit. They use GEM's
fsel_input function, which puts up a dialog box, fills it with filenames to select
from, and accepts the user’s input. The directory path and an array into which
to put the filename must be passed to fsel_input.

The directory path is really entered as a search pattern. To build the
search pattern we get the current disk drive with the GEM Dgetdrv function,
which returns 0 for drive A, 1 for drive B, and so on. The function gets the cur-
rent working directory pathname with the GEM Dgetpath function—for ex-
ample, \GAMES \STARTREK or \PROJECTS \BOOK \ CHAP1. Dgetpath is
passed an array, curdir, in which to put the path. The drive returned by
Dgetdrv is also passed, with 1 added to it because Dgetpath names the drives
starting at 1 for A, and so on.

Now that the program has handled all the pieces for the path, the GEM
sprintf function is called to put them together into a string such as

A:\PROJECTS \PLOT \ *PLT

The drive number is given as an argument to sprintf, converted to its
corresponding letter in the drv variable, and the pathname is stored in the
curdir variable.

64

file:///BOOK
file:///CHAP1
file:///PLOT

Business Graphics s

sprintf returns a string which is passed to the GEM function fsel_input.
This function then lists, in the dialog box, all the files in the directory
\PROJECTS \PLOT on drive A that have the .PLT extension. The user can
then select from the list by clicking on the filename with the mouse. The se-
lected filename is placed in the newfile array, and whichever button the user
has picked, OK or CANCEL, is returned in the button variable. If for some rea-
son fsel_input should encounter an error, 0 is returned to indicate failure. Also,
0 is returned to indicate failure to select a file if the user happens to pick the
CANCEL button.

If the user has selected a filename or typed one in and clicked the OK
button, its name is copied from the newfile array to the file array with the
GEM strepy routine. The file variable is returned to open_data and 1 is re-
turned to indicate success.

Program 4-3. slctfile.c

include <osbind.h>

define CANCEL 2
define OK 1

select_file(file)
char sfilej(

int button, drv;
char dir(B80], newfilel(B801, curdirlB86]1;

drv = Dgetdrvi()}

Dgetpath(curdir,drv+1);

sprintf(dir, "%Zci1¥%s\\X.PLT", drv+’A’, curdir)j

newfile(@] = @3

if(fsel_input(dir, newfile, &button) == @)
return(@);

if(button == CANCEL)
return(@);

strcpy(file, newfile)}

return{ 1);

}

The read_data Function: Reading the Data File

After open_data has opened the data file returned by select_file (unless the
user entered the filename as a parameter when the PLOT program was started),

it calls the read_data function to read it.
A data file for use with the PLOT program is structured like this:

Figure 4-2. A Sample Data File

Corporate Profits

LINE

1.8, 1.0 # % & y grid increments: don’t draw
9.9, 2.0 # lower left point: don’t draw
190.0, 10.0 # upper right point: don’t draw
1.9, 1.0

3.9, 7.4

4.2, 4.0

5.0, 9.3

6.5, 6.0

7.8, 8.5

8.7, 8.5

65

file:///PLOT

= CHAPTER 4

The first line always contains a title and the second line always states
the chart type. Subsequent lines contain data whose structure is specific to a
chart type. Labels are enclosed in double quotes, and any characters following
a # on a line are comments which read_data ignores.

The read_data function, Program 4-4, will read this data and pass it to
the right charting routine.

read_data first looks for the chart title and type, displaying error mes-
sages with show_form, and returning 0 if they cannot be read. The title line is
passed to the GEM routine wind_set, which takes care of displaying it in the
window’s title bar.

The function expects the chart type to be LINE, BAR, or PIE in the sec-
ond line of the data file. If it isn’t one of these three, a message is displayed,
and the type defaults to a LINE chart.

Next, the GEM fgets function gets lines of data from the file. For each
line, the program calls the extract function to get the individual data items out
of the line. extract handles multiple items on a line by returning after each one,
leaving a pointer to the next character to be read. read_data determines if the
next character is a null byte (end of line) and calls extract again if it isn’t. With
this method, it is not necessary to tell the read_data and extract functions how
many numbers are on a line, since they are handled one at a time until the end
of the line is reached. As each data item is read, it is put into the data_set ar-
ray in the place pointed to by the dp (data pointer) variable. Label data items
are returned in the labels and labent, the index into the labels array, is
incremented.

Program 4-4. readdata.c

include <stdio.h>
include <gemdefs.h>

define MAX_DATA 1
define LINE_CHART |
define PIE_CHART 2
define BAR_CHART 3

char titlel88]1;

double data_set[MAX_DATAlj
int plot_type, labcnt;
char XlabelsCMAX_DATAIl;

read_data(whand, vw, fd)
int whand, vwj
FILE %fdj(

char linel128], typel128], %xlp, fextract(), xfgets();
int xj
double %dpj

if(fgets(title, sizeof (title), fd) != title)
show_form("Missing title line!")j;
return(@);
}

66

Business Graphics s

strip_comment (title)3

wind_set (whand, WF_NAME, title, @, @)j

if(fgets(type, sizeof(type), fd) '= type) ({
show_form("Missing type line!")j
return{ @);
}

strip_comment(type);

if(strcmp(type, "LINE") == @)
plot_type = LINE_CHART;

else if(strcmp(type, "PIE") == @)
plot_type = PIE_CHART;

else if(strcmp(type, "BAR") == @)
plot_type = BAR_CHART;

else (
sprintf(line,"Unknown type "%s’: assuming *LINE’",type);
show_form(line)}
plot_type = LINE_CHART;
}

dp = data_set;
labecnt = 2
for({ x = @) x < MAX_DATA;) {
if(fgets(line, sizeof(line), fd) != line)

break;
strip_comment(line)j
1p = line;

while(%1p)¢
lp = extract{(lp, dp, &labelsl[labent]);
if(labels[labcntl)
labcnt++;
R++p
dp++j
3}

return(x)3
}

The strip_comment function. In the course of each data line being
read, comments and trailing white spaces are removed by the strip_comment
function, Program 4-5.

This function scans a string until it finds a # or the end of the string, and
then backs up, replacing any blanks or tabs with null characters.

Program 4-5. stripcmt.c

strip_comment(str)
char ¥strj{

while(¥str && ¥str != "#° && ¥str != "\n”)
str++;

while(¥str == *#* || ¥str == * 7 || gstr == *\t” || %¥str == *\n”)
tstr—— = @;

b]

The extract function: Placing the data into an array. The extract func-
tion, Program 4-6, breaks down each line of data from the file into the individ-
ual data items that are separated by spaces, and puts the items into an array for
numbers and an array for labels.

The first nonwhite character is found with a two-line loop that skips
blanks and tabs. Having found a character, the program checks to see if it is a

67

meees CHAPTER 4

double quote, and if it is, all the characters up to the next double quote are col-
lected and a pointer is put in the *label variable that points to the place in
memory allocated to the block of characters. The standard C functions, strlen
and malloc, are used to set up the memory block and return the pointer. The
second double quote is set to 0 to mark the end of the string. If the character is
not a double quote, *label remains 0 (which was set at the start of this func-
tion). Finally, the C function strcpy is used to copy the string into the label ar-
ray in the allocated position in memory.

To handle the data items that are not labels, a loop is used to collect all
characters up to a comma, null character, or newline character, and then the
program calls the ASCII-to-floating point function atof to convert the character
string into its corresponding binary form. The binary number is put into the
proper element of the data_set array by the pointer, dp.

Finally, the pointer to the the next unread character in the line is re-
turned to read_data to determine whether extract should be called again, or if
it has finished reading the file.

Program 4-6. extract.c

define DRUOTE s Tl

char ¥

extract(str, dp, label)
char kstrj;

double %xdpj

char ¥xlabelj(

register char %pj;
char tmalloc()j;
double atof();

while(fstr == * * || gstr == *\t*)
str++;
Xlabel = @;
if(¥str == DQUOTE)(
P = ++str)
while(¥str != DQUOTE && %str && ¥str '= "\n’)

str++;
if(¥str)

kstr++ = @;
else

kstr = @;

Xlabel = malloc(strlen(p) + 1);

strcpy(xlabel, p)j;

if(¥str == * ,*)
str++;

while(¥str == " * || fstr == *\t*)
str++;

3

for(p = str; %p && #p !'= *,” && ¥p != *\n’; p++)

L]
if(sp == * _*)
Ip++ = @y
else
¥p = @;
tdp = atof(str);
return{ p)j;
}

68

oo =)
Y AT
Business Graphics s

The doit Function: Drawing a Specific Type of Chart

Recall that the second item in the data file is the chart type. In the open_data
function of the chart program, the plot_type variable is set to LINE, BAR, or
PIE. In open_data the global variables data_set and data_count are also set.
Here these variables are passed to another one of the routines that connect our
application program to the envelope library and GEM—the doit function, Pro-
gram 4-7.

Several routines in the envelope call the doit function whenever they
need to redraw the screen. doit clears the screen and calculates the size of a
rectangle that nearly fills the window’s work area. The rectangle consists of
four global variables—box_x, box_y, box_w, and box_h—that define x, y, w,
and h, and are used by routines called by doit. Chapter 2 discusses another
similar doit function in detail. For now, notice that doit switches on plot_type,
and then the data that open_data put into the data_count and data_set arrays
is passed to one of three subroutines: line_chart, bar_chart, or pie_chart. These
routines actually do the work of drawing the screen.

Program 4-7. doit.c
include <gemdefs.h>

define LINE_CHART 1
define PIE_CHART 2
define BAR_CHART 3

int box_x, box_y, box_w, box_hj

doit(whand, vw)
int whand, wvwj{

extern int gl_wchar, gl_hchar, plot_type, data_count;
extern double data_set[];
int xwork, ywork, wwork, hwork;

clr_disp(whand, vw)}

wind_get (whand, WF_WORKXYWH, &xwork, &ywork, &wwork, &hwork);
hide_mouse()}

box_x = xwork + gl_wchar;

box_y = ywork + 2j

box_w = wwork - gl_wchar & 2;

box_h = hwork = gl_hchar & 2j

switch(plot_type)<{
case LINE_CHART:
line_chart(vw, data_count, data_set);
breakj
case BAR_CHART:
bar_chart(vw, data_count, data_set);
break;
case PIE_CHART:
pie_chart(vw, data_count, data_set);
break;
3}
show_mouse () ;
}

69

esees CHAPTER 4

The line_chart Function: Drawing a Line Chart

The line_chart function will create the line-chart style of graph as shown in
Figure 4-3.

Figure 4-3. A Sample Line Chart

PLOT.PRG

The data to produce the chart shown in Figure 4-3 is in the file line.plt,
Program 4-8.

After the chart type, the structure of the data in a chart data file should
contain at least three pairs of numbers to be used for setting up the plot. Fol-
lowing these are the data pairs, which define the vertices of the graph.

The chart type, LINE, causes doit to run the line_chart function, Pro-
gram 4-9.

Since line_chart takes its data in paired x and y coordinates, it first di-
vides the data count (passed to it by doit) by 2. It then verifies that there are at
least three pairs of numbers.

The first pair are the x and y distances between the lines of the grid that
we'll put behind the graph line. These units are the same as for the rest of the
data, so you can think of the grid lines as occurring every one million dollars if
the graph data is in millions of dollars.

The next two pairs of numbers define the minimum and maximum val-
ues for the graph. This feature lets us improve the graph aesthetically by mak-
ing the edges of the graph area extend past the graph lines, thereby keeping
the graph lines from touching the edges of the graph area.

70

L
Business Graphics e

If the value for the x increment that was given in the first pair of num-
bers equals the maximum x value in the second pair of numbers, then only
horizontal lines will be drawn behind the graph.

The remaining data pairs are interpreted as x and y coordinates that de-
fine the dots to be connected with the v_pline routine, as is done with the map
program in Chapter 3.

As the line_chart function continues to execute, it calls several other
functions we provide, and some functions provided by VDI. The next few para-
graphs summarize these calls and their purposes.

First, the range function is called to verify that the correct minimum and
maximum values are set, to prevent the graph lines from extending beyond the
edge of the chart.

The grid function is next, putting up the background grid for the graph.
This function is used to convert the graph points from the graph units, such as
millions of dollars, to pixel units. Once the set of graph points is in pixel units,
some VDI functions are called to plot them.

The line mode is set to SOLID by calling the VDI vsl_type function.
Several “poly-line” line types are defined at the beginning of the line_chart
file, so you can experiment with the line mode setting if you wish.

You can also experiment with the line width, vertices markers (poly-
markers), and end shapes. VDI's vsm__type sets the type of marker for the
GEM v_pmarker routine to use. v_pmarker is just like v_pline, but it puts dis-
tinct markers at the vertices instead of connecting the points with lines. We use
vsl_width to set the width of the lines. Thick lines set to eight pixels wide
show up well on overhead slides.

Last, the GEM VDI function v_pline is called, which plots the points
and connects them with lines in the style we indicated in the previous
statements.

Program 4-8. line.plt

Corporate Profits
LINE
1.0,
8.9,
19.0,
1.0,
3.0,
4.2,
5.9,
&.5,
7.0,
8.7,

Program 4-9. linechrt.c

14]

%% Poly-marker shapes
x/

define DOT

define PLUS

define STAR

x & y grid increments: don’t draw
lower left point: don’t draw
upper right point: don’t draw

&Pn-:ﬂ-h\l---ﬂ'-
ueaUWebhs:-

WUN=-

71

CHAPTER 4

define SQUARE
define CROSS
define DIAMOND

LR

% Poly-line line types
X/

define SOLID i
define LONGDASH 2
define DOTTED 3
define DASHDOT 4
define DASH S
define DASHDOTDOT &

/%

k% Poly-line end styles
%/

define SQUARE]
define ARROW 1
define ROUNDED 2

line_chart(vw, count, data)
int vw, count;
double *dataj{

double max_x, max_y, min_x, min_y, X, Y3}
int i, pointsiS121, off;
extern int box_x, box_y, box_w, box_hj;

count /= 2
if(count < 3)¢
show_form("No data after increments and corners”);
returnj
b
¥ = Kdata++;
y = ¥data++;
count--3
range(count, data, &max_x, &max_y, &min_x, &min_y);
off = grid(vw, %, y, max_x, max_y, min_x, min_y);
data += 4; /% skip corner data %/
count -= 2j
for{ i = @3 i < count % 25 i += 2)¢
pointslil = box_x +
scale(datalil,max_x,min_x,box_w-off) + off;
pointsfi+1] = box_y + box_h -
scale(datali+11,max_y,min_y,box_h);
3}

vsl_type(vw, SOLID); /% solid lines %/
ifdef THIN_LINES
vsm_type(vw, DIAMOND); /% diamonds at vertices %/
v_pmarker (vw, count, points); /% draw the diamonds %/
vsl_width{ vw, 1); /% draw thin lines &/
else
vsl_width(vw, 8); /% draw wide lines &/

vsl_ends(vw, ROUNDED, ARROW); /% with fancy ends %/
endif THIN_LINES

v_pline(vw, count, points); /% draw the lines %/

3

The range Function

The range function, Program 4-10, is called by line_chart to determine the larg-
est and smallest coordinates. The function expects them to be the minimum
and maximum values that were the first two number pairs in the data file.

72

RN
A s
Business Graphics

However, in case an error has been made and one of the other data values is
larger or smaller, this function resets the maximum and minimum x and y vari-
ables to the correct values. This prevents the graph line from extending beyond
the window.

The range function loops through the data array, checking each pair of
numbers against the current minimum and maximum x and y values. If a num-
ber is found that is less than the minimum, the minimum is set to the number.
The same process is done for maximum numbers. When the routine is finished,
max_x and max_y contain the largest x and y values and min_x and min_y
contain the lowest x and y values.

Program 4-10. range.c

range(count, data, max_x, max_y, min_x, min_y)
int count;
double ¥data, $max_x, fmax_y, ¥min_x, #min_y;{

int i}

kmin_x = &max_x = datal@lj
gmin_y = Emax_y = datalllj
for(i =@; i < count & 2; i += 2)(
if(datali+@] < ¥min_x)
tmin_x = datali+@]1;
if(datali+@1 > Emax_x)
tmax_x = datali+@];
if(datali+1] < Xmin_y)
tmin_y = datali+1];
if(datali+1] > Emax_y)
tmax_y = datali+1];
3
b

The grid Function and Its Calls

The line_chart function calls grid, Program 4-11, to label the axes, draw a col-
ored rectangular background with rounded corners and a pattern so it is suit-
able for either a color or monochrome monitor, and draw dotted lines at
intervals to mark the graph divisions.

grid calls the label function, Program 4-12, to label the upper and lower
left corners of the graph with the maximum and minimum values.

The label function converts the stored floating-point values of the mini-
mum and maximum numbers back into text strings with the strval function,
Program 4-13, which follows it.

Program 4-11. grid.c
include <obdefs.h>

/%

k% Poly-marker shapes
| ¥4

define DOT

define PLUS

define STAR

define SQUARE

BN -

73

CHAPTER 4

define CROSS S
define DIAMOND (-]

X% Poly-line line types

%/

define SOLID 1
define LONGDASH 2
define DOTTED 3
define DASHDOT 4
define DASH S
define DASHDOTDOT &

/%

¥% Poly-line end styles
%/

define SQUARE

define ARROW

define ROUNDED

N =g

grid(vw, %, y, max_x, max_y, min_x, min_y)
int vw;
double %, y, max_x, max_y, min_x, min_y;{

int i, mode, linel14], off, off2, x_inc, y_inc;
char stri8g1;
extern int box_x, box_y, box_w, box_h, gl_wchar, gl_hchar;

off = label(vw, min_y, box_x, box_y+box_h)j

off2 = label(vw, max_y, box_x, box_y+gl_hchar+1)j

if(off2 > off)
off = off2;

off &= gl_wchar; /% convert chars to pixels %/

ifF0 % < max_x)<
label (vw, min_x, box_x+off, box_y+box_h+gl_hchar);
off2 = strval(max_x, str) % gl_wchar;
label (vw, max_x, box_x+box_w-off2, box_y+box_h+gl_hchar);
3

draw_box (vw, box_x+off, box_y, box_w-off, box_h);
vsl_width(vw, 1);
vsl _color{ vw, 2);

vsl _type(vw, DOTTED); /% grid made of dotted lines %/
vsl_ends(vw, SQUARE, SQUARE); /% with simple ends %/

mode = get_mode (vw); /% save old mode %/

vswr_mode(vw, MD_TRANS); /% transparent between dots %/

ifli x < max_x)¢
x_inc = scale(x, max_x, min_x, box_w-off);
for(i = x_incy i < box_w-off; i += x_inc)(
linel@] = i + box_x + off;
lineC1l = box_y;
linel2] = i + box_x + off;
linel3] = box_y + box_h;
v_pline(vw, 2, line);
3

b
y_inc = scale(y, max_y, min_y, box_h);
for(i =y inc; i < box_hj i += y_inc){
linel@] = box_x + off;
linef1] = box_y + box_h - i;
linel2] = box_x + box_w - offj
linel3] = box_y + box_h - ij;
v_pline(vw, 2, line);
:

vewr_mode(vw, mode); /% return to old mode %/
vsl_width(vw, 1);

vel_color(vw, 1);

return(off);

¥

74

Business GraphicsS e

Program 4-12. label.c

label (vw, value, %, y)
int vw;

double value;

int x, y3<{

char striB8@1;
int len;

len = strval(value, str)j;
v_gtext(vw, x, y, str)j
return(len);

3

Program 4-13. strval.c

strval (value, str)
double valuej
char fstr;({

char p;

sprintf (str,"%f",value);

for(p = strj; Xp; p++) /% find the end of the string %/
H

while{ &¥——p == 9") /% trim trailing zeros %/
= 0;

if(gp == *.7)
tp = 9;

;.turn(strlen(str));

The strval function uses the C function sprintf to convert a double-
precision floating-point value to a character string. It trims off trailing zeros
and, if the remainder ends in a decimal point, it is also removed. The string
length is found using the C strlen function, and the length is returned to label.

When strval returns the string and its length, label prints the string using
the GEM routine v_gtext and returns the length to grid so the colored back-
ground can be drawn to the right of the labels.

The grid function can draw either a grid, or simply horizontal lines like
those used for bar graphs. If the increment value for the x-axis in the data file
is equal to the maximum x value, only horizontal background lines will be
drawn. The statement in grid

if(x < max_x)

checks for this condition. If x is less than max_x, the program draws the verti-
cal lines for the grid, calling label to put numbers under the first and last line.
The width of the second label is calculated before it is plotted. The length will
be subtracted from the width of the colored background so the label can be
right-justified with the background.

Now the background color and pattern are filled by calling the drawbox
function, Program 4-14, from grid.

In drawbox, the interior fill mode to PATTERN is set by calling
vsf_interior, and the pattern is selected by calling GEM’s vsf_style with pattern

75

w—— CHAPTER 4

number 3. At the top of the file, you can see that 3 is defined as a hatching
pattern. This is a light pattern that looks good in color or in monochrome and
doesn’t interfere with the finer details of our graph.

GEM'’s vsf_color is used to set the fill color to number 3, which is one
that hasn’t been used yet and also is the last color available on a medium-
resolution screen. On a monochrome screen, color 3 is black, but the light pat-
tern will allow us to see the graph lines on it.

To draw a box with rounded corners, giving a finished look to the graph,
v_rbox is used. This is one of those VDI routines that use the upper left and
lower right corners instead of x, y, w, and h, so we add x to w and y to h to ac-
commodate it.

Before the return to grid, the pattern and color are reset to what they
were at startup by the openvwrk function in the envelope library.

Back in grid, the drawing of the grid begins with dotted lines. First, the
width of the grid lines is set to 1 pixel and the color is set to 2 using the VDI
functions vsl_width and vsl_color. On color monitors, the color associated with
2 is whatever the user has selected for the desktop before running the PLOT
program. On monochrome systems, any color other than 0 (white) is black;
consequently, this program doesn’t require any changes to work in
monochrome.

Next, the style of the grid lines and the style of their end markers are
set. The line is defined to be DOTTED; however, you can change it to one of
the other types defined at the top of the grid file, such as dashes or combina-
tions of dashes and dots. The line ends are set to plain SQUARE, although you
can achieve some interesting effects if you set them to ARROW.

Before continuing, the writing mode is saved as it was originally set by
GEM to “REPLACE"” and the mode is changed to transparent. If the writing
mode was left as REPLACE, the grid lines would consist of the line pattern
with white between the dots and dashes. This would make the grid lines far
too prominent in our graph. Changing the writing mode to TRANSPARENT
permits the background to appear behind the patterned lines. The old writing
mode is saved because it will be restored when the function is finished. This
lets us call grid from functions that expect the default writing mode, since,
unlike line width and color, this is not one of the parameters that normally
changes.

To get the current writing mode, the getmode function, Program 4-15, is
called.

getmode calls the GEM function vqt_attributes to ask for ten items of
information about VDI text modes. The program specifically wants to know
what the writing mode is set to, which may be REPLACE, TRANSPARENT,
XOR, or REVERSE TRANSPARENT. The writing mode is returned to grid.

The old writing mode having been saved, the mode is reset to TRANS-
PARENT with the GEM vswr_mode function.

76

SRS AREN
e
Business Graphics s

All the information needed is now known; all the variables are set to
draw the graph grid and its labels; and we're ready to draw the lines. The pro-
gram decides if it must draw vertical grid lines, and if so, scale, Program 4-16,
is called to convert the graph units (such as dollars) to pixels.

The scale function maps graph units into pixels. It is called whenever we
need to make a graph fill the screen. scale is given a value in graph units (for
example, dollars), the maximum and minimum values in graph units, and the
total height (or width) in pixels of a window. It returns a value in pixels that is
the same proportion to the total size as the first value is to the difference be-
tween the minimum and maximum. For example, if the window is 100 pixels
high, the first value is $20, and the minimum and maximum values are $10
and $100, then scale will return 11 pixels and you will plot a point in the win-
dow 11 pixels high to represent the $20.

After the conversion, v_pline is called to draw the vertical grid lines.
The horizontal grid lines are computed and drawn exactly the same way.
Before returning to the line_chart function, grid resets the parameters that were
changed—the writing mode, line width, and color—and returns the x value of
the left edge of the background so that the graph routines will know where to
start the graphs.

Program 4-14. drawbox.c

define HOLLOW
define SOLID
define PATTERN
define HATCH

WN =8

draw_box (v, x,y,w,h)
int vw, %, y, w, h3(

int cornersfi16]1;

vsf_interior(vw, PATTERN);
vef_style(vw, 3);
vsf_color(vw, 3)3
cornersi@] = x;

cornersl1] = y;

cornersC2] = x + wj}
corners(3] = y + h;
v_rfbox(vw, corners)j;
vsf_interior(vw, HOLLOW);
vef_style(vw, @);
vsf_color(vw, @)j;

}

Program 4-15. getmode.c

/%

$% Return the current writing mode (Replace, Transparent, XOR, or
%% Reverse Transparent)

74

get_mode (vw)

int vwj {

struct

int text_face;
int text_color;

77

e CHAPTER 4

int
int
int
int
int
int
int
int

angle;
hor_align;
ver_align;
write_mode;
char_wide;
char_high;
cell_wide;
cell_high;

} info;

vat_attributes(vw, &info);
return({ info.write_mode);

3

Program 4-16. scale.c

scale(datum, max, min, isize)
double datum, max, minj

int isize;(

/%

kX (datum-min) ®

} § 3 —_—————————— - —————

1 3 max—min isize

x/

return(isize & ((datum—min) / (max-min)));

3

The bar_chart Function: Drawing a Bar Chart

Another very common way to express numerical relationships is with the bar
style of chart. Using many of the same subroutines we developed earlier in this
chapter, it is a simple matter to create the bar chart in Figure 4-4.

Figure 4-4. A Sample Bar Chart

1380

PLOT.PRG

1981 1982 1983 1984 1385 1986

78

(5 i)
L -]
Business Graphics s

The data used to create this chart is structured like the data file shown in
Program 4-17.

The bar_chart function is listed in Program 4-18.

This function begins by saving the value for the grid line increment, just
as the line_chart subroutine did. There is only one increment value for y, since
this is a bar chart and the “grid” will really consist only of horizontal lines.

Also, minimum and maximum values are only required for the y-axis
and, since there is only one of each value, we can find them with a simple loop
instead of using the range subroutine needed by the line chart program. This
loop searches the data to insure that the maximum and minimum values in the
data file are correct, and resets them if a larger or smaller value is found.

Skipping over the maximum and minimum values, bar_chart calls the
grid function, explained earlier in this chapter, to put up the background and
draw the horizontal lines. The value 0.0 is given for the x-axis to grid so that
the vertical lines aren’t drawn.

The bars need to be separated by some arbitrary amount of space to
keep them distinct from each other. We have chosen to make the space 1/3 the
size of the bars, so we divide the width of the graph box by the number of
bars, and then divide by 4 to get the width of a space. The width is then multi-
plied by 3 to give the width of each bar. All the bars plus their spaces will ex-
actly fill up the width of the graph. Of course, for your version of the program,
you can modify the width to be any value you want.

Now each bar and its label is ready to be drawn on the graph.

Program 4-17. bar.plt

Yearly Gross Margin

BAR

10 # increment

80 # invisible max
a # invisible min
*i198@", 15

"1981", 26

*1982", 34

"1983", 58

"1984", 77

"1985", 44

»19854%, 51

Program 4-18. barchart.c

bar_chart(vw, count, data)
int vw, count;
double xdataj(

double max_y, min_y, vyj;

int i, bar_space, bar_width, off, loff, 11;

extern int box_x, box_y, box_w, box_h, gl_hchar, gl _wchar;
extern char %labels(];

y = ¥data++; /% increment for grid %/
count--j

max_y = min_y = datal®];

for(i = @3 i < count; i++)

79

e CHAPTER 4

max_y = max_y < datalil 7 datalil : max_y;
min_y = min_y > datalil 7 datalil : min_y;
b
data += 2; /% invisible max & min for scaling %/
count -= 23
off = grid(vw, 0.9, y, 9.9, max_y, 9.0, min_y)j;
bar_space = box_w / count / 4;
bar_width = bar_space % 3;
for(i = @; 1 < countj i++)(
draw_bar{(vw, i & (bar_width + bar_space) + off + bar_space / 2,
bar_width,
scale(datalil,max_y,min_y,box_h),
i+l);
11 = strlen{(labels[i]) ¥ gl_wchar;
if(11 < bar_width)
loff = box_x + (bar_width - 11) / 2;
else
loff = box_x;
v_gtext(vw,
i * (bar_width+bar_space) + off + bar_space/2 + loff,
box_y + box_h + gl_hchar + 1,
labelsCil)3

The draw_bar function. Most of the work for draw_bar, Program 4-19,
is done by bar_chart, which calculates its parameters. When draw_bar is
called, it's given a location to draw the bar, a bar width and height, and a pat-
tern number for the bar fill. The bar height is given in pixels, calculated by the
scale function discussed earlier. The first bar is placed a half-space from the left
margin, resulting in another half-space between the last bar and the right mar-
gin. This way, the bars stand away from the graph edges for a more pleasing
appearance.

draw_bar constructs the corners of the bar from the globally defined
background variables, box_x and box_y, and the parameters passed to it.

The draw_bar function sets the interior fill mode to PATTERN and the
style to its argument. At the beginning of this file you can see a table of pat-
terns for the index. The patterns have been arranged so that adjacent patterns
contrast with each other. The pattern parameter is modulo 24 (the size of the
table) so that if there are more than 24 bars, the routine wraps to the beginning
of the table.

Color is set to black and then the bar is drawn using the VDI routine
v_bar.

As usual, before returning, fill, style, and color are set back to their origi-
nal state.

Program 4-19. drawbar.c

define HOLLOW
define SOLID
define PATTERN
define HATCH

UN=8

/%
%% Put the patterns in a more interesting sequence

80

%/
int pat_list(]

= {

Business Graphics

1,5,7,16,9,20,8,12,4,19,2,6,3,22,10,13, 11,24, 14,15, 17, 18,21, 23

35

draw_bar{ vw, %, wide, high, pattern)
int vw, x, wide, high, pattern;{

int xy[4];

extern box_x,
wy[@] = box_x
®xy[1] = box_y
xy[2]1 = box_x
xy[3] = box_y

box_y, box_w, box_h;

+
+
+
+*

bl]

box_h;

X + widej;
box_h — highs

vsf_interior(vw, PATTERN)}
vef_style(vw, pat_listlpattern % 241);

vef_color(vw,

v_bar{ vw, %y)j

3]

vsf_interior(vw, HOLLOW);
vef_style(vw, @)3
vef_color{ vw, @);

3

Labeling the bars. After the bars are drawn, the labels are centered un-
der them. In bar_chart, the length of the label is subtracted, in pixels, from the
width of the bar. If it is shorter than the bar, the label is centered by adding
half of the difference to the x value that is passed to v_gtext, which displays
the label. If the label is the same length or longer than the bar, it is simply
aligned with the left side of the bar.

Drawing Pie Charts
Pie charts, like the one in Figure 4-5, are easy to do using GEM VDI routines.

Figure 4-5. A Sample Pie Chart

81

e CHAPTER 4

The pie_chart function simply sums up all the data items, calculates the
center point and radius of the pie, then draws the pie slice and labels a legend
entry for each data point. The data file for the sample pie chart shown in Fig-
ure 4-5 is listed in Program 4-20.

The code for the program to plot the chart is shown in Program 4-21.

The most complicated part about drawing pie charts in windows of vary-
ing sizes is making sure that the diameter is smaller than the shortest side of
the window. If a radius of 100 pixels on the x-axis is specified, then the radius
will be a little less than 1/6 the screen’s width (640 pixels in medium and high
resolution). However, the same 100-pixel radius on the y-axis would be 1/2 the
screen’s vertical size (in medium and high resolution).

The fact that pixels are taller than they are wide creates the need for
some special treatment. GEM uses the x-axis pixels to define the radius. The
function must calculate the equivalent number of y-axis pixels. To convert y-
axis pixels to x-axis pixels, the function multiplies the number of y-axis pixels
by the width of the screen (measured in pixels). Then it divides that result by
the height of the screen, also measured in pixels. Now the height and width are
in the same units as if the screen were square, and the function can use one-
for-one comparisons.

To get the size of the window, pie_chart calls the GEM wind_get func-
tion. If the width of the window is less than the height, then the radius must
be 1/3 the width to keep the pie chart within the window. If the height is less
than the width, the radius is made 1/3 the height.

To position the labels, the starting position of the background box and
the diameter of the pie chart are added, adding two more characters of space to
offset the labels to the right of the pie.

The center of the pie is in the middle of the background vertically, and
the radius plus one character space horizontally.

draw_box is called to draw in the background and loop through the
data, drawing each pie slice and writing its label.

In the loop, the variable this_one is the size of the current pie slice rela-
tive to the total. A fill pattern is selected, and the VDI function v_pieslice is
called with x, y, and radius, the starting position of the slice, and the ending
position. The legend function then puts up the pie slice labels. The last step in
the loop is to make the starting position of the next slice become the current
ending position.

The legend function, Program 4-22, places the pie slice labels next to
small patches of the corresponding fill pattern.

Program 4-20. pie.plt

Ingredients

PIE

"Cherries", 49
"Sugar", i8
"Flour", 15
"Shortening”, 12
"Milk", 19
“Eggs”, 5

82

Business Graphics

Program 4-21. piechart.c

& =

include <gemdefs.h>

define HOLLOW 2
define SOLID 1
define PATTERN 2
define HATCH 3

pie_chart(vw, count, data)
int vw, countj;
double fdataj{

double sum;

int i, this_one, sofar, x, y, w, h, radius, labxj;

long int max_w, max_h;

extern int box_x, box_y, box_w, box_h, gl_wbox, gl_hbox, pat_list[];
extern char %labelsl];

sum = @.0;
fort i = @3 i < countj i++)
sum += datalil;

/%
st datalil %

T ———— = e
% sum 3600
Y

wind_get(@, WF_CURRXYWH, &x, &y, &w, &h);
max_w = box_wj

max_h = box_hj

max_h ¥= wj

max_h /= hj

if(max_w < max_h)
radius = max_w / 33

else
radius = max_h / 33

labx = box_x + 2 % radius + gl_wbox & 2;

®x = box_x + radius + gl_wbox;

y = box_y + box_h / 2;

sofar = 9.0;

draw_box(vw, box_x, box_y, box_w, box_h);

for(i = @3 i < county i++)(
this_one = (datalil & 3600.8) / sum;
vsf_interior(vw, PATTERN)j;
vef_style(vw, pat_listC({(i+1) % 241);
vsaf_color(vw, 1)j
v_pieslice(vw, x, y, radius, sofar, sofar+this_one);
legend(vw, labels[il,labx,box_y + (i+1) ¥ gl_hbox,datalil/sum);
sofar += this_onej
3

vef_interior(vw, HOLLOW);

vef_style(vw, @);

vef_color{ vw, @);

}

Program 4-22. legend.c

legend(vw, str, x, y, ratio)
int vw;
char #str;

int x,

Yi

double ratioj{

int xy[4];
char percent(18@1];

83

meees CHAPTER 4

extern int gl_wchar, gl_hchar;

ratio ¥= 100.0;

xy[@] = x3

xy[1] = y;

®y[2] = % + gl_wchar & 2;

xy[3] = y + gl_hchar;

v_bar(vw, xy)3

sprintf (percent, "%5.2¢%% %s",ratio,str);

v_gtext(vw, x + gl_wchar x 3, y + gl_hchar, percent);
3}

legend calculates the percentage of each slice by multiplying the pie slice
ratio by 100. Then it draws a small box that fills with the current fill pattern.
The sprintf function is used to print the label into a string—40.00% Cherries,”
for example—and put the string onto the screen using GEM's v_gtext.

Putting It All Together

At last, with all the functions entered and compiled, it’s time to link them to-
gether. The arguments for the link batch program are kept in a file called
link.arg. Program 4-23 is the listing of this file, with the names of all the func-
tions written for this business graphics application in capital letters.

The linkit.bat file, Program 4-24, for the PLOT program, listed below,
takes most of its arguments from the link.arg file. Again, our programs are writ-
ten for an ST with a hard disk and we keep our tools on disk C: in the folder

\bin. If your system configuration differs (no hard disk, for instance), you’ll
need to change the lines in linkit.bat accordingly.

As usual, the linked files are output as a.prg, which you will probably
want to rename to something descriptive like PLOT.PRG or GRAPHICS.TTP.
Remember that by means of the .TTP extension, TOS will give users the oppor-
tunity to type in the name of the data file to be plotted when they start the
application from the desktop.

Program 4-23. link.arg

a.éBk=gemstart.o,main.o,
CONF16.0,LABEL.0,STRVAL.O,LINECHRT.O,RANGE.O, SCALE. O,

GRID.0O, DRAWBOX .0, GETMODE. O, BARCHART.0,DOIT.0, DRAWBAR. 0, PIECHART. O,
LEGEND.O, OPENDATA. O, READDATA. 0, STRIPCMT.O0,EXTRACT.O0,SLCTFILE. O,
env.a,vdibind,vdidata.o,gemlib, aesbind,osbind,lib#f

Program 4-24. linkit.bat

:\bin\1linké48 [undefined,symbols,command(link.argl]
:\bin\relmod a

:\bin\rm a.é&B8k

:\bin\wait

nAnnN

84

file:///bin/l
file://c:/bin/relmod
file://c:/bin/rm
file:///bin/wai

5 Creating Menus,
Dialog Boxes,
and Graphics

5 Creating Menus,
Dialog Boxes,
and Graphics

s This chapter shows how to create a more complicated user interface

using GEM features such as pull-down menus and event timing. We
M. also demonstrate two uses of Atari’s Line A graphics interface:
speeding up screen drawing, and how to write functions for handling keyboard
input. The Line A interface resides in ROM.

The program used for explaining the various functions explores a math-
ematical object called the Mandelbrot set. A Mandelbrot set is an infinite series
of numbers that exhibit symmetry, both visual and numerical, as they're plot-
ted. Shown on the Atari screen, the Mandelbrot set produces strikingly beauti-
ful images. There’s a practical side to it too. The Mandelbrot set is related to
fractals, which are mathematical relationships that occupy a “fraction of a di-
mension”—for instance, somewhere between a line and a plane. Fractal geome-
try has been used to create background scenes of alien planetscapes in movies
and video games.

The complexity of a Mandelbrot set can be seen in Figure 5-1. One dis-
tinctive feature of a Mandelbrot-set image is that you can magnify parts of the
image and get continually greater detail. The GEM interface, with the mouse
and the ability to expand rectangles defined by the user, makes it well-suited to
exploring these images.

As in the other application programs in this book, the GEM envelope li-
brary from Chapter 2 is used to supply most of the functions for this applica-
tion. Recall that the intent of the envelope library is to provide a complete set
of standard interface routines, requiring only specific connecting routines to be
written for each specific application. The list below contains the specific con-
necting routines for the Mandelbrot program. Each of these functions is ex-
plained later in this chapter.

87

e CHAPTER 5

Figure 5-1. A Mandelbrot Set Image
desk file npjl_nn_s__ _ help

sf

~ HandelZoon!

config.c gives the window a name, program type, and so on

do_menu determines the item selected from the menu and calls the appropriate sub-
routine to handle it

doit draws the Mandelbrot set

build_tree sets up the menu tree

mouse_hit responds to mouse events

got_key responds to keyboard input

dialog displays a dialog box for the user to communicate coordinates

just_draw displays the correct screen

In addition to these connecting functions, we’ll also describe the program
listings for a number of other functions required for this program to work.

The config.c File

The config.c file (Program 5-1) is the one originally described in Chapter 2, but

modified to define the basic information required for this particular application.
Very few changes are required to config.c. The name is defined as

“MandelZoom!” and i_am_accessory is set to 0 since this application is not a

desk accessory. The Resource Construction Set is not used in this program;

USE_RCS is undefined and resource is set to 0.

Program 5-1. config.c

include <gemdefs.h>

char ¥wind_name = " MandelZoom' ";

88

Menus, Dialog Boxes, and GraphicS s

ifdef USE_RCS

char f¥resource = "MANDEL.RSC"j
else

char ¥resource
endif USE_RCS

23

char Xaccess_name = Mandelzoom!' "3
int i_am_accessory = @3
int sx = 203 /% small window size ¥/
int sy = 50;
int sw = 250;
int sh = 1253
int slv = @; /% small window vertical slider pos %/
int slh = @; /% small window horizontal slider pos %/
int svs = 1@@P; /% small window vertical slider size %/
int shs = 10@@; /% small window horizontal slider size ¥/
int min_wide = 10@;
int min_high = 5083

=

int interval
int events = MU_MESAG ! MU_BUTTON ! MU_KEYBD ! MU_M1 | MU_M2;

The do_menu Function

Chapter 2 discusses the mechanisms in the envelope for handling menus, but
does not develop those mechanisms fully. Instead they consist of only the
minimum code necessary to include them in the standard envelope library. Pro-
gram 5-2 develops the critical routines that actually implement menu handling.
The routines produce the menu and submenus shown in Figure 5-2. The menu
is the horizontal list of items across the top of the window. Vertical submenus,
which contain selectable items, appear when the user pulls down the submenu
by placing the mouse on a menu item.

Figure 5-2. The Mandelbrot Program’s Menu and Submenus

Main Menu:

desk file options help
Submenus:

desk file options help
About MandelZoom Quit Coordinates Controls
Desk Accessoryl Square Box

Desk Accessory2 Time Drawings

Desk Accessory3
Desk Accessory4

The do_menu function handles menu activation. It relates to the rest of
the envelope in the following way. The main function in the envelope calls the
multi function which, you may recall, waits for events such as mouse selections
or keyboard input. Another event multi waits for is a menu event, indicating
that the user has pulled down a menu (we’ll explain how this menu got there
shortly) and selected a menu item with the mouse.

89

meees CHAPTER 5

When a menu event occurs, multi calls the do_menu function (Program
5-2), passing it the menu identifier and number of the item in the menu. The
identifier and menu item number are established when the menu is built by the
build_tree function, explained later. The menu identifier in this program (and
all other programs in this book) is 0 because only one menu is used and num-
bering begins with 0. However, the do_menu function includes hooks that en-
able it to handle more than one menu. This helps when you write programs
that use multiple menus.

This version of do_menu has only one switch case because there is only
one menu, and the menu identifier stored in the title variable is always equal to
MAINMENU. The do_main_menu function is called and passes the number of
the menu item that was selected. Of course, if there were more than one menu,
more switch cases, with their respective function calls, would be included.

When do_main_menu has completed its work regarding the selected
menu item and has returned, do_menu calls the GEM routine menu_tnormal.
At this point the selected menu item is in reverse video. The menu_tnormal
changes the selected menu item back into normal video.

At its completion, do_menu returns control to multi and the envelope
library.

Program 5-2. domenu.c

/%

¥X Handle menu activations.

XX Menu messages have two fields of interest to us:

¥k which menu tree it refers to, and which item in that menu.

¥% Since all of our menu items are from the main menu at

% the top of the screen, we only handle that case here (MAINMENU)
X% although we use a switch to leave a hook for more complicated
k% menu structures we might have in the future.

x/

include <mandel.h> /% This defines MAINMENU %/
/% among other things... %/

do_menu(title,item,whand, vw)
int title, item, whand, vw;<{

int rets
extern struct object fmain_addr;

ret = @;

switch(title){

case MAINMENU:

default:
ret = do_main_menu(item,whand,vw);
3

menu_tnormal (main_addr,title,1);

menu_tnormal (main_addr,item,1);

return(ret);

3

90

Menus, Dialog Boxes, and Graphics

The do_main_menu Function

Pull-down menus consist of a vertical list of selectable items that appear when-
ever the mouse pointer touches one of the horizontal menu topics at the top of
the screen. All of the vertical selectable items are assigned menu numbers.
When the user selects an item, its number is passed to do_menu and then to
the correct switch statement for the menu. In this application program, the
do_main_menu function handles all the actions the user could request from
the menu.

The do_main_menu routine determines exactly what action the user has
requested and takes the appropriate action based on the request.

The function checks the menu item number passed to it and compares it
to the global variables About, Quit, Coord, Square, Timer, and Ctrl. These vari-
ables correspond to selectable menu items and are initialized by the build_tree
routine as it builds the menu tree (explained later).

The build_tree function sets up the four top-level menu items shown in
Figure 5-3: desk, file, options, and help. The setup_window function in the en-
velope (explained in Chapter 2) puts this menu on the screen at the top of the
window.

GEM also gets into the act—it is GEM that causes the pull-down menus
to appear when the user passes the mouse over the top-level menu items. In
addition, GEM handles the case when the user pulls down the desk menu and
then selects a desk accessory. Except for these instances, the do_main_menu
function handles all other menu selections.

The last three lines of this function are executed only if there is a bug is
in the program. These lines help find typos while debugging the program as
you type it in. If you add more selections to the program, this code makes cer-
tain you modify do_main_menu to handle any menu items added to
build_tree.

Program 5-3. domnmenu.c

int make_square = 13

do_main_menu (item,whand, vw)
int item, whand, vwj{

char str[2561;

extern struct object ¥main_addr;

extern struct object dial_coordClj

extern int About, Quit, Coord, Square, Timer, Ctrl, do_timit;

if(item == About)({

sprintf(str,"[@1[%si%s!%si¥Asi¥s][OK 1",
"Mandelzoom! Quickly draw "y
“"the Mandelbrot set as S
"described in Sci. Amer. Aug ",
"1985. Zoom using the -5
"mouse. Move using arrows. =
3

form_alert(li,str);

return(d);

; j

91

= CHAPTER 5

else if(item == Quit){
return(i);
3
else if(item == Coord)¢
if(coordinates{())<{
clr_display{whand, vw);
do_display(whand, vw);
3
return(d);
}
else if(item == Square)(
make_square = !make_square;
menu_icheck {(main_addr,Square, make_square);
return(d);
}
else if(item == Timer){
do_timit = !do_timit;
menu_icheck (main_addr,Timer,do_timit);
return(d);
b 3
else if(item == Ctrl)(
give_help();
returnid);
H
sprintf(str,"[81l%s %d1L OK 1", "Unknown menu number!",item);
form_alert(l,str);
return(d);
}

The desk menu. If the user passes the mouse over the desk menu item,
the pull-down menu shown in Figure 5-3 appears.

Figure 5-3. The Desk Pull-Down Menu

file option
% About MandelZoon

Bombsite!

Command Shell
UT52 Emulator
Contral Panel

Set RS232 Config.
Install Printer

I

b 2l

[

92

EEE=Es
TESRTTES N
Menus, Dialog Boxes, and Graphics s

The desk pull-down menu is a special case. GEM lets the programmer
specify the names to appear in the first two positions in the menu; in this pro-
gram, they are About MandelZoom and the dotted line under it. Up to six names
of desk accessories can follow, which are put in the list by GEM. If there are no
desk accessories to pick from, the pull-down menu for desk will end after the
dotted line.

If the user selects About MandelZoom from the desk menu, GEM sends
a menu event to the multi function in the envelope library and it filters down
to do_menu and then to do_main_menu. The item number will be equal to
the global variable About (initialized in build_tree), which signals the program
to put a window on the screen with some information about the program. The
GEM form_alert function is then used to display a window with an OK button
and a few terse phrases about the program. Often this message contains the
program author’s name, copyright notice, and other information about the pro-
gram or how to use it. The message text for the Mandelbrot program can be
seen in the do_main_menu listing.

The file menu. As shown in Figure 5-4, one of the selections on the
pull-down file menu is Quit.

Figure 5-4. The File Menu
desk [EFEEN options help

Selecting Quit causes do_main_menu to return 1, defined to mean exit.
The do_menu function first returns the menu item to normal video to deselect
it, and returns the 1 to multi, causing multi and main to exit and return the
user to the desktop.

The options menu. The pull-down menu for the top-level options menu
item is shown in Figure 5-5.

93

memmm CHAPTER 5

Figure 5-5. The Options Menu
desk file [FTSTNEY help

[E | Coordinates _ MandelZoon
v Square Box

v Time Drawings

The user would select the Coordinates menu item to change the way the
Mandelbrot set is displayed on the screen. For example, Coordinates is a way
to zoom in to a particular area. It calls the coordinates subroutine, explained in
detail below, and then clears and redraws the screen.

The Square Box menu item adjusts the proportions of a magnified image;
Time Drawings keeps track of how long an image takes to draw. These act as
toggle switches, with a check mark next to the item to indicate when the fea-
ture is on. When the menu item has a check mark, selecting the item turns it
off and causes the check to disappear, and vice versa.

The toggle mechanism works through the two global variables kept by
do_main_menu: make_square and do_timit. When the user selects one of the
menu items, do_main_menu sets the appropriate global variable and makes it
a 1 (true) if it was 0 (false), or makes it 0 if it was 1.

Then, do_main_menu calls the menu_icheck function, passing it the in-
dex into the menu tree for Square or Timer. The do_main_menu function also
passes the variable that indicates the condition (on or off) of the feature and
whether a check mark should appear next to the menu item.

The help menu. The pull-down menu for help has only one menu item
in the program. It is shown in Figure 5-6.

When the user selects Controls, the give_help function is called to put
up a succession of windows with instructions about the program.

94

Menus, Dialog Boxes, and GraphicsS e

Figure 5-6. The Help Menu

desk file optio
QiEaEe

~ | Controls |MandelZoon!

3 ‘_W

The give_help Function
The give_help function, Program 5-4, is very simple, consisting mainly of the
help text pages. The GEM function sprintf is called to “print” into a string, fol-
lowed by a call to GEM’s form_alert routine, which displays the specified
string in the window. (The form_alert function is explained in Chapter 2.)

Program 5-4. givehelp.c

give_help(){

char strl256];

sprintfistr,"[@)[As!¥%si¥si¥%si¥%s]] NEXT 1",

"To zoom in on a section
"of the picture, move the
"mouse to the upper left
"corner of the area you
"want to zoom in on.
13

form_alert(l,str)j;

sprintf(str,"[01(%si%si%sl¥si¥s][NEXT 1",

“Then hold the left button
"down and drag a rectangle
"to the size you want. The
"gscreen will begin drawing

"when you let the button go.

)3
form_alert(l,str)}

sprintf(str,"(@1[%s!%s|¥%si%si¥%s]Il NEXT 1",

"The arrow keys allow you
"to see the parts of the
"picture above, below, and
"to either side. Return

95

"
L
"
’
"
’
"
»

mmees CHAPTER 5

"returns you to the start.
]

form_alert(1l,str);

sprintf(str,"[@1[%s!%s!%si%si%s1l NEXT 1",
"The + and - keys will zoom .
"in and out of the set, with ",
"the same coordinates. This "
"lets you change the amount =
"of detail without moving. 5

’
form_alert(i,str);
sprintf(str,"[@1[%si%si%si%si%s1l NEXT 1",

"The vertical slider sets "

"how precise each pixel is '
"to be. High precision is ey
"slower but has more detail. ",

13

form_alert(1,str);

sprintf(str,"[@1[¥%si%si%si%si%s1l LAST 1",
"The Options menu allows you ",
"to see and modify the set’s ",
"coordinates, square boxes o]
"to prevent distortion, and "
"time the drawing. o
13

form_alert(1,str);

b

The build_tree Function: Building a Menu Tree

Menus are built in the GEM environment using a data structure called object to
define a concept like menu, dialog, icon, box, or button. A menu, then, is a list
of objects linked together into a tree. Objects in a tree are said to “contain”
other objects, in which case the ““contained” object is a child object of the par-
ent object.

Trees consisting of objects are used throughout GEM. They're a device
that makes it easy for a programmer to draw subpictures by simply picking a
branch of the tree and having GEM draw everything on that branch. Subtrees
are also convenient because the position of an object is always given relative to
its parent object in the tree. If only the x and y location of the parent are
changed, all the children will be drawn in the new place. The build_tree func-
tion, Program 5-5, demonstrates how this data structure is built.

When the menu structures are displayed, the user will see boxes that
contain text strings. The box and the text strings are each individual objects. To
contain a text string in a box, the size of the box must be the correct width and
height for the string object.

To create the boxes that will hold the items in the menu tree, we start
with a box that is the size of the whole screen. This box is the root of the tree.
The box objects defined are the main parts of the tree, and serve as the parents
for all subsequent text strings. This gives us the flexibility to move the menus
around just by reorganizing the placement of a box in the tree.

The root box is in the upper left and contains two child boxes (objects),

96

http://C03Cy.s57.siy.sl7.siy.s3C

Menus, Dialog Boxes, and Graphics e

lbox and ibox. The long, thin box that contains the menu line at the top of the
window is represented by lbox. The rest of the screen is contained in an “in-
visible”” box called ibox. An invisible box only contains other objects; it never
has borders drawn on the screen.

The Ibox object contains an invisible box called mbox, which holds the
four menu headings: desk, file, options, and help.

The ibox object also contains four boxes: dbox, fbox, obox, and hbox.
These boxes hold the menu items and are positioned below their corresponding
menu headings. As a convention, the first letter of each of the indexes of the
selectable items in the pull-down menus is capitalized. Also, GEM sends a mes-
sage to do—_main_menu anytime the user selects one of the items.

The dbox object contains menu items for the desk menu heading. It con-
tains selectable items for About, and for up to six desk accessories. The desk-
accessory strings in the listing are placeholders. GEM will replace the strings
with the names of any desk accessories that exist when the menu is put up on
the screen.

The object called lines is a string of dashes used to visually separate the
About line and the desk-accessory names. The lines object is “disabled” to
make it unselectable and is thus a nonfunctioning menu item.

You can see in the preceding figure what the selectable menu items are
for the file menu (fbox), options menu (obox), and help menu (hbox).

The build_tree function consists mainly of calls to the addit function. Ba-
sically here’s how addit works: The addit function is responsible for adding
new objects into a tree. The parameters for addit are the tree to be added to,
the parent object that will contain the new object, a GEM definition that tells
the object type, a specification for the object, and the x, y, w, and h values for
the new object. The addit function returns the index of the new object in the
tree and maintains the global variable next_item, which contains the index of
the next unused slot in the tree.

We want to give addit the size of the new object in a way that lets us ig-
nore the font resolution (high, medium, or low) until we actually run the pro-
gram. This is done by using characters instead of pixels to specify the x, y, w,
and h of the new object. The global variables Wc and Hc tell addit the width
and height of one character.

The first call build_tree makes to addit defines the root object. The sec-
ond argument to addit is always the parent’s index, and since root has no par-
ent, —1 is given for this argument. Note that objects can be bigger than the
screen and that we use 80 characters for the width even though only 40 charac-
ters are displayed in low resolution.

Before addit is called again to add Ibox under root, then mbox under
lbox, followed by each of the menu-line headers, three pixels are added to the
height of a character to make the long box taller than the characters it holds.
The three extra pixels are for appearance sake only. After adding all the menu
items in the top line, we set the character height back to normal.

a7

s CHAPTER 5

Additional calls are made to addit to build most of the remainder of the
menu. By studying the code (see below) you can see the parent-child relation-
ships defined by the second argument to addit, and the items returned by
addit. Note that, for the object types that use character strings such as
G_TITLE, the width argument that is passed to addit is handled by the LEN
variable. In addit, the actual length of the character string is computed to give
us the width of the box. Thus, we can readily change the character string with-
out worrying about how it may change the width of the box.

A few special features are treated slightly differently. To make the
dashed lines unselectable, build_tree is called to set the object state for the
lines object to DISABLED directly with the statement

t_list[lines].ob_state = DISABLED;

The ob_state is one of the characteristics an object can have. Similarly,
to indicate that the Square Box and Time Drawings features are turned on by
default, the GEM routine menu_icheck is used to put a check mark next to the
menu items.

When all the menu items have been added, the LASTOB flag is set as
the last object. (The value in next_item always points to the slot after the last
object, so next_item—1 will always point to the last object.)

Finally, build_tree returns the address of the tree to do_main_menu.

Program 5-5. bldtree.c

include <gemdefs.h>

include <obdefs.h>

define MAXTREE 64

define M_BLACK 18L /% would be 1, but we changed the color map %/
define TRANSPARENT]

define THICK (long) ¢ @xFFL << 16)

define BOXCOLOR (long) { (M_BLACK << 12) { (M_BLACK << 8))

define BOXTHIN (long) (BOXCOLOR ! TRANSPARENT | IP_HOLLOW)

define BOXBITS (long) (THICK | BOXCOLOR ! TRANSPARENT | IP_HOLLOW)

define LEN = /% Set the width to the length of the string %/
define xx(item) ((t_listliteml.ob_x + t_listliteml.ob_width) / Wc)

define yylitem) ((t_listliteml.ob_y + t_listliteml.ob_height) / Hc)

define OFFSET 2 /% so the boxes don’t abut the left edge &/

int Wc, Hcj;
int About, Quit, Coord, Square, Timer, Ctrlj;
struct object t_list[MAXTREE];

struct object x
build_tree()

extern int gl_wchar, gl_hchar, next_item;

extern int make_square, do_timit;

int root, mbox, desk, file, options, help;

int dbox, fbox, obox, hbox, ibox, lboxj;

int lines, deskl, desk2, desk3, desk4, deskS, deské;

98

/%
L1
L2
kx
L2
"
X
L2
%
%
L3
L 1]
£ §
kX
L 3
L 3]
%
X
X
kX
kX
11
%
x
k%
L3
3
%
X%
kX
L 2
[2]
kX
L 1]
X/

There are three invisible boxes that hold everything.

The one called root is the

whole screen.

Root holds a long box called lbox, which holds an invisible
box called mbox which holds all the menu strings. Lbox and
mbox are the top line of the screen.

Root also holds ibox, which is an

the rest of the screen (line 2 to line

all of the menu items that pop up

menu strings in

root =—+-=> lbox
i

the top line. The tree

>

+-—> ibox

+--> dbox

{ oo e

H ot]

H —>

H)

{ T

! 3

H 3

! =2

H

+==> fbox

i =)

H

+==> obox

|)

H —)

H T

H

+=-=> hbox
3

next_item = @;

He
Wc

= gl_hcharj
= gl_wchar;

About
lines
deskl
desk2
desk3
desk4
deskS
deské

Quit

Coord
Square
Time Drawings

Ctrl

invisible box that encloses

25). Ibox holds

in boxes under the

looks like this:

mbox
H
+-==> desk
+=—=> file
+-——> options
+--—> help

root = addit(t_list,-1,G_IBOX,®L,8,0,80,25);

He

= gl_hchar + 3;

lbox = addit(t_list,root,G_BOX,BOXTHIN,d,d,80,1);

mbox = addit (t_list,lbox,G_IBOX,@L,0FFSET,®,27,1);

desk = addit(t_list,mbox,G_TITLE,"
file = addit(t_list,mbox,G_TITLE,"
addit(t_list,mbox,G_TITLE,"”
help = addit(t_list,mbox,B_TITLE,"

options =

ibox

Hc

dbox

= gl_hchar;

desk ", a, @,LEN,1);
file ", xx (desk), 2,LEN,1);
options ",xx(file), @,LEN,1);
help ", %% (options) ,@,LEN,1);

= addit(t_list,root,G_IBOX,0L,0,1,80,14);

= addit (t_list,ibox,B_BOX,BOXBITS,OFFSET,d,19,8);

About = addit(t_list,dbox,G_STRING," About MandelZoom *“,9,8,LEN,1);

lines = addit(t_list,dbox,B_STRING,"

t_list[linesl.ob_state = DISABLED;
deskl = addit(t_list,dbox,G_STRING," Desk

desk2
desk3

deskS
deské

= addit(t_list,dbox,G_STRING," Desk
= addit(t_list,dbox,B_STRING," Desk
desk4 = addit(t_list,dbox,G_STRING," Desk
= addit(t_list,dbox,B_STRING," Desk
= addit(t_list,dbox,B_STRING," Desk

" #,1,LEN,1);

Accessory 1 ",0,2,LEN,1);
Accessory 2 ",0,3,LEN,1);
Accessory 3 ",0,4,LEN,1);
Accessory 4 ",0,5,LEN,1);
Accessory S5 ",8,4,LEN,1)};
Accessory & ",8,7,LEN,1);

fbox = addit(t_list,ibox,G_BOX,BOXBITS,xx (desk)+0FFSET,®,6,1)}
Quit = addit(t_list,fbox,B_STRING,"” Quit

99

", 8,0,LEN, 1)}

Menus, Dialog Boxes, and Graphics

memmm CHAPTER 5

obox = addit(t_list,ibox,G_BOX,BOXBITS,xx (file)+0FFSET,®,18,3);
Coord = addit(t_list,obox,G_STRING," Coordinates ",B,8,LEN,1);
Square = addit(t_list,obox,G_STRING," Square Box “aB,1,LEN,1);
menu_icheck(t_list,Square,make_square);

Timer = addit(t_list,obox,B_STRING,"” Time Drawings ",®,2,LEN,1);
menu_icheck(t_list,Timer,do_timit)j

hbox = addit(t_list,ibox,5_BOX,BOXBITS,xx (options)+OFFSET,d,11,1);
Ctrl = addit(t_list,hbox,B_STRING," Controls ",8,8,LEN,1);

if(next_item > @)

t_listlnext_item — 1].ob_flags i= LASTOB;
return(t_list);
>

The addit Function

The useful addit function, part of the envelope library (Program 2-29), adds
items to a tree data structure. In this application, it is used to construct the
menu tree; in later programs it will be used to construct complicated dialog
boxes that would be difficult to create without the addit function.

After checking whether there is room for the new item being added by
comparing the next_item variable to MAXTREE, addit checks to see if the
width argument is the special value LEN. If it is, the statement

w = strlen(spec);

returns the number of characters passed to addit in the spec variable. This way,
the GEM strlen function is allowed to count the characters for us and the char-
acter string can be changed without having to change the width.

If the parent has no children yet, this object will head the list of chil-
dren. Consequently, the parent’s ob_head field (part of GEM's object defini-
tions) is filled with the index for the current item, stored in next_item.

The width and height are compared to the child’s and, if they are too
small to hold the child, a message is displayed. To keep the message on the
screen until a key is typed, the BIOS calls Bconin. Then the parent’s size is ad-
justed to be large enough for the child. The reason a message is displayed, in-
stead of silently adjusting the size, is to help you track errors during your
programming if the menu is wrong.

Next, addit fills in the field definitions for the object being defined.
Some of the fields are set to defaults like NONE and NORMAL, and others are
calculated from the x, y, w, and h parameters. The links between parents, chil-
dren, and siblings are set by the GEM routine objc_add using the link defini-
tion fields ob_next, ob_head, and ob_tail.

After objc_add has linked this object into the tree, the index of the ob-
ject is returned and incremented so it points to the next slot for the next call.

100

Menus, Dialog Boxes, and Graphics s

The doit Function: Drawing the Mandelbrot Set

The doit function, Program 5-6, is the heart of the program.

This function contains the mathematics to calculate the Mandelbrot set
and the calls to draw the image on the screen. The set is constructed from the
deceptively simple statement:

Z=22+4C

The variable, Z, and the constant, C, are both complex numbers. To plot
a Mandelbrot set, the x-axis of the screen is used to represent the “real” com-
ponent of the complex number and the y-axis to represent the “imaginary”
component. For each pixel on the screen, the C value is the x value and y value
of the pixel, so the point (35,50) on the screen gives the value 35+50i for C.

To derive a color value for a pixel the program iterates, calculating
Z=22+C until Z? is greater than 4 or until it has looped more than a
predefined maximum number of times. The color of the pixel is determined by
the number of loops. If the maximum number of loops is made, the color is
black; if not, the color is determined by the low bits of the iteration count.

You can see what'’s involved in calculating the color of each pixel in the
image by studying the three nested loops that do the work. The first loop steps
through all the rows of pixels: 167 on a color monitor, and 343 on a high reso-
lution, black-and-white monitor. The second loop steps through all the columns
of pixels: 615 on a color monitor, and 620 on a high resolution, black-and-
white monitor. The innermost loop counts the number of times the complex
equation is evaluated, which is variable and can be up to 1000 times in this
program. If all the maximum iterations occur, the inner loop can be executed
up to 212,660,000 times. Obviously, it needs to be as fast as possible.

The mathematics for the inner loop are one complex multiply, one com-
plex add, one complex compare, and one complex assignment. Complex num-
bers are usually expressed with floating-point numbers: one for the “real” part,
and one for the “imaginary” part. In the program, after some algebraic manipu-
lation, the mathematics are done with three multiplies, four adds, four assign-
ments, and one compare.

The ST has no hardware floating-point support and does all floating-
point arithmetic in software. If a floating-point multiply operation takes 1/3
millisecond and there are 637,980,000 operations, it could take two days just to
multiply.

By using integer arithmetic, however, all the multiplies can be done in 9-
1/3 minutes. To represent floating-point numbers using integers, the program
multiplies each number by a scaling factor, which must be taken into account
whenever the numbers are used. We chose 213 as the scaling factor because the
multiplies can be done quickly by shifting. We chose the value 13 because it
gives 13 bits to the right of the decimal place and 19 to the left. This is just
enough accuracy to plot the set, and leaves a magnification capability of 8192X
for zooming in on a portion of the set.

101

e CHAPTER 5

When the inner loop is finished, the program knows the point to be
plotted on the screen. Efficiency is important here also, since there are over
100,000 points to plot. A fast way to plot a point, while still letting TOS worry
about things like screen resolution, is to use the Line A Graphics Interface. The
Line A Interface is a set of sixteen quick-entry points into the operating sys-
tem'’s graphics code. For our program we use only the first two entry points,
initializing the Line A code so that we can use it and “put pixel” for drawing
the pixel on the screen.

Setting up the Line A interface to work in C calls for some special
manipulations that are done at the beginning of the file. The pointer putpixel is
defined as a pointer to a subroutine. It is set to point to two words of hand-as-
sembled code that we have put in the array line_a. This hand-assembled code
is a function that enters the operating system at the ““put pixel” entry point and
then returns.

The same device is used to get into the operating system’s “initialize line
A" entry point in the routine line_A_init. When line_A_init is called, it re-
turns a pointer to a block of memory that contains the arguments for the GEM
putpixel routine. These arguments are the x and y coordinates and the color of
the pixel. Thus, to plot a point, we set *x to the x coordinate, *y to the y co-
ordinate, *color to the color, and call putpixel.

The doit function has other functions such as terminating long plots if a
key is pressed. We use the IS_CHAR macro, which calls TOS directly using the
TOS bios routine, to see if a key has been pressed. If there is another character
waiting to be read, GET_CHAR (another macro that calls bios) is used to read
it. Then the bell is rung twice with the statement

printf(” \7 \7");

The mouse is displayed, and the program returns to do_display, one of the
functions in the envelope library, explained in Chapter 2.

The doit function also lets the user set the number of iterations for cal-
culating a pixel by moving the vertical slider box. The size of the slider box is
set to one character high and is positioned at the bottom of the vertical scroll
area at the right edge of the window. Whenever doit is called, the GEM
wind_get routine is used (see Chapter 2) to read the slider box position and set
the variable niter from it.

The program also tells how long it took to plot the image. To do this
some fixed reference point must be established. The program uses this fixed
point to figure the starting and ending time from it. For this program, January
1, 1980, is the fixed reference point. The time it takes to plot a set is calculated
in the doit function by calling the time_it function, which returns the number
of seconds since 1980. Then the plot is completed. When that occurs time_it is
called again. The elapsed time in seconds is figured by subtracting the latest
value from the first; then time_print is called to figure the time in minutes and
seconds and to display the elapse time in a window.

102

AR T
=]
Menus, Dialog Boxes, and GraphicS

The color map is changed to a set of colors in a pleasing gradual scale
with the colors function. Just before exiting, the map is restored to its old val-
ues in the do_cleanup function.

The last thing doit does before returning to do_display is to save the
screen. This will allow just_draw to quickly restore the screen when it is
needed, so it won't have to be plotted all over again.

Program 5-6. doit.c

#
define SCALE B192L
define INSIDE 2048
define LSCALE 13
define LSCALEZ2 12
define PLOT_TYPE long
include <gemdefs.h>
include <osbind.h>

/%

¥ Mandelzoom

% as described in Scientific American, August 1985

¥ draws beautiful fractal patterns on the screen.

& Handles monochrome, medium resolution (4 colors) celor, and
% low resolution (16 colors) color.

]

X Most implementations of Mandelbrot set generators use

% flopating point arithmetic in the inner loop (where millions
¥ of calculations must be performed to generate the picture)

¥ and take half an hour to six hours to draw the picture.

X This program can draw the complete set in less than 2 minutes
% due to the use of fixed point scaled integer arithmetic

% in the inner loop. Because of this speed, exploration of the
% Mandelbrot set at very high resolutions (3008 iterations per
¥ pixel or higher) become possible, generating very complex and
% beautiful displays.

x

x/

struct lineAinfo (
int vplanes;
int vwrapj;
int %contrlj
int fintin;
int gptsin;
int fintout;
int fptsout;
33

typedef struct lineAinfo f¥infoj;

/%

%% Here we build a short subroutine by hand...

¥4

static short int line_all = {
Pxadd1, /% line A “put pixel” interrupt %/
Px4e75 /% return from subroutine ¥/
¥3

static int (sputpixel) () = (int (¥)()) line_aj;

info i_ptr;

103

CHAPTER 5

static info
line_A_init() ¢

static short int line_all = (

@xaddd, /% initialize line A code &/
Px4e7S /% return from subroutine &/
T3

static info (%init_A) () = (info (X)()) line_aj

return((kinit_A) ());

b]
#define MAX_NPIXEL &40
define PRT]
define AUX 1
define CON 2
define MIDI 3
define KEY 4
define IS_CHAR(x) bios(1, (x))
define GET_CHAR(x) bios (2, (x))
double orig_real = =2.0;
double orig_imag = =2.0;
double side_r = 4.8
double side_i = 4.0;
int color_mask = @xf}
int do_timit = 13 /% Print out how long it took to do it %/

doit {(whand, vw)
int whand, wvw;{

register PLOT_TYPE z_real, z_imag, z2_real, z2_imag;
register int count;

register PLOT_TYPE c_real, c_imag;
register int niter;
register int i, jj;

int %color, #x, Ryj

double float_r_pixels, float_i_pixels;

long int t, time_it();

int wwork, hwork, xwork, ywork;

static int vertical = ~-13
int n_r_pixels;
int n_i_pixels

double incrementlMAX_NPIXELIj
extern int gl_hchar;

clr_display(whand,vw);
wind_get (whand, WF_WORKXYWH, &xwork, &ywork, &wwork, &hwork
if(vertical < @)<

vertical = 1000;

wind_set(whand, WF_VSLIDE, vertical, &, @, @);
wind_set(whand, WF_VSLSIZE, gl_hchar, &j, &j, &j);
3

else (

wind_get(whand, WF_VSLIDE, &vertical, &ij, &i, &j);
»

vertical = 1000 - vertical;

i

ptr = line_A_init()j /% setup for line A graphics

color = &i_ptr->intinl@8]1;

Y

= &i_ptr->ptsin(8]1;
= &i_ptr->ptsinl1];

colors(whand, vw) ;
niter = vertical + 16; /% at least 16 gradations in
hide_mouse();

float_r_pixels = n_r_pixel = wwork;

float_i_pixels = n_i_pixel = hwork;j

104

calls &/

color %/

Menus, Dialog Boxes, and Graphics s

for (j = @; j € n_r_pixel; j++) /% Precompute increment %/
increment[jl = (orig_real + side_r%j / float_r_pixels) % SCALE;
if{ niter < color_mask)
niter = color_maskj;
t = time_it();
for (i = @3 i < n_i_pixel; i++) (
c_imag = (orig_imag + side_i ¥ i / float_i_pixels) ¥ SCALE;
for (j = B3 § < n_r_pixel; j++) {
z_real = c_real = increment(jl;
z_imag = c_imag;
for (count = @; count < niterj count++) (
22 _real = z_real ¥ z_realy
z2_imag = z_imag % z_imag;
z2_real >>= LSCALE;
z2_imag >>= LSCALE;
if(z2_real + z2_imag > 4 << LSCALE)
break;
z_imag = z_real X z_imag;
z_imag >>= LSCALEZ;
z_real = z2_real - z2_imagj;
z_imag += c_imagj;
z_real += c_realj
3
if(count >= niter)
count = color_mask;

else {
count &= color_maskj;
if(count == color_mask)
count = @;
¥
Ix = j + xwork;

¥y = i + yworkj
¥color = countj
(¥putpixel) ();
3
if(IS_CHAR(CON)) { /% bail out ¥/
GET_CHAR (CON) 3
printf ("\7\7");
show_mouse () ;
returng
3
3
show_mouse () ;
if(do_timit)

time_print(time_it() - t, niter, whand);
save_screen (whand) j
3}

The time_it and time_print Functions

These two functions (Program 5-7) convert the date and time from the way
they are stored by GEM into a number that represents the seconds since mid-
night, January 1, 1980, and displays the elapsed plot time in a window. GEM
stores the date and time in two separate integers, packing the year, month, and
day in one integer and the hour, minute, and second in another.

The time_it function converts the date and time into seconds in a
straightforward manner. The year, month, and day are unpacked and then the
number of whole days is calculated by adding the days of each year since 1980,
then the days of each month since January, and finally the days since the
month began. If this month is after February in a leap year, an additional day is

105

http://time_.it
http://time.it

mmm— CHAPTER 5

added. The number of days is converted to seconds as the hour, minute, and
second values are added. Note that GEM counts only every other second be-
cause there isn’t room to store the seconds accurately, so the program multi-
plies the seconds by two.

The time_it function calls the time_print routine, which converts the du-
ration in seconds into days, hours, minutes, and seconds, and uses the GEM
form_alert function to display them in a window. (See Figure 5-7.)

Figure 5-7. The Window Showing the Elapsed Plot Time
P :

11 minutes 54 seconds
at 26 iterations per pixel
for 212660 pixels on the screen

Program 5-7. timit.c

include <osbind.h>
include <obdefs.h>
include <gemdefs.h>

long int years(C] = (
/% 80 81 82 83 B84 85 86 a7 a8 89 &/

366L, 365L, 365L, 365L, 346L, 3&5L, 345L, 345L, 366L, 3450,
365L, 3&5L, 366L, 36SL, 365L, 365L, 366L, 365L, 3&5L, 3651,
366L, 3&5L, 365L, 365L, 366L, 365L, 365L, 365L, 366L, 365L,
365L, 365L, 366L, 365L, 345L, 3&65L, 366L, 365L, 3465L, 365L,
366L, 365L, 365L, 365L, 366L, 365L, 365L, 365L, 366L, 365L
}3

long int monthsC] = {
3iL, 28L, 31L, 3oL, 3iL, 38, 31L, 3i1L, 3oL, 31L, 3oL, 31L

33
long
time_it () {
long nowj;

char strf1281;
int x, date, time, year, month, day, hour, minute, second;

date = gemdos(®x2a); /% Tgetdate() %/

106

Menus, Dialog Boxes, and Graphics s

year = (date >> 9) & @0177;
month = (date >> 5) & @817;
day = date & 937;
time = gemdos(@x2c); /% Tgettime() %/
hour = (time >> 11) & 837;
minute = (time >> 3) & 077;
second = time & @373
now = @;
for(» = @3 x < yearj x++)
now += yearsix]lj
now += monthsimonth-11;
now += day-1j
if(yearslyear] == 366 && month > 2)
now++;
/%
¥t "now’ is the number of days since 1980
X/
now %= 24L;
now += hourj /% hours since 1980 %/
now ¥= &0L;
now += minute; /% minutes since 1984 %/
now ¥= &@L;
now += second X 2; /% seconds since 1986 %/

return(now) ;

3
time_print (secs,niter,whand)
long int secsj;
int niter, whandj(

unsigned int days, hours, minutes, seconds;

static char dl16], h[16], m[14], sC16], striB8@], res(B81, pix(BA]1;

long int calcj;
int xwork, ywork, wwork, hworkj;

wind_get (whand, WF_WORKXYWH, S%xwork, &ywork, &wwork, &hwork);

calc = hwork;

calc &= wworkj

sprintf(res,"at %d iterations per pixel",niter)j
sprintf(pix,"for %D pixels on the screen",calc);
seconds = secsj

seconds %= 603

secs /= 603

minutes = secs;

minutes %= &0;

secs /= &@;

hours = secsj;

hours %= 24;

secs /= 24;

days = secsj

dl@] = hi@] = ml@] = s[P] = B;

if(days)

sprintf(d,"%d dayis ",days,days == 1 7?7 "" 1 "s")j;
if(hours)

sprintf(h,"%d hour¥%s ",hours, hours == 1 7 "" 1 "s");
if(minutes)

sprintf(m,"%d minute¥s ",minutes, minutes == 1 ? "" :
if(seconds)

sprintf(s,"%d secondis",seconds, seconds == 1 ? "" :

sprintf(str,"[1]1[¥%s¥ksis%si¥si%s]l OK 1",d,h,m,s,res,pix);
form_alert(l,str);
3

107

meees CHAPTER 5

The colors Function

The colors function, Program 5-8, is called by the doit function to create the
color map and get the pixel colors in our image. GEM orders the colors in the
color map differently from the Line A graphics we are using. Therefore, we re-
organize the colors to correspond to the values Line A uses, going from white
to black with a continuous color spectrum between.

The colors routine saves the old colors with the subroutine sav_colors,
then chooses new colors according to the screen resolution. To get the screen
resolution we call the macro GET_REZ, which we defined as xbios(4).

If rez equals 0, this is a low-resolution monitor with 16 colors available.
The colors are set from an array into which the colors are arranged in a con-
tinuous spectrum. Since only 16 colors are available, the global variable
color_mask is set hexadecimal f (the four lower bits are set to 1) to allow 16
colors. This variable is used by the doit subroutine to convert large numbers
into the color range using modula arithmetic.

If rez equals 1 this is a medium-resolution monitor with four colors
available, so four colors are chosen from the array and assigned to the first four
colors in the map. The global variable color_mask is set to 2-bits (hexadecimal
0x3) to allow four colors.

If rez equals 2, this is a high-resolution monitor with only black and
white available. The variable color_mask is set to one 1-bit (hexadecimal 0x1)
to allow two colors. Because black-and-white monitors only show the black
part of the Mandelbrot set, we zoom in to expand the central black part of the
image and make it fill more of the screen. This is done by setting the variables
orig_real, orig_imag, side_r, and side_i to smaller values than the initial val-
ues they are given in the doit function.

Program 5-8. colors.c

include <osbind.h>
include <obdefs.h>
include <gemdefs.h>

define GET_REZ (x) xbios(4)
define SET_REZ(x) xbios (5,-1L,-1L, (x))

/%
Xx GEM mixes up the colors, so that @ is always white, and 1 is always
X% black, no matter how many colors the device supports.
X Unfortunately for those who use the Line A graphics, it means that
¥x to set the colors from GEM and use them from Line A, we must undo
¥x the mapping. When you tell GEM you want color 1, GEM puts a 15 into
¥ video RAM. When you tell GEM &6, video RAM gets 3. The following
k% table sets up the colors so that we can think in terms of the
%% video RAM values that the Line A uses, and use @ for white, 15 for black,
%% and get a continuous (red,yellow,green,blue,violet,red) spectrum in
¥ between.
X/
struct (

int red, green, blue;

} colsl16] = {

{1000, 1000, 1000}, /% @ white x/

{9, 9, 9} /% 15 black %/

108

Menus, Dialog Boxes, and Graphics s

{1000, @, @3, /% 1 red &/
{1000, 429, @}, /% 2 red/orange %/
{1000, 1008, O3, /% 4 vyellow %/
{8, 1009, @, /% 6 green ¥/
(19000, 714, @3}, /% 3 yellow/orange ¥/
{571, 1008, @), /% 5 yellow/green %/
{8, 1000, 7143, /% 7 blue/green ¥/
{8, 1000, 1000}, /% 8 light blue &/
{8, 714, 1000}, /% 9 medium blue %/
(8, 286, 10001, /% 18 almost blue %/
{714, o, 1000}, /% 12 purple ¥/
{1008, @, 5713, /% 14 red/violet &/
{0, &, 1000}, /% 11 definitely blue &/
{1000, @, 1000}, /% 13 violet %/
13

colors (whand, vw)

int whand, wvwj{

int x, rez;

static int did_save = @;

extern int color_mask;

extern double orig_real, orig_imag, side_r, side_ij;

if(did_save == @){
save_colors(vw)j
did_save = 1;
3
rez = BET_REZ(8);
if(rez == @)(
color_mask = Oxfj
for{ x = @3 x < 163 x++)
vs_color (ve,x,&colslx1);
3
else if(rez == 1){
color_mask = @x3;
vs_color (vw,@,&colsl@1);
vs_color (vw, 1,&cols[11);
vs_color (vw,2,&cols[121);
ve_color (vw,3,&cols[141);
¥
else {
if(color_mask '= @x1)({ /% first time only %/
orig_real = -1.78;
orig_imag = -1.125;
side_r = 2.25;
side_i = 2.25;
3}
color_mask = @x1;
vs_color (vw,d,&colsl@1);
vs_color (vw, 1,&colsl11);
3}

The save_colors and rest_colors functions. The save_colors function,
Program 5-9, puts all the colors in the GEM color map into an array before the
color map for Line A graphics is rearranged. save_colors is called by the colors
function, which is called by doit to pick colors for the pixels. save_colors calls
the GEM routine vq_color to read the color map and store each color in the

array.

The rest_colors function, Program 5-9, restores the colors to the original
state they were in when the program started—before the color map was rear-
ranged for Line A graphics in the colors routine. rest_colors is called by the

109

e CHAPTER 5

do_cleanup function, which is called by main just before the program exits.
rest_colors calls the GEM routine vs_color to read the array saved by
save_colors and set each color back to its original value.

Program 5-9. savcolor.c

4
%% Save and restore the color map.
%/

include <osbind.h>

define REALIZED 1

struct {
int red, green, blue;
} old_colsl14];

int old_rez;

save_colors(vw)
int vw;{

int xj

old_rez = Getrez();
for(x = @3 x < 163 x++) {
vq_color{ vw, %, REALIZED, %old_cols[x]);
3
}
rest_colors(vw)
int vw; {

int xj

Setscreen(-1L,-1lL,0ld_rez);

for(x = @; x < 165 »n++) {
vs_color{ vw, %, &old_colsix]);
3

The do_cleanup function. Chapter 2 describes a default version of the
do_cleanup function. It's one of the functions that is usually tailored for each
application and called by main just before the program exits. For this program,
do_cleanup, Program 5-10, simply calls the rest_colors function to set the color
map values back to GEM’s values before exiting.

Program 5-10. doclean.c

do_cleanup (whand, vw)
int whand, wvw;{

rest_colorsivw);
}

110

Menus, Dialog Boxes, and GraphicS s

Looking Around the Mandelbrot Image

The image plotted by a Mandelbrot set is intricate. It can be viewed to greater
and greater magnification, revealing seemingly endless details. Explore the set
by zooming in and moving around the image with the mouse or the keyboard,
and by entering coordinates to see specific image sections. As described below,
each of these three methods requires a separate function.

The size, shape, and location of the viewing window into the Mandel-
brot image is changed by altering some variables that define a rectangle in the
complex plane (recall that the Mandelbrot set is drawn as a complex figure).
The altered variables are side_r, side_i, orig_real, and orig_imag. They're used
in the following functions.

The mouse_hit Function

The easiest and most natural way to zoom in on a part of the image is to frame
the part in a box. The portion of the image enclosed by the box then expands
to fill the entire window, thus magnifying the part.

The user can draw this box with the mouse by pointing to the upper left
corner of area to be magnified, and dragging a “rubber rectangle” until the
rectangle frames the chosen area. As soon as the user presses the mouse but-
ton, GEM sends a message to our application. The multi function receives the
message that a mouse event has occurred and calls the mouse_hit function to
handle it. Program 5-11 is the code for mouse_hit.

The mouse_hit routine is called when a mouse button is pressed and
when it is released, its function being to keep multi informed about the current
state of the mouse button. For this application, mouse_hit will call a GEM rou-
tine that uses the mouse-release message, so that multi doesn’t have to do any-
thing until the next time a mouse button is pressed. Only the button press is
important; button releases are ignored by returning to multi if the parameter
butdown is 0, which indicates the button is up.

When mouse_hit is called, it is passed several parameters: the x and y
location of the mouse when the button was pressed, the keyboard state (whether
the SHIFT, ALT, or CONTROL keys were pressed), the number of clicks on the
mouse button, and handles for the window and virtual workstation.

Most of the real work is done in the GEM routine graf_rubberbox,
which controls the drawing of the rubber box. When graf_rubberbox receives
the message that the user has released the mouse button, it returns the width
and height of the rectangular area of the image that will be expanded to fill the
window.

The kstate parameter is examined after graf_rubberbox returns to see if
the SHIFT key was down when the mouse button was pressed and released. If
the SHIFT key was down, the program will zoom away from the set, reducing
the current window's contents to fit in the area defined by the new rectangle
and filling the rest of the new window with the surrounding area. If no SHIFT

111

e CHAPTER 5

key was down, the program zooms into the set, magnifying the area in the de-
fined rectangle to fill the screen.

The scaling algorithm is essentially the same one used in the PLOT pro-
gram. To zoom out, the program multiplies by the old size and divides by the
new. To zoom in, it multiplies by the new size and divides by the old.

The graf_rubberbox function sets a flag indicating whether or not it was
successful. If it was successful, it receives the message from GEM that the
mouse button was released, and returns to mouse_hit. If graf_rubberbox was
not successful, it returns without processing the mouse-button-released message
and, therefore, mouse_hit must inform multi that it is still expecting the
“mouse up”’ message. The butdown variable is set to the appropriate state so it
can be returned and multi will know which button state to wait for.

The global variable make_square is checked to see if the user set it by
selecting it from the menu. If it was set, then the width and height of the new
rectangle are averaged to make a square. This prevents the image from being
distorted when the new rectangle is not the same shape as the screen.

Finally, the GEM graf_growbox function is called to draw a growing box
for feedback to the user, the screen is drawn, and the button’s new state is re-
turned to the multi function.

Program 5-11. mousehit.c

include <osbind.h>

include <obdefs.h>

include <gemdefs.h>

define ANY_SHIFT 3
define XOR_MODE 3
define RPLC_MODE 1
define MIN_WIDE 25
define MIN_HIGH 25

mouse_hit (butdown,x,y, kstate,num_clicks,whand, vw)
int butdown, x, y, kstate, num_clicks, whand, wvw;{

double float_r_pixels, float_i_pixels;
int new_x, new_y, new_h, new_w;
int xwork, ywork, wwork, hworkj
extern int make_square;
extern double orig_real, orig_imag, side_r, side_i;

if{ butdown == @)
return{l);
wind_get(whand, WF_WORKXYWH, &xwork, &ywork, &wwork, &hwork);
float_r_pixels = wwork;
fleoat_i_pixels = hwork;
if(graf_rubberbox(», y, MIN_WIDE, MIN_HIGH, &new_w, &new_h))<{
% == xwork;
y —= ywork;
if(kstate & ANY_SHIFT) {
orig_real = orig_real + side_r¥float_r_pixels/x;
orig_imag = orig_imag + side_i¥float_i_pixels/y;
side_i = side_i ¥ float_i_pixels / new_h;
side_r = side_r X float_r_pixels / new_w;
¥
else

112

[Se= =i
piaz-Toce 2
Menus, Dialog Boxes, and Graphics s

orig_real = orig_real + side_r¥x/float_r_pixels;
orig_imag = orig_imag + side_i¥y/float_i_pixels;
side_i = side_i ¥ new_h / float_i_pixels;

side_r = side_r X new_w / float_r_pixels;
¥

butdown = 1; /% rubberbox» ate the “mouse-up® %/

¥
else

butdown = @; /% evnt_multi must eat “mouse-up’ X/
if(make_square)

side_r = side_i = (side_r + side_i) / 2.0;

graf_growbox (x,y,new_w,new_h,xwork, ywork, wwork, hwork) ;
do_display(whand, vw);

return(butdown) ;

 ;

The got_key Function

Whenever the user presses a key, the multi function from the envelope library
calls the got_key function, Program 5-12, which must be tailored for each
application. For the Mandelbrot-set application, the user could move around in
the set with the arrow keys using the got_key function to respond with the
proper action.

The got_key function for this application examines the key code in a
switch statement. If a switch statement changes any of the variables orig_real,
orig—imag, side_r, or side_i, then the program breaks out of the switch and re-
draws the screen before returning.

When an arrow key is pressed, it increments or decrements the appropri-
ate starting point (orig—real or orig_imag) by the width or length of the plot
and the screen is moved by a full page in the direction of the arrow that was
pressed.

If the key was a + or a —, got_key zooms in or out by a factor of 2,
squaring the picture if the global variable make_square is turned on.

If CONTROL-C was pressed, got_key displays a window asking if the
user really wants to exit. The show_form function, discussed earlier, is called to
put up a window with two selectable buttons in it: OK and CANCEL. If the
user clicks on the OK button, 0 is returned to indicate “exit” to the multi func-
tion. If the user selects CANCEL, 1 is returned to cause the keystroke to be
ignored.

When the key pressed is the RETURN key, got_key calls show_form
again to put up a window with buttons asking if the user wants to return to the
original view of the set. If OK is selected, the rectangle is set back to its original
size and the back_to_first function is called to redraw the screen from a copy
saved earlier in the doit function. (This is explained in the discussion of the
just_draw function.)

If the pressed key is not one of those just listed, then a window is dis-
played containing the message that the character is being ignored.

113

wemmm CHAPTER 5

Program 5-12. gotkey.c

/%

kX Here is where we handle keystrokes.

X
X
kK
xx

¥%x do a lot here, for example.
X/

define UP__ARROW @» 4800
define DN__ARROW A% SO09
define LF__ARROW D% 4b 0B
define RT__ARROW @x 4d0d
define C_RETURN SRS

define ESCAPE

define CTRL_C

got_key (ch,whand, vw)

@x1b
@n@3

int ch, whand, wvw;<{
extern double orig_real, orig_imag, side_r, side_i;
extern int make_square;
switch(ch) {
case UP__ARROW:
orig_imag —= side_i;
if(make_square)
side_r = side_i = (side_r + side_i)
break;
case DN__ARROW:
orig_imag += side_i;
if(make_square)
side_r = side_i = (side_r + side_i)
break;
case RT__ARROW:
orig_real += side_r;
if(make_square)
side_r = side_i = (side_r + side_i)
break;
case LF__ARROW:
orig_real -= side_r;
if(make_square)
side_r = side_i = (side_r + side_i)

break;
default:

switch(ch & @xff) {
char striB@l;

case '+7:
orig_real -= side_r / 2.9;
orig_imag -= side_i / 2.0;
side_r x= 2.9;
side_i x= 2.0;
if(make_square)

side_r = side_i =

break;

case "-"3

orig_real
orig_imag

side_r
side_i

+= side_r / 4.0;
+= side_i / 4.0;
2.9;
2.@;

/=
=

if(make_square)

break;
case CTRL_C:

side_r = side_i = (side_r + side_i)

if(show_form("Exit this program")

114

)

2.9;

We spend a lot of time with the arrow keys, and let most other keys
pass on through to do_keys().
This routine is one of the application specific routines that will
change a lot depending on the application. A word processor would

(side_r + side_i) / 2.0;

/ 2.9;

Menus, Dialog Boxes, and Graphics

return(@);
return(l);
case C_RETURN:
if(show_form("Return to whole set"))
return(@);

orig_real = -2.0;
orig_imag = -2.0;
side_r = 4.0;
side_i = 4.0;

back_to_first (whand, vw);
return(@);
default:
do_keys(ch);
return(@);
¥
3
clr_display(whand, vw);
do_display{whand,vw);
return(@);

3
b g

do_keys (ch)
int chj(

char str(&4];

sprintf (str,"Ignoring character @x%x\n",ch);
show_form(str);
¥

The dialog Function
The third way a user can change the view of a Mandelbrot image is by typing
in the coordinates of the area to view. Since the exact coordinates are easy to

communicate, this is particularly useful for users who want to explain exactly

which coordinates to view.
A dialog box like the one shown in Figure 5-8 is used to let the user en-
ter data.

Figure 5-8. The Dialog Box for Entering Coordinates

desk file IR hel

MandelZoon!

Real: -1.7488970756(| [oK |
naginary: -8,0833803774] [CANCEL]
Width: _ 08,0041454124] [Z00W IN]
Meight: _ 08,0041454124] [Z0oH ouT]

= CHAPTER 5

The dialog function, Program 5-13, handles all user interaction with this
box, putting up the dialog window, drawing the expanding and shrinking
boxes, and accepting input.

A dialog box is a tree of objects, just like a menu. The coordinates func-
tion, which is the next discussed below, calls the dialog function and passes it a
dialog tree in the array box_tree. The dialog function calls the GEM function
form__center to create a rectangle that centers the dialog on the screen. Then it
calls GEM’s form_dial with the parameter FMD_GROW to start the process of
displaying the dialog box and to cause an expanding box to be drawn.

Other GEM routines are called for the dialog box: objc_draw puts the
dialog box on the screen and form_do handles all the mouse and keyboard in-
put. FMD_FINISH is a parameter to form_dial that frees up memory allocated
by FMD_START. When that’s all finished, FMD_SHRINK is called to draw a
shrinking box.

When the program returns to coordinates, it passes the index in the ob-
ject tree of the button the user has selected to end the dialog box session.

Program 5-13. dialog.c

include <obdefs.h>
include <osbind.h>
include <{gemdefs.h>

dialog(box_tree,field)
struct object %box_tree;
int field;<{

int %, y, w,; hj
int littlex, littley, littlew, littleh;
int ret;

if(field < @) /% Atari doc is wrong %/
field = @; /% -1 blows up, should be @ or valid %/

form_center (box_tree, &, &y, &w,&h) ;

littlew = littleh = 5@;

littlex X +mw/ 2 - littlew;

littley y +h / 2 - littlehy

form_dial (FMD_START,littlex,littley,littlew,littleh,x,y,w,h);

form_dial (FMD_GROW,littlex,littley,littlew,littleh,x,y,w,h);

objc_draw(box_tree,@,1,x,y,w,h)g;

ret = form_do(box_tree,field);

form_dial (FMD_SHRINK,littlex,littley,littlew,littleh,x,y,w,h);

form_dial (FMD_FINISH,littlex,littley,littlew,littleh,x,y,w,h);

return(ret);

¥

The coordinates Function
The coordinates function is called by do_main_menu after the user has se-
lected the Coordinates menu item from the options menu. This function, Pro-
gram 5-14, contains the code that creates the dialog tree used by the dialog
subroutine and is responsible for seeing that a dialog box for this menu item
appears.

When coordinates calls the dialog function, it passes it the address of the

116

Menus, Dialog Boxes, and Graphics s

dialog tree that is defined by coordinates in the array dial _coord. This is an ex-
ample of how to build a tree entirely by hand. It can be done here because the
tree is very simple, with only one parent object (a box) that contains all of the
child objects. The child objects are the four buttons OK, CANCEL, ZOOM IN,
and ZOOM OUT, and four editable text fields where the user will type the
coordinates.

The four buttons have been marked as EXIT buttons via flags defined
and used in the data structure for the dialog tree. This will cause the form_do
function to return when the user clicks on a button. The flags TDEXIT,
DEFEXIT, EXITLAST, and TCHEXIT are defined to represent the exit value and
then included as the fifth parameter in the object definitions for each of the
buttons.

Editable text fields are special GEM structures that tell the form_do
function how the data should be entered and displayed. A TEDINFO structure
(Text EDit INFOrmation) contains three strings and some information about
them such as font, length, and the characterisics of the box that contains the
text field. The form_do uses the first string as the value to display and let the
user change. It uses the second string to label the first string. Wherever an un-
derscore appears in the second string (the template string), form_do replaces it
with a letter from the first string (the text string). Thus, the template string
“How many: " and the text string ““15”" would combine on the screen to
read “How many:15___". The third string is the validation string, which defines
what types of information the user is allowed to type in the field. If an “X"" ap-
pears in a character position, than any character is allowed. If “9” appears,
only a digit can be entered in the position. We have specified one character of
any type, allowing a minus sign as the first character, followed by 11 digits.

The dialog tree is placed in the diag_coord array. The data structure for
each item in the object library is just like the menu in the build_tree routine
discussed earlier. The first three parameters are the index of the next sibling,
the index of the first child, and the index of the last child; they are followed by
the object type which determines the appearance of the object and the user in-
teraction. Then a flag is included for the item (these flags were defined earlier
in the file). The next parameters define how the item should be drawn; for this
application a line is put around the enclosing box and uses the normal fore-
ground and background colors. The next parameter is specific to the object type
and identifies some information about the object. The last four parameters are
the x, y, w, and h of the object’s window on the screen.

Program 5-14. coordin.c

include <osbind.h>
include <obdefs.h>
include <gemdefs.h>

define BLANK
define UNDERSCORE

117

s CHAPTER 5

TEDINFO ted_real = (
" 20080000000 " ,
"Real: St e "y
"X99999999999" ,
IBM, @, TE_LEFT, @xFF806, 8, -2, 12, 26
33
TEDINFO ted_imag = {
" -20000000008" ,
“Imaginary: __.__________ s
" X9FIFITITFTI",
IBM, @, TE_LEFT, @xFFeg, &, -2, 12, 2&
Y3
TEDINFO ted_wide = (
" 4000000BOBH" ,
"Width: N e Y e et
"XFIR9999999" ,
IBM, &, TE_LEFT, @xFF8@, 4, -2, 12, 2&
i3
TEDINFO ted_high = {
" A0S080PVOPD" ,
"Height: o ST e o TN 5
"X99999999999",
IBM, @, TE_LEFT, @xFF8@, o, -2, 12, 2&
¥3

define TDEXIT { EXIT i TOUCHEXIT ! DEFAULT)
define DEFEXIT (EXIT i DEFAULT)
define EXITLAST (EXIT | LASTOB)
define TCHEXIT { EXIT i TOUCHEXIT)
define EDITLAST { EDITABLE | LASTOB)
define B_OK 2 |
define B_CANCEL 2
define B_ZOOM_IN 3
define B_ZOOM_OUT 4
define EDIT_FIELD S
struct object dial_coord[]l = {
-1, 11, 8, G_BOX, NONE, OUTLINED, @x2FF@@L, e, #, 38,
2, -1, -1, G_BUTTON, TDEXIT, NORMAL , o LI 9.9 2w
3, -1, -1, G_BUTTON, TCHEXIT, NORMAL, "CANCEL", 29, 4, 8,
4, -1, -1, G_BUTTON, TCHEXIT, NORMAL, "Z0OOM IN", 29, &4, 8,
S5, -1, -1, G_BUTTON, TCHEXIT, NORMAL, *ZooM OuT", 29, 8, B8,
6, -1, -1, G_FBOXTEXT,EDITABLE, NORMAL, &ted_real, 1,
7, -1, -1, G_FBOXTEXT,EDITABLE, NORMAL, &%ted_imag, 1,
8, -1, -1, G_FBOXTEXT,EDITABLE, NORMAL, &ted_wide, 1,
é, -1, -1, G_FBOXTEXT,EDITLAST, NORMAL, &ted_high, :

double
get_val (str)
char %str;{

char hold(801, xp;
double atof();

while(¥str == BLANK |! ¥str == UNDERSCORE)
str++;

for(p = str; Xp; p++)
if(¥p == BLANK

¥p = '@

holdl[@] = str(@l;

holdl1] = stri11;

holdf21 = *,”;

strcpy (%hold(3]1,&str(2));

return(atof (hald));

¥

i ¥p == UNDERSCORE)

118

Menus, Dialog Boxes, and Graphics e

OQur edit field puts the decimal point in for us.
It wants to see a string of numbers only,
This routine takes a double,
decimal point,
range (between -9.9999999... and 99.9999999...)
X/

set_val (str,val)

char ¥strj;

double val:(

char hold[&641, %p;

possibly preceded by a minus.
converts it to a string without any
and plugs it into the editable field. This also has the
nice effect of putting really wild values into our somewhat limited

/% some example values as they change %/
/% =99.5, -1, —.01, 5, 34, 123 &/
if(val < @)¢
kstr++ = *-73
val = -valj; /% F99.5; 1, 81, &, X, EE% R/
]
else 1f(val < 14) /% KXKXXK, X, k%%, S5, ¥x, xx%x %/
Istr++ = “@%;
if¢ val < 1) /% kXkkx, x, .91, ¥, XX, XXXk X/
fstr++ = @7
sprintf (hold,"%.9f",val); /8 99.5, 1, .01, 5; 34,125 8/
for{ p = hold; ¥p; p++)
$§4kp obas e)
Xstr++ = f&p;
/% We return: ~995;, -1, —001,05, 34, 123 z/
/% It becomes: -9.95, -1.4, -6.61, @5.0, 34.0, 12.3 »/
H
coordinates{) (
double r, i, w, hj;
char str[8@1;
int ret;
extern double orig_real, orig_imag, side_r, side_ij

extern int make_square;

fix_treel(dial _coord):

set_val (ted_real.te_ptext,orig_real);
set_val (ted_imag.te_ptext,orig_imag);
set_val (ted_wide.te_ptext,side_r);
set_val (ted_high.te_ptext,side_i);

ret =
if(

dialog(dial _coord,EDIT_FIELD):
ret == B_CANCEL)<{

dial _coordCB_CANCEL].ob_state

return (@) ;

b
else if(ret == B_ZOOM_IN)<
dial_coord[B_ZOOM_INl.ob_state &= “SELECTED;
orig_real += side.r / 4.0;
orig_imag += side_1 / 4.@;
side_r /= 2.0;
side_i /= 2.0;
if(make_square)

side_r = side_i =

&= ™~SELECTED;

3
else if(ret == B_ZOOM_OUT) (
dial _coordlB_ZOOM_OUT].ob_state &= “~SELECTED;
orig_real -= side_r / 2.0;
orig_imag -= side_i / 2.0;
side_r %= 2.0;
side_i %= 2.0;
if(make_square)

119

(side_r + side_i) / 2.0

s CHAPTER 5

side_r = side_i = (side_r + side_i) / 2.8;
3
else if(ret == B_OK){
dial_coord[B_OKJ].ob_state &= “~SELECTED;
orig_real = get_val (ted_real.te_ptext);
orig_imag = get_val (ted_imag.te_ptext);
side_r = get_val (ted_wide.te_ptext);
side_i = get_val (ted_high.te_ptext);
if(make_square)
side_r = side_i = (side_r + side_i) / 2.0;
3
else {
show_form("Dialog error...");
}
return(l);
-
fix_tree(t)
struct object *t;(

static int already = @;
extern int gl_wchar, gl_hchar;

if(already)
return;

for(yz){
t->ob_x %= gl_wchar;
t->ob_y %= gl_hchar;
t->ob_width *= gl_wcharj;
t->ob_height ¥= gl_hchar;
t->ob_height += 2;
if(t->ob_flags & LASTOB)

break;

t++3
¥

already = 1;

) 4

The get_val and set_val functions. get_val and set_val set the values
in the text strings and read the values back when the form_do function returns.
These functions would be simple, except that the numbers in the text string are
stored without any decimal points and may contain blanks or underscores.
get_val strips out any blanks and underscores, and inserts a decimal point
before it calls the GEM atof routine to convert the string to a floating-point
number. The set_val subroutine converts the floating-point number back into a
text string.

After everything is defined, coordinates has set up the four editable text
fields and called dialog, and dialog has returned with its values, coordinates
checks the results. If the user has selected the CANCEL button, coordinates de-
selects the button by returning it to normal video, and returns. If ZOOM IN or
ZOOM OUT has been selected, coordinates makes the respective changes in
the zoom window coordinates, deselects the button, and returns. And if the OK
button has been selected, coordinates uses get_val to convert the text strings,
which the user may have modified, and sets the zoom window variables.

120

=il
s Lye=ine)
Menus, Dialog Boxes, and Graphics s

The just_draw, save_screen, and copy—first Functions

These three subroutines save the screen images. The user can then always re-
turn to the original image, or the screen can be redrawn after a dialog box or
accessory window disappears, without having to recalculate the Mandelbrot set.
Two images are saved: the first is the original screen; the second is a copy of
the screen the last time it was redrawn. By saving the latest screen into a mem-
ory buffer, it's a simple matter to copy from the buffer back onto the screen
whenéver a portion of the screen needs redrawing,.

The only difficult part to redrawing after a menu or accessory window
has closed is copying (from the memory buffer) only that part of the screen that
has been obliterated. The resolution of the screen must also be taken into ac-
count because the rectangles are in pixels, which vary with the resolution.

The just_draw, save_screen, and copy_first (Program 5-15) functions
work together, so they are kept in one file. They're closely related to the other
function, back_to_first—also included in this file—which is discussed in the
next section.

The first section of code prepares things for saving the screen by describ-
ing the screen’s 32,000 bytes as a union of three arrays to handle the three
resolutions: low, medium, and high. Since it’s a union, all three arrays describe
the same 32,000 bytes, organized differently. So 4 bytes can be moved once the
arrays are declared as long int arrays. Then, to save the screen, the long ints
are copied from the screen into memory in a for loop, using the pointers p and
q. The current size of the window (not the screen) is also saved because the
program needs to know what portion of the screen belongs to this application
when the screen is redrawn.

Every time the screen, or a portion of it, is redrawn, doit calls
save_screen to save a copy of it. save_screen hides the mouse so it won't ap-
pear in the copy (since it will probably be in a different location when the copy
is used) and then calls getlogBase to get the address of the screen. At the begin-
ning of the file getlogBase is defined to be xbios(3).

If this is the first time the screen is drawn for the Mandelbrot applica-
tion, a copy of the initial screen also needs to be saved in case the user requests
the original screen be restored. The variable not_yet is defined as true (1) until
the first time save_screen is called, when it is set to false. If not_yet is true,
copy—first is called to place a copy of the current screen in the array
first_screen.

The just_draw function checks not_yet to see if save_screen was ever
called and to see if the size of the window to be redrawn is larger than the last-
saved window. If it is larger, then the portion of the window to be redrawn
was not saved and doit must be called to recalculate the set.

Because of their outlines, dialog boxes are really larger than the window
size that GEM passes to the program. To compensate for this problem, six
pixels are added to make sure everything is redrawn properly.

121

memew CHAPTER 5

With the use of pointers, tight loops, and long integers, the screen up-
date appears to happen instantaneously.

Program 5-15. justdraw.c

include <osbind.h>
include <gemdefs.h>

int not_yet = 13
int savex, savey, savew, saveh;

union u_screen {
long int low_res(20010401;
long int med_res(2001[401];
long int high_res(40010(201;
} u_screen, first_screen;

/%

k% Get the address of the screen
x/

union u_screen X

getlogBase() {

return((union u_screen %) xbios(3));
>

define MONOCHROME 2
define MEDIUM_RES 1
define LOWEST_RES @

just_draw(whand, x,y,w,h, vw)
int whand,x,y,w,h,vw;

register union u_screen kscrnj
register long int ¥p, %q, %¥end;
register int i, j;

hide_mouse();

if(not_yet !! % < savex !! y < savey !! w > savew !! h > saveh){
doit (whand, vw) j
show_mouse () ;

return;
ifl x > ;) /% Adjust for OUTLINED boxes %/
1E : ;= 4 /% which are bigger than the xywh %/
h += y +Y1;| i /% that we are given by GEM %/

w += x + 12;
scrn = getlogBase();
switch(Getrez())({
case MONOCHROME:
for({ i = y; i < h; i++) (
p = &scrn->high_reslillx >> 51;
end = &scrn->high_res(illw >> S1;
q = &u_screen.high_resCillx >> 51;
do {
kp++ = Kg++;
} while(p <= end);

break;
case MEDIUM_RES:
for(i = y3 i < hj i++) (
p = &scrn-rmed_res(illx >> 41;
end = &scrn->med_reslillw >> 4]1;
q = &u_screen.med_res[illx >> 413

122

Menus, Dialog Boxes, and Graphics e

do (
Ip++ = Kq++;

3 while(p <= end);

breaks;
case LOWEST_RES:
fort{ i =yj i < hy i++) (

p = &scrn—>low_reslillx >> 33;

end = &scrn->low_reslillw >> 31;
g = &u_screen.low_resCillx >> 31;

do
p++ = KQ++;

} while(p <= end)3;

break;
breaks;
b
show_mouse() ;
b

save_screen (whand)
int whand; {

long int %p, %q, Xendpics
union u_screen ¥scrnj
int xwork, ywork, wwork, hworks;

wind_get (whand, WF_WORKXYWH, &xwork, &ywork, Swwork,

hide_mouse();

scrn = getlogBase();

q = &scrn->low_res[@1[@];

endpic = &u_screen.low_res(2001(@1;

for(p = &u_screen.low_res[@1(@]1; p < endpic;)
Kp++ = kQ++;

show_mouse () ;

savex = xwork;

savey = ywork;
savew = wwork;
saveh = hworkj;

if(not_yet)
copy_first();
not_yet = @;
3
copy_first () {

long int %p, ¥q, ¥endpicj;

p = &first_screen.low_res[@1[@];
endpic = &u_screen.low_res(2@801(81;
for{ q = &u_screen.low_res(@1[(@]1; q < endpic;)
Ip++ = Kg++;
3
back_to_first (whand, vw)
int whand, wvw;{

long int %p, ¥q, Xendpic;
int wwork, hwork, xwork, ywork;

wind_get (whand, WF_WORKXYWH, &xwork, &ywork, &wwork,

q = &first_screen.low_res[(@1[0];

endpic = &u_screen.low_res(26061(81;

for(p = &%u_screen.low_res(@1(@8]1; p < endpic;)
¥p++ = KqQt++;

just_draw(whand, xwork, ywork, wwork, hwork, vw) ;

H

123

hwork)j

&hwork);

mmm—m CHAPTER 5

The back_to_first Function

This routine is called by got_key if the user presses the RETURN key and con-
firms that he or she wants to return to the first screen.

The code for back_to_first is the last function in Program 5-14. It simply
redraws the screen using the screen saved earlier in the first_screen array.

Header Files
The following two header files (Programs 5-16 and 5-17) are also needed to
complete our source code.

Program 5-16. mandel.h

define MAINMENU @

Program 5-17. mandefs.h

/X
%X Define where the menu items are in the menu array
X/

define ABOUT_M 9
define QUIT_M 18
define COORD_M 20
define SOUARE_M 21
define CNTLF_M 25

Building the Mandelbrot Program

As with the other programs earlier in this book, we construct the linkit.bat
batch file for our program as required by the Atari ST Software Developer’s Kit.
If you're using some other version of C, refer to your User’s Manual for infor-
mation on linking the necessary files.

linkit.bat reads the list of files to be linked from link.arg, Program 5-19.

After these two files are constructed, the program is linked by clicking
on batch.ttp on the desktop and giving linkit as the argument. The last thing
the linkit program does before waiting for the user to press a key is to name
the executable file from a.prg to mandlzum.prg.

Program 5-18. linkit.bat

c:\bin\linké8 [undefined,symbols,commandllink.argll
c:\bin\relmod a

c:\bin\rm a.&8k

c:\bin\wait

Program 5-19. link.arg

a.b8k=gemstart.o,main.o,
COLORS.0,CO0ORDIN.O,DIALOG.O0,GOTKEY. O, DOCLEAN. O,
DOMENU. O, MOUSEHIT.O,SAVCOLOR. O, TIMIT.O,CONF1G. 0,
BLDTREE.Q,DOIT.0, JUSTDRAW. O, DOMNMENU. O, GIVEHELF.O,
env.a, vdibind,vdidata.o,gemlib, aesbind,osbind,l11b¥f

124

file:///bin/l
file://c:/bin/relmod
file://c:/bin/rm

6 Building a Com-
mand Shell Desk
Accessory

6 Building a
Command Shell
Desk Accessory

mmmmmmm Desk-accessory programs are special applications in the GEM envi-

ronment that can run in special windows while another regular
WEmS—pplication is running. The desk-accessory names are listed by GEM
in the Desk pull-down menu. GEM collects the desk-accessory names at system
boot time, putting the first ones it finds into the accessory list, until a maximum
of six accessories is reached. For an accessory to appear in the list, it must be
on the boot disk. The limit of six accessories can be restrictive, especially since
there are dozens of good desk accessories available.

In this chapter you'll see how to provide many commands in one acces-
sory, thus allowing you to get more mileage out of a single desk accessory.
Also, as the accessory program is built, you will see how to construct a file so
the same source files can be used for both a desk accessory and a regular pro-
gram just by changing the way the files are linked. Chapter 7 will explain what
you need to do to link the files in this chapter to create a regular application
program.

The desk-accessory program built in this chapter is a command inter-
preter similar to command.tos, included with the Atari ST Software Developer’s
Kit. Two advantages this accessory has are that it uses the GEM interface and it
is a desk accessory. This means that, in the middle of executing a GEM applica-
tion program, the user can pull down the Desk menu and select this accessory.
An accessory window will appear as illustrated in Figure 6-1, and the user can
then type a command to copy a file from one disk to another, list a directory,
print a file, and so forth, all without exiting the application program. The print-
ing will actually go on in the background as the user resumes using the appli-
cation program.

127

mme—s CHAPTER 6

Figure 6-1. The Desk-Accessory Window for the Command.Shell
Program

besk File eu Utions

r
51 files in Ci\NED\¥,*

FLOPFY DISK

This Command Shell program will be able to execute these commands:
copy, move, remove, print, list (print with filename), dir, and chdir. The argu-
ments to these commands can contain pathnames and wildcards, which dir_list
(see below) expands to a list of full filenames.

Figure 6-2. The dir command opens a second window that can be
scrolled, resized, moved, and closed.
Desk File View Options

Command Shell
Path: ;A:\
Dir: Ci\NEO
Last! dir
Hsg: 51 fil¢ mpIRps GJENNAAND.ME AAFALL.NED AAFAUCET.NED
ARFLAG,NEO ARINSECT.NED RAREPORT,NEO ARSNAKE.,NEQ
ARTRAIN.NEO AATRUMP,NED AAMORM.NED ANGEL,NED
ATARI.NED BOTHZ,NED BOTHI.NED BRUNEL.NEO
Conmand? d | (CHAOS.NED CHEVAL.NED CHROME,NEO DEC,HED
EARTN.ANI EARTH.NEO FIREBALL.NED FRACTAL.NED
GREATMAY,NED HOUSE3.NEO IMPOSFOU.NED JOKEY,NEO
KATH7.NED KATH8.NEO KATHI.NED LOTUS,NEO
MAPI4.NED MAP43I.NED MEDFLY.NED MICKEYZ.NED
MONATH.NEO NEO,PRG ROBOTHTY,NEO ROBOTTY.NED
SAILBD.HED SCICOVER.NED SIMONL,NEO SLIDEANI.PRG
SPACEZ, NED SPACESHZ.NED SPIRAL.NEO TEST.NED
UACL,NED WHEELS3.NEO WORLDMAP.NED

o |=

= ¢

FLOPFY DISK

TRAZH

128

file://C:/NE0A*.*
file://C:/NE0

Building a Command Shell

For some commands, like dir, the Command Shell program opens an-
other window on the desktop, as shown in Figure 6-2.

The configac.c File

As with the other programs in this book, this desk-accessory program uses the
library of envelope routines developed in Chapter 2 for handling most of the
GEM interface programming requirements. To customize the envelope for this
application’s needs, config.c must be adapted. Note that we decided to rename
the file to configac.c (Program 6-1) because this is the configuration file for the
accessory version of the command interpreter; this will help us to distinguish it
from the regular application version in Chapter 7.

To set up a program as a desk accessory, the variable i_am__accessory is
set to 1 and the program is linked as an accessory. The linking process is de-
scribed in the section “‘Building the Desk-Accessory Program” near the end of
this chapter.

The name “Command Shell” is entered for both wind_name and
access_name, and since this is a desk accessory, only the access_name variable
will be used. RCS isn’t used in this program, so USE_RCS is undefined; how-
ever, the resource variable is set to SHELL.RSC as an example if you want to
modify the program.

Program 6-1. configac.c
include <gemdefs.h>
char ¥wind_name = " Command Shell ";

ifdef USE_RCS
char Xresource
else

char ¥resource
endif USE_RCS

"SHELL.RSC";

@3

char %access_name
int 1_am_accessory

Command Shell "j
13

int sx = 20; /% small window size ¥/

int sy = 20;

int sw = 300;

int sh = 1603

int slv = @; /% small window vertical slider pos ¥/
int slh = @3 /% small window horizontal slider pos %/
int svs = 199@; /% small window vertical slider size ¥/
int shs = 100@; /%X small window horizontal slider size %/
int min_wide = 100;

int min_high = 50;

int interval = @;

int events = MU_MESAG ! MU_KEYBD;

The doit.c and justdraw.c Functions

Clearing and redrawing all or part of the screen are handled by the doit and
just_draw functions (Program 6-2). In previous programs these routines were
in separate files because they were fairly complex. Since they’re short and
closely related in this accessory, it’s logical to put them in one file.

129

m—— CHAPTER 6

The doit function clears the screen and calls the got_key function, pass-
ing it a —1 parameter so that the screen will be redrawn. got_key is explained
shortly, but notice that in this program got_key does the redrawing because it’s
the only function which knows about certain data structures; there is some
information, such as the pointer into the current command string, which must
be hidden from other functions. The C language provides this capability to hide
data to prevent the data from being modified in more than one place, making it
easier to avoid bugs.

The just_draw function is similar to doit, except that it only clears the
part of the window in the current clipping rectangle. The algorithm used to de-
termine the clipping rectangles is explained at length in the discussion of the
do_redraw function in Chapter 2.

Program 6-2. doit.c

doit {whand, vw)
int whand, wvw;{

hide_mouse();
clr_display(whand,vw);
got_key(-1,whand, vw);
show_mouse () j

just_drawi{whand,»,y,w,h, vw)
int whand, x, y, w, h, vw;{

hide_mouse();
just_clear (whand, vW);
got_key(—1,whand, vw);
show_mouse () 3
3

open_data(file)

char *file;{

return(i);
b

The got_key Function: Responding to Input Commands

Most of the work in the desk accessory occurs in the got_key function, Pro-
gram 6-3. got_key handles input from either of two windows: the Shell win-
dow and a directory window. From got_key, some of the screen-handling
functions such as multi and do_redraw are used in indirect recursion to refresh
the accessory window after commands are entered, refresh the directory
subwindow that’s created when the dir command is typed, and collect the char-
acters the user types to initiate commands.

The first two if statements in this function are used to determine
whether a directory subwindow is open, and whether it should be refreshed or
closed. If a window is moved, resized, or uncovered, it must be redrawn. These
statements are easier to understand in context, so they’ll be discussed in detail
with the do_dir_wind function.

130

Building a Command Shell

If the window handle variable (whand) equals —1, then the Command
Shell window is closed. This should never happen, but this statement has been
included as a precaution.

If got_key is somehow called when the Shell window is closed, the
got_key function benignly returns 0 to multi so it continues.

If the window handle is not —1 (and it shouldn’t be under normal cir-
cumstances), then GEM’s wind_get function is called to get the size of the
Shell window’s area and figure out where to put the prompt.

If the character passed to got_key in the ch variable is —1, it means “re-
draw the window.” The contents of the window shown in Figure 6-1 are
redrawn.

When the user selects the Command Shell from the Desk pull-down
menu, GEM sends the event message AC_OPEN to the multi function, which
calls the was_message routine, and the switch statement is entered at the
AC_OPEN entry point. The AC_OPEN event says that a desk accessory has
been activated. The Command Shell window appears looking like Figure 6-1.
GEM routines have drawn the window frame and the window has all the regu-
lar features: It can be sized, fulled, closed, or moved as the user wishes. The
size of this “small” accessory window is dictated in the configac.c file.

The text in this window is generated by the got_key function, and will
be redrawn on the screen whenever got_key receives the —1 argument. In the
upper left corner the program prints the current command search path, the cur-
rent directory, the last command executed, and any status or error message the
last command may have issued. The last line is a prompt for a command.

The current command search path consists of the list of directories GEM
will search to find a program to run, which TOS sets at boot time. To find out
what the path is so it can be printed from the Command Shell window,
got_key calls the GEM shel_envrn routine with the instruction to search for
“PATH=""in the Shell’s environment space and to put the found value into
the array pathp. The result is printed on the screen with the GEM functions,
sprintf and v_gtext.

Getting the current directory is done the same way it is in the PLOT
program, by using Dgetdrv to get the drive number and Dgetpath to get the di-
rectory. The result is printed under the path.

The last command the user types is recorded by got_key in the array
lastcom and the user’s command is echoed by printing the characters on the
screen beneath the current directory. Because the last command has been re-
corded, the user is given a shorthand way to repeat the last command. By typ-
ing two exclamation points, !!, the last command entered will be executed
again.

Since some commands result in input or error messages for the user, a
way to print the messages on the screen is required. As you'll see in a moment,
the array errmsg serves as the buffer where commands store their messages.

131

s CHAPTER 6

Next, the location of the last line in the window is calculated for po-
sitioning the Command prompt line and the underscore that represents the
cursor.

The pointer p is set to point into the command buffer and the first char-
acter in the buffer is set to 0 to clear it of any previous command and make it
ready to receive a new one. got_key then returns 0 to the multi subroutine so
that it won't exit.

The third function of the got_key routine is to respond to the user’s key-
board input. The HELP function key must be dealt with separately because it's
not an ASCII character, but a 16-bit character whose low 8 bits are zero.

When got_key gets the message that the HELP key has been pressed, it
calls the give_help function, which, except for the text, is very similar to the
PLOT program version.

Normal ASCII character keys are sorted out by doing a switch on the
low eight bits of the character. If the pressed key is ESCAPE or CONTROL-C,
then a 1 will be returned so the multi function will exit back to the desktop.
(This statement was added in order to plan ahead to the regular version of this
program. Desk accessories can't exit, so ESCAPE and CONTROL-C have no ef-
fect from the user’s perspective.)

Typing on the keyboard, as long as the character is not RETURN or
BACKSPACE, causes the switch to enter the default case. In this case, we hide
the mouse, put the character into the buffer using the pointer p, print the char-
acter on the screen using v_gtext, increment the column number, and display
the cursor and the mouse.

By pressing RETURN, the user signals that the input command can be
executed. got_key first clears the errmsg array so old messages have no chance
of being displayed (in case the command just given doesn’t issue a message).
To end the string, the command string is terminated with a null. Then the
buffer is checked to see if it's empty (buf[0]), which means that the user just
pressed RETURN or NEWLINE alone. In this case, got_key is called recursively
with a —1 to redraw the screen, giving the user feedback by causing the screen
to blink.

If the buffer contains a command, a check is made to see if it’s the spe-
cial “!!” command, meaning to repeat the previous command. If it is, the previ-
ous command is executed by calling the call_sys function with the array
lastcom.

If the command in the buffer is not “!!"”, the command is copied into the
array lastcom, and the call_sys function is called with the command buffer to
execute the command.

A backspace in the buffer means that the user wants to correct a typing
error. The pointer p is decremented to make it point to the last character that
was typed and replace that character with a 0 to terminate the string. To make
the characters disappear and the cursor appear to move to the left, a space is
printed where the cursor is, the column number is decremented, and the cursor

132

Building a Command Shell s

is printed where the erased character was located. The bell is rung when every-

thing is erased.

The last line in this routine contains a return statement, in which we put
a 1 to cause multi to exit the program. In fact, the program should never reach
this statement because of the return statements in each switch case. If it does,
then modifications to the program have left out a return statement, and by
exiting the program, the program alerts a programmer to the fact that a return

is missing.

Program 6-3. gotkey.c

include <gemdefs.h>

include <osbind.h>

define RETURN 215

define NEWLINE 212

define CTRL_C 203

define ESCAPE 233

define BACKSPACE a1a

define HELPKEY Ix 6200

define LEFT_EDGE { x + gl_wchar ¥ 1)

define PATHY (y + gl_hchar & 1)

define DIRY (y + gl_hchar x 2)

define LASTY (y + gl_hchar x 3)

define ERRORY { y + gl_hchar % 4)
define FILESY (y + gl_hchar ¥ 5)

char errmsglS5121;
char fprompt, fpathp;
int dir_window = @;

got_key (ch,whand, vw)
int chj
int whand, wvwj{

static char buf(2581, curdir(2581, lastcom[2581], msg(258], %p = buf;
static int col, linej;

int drv;

int x, y, w, hj

extern int gl_wchar, gl_hchar;

extern int i_am_accessory;

if(whand == dir_window){
ift ch !m -1)
return(l);
redo_dir (whand, vw) j
return{d);
b
if{ whand == -1)
return(@);
wind_get (whand, WF_WORKXYWH, &, &y, &w, &h) 3
if(ch == -1)¢
just_clear (whand, vw);
hide_mouse();
prompt = "Command? ";

shel _envrn (&pathp, "PATH=")3;
sprintf (msg, "Path: %s",pathp);
v_gtext(vw, LEFT_EDGE, PATHY, msg);

drv = Dgetdrv();
Dgetpath (curdir,drv+1);

133

e CHAPTER 6

sprintf(msg,"Dir: %c:¥s", drv+’A’, curdir);
v_gtext(vw, LEFT_EDGE, DIRY, msg)}

sprintf (msg, "Last: ¥%s",lastcom);
v_gtext(vw, LEFT_EDGE, LASTY, msg);

sprintf (msg,"Msg: ¥s",errmsg);
v_gtext(vw, LEFT_EDBE, ERRORY, msg)}

col = x / gl_wchar + 1;
line = (y + h) / gl_hchar - 1;
v_gtext(vw, col ¥ gl_wchar, line ¥ gl_hchar, prompt);
col += strlen(prompt);
v_gtext(vw,col ¥gl _wchar,linefgl_hchar,"_");
p = buf;
Xp = @3
show_mouse () ;
return(d);
3
if(ch == HELPKEY) {
give_help (whand, vw) ;
return(g);
¥
ch &= @xff;
switch(ch) {
case CTRL_C:
case ESCAPE:
return(l);
case NEWLINE:
case RETURN:
errmsgl@] = @;

p = @;
p = buf;
if(bufl@l)<{
if(strcmp(buf,"!!") == @){
call_sys(lastcom,whand, vw)}j
3
else {
strcpy(lastcom,buf);
call_sys{buf,whand,vw);
3
b
else

got_key(—1,whand,vw)j

return(@);

case BACKSPACE:

hide_mouse();

ifl p > buf)&
P==3
¥p = @;
v_gtext (vw,col ¥gl _wchar,line%gl_hchar," "
col--3
v_gtext (vw,col ¥gl _wchar,linetgl_hchar,"_"
b

else
printf("\7");
show_mouse () ;
return(@);
default:
hide_mouse();
if(p > &bufl255]1)
printf ("\7");
else {
kp++ = ch;
¥p = @;

134

Building a Command Shell s

v_gtext (vw,col¥gl _wchar,line¥gl_hchar,p-1);
col++;

v_gtext (vw,col ¥gl _wchar,linexgl_hchar,"”_");
3

show_mouse () ;
return(d);
>
return(l);

3

The give_help function. In the Command Shell desk-accessory pro-
gram, the user can ask for help in three ways: pressing the HELP key, or by
typing “help” or “?” at the command prompt in the Command Shell window.
When the Command Shell runs as a regular program, the user can select Help
from the main menu. Any of these events causes got_key to call the give_help
function listed in Program 6-4.

Each help screen’s text is put into the array str by the GEM sprintf func-
tion. The program flips through the six help screens as the user clicks on the
NEXT button printed in the help window and returns to got_key after the last
screen.

Program 6-4. givehelp.c

give_help(whand, vw)
int whand, vw;({

char stri256];

sprintf (str,"[#1(%si%si%si%si%s]Il NEXT 1",
"To copy files, you can type p
" copy ¥%.% directory
" copy %¥.doc directory
" or just
" copy filel file2
)3
form_alert(i,str);
sprintf (str,”"[@1[%si%si%si%si%sll NEXT 1",
"Move is just like copy, but "
"it removes the files after "
"it copies them. On single "
"file moves, it just renames "
"the file. e
]
form_alert(l,str);
sprintf(str,"[@][%si%si%si%si%s]l NEXT 1",
"To remove files, you can type "
" remove %¥.bad %.o0ld junk.¥
" remove ..\\junk\\¥.X ’
" or just ’
" remove file
13
form_alert(i,str);
sprintf(str,"[(@1[%si%si%si%si%sll NEXT 1",
"To print files, you can type ",

"

" print ¥.doc ¥.h k.c "y
* print ..\\docs\\¥.X “5
" or just .

" print file

135

http://C03C7.si7.si7.si7.si7.s3C
http://C7.si7.si

s CHAPTER 6

form_alert(l,str);

sprintf(str,"[(@1[%siisiisi¥si¥%s]I[NEXT 1",
"To show a directory, you type ",
He Aty .

" or o

" dir ¥.o ¥.c %¥.h ..\\docs\\%x.%x ",
"Use chdir to change directory.
)3

form_alert(l,str);

sprintf(str,"[@]1[%siisi%si%si¥%s]I[LAST 1",
"Some abreviations are cp, mv, ",
"lpr, 1ls, and cd. The command
"rm is like remove but doesn’t
"ask for confirmation. List is
"like print, but with titles. e
)3

form_alert(i,str);

>

The call_sys, isprg, and set_screen Functions

After the user has typed a command and pressed RETURN, got_key calls the
call_sys function (Program 6-5), passing it the buffer containing the command
and its arguments. As you look at the code, you'll see that this routine is writ-
ten so that it can function as a desk accessory, or as a regular program from
which other programs can be called.

The GEM function Pexec, which executes another program from the cur-
rent program, appears in the following code, and will be used by the regular
program that’s built in Chapter 7. Executing another program does not work
from a desk accessory because accessories run as part of the desktop. When a
program is executed from an accessory with Pexec, the new program clears the
screen and menu using the desktop’s resources, but without GEM being aware
of it. As a result, the desktop does not know to refresh the screen and menu.

The command buffer is copied into a local array and the command is
separated from its arguments by locating the first white space and replacing it
with a 0 to terminate the command. The pointer args is left pointing to the first
nonblank character after the 0, and str is left pointing to the first character of
the command. Then the arguments are placed in the arguments array, reserving
the first character for the string length of the arguments, because the Pexec
function requires that the first character be the length of the argument string.
The first word we isolated is now copied into the command array.

Next, the program must determine if the command that was entered is
one of the commands built into this program, or whether another program
must be executed. Because accessories cannot execute other programs, we need
to know if this is an accessory. This is done by first calling the built_in func-
tion to execute the command. If it's not a built-in command, the function will
return 0 and then check to see if the current program is a desk accessory. If it
is, the program returns, since the desktop will be ruined if an accessory exe-
cutes another program. If the command was one of the subroutines included in
this program, the built_in function will execute it.

136

Building a Command Shell s

If the function finds that this is not a built-in command, and this pro-
gram is a regular program, then the call_sys function calls find_cmd, which
looks for the command in each possible command directory listed in the PATH
string found in the environment. If it finds the command, the command’s full
pathname is returned in the array named command, the same array in which
the word was originally passed. Because the pathname is returned in this array,
80 bytes have been allocated for the command array, even though the word
passed to find_cmd will never be that long.

Because executing another command changes the appearance of the
screen, it is necessary to save all the information about it in order to restore the
screen at the command’s completion. It's possible to save the entire screen and
then restore it as was done in the MandelZoom program; however, there is an-
other way that redraws the screen much faster. It's the method used to achieve
the rapid screen changes required by animation applications, and requires
changing the pointer to the screen memory location.

GEM keeps two pointers to the screen memory location. These pointers
may point to the same place, or to two different places where different screen
memories are kept. The screen contents are written to one of these places while
the contents of the other screen memory location are displayed by display
hardware.

The GEM routines Physbase and Logbase are used to get the location of
the screen’s memory, and to save the pointer in phys and log. The phys pointer
indicates what the hardware should draw on the screen and the log pointer in-
dicates where the screen contents are written. Thus, while the hardware is dis-
playing the contents of one screen memory (pointed to by phys), the next
screen can be prepared behind the scenes in the location pointed to by log.
Using the GEM Setscreen routine, we can change phys to point to log, thereby
causing a new screen to appear instantaneously, and change log to phys, to
start drawing the next screen. After saving the screen memory’s location in
phys and log, we also save the current screen resolution, in case the program
being called changes it.

Then the save_screen function is called to save the current screen in an
array called screen, which is aligned to a 256-byte boundary because the screen
hardware requires that the screen memory’s location begin on an even bound-
ary. This gives us a copy of the original screen, and lets us use GEM's
Setscreen routine to set the screen location pointer to this location in memory
before the command is executed. Executing the command will then write over
the copy, but the original screen is saved, with its location stored in phys and
log, and can instantly be restored when it’s needed.

Before Pexec can be called to execute the command (remember that
Pexec will call another program only if this is a regular program), the mouse
cursor must either be left on or turned off. The isprg function checks to see if
the command ends in the .PRG extension. If it does, it's a GEM program; the
mouse cursor should be ON and the text cursor should be OFF, so the

137

e CHAPTER 6

show_mouse function is called to set the cursors. If the command ends in the
.TOS or .TTP extensions, then the opposite needs to happen, and GEM’s
Cursconf is called to display the text cursor and hide_mouse is called to hide
the mouse.

With the cursors displayed properly for the command, Setscreen is used
to set the screen to the duplicate copy and call Pexec to execute the command.
When the command is completed, the cursors are restored to their original state
and Setscreen returns the screen pointer to log, its original location. This pro-
duces the effect of very quickly restoring the appearance of the Shell window.

The command’s exit status is put in errmsg, and the program returns.

Because they're closely related to the call_sys function, the code for
isprg and the code for save_screen are included in the same file. The purpose
of the short isprg function is to see if the command ends in .PRG. It looks at
the last four bytes of a string and returns 1 if they are .prg or .PRG.

The save_screen function in this program is a short version of the same
routine in the MandelZoom program. Since save_screen simply saves a copy of
the screen, resolution is irrelevant and the data can just be copied as long inte-
gers for efficiency.

Program 6-5. callsys.c

include <gemdefs.h>
include <osbind.h>

include <obdefs.h>

include <wfparts.h>

define LOADGO a

define JUSTLOAD 3

define BASEPAGE 4

define JUSTGO S

define NOCLIP @

define CLIP 1

define EXITAES]

define RUNCMD 1

define LOCK 1

define UNLOCK @

define BLANK o

define TAB eAtr

define SKIPWHITE(x) while(¥x == BLANK !! %x == TAB) R++3
define SKIPCHARS(x) while(¥x && %x '= BLANK && %x '= TAB) x++3
define HIDE_CURSOR @

define SHOW_CURSOR |

define ON 1

define OFF a

long int screen_bufl2151[401;
long int Xscreen = &screen_buf[15];

long int ret;
char arguments[25&1;

138

Building a Command Shell s

char strbufl(2561;
char command(B8@1;

long int
call_sys(str,whand,vw_handle)
char %strj;

int whand, vw_handle;{

register int arglen;

register char ¥args, ¥p;

int is_graph, is_aes, cx, Cy, CW, ch, wx, Wy, ww, wh, i, rez;
int dx, dy, dw, dh, temp(81;

long int *phys, Xlog;

extern int gl_wchar, gl_hchar, i_am_accessoryj;

extern struct object ¥main_addr;

extern char errmsgll;

str[255]1 = @;
for(p = strbuf; p < &strbufl(2551;)

kp++ = @;
strcpy (strbuf,str); /% got_key() will clobber str if called %/
str = strbuf; /% so we copy it into a safe place %/

SKIPWHITE (str) ;
args = str;
SKIPCHARS (args) ;
Xargs+t+ = @;
SKIPWHITE (args) ;

arguments(@] = strlen(args);
strcpy(%arguments[11, args)j;

strcpy (command, str);
if(built_in{command, args,whand,vw_handle))

return;
if(i_am_accessory) /% accessories can’t handle menus, so ¥/
return; /% they can’t call programs with menus ¥/

if(findcmd (command,str))<

hide_mouse () ;

phys = Physbase();

log = Logbase();

rez = Getrez();

screen &= “@xff;

save_screen(screen);

if(isprg(command))<
Setscreen (screen,screen,—1)3;
show_mouse () ;
i = Pexec (LOADGO,command, arguments, @) 3
hide_mouse () ;
Setscreen(log,phys,—1)3
3

else {
Cursconf (SHOW_CURSOR, @) ;5
Setscreen(screen,screen,—1);
i = Pexec (LOADGO,command, arguments,dL);
Cursconf (HIDE_CURSOR, @) ;
Setscreen(log,phys,—1);
3

sprintf (errmsg, "%s returned %d",command,i);

show_mouse () ;

3
else (
i=-13
sprintf (errmsg, "Can’t find *%s”",str);
b
return(i)3
3

139

E——
meees CHAPTER 6

isprg(str)
char kstrj(

int xj
x = strlen(str);

ift x > 84)¢
str = &strix-41;

if(stremp(str,”.prg") == @ !! strcmp(str,".PRG")
return(l);
)
return(d);

H
redo_desk () {

int %, y, w, h, i, msg(Bl;

wind_get(@, WF_CURRXYWH, &x, &y, &w, &h);

W += x3

L |

X =y = g

msgl(@] = WM_REDRAW;
msgll] = msgl2] = @;
msgl4] = xj;

msglS] = y;

msgléel = w;

msgl7]1 = h;

for(i = @; i < B; i++)¢

msgl3] = i;
appl_write(@, 16, msg);
3

¥
turn_me (on_off)
int on_off;{

int msgl81;
extern int gl_apid, menu_id;

if(on_off)
msgl@]1 = AC_OPEN;
else
msgl@] = AC_CLOSE;
msgl1] = msgl2] = msglS] = msglél = msgl7]
msgl3] = menu_id;
msgl4] = menu_id;
appl_write(gl_apid, 16, msg);
3
’x
¥ Get the address of the screen
X/
long int x
getlogBase () {

return((long int %) xbios(3))
b

save_screen (screen)

long int screen(](401;{

long int *p, ¥qg, ¥endpic;

hide_mouse();

q = getlogBRase();

endpic = screenl20@1]1;

for{ p = screen; p <« endpics)
p++ = Xq++;

show_mouse () ;

3

140

=G;

=

EELsERuELs
EERRRE
Building a Command Shell s

1ifdef DEBUG
debug(str,a,b,c,d,e,f,g)
char ¥str;

int a,b,c,d,e,f,g;(

char bufl[128], *p;
static int not_yet;

1if(not_yet == @) {
Rsconf(7,-1,-1,-1,-1,-1);
for(p = "Hello!\r\n"; %¥p; p++)

Cauxout (¥p);

not_yet++;
3

sprintf (buf,str,a,b,c,d,e,f,g);

for{ p = buf; %xp; p++)
Cauxout (¥p) :

Cauxout (’\r?);

Cauxout("\n”);

3

endif DEBUG

int Wc, Hc;
struct object d_menul143;

dummy_up_menu(str)
char %*strj{

extern int next_item, gl_wchar, gl_hchar, Hc, Wc:
int mbox;

next_item = @;
Hc = gl _hchar;
Wc = gl_wchar;
mbox = addit(d_menu,-1,G_IBOX,0L,0,0,80,1);
addit (d_menu,mbox,G_TITLE,str,d,@,-2,1);
)
menu_on () {

NIy - LR IREILE ™ e i i e i S s)i
menu_bar (d_menu, ON) ;
3

menu_off () {

menu_bar (d_menu,0FF) ;
¥

The findemd.c function. To get the full pathname of a command, the
findemd function, Program 6-6, calls the GEM routine shel_find, which
searches each directory in the environment’s PATH list, looking for the file.

If shel_find cannot find the command, the user may not have added an
extension, so the routine appends the different extensions and searches again. If
the command still can’t be found, 0 is returned to call_sys, which displays a
message telling the user the command couldn’t be found.

141

e CHAPTER 6

Program 6-6. findcmd.c

findcmd (command, str)
char *command, ¥str;{

if(shel_find(command))
return(l)g;

sprintf (command, "%s.prg",str);

if(shel_find(command))
return(l);

sprintf (command, "%s.tos",str);

if(shel_find(command))
return(l);

sprintf (command, "%s.ttp",str);

if(shel_find(command))
return(l);

return(@);

]

The built_in Function

The built-in commands offer quick access to commonly needed functions such
as file copying, removing, and printing. They demonstrate another way of en-
tering commands besides the pull-down command menus. The built_in func-
tion, Program 6-7, handles the following commands for this shell program:
help, cd, cp, mv, rm, Is, print, and list.

For those commands that take filename arguments, the user can enter
the * wildcard character and the program will expand it into a list of filenames.
For example, with the copy command the user can enter

cp *.c A: \onefile.c

and, as long as *.c is only one file, the command will work. Likewise, the user
can type

cp *.c A: \bac*.dir

and the command will work as long as bac*.dir is a single directory.

The user can set the current working directory by typing the cd or chdir
commands. The GEM Dsetpath routine is called to change to the directory
given as an argument.

The copy command allows the user to copy a list of files into a directory,
in addition to simply copying one file to another. It calls three functions that
are explained below, but summarized here. The copy command calls save_last
to save the last filename in the list as the target file or directory. Then, it calls
the dir_list function to expand any wildcards in the arguments except the last
one into a list of filenames. And last, do_copy is called to actually copy the
files.

The move command is similar to the copy command, except that the
do_move function is called instead of do_copy.

The rm and remove commands remove files by calling the dir_list func-
tion to expand the wildcards, and do_rm to remove the files. The rm command

142

file:///onefile.c

Building a Command Shell e

will not prompt the user if the file should really be removed, because it passes
the DONTASK argument to do_rm. The remove command passes the ASK
argument to do_rm, causing do_rm to ask for confirmation.

The dir or Is commands list the files in a directory. The case where no
argument is entered after the command is handled by setting the argument to
**, meaning everything. To conserve space, the JUSTFILE argument is used
when the dir_list function is called so that it prints only the filenames, remov-
ing any directory path information it finds. Then the do_dir_window function
is called to display the filenames in a window with the regular GEM interface
borders, enabling the user to resize and scroll the window.

The lpr, print, and list commands call the dir_list and print_files func-
tions to send files to the printer. The titles variable is set by the list command
to cause the filename to be printed at the top of each file. The list command
causes title to be nonzero so that the title is printed; otherwise it is not.

After a command is executed, the screen needs refreshing. All the com-
mands except dir, which has its own window, fall through to the do_display
function call to redraw the screen and print any messages, stored in errmsg,
that might exist.

If the command is one of the built-in commands, built_in returns 1 to let
call_sys know it can return. When the command is not built in, built_in re-
turns 0.

Program 6-7. builtin.c

include <gemdefs.h>
include <osbind.h>
include <document.h>

#*® &

*

define ASK
define DONT_ASK

define JUSTFILE
define FULLFATH

-] S -

int titles = @3

built_in(command,args,whand, vw)
char ¥command, Xargs;
int whand, wvw;({

extern int gl_wchar, gl_hchar, xlines;
extern char errmsgl]l;

char xlast, ¥save_last();

int ret, xj;

ret = 9;

if(commandl@] == @)
ret = 1;

else if(strcmp(command,"?") == @ | strcmp(command, "help") == @) {
give_help (whand, vw) ;
ret = 1;
¥

else if(strcmp (command, "cd") == @ || strcmp(command, "chdir") == @) {
Dsetpath(args);
ret = 13

>

143

= CHAPTER 6

else if(strcmp(command,"cp") == @ |! strcmp(command, "copy") == @) {
last = save_last(args);
if(last) (
#»lines = dir_list (args,FULLPATH);
do_copy(xlines, last, whand, vw);

3
ret = 1;
i]
else 1f(strcmp (command, "mv") == @ !! strcmp(command,"move”) == @)({
last = save_last(args);
if(last) {
ulines = dir_list (args,FULLPATH) ;
do_move(xlines, last, whand, vw);
Y
ret = 13
¥
else if(strcmp(command, “rm") == @) {
%lines = dir_list (args,FULLPATH);
do_rm(xlines, DONT_ASK, whand, wvw };
ret = 1;
¥
else if(strcmp{command, "remove”) == @){
®lines = dir_list (args,FULLPATH);
do_rm{ xlines, ASK, whand, vw)j
ret = 13
H
else if(strcmp(command,"ls") == {1 strcomp (command, "dir") == @)(
if(argsi@l == @)
strcpy(args,"¥.%");
xlines = dir_list(args,JUSTFILE);
do_dir_window(xlines, args,whand,vw);
returncl);
3
else if(strcmp(command, "lpr") == @ ! strcmp(command,"print”) == @) {

ret = 13
titles = @;
if(argsl@] == @)
strcpy (errmsg, "Print what?");
else (
» = dir_list(args,FULLPATH);
print_files (x,whand, vw) ;
b3
: 3
else if(strcmp (command,"list") == @) (
ret = 1;
titles = 13
if(argsi@] == @)
strcpy (errmsg, "List what?");

else (
» = dir_list (args,FULLPATH) ;
print_files(x,whand,vw);
;

3

do_display (whand,vw) ;

returniret);

¥

The save_last function. The user can type two types of arguments to
the move and copy commands: the source file or files, and the target file or di-
rectory. If the target is a file, there can be only one source file to copy into it. If
the target is a directory, then a list of files can be moved or copied into it. The
program needs to identify the last argument in the list, expand any wildcards,
and determine that the argument is a unique file or directory name. It does this
with the save_last function, Program 6-8.

144

Building a Command Shell

To find the last argument, save_last goes to the end of the string it was
passed, then moves backward one character at a time until it finds a white
space. An error message will be displayed if it reaches the beginning of the
string without finding a white space, indicating that the user didn’t enter a sec-
ond argument for the target.

The last argument is copied into the retval array and passed to the
dir_list function, which expands wildcards into a list of files and then sorts
them alphabetically. We’ll talk about dir_list in a moment, but for now note
that if the target name is not unique, a message is displayed and the program
returns. If dir_list finds a filename that matches, it returns it in the dir_strs ar-
ray and it is copied into the retval array. If a matching name isn’t found, then
the original string becomes the name of a new file and is copied into retval.
The white space before the first character is included with the string because
the first character distinguishes directories from files. The white space serves as
a flag that this is a file. The Shell will create files from arguments, but directo-
ries must be created separately.

After the last argument is removed, any extra white space that remains
after the last argument is also deleted, and the last argument is returned to the
built_in function.

Program 6-8. savelast.c

define FULLPATH 1
include <osbind.h>

char %
save_last (str)
char ¥strj(

char ¥p;

int x;

static char retvall128]1;

extern char errmsgll, Xxdir_strs(];

p = str;

while(¥str) /% go to end ¥/
str++;

while(¥str '= * * && ¥str '= ’\t’ && str > p) /% find white ¥/
str—-;

if(str <= p)¢
sprintf (errmsg, "Missing last argument”)j;
return(@); /% no white found %/
3

strcpy(retval, str + 1);

if(dir_strs(@1)
dir_strs[@1[0] = @;

x = dir_list (retval ,FULLPATH);

1F (x> 3L
sprintf (errmsg, "Target is more than 1 file");
return(@);
¥

if(dir_strs(0] && dir_strs(@#106]) {
strcpy(retval, dir_strs[@]);
¥

else (

145

e CHAPTER 6

strcpy(retval, str);

while(str > p && (kstr == * 7 || ¥str == ’\t?))
¥str-—- = @; /% clobber white %/

return{ retval);
3

The dir_list function: expanding wildcards. When a function needs to
expand filenames that contain wildcards, it calls the dir_list function. dir_list
takes a list of filenames, wildcards included, and copies the real filenames into
an array called storage. As each filename is put in storage, its new address is
placed in the array dir_strs. Thus, dir_strs is an array of pointers, each of
which points to a filename stored in the storage array. The list of pointers can
be manipulated, sorted, or indexed conveniently.

The dir_list file includes the document.h file, shown in Program 6-9.

Program 6-9. document.h

define NFILES 20¢
define NLINES 209
define NCHARS 8a

The three lines specify the number of files, lines, and characters that
dir_list can handle. Keeping these separated makes it easy to make global
changes in the sizes.

Two functions that are only used in this routine are included in this file:
the cmpfile and next_arg routines. You can see the cmpfile subroutine at the
beginning of the listing. This subroutine uses the GEM strcmp subroutine to
compare two strings and is used by the GEM gsort subroutine.

The next_arg routine appears at the end of the listing. It finds successive
arguments in a list, leaving a pointer pointing to the first character of the argu-
ment. It looks for the next argument in a list by finding the white space separa-
tor, and then replaces it with a 0 to terminate the string. Remaining white
space is skipped and a pointer to the first nonwhite character of the next argu-
ment is returned. The pointer points to the end of the string when there are no
nonwhite characters. :

dir_list, Program 6-10, gets filenames by calling the GEM routines Fsfirst
and Fsnext, which return the first filename in a directory, and then succeeding
filenames. They return their data to a place called a Data Transfer Address,
which must be set by the routine with the GEM Fsetdta subroutine. Because
this address is used by other programs, we use Fgetdta to save the old Data
Transfer Address and then restore it when we’ve finished. The Data Transfer
Address is set to point to the fs structure. The data returned by Fsfirst and
Fsnext is placed in the fs array, whose data structure is defined to correspond
to the shape of the returned data. Of importance to this routine is the fs_attr
field, in which one of the returned bits indicates whether the name is a direc-
tory name.

146

Building a Command Shell e

To expand wildcards in the arguments, two loops are used, one inside
the other. The outer one loops to locate each argument and passes it to the in-
ner loop, which looks for files in the directory that match the current argument
with its wildcards.

In the outer loop, each argument is isolated by putting a zero in the
space between the arguments, and a pointer is moved to successive arguments.

To keep a pathname of an argument, which is indicated because the
fullpath variable is nonzero, the get_head subroutine is called to return the
path prefix to the filename. The pathname fragment is stored in head, which
can then be inserted in front of each filename returned by Fsfirst and Fsnext to
produce a complete pathname that commands like print can use.

Fsfirst returns 0 if a file that matches the argument is found. If the file is
not one of the special directory names “.” or “..”, it is copied into storage with
a special character called DIR_CHAR that indicates whether it is a directory,
and the pathname. On the screen, this special character appears as the box con-
taining a diamond shape. The head variable will be empty if fullpath is 0.

The Fsnext function returns the next filename, and the comparing pro-
cess continues looking for another match. Fsnext returns nonzero when there
are no more files that match the argument, and the loop terminates.

Fsfirst returns nonzero if there are one or no files that match the argu-
ment. Any filename that is returned is copied into storage and the pointer in
dir_strs is incremented.

At the end of the outer loop, the arguments variable is set to next so the
next argument will be used, and the loop repeats. When all arguments have
been processed, the old Data Transfer Address is restored and the filenames are
sorted alphabetically by calling gsort, the “quicker sort” routine that is part of
the C library. The number of files that are found is returned to save_last.

Program 6-10. dirlist.c

include <gemdefs.h>
include <osbind.h>
include <document.h>

define IS_DIRECTORY 16
define DIR_CHAR 7

define STORE (8x1024)
char storagelSTORE+321, #¥sp;

char %dir_strs[NFILES];
int dir_index;

cmpfile(a,b)
char %%a, %¥b;(

return(strcmp(%a, %b));
) J

dir_list (arguments,fullpath)

char xargumentsj

int fullpath;(

147

memms CHAPTER 6

struct fs (
char fs_junk[213;
char fs_attr;
unsigned int fs_time;
unsigned int fs_date;
long int fs_sizej
char fs_namel131;
¥ fs3
long int save_dtaj;
int xj;
char thead, %*p, %q, fnext, ¥next_arg(), %get_head();
extern char ¥dir_strsINFILES];

sp = storage;
¥sp = @;
dir_strs[@] = sp;
fs.fs_namel@] = @;
dir_index = @;
save_dta = Fgetdta();
Fsetdta(&fs);
p = fs.fs_name;
while(arguments[@] &% sp < %storagelSTORE]){
next = next_arg(arguments);
if(fullpath)
head = get_head (arguments);
3
else {
head = "* 3
3
% = Fsfirst(arguments,@x3f);
ifl x ==@)(

do {
if(sp > &storagelSTORE])
break;
if(stremp(p,".") &% strcmp(p,".."))¢
dir_strsidir_index++] = sp;
if(fs.fs_attr & IS_DIRECTORY)
¥sp++ = DIR_CHAR;
else
Xsp++ = 7 7,
for(q = head; Xsp++ = Xq++;){
if(sp > &storagelSTORE]) {
fsp-— = @
break;
b
>
sp—j
for(g = p; %sp++ = kq++;){
if(sp > &storagelSTORE]1) {
ksp—— = @;
breaks;
b
b
3
} while(dir_index < NFILES &% Fsnext() == @)3
3

else if(pl@])
strncpy(dir_strsidir_index++1,p,13);
arguments = next;
3
Fsetdta(save_dta);
q:ort(dir_strl,dir_indnx,sizeuf(dir_strs[ﬂ]),cmpfile);
return(dir_index);
¥
char %
next_arg(a)
char xaj{

148

e oo <=l
Building a Command Shell s

while(%a && %a '= * * && %a '= "\t’) /¥ find white space %/
at++;
if(%a) (
¥a = @;
at+j
while(%a && (%a == 7 7 || xa == "\t*))
at++;
returnta);
>
else
returnia)l;
b J

The get_head function. With the get_head subroutine, you can identify
and save the part of a file’s pathname that precedes the filename. This can be
especially handy for constructing a complete pathname for a series of filenames,
for example, to send them to the printer.

If a pathname of

c: \ programs \shell \ gethead.c
is given, the get_head function, Program 6-11, will return
c: \ programs \ shell

The function scans the string for the backslash character and replaces the
last one it finds with a 0 to terminate the string. It then returns a pointer to the
start of the truncated string.

If there are no backslashes, a null string is returned to the calling
routine.

Now let’s take a look at the way the individual commands that call
dir_list use the data it returns.

Program 6-11. gethead.c

char %
get_head (str)
char xstrj(

static char headl[2%x18241];
char %h, ¥last_slashj;

last_slash = @;

h = head;

while(%*str)<{
th++ = ¥str;
if(tstr++ == **)

last_slash = hj

¥

if(last_slash){
klast_slash = @;
return(head);
;)

returnt ")3

¥

149

e CHAPTER 6

The do_copy Function: Copying Files

The Shell program lets the user copy one or more files into another file or into
a directory. It does this by using the dir_list function discussed earlier to create
a list of filenames which is returned to the built_in routine. built_in then calls
do_copy (Program 6-12), passing it the number of files and the target filename
(in last) into which to copy them. The target can be a file or a directory.

The function checks the dir_strs array to verify that there is at least one
file to copy, and prints an error message on the screen if there isn't.

To find out if the target is a directory, the first character of the target is
checked. Remember that in the dir_list routine the DIR_CHAR character (a box
with a diamond in it) was inserted in the first position of a directory name. The
is_dir flag was set according to whether or not this was a directory.

For each source file in the global dir_strs array, several error-checks are
made and then the file is copied to the target. Before copying the source file(s),
the program checks that each source file is not a directory. The program also
compares the source and target names to make sure they aren’t the same. The
following paragraphs explain how the program does this checking.

This version of a copy command lets a user copy only one file at a time
into another. That is, as a precaution against inadvertent input error, we don’t
let the user copy several files into one. The is_dir variable indicates whether
the target is a directory or not. If the target is not a directory, and the number
of source files being copied is more than 1, the program prints an error mes-
sage and returns to built_in.

The list of source filenames in the global dir_strs array is examined to
see if any of the filenames are directories. In this command, if a directory is
found among the source files, a message is printed and the function returns to
built_in, where the user can try retyping the command.

Next, a filename into which the source file will be copied is created. A
filename from the dir_strs array is copied into the variable p, and the first char-
acter (which is blank for filenames) is skipped over. If the user has entered a
directory as the target, then the program constructs the complete pathname by
joining target and p (separated by a backslash), and puts the pathname in
tofile. A plain file simply has its filename put in tofile. The name in tofile is
now compared to the name in p to confirm that they are not identical. If they
are, an error message is printed and the program returns.

Then the GEM fdelete routine is called to remove any existing target file
so we don’t run the risk of having parts of an old file appended to the newly
copied file, as would happen if the old file were longer than the file being copied.
The Fcreate is called to create a new file and return its file descriptor in to_fd.
Next fopen is called to open the source file so the data can be read from it.

sprintf is called to construct a message about which file is currently be-
ing copied, and do_display to refresh the screen and display the message. This
message feature is especially useful to a user who is copying many files, since
the information it contains tells the user the status of the copying process.

150

TR
e o o
Building a Command Shell s

Finally, everything has been confirmed and the source and destination
files opened. The GEM routines Fread and Fwrite are called to read from the
source file and write to the target. Fread returns the number of bytes it has read
from the source file and stored in fbuf. Fwrite collects only that number of
bytes from fbuf, and writes the data to the new file. LSIZE is used because
Fread needs a 32-bit number for the byte count, and SIZE is a 16-bit number.
Fread returns 0 on end of file, and negative numbers for errors, so the loop will
terminate on either condition. When the file is copied, Fclose is called to close
the source and destination files; then it goes through the loop again for the
next filename in the dir_strs array.

The ST floppy disks are quite fast, but the software overhead in transfer-
ring small records can easily hide that speed. If large records are being trans-
ferred, like the 8K records used here, the software is only called upon to set up
the transfer once every 8K, and the disk transfer speed is quite good. The
constants SIZE and LSIZE control the size of the transfers. Making them bigger
than 8K doesn’t increase the speed by much, since we reach diminishing re-
turns when the number of transfers per file gets below 3 or 4. Making them
smaller will make the copies take longer, but may be desirable when memory
is at a premium, as on 512K STs with a RAMDISK installed.

Program 6-12. docopy.c

include <osbind.h>
include <document.h>

define DIR_CHAR T
define SIZE (1824%8)
define LSIZE ({long int)SIZE)

do_copy(count, target, whand, vw)
int countj;

char *target;

int whand, wvwj(

int is_dir, %, to_fd, from_+fd)

long int numbytes;

char tofilel(1281, xp;

extern char errmsgll], ¥dir_strs[CNFILES], fbufl]1;

if(dir_strs(@] == @){
sprintf (errmsg,"No “from” file!");
return;
¥
if(target[@] == DIR_CHAR)
is_dir = 13

else
is_dir = @j

target++;

if(is_dir == @ && count != 1)¢
sprintf (errmsg, "Usage: copy file file OR copy files directory")j;
returng

b
for{ » = @3 x < countj x++){
p = dir_strsix]j

151

e CHAPTER 6

pt+;
if(is_dir)
sprintf(tofile,"%s\\%s",target,p);
else
sprintf(tofile,"%s",target);
if(strcmp(target,p) == @) {
sprintf (errmsg, "Copying °%s’ to itself!",target);
return;
b
Fdelete(tofile);
to_fd = Fcreate(tofile,®);
if(to_fd < @){
sprintf (errmsg, "Can’t create "%s’",tofile);
return;
b
from_fd = Fopen(p,@);
if(from_fd < @) {
sprintf (errmsg,"Can’t open *%s”",p);
return;
¥
sprintf(errmsg, "copy ’%s’ to "¥is’",p,tofile);
do_display (whand, vw) ;
while((numbytes = Fread(from_fd, LSIZE, fbuf)) > @){
if(Fwrite(to_fd, numbytes, fbuf) < @){
sprintf{errmsg, "Write error on *%s’",tofile);
return;
2
X
Fclose(to_fd);
Fclose(from_+fd);
b

The do_move Subroutine: Renaming Files

The move command is similar to the copy command, except that the source file
is removed after the copy. The do_move function, Program 6-13, takes each
filename as the source and renames it to the target name by either changing
the spelling of the filename, or copying the file and giving it the target name,
then deleting the source file. The target can be in a different directory or on an-
other drive.

Most of the do_move function is very similar to the do_copy function
discussed in the previous section. After setting up the directory status, path-
name (if any), and so on, the program renames the file.

A simple, fast way to change the spelling of a filename to a target name
on the same disk and in the same directory is with the GEM Frename routine.
Frename checks whether the target is in a different directory and if the target
filename exists; if either is true, it returns an error message and the program
drops into the copy loop. The program always tries to use Frename to change
the spelling before resorting to the more expensive technique of copying the
file.

If a filename can’t simply be respelled, then the source file must be
copied into the new file, with the target filename. This is done in a for loop,
which has the same function as the one in do_copy, except that the old file is
removed after the copy is completed.

152

Building a Command Shell s

Program 6-13. domove.c

include <osbind.h>

include <document.h>

define IS_READONLY 1

define IS_HIDDEN 2

define IS_SYSTEM 4

define IS_VOL_LABEL 8

define IS_DIRECTORY 16

define IS_CLOSED 32

define DIR_CHAR 5

define SIZE (102438)
define LSIZE {(({long int)SIZE)

char fbuflSIZE];

do_move(count, target, whand, vw)
int countj

char xtarget;

int whand, wvw;{

int is_dir, x, attributes, to_fd, from_fd;

long int numbytes;

char tofilel1281, ¥p;

extern char errmsgll], *dir_strsCNFILES]1, fbufll;

if(dir_strsi@] == @){
sprintf (errmsg, "No "from’ file!");
returns;
3
if(target[@] == DIR_CHAR)
is_dir = 1;
else
is_dir = &;
target++;
if(is_dir == @ && count != 1)(

sprintf (errmsg, "Usage: move file OR move files directory");

return;
b
if(is_dir == @ && count == 1){
p = dir_strs(@];
pt+;
« if(Frename(@, p, target) >= @){

sprintf (errmsg, "renamed *%s® to “us’",

p,target);
do_display (whand, vw) §
returnj;
¥
b]
for{ » = @; » < count; x++){
p = dir_strsix]l;
p+ty
if(is_dir)
sprintf (tofile, "¥%s\\%s",target,p);
else
sprintf(tofile,"%s",target);
if(strcmp(target,p) == @)(

sprintf (errmsg, "Moving "%s’ to itself!"”,target);

return;
b
Fdelete(tofile);
to_fd = Fcreate(tofile,d):

153

s CHAPTER 6

if(to_fd < @)¢
sprintf (errmsg, "Can’t create ’%s”",tofile);
return;
¥

from_fd = Fopen(p,@);

if(from_fd < @){
sprintf (errmsg, "Can’t open *%s’",p)j;
return;
i

sprintf(errmsg, "move ’%s’ to ’is’",p,tofile);
do_display (whand,vw)j
while((numbytes = Fread(from_fd, LSIZE, fbuf)) > @)(
if(Fwrite(to_fd, numbytes, fbuf) < @)({
sprintf(errmsg, "Write error on "%s"",tofile);
return;
b
3
Fclose(to_fd);
Fclose(from_fd);
Fdelete(p);
3

The do_rm Subroutine: Deleting Files

To delete files from a disk, the user types the remove command in the shell.
The code for removing files is much simpler than for moving them (Program 6-
14).

The program verifies that an argument has been entered, and then, if the
ask flag is set, asks the user to confirm that the file should be deleted. If the
user typed “remove” for the command, then the ask flag is true, and it is false
if he typed “rm”,

The GEM Fdelete routine takes care of deleting the file from the disk
and directory.

Program 6-14. dorm.c

include <osbind.h>
include <document.h>

do_rm{ count, ask, whand, wvw)
int count, ask, whand, wvw;{

extern char *dir_strsI{NFILES], errmsgl]l;
char buf(2561, #p;
int x;

if(dir_strsi@] == @){
sprintf (errmsg, "No file to remove!");
return;
¥
for(x = @; x < count; x++)({
p = dir_strsixlj
p*+;
if(ask) (¢
sprintf (buf, "Remove ’%s’?",p)j}
if(show_form(buf))
continues;
b
sprintf (errmsg, "removing *%s’",p);

154

Building a Command Shell s

do_display (whand, vw)
Fdelete(p);
H

3

The prntfile.c and do_title Functions
When the user gives the shell the print or list command, the function
print_files (Program 6-15) is called to send files to the printer.

The for loop in print_files cycles through the list of files in the dir_strs
array that was created by dir_list, printing the name of each file and a number
showing where it is in the list—for example, “main.c:5 of 32”. If a file cannot
be opened, an error message is printed on the screen. The list command simply
means that the filename should be printed at the top of the file. If the user
types list, built_in calls do_title with a 1 in the titles variable to print the title.
Otherwise, do_title does nothing.

print_files then prints the file by copying from the file into a buffer and,
for each character in the buffer, calling the BIOS routine Cprnout to send the
character to the printer.

If the shell is running as a desk accessory, then printing can occur in the
background, while other GEM programs run in the foreground. To allow the
other GEM program to run, GEM'’s evnt_timer routine is called, which GEM
uses to decide which program gets to run. GEM can only get control when a
GEM call is made, so by calling evnt_timer with a 0, GEM can reschedule the
different tasks running on the computer.

The programmer has to decide how often to call evnt_timer. Calling it
for every character will cause very slow printing, even if no other processes are
running. Calling evnt_timer too seldom will make any competing application
run too slowly.

Calling evnt_timer every other character is a good tradeoff for printers
that operate at 120-180 characters per second. The printer runs almost con-
stantly without slowing down other programs. If your printer has a large RAM
buffer or is very fast, you can change the line that keeps track of every odd
character:

if(yé&1)
to
if((y&3)==0

to call evnt_timer every four characters.

When printing is finished, print_file sends a FORMFEED character to
advance the paper, and closes the file. The next file in dir_strs is opened, and
the loop is performed again, until all the files have been printed.

155

= CHAPTER 6

Program 6-15. prntfile.c

include <gemdefs.h>
include <osbind.h>
include <document.h>

define PRINTER 2
define FORMFEED 214
define BUFSIZ 4096L

EHE HxB

print_files(count,whand, vw)
int count, whand, wvwj{

int x, fdj;

long int num, y;

char %*fname;

static char buf[BUFSIZ1;
extern char errmsgll;

extern char *dir_strs[NFILES];

for(x = @3 % < count; x++)(
fname = dir_strsix]1;
fname++;
sprintf (errmsg, "%s: %d of %d",fname,x+1,count);
do_display(whand, vw) 3
fd = Fopen(fname,®d);
ife $#d < &)¢
sprintf (errmsg,"Can’t open *%s’", fname);
do_display(whand, vw) ;
return;
»
do_title(fname);
while((num = Fread(fd,BUFSIZ,buf)) > @)¢{
for(vy = 83 y < numj y++){
Cprnout (buflyl);
/%
¥x Every other character, we let GEM decide
X% if another program should get a chance.
x/
ift y & 1)
evnt_timer (@,0);
3
¥
Cprnout (FORMFEED) ;
Fclose(fd);
3
b 4
do_title(str)
char x%xstr;{

extern int titles;

if(titles == @)
return;
while(%str)
Cprnout (Xstr++);
Cprnout (’\r”);
Cprnout(*\n”);
5

156

Building a Command Shell s

The do_dir_window Function

Issuing the dir (directory) command to the shell produces a window on the
screen containing a neatly arranged list of filenames like the one in Figure 6-3.
The built_in routine calls do_dir_window, Program 6-16, to create this win-
dow, complete with the sliders, close and resize boxes, and other features of a
GEM window. In the code for this program, you'll see how indirect recursion is
used to call several of the functions created for the main application, such as
multi and got_key.

First, the function constructs the directory pathname so it can include it
at the top of the directory window and in a status message. It uses the GEM
routines used before, Dgetdriv and Dgetpath, to get the drive and path. Then
sprintf is called to put the pathname in the array, name. sprintf is called again
to construct a message that is printed in the shell window after the directory
window is closed, telling the user how many files were in the directory—for
example, “32 files in b: \ examples \shell”. Since the user may have included
wildcards in the argument to dir, (or given no argument in which case built_in
added *.* as the default), the status may not be an exact directory name, but
something like “14 files in A: \ games \ *.PRG".

Determining the maximum possible size that the directory window can
be is the next step. GEM’s wind_get function, originally introduced in Chapter
2, is used to get the size. After the size is determined, do_dir_window calls
calc_dir, discussed in more detail later, to put all the filenames in columns that
will fill a window no bigger than the desktop’s work area. In addition, if the
list of filenames doesn’t fill the window when it’s at the maximum size, then
calc_dir reduces the window to the smallest size it can be and still show all the
files.

Now do_dir_window sets up the window borders by calling several of
the envelope routines developed in Chapter 2. It uses slide_size and slide_pos
to calculate the size and position of the slider boxes, which depend on the size
of the window and the amount it must be scrolled in order for you to see its
complete contents. The height of the window in pixels is returned in h by
calc_dir and is converted to the number of lines in the window by dividing the
height in pixels by the height of a character. You may notice that there is no
provision for horizontal slider boxes. This is because we carefully calculate how
many columns will fit horizontally in calc_dir, thus eliminating the need for
horizontal scrolling and making things a little more convenient for the user.

To create the new window, the new_window function (discussed below)
is called and passed the name array, the slider positions and sizes (vs, hs, vp,
and hp) that were calculated, and the name and address of a new virtual work-
station handle to be used for this window. new_window will call the envelope
function setup_window to create the new window, wind_set to make it the
current, topmost window, and clr_display to clear the background part of the
screen from the window. The handle of the new window is returned in whand.

157

s CHAPTER 6

Before calling multi to process input to the window, the events variable
is set to MU_MESAG and MU_KEYBD since mouse clicks and keypresses are
the only types of input this window will accept.

In order to have the directory window redrawn when the user presses a
key, the global variable dir_window is set to whand. This will cause the
got_key subroutine to call redo_dir, which redraws directory windows when-
ever the screen needs redrawing.

Next, we take advantage of the functions developed in the envelope li-
brary that create a GEM window in a regular application program. The multi
function is called recursively, and it takes over. Notice that the program hasn’t
returned from the first call to multi, so that this call occurs within the first call.
In the same way that an application program like the MandelZoom program
opens a window and accepts input, the directory window will be drawn and
mouse and keyboard input will cause events to be passed to multi, which will
call was_msg to handle window oepration and got_key to handle characters.

Window operations will work normally, since none of the functions
called by multi can tell that this is not the application’s original main window.
The program is able to do this because we have been very careful to pass the
handles for the virtual workstation and the window, and not let the functions
use global window handles.

To close a directory window, the user can type any key, or click on the
close box in the window border. got_key handles the character input by return-
ing 1, meaning exit, when the dir_window variable is nonzero. This causes
multi to return do_dir_window, and we close the window and set dir_window
0.

Before do_dir_window can return, there’s one more thing to consider. If
do_dir_window is running as a desk accessory, then it is possible it got an
AC_CLOSE message from GEM while processing the multi function. AC_CLOSE
is sent by GEM when GEM has closed all of an application’s windows because
some other program has taken over the screen. If this happens, then our pro-
gram must close the main application window as well as the directory window.
A clean way to do this is to arrange for the first call to multi to get another
AC_CLOSE message, replacing the one that the second, nested call to multi
intercepted.

The close_me function, which appears at the end of the Program 6-16,
dodirwind.c, calls the GEM appl_write routine to send the AC_CLOSE mes-
sage to the Shell program’s own application id (gl—apid). Thus, the next time
evnt_multi is called, which occurs when the first instance of multi loops after
got_key returns, the AC_CLOSE message is received by evnt_multi and the
application’s windows are closed properly.

158

=== =1
R <
Building a Command Shell s

Program 6-16. dodirwnd.c

include <gemdefs.h>
include <osbind.h>

define BYE_BYE -1
define OBLIVION -2

do_dir_window(count,args,old_wh,old_vw)
int countj;

char fargsj;

int old_wh, old_vwj{

/%
ix
i
L 3]
%
ix
x/

int whand, vp, hp, vs, hs, %, y, w, h, drv, vw, events, nlines;
int save_x, save_y, save_w, save_h, wlines, retval;

static char curdir(1906]1, namel108]1;

extern int gl_wchar, gl_hchar, menu_id, dir_window;

extern char errmsgll;

drv = Dgetdrv()j

Dgetpath{curdir,drv+1);

sprintf (name, "%c: %s\\%s", drv+’A’, curdir, args)j;

sprintf (errmsg, "%d file¥s in %s",count,count == 1 ? "" : "s",name);

wind_get (old_wh, WF_CURRXYWH, &save_x, ksave_y, ksave_w,&save_h);
wind_get (@, WF_WORKXYWH, &t , &y, &w, &h) 3

vw = old_vwj
nlines = calc_dir (count, &x, &y, &w, &h);
if(nlines <= @)

return;

wlines = h / gl_hchar;
slide_size(wlines, nlines, &vs);
slide_size(1, 1, &hs);
slide_pos(wlines, nlines, @, &vp);
slide_pos(wlines, nlines, &, &hp);
whand = new_window(name, 1680-vp,hp,vs,hs,%x,y,w,h,&vw);
events = MU_MESAG | MU_KEYBD;
dir_window = whandj;
retval = multi (events, &whand, @, name, &vw) j
close_window(whand) ;
dir_window = @;
/%
%% If the previous call to multi got an AC_CLOSE,
¥% then it returned OBLIVION. We must send another
% AC_CLOSE to the multi that is called by main(),
¥% so that the virtual workstation gets handled
% properly, and the other window gets closed properly.
%/
if(retval == OBLIVION)
close_me();
>

This routine sends a message to multi, faking an AC_CLOSE.
This allows routines to be decoupled from actions that

take place in was_msg(): the caller only needs to know that

he wants to do whatever action AC_CLOSE causes, without having
to know anything about the internal workings of was_msg.

close_me(){

int m{B81;
extern int gl_apid, menu_id, i_am_accessory;

if(i_am_accessory)<{
m[@] = AC_CLOSE;

159

= CHAPTER 6

mL3] = menu_idj;

mC1] = mC2) = ml4] = m[S] = mlb] = ml7] = &;
appl_write(gl_apid,16,m)};

¥

The calc_dir function. The purpose of the calc_dir function, Program 6-
17, is to put the largest number of filenames from a list into the smallest win-
dow that will hold them. For large directories, the window will be the entire
desktop work area and the user can move the slider boxes to see the parts that
extend past the window borders.

The calc_dir function is called by do_dir_window, which passes it the
number of filenames in count, and the dimensions of the desktop area in x, y,
w, and h.

calc_dir sets the rows variable to the maximum number of lines possible
by dividing the height of the window by the height of one character. Then col-
umns is set to the maximum number of columns possible in the window. A col-
umn is 13 characters wide: 8 for the filename, 1 for the period, 3 for the
extension, and 1 for a space (the space is replaced by a box containing a dia-
mond shape for a directory name).

If the window is less than 13 characters wide, then columns is 0. To in-
sure that at least part of filename list shows, columns is set equal to one col-
umn, and allows the extra characters to be clipped off by the window.

Then calc_dir executes a for loop which searches for the smallest num-
ber of columns that will hold the filenames and display as many as it can. The
objective is to open the smallest window that displays as many filenames as
possible, while keeping the relationship of the window height and width the
same, no matter what the window size.

Walking through the loop with sample data will demonstrate how the
loop consistently creates a rectangular window with the same proportions, in-
dependent of size. If a line is 78 characters long, and the window can hold 10
lines, then rows is 10 and columns will be 6 as the loop is begun. The follow-
ing table gives the value for each i of the expression:

i* (i * rows) / columns)
i Value Resulting Value

—
COWONRAU W =O
f=8
o

160

=y
e s s
Building a Command Shell s

If there were 30 files to display (count=30), they would be shown in a
table with 5 columns, since the loop would stop when i reached 5 because the
count is less than 40.

To calculate the number of lines in integer arithmetic, count is rounded
up by adding columns—1, and dividing by columns. The result is compared to
NLINES, which was defined to be the number of lines in the pl array, where
the list of filenames will be stored. If the number of lines equals or exceeds
NLINES, the number is limited to NLINES—1 to prevent the array from over-
flowing. (You can increase NLINES to accommodate huge directories, but it is
already a generous 200 files.)

To determine the final size of the directory window, including the bor-
ders, the window dimensions of the area that displays the filenames are put in
the variables tx, ty, tw, and th, and passed to the GEM wind__calc function
with the WC_BORDER parameter. wind_calc calculates the outside dimensions
of the window including the borders.

As a programming precaution, we have included some code to confirm
that the new window fits on the desktop’s work area. The calc_dir program is
written to be general enough that it’s a useful function for other programs. It's
possible that the dimensions passed to calc_dir are incorrect and would result
in an erroneous window size; hence, code is included that double-checks the
feasibility of the new window. The available space for a window is obtained
with the GEM wind_get function. If this space is less than the new window,
the window’s size is limited to the size returned by wind_get.

Finally, calc_dir fills in the pl array by executing a loop for each line and
a loop for each column, calling the pad subroutine to add spaces to each file-
name until it is 13 characters wide. The GEM strcat routine copies the data into
the array. The array is terminated with a null string when the loops are com-
pleted, and calc_dir returns the number of lines in the array to do_dir_window.

Program 6-17. calcdir.c

include <wfparts.h>
include <gemdefs.h>
include <document.h>

char pl[NLINES]ICNCHARS]1;
int xlines;

calc_dir (count,x,y,w,h)
int count, %¥x, Xy, %w, Xh;{

int i, j, k, columns, rows, tx, ty, tw, thj
char padded(321;

extern int gl_wchar, gl_hchar;

extern char %dir_strsINFILES]1;

rows = ¥h / gl_hchar;
columns = ¥w / gl_wchar / 13;
if{ columns < 1)
columns = 13
for({ i = @3 i < columns; i++){

161

s CHAPTER 6

if(count <= i % ((i % rows) / columns)){
columns = ij
break;
3
b
xlines = (count + columns-1) / columns;
if(xlines >= NLINES)
xlines = NLINES-1;
columns % 13 % gl_wchar + gl_wchar ¥ 2;
th xlines ¥ gl_hchar + gl_hchar;
tx (fw — tw) / 23
ty = (sh - th) /7 2;
wind_calc (WC_BORDER,WF_PARTS, tx,ty,tw,th,x,y,w,h);
wind_get(&, WF_WORKXYWH, %tx, &ty, &tw, &th);
if(fw > tw) ¥w = tw;

tw

ift(sh > th) *h = th;
if(gx < tx) X*x = tx;
if(3y < ty) Xy = ty;
k = @;

for(i = @; i <= xlines; i++)(
plLilte] = * *;
plCill1] = @;
for(j = @; j < columns && k < count; j++, k++){
pad (padded,dir_strsCkl,13);
strcat (pl(il,padded);
¥
:
plLill@] = @;
return(xlines)j;
H

The new_window function. The purpose of the new_window function
is to create a new window, put it on top of all other windows on the desktop,
and make it blank by clearing the background from the window. This function
belongs in the envelope library and was included in Chapter 2.

The size of the window to create is passed to new_window from the
do_dir_window function, along with the slider box positions and sizes in vp,
hp, vs, and hs. The functions you've seen before—setup_window, wind_set,
and clr_display—are called to put up the window.

The pad function. The simple pad function takes a string and adds as
many characters as specified in the ent variable that’s passed to it. For the di-
rectory listings, each filename is padded to 13 characters. It also can be found
in Chapter 2 as part of the envelope library.

Printing the Directory with the doit Function
At this point, calc_dir has created an array of filenames in the directory, and
the names must now be printed in the window. Let’s examine the call graph
showing the path of the program through the subroutines.

do_dir_window
new_window Creates a new window

When a new window is created, GEM is notified, and it sends a RE-
DRAW message to multi (the second multi call) to handle the input. Continu-
ing with the call graph:

162

Building a Command Shell

multi Handles the input (REDRAW)
was_msg Delegates the action required by input
do_redraw Handles clipping windows
just_draw Handles screen refresh and calls got_key with —1
got_key Handles screen input
redo_dir Draws directory listing on screen because the global
variable dir_window was set by do_dir_window to the new win-
dow’s handle

This activity results in a window that’s the optimum size for the direc-
tory listing, and the directory filenames arranged in columns that are scrollable
vertically.

The redo_dir function. To copy the array of filenames onto the screen,
the redo_dir function is called by got_key. The redo_dir function, Program 6-
18, considers the possibility that redo_dir is called more than once, and that
the user may have resized the window since do_dir_wind created it. As insur-
ance that the window is the right size for the names, redo_dir calls wind_get
to get the size of the desktop work area and then calls calc_dir again to recal-
culate the directory listing. The sliders are set up again, and then print_dir is
called to print the filename listing in the window.

Program 6-18. redodir.c

include <gemdefs.h>
include <document.h>

redo_dir (whand, vw)
int whand, wvw;{

int %, y, w, hy, nlines, wlines, wcols, vs, hs;
extern int dir_index, gl_hchar, gl_wchar;
int vertical, horizontal, junk;

hide_mouse();

just_clear(whand, vw);

wind_get (whand, WF_WORKXYWH, 8&x, &y, &w, &h);
wlines = h / gl_hchar;

wcols = w / gl _wcharj

nlines = calc_dir(dir_index, &x, &y, &w, &h);
slide_size(wlines, nlines, &vs)j;

slide_size(wcols, NCHARS, &hs)j;

wind_set(whand, WF_VSLSIZE, vs, @, @, @)3
wind_set (whand, WF_HSLSIZE, hs, @, @, 0);
print_dir(nlines, whand, vw)}

show_mouse () ;

¥

The print_dir function. Using a loop, the print_dir function, Program
6-19, calls the GEM routine v_gtext to copy the array of filenames onto the
screen.

Notice that print_dir carefully monitors the envelope’s global variables
cur_line and cur_col, which are set by the envelope whenever the sliders are
changed by the user. This is to insure that the correct portion of the directory is
displayed in the window.

163

s CHAPTER 6

Program 6-19. printdir.c

include <gemdefs.h>
include <{document.h?>

print_dir (count,whand, vw)
int count, whand, wvwj<{

int x, y, w, h, 13
extern int gl_wchar, gl_hchar, cur_col, cur_line;
extern char plINLINESICNCHARS]j

wind_get (whand, WF_WORKXYWH, &, &y, &w, &h) ;
just_clear (whand, vw) ;
hide_mouse();
for(i = cur_line; i < count; i++)({

if(strlen(plfil) > cur_col)

v_gtext(vw, %, y+gl_hchar+(i—cur_line)xgl_hchar,
&plliJlcur_coll);

}

show_mouse () ;

3
Building the Desk-Accessory Program

The functions described in this chapter are ready to be linked into an ST desk-
accessory program. If you are using a version of C other than Alcyon C, in-
cluded in the Atari ST Software Developer’s Kit, refer to your User’s Manual for
specific instructions for creating a desk accessory program.

After each of the functions has been compiled, they are linked in the
usual way using batch and argument files. The list of filenames for linking is in
a file named linkacc.arg, and contains the code shown in Program 6-20.

Notice that in the file, accstart.o is used instead of gemstart.o (used for
regular programs), and an extra file, accsup.o, is included in the file to define
some items that Atari left out of accstart.o to save space. Earlier, in Chapter 2,
both accstart.o and accsup.o were listed and discussed.

The batch file to create the library is called linkacc.bat and contains the
code shown in Program 6-21.

When the program is linked (you'll need to rename the output file to
shell.acc from a.prg), you can boot the desktop from the disk containing this
file, and see the Command Shell listed among other desk accessories on the
DESK pull-down menu.

Program 6-20. linkacc.arg

a.é4Bk=c:accstart.o,main.o,
CALLSYS.0,DOIT.0,BUILTIN.O,CALCDIR.O0,CONFIGAC.0,DIRLIST. O, DORM. O, DOMOVE. O,
DODIRWND.O, FINDCMD.O,PRINTDIR. O, PRNTFILE. O, REDODIR.0O,GOTKEY. O, DOCOFPY.O,
SAVELAST.O0,GETHEAD.O, GIVEHELF.O,
accsup.o,env.a,vdibind,vdidata.o,gemlib,aesbind,osbind, libf

Program 6-21. linkacc.bat

c:\bin\linké8 C(undefined,symbols,commandllinkacc.argll
c:\bin\relmod a

c:\bin\rm a.&8k

c:\bin\wait

164

file://c:/bin/relmod
file://c:/bin/rm

4 Changing a Desk
Accessory to a
Regular Program

& Changing a Desk
Accessory to a
Regular Program

mmmmmmmm This chapter takes the functions created in Chapter 6 and shows

how they can be linked together to form a regular program. Part of
W the intent of Chapters 6 and 7 is to show how to convert a regular
program to a desk accessory, and vice versa. By knowing how to do this con-
version, you're not restricted to using a program as one or the other, but can
link the object files into an accessory or a program, as your needs dictate.

Turning the Shell functions into a regular program is relatively simple,
partly because the functions were written in such a way that no major changes
are now needed.

The functions in Chapter 6, and a few additional routines covered here,
create a program from which TOS commands can be issued. Mainly, we just
need to add some menus and then link the functions using the gemstart.o file
instead of the accstart.o and accsup.o routines.

The configap.c File

Accessories begin to differ from regular applications in the configuration file.
The configuration information in the configap.c file resembles that in Chapter
6; however, this time the wind_name (Command Shell) will be used instead of
access_name, and the i_am_accessory is set to 0, meaning this program is not
a desk-accessory program type.

Setting the correct name variable and setting the accessory flag to 0 is
the extent of the changes required to make this file work for a regular program.

Program 7-1. configap.c
#
include <gemdefs.h>

char ¥wind_name = " Command Shell ";
ifdef USE_RCS
char ¥resource
else

“SHELL.RSC";

167

s CHAPTER 7

char ¥resource = @3

endif USE_RCS

char Xaccess_name = " Command Shell "j

int i_am_accessory = @;

int sx = 2@; /% small window size %/

int sy = 5;

int sw = 25a;

int sh = 200;

int slv = @3 /% small window vertical slider pos ¥/
int slh = @3 /% small window horizontal slider pos %/
int svs = 190@; /% small window vertical slider size %/
int shs = 100@; /¥ small window horizontal slider size %/
int min_wide = 100;

int min_high = 50;

int interval = @3

int events = MU_MESAG ! MU_KEYED;

The build_tree Function

Applications that have menus make it convenient for the user to get help, per-
form file operations, and give users access to the desk accessories.

The menus are built and operated by the build_tree, do_menu, and
do_main_menu functions, very similar to the ones used in the MandelZoom
and Noise program. The routines presented here are stripped-down versions of
those programs that can be inserted in any program that needs menus. For ex-
ample, they could be used to add menus to the World Map and Plot programs
developed earlier in this book.

Using these routines in another program is simply a matter of changing
the “Commands” string that appears when the user activates the Help menu
item. For example, you might change it to “Map info” in the World Map pro-
gram. You may also want to add more help topics to the list. And, of course,
the give_help function that contains the actual help text must be modified to fit
the program. The text under the About menu selection in the do_main_menu
routine also must be changed to reflect the new program.

Program 7-2. bldtree.c

include <gemdefs.h>

include <obdefs.h>

define MAXTREE 64

define M_BLACK 15L /% would be 1, but we changed the color map &/
define TRANSPARENT]

define THICK (long) { @xFFL << 16)

define BOXCOLOR (long) { (M_BLACK << 12) { (M_BLACK << 8))

define BOXTHIN (long) (BOXCOLOR ! TRANSPARENT | IP_HOLLOW)

define BOXBITS (long) (THICK ! BOXCOLOR ! TRANSPARENT ! IP_HOLLOW)

define LEN -2 /% Set the width to the length of the string %/
define xx(item) ((t_listliteml.ob_x + t_listliteml.ob_width) / Wc)

define yy(item) ((t_listliteml.ob_y + t_listliteml.ob_height) / Hc)

define OFFSET 2 /% so the boxes don’t abut the left edge X/

int Wc, Hc;
int About, Quit, Helpj;

168

struct

struct

=
R T
Desk Accessory to Regular Program s

object t_list[MAXTREEI];

object %

build_tree() {

extern int gl_wchar, gl_hchar, next_item;

int root, mbox, desk, file, help;

int dbox, fbox, obox, hbox, ibox, lboxj

int lines, deskl, desk2, desk3, desk4, deskS, deské;

next_item = @;
Hc = gl_hchar;
Wc = gl_wchar;
root = addit(t_list,-1,6_IBOX,0L,0,0,80,25);

Hc = gl_hchar + 3;
lbox = addit(t_list,root,G_BOX,BOXTHIN,®,0,80,1);

mbox = addit(t_list,lbox,G_IBOX,@L,0FFSET,®,27,1);

desk = addit(t_list,mbox,G_TITLE," desk ", a, @,LEN,1);
file = addit(t_list,mbox,G_TITLE," file ", xx (desk) , @,LEN,1);
help = addit(t_list,mbox,G_TITLE," help ", wx(file) ,@8,LEN,1);

ibox = addit(t_list,root,G_IBOX,0L,9,1,80,14);
Hc = gl_hchar;
dbox = addit(t_list,ibox,6G_BOX,BOXBITS,0FFSET,®,19,8);

About = addit(t_list,dbox,6_STRING," Command Shell ",@,8,LEN,1);
lines = addit(t_list,dbox,G_STRING," "e@,1,LEN,1);
t_listllinesl.ob_state = DISABLED;

deskl = addit(t_list,dbox,G_STRING," Desk Accessory 1 ",@,2,LEN,1);
desk2 = addit(t_list,dbox,BG_STRING," Desk Accessory 2 ",@,3,LEN,1);
desk3 = addit(t_list,dbox,B_STRING," Desk Accessory 3 ",@,4,LEN,1);
desk4 = addit(t_list,dbox,G_STRING," Desk Accessory 4 "B, 5,LEN,1)3
deskS = addit(t_list,dbox,G_STRING," Desk Accessory 5 ",@,&6,LEN,1);
deské = addit(t_list,dbox,G_STRING," Desk Accessory & ",@,7,LEN,1);

fbox = addit(t_list,ibox,G_BOX,BOXBITS,xx (desk)+0OFFSET,®,6,1);
Quit = addit(t_list,fbox,6_STRING,"” Quit ",#,0,LEN,1);

hbox = addit(t_list,ibox,G_BOX,BOXBITS,xx (file)+0FFSET,®d,11,1);
Help = addit(t_list,hbox,G_STRING," Commands ",@,8,LEN,1);

if(next_item > @)

t_listlnext_item - 1].ob_flags i= LASTOB;
return(t_list)3
}

The do_menu and do_main_menu Functions

These functions are very basic and can be used with any program to support
the menu structure. When the user clicks on a menu item, a message is sent
to GEM. GEM sends a message to multi, which calls was_msg, which calls
do_menu, which calls do_main_menu. It figures out which command the user
selected and then calls the correct function—for example, give_help if a help
command was clicked.

The do_menu code is shown in Program 7-3 and should look familiar;

likewise, you have seen do_main_menu, Program 7-4, before.

169

mememm CHAPTER 7

Program 7-3. domenu.c

#
include <obdefs.h>

do_menu(title,item,whand, vw)
int title, item, whand, wvw;{

int rets
extern struct object tmain_addr;

ret = do_main_menu(item,whand, vw);
menu_tnormal (main_addr,title,1);
menu_tnormal (main_addr,item, 1)}
return{ ret);

3

Program 7-4. domnmenu.c

do_main_menu (item,whand, vw)
int item, whand, wvw;j(

char stri2561;
extern int About, Quit, Help;

if(item == About)¢
sprintf(str,"[@)[%s!%siisi%si%s](OK 1",
" This is a GEM based command ",
" interpreter. It can execute ",
" programs, copy, move, print ",
" or remove files, and it can ",
" display directories.
13
form_alert(i,str);
return(@);
:)
else if(item == Quit)<
return(l);
¥
else if(item == Help){
give_help (whand, vw) j
return(@);
3
sprintf(str,"[01(%s %dIL OK 1","Unknown menu number'",item);
form_alert(1l,str);
return(@);
F

Building the Shell Application

Building the Shell as a regular program is similar to all the other applications
we’ve built. To change the Shell accessory link file to one for a regular pro-
gram, we use the gemstart.o file instead of accstart.o. We remove accsup.o and
we add the filenames bldtree.o, domenu.o, and domnmenu.o to the list.

Program 7-5. link.arg

&.68k=c:gemstart.o,main.o,
CALLSYS.0,DOIT.0,BUILTIN.O,CALCDIR.O,CONFIGAP.O,DIRLIST. O, DORM. 0, DOMOVE. O,
DODXRNND.ﬂ,FINDUMD.D.PRINTDIR.U,PRNTF[LE.G,REDGDIR.D,GUTKEY.U,DUCUPY‘G,
SAVELAST.D,GETHEAD.H,BLDTREE.D,DDHENU.D,DDHNHENU.G.GiUEHELF.O,
env.a,vdibind,vdidata.o,gemlib,aesbind,oshind,lib¥f

170

Desk Accessory to Regular Program s

Program 7-6. linkit.bat

:\binilinké8 [undefined,symbols,commandllink.argll
:\bin\relmod a

:\bin\rm a.68k

:\bin\wait

nonn

171

file:///bin/rel
file:///bin/wait

Vo
P

CRERa
Ak
9

#

A

e

%

i" +
o

.
%

uE
s

o

g8

DY
W=7y

g

=

=i

b
&

e

Sound Chip

8 Programming the
Sound Chip

s The ST is equipped with a sound chip with which you can create a

wide variety of tones including musical notes, drum sounds, and
BN train whistles, similar to the electronic sound capabilities of a syn-
thesizer. In this chapter, you'll see how to program this internal sound chip to
generate its full sound assortment.

To explore the sound chip, we’ll write a program that puts a two-octave
keyboard on the screen and lets a user play it with the top two rows of alpha-
betic keys on the keyboard. The program also creates an interface that lets a
user configure the duration and shape of the notes by moving slider boxes and
selecting buttons from a special control panel.

The pull-down menus in the program will include selectable options that
let a user change the sound emitted by the sound chip and then display the
sound chip’s internal registers as numbers. You can use the program as a sound
editor and, by knowing the internal register numbers, you can add the sound
effects to other programs. Using more menu options, we'll also demonstrate
how to create a rhythm section.

As in the other programs in this book, the envelope library is used to in-
terface with functions that were developed in Chapter 2. That library continues
to demonstrate its value here by taking care of standard GEM interface pro-
gramming issues. We have only to provide the functions for this particular
application and tailor the standard connecting files and functions, like config.c
and got_key, for our sound chip program.

The config.c File

This is, as usual, the first file for this application.

The window name is defined as “Noise!”” and the resource and
access_name variables are set, even though they are not used (just in case you
want to make this into a desk accessory). Since this program is not a desk ac-
cessory and the Resource Construction Set is not used, i_am_accessory and re-
source are set to 0.

This config.c file (Program 8-1) is essentially the same as the others in
the book except the interval variable is set to 20 milliseconds. This will cause

175

s CHAPTER 8

GEM to send a message to our multi function 50 times each second. You'll see
this used when the rhythm section and the clock_tick function are discussed.

Program 8-1. config.c

1nclude ‘gemdefs.h>
char ¥*wind_name = " Noise!'!' ";

1ifdef USE_RCS

char X¥resource = "NOISE.RSC"j
4 else

char ¥resource
endif USE_RCS

@3

char ¥access_name
int i_am_accessory
int sx

int sy

int sw

int sh

int slv

int slh

int svs

int shs

int min_wide

int min_high 5a;

int interval 20; /% every S@th of a second %X/
int events = MU_MESAG | MU_BUTTON | MU_KEYBD ! MU_M1 ! MU_M2;

" Noise' ";

/% small window size &/

nwwnunn
)
oy

[“H /% small window vertical slider pos X%/
(:H /% small window horizontal slider pos ¥/
1000; /% small window vertical slider size %/
19@0@; /% small window horizontal slider size %/

108;

The doit Function

The doit function is responsible for creating the piano keyboard display shown
in Figure 8-1. When the user presses a key on the keyboard that corresponds to
one of the piano keys, the note is played and the key flickers by rapidly chang-
ing to gray, then back to its original color.

Figure 8-1. The Two-Octave Keyboard Created by the doit Function
desk file

176

Programming the Sound Chip s

doit, Program 8-2, calls the save_screen function, which is the same as
the one used in the MandelZoom program. Note that a default version of doit
appears in the envelope library and that it must be changed to this default ver-
sion in order for this program to work properly.

The doit routine calls the show_keys function to display the piano key-
board. Then it calls save_screen to save a copy of this screen so that it can be
quickly redrawn when a window or dialog box disappears.

Program 8-2. doit.c

doit(whand, vw)
int whand, wvw;{

show_keys(whand, vw);
save_screen (whand) j
3

The just_draw Function

The just_draw function used here is exactly the same as the just_draw routine
used in Chapter 5 with the Mandelbrot set. Therefore, you should copy
justdraw.c from Chapter 5, Program 5-15, and include it with the other func-
tions in this group.

The show_keys Function

The keyboard and screen background shown in Figure 8-1 are actually drawn
by the show_keys function listed in Program 8-3.

The first thing show_keys does, before drawing the keyboard, is to get
the current size of the window with the GEM function wind_get. Then it can
calculate the keyboard size in relation to the size of the window, enlarging or
shrinking the keys accordingly. The size and position of the keys are defined in
the variables white_wide, height, w_col, and b_col.

Then, show_keys calls the hide_mouse and clr_display functions devel-
oped for the envelope (and described earlier in this book) to hide the mouse
and clear the screen. With the use of GEM's functions vsf_color, vsf_perimeter,
vsf_interior, and vsf_style, the background pattern for the keyboard is drawn,
setting the color, perimeter, interior fill, and fill style. To fill in the entire win-
dow, fill_box is called (described below).

With the background set up, the keyboard is next. To draw each key, a
loop is executed, calling the do_white function to draw the white keys, and the
do_black function to draw the black keys. To draw the white keys, the three
shapes of the white keys must be considered (Figure 8-2).

The position of each type of white key is listed in the array w_keys. For
each key, the position is passed to the do_white function as its fifth parameter.
In order to let the user know which key on the keyboard will play which piano
key, a letter is passed as the sixth parameter to do_white. This information is
kept in the array white_chars, indexed by the piano key position.

177

s CHAPTER 8

Figure 8-2. The Three Possible Shapes for the White Piano Keys

Ll

As with the different shapes of the white keys, special consideration
must also be given to the positions of the black keys. Some white keys have no
associated black keys; thus the b_keys array is used to tell the routine when to
draw a black key and when to skip one. The letters needed appear on the black
piano keys in the array black_chars.

To map the ST keys to the piano keys, and vice versa, two arrays are
used. The askeys array is indexed by the piano key position and holds the ST
key for each piano key. The other array is the key_info array with 128 posi-
tions, using one for each ASCII character on the keyboard. The structure of the
key_info array contains three elements: the index for the key, the type (shape),
and the pitch. This array is defined in the keys.h file. The column on which the
left edge of each piano key lies is placed into the key_info index element in the
loop that draws the keys. Using this index, a piano key can be redrawn when
the user presses the ST key mapped to it, providing feedback to the user.

Program 8-3. showkeys.c

include <gemdefs.h>
include <obdefs.h>
include <keys.h>

int w_keys(C] = {
c,pb,E, C,D,D,E, C,D,E, C,D,D,E
33

int b_keys[] = {
1,1,0,1,1,1,90,1,1,06,1,1,1,0
};

char black_chars(1] = "12 454 B89 -=" i |
char white_chars[1] = “\t@WERTYUIOPLI\r\177 "j
char askeys(] = "\tQWERTYUIOPLI\r\1771245689-="";

int white_wide, heightj
struct key_info key_infol1281;
int start_y;

show_keys (whand, vw)
int whand, vwj;{

int %, y, w, h, i, w_col, b_col, ch;
extern gl_wchar, gl_hchar;

178

file:///tQWERTYUIOPC
file:///tQWERTYU

T
—
Programming the Sound Chip

wind_get (whand, WF_WORKXYWH, &x, &y, &w, &h);
start_y = y3
white_wide = w / (NUM_WHITE+1) & ~3;
height = h 7/ 2 & ~3;
w_col = x + (w = NUM_WHITE X white_wide) / 2;
b_col = w_col + white_wide ¥ 3 / 4;
clr_display(whand, vw);
hide_mouse();
vsf_color(vw, RED);
vsf_perimeter(vw, 1);
vef_interior(vw, PATTERN);
vsf_style(vw, 1)j;
fill_box{(vw, %X, ¥y, W, h);
for(i = @; i < NUM_WHITEj i++){
ch = white_charsCil;
do_white(vw, w_col, white_wide, height, w_keys[il, ch, UP);
key_infolwhite_charslill.index = w_colj;
if(b_keysCil)
ch = black_charsl[il;
do_black(vw, b_col, white_wide, height, ch, UP);
key_infolblack_charslill.index = b_colj
}
w_col += white_wide;
b_col += white_wide;
3
show_mouse();
>

The keys.h file. The piano keys have a number of characteristics that
must be defined: the shape, the fill pattern, the key’s up or down state, and po-
sition. The header file listed in Program 8-4 is used to record these characteris-
tics, and then it’s included in the functions that need it.

By keeping all the data about the keys in one file, it’s easy to change the
items when you want to change a key characteristic, such as the color or fill
pattern.

This file also defines the structure for the key_info array so that it con-
tains three key descriptors: the index to the ST key, the piano key shape, and
the note the key’s position represents.

In addition, some macros are defined for calculating the dimensions of a
key. You'll see these macros used frequently.

Program 8-4. keys.h
#

define NUM_WHITE 14

define HOLLOW]
define SOLID 1
define PATTERN 2
define HATCH 3

define C
define D
define E

define UP
define DOWN

XXX REETEETLTETSE

-0 WUN -

struct key_info (

179

meees CHAPTER 8

int index;

int type;
int pitch;
33
define KLEFT start
define KRIGHT (start+wide)
define KMIDL (start+wide/4)
define KMIDR (start+wide%3/4)
define KTOP (start_y+high-high/&)
define KMIDY (KTOP+high%2/3)
define KBOTTOM (KTOP+high)
define KBWIDE (start+wide/2)

The fill_box function. The fill_box function is passed a rectangle, and
it converts the x, y, w, and h into a list of points used as arguments to the
GEM routine v_fillarea. Although the GEM’s v_bar routine—which has a sim-
pler interface (used in the PLOT program)—could have been used, this demon-
strates how you can fill more complicated shapes with a more versatile routine.

Note the list of points (x,y pairs) can be longer for different shapes, simi-
lar to the v_pline routine in the MAP program in Chapter 3.

Program 8-5. fillbox.c

fill_box(vw, %, y, w, h)
int vw, %, vy, w, h3{

int al32];

aldl = x3; all1l = y;
al2] = x + w; al3] = y;
al4] = x + w3 alS]1 =y + h;
aléel = x3 al7] = y + h;
al8] = x3 al?] = y;

v_fillarea(vw, 5, a)j
b

The do_white function. To draw the white keys of the piano, the
do_white function, Program 8-6, is called and passed the starting column for
the key, the width and height, the shape (type) of the key to be drawn, a char-
acter to print on the key, and a flag that tells whether the key is up or down.

As part of the setup process, the character that represents the TAB key
character on the piano is defined, since the printed TAB character is not com-
monly recognized. We chose the dagger character because it resembles a T but
won't be confused with the letter T that is printed on another key.

Next, the line color for the perimeter line is set to black and the fill
parameter is set to 0 to prevent the fill from erasing the perimeter lines. The fill
color is white and the interior, solid, if the key is UP. If it's DOWN, the fill
color is black and the interior pattern is 4, a light shading. This is how the key
is made to flicker when the user presses a key.

In the array a, the points are set to the key shapes (C, D, or E) for which
macros are defined in the keys.h file.

180

Programming the Sound Chip e

Finally, using GEM routines, the key is drawn by calling v_fillarea to fill

in the key and v_pline to outline it, giving the same arguments to both

routines. The letter is placed on the key by setting the color to black, the writ-
ing mode to transparent (so a white box doesn’t appear around the character),
and calling v_gtext to print the letter. The string s that is passed to v_gtext
contains only the single character that goes on the key. The other arguments to
v_gtext make sure that the letter is centered on the key.

Before returning, the writing mode is set back to REPLACE with

vswr_mode.

Program 8-6. dowhite.c

include <keys.h>
include <obdefs.h>

do_white(vw, start, wide, high, type, ch, up_down)

int vw, start, wide, high, type, ch, up_down;(

int aC321, x, y, w, h;
char s[2]1;

extern int gl_wchar, gl_hchar, start_y;

if(ch == "\t*)
ch = *3° | 09200;
s[@] = ch;
sl1]1 = &;
vsl_color(vw, BLACK);
vsf_perimeter(vw, @)3
if(up_down == UP)({
vef_color{ vw, WHITE);

/% make tab print nicely %/

/% daggers look like "t’s don’t they? %/

vef_interior(vw, SOLID)j;

3
else {

vef_interior(vw, PATTERN);

vsf_style(vw, 4);
vsf_color{ vw, BLACK);
}

if{ type == C) (
al@] = KLEFT;
al2] = KMIDR;
al4] = KMIDRj
alél = KRIGHT;
al81 = KRIBGHT;
al1@] = KLEFT;
al12] = KLEFT;
v_fillarea(vw, 7, a)j}
v_pline(vw, 7, a)3
3

else if(type == D){
al@] = KMIDL;
al2] = KMIDRy
al4] = KMIDR;
alé]l = KRIGHT;
alB8] = KRIBGHT;
al18] = KLEFT;
al12]1 = KLEFT;
al14] = KMIDL;
al16] = KMIDL;
v_fillarea(vw, 9, a);
v_pline(vw, 9, a);
3

else if(type == E)(
al@] = KMIDL;

181

alf11l
al3]
als]
al71
al?]

al11] = KBOTTOM;

KTOP;
KTOP;
KMIDY;
KMIDY;
KBOTTOM;

al13] = KTOP;

alf1]l
al3]
als]
al7]
al9]
af11]
al13]
al135]
al171]

= KBOTTOM}

KTOP;
KTOP;
KMIDYj;
KMIDY;
KBOTTOM;

KMIDY;
KMIDY};
KTOP;

aC1l = KTOP;

e
mmmes CHAPTER 8

al21 = KRIBHT; al3] = KTOP;
al4] = KRIGHT; alS1 = KBOTTOM;
al&] = KLEFT; al7] = KBOTTOM;
alB81 = KLEFT; al9]1 = KMIDY;
al19] = KMIDL; al11] = KMIDY;
al12] = KMIDL; al13] = KTOP;

v_fillarea(vw, 7, a);
v_pline(vw, 7, a)}
3}

vst_color{ vw, BLACK);

vswr_mode(vw, MD_TRANS);

v_gtext(vw, KLEFT+wide/2-gl_wchar/2, KBOTTOM-gl_hchar, s)}
veswr_mode(vw, MD_REPLACE)

}

The do_black function. The do_black function, Program 8-7, operates
in essentially the same way as the do_white function, except that it doesn’t
have to deal with different key shapes.

This time the fill color is set to black and the perimeter to 1, to include
the perimeter line in the fill. Also, the character color is set to white so that it
will show up on the black key; then the color is reset to black before returning.

Program 8-7. doblack.c

include <keys.h)>
include <{obdefs.h>
include <sliders.h>

do_black(vw, start, wide, high, ch, up_down)
int vw, start, wide, high, ch, up_down;{

int al321;
char sC21;
extern int gl_wchar, gl_hchar, start_y;

s[@] = chy

sl1] = @,

vsf_color(vw, BLACK);

vsf_perimeter(vw, 1);

if{ up_down == UP)(
vsf_interior(vw, SOLID)j
}

else {

vef_interior(vw, PATTERN);

vef_style(vw, 4)3

}
al@] = KLEFT; al1] = KTOP;
al2] = KBWIDE; al3]1 = KTOP;
al4] = KBWIDE; alS]1 = KMIDY;
alé]l = KLEFTy al7] = KMIDY;
alB] = KLEFT; al91 = KTOPj

v_fillarea(vw, 5, a);

vswr_mode(vw, MD_TRANS);

vst_color(vw, WHITE);

v_gtext(vw, KLEFT+wide/4-gl_wchar/2, KMIDY-gl_hchar, s)3
vswr_mode(vw, MD_REPLACE);

vst_color(vw, BLACK);

3

182

AT
flees o]
Programming the Sound CRIp s

The open_data, get_clicks, no_clicks, put_clicks, and
do_cleanup Functions

The clicking sound you hear every time you press a key on the ST’s keyboard
is produced by the sound chip, which receives a signal from the operating sys-
tem telling it to emit the click. This needs to be disabled so that when the user
plays a note on the piano by pressing a key, he or she hears the note instead of
the clicking sound.

The key clicks must be turned off early in the program, before a key is
pressed. When a key is pressed, the main function in the envelope will call the
multi function. main also calls open_data before calling multi, and since it’s de-
sirable to disable the key clicks to set up the keyboard, open_data is used to
accomplish this task.

The listing shown in Program 8-8 contains the code for open_data and
also for the other functions it calls: get_clicks, no_clicks, put_clicks, and
do_cleanup.

To turn off the key click, bell, and key-repeat features, three bits need to
be cleared. The ST BIOS looks at this byte before generating a noise, and if the
bits are cleared it doesn’t make any sound. There is a catch that prevents us
from just changing the bits: BIOS keeps its data in low memory, where it is
protected by the Memory Management Unit, so ordinary programs will bomb if
they reference low memory. In order to change the byte that controls the sound
chip, the program must be in Supervisor mode.

To solve this problem, the BIOS has a special routine called SUPEXEC
(xbios interrupt call number 38) which, when given the name of a function, will
set Supervisor mode, call the named function, then reset to User mode.

In open_data SUPEXEC is used to call the get_clicks function, which re-
turns the contents of the protected byte. Then, it uses SUPEXEC to call
no_clicks, which clears the three bits and thus turns off the key click, key re-
peat, and bell.

Once the automatic keyboard sounds have been silenced, the program
prepares to draw the piano and play the notes. The open_data function loops
through the askeys array, entering the key type (C, D, or E) and pitch into the
key_info array. The note pitches are initialized in the pitches array at the start
of this file.

Finally, open_data calls the period function (explained below) to set the
duration of the note to 10,000, a period we have found produces a pleasant
sound that combines the bell and piano tones. This will now be the sound
heard when the user strikes a key.

When the program exits, the key clicks, key repeat, and bell are reset.
The do_cleanup function uses SUPEXEC to call put_clicks to put back the old
value for the key click byte. do_cleanup also prints the bell character, telling
the BIOS to ring the bell. The BIOS sets the sound chip back to the default
value. This is a convenient way to reset the sound chip as we exit.

183

S semsiog
e
e CHAPTER 8

Program 8-8. opendata.c

include <keys.h>

int pitchesC] = (

/stab Q W E R T Y u I 0 P C] CR Del &/
/% C D | 4 F <} A B e D E F] 2] B c 5/
'é!l,0575,6523,CSGG.I435,G376,0342,¢326,¢276.5252,5240,0217,0177,'1b1,0153,

4 & 8 9 - = ' 5/

/1 2 5
/% C# D# F# G# A¥ C# D# F# G# A# %/
2624 ,0550, P456,0415, 0360, 2312,0264, 9227 ,0207,0170
33
define SUPEXEC (x) (xbios (38, (x)))
char con_infoj /% a place to store key_click ON/OFF info %/

open_data(whand,vw,file)
int whand, wvw;
char %filej(

int x, ch;

extern int get_clicks(), no_clicks(), w_keys[1;
extern char askeys(1;

extern struct key_info key_infoll;

con_info = SUPEXEC(get_clicks)j
SUPEXEC(no_clicks); /% turn off key clicks &/
for(x = @; askeys[xl; x++){
ch = askeysix];
if(x > NUM_WHITE)
key_infolchl.type = "}
else
key_infolchl.type = w_keys[x1;
key_infolchl.pitch = pitches[x];
3
period (1000@);
3
do_cleanup () {

extern int put_clicks();

SUPEXEC(put_clicks); /% turn key clicks back on %/
printf("\7"); /% ring bell to reset sound chip %/
¥

char f¥conterm = Ox484;
no_clicks(){
/'

#x Atari documentation is wrong:
%% Values for conterm are:

X% Bit Mask Function

1 § 3 2 (21) Enable key click
L 4] 1 (82) Enable key repeat
1§ 2 (94) Enable bell

X/

¥conterm &= ~(1+42+4);
get_clicks()(

return(tconterm);
put_:ii:kn()(

extern char con_infoj

tconterm = con_infoj
3

184

Programming the Sound Chip e

The got_key Function

Pressing a key causes an event message to be sent to the multi function, which
then calls the got_key function, Program 8-9, to handle the key.

If the key is not one of the ST keys superimposed on the piano key-
board, the got_key function returns 0 for “don’t exit.” If the key is the ES-
CAPE key (value 033), got_key returns 1 for exit, and the program is exited.

To make sure that the sound registers are configured for the piano, the
rest_state function is called. This subroutine, and its complement save_state,
keep track of the sound registers that are affected by the rhythm section of the
program. Both of these routines will be discussed again later, but for now no-
tice that rest_state is called here to insure that the piano keys don’t sound like
a snare drum.

The sound chip has three voices, or possible simultaneous sounds it can
make. All three voices are needed to have the same tone, or pitch, for each pi-
ano note, so each of the three voices is set to the pitch for the key that has
been pressed, and play_note is called to start the sound.

To show that a piano key has been played when a corresponding ST key
is pressed, got_key calls the do_white or do_black routines with the DOWN
parameter to cause the key to be drawn in its shaded, “down” state. By imme-
diately redrawing the key in the UP state, the key is shaded only for an instant,
giving the illusion that it has been pressed. Note that when the graphics accel-
erator chip (the “blitter” chip) is available for the ST, this may happen too fast
to see. You may have to add a delay loop between the calls to the do_white or
do_black routines with the DOWN parameter to make the “down” state last
longer.

. The piano keyboard has been arbitrarily ended on the B note because it
looks symmetrical that way. However, when you play the two octaves, your
ear expects to hear a C as the final note. For this reason, we have made the
DEL key make the C note, although there’s no piano key corresponding to it.

Program 8-9. gotkey.c

include <keys.h>

got_key(ch, whand, wvw)
int ch, whand, vwj{

int type, pitch, col, x, y, w, hj
extern white_wide, heightj;
extern struct key_info key_infoll;

ch &= Ox7F; /% ascii only %/
if(ch > ’a’” & ch <= *z’)
ch &= “@40; /% convert lower case to upper %/

if(key_infolchl.pitch == @)
return(d);
if(ch == @33)
returnil);
rest_state();
tone(@, key_infolchl.pitch);
tone(1, key_infolchl.pitch);

185

meees CHAPTER 8

tone(2, key_infolchl.pitch)
play_note();
if(ch == 8177)
return(d); /% keyboard looks better without DEL %/
clip_work(whand, vw)}
type = key_infolchl.type;
col = key_infolchl.indexj
if(type)¢
do_white(vw, col, white_wide, height, type, ch, DOWN);
do_white(vw, col, white_wide, height, type, ch, UP);
}

else ¢
do_black(vw, col, white_wide, height, ch, DOWN);
do_black(vw, col, white_wide, height, ch, UP)3
]

return(d@);

3

Building an Interactive Sound Control Panel

In addition to the piano keyboard that produces a reasonably good imitation of
piano sounds, the application being created here gives the user a method for
changing the tones and noises produced by the sound chip. The interface for
designing the sounds is a dialog box with sliders and buttons, like the one
shown in Figure 8-3.

Figure 8-3. A Sound Control Panel in a Dialog Box
desk_file

The next functions explained show how to create the menus, sliders, and
buttons that produce this interface. By the way, the type of button used is
called a radio button, which is analogous to the buttons on a car radio. Push
one, and another pops out, so only one at a time can be active. The slider

186

Programming the Sound CRID e

boxes are moved along the slider track by using the mouse to drag the boxes,
or clicking on the arrows at the end of each slider.

The captions on the figure describe what each slider and button is for;
now let’s examine how to draw them and make them work.

The sliders.h Header File

We start by defining a header file that will be included in many of the routines.
In the header file we define a structure called slide to contain a register value, a
minimum and maximum for the slider range, a flag to tell whether a slider is
vertical or horizontal, a track and slider index into the tree, and indexes for the
arrows at the ends of the slider tracks.

Also in this file are defined macros that name the parts of the dialog box
so we can tell which sound register to set. The macro naming patterns such as
S_T_A and S_V_B stand for Slider-Tone-A and Slider-Volume-B.

Program 8-10. sliders.h
define NUM_SLIDERS 12

struct slide {
int value, min, max, is_vert;
int track, slider, inc, decj;
4]

define SLIDER 1
define INC_ARROW
define DEC_ARROW
define NOTE_OP
define QUIT_OP

NBWUN

define
define
define
define
define
define
define
define
define

| e
Oon>P0DD

TSR ES
0wwwmwwnmn
| TR T)
R)
ONCUBUWUN=S

THWZCLC<HHAA

The build_tree Function

The object trees for the dialog box and the menu are somewhat complex to set
up. The build_tree function used in this program is similar to the one in the
MandelZoom program, except that it has different menu entries for the file, op-
tions and help menus, and it calls another routine, bld_sliders, to build a tree
for the dialog box that will be used to set the sound chip registers. build_tree
sets the next_item variable to 0 before calling bld_sliders, and will set it to 0
again after the call because build_tree and bld_sliders are adding items to dif-
ferent trees.

During the discussion of do_main_menu, we’ll talk about the menu se-
lections. The slider boxes inside the dialog box are the topic of interest for now.

187

e
memms CHAPTER 8

Program 8-11. bldtree.c

include <obdefs.h>

define MAXTREE 64

define TRANSPARENT [}

define THICK (long) { BxFFL << 1&)

define MBXCOLOR (long) { (BLACK << 12) | (BLACK << 8))

define BOXTHIN (long) (MBXCOLOR ! TRANSPARENT ! IP_HOLLOW)

define BOXBITS (long) ¢ THICK ! MBXCOLOR ! TRANSPARENT ! IP_HOLLOW)

define LEN -2 /% Set the width to the length of the string %/
define xx(item) ((t_listliteml.ob_x + t_listliteml.ob_width) / Wc)

define yy(item) ((t_listliteml.ob_y + t_listliteml.ob_height) / Hc)

define OFFSET 2 /% so the boxes don’t abut the left edge &/

int About, Quit, Set_snd, Rhythms, Effects, Print_valsj
int HSet_snd, HRhythms, HEffects, HPrint_vals;
int Wec, Hcj

build_tree() ¢

extern int gl_wchar, gl_hchar;

extern int next_item;

extern struct object ¥slid_tree, ¥bld_sliders();

int root, mbox, desk, file, options, help;

int dbox, fbox, obox, hbox, ibox, lbox;

int lines, deskl, desk2, desk3, desk4, deskS, deské;

static struct object t_list[MAXTREE];

next_item = 2;
Wc = gl_wchar;
Hc = gl_hchar;
slid_tree = bld_sliders();

next_item = @;

root = addit(t_list,-I,B_IBOX,BL,G,I,BH,ZS)|

Hc += 33

lbox = .ddittt_l1-t,runt,G_BDX,EDxTHIN,ﬂ,E,BS,1);

mbox = nddit(t_lilt,lbnx.G_lBﬂx,ﬂL.GFFBET,Q.Z?,1)]

desk = addit(t_list,mbox,G_TITLE," desk ", a2, 2,LEN,1);
file = addit(t_list,mbox,G_TITLE,"” file " xx (desk) , P,LEN, 1)}
options = addit(t_list,mbox,6_TITLE,” options "yxx(file), @,LEN,1);
help = .ddit(t_lilt,mhux,G_TITLE," help ", xx (options) ,@,LEN,1);
ibox = addit(t_iist,rnot,B_IBDX.ﬂL,ﬂ,1,30,14)|

Hc = gl_hchar;

dbox = lddit(t_liut,ibox,E_BDX,BDXBITS,DFFBET,G,19,3);

About = addit(t_list,dbox,G_STRING, " About Noise ",9,8,LEN,1);
lines = addit(t_list,dbox,B_STRING, " ",@,1,LEN,1);
t_listllines].ob_state = DISABLED;

deskl = lddit(t_lllt,dbux,G_STRINB," Desk Accessory
desk2 = addit(t_list,dbox,G_STRING," Desk Accessory
desk3 = addit (t_list,dbox,B_STRING," Desk Accessory
deskd = lddit(t_lilt.dbox,B_STRINB,“ Desk Accessory
deskS = nddittt_list.dbnx,B_BTRlNG," Desk Accessory
deské = addtt(t_lilt,dbnx,G_STRING," Desk Accessory

“,@,2,LEN,1);
", 8,3,LEN, 1)}
", @,4,LEN, 1);
", @,5,LEN, 1);
",8,5,LEN, 1)}
", 8,7,LEN,1);

UL WN~

fbox = addit(t_lint,1bnx.E_Bﬂx.BDxBlT3,xntd-lk)+DFFSET,¢,6,1);
Quit = addit(t_list,fbox,G_STRING," Quit "y@,8,LEN,1);

obox = addit(t_list,ibox,5_BOX,BOXBITS,xx (file) +OFFSET,d, 16,4)

Set_snd = nddit(t_lilt,nhnx,E_STRING," Set Sound "s@,0,LEN,1);
Print_vals = addit(t_lint,ahnx,B_BTRING,' Print Values "y@,1,LEN,1);
Rhythms = nddit(t_lilt,nbou,G_STRING." Rhythms "s@,2,LEN,1);

188

Programming the Sound Chip e

Effects = addit(t_list,obox,B_STRING,” Sound Effects ",8,3,LEN,1);

hbox = addit(t_list,ibox,B_BOX,BOXBITS,xx (options)+OFFSET,®,16,4);
HSet_snd = addit(t_list,hbox,B_STRING," Set Sound ", 8,8,LEN, 1)}
HPrint_vals = addit(t_list,hbox,B_STRING," Print Values ",®,1,LEN,1);
HRhythms = addit(t_list,hbox,B_STRING," Rhythms ", 8,2,LEN,1);
HEffects = addit(t_list,hbox,5_STRING," Sound Effects ",8,3,LEN,1);

if(next_item > @)

t_listCnext_item - 1]l.ob_flags != LASTOB;
return(t_list)3
3

The bld_sliders functions. The bld_sliders function, Program 8-12, as-
sembles the dialog box that contains the sliders and buttons shown in Figure 8-3.

To add items into the dialog box object tree s_tree, bld_sliders calls the
addit function, which is the same addit routine introduced for the MandelZoom
program in Chapter 5. If you're going to enter and run this sound chip pro-
gram, then be sure to link the addit function into the envelope library.

The first item in the dialog box tree is the box that will hold the buttons
and sliders. To make the box be outlined and shadowed, we change bits in its
ob_state field after addit has returned.

Next, the NOTE and QUIT buttons are added to the object tree. Their
ob_flags bits are set to TOUCHEXIT so the GEM form_do routine will return
when the button is clicked. The DEFAULT bit is set on the NOTE button so
that a note sounds when the user presses the RETURN key while the dialog
box is open.

We want to add sliders for the tone, volume, noise, shape, and period of
the three sound chip voices. Sliders are added to the tree by calling the
add_slider function, which is explained below. The slider location is passed in
the TONEA parameter, defined at the beginning of the file, and we also hand a
character for the slider box to add_slider.

The six buttons, one noise button and one tone button for each voice,
are added next to enable noise and tone output for each voice. Again, a charac-
ter is passed for the button and the button location. The button locations are
defined at the start of the file, in the variables TONEA, TONEB, and TONEC.

The three radio buttons control the envelope generator on the sound
chip. Radio buttons are constructed as buttons within a single parent box. If the
RBUTTON flag bit is set, the GEM form_do routine insures that only one but-
ton at a time is selected in the box.

The final statements of the bld_sliders function give each slider its
proper inital value by calling the all_sliders function. The LASTOB bit in the
flags field of the last item in the tree is set to terminate the list and the
max_items variable is set to the item number of the last item. Finally, the ad-
dress of the tree is returned to bld_tree.

189

mmm— CHAPTER 8

Program 8-12. bldslide.c

include <obdefs.h>
include <sliders.h>

#

#

define BOXFILL

define BOXCOLOR
define BX
define BY
define
define
define
define

vy
3

define
define

ZZ wm0nw
o
X

define
define

DIB
x E > E

-
8

#

#

#

#

#

#

#

#

L

#

define

define V_WIDE
define H_HIGH
define T_HIGH
define TONE_MIN
define TONE_MAX
define VOL_MIN
define VOL_MAX
define NSE_MIN
define NSE_MAX
define E_P_MIN
define E_P_MAX
define E_S_MIN
define E_S_MAX
#
#
#
*
#
]
“
#
*
*
#
#
#
#
#
#
L]
L]
#*

define CHAN_WIDE
define TONEA
define VOL_A
define TONEB
define VOL_B
define TONEC
define VOL_C
define T
define E
define E
define NSE
define NSE
define E
define E_S_
define RAX
define RBX
define RCX

int note_op, quit_op;

((IP_&PATT << 4) | GREEN)
((long) ((BREEN << 12) | (BREEN << B8) ! BOXFILL))
@

]
33
19
]
1

5
21

N_W
CN_X+N_W+1)

2
2
1
8
]
1823 /% (% 4) would be 4895 with LONG sliders %/
(]
15
]
31
]
4095 /% (% 18) would be 45535 with LONG sliders %/
8
15

11

2

&

(CHAN_WIDE+TONEA)
(CHAN_WIDE+VOL_A)
(CHAN_WIDEX2+TONEA)
(CHAN_WIDE$2+VOL_A)

13

15

29

17

7

12

7

vOoL_A

vOL_B

voL_c

12

-1

int n_en_a, n_en_b, n_en_cj;
int t_en_a, t_en_b, t_en_c;
int r_e_a, r_e_b, r_e_c;

int r_m_a, r_m_b, r_m_cj;

int radio_a, radio_b, radio_c;

struct object &
bld_sliders(){

int box, xj

static struct object s_treel 128 1;

190

Programming the Sound CRip e

extern struct slide s_valsl];
extern int next_item, max_item;

next_item = @)

box = addit(s_tree,-1,G6_BOX,BOXCOLOR,BX,BY,BW,BH);
s_treelbox]l.ob_state |= OUTLINED ! SHADOWED;

note_op = addit(s_tree,box,B_BUTTON, "NOTE",N_X,NSE_Y,N_W,H
quit_op = addit(s_tree,box,BG_BUTTON, "QUIT",Q_X,NSE_Y,Q_W,H
s_treelnote_opl.ob_flags = TOUCHEXIT ! DEFAULT;
s_treelquit_opl.ob_flags = TOUCHEXIT;

add_slider (s_tree,s_vals,box,S_T_A, TONEA, TOP,V_WIDE, T_HIGH,S_VER,"T")}
add_slider (s_tree,s_vals,box,S_T_B, TONEB, TOP,V_WIDE, T_HIBH,S_VER,"T");
add_slider (s_tree,s_vals,box,S_T_C, TONEC, TOP,V_WIDE, T_HIGH,S_VER,"T")j

add_slider (s_tree,s_vals,box,S_V_A,VOL_A,TOP,V_WIDE,T_HIGH,S_VER, "V")j
add_slider (s_tree,s_vals,box,S_V_B,VOL_B, TOP,V_WIDE, T_HIBH, S_VER, "V")}
add_slider(s_tree,s_vals,box,S_V_C,VOL_C,TOP,V_WIDE,T_HIBH,S_VER, "V")}

add_slider (s_tree,s_vals,box,S_N, TONEA,NSE_Y,NSE_W,H_HIGH,S_HOR, "N");
add_slider (s_tree,s_vals,box,5_S,E_S_X,NSE_Y,E_S_W,H_HIGH,S_HOR, "S");
add_slider (s_tree,s_vals,box,S_P, TONEA,E_P_Y,E_P_W,H_HIGH,S_HOR, "P");

n_a = addit(s_tree,box,B_BUTTON, "n",TONEA,TELS_Y,1,1);
en_b = addit(s_tree,box,G_BUTTON, "n", TONEB, TGLS_Y,1,1)}
en_c = addit(s_tree,box,G6_BUTTON, "n",TONEC,TGLS_Y,1,1)3;
treeln_en_al.ob_flags != TOUCHEXIT | SELECTABLE;
treeln_en_bl.ob_flags != TOUCHEXIT ! SELECTABLE;
treeln_en_cl.ob_flags i= TOUCHEXIT | SELECTABLEj;

n_a = addit(s_tree,box,G_BUTTON,"t", TONEA+2,TGLS_Y,1,1)};
en_b = addit(s_tree,box,B_BUTTON, "t", TONEB+2,TGLS_Y,1,1);
en_c = addit(s_tree,box,G_BUTTON,"t", TONEC+2,TGLS_Y,1,1);
treelt_en_al.ob_flags i= TOUCHEXIT | SELECTABLE;
s_treelt_en_bl.ob_flags i= TOUCHEXIT i{ SELECTABLE;
s_treelt_en_cl.ob_flags i= TOUCHEXIT | SELECTABLEj;

n
n
n
s
s
s
t
t_
t
s_

radio_a = addit(s_tree,box,B_BOX,BOXCOLOR,RAX,RAY,2,2);
radio_b = addit(s_tree,box,G_B0OX, BOXCOLOR,RBX,RAY,2,2)};
radio_c = addit(s_tree,box,G_BOX,BOXCOLOR,RCX,RAY,2,2);

r_e_a = addit(s_tree,radio_a,G_BUTTON,"E",9,0,2,1)}
r_m_a = addit(s_tree,radio_a,G_BUTTON,"M",@8,1,2,1);
s_treelr_e_al.ob_flags != TOUCHEXIT | SELECTABLE ! RBUTTON;
s_treelr_m_al.ob_flags |= TOUCHEXIT | SELECTABLE ! RBUTTON;

r_e_b = addit(s_tree,radio_b,G_BUTTON,"E",9,0,2,1);
r_m_b = addit(s_tree,radio_b,G_BUTTON, "M",®,1,2,1);
s_treelr_e_bl.ob_flags |= TOUCHEXIT | SELECTABLE ! RBUTTON;
s_treelr_m_bl.ob_flags {= TOUCHEXIT | SELECTABLE ! RBUTTON;

r_e_c = addit(s_tree,radio_c,G_BUTTON,"E",2,0,2,1)}
r_m_c = addit(s_tree,radio_c,G_BUTTON,"M",2,1,2,1);
s_treelr_e_cl.ob_flags != TOUCHEXIT | SELECTABLE ! RBUTTON;
s_treelr_m_cl.ob_flags != TOUCHEXIT | SELECTABLE ! RBUTTON;

all_sliders(s_tree)j
s_treelnext_item—-1l.0b_flags i= LASTOB;
max_items = next_item)

return(s_tree)j;
3}

191

http://s_.treeCt_en_a3.ob_f

T
mem—m CHAPTER 8

The add_slider function. The bld_sliders function calls add_slider
(Program 8-13) to add each slider to the dialog box tree. A slider consists of
four parts: the slider box, the track in which the box moves, and the two ar-
rows in boxes at either end of the track. When bld_sliders calls add_slider, it
passes the dialog box tree, the slider location and orientation (vertical or hori-
zontal), a character to put in the slider button, and pointers to this slider’s par-
ticulars (s_vals and val_index) in the array of slider information.

First, the add_slider routine adds the track by calling addit with param-
eters that specify a box drawn in TRKCOLOR, which is set to black. Next, the
arrow boxes are added by giving the object type G_BUTTON and the slider box
is added by passing addit the object type G_BOXCHAR. The G_BOXCHAR
type is a box with a character in it. The character is put into the ob_spec field
in the object structure, along with the color of the box and character.

The track orientation is controlled by the is_ver variable, and determines
where on the track the slider box starts and how wide it is. Vertical sliders are
two characters wide and horizontal sliders are one character wide, as specified
in the parameter to addit for the width.

Next, the ob_flags bits for the slider boxes and buttons are set to
TOUCHEXIT so form_do will return if the user clicks on them.

The last thing that’s needed is to save the tree indexes of the slider’s var-
ious parts in the appropriate fields of the s_vals structure. This lets us cross-
reference between the slider values in s_vals and the slider appearance as it is
defined in the dialog tree. This allows for both reading the value from the slid-
ers when the user changes the settings, and setting the value from the s_vals
array when we want the program to control the tone and volume,

Program 8-13. addslide.c

include <obdefs.h>

include <sliders.h>

define SLDCOLOR ({long) ((BxFFL<<14) | (RED<<12) ! (RED<<B)))

define TRKCOLOR t(}nng)((ﬂxFFL<<ib)l(BLACK((!Z)#(BLACK((E)ITRKFILL))
define TRKFILL ((IP_1PATT << 4) | BLACK)

define INC_VER “~i~

define DEC_VER "\~

define DEC_HOR L

define INC_HOR LAY L

add_slidar(s_trne,s_vnl:.bnx,vnl_ind.x,x,y,u,h,iu_v.r.:h)
struct object is_tree;

struct slide ¥s_vals;

int box, val_index, x, vy, wy, h, is_ver;

char xchj(

int track, slider, inc_button, dec_button;
long int c;

€ = Xchj;

€ = SLDCOLOR { (c << 24);

track = lddittl_tr.e,box,G_BOX,TRKDGLDR.u,y,u,h);

if(is_ver)¢
inc_button = additt-_trn-,bnx,G_BUTTDN,INC_VER,x,y—l,Z.1);
dec_button = addit(-_trnn.bux,B_BUTTDN,DEC_VER,x,y+h,2,l)l

192

[
Programming the Sound CRip e

slider = addit(s_tree,track,B_BOXCHAR,c,®,8,2,1);
3
else (
inc_button = addit(s_tree,box,G_BUTTON, INC_HOR,x-1,y,1,1);
dec_button = addit(s_tree,box,B_BUTTON,DEC_HOR,x+w,y,1,1)}
slider = addit(s_tree,track,G_BOXCHAR,c,?,0,1,1);
3
s_treelslider].ob_flags = TOUCHEXIT;
s_treelinc_buttonl.ob_flags = TOUCHEXIT;
s_treeldec_buttonl.ob_flags = TOUCHEXIT;
s_valslval_indexl.track = trackj;
s_valslval_indexl.slider = slider;
s_valslval _indexl.inc = inc_button;
s_valslval _indexl.dec = dec_button)
s_valslval_indexl.is_vert = is_ver;
b

The all_sliders Subroutine: Getting the Sound Register Values

When bld_sliders has finished building the dialog tree box, it calls the
all_sliders function, Program 8-14. The purpose of this subroutine is to read
the sound chip registers and set the slider locations to reflect the register
contents.

bld_sliders reads the sound chip registers and sets the slider locations by
calling the set_slider function.

The sound chip has three voices, and therefore has three tone registers.
Among the parameters for set_slider is a call to the tone routine. To reference
the first tone register, tone is passed a 0 as well as GET to read the value.

The tone register can hold a value from 0 to 4095, which is too large to
use conveniently in the slider. This range is divided by shifting the value right
by two bits, effectively dividing by 4 and giving a range of 0 to 1024. Although
the slider boxes can now only set or display the tone registers in increments of
four, 1024 different tones are plenty for this program.

Among the arguments to the set_slider function are the address of a
slider within the s_vals array, the dialog box tree, and a range. The range is
defined as TONE_MIN and TONE_MAX, and the addresses of the different
sliders” s_vals structures are defined in sliders.h as S_T_A for SLIDER TONE
voice A, S_T_B for SLIDER TONE voice B, S_V_A for SLIDER VOLUME
voice A, and so on.

The same is done for all the sound registers, except for the shape regis-
ter, which requires some special consideration. Because of the way the hard-
ware is designed, the shape register has 10 meaningful values out of 16
possible values, and 2 of the 10 are redundant.

To simplify things, the redundant choices are eliminated to create a
range of 8 to 15. All values less than 4 are changed into 9 and the values 5
through 7 into 15. Now each shape is unique.

Once the shape register values are determined, the shape sliders are built
to reflect the changes in the register.

To shade the buttons, indicating that the button is ON (or SELECTED),
the select_on function is called. Last, the settings of the sound registers are

193

= CHAPTER 8

saved by the save_state subroutine, keeping them readily available for got_key
to insure that the settings are correct for the piano tones.

Program 8-14. allslide.c

include <obdefs.h>

include <sliders.h>

define GET o |

define TONE_MIN a

define TONE_MAX 1823 /% (% 4) would be 4995 with LONG sliders %/
define VOL_MIN @

define VOL_MAX 15

define NSE_MIN 1

define NSE_MAX 31

define E_P_MIN @

define E_P_MAX 4995 /% (x 16) would be 65535 with LONG sliders &/
define E_S_MIN 8

define E_S_MAX 15

all_sliders(s_tree)
struct object %s_tree;(

unsigned int period();
int x;
extern
extern
extern
extern
extern
extern

struct slide s_vals[]1;

int n_en_a, n_en_b, n_en_c;
int t_en_a, t_en_b, t_en_c;
int r_e_a, r_e_b, r_e_cj

int r_m_a, r_m_b, r_m_c;

int radio_a, radio_b, radio_cj;

set_slider (&s_vals[(S_T_Al,s_tree,tone(d,BET) >> 2, TONE_MIN, TONE_MAX) ;
set_slider (&s_vals(S_T_Bl,s_tree,tone(1,BET) >> 2, TONE_MIN, TONE_MAX);
set_slider (&s_vals(S5_T_Cl,s_tree,tone(2,BET) >> 2, TONE_MIN, TONE_MAX)}
lct_lltd-r(&l_valsES_V_AJ,l_trul,vnlunu(G.GET),VDL_HIN,vOL_HAx};
set_slider (&s_vals(S_V_Bl,s_tree,volume(1,GET),VOL_MIN, VOL_MAX);
set_slider (&s_vals[S_V_Cl,s_tree,volume(2,GET),VOL_MIN, VOL_MAX);
set_slider (ks_vals[S_N1,s_tree,noise(BET) ,NSE_MIN,NSE_MAX)}

®x = shape (GET)j;

if¢ % ¢ §) /% redundant shapes #-3 —-> 9 &/
X = G

ifi x < B8) /% redundant shapes 4-7 —-> 15 &/
x = 15;

shape(x)y

set_slider (&s_vals[S_S1,s_tree,shape(BET),E_S_MIN,E_S_MAX
set_slider (&s_vals[S_PJl,s_tree,period(GET) >> 4,E_P_MIN,E
select_on(s_tree, noise_enable(d,GET), n_en_a)j

select_on(s_tree, noise_enable(1,BET), n_en_b);

3
P_MAX)

select_on(s_tree, noise_enable(2,6ET), n_en_c);
select_on(s_tree, tone_enable(#,BET), t_en_a)}
select_on(s_tree, tone_enable(1,GET), t_en_b)j
select_on(s_tree, tone_enable(2,BET), t_en_c)}
select_on(s_tree, mode_bit(#,GET), r_e_a);
select_on(s_tree, 'mode_bit(#,BET), r_m_a)j
select_on(s_tree, mode_bit(1,BET), r_e_b);
select _on(s_tree, !mode_bit(1,BET), r_m_b);
select_on(s_tree, mode_bit(2,BET), r_e_c);
select_on(s_tree, !mode_bit(2,BET), r_m_c)}

save_state();
}

194

Y Vo)
1
Programming the Sound Chip s

The set_slider function. The exact placement of the slider box within
the track is done by calling the set_slider function, Program 8-15, which takes
a sound register value and converts it to a position for the top or left side of the
slider box.

The sound register value and the minimum and maximum values are
first stored in the slider value array using the pointer s. Then we get a pointer
into the dialog box tree for this slider’s object, which happens to be BOXCHAR
(a character with a box around it). This is the slider box that slides on the track.

The slider-box position on the track is determined by the sound register
value, which was passed to set_slider. The values are scaled to fit the range
(max-min) that was established for the height or width of the slider track. The
result goes into the ob_y field for a vertical slider, or the ob_x field for a hori-
zontal slider. This x or y value will determine where the left side or top of the
slider box will be positioned in the track.

Program 8-15. setslide.c

include <obdefs.h>
include <sliders.h>

set_slider (s,s_tree,value,min,max)
struct slide £sj

struct object ¥s_tree;

int value, min, maxj{

struct object It;
long int high, wide;
extern int gl_hchar, gl_wchar;

s->value = value;
s->min = minj
sS—>max = maxj
t = &s_treels->slider];
high = value - minj
high ¥= s_treels->trackl].ob_height - gl_hchar;
high /= max - minj
wide = value - min;
wide ¥= s_treels->trackl.ob_width - gl_wchar;
wide /= max - minj
if(s=>is_vert)
t->ob_y = highj;
else
t->ob_x = widej
3

The do_menu Function

When the user selects a menu item, the multi function calls the do_menu func-
tion, Program 8-16.

You may recognize this function as the same as the do_menu version in
the MandelZoom program. It's important that this version be used instead of
the default version in the envelope library. From here, the program calls the
do_main_menu function to handle the menu item the user has selected.

195

e CHAPTER 8

Program 8-16. domenu.c
: include <obdefs.h>

do_menu(title,item,whand, vw)
int title, item, whand, vw;{

int ret;
extern struct object ¥main_addr;

ret = do_main_menu(item,whand,vw)}
menu_tnormal (main_addr,title,1);
menu_tnormal (main_addr,item,1);
return(ret);

}

The do_main_menu Function

The do_main_menu function (Program 8-17) is notified that a menu item has
been selected, and then determines what action to take depending on the
menu.

Selecting the menu items About or one of the Help menu items causes
do_main_menu to call the GEM form_alert routine to display the information
that we provide. If the user selects the Quit menu item, then the value 1 is re-
turned, causing the multi function to exit.

The other menu items that went into the menu tree built earlier with
bld_tree produce the menu shown in Figure 8-4, and are the other four possi-
ble menu choices for the user.

Figure 8-4. The Four Options

options I3V
Set Sound
Print Values
Rhythns
Effects

196

AR TR
= e==—ni]
Programming the Sound CRip e

When Select sound (Set_snd) is selected, the do_slide function is called
to put up the dialog box of sliders and buttons that let the user change the
sound chip registers. The registers are saved in memory with the save_state
routine so they can be restored should they be changed temporarily—for ex-
ample, when the rhythm option uses the registers to emit drum sounds.

By selecting Rhythms, the program calls the do_rhythms function to
produce rhythmic beat patterns. do_rhythms is discussed later, and you'll see
that each time do_rhythms is called, it changes the current rhythm being
played. It starts with silence and cycles through all of the patterns, then starts
over again with no rhythm.

The Print Values (Print_vals) menu item prints the register contents in a
window, as numbers that you can copy down and use in programs. A program-
mer can design a sound by moving the slider boxes around, then select this
menu item to see the register values. This window showing the register con-
tents appears in Figure 8-5.

Figure 8-5. The Window Showing the Values of the Sound Chip
Registers

desk file ETRRCNER hel

Channel R ik
Yolume: el e |
Tone: B2 a8

Period: 10880 Noise: B8 Shape: 9

Selecting Sound Effects (Effects) produces a sampler of noises—primarily
gunshots and explosions such as you might want to use in game programs.

Program 8-17. domnmenu.c

do_main_menu(item,whand, vw)
int item, whand, wvw;{

char str{2561;
extern int About, Quit, Set_snd, Rhythms, Effects, Print_vals;

197

mseem CHAPTER 8

extern int HSet_snd, HRhythms, HEffects, HPrint_vals;

if(item == About)¢
lprintf(ltr,”[BJEZSIZS %sl¥si¥%sll OK 1",
Noise! Control the sound ",
" chip in your Atari ST. ",
" Set the chip’s registers, ",
" play a piano, ",
" or percussion rhythms.
¥
form_alert(i,str);
return(d);
b
else if(item == Quit)¢
return(l);
3
else if(item == Set_snd)<{(
do_slide();
save_state();
return(g);
b
else if(item == Rhythms) ({
do_rhythms();
return(@);
3
else if(item == Print_vals)(
print_vals();
return(g);
b

else if(item == Effects) (
do_effects();
return(d);

b3
else if{ item == HSet_snd) (
nprintf(Itr,'Eﬂ]t:-kx-lxlllllz;Jt NEXT 1",

There are 3 tone/volume "
" slider sets, one for each s
" voice. Beneath them is a "

" set of buttons for enabling ",
" tone, noise, and envelopes. "
'3

form_alert(1l,str);

sprintf(str,"[#1[¥%si%si¥%si%si%s1l DONE 1",
" E enables envelope control, ",
" Mis for manual control via ".
" the volume sliders. Below L
" are the noise, shape, and "y
" period sliders. >
13

form_alert(1,str);

return(d);

3

else if(item == HRhythms)(

sprintf(str,"[B1[Xs!%si%si%si%s]Il OK 1",
" Each time you click on ",
" the rhythm menu item, ’
" a new rhythm begins. m
" Loop through all of "
" them, and they stop. ol
'3

form_alert(1,str)j

return(d);

3

else if(item == HEffects) (
sprintf(str,"[@)[%si¥siXsi¥si¥%s1[OK 1",
" Select the effects menu "
" item to hear some sound -

198

Programming the Sound Chip

" gffects such as gunshots, ",
" explosions, and other "y
" varieties of mayhem. »
'3

form_alert(l,str);

return(@);

}

else if(item == HPrint_vals){

sprintf(str,"[G]E!sl%;ltll%slll]t oK 1",
" After setting up a sound, ",
“ gelect the print values »
" jtem to print out the -
* gound register contents. "

3

form_alert(l,str);

return(@);

3
sprintf(str,"[@1[%s %d1l OK 1", "Unknown menu number !",item);
form_alert(l,str);
return(@);
3

The do_slider and sliders functions. The do_slider function (Program
8-18) is called by do_main_menu when the user selects the Set Sound menu
item in order to change the sounds. It’s a short routine that first calls the
all_sliders function to make sure the sliders reflect the current sound, and then
calls the sliders function (Program 8-19) to show the slider dialog box and let
the user change the register values.

You probably recognize the sliders function as similar to the dialog sub-
routine in the Mandelbrot program.

The GEM routines form_center and form_dial center the dialog box and
make it expand. Then sliders performs a loop in which it calls GEM’s form_do
routine to handle the mouse and keyboard input, and sl_set to set up the dia-
log box until sl_set returns 0, indicating that the user clicked the QUIT button.

Program 8-18. doslide.c

include <sliders.h>
include <obdefs.h>

struct slide s_vals[NUM_SLIDERSI;
struct object %¥slid_tree;

do_slide() {

all_sliders(slid_tree);
sliders(slid_tree, @, s_vals)j
H

Program 8-19. sliders.c

include <obdefs.h>
include <gemdefs.h>

sliders(box_tree,field,vals)
struct object %box_tree;
int field;

199

e CHAPTER 8

struct slide #%vals;(

int %, y, w, hj
int littlex, littley, littlew, littleh;
int operation;

if(field < @) /¢ Atari doc is wrong &/

field = @; /% =1 blows up, should be & or valid &/
form_center (box_tree, &x, &y, &w,&h);
littlew = littleh = 5¢@;
littlex = x + w / 2 = littlew;
littley = y + h /7 2 - littleh;
forn_dill(FHD_BTART,littllx,ltttlly,littlnu,littlnh,x,y,u,h);
fnrm_dinl(FHD_GRUH,littllx.littluy,littlnu,littllh.u.y.u,h)|
objc_draw(box_tree,d,9,x,y,w,h);
do {

operation = form_do(box_tree,field);

} while(sl_set(box_tree,field,vals,operation))3
Form_dlal(FHD_SHRINK,littl-x,littley,littlcw,llttllh,x,y,u,h);
furm_dial(FHD_FINIEH,littlex,littl!y,littl.b,littlnh,x,y,u,h);
return(operation);

3

The sl_set Function

Inside the dialog box, there are five different types of items: the sliders, the tog-
gle buttons, the radio buttons, the QUIT button, and the NOTE button. The
sl_set function, Program 8-20, organizes the different types and how they are
handled.

To determine which object was modified, the which_one function is
called. If the object was one of the noise- or volume-enable (n_en_a and
t_en_c) toggle buttons, it is taken care of by calling the toggles function. The
radio buttons are handled with the rad_button function. These routines are dis-
cussed in more detail later.

For the QUIT button, the function simply returns 0 so the sliders func-
tion will break out of its loop.

For the NOTE button, the slider-box positions in their tracks are up-
dated, and the play_note is called to make the speaker generate the current
sound.

When the user moves the slider boxes or clicks on the arrows, the
set_slider subroutine is called to move the slider; then slid_val, to update the
registers and play the note; and finally the GEM objc_draw routine, to draw
the slider in its new position.

When the user drags a slider box, the sl_set routine calls the GEM
graf_slidebox routine to handle the slider’'s movement. It draws a small rectan-
gle that follows the mouse up and down the slider track. When the mouse but-
ton is released, letting go of the slider box, graf_slidebox returns a value from 0
to 1000, indicating the box’s position. This is scaled in the usual way to a value
between s->min and s->max, the minimum and maximum values allowed for a
particular slider. This value is then passed to set_slider.

When the user clicks on the arrows at either end of a slider track, the
function checks to see if there’s room to increment or decrement the value in

200

Programming the Sound CRip

the range, and then it calls set_slider with the new value so it can convert it to
the new position for the slider box.

Program 8-20. slset.c

include <obdefs.h>
include <sliders.h>

int max_items = @3

sl_set (tree,field,vals,operation)
struct object #$tree;

int field;

struct slide %vals;

int operationj{

struct slide #s;

struct object %¥pj;

int val_index, type, val, step;
long 1, rangej

extern int t_en_c, n_en_a;

p = tree;
if(operation < @ !! operation > max_items)
returnil);
if(operation >= n_en_a && operation <= t_en_c)(
toggles(operation, tree);
all_sliders(tree);
play_note();
return(l);
3
if(treeloperationl.ob_flags & RBUTTON)<
rad_button(operation, tree)j
all_sliders(tree);
play_note();
return(l);
b
val_index = which_one(vals, operation, &type)j;
if(type == NOTE_OP)<{
treeloperationl.ob_state &= “SELECTED;
all_sliders(tree)}
play_note();
return(l);
}
if(type == QUIT_OP)
return(d);
s = &valslval _index]l;
range = s->max - s—=>minj
switch(type){
case SLIDER:
1 = graf_slidebox (tree,s->track,s->slider,s->is_vert);
1 %= rangej;
1 += 500;
1 /= 1009;
val = s->min + 1;
set_slider (s,tree,val,s->min,s->max);
break;
case DEC_ARROW:
if(s=->value < s—>max)
set_slider (s,tree,s—>value+l,s->min,s->max)j

if{ s->value > s->min)
set_slider (s,tree,s->value-1i,s->min,s->max);
breakj

201

meees CHAPTER 8

¥
slid_val (tree,val _index,s->value);
uhj:_drlu(p,l->track,9,p—>ob_x,p->ob_y,p-)nh_uidth,p->nb_height);
return(l);
]

The which_one function. The which_one subroutine converts a tree in-
dex into a slider index. In this application, it’s called by sl_set to determine
which object the user has modified.

It checks for the object type NOTE_OP and QUIT_OP, then loops
through the array of slider information, looking for a match between the index
of the object selected in the dialog tree and the dialog tree indices stored in the
slider array. When a match is found, the type variable is filled in and the slider
index is returned to the sl_set function.

Program 8-21. whichone.c
include <sliders.h>

4]

%% Which_one takes an index into an object tree, and returns

¥¥ an index into the value array for the sliders. It puts the
£k type of the operation (SLIDER, INC_ARROW,DEC_ARROW) into type.
%/

which_one(vals, operation, type)

struct slide fvalsj

int operation, *type;(

int x3
extern int note_op, quit_op;

if(operation == note_op)({
ktype = NOTE_OP;
return(-1);
3

if(operation == quit_op){
ktype = QUIT_OP;
return{-1);
b
for(x = @; x < NUM_SLIDERS; x++)(
if(valsCxl.slider == operation)(
ktype = SLIDER;
returnix);
}

else if(valsIxl.inc == operation){
ktype = INC_ARROW;
returnix);
3

else if(valsixl.dec == operation){
*type = DEC_ARROW;
returnix)g;
b

3

return(-1);
3

202

Programming the Sound CRip e

The save_state and rest_state Functions

The sound chip register settings need to be saved so they can be restored.
When the user plays the rhythm section of this application, the sound chip is
set to the rhythm sounds. When the rhythm section is finished, the user should
be able to return to the dialog box and find it unchanged. The save_state and
rest_state functions (Program 8-22), which are complementary routines, share
the same data about the register values. They are only concerned with the reg-
isters that are changed by the rhythm section.

When sl_set returns 0 to the sliders function, sliders closes the dialog
box and returns to do_slide, which returns to do_main_menu. The
do_main_menu routine calls save_state to copy the sound chip’s register val-
ues into memory.

Program 8-22. savstate.c

define BGET =1

int t1, t2, t3, p, n, tel, te2, te3, nel, ne2, ne3;
save_state() {

t1 = tone(d,BET);
t2 = tone(1,BET);
t3 = tone(2,BET);
tel = tone_enable(d,BET);
te2 = tone_enable(1,6ET);
te3 = tone_enable(3,BET);
nel = noise_enable(d,GET);
ne2 = noise_enable(1,BET);
ne3 = noise_enable(2,BET);
p = period(GET);
n = noise(GET)}
3
rest_state(){

tone(d,t1);
tone(1,t2);
tone(2,t3);
tone_enable(d,tel);
tone_enable(1i,te2);
tone_enable(3,te3);
noise_enable(d,nel);
noise_enable(l,ne2);
noise_enable(2,ne3);
periodi(p)j;

noisei(n)s

3

Notes on the Sound Chip Registers

The ST’s sound chip has 16 read /write control registers. The registers control
the tone, volume, period, and shape of the note and noise that construct the
sound emitted from the speaker. Note that the last two registers control I/0
(not sound) and, consequently, are of no interest to us here.

203

= CHAPTER 8

The following descriptions of the functions that set these registers will be
easier to understand if you refer to Figure 8-15 to see how the registers are
used.

The play_note Function

Reading the shape register and then putting the same value back into the regis-
ter will generate a sound. This is what the play_note function, Program 8-23,
does when it’s called by sl_set.

The GEM BIOS routine Giaccess is used to read the shape register,
which is register 13 (called R15 because the registers are numbered in octal in-
stead of decimal). Then the shape register is set to the same value with the
SET_THE_REG argument to Giaccess. Because the argument is other than GET
(—1), the register is set instead of read.

Program 8-23. playnote.c
include <osbind.h>
define GET =1
define SET_THE_REG @xB8@
define SHAPEREG 215
play_note() {

int xj;

®» = Giaccess(@,SHAPEREG) ;
Giaccess(x,SHAPEREG | SET_THE_REG) ;
3

The toggles and select_on Functions

The toggles function, Program 8-24, takes advantage of the fact that the noise
and tone information are arranged sequentially in the object tree array s_tree
by the bld_sliders function.

The index into the array tells whether this was a tone or noise button
that the user toggled, and by subtracting the selected object’s index from the
first tone or noise-enable indices into the array, we find out which voice is af-
fected—voice 0, 1, or 2.

Once the voice number is known, tone_enable or noise_enable is called
to “toggle” the voice register on or off, depending on its current state. To tog-
gle the register, the opposite of the current value is passed to tone_enable or
noise_enable, so that if the register was set to 1, it is reset to 0, and vice versa.

Then the select_on function is called with the current register value to
make the button be drawn dark for selected (on), or white for unselected (off).
The GEM routine objc_draw then redraws the button in its new state.

The select_on function, Program 8-25, sets or clears the SELECTED bit
in the ob_state field of an object, depending on the value passed in the
true_false argument.

204

Programming the Sound Chip e

Program 8-24. toggles.c
include <obdefs.h>

define GET =k

toggles(index, p)
int index;
struct object ¥p;{

int i;
extern int t_en_a, n_en_aj;

if(index >= t_en_a) {
i = index - t_en_a;
tone_enable(i, 'tone_enable(i,BET));
select_on(p, tone_enable(i,BGET), index);
¥
else (
i = index - n_en_aj
noise_enable(i, 'noise_enable(i,BET));
select_on(p, noise_enable(i,GET), index)j;
b
objc_draw(p,index,9,p->ob_x,p->ob_y,p->ob_width,p->ob_height);
}

Program 8-25. selecton.c
include <obdefs.h>

select_on(s_tree, true_false, index)
struct object %s_tree;
int true_false, indexj({

if(true_false)

s_treelindex].ob_state i= SELECTED;
else

s_treelindex].ob_state &= “SELECTED;
¥

The tone_enable and noise_enable Functions

The tone_enable and noise_enable functions (Programs 8-26 and 8-27) set or
read the tone-enable or noise-enable bits from the sound chip.

When the tone_enable or noise_enable functions are passed the value
GET, they return the current value from the sound chip registers. Otherwise,
the register is set to the value that was passed. The GEM BIOS routine Giaccess
is used to access the registers. If the register number passed to Giaccess has the
high bit set by adding SET_THE_REG, then the register is set; otherwise its
current value is returned.

Program 8-26. toneenab.c

include <osbind.h>
% define GET -1

define SET_THE_REG 2x 80

205

e CHAPTER 8

define MIXERREG o7

14

¥t Read or set the tone enable bit in the mixer register.
%% Note that turning a bit in the mixer ON turns the feature OFF.

%/

tone_enable(channel ,on_off)
int channel, on_offj{

int old_valj

if(on_off == BGET)
return(! ((Giaccess(#,MIXERREG) >> channel) & 1));

old_val = BGiaccess(#,MIXERREG)}
if(on_off)

old_val &= ~(1 << channel); /% turn the bit OFF %/
else

old_val I= 1 << channelj;. /% turn the bit ON %/
Biaccess(old_val, MIXERREG + SET_THE_REG)j;
3

Program 8-27. noisenab.c
include <osbind.h>

define GET -1

define SET_THE_REG 2x 80

define MIXERREG o7

/%

&% Read or set the noise enable bit in the mixer register

L 2]
L 3]
L 3]
&/

Just like tone_enable, but the noise bits are three bits to the left
of the tone bits.
Note that turning a bit in the mixer ON turns the feature OFF.

noise_enable (channel ,on_off)
int channel, on_offj{

int old_valj

if(on_off == BGET)

return(!((Biaccess(#,MIXERREG) >> (channel+3)) & 1));
old_val = Giaccess(8,MIXERREB)}
if(on_off)

old_val &= “(1 << (channel+3)); /% turn the bit OFF %/
else

old_val i= 1 <<{ {(channel+3); /% turn the bit ON &/
Giaccess{ old_val, MIXERREG + SET_THE_REG)j
}

The rad_button Function

When a radio button is selected, the rad_button function is called. The radio
buttons for each voice determine whether the envelope generator will control
the volume, or whether the volume will be set manually by the VOLUME

slider boxes.

Each voice has its own pair of radio buttons, kept in parent boxes called
radio_a, radio_b, and radio_c. When a button is selected, GEM changes the
SELECTED bit, and the rad_button subroutine displays the changed button.

206

Programming the Sound Chip s

When rad_button is passed a button index, it calls mode_bit to select a
mode bit in the sound chip’s MIXER register and change it. It then sets the in-
dex to the parent box of the radio buttons affected, and calls the objc_draw
subroutine to draw the subtree containing the parent and its two children.

Program 8-28. radbutn.c

include <obdefs.h>

rad_button(index, p)
int indexj;
struct object %xpj{

extern int r_e_a, r_e_b, r_e_c, r_m_a, r_m_b, r_m_cj;
extern int radio_a, radio_b, radio_cj;

if(index == r_e_a) (
mode_bit(@, 1);
index = radio_a;
}

else if(index == r_e_b)(
mode_bit(1, 1)3
index = radio_bj
3

else if(index == r_e_c)({
mode_bit(2, 1)j;
index = radio_cj;
3

else if(index == r_m_a) (
mode_bit(@, @)j;
index = radio_aj;
b

else if(index == r_m_b){
mode_bit(1, @);
index = radio_b;
3

else if(index == r_m_c) {
mode_bit(2, @);
index = radio_cj;
3

objc_draw(p,index,?,p->0b_x,p->0b_y,p->0b_width,p->ob_height);

3

The slid_val Function

Moving a slider box calls the slid_val function with an index telling which
slider changed and its new positional value.

slid_val calls the tone function to set one of the three tone registers, or
the volume subroutine for one of the three volume registers, or the noise,
shape, or period subroutines to set those registers. These functions, which all
look somewhat similar, are explained in the next sections.

Last, it calls the all_sliders routine to update the slider values, and then
play—_note to produce a sound as feedback to the user.

207

e CHAPTER 8

Program 8-29. slideval.c

include <obdefs.h>
include <sliders.h>

slid_val (tree,val_index,value)
struct object itree)
int val_index,value;{

unsigned int period();

switch(val_index)<{
case S_T_A:
tone(d,value << 2);
break;
case S_T_B:
tone(l,value << 2);
breaksj
case S_T_C:
tone(2,value << 2)j
break;
case S_V_A:
volume (#,value) j
breakj;
case S8_V_B:
volume(1,value);
breakj;
case 8_V_C:
volume (2, value) ;
break;
case S_N:
noise{value);
breakj
case S_S@
shape(value);
break;
case S_P:
period{value << 4);
break;
}
all_sliders(tree);
play_note();
3

The tone function. To vary the tone of the sound register, the tone
function, Program 8-30, has to set two registers: one for coarse tone and one
for fine.

The fine tone is the low 8 bits and the coarse tone is the high 4 bits of
the 12-bit tone value. These are selected by adding two times the voice number
(channel) to the TONEREGS constant, which selects which register set to use.

The value GET is used as an argument for the GEM BIOS Giaccess rou-
tine, which accesses the registers. If GET equals —1, the current value is returned;
if any other values are used, then the fine and coarse tone registers are set.

208

Programming the Sound Chip s

Program 8-30. tone.c

include <osbind.h>
define BGET -1

define SET_THE_REG @x80

4

&% The six tone registers are @ and 1 for channel A,

% 2 and 3 for channel B, and

%X 4 and S5 for channel C. The even register is the fine tune register,
%% and the odd register is the coarse tune register.

%/

define TONEREGS]

tone (channel , value)
int channel, valuej{

int coarse, finej

if(value == BET)({ /% just return the current value ¥/
coarse = Biaccess (@, TONEREGS+channel ¥2+1)}
fine = Giaccess (@, TONEREGS+channel®2);
value = ((coarse & Oxf) << B) | finej
return(value)j;
>

s

%% Set the value

%/

coarse = (value >> 8) & Oxf;

fine = value & Oxffj

Biaccess (coarse, TONEREGS+channel ¥2+1+SET_THE_REG) j

Biaccess (fine, TONEREGS+channel ¥2+8ET_THE_REG)

}

The volume and mode_bit functions. The fifth bit in the amplitude
(volume) register is the envelope control bit, which is not affected by changing
the volume slider. Thus, the volume subroutine has to isolate the low four bits
from the envelope control bit.

To change only the four volume bits, the volume function, Program 8-
31, performs an AND operation on the register value with ENV_CONTROL,
which has been defined to have a bit set only in bit 5 (hexadecimal 0x10). Then
an OR operation is performed on the result and the low four bits of the value,
and the register is set to the resulting value.

The envelope generator is controlled by the fifth bit in the volume regis-
ter, which is set and cleared with the mode_bit function, Program 8-32. Setting
and clearing it is simply a matter of using the AND and OR operations on the
ENV_CONTROL bit in the register for the proper voice.

Program 8-31. volume.c

include <osbind.h>
define GET -1

define SET_THE_REG 2x 8@
/%

%% The three volume registers are 14, 11, and 12, for channels A, B, and C
&/

209

s CHAPTER 8

define VOLREGS 210
define ENV_CONTROL ox 10

volume (channel ,value)
int channel, valuej{

int gi_valy

gi_val = Biaccess (@, VOLREGS+channel);

if(value == BET){ /% just return the current value &/
return(gi_val & Oxf);
3

value = (gi_val & ENV_CONTROL) ! (value & Oxf);

/%

&t Set the value

| ¥4

Biaccess (value, VOLREGS+channel +SET_THE_REG) ;

b}

Program 8-32. modebits.c

include <osbind.h>

define GET =1

define VOLREGS 219

define ENV_CONTROL ox1@

define SET_THE_REG @xB8@

/%

£t Read or set the amplitude mode bit in the amplitude register
x/

mode_bit (channel ,on_off)

int channel, on_off;{

int old_val;

if(on_off == BGET)
return((Biaccess(d,VOLREGS+channel) & ENV_CONTROL) != @)j

old_val = BGiaccess(#,VOLREGS+channel)}
if(on_off)
old_val = ENV_CONTROL;
else
old_val &= “~ENV_CONTROL;
Biaccess(old_val, VOLREBS + channel + SET_THE_REG)j
}

The noise, period, and shape functions. The noise function (Program 8-
33) sets the 5-bit noise register (R6) in a manner similar to the tone and volume
functions.

The period function (Program 8-34) has to set two registers like the tone
subroutine—a coarse and fine register. These registers are eight bits each, and
are shifted and ORed to set or read the period value.

The shape function (Program 8-35) changes the shape register, causing
the sound chip to express itself. The shape register (R15) has 4 bits, but we use
only the high 8 values out of the 16 that are possible, since the low 8 are re-
dundant. The shape registers are illustrated back in Figure 8-5, showing which
registers create redundant shapes.

210

Programming the Sound Chip

Program 8-33. noise.c

include <osbind.h>
define GET =1

define SET_THE_REG @x 80

define NOISEREG 26

'z

¥% Set or return the value in the noise register
| ¥4

noise (value)
int valuej{

if(value == BET){
value = Giaccess(J,NOISEREG) & Ox1f;
return{ value)j
3
Biaccess(value & Ox1f, NOISEREG + SET_THE_REG)j;
}

Program 8-34. period.c

include <osbind.h>
define BET -1

define SET_THE_REG 2x 80

%

t% The envelope period registers are 13 and 14, for fine and coarse tune.
%/

define PERIODREG 213

unsigned int
period(value)
unsigned int value;{

unsigned int coarse, finej;

if(value == BGET) ({ /% just return the current value %/
coarse = Giaccess(9,PERIODREG+1)}
fine = Biaccess(9,PERIODREG);
value = ((coarse & Oxff) << 8) | finej
return(value)j
}
Ids
%% Set the value
8/
coarse = (value >> 8) & @xff;
fine = value & @xff)
Biaccess (coarse, PERIODREG+1+SET_THE_REG) ;
Giaccess (fine, PERIODREG+SET_THE_REB) j
>

Program 8-35. shape.c

include <osbind.h>
define BGET -1

define SET_THE_REG ©OxB80
define SHAPEREB 215

shape (value)

211

meee CHAPTER 8

int valuej {

if(value == BET)({
value = BGiaccess(#,SHAPEREG) ;
return(value)}
3}
Biaccess(value & Oxf, SHAPEREG+SET_THE_REG);
3}

The print_vals Function: The Print Values Menu Selection
When the user selects Print Values from the menu, the do_main_menu func-
tion calls the print_vals function, Program 8-36. print_vals calls the GEM
form__alert function to display a window with the character strings in the str ar-
ray, and the register values in numeric form.

As print_vals calls the various subroutines such as volume and tone, it
passes the GET argument of —1, causing the appropriate sound chip register to
be read.

Program 8-36. printval.c

define GET -1

print_vals(){
char stri1281];

sprintf(str,"[@1[%s!%s¥Sd%Sd%5d | UsXS5dX5d%5d | Xs¥’Su %s¥k2d ¥%s¥X2d1L OK 1",

"Channel A B c",
"Volume: ",volume(d,BET),volume(l,BET),volume(2,GET),
"Tone: ",tone(#,BET),tone(1,BET),tone(2,BET),

"Period: ",period(BET),
"Noise: ",noise(BET),
"Shape: ",shape(BGET)
]

form_alert(d,str);

3

Generating Rhythms with the Clock

The next few functions show how you can produce rhythms and noises with
the ST's interval timing mechanism. In the beginning of this chapter, we set the
interval variable to 20 milliseconds, causing GEM to send multi a message ev-
ery 1/50 second.

Thus, 50 times a second, multi gets a message and calls the clock_ticks
function, which checks the value of the cur_rhythm variable that is set by the
do_rhythm function. If the cur_rhythm variable is not 0, the percussion sub-
routine is called to make sounds according to a specified pattern in order to
produce rhythms.

The drums.h header file. The rhythm structure consists of a duration
and an instrument. The instrument names are defined in the drums.h header
file, Program 8-37. We define 17 possible ““instruments,” which are actually
sounds played in structured patterns, and assign an arbitrary value to each in-
strument. We'll use this value later to quickly identify a pattern.

212

Programming the Sound CRip e

Program 8-37. drums.h

define BASS_DRUM 1
define SNARE_DRUM 2
define TOMTOMLOW 3
define TOMTOMMED 4
define TOMTOMHIGH S
define CYMBALS &
define BLOCKLOW F 3
define BLOCKMED 8
define BLOCKHIGH 9
define BELLLOW 1@
define BELLMED 11
define BELLHIGH 12
define SILENCE 13
define BRUSHES 14
define BUNSHOT 13
define EXPLOSION 16
define BROKEN_GLASS 17

struct rhythm {
char durationj /% how many S8ths of a second %/
char instrumentj;
3y

The do_rhythm and do_effects functions. When the user selects
Rhythms from the options pull-down menu, the DboDo_main_menu function
calls do_rhythm, Program 8-38. For our purpose here, which is to illustrate
how to generate these rhythms, we use a somewhat simple routine that must
run through the complete list of rhythms before it ends. Once the user selects
the Rhythms option, a sound pattern begins and continues until he or she se-
lects the option again, which produces another sound. The user cycles through
all seven rhythm patterns we’ve defined in order to return to silence.

First, we describe one cycle of seven different rhythm arrays, specifying
the duration and instrument for each note. Except for the last array, battle, the
rhythm cycles will repeat until the user selects Rhythms again. Each time the
user selects Rhythms and do_rhythms is called, the rhythm number stored in x
is incremented and the global variable cur_rhythm is set to the next rhythm.
As long as cur_rhythm is not set to 0, the percussion subroutine will be called
to play the sound pattern.

Selecting the Effects menu option will produce only one result: a series
of battle noises. The do_effects subroutine sets the cur_rhythm variable to the
battle rhythm array. Note the special value Oxff at the end of the array; it will
be used to stop the battle sounds from being repeated.

Program 8-38. dorhythm.c

include <drums.h>

struct rhythm rocknroll(1l = {
12, SNARE_DRUM, 12,BASS_DRUM, 12,BASS_DRUM, 12,BRUSHES,
2,0
5]

struct rhythm justbass[] = {

20, BASS_DRUM,
19, BASS_DRUM,

213

meees CHAPTER 8

define S
struct rhythm justsnarell
zpsp2,s,2|5,2,8'2'5,2,5'2,5'2'8’2,5’2’5’2,5,2,5,2,5;2.5.2.3|2|S,

struct

struct

struct

struct

1@, BASS_DRUM,
9,0
¥3

2@, SNARE_DRUM,
2@, SNARE_DRUM,

2,8,2,8,2,s,2,5,2,5,2,§,2,5,2,58, 2,58, 2,8, 2,5, 2,5, 2,58, 2,5, 2,5,2,S,

18, SNARE_DRUM,
19, SNARE_DRUM,
20, SNARE_DRUM,
2,0

35

SNARE_

DRUM
= {

rhythm justbrush(] = {

4, BRUSHES,

8, BRUSHES,

4, BRUSHES,

B8, BRUSHES,

24, BRUSHES,
6,0

4]

rhythm bell_bl

ocks[1] = {

24,BELLLOW, 8,BLOCKLOW, B,BLOCKLOW, 8,BLOCKLOW,
24,BELLMED, 8,BLOCKMED, 8,BLOCKMED, 8,BLOCKMED,

24,BELLHIGH, 8,BLOCKHIGH, 8,BLOCKHIGH,

48, SILENCE,
2,0
33

rhythm tomtomsC1

20, TOMTOMLOW,
2@, TOMTOMLOW,
20, TOMTOMLOW,
20, TOMTOMLOW,
5, TOMTOMHIGH,
18, TOMTOMMED,
20, TOMTOMLOW,
20, TOMTOMMED,
S, TOMTOMHIGH,
1@, TOMTOMMED,
20, TOMTOMLOW,
20, TOMTOMMED,
2,0

3y

rhythm battlel
7, BUNSHOT,

11, GUNSHOT,
13, GUNSHOT,
8, BUNSHOT,
19, GUNSHOT,
20 ,EXPLOSION,
16, GUNSHOT,
11, BUNSHOT,
14, BUNSHOT,

18,EXPLDSION, S,BROKEN_BLASS, 7,BROKEN_GLASS, 3,BROKEN_GLASS,

7, BUNSHOT,
13, BUNSHOT,
38, EXPLOSION,
oxf £, SILENCE,
2,0

33

= ¢
19, TOMTOMMED,
18, TOMTOMMED,
19, TOMTOMMED,
18, TOMTOMMED,

10, TOMTOMHIGH,
10, TOMTOMHIGH,
10, TOMTOMHIGH,
10, TOMTOMHIGH,

5, TOMTOMHIGH, S5, TOMTOMHIGH,

19, TOMTOMMED,
20, TOMTOMLOW,

S, TOMTOMHIGH,

10, TOMTOMMED,
20, TOMTOMLOW,

1=(

S, TOMTOMHIGH,

8, BLOCKHIGH,

5, TOMTOMHIGH,

S, TOMTOMHIGH,

8, BROKEN_GLASS, %, BROKEN_BLASS,

struct rhythm %cur_rhythm;
int rhythm_index

do_rhythms () {

214

Programming the Sound CRip

static int x = @3

rhythm_index = @;
switch(x++) {

case @
cur_rhythm = rocknrollj
break;

case 1:
cur_rhythm = justbass;
break;

case 2:
cur_rhythm = justsnarej;
break;

case 3:
cur_rhythm = justbrush;
break;

case 43
cur_rhythm = bell_blocks;
break;

case 5:
cur_rhythm = tomtoms;
breaks

default:
cur_rhythm = 8;
% = @3
break;

3
do_effects(){

rhythm_index = @;
cur_rhythm = battle;
b

The clock_ticks Function

The cur_rhythm variable is used by the clock_ticks function, Program 8-39,
which is called by multi 50 times a second. The calling is controlled by the in-
terval variable initialized in the config.c file.

If the cur_rhythm variable is 0, clock_ticks returns without making a
sound.

As soon as the user selects the Rhythm option, do_rhythm sets the
cur_rhythm variable to one of its rhythm arrays. clock_ticks finds that the vari-
able does not equal 0, and sets the time_count variable to the duration of the
first instrument in the specified rhythm array. The percussion function is called
to play the sound, the rhythm_index is advanced to point to the next note, and
time_count is decremented by 1. Now, every 1/50 second, clock_ticks finds
that cur_rhythm is not 0, and decrements time_count and returns until
clock_tics has been called the number of times specified in the duration. When
time_count reaches 0, we play the note, move to the next duration and instru-
ment in the array, and repeat the process.

For the Effects menu item, we only play the sound pattern once instead
of repeating it, as we do for the other rhythms. clock_ticks looks for the special
duration value of Oxff and returns if it finds this value.

215

= CHAPTER 8

Program 8-39. clocktic.c
include <drums.h>

clock_ticks(whand, vw)
int whand, wvwj{

static int time_count = @
extern struct rhythm Rcur_rhythm;
extern int rhythm_index;

if(cur_rhythm == @)
returnjg
if(——time_count > @)
returnj;
time_count = cur_rhythm[rhythm_indexl.duration;
percussion(cur_rhythmlrhythm_index].instrument)j
rhythm_index++;
if{ cur_rhythmlrhythm_indexl.duration == @)
rhythm_index = @;
if({ cur_rhythmirhythm_index]l.duration == @xff)
cur_rhythm = @j
}

The percussion and bellblock functions. The rhythmic sound patterns
are made by the percussion function, Program 8-40, which sets the sound chip
registers and then sets the shape register to sound the note, as explained in the
discussion of the play_note function. By experimenting with the different
sounds caused by different register settings, we selected the ones most similar
to the instruments we want to synthesize.

Some of the instruments are easy to imitate, so the register value is set
for the tone subroutine to use.

The sounds for bells, block, and tomtoms are available in high, medium,
and low pitches. To efficiently program the pitches, we take advantage of the
ability of the C switch statement to provide multiple entry points to the same
code. In other words, to make a low tomtom sound, the code is entered at

case TOMTOMLOW

and tone_val is incremented by 800. Then execution continues to TOMTOMMED,
where another 400 is added, and then to TOMTOMHIGH, where 2047 is added.
The resulting value, 3247, produces the low pitch. For TOMTOMMED, only the
400 value is added to 2047, resulting in a higher pitch. For TOMTOMHIGH,
only 2047 is passed to tone to produce the highest pitch.

percussion calls the bellblock function, Program 8-41, to sound the
woodblock and bell sounds, which are the same except that the woodblock has
a shorter envelope period. Because they are the same sound, we use the same
routine to generate them.

The arguments for bellblock are the tone value and envelope period,
with which the subroutine sets the registers.

216

Programming the Sound Chip e

Program 8-40. percussn.c

include <drums.h>

percussion{instrument)

int instrument;(

int tone_val = &;

volume (@, @) ;
volume(1,d);
volume(2,0)j

switch(instrument)<{
case BASS_DRUM:

period(8208);

mode_bit(@, 1);

mode_bit(1, 1)j;

mode_bit(2, 1)3
noise_enable(d,1);
noise_enable(1,8);
noise_enable(2,0);
tone(d,4092); tone_enable(d,1)}
tone(1,49092); tone_enable(i,1);
tone(2,4992); tone_enable(2,1);
break;

case SNARE_DRUM:

mode_bit(@, 1)j
mode_bit(1, 1)}
mode_bit{(2, 1)3;
period (2000) ;
noise_enable(d,1);
noise_enable(l,1);
noise_enable(2,1);
noise(4);
tone_enable(d,9);
tone_enable(1,d);
tone_enable(2,d);
break;

case TOMTOMLOW:

tone_val += B800;

case TOMTOMMED:

tone_val += 400;

case TOMTOMHIGH:

tone_val += 2047

period(8208);

mode_bit(&, 1)}

mode_bit(1, 1)3

mode_bit(2, 1)3
noise_enable(d,1);
noise_enable(1,8);
noise_enable(2,0);
tone(d,tone_val); tone_enable(d,1);
tone(l,tone_val); tone_enable(1l,1);
tone(2,tone_val); tone_enable(2,1);
break;

case CYMBALS:

break;

case BLOCKLOW:

tone_val += Bj

case BLOCKMED:

tone_val += 4;

case BLOCKHIGH:

tone_val += &8;
bellblock (tone_val,752);
break;

case BELLLOW:

tone_val += 8;

217

m=sees CHAPTER 8

case BELLMED:
tone_val += 4;

case BELLHIGH:
tone_val += &0;
bellblock (tone_val, 9632);
break;

case SILENCE:
break;

case BRUSHES:
mode_bit(&, 1);
mode_bit(1, @);
mode_bit(2, @);
period (B009) ;
noise(d);
noise_enable(d,1);
noise_enable(1,8);
noise_enable(2,8);
tone_enable(d,8);
tone_enable(1,d);
tone_enable(2,0);
break;

case GUNSHOT:
noise(15);
noise_enable(d,1);
noise_enable(1,1);
noise_enable(2,1);
tone_enable(d,d);
tone_enable(1,8);
tone_enable(2,8);
mode_bit(@, 1);
mode_bit(1, 1);
mode_bit(2, 1);
period(8192);
break;

case EXPLOSION:

noise(d);

noise_enable(d,1);

noise_enable(l,1);

noise_enable(2,1);

tone_enable(1,8);
tone_enable(2,8);
mode_bit(@, 1)3
mode_bit(1, 1)3
mode_bit(2, 1)3
period(28472)
break;
case BROKEN_GLASS:
noise_enable(9,0);
noise_enable(1,d);
noise_enable(2,0);
tone_enable(d,1);
tone_enable(1,8);
tone_enable(2,8);
mode_bit(@, 1)3
mode_bit¢ 1, 1);
mode_bit¢ 2, 1)y
period(8192);
break;
}
shape(9);
}

218

Programming the Sound Chip e

Program 8-41. bellblok.c

bellblock (tone_val,p)
int tone_val, pi{

mode_bit(&, 1)3
mode_bit(1, 1)}
mode_bit(2, 1)3
noise_enable(d,d)}
noise_enable(l,®);
noise_enable(2,8))
tone_enable(d,1);
tone_enable(l,1))
tone_enable(2,1);
period(p)}
tone(d,tone_val)j
tone(1,tone_val)j
tone(2,tone_val)}
}

The Music

After each of these functions has been compiled, they are linked all together,
when using the Atari ST Software Developer’s Kit linker, with the linkit.bat batch
file, Program 8-42, which reads a list of arguments from the link.arg file. The
link.arg file, Program 8-43, lists all the programs and files constructed in this
chapter; they appear in uppercase.

Note that one of the files listed is env.a, which is in the library of func-
tions constructed in Chapter 2. Those files need to be linked for this application
to work.

After constructing and compiling the files in the following listings, you
can click on batch.ttp on the desktop and give “linkit” for the argument. After
linking everything, and renaming the a.prg file to noise.prg, the program will
wait for you to press a key.

Program 8-42. linkit.bat

ci\bin\l1inké&8 [undefined,symbols,commandllink.argll
c:\bin\relmod a

c:\bin\rm a.&Bk

c:\bin\wait

Program 8-43. link.arg

a.b6B8k=c:gemstart.o,main.o,
CDNFIG.D,DUHENU.U,DOIT.D,JUSTDRAH.O,SLIDERS.O,DUHNHENU.D,
SHDNKEYS.U,FILLBUX.U,DUNHITE.O,DDBLACK.O,DPENDATQ.D,

GOTKEY. 0, DORHYTHM. 0, CLOCKTIC. O, PERCUSSN. O, BELLBLOK.O,
PR}NTVAL.U,SAVSTATE.D,DOELIDE.0,SLSET.O,SLIDEVAL.B,HDDEBITS.D,
WHICHONE .0, BLDSL1DE.O, ALLSLIDE. O, TOGGLES. O, RADBUTN. O,
EELECTUN.G,ADDSL[DE.D,SETSLIDE.D,BLDTREE.D,VULUHE.D,TDNE.D,
NUISE.0,TONEENAB.D,NUISENAB.D,PERIQD.G,SHAPE.D,PLAYNUTE.D,
env.a,vd:bind,vdidat;.o.qnml1b,n|lbind,o5bind,libf

219

file:///bin/l
file://c:/bin/relmod
file:///bin/rm
file:///bin/wai

OIHTHI

A Debugging Aid

Pk S

9a Debugging Aid

mmssmmmm This chapter will discuss programs that misbehave. Specifically we'll

discuss programs that bomb—programs that produce fancy bomb
BN icons in the middle of your screen—and (if you're lucky) return to
the desktop, or (if you're not lucky) hang up the system. We'll talk about why
they behave this way, and how to find and fix the problems that cause pro-
gram crashes. To aid in debugging programs, a desk accessory will be pre-
sented that points out exactly where the program crashed by listing the names
of all the functions that led up to the crash, and their arguments. It will also
show the contents of all of the registers at the time of the crash, and allow you
to page through a disassembled listing of the program, so you can see exactly
what the problem was.

Exception Handling on the 68000

To explain program crashes, it is necessary to talk about the Central Processing
Unit (CPU) in the ST: the M68000 CPU, or 68000, for short. The 68000 has a
mechanism for handling severe program errors. This mechanism is called excep-
tion handling, and the severe errors that cause exception handling to be neces-
sary are called exceptions.

Exceptions occur when the programmer inadvertently asks the 68000 to
do something it cannot do. The exceptions that we're concerned with are Bus
Errors, Address Errors, Illegal Instructions, Dividing by Zero, Indexing Errors
(when protected by the CHK instruction), Overflow Errors (when protected by
the TRAPV instruction), and Privilege Violations.

Bus errors. Bus Errors occur when the programmer references memory
that does not exist, or is protected from being referenced. The ST has a Mem-
ory Management Unit that enables it to protect memory from being referenced
by normal user programs to prevent the operating system’s memory from acci-
dentally being clobbered. Certain addresses in the lower part of the ST’s mem-
ory can only be accessed by a user’s program when it is in Supervisor mode,
which is the mode that TOS runs in. If a normal program tries to read or alter
this memory, a Bus Error results, and two bomb icons appear on the screen. To
access this memory, a User-mode program can ask TOS to temporarily put it in
Supervisor mode while it references the memory.

Address Errors. Address Errors occur when the 68000 is asked to refer-
ence a 2- or 4-byte object (an integer or a long integer) on an odd byte bound-
ary. The 68000 requires that all references to integers or long integers be on

223

s CHAPTER 9

even boundaries. If they are not, three bomb icons appear on the screen.

Ilegal Instructions. Illegal Instruction Errors happen when an instruc-
tion is encountered that is not in the 68000's instruction set. Since 68000 in-
structions are all at least 16 bits long, there are 65,536 possible instructions.
The 68000 only recognizes a little over 1000 of these possible instructions, so
the odds are good that if your program tries to execute a subroutine that has
been damaged by accidentally writing data in it, you'll see four bomb icons on
your screen. There is a special instruction in the 68000’s instruction set called
illegal. It can be placed where the program should never execute, to catch er-
rors that would be difficult to find otherwise.

Zero Divide. Zero Divide Errors happen when a program tries to divide
something by zero. In mathematics and in programming, the result would be
undefined. The 68000 will generate a Zero Divide exception when this occurs.
But you are likely never to see five bomb icons on the screen, since TOS does
not consider this to be a serious error and just returns to the program, letting
the result of the division be random garbage. We will show how to detect Zero
Divide Errors without interfering with the execution of the program that has
them.

CHK Instruction (Indexing Errors). Indexing Errors are caused by a spe-
cial instruction in the 68000 called the CHK instruction. Some compilers (and
some assembly language programmers) use the CHK instruction to make sure
that indexes into arrays are never negative, and are never bigger than the size
of the array. If they are, the the CHK instruction causes an Indexing Error ex-
ception, and six bomb icons appear on the screen.

TRAPYV Instruction (Overflow). The Overflow Error is also caused by a
special instruction, the TRAPV instruction. If the program tries to add two
numbers whose result is too big to store, then an overflow is said to occur. If
the compiler (or assembly language programmer) puts a TRAPV instruction
after the ADD instruction, then seven bomb icons will appear on the screen
whenever the ADD causes overflow.

Privilege Violations. Last, Privilege Violations occur when the program
is in User mode and tries to execute an instruction that is only allowed in Su-
pervisor mode, such as RESET or STOP. Eight bombs will appear if this ever
happens.

A Desk Accessory for Catching Bugs
When TOS puts the bomb icons on the screen, it also saves some information
about the program in a safe place. This place is not cleared when you push the
RESET button, and can thus be examined after a crash. The 68000’s registers
are stored there, along with the last 32 bytes of the Supervisor mode stack,
which contains the Program Counter (the address at which the program
bombed) and some other information about the crash.

Unfortunately, the program itself does not survive in memory for us to
look at, and the information about where the program was loaded in memory

224

A Debugging Aid e

is also lost. This makes the information saved by TOS almost useless as an aid
in debugging the program.

We can make the information useful by arranging for some code of our
own to be executed whenever an exception occurs, but before TOS prints the
bomb icons. This code will save the information needed to debug the program,
and then let TOS blow up the program.

The desk accessory being built in this chapter can be thought of as two
programs. One half is concerned with catching the exceptions and saving the
critical information about the crash. The other half is concerned with displaying
the information to the user. We'll describe the first half of the program first:
how to catch the exceptions and save the data.

The 68000 assigns numbers to its exceptions. TOS uses the exception
number to determine how many bombs should be printed on the screen. Thus
there are two bombs for Bus Error, which is exception number two. (Exception
number one is system reset, which we don’t consider to be a programming error.)

The 68000 has an array of pointers in low memory that point to subrou-
tines that are called whenever an exception occurs. TOS sets these pointers at
boot time, so that when a Bus Error occurs, the 68000 jumps to the TOS rou-
tine to handle Bus Errors. TOS provides a special function called Setexc (Set ex-
ception) that allows us to replace an exception pointer with one of our own,
thus causing the 68000 to call our subroutine whenever the exception occurs.

The Setexc function takes two arguments: an exception number (for ex-
ample, 2 for Bus Error), and a function address. It returns the old address, so
we can store it somewhere and replace it when we no longer need to intercept
the interrupt ourselves.

The configac.c File

The config file, Program 9-1, for this accessory is much the same as that of the
shell. The changes are the usual ones involving the name of the program, and
the size of the initial window is a little bigger to accommodate the information
it needs to hold.

Program 9-1. configac.c

include <gemdefs.h>
char *wind_name = " Bombsite! "j

ifdef USE_RCS
char Xresource
else

char ¥resource
endif USE_RCS

“"BOMBSITE.RSC";

@3

char ¥access_name = Bombsite! "3

int i_am_accessory = 13

int sx = 20; /% small window size ¥/
int sy = 30;

int sw = 3503

225

e CHAPTER 9

int sh = 100;

int slv = @3 /% small window vertical slider pos &/
int slh = @; /% small window horizontal slider pos &/
int svs = 13 /% small window vertical slider size %/
int shs = 13 /% small window horizontal slider size %/
int min_wide = 203

int min_high = 203

int interval = @;

int events = MU_MESAG | MU_KEYBD;

The open_data Function

The desk accessory that will help in debugging is called “Bombsite!” and it
uses Setexc in its open_data function, Program 9-2.

The routines h_bus_err, h_addr_err, h_illegal_err, h_zerodiv_err,
h_chk_err, h_trapv_err, and h_priv_err are the routines that will handle the
exceptions. The pointers, olderr2 (and olderr3, and so on), will hold the old
pointers that we are replacing.

The open_data function is called whenever the accessory is reopened
after an application program is run. If it were allowed to execute twice, then
the “olderr’”” values would be clobbered, so we keep a static variable called
only_once which will be set to 1 when open_data has already been called.
Then open_data can just return if it finds it has been called once already.

The set_top function is called by opendata to find out how much mem-
ory this ST has. This value will be used later to make sure that our accessory
does not try to reference memory that is not there (it will be examining another
program, so the normal precaution of only using its own data will not be suffi-
cient to prevent errors).

Then open_data calls Setexc for each exception we wish to retarget to
our own routines.

Program 9-2. opendata.c.

include <osbind.h>

open_data(file,whand, vw)
char %file;
int whand, vw;(

static int only_once = @

extern int h_bus_err(), h_addr_err(), h_illegal_err())

extern int h_zerodiv_err{), h_chk_err(), h_trapv_err(), h_priv_err()j
extern int (%olderr2) ())

extern int (folderr3) ()

extern int (%olderr4d) ())

extern int (%olderr3) ())

extern int (%clderré) ()}

extern int (solderr7) ()

extern int (soclderr8){();

i${ only_once){
returng
3

only_once = 1)

set_top())

olderr2 = Setexc(2,h_bus_err)j

226

A Debugging Aid e

olderr3 = Sstexc(3,h_addr_err))
olderr4 = Setexc(4,h_illegal _err))
olderrS = Setexc(S,h_zerodiv_err))
olderré = Setexci{é,h_chk_err))
olderr7 = Setexc(7,h_trapv_err))
olderr8 = Setexc(8,h_priv_err))

}

The set_top Function

The set_top function, Program 9-3, is responsible for setting the phystop vari-
able, which holds the highest RAM address (the top of physical memory). It
calls a special routine called getlong which is able to read any address in RAM
(even protected memory) because it runs in Supervisor mode (you'll see how it
does that later). The address PHYSTOP is where TOS stores the value we
want. It is in protected memory, and if getlong isnt used to get it, it could
cause a Bus Error exception, and crash. If getlong returns a value for phystop
that is less than 256K (hexadecimal 0x40000), then we assume that something
is very wrong, and we set it to —1 (all of possible memory) and continue, in
the hope that we can help the programmer discover the problem. 256K is the
smallest ST made, so this value should be reasonable.

Program 9-3. settop.c
define PHYSTOP oxP42el
set_top()(

extern long int phystopj;

phystop = getlong (PHYSTOF))

if{ phystop < 40000)
phystop = -1j

}

The errors.c File

Now that the exception array contains pointers to our subroutines, we can look
at what happens when an exception occurs. Since the exception-handling
routines are all similar, we group them into one file, called errors.c.

The error-handling routines need to do things that are not easily done
from C, like saving and restoring all of the registers, and jumping to the TOS
exception handler without disturbing any registers. Since the amount of work
we need to do in assembler is small, we use the asm feature of C to include in-
line assembly instructions into the code at this point.

The h_bus_err routine is used as an example, since all of the other
routines follow the same logic. The first line uses the move multiple instruction
to copy all 16 68000 registers into the array saveregs. The second line calls the
function get_trace, which will save the critical data from the program that has
caused the exception. The third line restores all 16 registers from the saveregs
array. We need to save and restore the registers, because the get_trace function
will be changing them, and we want them in their original state for the next
few lines.

227

s CHAPTER 9

The next three lines implement an assembly language trick that allows
the accessory to jump to TOS at the place where TOS would have been entered
if we hadn't intercepted the exception. To TOS, we wish the state of the machine
to be exactly the same as if we had never interfered. To do this, we must remove
from the stack anything that our subroutine placed there. When h_bus_err was
called, it placed register A6 on the stack as part of the normal C subroutine call
sequence. A6 is also called the “frame pointer,” or in DRI assembly language,
R14. The UNLK instruction removes it, and puts the stack back in the state it
was in when h_bus_err was called. Then h_bus_err pushes the old exception
pointer onto the stack and executes a RTS instruction, which pops it back off
the stack and jumps to it (this is the trick we use to jump through a pointer
without disturbing any registers).

All of the other exception-handling routines are similar. They differ only
in the old pointer they jump to, and in the way they call get_trace. Bus Errors
and Address Errors have extra information on the stack that the other excep-
tions don’t have. This information includes the address being referenced that
caused the exception to occur (such as the address that was out of bounds or
odd). Get_trace is given an initial argument of 1 to indicate that this extra
information is there, and 0 if it is not there. In most exceptions, the Program
Counter (the address of the instruction that caused the exception) is pointing at
the instruction AFTER the one that caused the error. In the case of Illegal In-
structions, or Privilege Violations, however, the address is pointing right at the
offending instruction. The second argument to get_trace is 0 if the Program
Counter points beyond the instruction, and 1 if it points at it.

The last argument to get_trace is the name of the exception.

Program 9-4. errors.c

int (%olderr2)())
int (%olderr3)();
int (tolderr4) ())
int (solderrS) ()}
int (solderré) ()
int (solderr7) ();
int (solderr8) ()

long int saveregs[14])

h_bus_err (arg)
short int sarg; <

asm("movem.l d@-d7/ad-a7,_saveregs”);
get_trace(1, @, "Bus Error"))
asm{"movem.l _saveregs,d@-d7/ad-a7");

asm("unlk R14"), /¢ pop off fp %/
asm("move.l _olderr2,-(sp)"); /% move old trap address onto stack %/
asm("rts")j; /% jump to old trap address &/

3}
h_addr_err (arg)
short int fargj;(

asm("movem.l d@-d7/ad-a7,_saveregs”);
get_trace(1, &, "Address Error"”)j

228

asm{("movem.l _saveregs,d@-d7/ad-a7");
asm("unlk R14")j /% pop off
asm("move.l _olderr3,-(sp)")j;

asm("rts"))

}

h_illegal_err(arg)
short int %argj(

asm("movem.l d@-d7/a@-a7,_saveregs”);
get_trace(&, 1, "Illegal Instruction")j
asm("movem.l _saveregs,d@-d7/ad-a7")j
asm("unlk R14"); /% pop off
asm("move.l _olderrd4,-(sp)")j;

asm("rts")})

b

h_zerodiv_err (arg)
short int sargj;<(

asm("movem.l d@-d7/ad-a7,_saveregs");
get_trace(@&, &, “"Zero Divide")j
asm("movem.l _saveregs,d@-d7/ad-a7");
asm(®unlk R14"); /% pop off
asm("move.l _olderrS,-(sp)”);

asm("rts");

}

h_chk_err (arg)
short int fZargj{

asm("movem.l d@-d7/ad-a7,_saveregs");
get_trace(@, @, "Chk Instruction”)j
asm{"movem.l _saveregs,dd-d7/ad-a7");
asm("unlk R14"); /% pop off
asm("move.l _olderré,—(sp)");

asm("rts")j

F]

h_trapv_err (arg)
short int targ;(

asm("movem.l d@-d7/ad-a7,_saveregs”);
get_trace(@, &, "Trapv Instruction”);
asm("movem.l _saveregs,d@-d7/ad-a7");
asm("unlk R14%); /% pop off
asm("move.l _olderr7,-(sp)");

asm("rts");

}

h_priv_err(arg)
short int %arg; <

asm("movem.l d@-d7/ad-a7,_saveregs");
get_trace(&, 1, "Privilege Violation")j;
asm({"movem.l _saveregs,d@-d7/ad-a7");
asm("unlk R14%); /% pop off
asm("move.l _olderr8,-(sp)")j;

asm("rts");

}

The get_trace Function
The get_trace function, Program 9-5, looks at the stack to see where the defec-
tive program has been. Because each time a function is called in C the return
address and frame pointer are pushed on the stack, the stack has a record of
every function that was called before the crash. All get_trace needs to do is to
read the stack and decipher the information. (Since all the exception pointers
now end up calling get_trace, we need to protect ourselves from exceptions

229

fp

fp

fp

fp

fp

fp

A Debugging Aid e

5/

%/

&/

s/

&/

%/

http://get.tr

e CHAPTER 9

while within get_trace. If one were to occur, then get_trace would be called
from within itself, which could lead to confusion. The static integer already_in
causes get_trace to return immediately if it is ever called from within itself by
accident.)

The address of the top of the stack is the address of the last thing
pushed on the stack. In this case, the last thing pushed was the first argument
to get_trace, the integer bus_or_addr.

The pointer short_ptr is set to point at the top of the stack, and it is then
used to get the frame pointer and the Program Counter of the crashing pro-
gram into the variables fp and pc. If there was extra information on the stack
(because the exception was a Bus Error or an Address Error) then the pc (Pro-
gram Counter) will be found 11 short integers up the stack. If no extra infor-
mation was on the stack, then the pc will be found 7 short integers up the
stack. (Refer to Figure 9-1 to see where these numbers come from.)

If neither the fp or the pc could be found (getlong returns 0 if it can’t get
the data), then get_trace gives up and returns. If the pc was found, and it
points to memory that exists, then the get_dis routine is called to disassemble
the area around the crash location, producing an assembly listing of the pro-
gram at that point.

Note: All of the code that deals with disassembling the offending program is
placed between ifdef and endif statements. This allows you to build the stack
trace and bomb info parts of the program, and leave the disassembler until
later. The disassembler is in the next chapter. If you're typing this program in,
you'll then get immediate use out of the program, and not have to type in the
disassembler.

Program 9-5. gettrace.c

include <debug.h>

include <document.h>

define TRACE_NUM 32
define NUM_ARGS 32

long int real _pcs[{TRACE_NUM+11;
int numpcs = @

pc_compar (a,b)
long int %a, %bj({

return(za - b))
}

struct trc savtrcCTRACE_NUMI1;

get_trace(bus_or_addr, exact_pc, err_str)
short int bus_or_addr, exact_pc;
char terr_strj{

long int %fp, ¥fp_addr, %%xlong_ptr, getlong();
short int %pc, ¥short_ptr, getshort()j

int 1, 33

extern long int proc_pcy

230

ol TR gy |

A Debugging Ald e—

extern short int Xget_realpc();
static int already_in = @

if(already_in++) { /% Buard against errors while in get_trace %/
returnj;
3

/%

k% Get the frame pointer which is stacked before the arguments

%/

short_ptr = &bus_or_addr;
long_ptr = (long int ¥X) (&short_ptr(-41);
fp = getlong(%long_ptr);
ift fp == 0) (
already_in = @;
returnj
}
if(bus_or_addr)
pc = (short int %) getlong(&short_ptr{111);
else
pc = (short int %) getlong(&short_ptr(71);
if(pc == @)(
already_in = @;
returnj
>
proc_pc = (long int) pc;

ifdef HAS_DISASSEMBLY
if(getshort{proc_pc))
get_dis(NLINES, exact_pc);
endif HAS_DISASSEMBLY

for{ i = @; fp && i < TRACE_NUM-1; i++){
savtrclil.fp = fpj
savtrclil.ret_pc = pcj
pc = (short int %X)getlong(fp+1);
ift i)
savtrclil.real_pc = get_realpcipc)j
else
savtrclil.real_pc = savtrclil.ret_pc - !exact_pc;
savtrclil.num_args = get_args(fp,pc,1,savtrclil.args);
fp_addr = £p)
fp = (long int %)getlong(fp_addr);
if(fp == fp_addr)
break;
:
savtrclil.fp = &;
numpcs = @;
for(§j = @3 j < i3 j++) (
if(savtrcljl.real_pc)
real _pcsinumpcs++] = savtrcl[jl.real_pc;
b
qsort (real _pcs,numpcs,sizeof (real _pcs[@]) ,pc_compar);
already_in = @;
3}

The stack. At several points in this program we’ll be very cautious about
pointers found on the stack. Since the program we are examining is known to
be misbehaving, it may have destroyed part or all of its stack, or its program
code. This is why get_trace checks fp and pc so carefully, and why it checks to
make sure that the pc points to valid memory before calling get_dis.

At this point, the picture of the stack structure in Figure 9-1 will be
worth a thousand words.

231

s CHAPTER 9

Figure 9-1. The Stack Trace Structure

&short_ptr([-4] -

low word of old Frame Pointer

high word of old Frame Pointer

low word of Return Address

high word of Return Address
&bus_or_addr -

bus_or_addr

exact_pc

low word of err_str

high word of err_str

low word of h_bus_err fp

high word of h_bus_err fp

function code

low word of access address

high word of access address

instruction that failed

status register
&short_ptr[11] -

low word of program counter

high word of program counter

In the C function calling sequence, the current frame pointer always
points at the saved copy of the previous frame pointer. In this way, the frame
pointers form a linked list of pointers that we can follow. In normal execution
(for instance, in the absence of exceptions) the return address of a function is
always found immediately after the frame pointer. This can be seen in the top
four items in the illustration of the stack frame. In the exception frame, the pro-
gram counter and the old frame pointer are separated by the status register. If
the exception was a Bus Error or an Address Error, they are separated by a

232

A Debugging Aid e

function code, the address that caused the problem, and the first word of the
instruction that failed.

To follow the linked list of stack frames, get_trace loops until the value
it gets for fp is invalid (zero), or the space reserved for storing stack frames is
used up (when i is greater than or equal to TRACE_NUM—1). The fp is put
into savtrcfi].fp, and the pc is put into savtrc|i].ret_pc. Notice that this pc is the
return address, not the address of the function.

Get_trace then gets the next pc by using getlong to fetch the long inte-
ger just above the current frame pointer (fp+1). If this is the first stack frame
(if i = 0) then the get_realpc function will not be able to find the real address
of the start of the function, since it needs the previous stack frame to work
from. (We will discuss get_realpc in a moment. Its purpose is to guarantee that
we know the current function’s name by looking at how the previous subrou-
tine called it.) In the case of the first stack frame, we set savtrc[i].real_pc to the
best guess we have of the address: the current return address (minus one word
if the exception was not an Illegal Instruction or a Privilege Violation).

The arguments of the function are collected off the stack by the get_args
routine, which returns the number of arguments found. Last, the new frame
pointer is fetched (easily, since the current fp always points to the next one). In
case the stack was damaged, we check to make sure that it is different from the
old one to prevent loops.

After the loop, we collect all of the real_pc entries, and save them in an
array called real _pcs, which we sort using gsort. This sorted list of subroutine
addresses will be used by a very tricky routine (called get_base) which will at-
tempt to reconstruct the program’s load address with the symbol table from the
program and the sorted list in real_pcs.

The get_real Function

The stack trace that get_trace builds is just a list of addresses and function ar-
guments. It's difficult to read a list of numbers and try to figure out which
functions the list refers to. The purpose of the get_realpc function, Program 9-
6, is to aid later functions (get_base and get_name) in putting real names in
the trace instead of just numbers.

TOS does not save an important ingredient needed to do this: the load
address of the program. The names of all the functions are stored in the symbol
table of the program on the disk that the user double-clicked on. These names
have addresses associated with them, but the addresses are all relative to the
beginning of the file. When TOS loads a program, it picks an address in mem-
ory where the program will reside, and then it adds that address to each ad-
dress in the symbol table. When get_trace finds an address, it is the result of
that addition. In order to compare the address of a subroutine name with that
of an address, the load address must be added to the address found in the sym-
bol table. The first step in finding the load address is to collect all of the known
subroutine entry points possible.

233

m—— CHAPTER 9

The get_realpc function tries to find the address of the beginning of a
subroutine by looking at the way that subroutine was called. The get_realpc
subroutine is passed the address that the target subroutine will return to when
it is done. That address will point to the instruction just after the instruction
that called the target subroutine.

There are five possible ways that a C routine can call another C routine
(there are actually more ways to do it, but C compilers generally limit them-
selves to these five). They are:

short branch to subroutine (bsr.b)
long branch to subroutine (bsr.w)
short jump to subroutine (jsr.w)
long jump to subroutine (jsr.1)
indirect jump to subroutine (jsr (A0))

Each of these instructions calculates the address to jump to in a different
way. The first one stores a number in the instruction itself; that number is
added to the address of next instruction, and the result is where it jumps. The
second one stores a similar number after the instruction, and adds to it the ad-
dress of the next instruction to arrive at a target address. The third type of in-
struction stores a number after the instruction that is the address itself, and
needs no addition to obtain a target address. The fourth type is like the third,
but the number stored is 32 bits long instead of 16, so the entire addressing
range of the 68000 is addressable using it.

The last type of jump is the indirect jump, and no numbers are stored
after it. Instead, the target address is in a register.

In all but the last type of function call, get_realpc can examine the in-
struction that called the target subroutine, determine which type of instruction
it was that did the call, and reconstruct the address that was called. This gives
the address of the beginning of the subroutine that was called.

The get_realpc function starts by calculating the addresses of the possi-
ble subroutine call instructions. There are three possible instruction lengths:
two bytes (address in bret), four bytes (address in sret), and six bytes (address
in Iret). The instructions found at these addresses are placed in b_instr, s_instr,
and l_instr, respectively. If get_realpc is unable to get any of these, it assumes
that the program is corrupted, and gives up.

If the s_instr word matches the BSRW pattern, then it must be a long
branch to subroutine instruction. The offset is taken from the next word, and
added to the address of the word following the instruction. This is done with
the expression:

&sret[(offset>>1)+1]

The result is the address of the subroutine that the long branch to sub-
routine jumped to.

234

A Debugging Aid e

The short branch to subroutine is handled in a similar manner, but the
offset is taken out of the low byte of the instruction itself.

The jump to subroutine instructions are simple, since the address is
found immediately after the instruction, and no addition is necessary.

For the indirect jump case, there is nothing to be done, since there is no
easy way to reconstruct the value in the register that was used for the jump.
For this case get_realpc just returns 0, to indicate that it was unable to get a
good value. Likewise, if none of the instructions matched a known instruction,
then 0 is returned.

Program 9-6. getreal.c

define BSR_LEN @xOOFF /% bsr instr. offset /
define BSR_INSTR @x6100 /% bsr instr. X/
define BSR_MASK @xFFO® /% mask for bsr instr. X/
define BSRW_INSTR Oxb100 /% bsr word instr. %/
define BSRW_MASK @xFFFF /% mask for bsr instr. X/
define JSRL_INSTR @x4EBY /% jsr abs long instr. X/
define JSRL_MASK @xFFFF /% mask for jsr instr. x/
define JSRW_INSTR @x4EBB /% jsr abs short instr. X/
define JSRW_MASK @xFFFF /% mask for jsr instr. X/
define JSRI_INSTR POx4E99 /% jsr indirect instr. X/
define JSRI_MASK @xFFF8 /% mask for jsr instr. x/

short int =
get_realpc(retadr)
short int fretadr;(

int ij;

unsigned short 1_instr, s_instr, b_instr;
short int ¥shortp, getshort();

long int getlong();

char offset;

short int %lret, #sret, %bret;

lret = retadr-3;

sret = retadr-2;

bret = retadr-1;

l_instr = getshort(lret);

ift 1_instr == @)
return(oL);

s_instr = getshort(sret);

if(s_instr == @)
return(@L);

b_instr = getshort(bret);

if{ b_instr == 8)
return(@L);

if ((s_instr & BSRW_MASK) == BSRW_INSTR) {
offset = getshort(&sretl11);
retadr = &sretl (offset>>1)+1]1;
return{(retadr);
3

if ((b_instr & BSR_MASK) == BSR_INSTR) {
offset = b_instr & BSR_LEN;
retadr = &bretl (offset>>1)+11];
return(retadr);
3

if ((1_instr & JSRL_MASK) == JSRL_INSTR) {
retadr = getlong(&lretlf11);
return(retadr);
3

235

s CHAPTER 9

if ((s_instr & JSRW_MASK) == JSRW_INSTR) {
retadr = (short int X) getshort(&sretl1]);
returni(retadr)j
3

if ((b_instr & JSRI_MASK) == JSRI_INSTR) (
return(oL);
b

return{dL);

:)

The get_args Function

The get_args function, Program 9-7, uses a similar trick to find out how many
arguments were passed to a subroutine.

When a function is called, the arguments to the function are pushed on
the stack first; then the function is called. When the function returns, the in-
struction after the function call is usually an instruction that pops the argu-
ments back off the stack. By examining this instruction, get_args can determine
how many arguments were popped off, which usually correlates with how
many arguments were pushed.

There are three instructions that are commonly used by C compilers to
remove arguments from the stack. They are the ADDQ instruction, the ADDL
instruction, and the LEA instruction. The ADDQ stores the number of argu-
ments in the instruction itself, and get_args extracts that number into the vari-
able nargs. If nargs was 0, then the 68000 interprets it as 8 (since adding 0 to
something is useless), so get_args changes 0 to 8 on all ADDQ instructions.

The ADDL and LEA instructions simply store the number of arguments
after the instruction, and it is a simple matter to read them into nargs.

If the instruction was a branch or a jump, then get_args assumes that
the instruction that pops the stack is at the other end of the branch. It calcu-
lates the branch target address, and calls itself again to handle it. To avoid
loops, the recurse argument insures that this is done only once, on the assump-
tion that the code being read may have been damaged by the crash.

To complicate matters, the first argument is not pushed onto the stack,
but merely moved onto the top of the stack, so functions that only have one
argument have no code that cleans up the stack after the subroutine call. If
there are no recognizable instructions after the function call, get_args sets nargs
to the size of a long integer.

Since nargs is calculated in bytes, get_args divides it by two to get
words, then adds one for the first argument, which was not popped. Then it
loops nargs times, collecting each argument and putting it in the array args.
Finally, it returns the number of arguments found.

Program 9-7. getargs.c

define ADDQL_MASK @xF1FF /% mask for addql instr. &/
define ADDGL_INSTR OxS@BF /x format of addql instr. k/
define ADDQAL_SHIFT 9 /% shift count for addgl &/
define ADDL_INSTR @xDFFC /% addl instruction x/
define LEA_INSTR Ox4FEF /% format of lea instr. %/
define BRA_MASK OxFFP@ /% mask for bra instr. x/

236

A Debugging Aid e

define BRA_INSTR Ox6008 /X% bra instr. x/
define BRA_LEN @x@POFF /% displ for bra instr. X/
define JMP_MASK OxFFFF /% mask for jimp instr. x/
define JMP_INSTR Px4EF? /% jmp long abs instr. x/

get_args(fp,retadr,recurse,args)
long int Xxfpj

short int f¥retadr;

int recurse;

short int %args;{

int ij

unsigned short instr;
short int ¥shortp;

char nargs;

extern long int getlong();

instr = getshort(retadr);
if(instr == @)
return;
nargs = @j
if (tinstr & BRA_MASK) == BRA_INSTR) {
nargs = instr & BRA_LENj;
if (nargs == @)
nargs = getshort(&retadri11);
else if (nargs == -1)
nargs = getlong(&retadr11);
retadr = &retadrinargs+11;
if(recurse)
get_args(fp,retadr,recurse-1,args);
return;
¥
if ({instr & JMP_MASK) == JMP_INSTR) {
retadr = getlong(&retadr11);
if(recurse)
get_args(fp,retadr,recurse-1,args);
returnj;

if ((instr & ADDGL_MASK) == ADDGL_INSTR) {
nargs = (instr & “ADDAL_MASK) >> ADDAL_SHIFT;
if (nargs == @)
nargs = 8;
¥
else if (instr == ADDL_INSTR)(
nargs = getlong(&retadr11);
3

else if (instr == LEA_INSTR) (
nargs = getshort(&retadr(11);
¥

else {

nargs = sizeof(long);

¥
nargs /= sizeof(short); /% convert to number of arguments
nargs++;

fp += 2 /% step over linked fp and return address &/

shortp = fp;

for(i = @; i < nargs; i++){
argslil = getshort (shortp++);
b

return(nargs);
3

237

meees CHAPTER 9

The getlong, getshort, and getbyte Functions

The getlong and getshort functions have been used extensively in the program

so far to safely get values out of memory, no matter where they are. To do this,
they need to do two things. One is to make sure that there is RAM at the loca-

tion referenced. The other is to make sure the actual accessing is done in super-
visor mode when accessing protected memory.

The getlong, getshort, and getbyte functions are all in one file, Program
9-8, for convenience, since they are all very similar.

Look at getshort as a typical example. The address passed is first com-
pared to the pointer phystop, which was set when open_data called settop. If
the address is beyond phystop, then getshort returns 0. (While experimenting
with this program, you may want to know when this is occurring. There is an
error message printed by show_form that will greatly aid in debugging any en-
hancements you make, but can be removed when you are content with the code.)

Getshort then sets the global Sadr to the address, and uses the macro
Supexec (defined at the top of the file) to set Supervisor mode while the
Getshort routine is called to fetch a short integer in supervisor mode. The result
is masked off and returned.

Program 9-8. getlong.c

include <osbind.h>
define Supexec(x) xbios (38,x)

long int bios(), xbios();

char ¥Cadr;

short int XSadr;

long int %Ladr;

short int ¥phystop = OxA40000;

Getbyte () ¢

return(xCadr);
3
short int
Getshort () ¢

return (¥Sadr);
|

long int

Betlong() ¢

return{(kLadr);
¥

getbyte (adr)

short int %adrj(

char str{1281;

if(adr >= phystop)<{
sprintf (str, "Getbyte: adr (%X) >= phystop (%X) ", adr,phystop) ;
show_form(str);
return(d);
b
if(adr >= phystop)
return(d);

238

A Debugging Aid e

Cadr = adrj
return (Supexec (Getbyte) & @xff);
}

short int

getshort (adr)

short int fadr;(

char str[128]1;

if(adr >= phystop){(
sprintf (str, "Getshort: adr (%X) >= phystop(%ZX)",adr,phystop);
show_form(str);
return(@);
]
if{ adr >= phystop)
return(@)j
Sadr = adr;
return (Supexec (Getshort) & Oxffff);
¥
long int
getlong (adr)
long int gadrj{

char str{1281;

if(adr >= phystop)<{
sprintf (str,"Getlong: adr (%X) >= phystop(%X)",adr,phystop);
show_form(str);
return(@);
b
if{ adr >= phystop)
return(@);
Ladr = adr;
return (Supexec (Getlong));
3

The doit Function

That ends the discussion of the first half of the program, the half that collects
the data. The second half is concerned with presenting the data to the user, and
starts with the doit function, Program 9-9.

The doit and just_draw functions put a simple menu on the screen that
prompts the user to type T for a stack trace, or B for the bomb information. If
the disassembler is included, then the D option is also displayed. The output of
each of these commands will be shown in a separate window, just like the di-
rectory window in the shell program. To make this happen, the dis_window
variable is used (just like dir_window in the shell) in the show_info function
to indicate that a different routine is to be used to display the data (in this case,
the showwnd routine).

The initial window looks like Figure 9-2.

239

s CHAPTER 9

Figure 9-2. The Initial Bombsite! Screen

nesk File View Options

Press HELP for help.

Press T to show the stack trace.
Press D to show the disassembly,
Press B to show the bomb information.

Program 9-9. doit.c

include <gemdefs.h>

int dis_window = @3

char xinfol1l ={
"Press HELP for help.",
"Press T to show the stack trace.”,
ifdef HAS_DISASSEMBLY
“"Press D to show the disassembly.”,
endif HAS_DISASSEMBLY
"Press B to show the bomb information.”,
]
33
doit (whand, vw)
int whand, wvw;{

hide_mouse();
clr_display(whand,vw);
show_info(whand, vw) ;
show_mouse () ;
b

show_info(whand, vw)

int whand, wvwj{

int %, y, w, h, i}
extern int gl _wchar, gl_hcharj;

hide_mouse();
if{ whand == dis_window)
showwnd (whand, vw) ;
else (
wind_get (whand, WF_WORKXYWH, &x, &%y, &w, &h);
for(i = @; infolil; i++)
v_gtext(vw, x+gl_wchar, y+(i+1)%gl_hchar, infolil);
]

240

A Debugging Ald e—

show_mouse () ;

3
just_draw(whand,x,y,w,h, vw)
int whand, %, y, W, h, vw;{

hide_mouse();
just_clear (whand, vw);
show_info(whand, vw) ;
show_mouse () j

3

The got_key Function
When a key is pressed, got_key (Program 9-10) is called to handle it.

As in the Command Shell program, got_key returns 1 to indicate EXIT if
the window that got the key was not the initial window.

If the key was the HELP key, then the familiar give_help function is
called to lend assistance.

got_key then creates a string to be used by form__alert, requesting the
user to select one of the options. After converting the character to uppercase
ASCII, got_key selects a command from TRACE, BOMBINFO, or (optionally)
DISASSEMBLE. If the key was not T, D, or B, then form_alert is called to ask
in a different way.

Then a switch statement is used to call the appropriate routine (trace,
disassem, or bombinfo) to format the data, and do_new_window (similar to
the Command Shell’s do_dir_window) to create a new window to display the
data.

Program 9-10. gotkey.c

include <document.h>

include <debug.h>

define RETURN 215
define NEWLINE 212

define CTRL_C 203
define ESCAPE #33
define BACKSPACE 210

define HELP Ox 6200

define UNDO 6100

define TRACE i

define BOMBINFO 2

define DISASSEMBLE 3

got_key (ch,whand, vw)
int ch, whand, wvwj{

char sL1281;
int cmdj
extern int highlight, dis_window;

if(whand == dis_window)
return(i);

if{ ch == HELP) {
give_help (whand,vw) j
return(@)}
}

241

s CHAPTER 9

ifdef HAS_DISASSEMBLY
sprintf(s, "isis",
"[1]1[L Select one of these functions: 1",
"C TRACE | BOMBINFO | DISASSEM 1");
else
sprintf(s, "%sis",
"[11[L Select one of these functions: 1",
"L TRACE | BOMBINFO 1")j;
endif HAS_DISASSEMBLY
highlight = &;
ch &= @xdf; /¢ convert to upper case, 1 byte only %/
if(ch == *T")
cmd = TRACEj;
else if(ch == *D*)
cmd = DISASSEMBLE;
else if(ch == ’B”)
cmd = BOMBINFO;
else
cmd = form_alert(i,s);
switch(cmd)
case TRACE:
trace(whand, vw) ;
do_new_window("Stack Trace",whand,vw, &8,28);
break;

case BOMBINFO:
bomb_info(whand, vw) ;
do_new_window("Bomb Information",whand,vw,&@,28);
break;

ifdef HAS_DISASSEMBLY
case DISASSEMBLE:
highlight = 1j
disassem(whand, vw,NLINES) j
do_new_window("Disassembly"”,whand, vw, 65, 24);
breaks;
endif HAS_DISASSEMBLY

3

return(d);
:

The give_help Function

The give_help function should look familiar—Program 9-11.

Give_help puts up form_alert windows telling how to operate the pro-
gram, explaining the trace, disassembly (if HAS_DISASSEMBLY was defined),
and bomb information functions.

Program 9-11. givehelp.c

include <debug.h>

give_help(whand, vw)
int whand, wvwj{

char stri2561;
sprintf(str,"(@]1[Xsi%s!¥si%s!¥%s][NEXT 1",
"Type ’T" for a trace, showing",

"which routines were called in",
"what order, and the arguments",

242

A Debugging Aild e

"to the routines, up until the",
“program failed. (’Bombed’). "
'3

form_alert(1l,str);

sprintf(str,"[@1[%siksi%siksi%s]I] NEXT 1",
“The program will prompt for a",
“program name to read a symbol",
"table from. Select the name ",
“of the program that crashed. ",
)y

form_alert(l,str);

ifdef HAS_DISASSEMBLY

sprintfistr,”"[@1[(%si¥%si¥siisi%s]Il NEXT 1",
“Type ’D” for a disassembly of",
“"the “20@ lines of code around",
“"the point at which the faulty",
"program crashed. The failure",
"will be printed in bold face."
)3

form_alert(1,str);

endif HAS_DISASSEMBLY

sprintf(str,"[(@#]1[%si¥si¥%si¥si¥%s][LAST 1",
“Type "B’ for a register dump,"”,
“showing the registers at the ",
"time of the crash, including ",
“the decoded Status Register, ",
"and User Stack Pointer. N
)3

form_alert(l,str);

¥

The trace Function

When the user types T, got_key calls the trace function, Program 9-12. The
trace subroutine is responsible for formatting and printing the information
saved by get_trace in the first half of the program. As with the shell program,
trace will put its data into the array pl[], which will be displayed by showwnd
when GEM sends a REDRAW message. Multi will catch the REDRAW mes-
sage, pass it to was_msg, which calls do_redraw, which calls just_draw, which
calls show_info, which calls showwnd.

Trace clears the pl[] array by putting zeros in the first byte of each line
(thus making each line look like a null string to v_gtext). If there is no stack
trace to print (for instance, savtrc[0].fp is still zero), then trace places a message
into the pl[] array and returns. The message will be displayed when the RE-
DRAW message is received.

Trace then calls get_syms to prompt for a filename. This file (presum-
ably the name of the program which crashed) will be read, and its symbol table
(the list of subroutine names and their addresses) extracted and sorted. Trace
calls get_base to use this symbol table (and the list of sorted subroutine ad-
dresses collected by get_trace) to figure out where the program was loaded.
Since the procedure used is not guaranteed to yield a unique load address (after
all, get_base is trying to reconstruct information that has been thrown away),
trace will present all of the possible interpretations, and the user can pick the
one that looks right. In practice, if there are more than three functions in the

243

s CHAPTER 9

trace, get_base will find a unique load address, and only one stack trace will
appear. The more data get_base has to work with, the better its guess will be.

To put the stack trace (or traces) into the pl[] array, trace calls the bt
subroutine (short for backtrace). Before going into bt, a look at get_syms and
get_base is in order.

Program 9-12. trace.c

include <document.h>
include <debug.h>

long int bases[256]1;
long int prog_base;

trace (whand, vw)
int whand, wvw;({

int x, next_line, num_bases;
extern char pl[NLINESILCNCHARS];
extern int xlines; .
extern struct trc savtrcll;

xlines = NLINES;

for{ x = @3 x < NLINES; x++)
plix1L8] = @;

clr_disp(whand, vw)

if(savtrcl@l.fp == @) {
sprintf(pl[@],"No program has bombed since”);
sprintf(pll1],"this accessory has been loaded");
sprintf(pl[2],"so there is no stack trace to");
sprintf(plC3], "display.");
return;
¥

get_syms (whand, vw)

num_bases = get_base();

next_line = @;

for(x = @; » < num_bases; x++)
next_line = bt(next_line, basesix1);

¥

The get_syms Subroutine

The get_syms function, Program 9-13, uses the familiar Dgetdrv, Dgetpath,
and fsel_input routines to put up a file selection window, just like the Plot pro-
gram. Then it reads and processes the symbol table.

Each executable file on the ST begins with a file header, and each file
header takes the form of the “head” structure declared in get_syms. Get_syms
constructs a filename by combining the directory and the filename returned by
fsel_input, and uses it to open the file with Fopen. It then reads the file header
into the “head” structure. Get_syms is interested in the symbol table, which is
stored in the file after the program code and data. To get to the symbol table,
get_syms adds the size of the header to the size of the program code and data,
and puts the result in seek_ptr. Then Fseek is called to “seek” to the beginning
of the symbol table in the file. The number of symbols is calculated using the
size of a symbol structure and the number of bytes in the symbol table (stored
in ssize in the header). If there are too many symbols (unlikely), then an error

244

A Debugging Aid e

message is shown, and the number of symbols is adjusted by ignoring the sym-

bols that don't fit.

Get_syms then loops, calling Fread to read each symbol into the array
syms[]. Only TEXT symbols are stored; DATA symbols (and anything else) are
ignored, since subroutine names are always TEXT symbols. The file is closed
after the loop, and gsort is called to sort the symbols by their addresses. Fi-

nally, get_syms returns 1 to indicate success.

Program 9-13. getsyms.c

include <osbind.h>

include <debug.h>

define CANCEL a
define OK 1

struct sym syms[2561;
int count;

static compar(a,b)
struct sym %a, %bj;{

return{ a->value - b—->value);
)

define TEXT ©x200

long int
get_syms (whand, vw)
int whand, vwj{

int fd, %, button, drv, t_countj;
long int seek_ptr, ref;
struct head {
int magicj;
long tsize, dsize, bsize, ssize, zsize, entry;
int relocs
} head;
static char dir(2561, filel256]1;
char str(128]1, program(128], %p, Xlast_slashj;

if(dirf@l == @){
drv = Dgetdrv();
Dgetpath(str,drv+1);
sprintf(dir, "%c:¥%s\\%.%", drv+’A’, str);
‘]
if(fsel_input(dir,file,&button) == 6) (
show_form("Error in file selectioniNo file selected");
return{(d);
¥
if(button == CANCEL)
return(@);
strcpy(syms(@].name, "nameless");
syms[(@].value = @;
syms[@].type = 8;
strcpy (str,dir);
last_slash = strj
for(p = strj ¥pj; p++)
if(gp == *\\'")
last_slash = pj
¥last_slash = @;
sprintf (program, "%s\\%s",str,file);

245

e CHAPTER 9

fd = Fopen(program,®);
if(fd < @) (
sprintf(str,"Can’t open *%s’",program);
show_form(str);
return(d);
3
count = Fread(fd, (long int)sizeof (head),&head);
seek_ptr = sizeof (head) +head.tsize+head.dsize;
Fseek (seek_ptr,fd,);
count = head.ssize / sizeof (symsl[@1))
if(count > sizeof (syms) / sizeof (syms[@1) - 2){
count = sizeof (syms) / sizeof (syms[@1) - 2;
sprintf (str, "Too many symbols: using %d",count);
show_form(str)}
3
t_count = @;
for{ x = 1; % < countj x++){
Fread(fd, (long int)sizeof (syms(@1),&syms(t_countl);
if{ syms{t_countl.type & TEXT)
t_count++;
¥
count = t_countj
Fclose(fd)j
qsort (syms,count,sizeof (syms[@8]),compar)j
return(i);
;

The get_base Function

Get_base is a deceptively simple routine (Program 9-14) that tries to figure out
where the program was loaded, given only a list of subroutine addresses from
the executable file (relative to zero) and a list of function addresses from the
crashed program (relative to the unknown load address).

The idea is to compare the distances between the function addresses in
each list, trying to find an address that, when added to each function address
in the file, will produce an exact match with a corresponding address in the list
from the crashed program. For example,

File addresses = Program addresses

12 (—junk) A0502 (unknownl)
22 (—main) A0530 (unknown2)
50 (—subl) A0570 (unknown3)
74 (—sub2) A06EQ (unknown4)
90 (—sub3)

140 (—sub4)

200 (—sub5)

If get_base can find a number that can be subtracted from each Program
address and will yield an exact match with one of the File addresses, then that
number is a plausible load address. Such a number for this example might be
AO04EQ. This would make unknown1 match the name _main, unknown2 would
match _sub1, unknown3 would match _sub3, and unknown4 would match
—sub5.

To find the matches, get_base tries each possible base address in a loop,
constructing the trial base address by subtracting each File address in turn from

246

http://symsCt._count3.type

A Debugging Aid e

the first Program address. In the loop, the routine ismatch is called to check all
of the Program addresses for an exact match with the File addresses. If a match
is found, that base address is stored in an array of base addresses called bases.

Because get_trace may not have had enough information to guarantee a
correct list of Program addresses, it is possible that no exact matches were
found. The ismatch function has maintained an index of the highest Program
address that matches, just for this contingency. Get_base throws out this high-
est value, on the assumption that it was the value that caused the matches to
fail. Get_base then calls itself to try again with the new (shorter) list, hoping
for better luck now that the spurious entry is removed.

get_base returns the number of possible load addresses found and
placed in the bases array.

Program 9-14. getbase.c

include <debug.h>

int max_index “H

get_base() {

int %, y,; bc;

long int basej

extern long int real_pcs(], basesl[];
extern int count, numpcs;

extern struct sym syms[1;

max_index = @;
bc = @;
for({ x = @; x < count && numpcs > @; x++)
base = real_pcs[@] - symsixl.value;
if(ismatch(%, base, 1)){
bases[bc++] = basej;
3
3
if(bc == 0) {
if(max_index > 1){
for(x = max_index; »x < numpcs; x++)
real _pcsix] = real_pcsix+11j
numpcs——j
return{ get_base());
3
3
return(bc);
3

The ismatch Function

The first thing ismatch, Program 9-15, does is check to see if there are any Pro-
gram addresses to match. If there are none, it returns 1 for success, because it
has reached the end of the list without failing (all of which will be clearer in a
moment). It then updates max_index for the benefit of get_base.

ismatch then loops through each File address, checking to see if the pro-
posed base address, when added to the File address, matches the current Pro-
gram address. If it does, then ismatch calls itself to process the rest of the

247

e CHAPTER 9

Program address list in an identical manner (this is how it can reach the end of
the list and be successful). If the base address plus the File address are greater
than the Program address, then there is no use looking any further, since the
lists are sorted in increasing address order. ismatch returns 0 to report failure.

Notice that by calling itself recursively to process the remainder of the
list, ismatch can deal with the problem of intervening subroutines in the File
address list that are not in the Program address list (look at _sub2 and _sub4
in the example above). This problem is not a simple one to solve any other
way, but ismatch does it simply and elegantly.

Program 9-15. ismatch.c

include <debug.h>

ismatch(tab_index, base, pc_index)
int tab_index;
long int base;
int pc_index;{

int x3;

extern long int real_pcsi];

extern int count, max_index, numpcsj;
extern struct sym syms(J];

if(pc_index *>= numpcs)
return{ 1);
if(pc_index > max_index)<
max_index = pc_index;
.
for(x = @; % < countj; x++){
if(symslx].value + base == real_pcslpc_index]){
return(ismatch(%, base, pc_index + 1));
>
if(symsix].value + base > real_pcslpc_index])
return(@);
3
return(d);
F

The bt Function

Now that all the possible base addresses have been found (there is usually only
one, except in cases where the program crashed in the first or second subrou-
tine in the program, and those problems are usually easy to solve), the bt func-
tion (program 9-16) can be called to print a stack trace for each possibility.

A stack trace looks like Figure 9-3. There is a line that shows the pro-
gram load address (in this example there was a unique address found), and a
list of lines that look like function calls, in the reverse order of when they were
called (so that the user does not have to page down to see where the error
occurred).

Note that some function names have a question mark after them. (See
Figure 9-3.) This indicates that an exact address was not available, and a best
guess was used. The guess is almost always correct, but can be wrong if the

248

A Debugging Aild e

crash damaged the stack in just the right way. The function names without
question marks can always be trusted, since they were obtained by get_realpc
from the code itself.

Figure 9-3. A Stack Trace
Desk File View Options

I[]
or program based at A735E
addr_er?(2,9ERB,19)
bonb(61,62,63,64,65,66)
foozle(9,R,8,0)
bar?(6,7,8,8)
fo0(0,1,2,3,4,5)
main(1,A,C6R4,0)
—-main(R,720F,8)
-main(A,720F,0)

The bt function is simple, since all of the work has been done for it. It
loops through the savtrc array built by get_trace, and calls get_name to find
the name of the function in the symbol table, using the real_pc entry, and the
base address supplied by get_base.

After printing the function name and an open parenthesis, it loops
through all of the arguments collected by get_args, and prints them, followed
by an end parenthesis. It leaves one blank line at the end of the list to separate
it from any other traces that may follow (if there is more than one possible load
address) and returns the next line that can be printed on. (The word “print”
here is used loosely, since the data is really going into the pl[] array, which
will be printed later by showwnd).

Program 9-16. bt.c

include <debug.h>
include <document.h?>
include <stdio.h>

bt (line,base)
“int linej;
long int basej;{

long int prog_base;

char ¥str, bufl(32], ¥get_name(), ¥exact_name();
extern char pl[NLINESILCNCHARS]1j

249

s CHAPTER 9

extern struct trc savtrcll;
int i, J3

sprintf(plflinel,"For program based at %X",base);
for(i = @; savtrclil.fp &% i+line+l < NLINES; i++)¢
str = plli+line+11;
if(savtrclil.real_pc)
get_name(savtrclil.real_pc,buf,base);
else
get_name (savtrclil.ret_pc,buf,base);
sprintf(str,"” %9.9s(",buf);
for(j = @; j < savtrclil.num_args; j++){
sprintf(str,"%six",str,savtrclil.args(jl);
if(j < savtrclil.num_args-1)
sprintf(str,"%s,",str);
3
sprintf (str,"%s)",str);
3
plli+line+11(@8]1 = @;
return(i+line+1);
H

The get_name Function

This function simply loops through the symbol table, looking for a match be-
tween the address passed to it, and the sum of the base address and the ad-
dress in the table. If it finds an exact match, it returns a copy of the function
name. If there was no exact match, it returns the last function name whose ad-
dress was less than the target address, on the assumption that the target ad-
dress must be inside that function. To indicate that this is merely an
assumption (although almost always correct), it puts a question mark after the
name. If there was no symbol table to look through, or the address was beyond
all of the symbols, the address is returned in a string as a hexadecimal value.

Program 9-17. getname.c

include <debug.h>

char x
get_name (addr ,buf,base)
long int addr;

char xbuf;

long int base;

int xj;
extern struct sym syms(];
extern int count;

if(count) (¢
for(x = 13 % < count; x++){
if(symslx]l.value + base == addr)
if(symsixl.namel@] == *_*)
sprintf (buf,"%7.7s",%syms(xl.namel11);
else
sprintf (buf,"%8.8s",symslxl.name);
return(buf);
}
if(symsixl.value + base > addr)¢
6 O]
break;
|

250

A Debugging Aild e

if(symsixl.namel@] == "_")
sprintf (buf, "%7.7s?",&symsx1.namel11);
else
sprintf (buf, "%8.8s?",symslx1.name);
return(buf);
¥
;
3
sprintf (buf, "%X",addr);
return(buf);

The bomb_info Function

Now that there is a way of finding the load address of the crashed program,
the information saved by TOS after a crash becomes useful. When the user
types a B, got_key calls the bomb_info function, Program 9-18, to format and
print this information.

Bomb_info clears the pl[] array (just as trace did), and loops, calling
getlong to collect the saved register information from the place TOS put it, and
calls getshort to collect the information from the saved copy of the supervisor
stack. TOS stores this information, along with the User Stack Pointer (USP)
and the Exception Number, in low memory, at the addresses given at the top of
the bomb_info listing. Figure 9-4 shows an example of a bomb information
window.

Figure 9-4. A Bomb Information Window
Desk File View DOptions

Transient Program Area: AL80 to FB000

Data from the last exception:

Trying to read user data space at 1

Pct A763E Status: 380 (Level 3:)
Usp! B4SCE Exception: 3 (Rddress Error)

| Registers Supervisor Stack
Da: 2 fod: i 0: 4251]
B F 5 1 4258
DB8 4: oo A
8 6! 763E 1
ARI04 : 280
A72DF ‘H 1662
B4506 : 162C
4DAR H 925E

The first thing that is printed in the window are the beginning and end-
ing addresses of the Transient Program Area (TPA), the area of memory re-
served for loading programs off of the disk. The crashed program must have

251

e
meees CHAPTER 9

been loaded somewhere in this area, and any addresses that are outside of this
area cannot belong to the program that crashed.

If the exception was a Bus Error or an Address Error, the extra infor-
mation that was placed on the supervisor stack for these two exceptions is de-
coded and printed. This information tells what the program was attempting to
do (read or write memory from the user or supervisor program or data space)
and at what address it was trying to do it.

The program counter is located in the saved stack information in the
same way that get_trace located it in the real stack earlier, by counting up-
wards past the status register and any saved data.

The program counter, status register, user stack pointer, and the excep-
tion number are printed, followed by the Registers and the saved supervisor
stack information. The exception number is decoded, telling the user what it
was that went wrong (in this case it was an Address Error).

Program 9-18. bombinfo.c

include <document.h>
define PROC_LIVES Ox 380L
define PROC_DREGS 9x384L
define PROC_AREGS Ox 3A4L
define PROC_ENUM Ox3CAL
define PROC_USP @x 3CBL
define PROC_STACK @x3CCL
define STATMASK @x S8EQ
define MEMBOT @xB432L
define MEMTOP OxP436L
define TPASTART OxB4921
define TPALEN PxP496L
char fEnumsl] =

' "Reset 2",

"Reset 1",

"Bus Error",
"Address Error”,
“Illegal Instruction”,
"Zero Divide",

"CHK instruction",
"TRAPY instruction”,
“"Privilege Violation",
"Trace",

"Line A",

"Line F",

"Unassigned 12",
"Unassigned 13",
"Format Error",
"Uninitialized Interrupt”,
"Unassigned 14",
"Unassigned 17",
"Unassigned 18",
"Unassigned 19",
"Unassigned 20",
"Unassigned 21",
"Unassigned 22",
"Unassigned 23",
"Spurious Interrupt”,
"Level 1 Autovector” ’
"Level 2 Autovector"”,

252

A Debugging Aild e

"Level 3 Autovector”,
"Level 4 Autovector”,
"Level 5 Autovector”,
"Level & Autovector”,
"Level 7 Autovector"
33
char fref_classes(] = {
I?I'
“user data space”,
"user program space”,
T |
um-’
"supervisor data space”,
"supervisor program space”,
"interrupt acknowledge”
3
long int ref;
long int proc_enum, proc_usp, proc_pcj
long int proc_lives, proc_dregl8], proc_aregl8]1;
int statusregj
int tr_linej

bomb_info(whand, vw)
int whand, vwj{

unsigned short int proc_stak[16]1;

extern int main(), gl_hchar, gl_wchar, xlinesj
extern char tdecode_status(), plINLINESILNCHARS];
extern long int get_syms(), getlong()j
int i, %, y, w, hj

int dx, dy, dw, dh, sx, sy, sw, sh}
long int bad_addr;

char extralil128];

xlines = NLINES;
for(x = @; x < NLINESj x++)
plix1CO] = &;
hide_mouse()}
clr_display(whand,vw);
tr_line = &)
proc_lives = getlong(PROC_LIVES);
for(i = @; i < 8 i++) (
proc_dreglil = getlong(PROC_DREGS+i¥sizeof (long));
proc_areglil = getlong(PROC_AREGS+istsizeof (long))j
proc_stak[2%i+@] = getshort (PROC_STACK+(2%i+9) ¥sizeof (short));
proc_stak[2%i+1]1 = getshort (PROC_STACK+(2%i+1) #sizeof (short))}
3}
proc_enum = getbyte (PROC_ENUM) ;
proc_usp = getlong(PROC_USP);
extral@]l = @;
if(proc_enum == 2 |} proc_enum == 3){
bad_addr = proc_stak[11;
bad_addr = (bad_addr << 16) ! proc_stak[2];
sprintf(extra,” Trying to %s %s at %AX",
proc_stak[@] & &x10 ? "read" : "write”,
ref_classes[proc_stak[@#] & 71,
bad_addr);
proc_pc = proc_stak[1+4];
proc_pc = (proc_pc << 1&) | proc_stak(2+4]1;
statusreg = proc_stak[g+4];
H

else (
proc_pc = proc_stak[1];
proc_pc = (proc_pc << 1&) | proc_stak[2]j
statusreg = proc_stak[@];
3

253

s
e CHAPTER 9

sprintf(plltr_line++1," Transient Program Area: %X to xzX",
getlong (MEMBOT), getlong(MEMTOP) N]
lprintf(plrtr_ltn-++l." Data from the last exception:”);
sprintf(plrtr_lin.++1,-xtrn)|
sprintf(plltr_line++1," Pc: %BX Status: Xax (is)",
proc_pc, statusreg, decode_status(statusreg));
lprintf(plttr_lin.++],“ Usp: %BX Exception: %2X (Asm) ™,
Proc_usp,proc_enum,
proc_enum < 32 ? Enumsiproc_enum & @x1$1 : Reew®)y
-printf(pl[trhlin-++l,"');
Sprintf(plltr_line++],
" Registers Supervisor Stack");
for(i = @35 i < 8 i++)¢
sprintf (plltr_line++],
" D¥%d: %BX Add: u%BX %2.2d: %4x %ax",
i.prnc_dr-qti],i.prnc_.r.gtil,itz,
proc_.taktit2].proc_ltlkt132+ll);
3
show_mouse()
3}

The decode_status Function

The decode status function, Program 9-19, decodes the status register, naming
each of the seven important bits (if any are set) and printing the interrupt prior-
ity level at the time of the crash.

Program 9-19. decstat.c

char &
decode_status(stat)
int stat;<(

static char stri321;
char fptrj

sprintf (str,"Level ¥%d: "y (stat>>8)&7);

ptr = &str(9])

if{ stat & oxB8000)
fptr++ = 77,

if(stat & Ox2000)
tptr++ = g%,

if(stat & @x1@)
tptr++ = *x*y

if(stat & ox8)
tptr++ = *N*;

if(stat & ox4)
ptr++ = *72%;

if(stat & ox2)
fptr++ = 2y,

if(stat & ox1)
Sptr++ = °C”;

kptr = @;

return(str);

3}

The do_new_window Function

After got_key has called trace or bombinfo, it calls do_new_window, Program
9-20, to create a window to hold the information. Do_new_window is almost
exactly the same as the do_dir_window function in the shell, except that the

254

A Debugging Aid e

name and the dis_window variable have changed to make the routine more
generic.

Do_new_window sets the variable dis_window to the new window
handle so that show_info (called from doit) will know to call showwnd.

Program 9-20. donewwnd.c

include <gemdefs.h>
include <document.h>

define BYE_BYE -1
define OBLIVION -2

do_new_window(name,old_wh,old_vw,w,h)
char fnamej
int old_wh, old_vw, w, hj{

int whand, vp, hp, vs, hs, x, y, dx, dy, dw, dh, vw, events;
int wlines, wcols, retvalj;

extern int gl_wchar, gl_hchar, dis_window;

extern int cur_line, cur_col, bold_line, highlightj

w ¥= gl_wcharj
h %= gl_hcharj
wind_get(old_wh, WF_CURRXYWH, &x, &y, &dw, &dh);
wind_get(@, WF_WORKXYWH, &dx, &dy, &dw, &dh)}
if(w > dw—x)

w = dw-x3}
if(h > dh-y)

h = dh-yj

wlines = h / gl_hchar;

wcols = w / gl_wchar;

cur_line = cur_col = &;

if(highlight && bold_line > wlines / 2)
cur_line = bold_line - wlines / 2j

slide_pos(wlines, NLINES, cur_line, &vp)j;

slide_pos(wcols, NCHARS, cur_col, &hp)j

slide_size(wlines, NLINES, &vs);

slide_size(wcols, NCHARS, &hs)j;

v = old_vw;
whand = new_window(name, 18080—vp,hp,vs,hs,x,y,w,h,&vn)}
events = MU_MESAG | MU_KEYBD;
dis_window = whandj;
retval = multi (events, &whand, @, name, &vw);
close_window(whand) ;
dis_window = @;
%
%% If the previous call to multi got an AC_CLOSE,
%% then it returned OBLIVION. We must send another
%% AC_CLOSE to the multi that is called by main(),
%% so that the virtual workstation gets handled
%% properly, and the other window gets closed properly.
x5/
if(retval == OBLIVION)
close_me()j
3}
4]
£ This routine sends a message to multi, faking an AC_CLOSE.
¥% This allows routines to be decoupled from actions that
#% take place in was_msg(): the caller only needs to know that
%% he wants to do whatever action AC_CLOSE causes, without having

255

e
meees CHAPTER 9

% to know anything about the internal workings of was_msg.
%/
close_me() {

int mlB81;
extern int gl_apid, menu_id, i_am_accessoryj;

if(i_am_accessory)({
ml@] = AC_CLOSE;
mL3] = menu_idj;
ml1l = m[2] = m(4] = m(S] = ml&] = ml7] = @;

appl_write(gl_apid,14,m);
;

The showwnd Function

The showwnd function, Program 9-21, sets up the slider positions in the now
familiar manner, using slide_pos and slide_size, and then calls just_clear to
clear the screen.

To actually print the information in the pl[] array onto the screen,
showwnd loops, starting at cur_line and iterating up to the number of lines in
the window. The special variables highlight and bold_line control a special fea-
ture used by the disassembly routines: One line is selected to be highlighted in
boldface to indicate where in the disassembly the bomb occurred.

Program 9-21. showwnd.c

include <gemdefs.h>
include <document.h>

define E_NORMAL
define E_THICK
define E_LIGHT
define E_SKEWED
define E_UNDERL INED
define E_OUTLINED
define E_SHADOWED

EXBEXEE
W= DBEN~S

N o~

int highlight = g;
int bold_line = @;
char plCNLINESICNCHARSI;

showwnd (whand, vw)
int whand, wvwj{

int %, y, w, h, i, hs, vs, hp, vp, count, wlines, wcols;
extern int gl_wchar, gl_hchar, cur_col, cur_line;

wind_get(whand,HF_NORKKYHH,&x,&y,&w,&hJ;
count = cur_line + h / gl_hchar;
if(count >= NLINES)

count = NLINES - cur_line - 1y
wlines = h / gl _hchar;
wcols = w / gl_wchar;
slide_pos(wlines, NLINES, cur_line, &vp)3
slide_pos(wcols, NCHARS, cur_col, &hp);
slide_size(wlines, NLINES, &vs)3
slide_size(wcols, NCHARS, &hs);
wind_set(whand, WF_VSLIDE, hp, @, 2, @);
wind_set(whand, WF_VSLIDE, vp, @, @, @)3

256

A Debugging Aid e

wind_set(whand, WF_VSLSIZE, vs, @, @, 0);
wind_set(whand, WF_HSLSIZE, hs, @, &, @);
just_clear (whand,vw) j
hide_mouse()}
for(i = cur_line; i < count; i++)(
if(strlent¢ plCil) > cur_col)({
if(highlight && bold_line == i)
vst_effects(vw, E_THICK);
v_gtext(vw, x, y+gl_hchar+(i-cur_line)*gl_hchar,
&pllillcur_coll);
if(highlight && bold_line == i)
vst_effects(vw, E_NORMAL);
b
3}
show_mouse () ;
H

The debug.h File

The file debug.h, Program 9-22, is an include file that contains macro defini-
tions and structures used throughout this chapter.

Program 9-22.debug.h

define NUM_ARGS 32

struct tre ¢
short int %xfp;
short int *ret_pc;
short int Xreal_pcj;
short int num_args;
short int argsCNUM_ARGSI1;
33

struct sym {
char namelB81;

int type;

long int value;

I3
ifdef HAS_DISASSEMBLY
define BCDREG 14
define BRANCH 1
define CMPREG 2
define EFFADD 3
define EXAREG 4
define EXDREG S
define IMMCCR)
define IMMSR v
define LINE_A 8
define LINE_F 9
define MOVEEA 1@
define MOVE_P 11
define MOVE_Q 12
define NONE 13
define ONEREG 14
define SFTROT 15
define LINKOP 16
define MOVEM 17
define ADDREA i8
define IMMEA 19
define MOVEAD 20
define DBRNCH 21

257

mmmmm CHAPTER 9

define WEFFADD 22

struct hash_tab (
char addrmode;
char numhitsj
short valuej
short mask;
char &stringj;
T3

define DATA_REG
define ADDR_REG
define INDIR
define POSTINCR
define PREDECR
define DISPLACE
define INDEXED
define PCABSIMM

NOUbUWUN=E

define ABS_SHORT
define ABS_LONG
define PC_DISP
define PC_INDEX
define IMMEDIATE

define BYTE
define WORD
define LONG

L E R R R X B R R EE R EREE E R R

N=g hUN=8

extern short int ¥Address, word, getshort();
extern char object[1;

define NEXTWORD() N
word = getshort (Address++); \

sprintf(object, "%s %@4.4x", object, (unsigned short) word)j \
}

endif HAS_DISASSEMBLY

The linkone.bat and linkone.arg Files

To link the debugging aid accessory, the linkone.bat file and linkone.arg files
are used.

The files that contain conditionally compiled code (such as the ones that
reference the HAS_DISASSEMBLY macro) are separated in the argument file
to remind programmers that they will need to be recompiled with the
HAS_DISASSEMBLY macro defined if the disassembler is to be included.

The linkacc.bat and linkacc.arg files for the disassembler are shown in
the next chapter.

Progaram 9-23. linkone.bat

ci\bin\1inké8 [undefined,symbols,commandllinkone.argll
c:\bin\relmod a

c:\bin\rm a.éB8k

c:\bin\wait

258

file:///bin/link68
file://c:/bin/relmod
file://c:/bin/rm
file:///bin/wai

A Debugging Aid s

Program 9-24. linkone.arg

a.48k=c:accstart.o,main.o,

CONFIBAC.0,BT.0, DONEWWND.O, ISMATCH. 0, GETBASE. 0, DECSTAT. 0, GETNAME. O,
SHOWWND. 0, BETSYMS. 0, TRACE. 0, OPENDATA. O, ERRORS. 0, SETTOP. 0, GETLONG. O,
BOMBINFO.O0,GETREAL.O,GETARGS.0,

GIVEHELP.O,BOTKEY.O0,DOIT.0,GETTRACE. O,

accsup.o,env.a,vdibind,vdidata.o,gemlib,aesbind,osbind,libf

259

10 A Disassembler

10 A Disassembler

s [n this chapter, the debugging aid presented in Chapter 9 is aug-

mented by a disassembler, a program that undoes the operation of
BN an assembler, turning bits in the ST’s memory back into symbolic
assembly notation. This allows a programmer to understand the nature of the
problem at the detailed level of the machine itself.

This tool is called an annotated disassembler because the instruction that
caused the program to crash is printed out in boldface, and arrows point from
the word BOMB! to the offending line. With this kind of exposure and the sym-
bolic stack trace, program crashes become much easier to find and repair.

Figure 10-1. The disassembler prints out the instructions surround-
ing the point at which the program crashed.

_Dzs File

View Options

4ESE

1 AE7S
i 4E56 FFFB

¢ 1ID7C 00GB 61 FFFC

ZEBC BOOR 7638
ZF3C 0BOA 9FLL

i+ 4EBI 00OR 778A

588F
206E FFFC
4758

1 4ESE

 orean.

4E75

4E56 FFFC

ZEBC 000A 765A
ZF3C BBOA SFIA
4EBY BBOA 778R

cird (RD)

unlk .M FP

rts

link . FP,#-8

nove,]l #B0BBBBBLL,-4 (FP)
nove,l HBBBA7638, (SP)
move,l HBBBAIFLL,-(SP)
jsr BBOA778A.L
addq.]1 #4,SP

mova,l -4(FP),A0

clr.n (AB) < < < BOMB!
unlk.u FP

rts

link .u FP,#-4

move,l HOBBA765A, (SP)
move,l HOBBAIFIA,-(SP)
jsr BBBA778A.L
addg, 1 #4,SP

illegal

At the time of a program crash, the desk accessory presented in the last
chapter calls the get_dis routine presented here to capture the 100 instructions
on either side of the program fault, and decodes them into humanly readable
form before the operating system re-uses the dying program’s memory. This
decoded information can then be called up by the programmer for close exami-
nation after the operating system has cleaned up the mess.

263

me—— CHAPTER 10

Note that some programs can lock up the system in such a way as to
preclude GEM from operating. This debugging aid is not designed to handle
such problems, but the techniques shown in other parts of the book (notably
the chapter on the Command Shell program) can be used to print the infor-
mation gathered (stack trace, annotated disassembly) onto a disk file for perusal
after the reset button is pressed. This is possible because most lock-ups affect
only the higher-level GEM features such as mouse control of windows, and do
not affect the low-level disk operations. Just be sure to close the file so that all of
the data is written to the disk before the reset.

The get_dis Function

The get_dis routine, Program 10-1, is called by get_trace (described in the pre-
vious chapter), and is passed the number of lines to disassemble, and a flag
that tells it whether the global variable proc_pc points to the instruction that
failed, or to the instruction after the one that failed. (The 68000 processor de-
tects some errors before advancing the program counter, but most are detected
after the instruction is completed, or as the instruction’s address is decoded,
causing the need for the exact_pc flag.)

The get_dis function starts disassembling the code 200 words (a word is
16 bits) above the place where the program bombed, on the assumption that
the average instruction length is 2 words. It then loops 200 times (nlines is 200,
although it can be changed by changing the NLINES macro in the document.h
file), disassembling the code.

As the loop progresses, there will come a time when the Address vari-
able which is advancing throughout the code passes up the location at which
the program failed. If the exact_pc flag is zero, then the previous instruction is
the one that failed, and the line that must be annotated is the line that has
been processed by the previous turn through the loop. get_dis annotates it by
setting the bold_line variable to the previous line number, and adds arrows
and the word BOMB! to the line. The arrows are created by the backslashed
4’s, which denote the fourth letter in the ST extended alphabet, a leftward-
pointing arrow.

Once that is taken care of, the pointer to the current line is set to the
proper line in the da[] array (for DisAssembly), and the current program ad-
dress is placed in the line.

The macro NEXTWORD is defined in the debug.h file; it fetches the next
word out of the ST’s memory and adds its hexadecimal representation to the
character array object, which will be printed after the address when the instruc-
tion is fully decoded.

The disassembler consists of three parts. The first two are tables of de-
coded instructions called table_A and table_B. The third part is a set of sub-
routines that can decode the 68000’s addressing modes. To get the instruction,
the disassembler creates an index into table_A by putting the high ten bits of

264

A Disassembler s

the current word (fetched by NEXTWORD) into the variable hashA. The
numbhits attribute of each element of table_A tells whether the high ten bits of
the instruction uniquely determine the instruction, or whether there was more
than one instruction with the same ten high bits. If more than one instruction is
indicated, table_B is searched for an exact match, via the matchB subroutine. If
an exact match is found in table_B, then the table_B entry is used. If not, then
the original table_A entry is used. This technique is probably familiar to you as
a method of “hashing” (quickly selecting an item from a table by a calculation).
The second table is known as an overflow table, to catch the items that the cal-
culation did not uniquely address.

No matter which table the entry came from, the action performed is the
same. The addrmode function is called to decode the addressing mode, and the
hexadecimal object code (from the object array) is added to the line. If the in-
struction was a shift or a rotate instruction, it needs special treatment (because
these instructions are not as regular in construction as the others), and it is built
by combining the instruction from the table, an entry from the shfts array, and
the addressing mode. If it was not a shift or rotate, then the instruction from
the table and the decode addressing mode are combined. The result is put into
the current line, and the line is annotated (if the exact_pc flag was nonzero,
and the instruction just processed was the one that caused the error).

Program 10-1. getdis.c

include <{gemdefs.h>
define HAS_DISASSEMBLY

include <debug.h>
include <document.h>
short int *Address, word;

char object[S@1;

char %regsl] = {
lan“ ’ IID1 " ’ IID2|" ' tlDSll ’ "D‘"' IID5" ’ IlD&” 3 llD?II'
llAﬂll, DAill. “Az", IDASII' Ilﬂ‘ll, unslll "FPII. Ilspll
33

char #shftsl] = {
JI.‘II’ lll.ll. .lro)‘ Il' llroll
33

get_dis(nlines,exact_pc)
int nlines, exact_pcj{

static char buf(128]1, %str, flinej
static int hashA, hashB, ij;
extern short int ¥proc_pcj
short int tsave_addrj
extern char dalNLINESICNCHARSI;
extern char taddrmode();
extern struct hash_tab table_ALl, table BL1l;
extern short int getshort();
extern long int getlong();
extern int bold_linej;

265

Address = &proc_pcl-nlinesl;
bold_line = -1;
line = buf;
bufl@l = &;
for(i = @; i < nlinesj i++){
save_addr = Addressj
if(exact_pc == @ && bold_line < @ && Address >= proc_pc){
bold_line = i-1;’
sprintf(line,"%s%s",line," \4 \4 \4 BOMB'");
3}
line = dalil;
sprintf(line, "%@8.8X: ",Address);
objectl@] = @;
NEXTWORD () 3
hashA = (word >> &) & Ox3ff;
if(table_AChashAl.numhits &% (hashB = matchB(word)) >= @){
str = addrmode(&table_BlhashBl);
sprintf(line,"%s%-20.20s ",line,object);
if(table_Bl[hashBl.addrmode == SFTROT){
sprintf (buf,table_Bl[hashBl.string,
shftsl (word>>3)&31,str);
3
else
sprintf (buf,table_BlLhashBl.string,str,"oops!");
sprintf(line,"¥%s¥s",line,buf);
if(exact_pc && bold_line < @ && save_addr >= proc_pc){
bold_line = ij
sprintf(line,"%s¥%s",line,” \4 \4 BOMB!'!");
3
continue;
}
str = addrmode(&table_ALhashAl);
sprintf(line, "%s%-206.20s ",line,object);
if(table_AlChashAl.addrmode == SFTROT)(
sprintf (buf,table_AChashAl.string,
shftsl (word>>3)8&31,str);

3
else
sprintf (buf,table_AChashAl.string,str,”00PS!");
sprintf(line,"%s¥%s",line,buf);
if(exact_pc &% bold_line < @ & save_addr >= proc_pc)(
bold_line = ij
sprintf(line,"%is%s",line,"” \4 \4 BOMB!");
o

The matchB Function

The matchB function, Program 10-2, is a simple linear search of the table_B ar-
ray, masking the current instruction word and comparing it to the masked word
from the array. The masking insures that only the bits that matter are com-
pared, and the bits that have nothing to do with the instruction itself (such as
the addressing mode bits) do not affect the comparison. Speed is not an issue
here, or a faster search technique would be warranted. The table_B array is not
often needed (most of the instructions are in the fast table_A array) and the
most often used entries in the table_B array are placed at the front, where they
will be found immediately. To compute the index, the address of the table is
subtracted from the pointer that is pointing at the element found, and the result
put in a long integer. (Even though the result is placed in a long integer, the

266

e —"3-"1
fei ey =
A Disassembler s

DRI C compiler warns that pointer subtraction yields long integers. Ignore this
warning. Too bad the compiler is not smart enough to see that the code is
using long integers, and eliminate the warning,.)

Program 10-2. matchb.c
define HAS_DISASSEMBLY
include <debug.h>

matchB (wrd)
register short int wrdj;{

register struct hash_tab ¥ptrj
extern struct hash_tab table_BL[];
long int retvalj

ptr = table_Bj;
while(ptr->string) {
if((wrd & ptr->mask) == (ptr->value & ptr->mask)){
retval = ptr - table_Bj;
return{ retval)j;
3
ptr++;

return(-1)j
¥

The addrmode Function

The addrmode function, Program 10-3, is the longest routine in this book, but
it is really just one large switch statement, whose regular structure makes it
easy to understand despite its length.

Each element in the instruction decode tables contains an address mode
field (tab->addrmode) which tells the addrmode function how to decode the
address. The BRANCH mode means that the instruction was a branch of some
sort, and addrmode decodes the branch address by adding the data after the in-
struction to the current address, and returning the result as a hexadecimal
string in the buf array.

The DBRNCH mode is similar, but simpler, since the data is always one
word long, instead of either a byte, a word, or a long word, as in the BRANCH
case.

The ADDREA, MOVEAD, IMMEA, EFFADD, WEFFADD, MOVEM, and
MOVEP modes all just set up a call to the effadd routine which will decode the
effective address fields of the instruction. The pieces of the effective address
field are the register, mode, and size, and are extracted from the instruction
word and passed to effadd. The difference in each of these modes is mainly in
the way the size field is calculated, and that is due to the somewhat haphazard
way the size data was encoded when the 68000’s instruction set was designed.

The MOVEEA mode is for the general MOVE instruction, which has two
effective address fields, and can thus move data from memory to memory using
a variety of addressing modes. Just to make things difficult, the size field is
unlike that of the other instructions, and the register and mode fields in the

267

= CHAPTER 10

source operand are in the reverse order of those in the destination. The effadd
routine is called twice to handle both operands.

The LINKOP mode is simple. The word after the instruction is printed in
hexadecimal, taking care to put a minus sign in front of negative numbers. The
MOVE_Q mode handles the move quick instruction’s addressing mode, where
the data is the low byte of the instruction itself.

The SFTROT, BCDREG, CMPREG, EXAREG, and EXDREG modes han-
dle instructions that operate on registers or immediate data that is encoded in
the instruction itself, just like the MOVE_Q mode.

Finally, for the ONEREG, IMMCCR, IMMSR, LINE_A, and LINE_F
modes, nothing needs to be done, since the operands (if any) are encoded in
the high ten bits of the instruction, and are thus handled by the hash tables di-
rectly. A question mark is returned, to make errors visible in case the code is
being typed in or modified.

Program 10-3. addrmode.c

define HAS_DISASSEMBLY
include <debug.h>

char %
addrmode (tab)
struct hash_tab %tabj(

static int mode, reg, size;

static long int save, save2;

static char byte;

static short int op;

static char buf[128];

static char temp[1281;
extern char feffadd();
extern short int getshort();
extern long int getlong();
extern char fregsfl;

switch(tab->addrmode) ¢
case BRANCH:
op = wordj
save = (long int) Address;
if((op & Ouff) == @)(

NEXTWORD () ;

save += word;

3
else if((op & OxFff) == Ouff) {

NEXTWORD () ;

save2 = word & Oxffff;

NEXTWORD () ;

save += (save2 << 16) | (word & OxFfff);

3
else {

byte = word;

save += byte;

b
sprintf (buf, "%08.8X",save);
return{ buf);

case DBRNCH:
save = (long int) Address;
NEXTWORD () ;

268

A Disassembler s

save += word;
sprintf (buf, "%@8.8X",save) j
return(buf)j;
case ADDREA:
mode = (word >> 3) & 73
reg = word & 7;
size = (word >> 8) & 1;
if(size == @)
size = WORD;
else
size = LONG;
sprintf (buf,"%s",effadd(mode, reg, size))j;
return{ buf)j
case MOVEAD:
mode = (word >> 3) & 7;
reg = word & 7;
size = (word >> 12) & 3;
if(size == 3)
size = WORD;
else {f(size == 2)
size = LONG;
else
return("Bad size in movea");
sprintf (buf,"¥%s",effadd(mode, reg, size))j
return(buf)j;
case IMMEA:
mode = (word >> 3) & 7;
reg = word & 7;
size = (word >> &) & 3;
NEXTWORD() 3
save = (unsigned short int) wordj;
if(size == LONB) ({
NEXTWORD () 3
save = (save << 16) | ((unsigned short) word)j;
sprintf (buf, "#%@8.8X, %s",
save,effadd{ mode, reg, size))j;
3
else
sprintf (buf, "#%08.8X,%s",
save,effadd(mode, reg, size))j
return(buf);
case EFFADD:
mode = (word >> 3) & 7;
reg = word & 73
size = (word >> &) & 3;
sprintf (buf,"%s",effadd(mode, reg, size))j;
return{ buf)j
case WEFFADD:
mode = (word >> 3) & 7;
reg = word & 73
size = WORD;
sprintf (buf, "%s",effadd(mode, reg, size));
return(buf)}
case LINKOP:
NEXTWORD () 3
if{ word < @)
sprintf (buf, "#-%x",-word);
else
sprintf (buf, "#ix" ,word) ;
return(buf)j
case MOVEM:
mode = (word >> 3) & 7;
reg = word & 73
size = (word >> &) & 3;
NEXTWORD() 3
save = word & Oxffff;

269

s CHAPTER 10

case

case

case

case

case

case

case

case
case
case
case
case
case

sprintf (buf, "#%4.4X,%s",
save,effadd(mode, reg, size));
return(bu¥f);
MOVEEA:
mode = (word >> 3) & 7
reg = word & 73
size = (word >> 12) & 3;

if(size == 1) /% size in the move instruction

%/

size = BYTE; /% is different than in others &/

else if(size == 3)
size = WORD;
else
size = LONG;
save = wordj
sprintf (temp,"%s",effadd(mode, reg, size))j;
mode = (save >> &) & 7;
reg = (save >> 9) & 7;
sprintf (buf,"%s,%s", temp,effadd(mode, reg, size)
return(buf)3
MOVE_Q:
sprintf (buf, "#%2.2x",word & Oxff);
return(buf)j
SFTROT:
if(word & Ox28)
sprintf (buf, "D%d,D%d", (word>>9)&7,word&7);
else
sprintf (buf, "#%d,D%d", (word>>%) &7 ,word&7) ;
return(buf);
BCDREG:
if(word & 8)
sprintf (buf,”-(¥%s),-(¥s)",
regs[B8+word&7],regs(B8+(word>>9)&71);
else
sprintf (buf, "Di%d,D%d",word&7, (word>>?)&7) ;
return(buf)j
CMPREG:
sprintf (buf, " (is)+, (Ls)+",
regs(B8+word&7],regs(B+(word>>9)&71);
return{ buf)j;
MOVE_P:
size = word & Ox40;
if(size)
size = LONG;
else
size = WORD;
sprintf (buf,"%s",effadd(5, word & 7, size));
return(buf);
EXAREG:
sprintf (buf, "%s",regs(B+word&71);
return(buf)j
EXDREG:
sprintf (buf, "Did" ,word&7);
return{buf);
ONEREG:
IMMCCR:
IMMSR:
LINE_A:
LINE_F1
NONE:

default:

3

return{"?");

270

je==)
A Disassembler s

The effadd Function

The effadd function, Program 10-4, handles the simple cases directly, and
hands the complicated case to the pcabsimm routine. The simplest case is the
data register direct mode, where all that is required is the name of the data reg-
ister. Since addrmode passed the register number to effadd, all efgfadd needs to
do is print it with a D in front.

The address register direct mode is similar, but an array of address regis-
ter names is used so that the alternate forms FP and SP can be used for the
registers A6 and A7, to make their use as the Frame Pointer and Stack Pointer
apparent.

The INDIR, POSTINCR, and PREDECR modes all enclose an address
register inside parentheses to indicate indirection, with pluses and minuses to
indicate incrementing and decrementing. The DISPLACE mode is similar, ex-
cept that the next word is fetched and printed as an offset before the register.

The INDEXED mode fetches the index word, checks it for validity, and
decodes it, putting the displacement, index register, address register, and size in
their proper location.

Last, the PCABSIMM mode is handled by calling the pcabsimm routine.

Program 10-4. effadd.c

define HAS_DISASSEMBLY
include <debug.h>

char &
effadd (mode,reg,size)
int mode,reg,size;{

static char stringl128], byte;
extern short int getshort();
extern long int getlong();
extern char fregs(];
extern char fpcabsimm();

switch (mode) (

case DATA_REG:
sprintf (string, "D¥o", reg);
break;

case ADDR_REG:
sprintf(string, "%s", regslreg+81);
break;

case INDIR:
sprintf(string, "(%s)", regslreg+81);
breaks;

case POSTINCR:
sprintf(string, "(%s)+", regsireg+8l);
break;

case PREDECR:
sprintf(string, "-(%s)", regsireg+8l);
breaks;

case DISPLACE:
NEXTWORD () ;
sprintf(string,“%d(%s)", word, regslireg+81);
break;

case INDEXED:

271

meees CHAPTER 10

NEXTWORD () 3
if(word & @Ox@700){
sprintf (string, "Bad indexed addressing mode")j
}
else {
byte = wordj
lprintf(ltrinq,“%d(%s.%n.%c)",
byte, regsireg+81, regsl (word>>12)&@x£1,
(word & @x@800) ? "17 : ’"w”);
}
break;
case PCABSIMM:
pcnhstmn(ltrinq,nude,rtg,sizn);
breaksj
}
return(string)j
3

The pcabsimm Function

The pcabsimm function handles the absolute addressing modes, and the pro-
gram counter relative modes directly, and in the tradition established in the
offadd routine, handles the hard part by calling the immediate routine to han-
dle the immediate modes.

In the ABS_SHORT and ABS_LONG modes, the address is the short or
long word following the instruction. Pcabsimm converts the address to hexa-
decimal and returns the result string. The PC_DISP and PC_INDEX are very
much like the DISPLACE and INDEXED modes in effadd, except that since the
address is relative to the current program counter, which is known at this point
(it is pointing to this instruction), the true target address can be printed in
square brackets after the decoded addressing mode. As mentioned, the immedi-
ate modes are handled by calling immediate.

Program 10-5. pcabsimm.c

define HAS_DISASSEMBLY
include <debug.h>

char %
pclbltnn(ltrinq,node,rcu,lizll
char %¥stringj

int mode,reg,size;{

static long longword, offset;
static char bytej
extern short int getshort();
extern long int getlong()j
extern char %regsil;
extern char fimmediate();

switch(reg) (

case ABS_SHORT:
NEXTWORD()
lprinti(ltrinq,"tﬁ4.4x.u",(unlignnd short int) word);
return(string)j;

case ABS_LONG:
NEXTWORD ()
longword = word;

272

A Disassembler s

NEXTWORD()
sprintf (string, "%@98.8X.L",
(longword<<1é) | ((unsigned short int) word));
return(string))
case PC_DISP:
offset = (long int) Address;
NEXTWORD() 3
offset += wordj
sprintf(string, “%&4.4x(pc) C[AX1I",
{unsigned short int) word, offset)j;
return(string))
case PC_INDEX:
offset = (long int) Address;
NEXTWORD())
byte = wordj
offset += bytej
sprintf (string,"%.2x (pc,%s.%c) C[%X1",
byte, regsl(word>>12)&0xf1,
(word & Ox@800) ? "1’ : *w’, offset)j;
return(string);
case IMMEDIATE:
immediate(string,size);
return(string);
default:
return("??");
3}
3}

The immediate Function

The immediate function handles byte-, word-, and long word-sized immediate
data.

The BYTE mode reads the next word, and uses only the low byte of it.
The WORD mode uses the entire word, and the LONG mode fetches two

words, and patches them together into a long word. All modes convert the re-
sults to hexadecimal and return.

Program 10-6. immediat.c
define HAS_DISASSEMBLY
include <debug.h>

char %
immediate(string,size)
char $stringj;

int size;(

static long int longwordj;
extern short int getshort()j;
extern long int getlong();

switch(size) (

case BYTE:
NEXTWORD () 3
sprintf (string, "#%04.4x" ,word & Oxff);
return(string)}

default:

case WORD:
NEXTWORD () 3
sprintf (string, "#%24.4x", (unsigned short int) word);
return(string)j

273

s CHAPTER 10

case LONG:
NEXTWORD() 3
longword = wordj
NEXTWORD () 3
sprintf (string, "#%88.8X",
{longword<<1é4) | ({unsigned short int) word));
return(string);

The disassem Function

Once the get_dis function has captured the information it needs, it returns to
get_trace, which eventually returns to the exception handler routine, which
jumps to TOS to print the bomb icons and clean up. To have the desk acces-
sory show the disassembly listing, the user presses the D key, and the disassem
function, Program 10-7, is called.

The disassem function calls setup_dis to set the slider values (since the
disassembly is several pages long, the slider will be needed to allow the user to
display the parts that don’t fit on the initial screen). Then disassem loops
through all the lines, copying the da[] array which holds the disassembly list-
ing into the pl[] array, which is what showwnd prints on the screen.

After the disassem function has been called (by got_key), got_key calls
the do_new_wnd routine to create a window into which showwnd will print
the pl[] array. GEM will send multi a REDRAW message, which will be passed
to wasmsg, which calls do_redraw, which calls just_draw, which calls doit,
which calls show_info, which calls showwnd, which prints the pl[] array.

Program 10-7. disassem.c

include <document.h>
char dalNLINES]LCNCHARS]1j

disassem{whand, vw,nlines)
int whand, vw, nlines;{

int ij
extern int xlines;
extern char pl[NLINESILNCHARS]}

Xlines = nlines;
setup_dis (whand,vw,nlines);
for(i = @3 i < NLINES; i++)
strncpy(plLil, dafil, NCHARS);
b

The setup_dis Function

The setup_dis function, Program 10-8, should look familiar by now. It calls
wind_get, slide_size, slide_pos, and wind_set to set the sliders to the proper
size and position to reflect the size and position of the window within the en-
tire disassembly listing.

274

A Disassembler s

Program 10-8. setupdis.c

include <gemdefs.h>

setup_dis(whand,vw,nlines)
int whand, vw, nlines;{

static int x, y, w, h, wlines, hs, vs, hp, vp;
extern int gl_hcharj

wind_get (whand, WF_WORKXYWH, &x, &y, &w, &h);
wlines = h / gl _hchar;

slide_size(wlines, nlines, &vs)j;
slide_size(1, 1, &hs)

slide_pos(wlines, nlines, &, &vp)j;
slide_pos(wlines, nlines, @, &hp)}
wind_set (whand, WF_VSLSIZE, vs, @, &, @);
wind_set (whand, WF_HSLSIZE, hs, @, @, @);
wind_set(whand, WF_VSLIDE, vp, @, &, @);
wind_set (whand, WF_HSLIDE, hp, &, &, @);
}

The tables.c File

The tables table_A and table_B are long (Program 10-9), but their format is
regular enough that typing them in with a good editor does not really take that
long.

The hash_tab structure is defined in debug.h, and has five elements.
These are the addressing mode (addrmode), the number of instructions that
share the same high ten bits as this one (numhits), the instruction itself (value),
a mask to tell which bits in the instruction are relevant to the instruction and
which are irrelevant (for instance, which are parts of the addressing mode and
not parts of the instruction), and a string that has the decode name of the in-
struction, usually with a format field (%s) which sprintf will use to place the
decoded address in the right place in the string.

Program 10-9. tables.c

#*
define HAG_DISASSEMBLY

include <debug.h>

char unimplemented(] = "unimplemented";

struct hash_tab table_AL] = {

/% A: Ox0000 %/ IMMEA, O, ox 0000, Oxffchd, "ori.b Us",

/% A: Ox@P40 x/ IMMEA, @, Ox 0040, Oxffcd, "ori.w Us",

/% Ay Ox0080 %/ IMMEA, @, ox 0080, OxffcPd, "ori.l Us",

/% A: Ox@Bc@ %/ NONE, 2, Ox 0000, OxP09P, unimplemented,

/% A: Px@10@ %/ EFFADD, 1, oxP100, Oxffcd, "btst.l DO,%Us",
/% A: @Ox@140 %/ EFFADD, 1, P9xP140, Oxffc@, "bchg.l D@,%us",
/% A: OxP180 %/ EFFADD, 1, ox@180, Oxffchd, "bclr.l DO,%s",
/% A: OxP1cd %/ EFFADD, 1, oxd1icd, Oxffcd, “"bset.l DO, %s",
/% A Ox0200 %/ IMMEA, 1, ox 0200, OxffcHd, “"andi.b ¥Us",

/% A: Ox@9240 x/ IMMEA, 1, PxP240, OxffcOd, “"andi.w ¥%s",

/% A: Ox9280 %/ IMMEA, @, ox 0280, Oxffc@d, "andi.l ¥Us",

/% A: Ox92c@ %/ NONE, a, 9% 0000, Ox0098, unimplemented,

275

mmmmm CHAPTER 10

/%
’x
/%
/%
/%
'z
/%
/%
/%
/%
/s
%
/%
’x
%
/%
/%
/%
/%
x
/X
/%
/%
%
/%
/%
’x
%
/%
/%
/%
/%
/%
/%
"
/%
/%
/%
/%
/X
/%
/%
/%
/%
/%
/%
s
/%
/e
/%
/%
’x
/%
/%
/%
/%
/%
/%
/%
/%
14
/%
x
/%
/%
/%
/%

A:
A:
At
A
At
Az
Az
Az
Az
Az
A:

Ar
Az
A:
A:
A:

A:
At

Az

Az
Az
Az
A:
(5 H
A:
Az
Az
Az
Az
Az
Az
Az
At
A:
A:
A:
A:
Al
Az
Al
Az
Az
Az
Az
At
Az
Az
A
Az
A
A:
Al
A:
Az
Az
Az
Az
A
Az
A:

O 8300
Ox 9340
0380
G P3cP
OxOADP
@x 0440
2% 2480
PxB4cd
Ox 9500
Ix @540
2x 9580
Px05co
Px B6BD
o2 0640
2= 9680
@xBb6cd
Bx@87 00
@740
ox @789
@x@7co
20809
2x 0840
ox 0880
2x98cP
D D900
Ax D949
G 9980
@x@I9cd
@ Badd
@xdadd
@xBa8d
@xPacd
2x0bPG
OxOb4g
@x@bBe
OxObcd
I OcoD
DxBcad
@xOcBo
Oxdccd
@x 8do0
@x0d4a
@x@d8@
@x@dca
OxPedd
Ox dedd
Ox OeBO
@xPecd
2% 000
OxOfA40
ox 080
OxBfcad
@x 1000
Ox 1040
@x 1080
@x 10c@d
@x 1100
Px1140
Px1180
Px11cd
Ox 1200
ox 1240
@x 1280
Px12cO
% 1300
Px 1340
Px 1380

EFFADD,
EFFADD,
EFFADD,
EFFADD,
IMMEA,
IMMEA,
IMMEA,
NONE,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
IMMEA,
IMMEA,
IMMEA,
NONE,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
NONE,
NONE,
NONE,
NONE,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
IMMEA,
IMMEA,
IMMEA,
NONE,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
IMMEA,
IMMEA,
IMMEA,
NONE,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
NONE,
NONE,

EFFADD,
EFFADD,
EFFADD,
EFFADD,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEERA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,

2= 0300,
Px 0340,
ox 0380,
Px@3cd,
PxB408,
ox @440,
@x 9480,
Ox 8000,
Ox @590 ,
Px @540,
ox 0580,
@x@5cd,
Ox 0600,
on2648,
Px 0680,
%0000,
0708,
@x@749,
2x @780,
Ox@7cd,
Ox 0000 ,
0008,
o1 B000 ,
ox 0090,
%8700,
Bx 3940,
2x 0980,
@x@9cP,
OxBGadd,
OxBadd,
oxPaBa,
o 0000,
oxOhoo,
PxObad,
2% ob8a,
oxBbcd,
GxPcod,
IxBcad,
@x@cB8a,
o1 0000,
InBdos,
OxBdag,
Px0dBa,
Pnddco,
Dx 0000,
Ox 0003,
ox 0003,
o1 0000,
oxof 00,
oxofAa0,
ox8f80,
ond@fchd,
ox 1000,
Px 1000,
ox 1000,
ox 1000,
@x 1008,
o 1000,
ox 1000,
ox 1000,
Ox 1000,
ox 1000,
Ox 1090,
Ox 1000,
ox 1000,
ox 1000,
ox 1000,

Onffchd,
Oxffco,
@xffcd,
Oxffcd,
Oxffcoa,
Pxffco,
Inffco,
Ox 0000,
Inffca,
Oxffco,
Inffcad,
oxffca,
Onffco,
@nffcad,
onffco,
%0000,
Oxffco,
oxffco,
Oxffcod,
Oxffco,
o 0003 ,
%0008,
Ox 0009,
ox 0000,
Gnffcod,
Onffca,
@xffco,
@xffca,
@xffco,
Oxffco,
Puffco,
Ox 0000,
Oxffco,
Oxffcod,
Onffco,
@xffcod,
Oxffcd,
oxffco,
Oxffco,
O 0000,
Pxffco,
Pxffco,
onffcd,
onffchd,
Ox 0900,
Ox 0000,
ox 0000,
Ox 0008,
Inffch,
Onffco,
Ixffcad,
Pxffco,
Ox 000,
oxf000,
o f 000,
Ox 000,
Ox f 000,
Ox 000,
ox 000,
Ox F000,
Ox £ 000,
Ox 000,
O 090,
Ox f 000,
Ix 000,
Oxf000,
Ox 000,

276

"btst.1 D1,%s"”,
"bchg.1 D1,%4s",
“belr.1l Di,Xs",
"bset.l Di,¥%s",
"subi.b ¥%s",
"subi.w ¥%s",
“subi.l ¥%s",
unimplemented,
"btst.1 D2,%s",
"bchg.1l D2,%s",
"bclr.1 D2,%s",
"bset.1 D2,%s",
"addi.b %s",
"addi.w %s",
"addi.l %s",
unimplemented,
"btst.l D3,%s",
"bchg.1l D3,%s",
*beclr.1 D3,%s”,
"bset.l D3,%s",
unimplemented,
unimplemented,
unimplemented,
unimplemented,
"btst.1 D4,%s",
“bchg.1l D4,%s",
“beclr.1 D4,%s",
"bset.l1 D4,%s",
"eori.b %s",
"eori.w %s",
"eori.l %s",
unimplemented,
"btst.1 DS5,is",
"bchg.l D5,%s",
"bclr.1l D5,is",
"bset.1 D5,%s",
"cmpi.b %Us",
"cmpi.w %s",
"empi.l ¥%s",
unimplemented,
"btst.1 Dé&,%s",
"bchg.1l Dé&,%us",
"belr.1 Dé&,%s",
"bset.l D&,%s",
unimplemented,
unimplemented,
unimplemented,
unimplemented,
"btst.l1 D7,%s",
"bchg.1l D7,%s",
"belr.l D7,%s*,
"bset.l D7,%s",
"move.b ¥is",
"move.b %s",
"move.b %s",
"move.b %s",
"move.b %us",
"move.b ¥s",
"move.b ¥%s",
"move.b %As",
"move.b ¥s",
"move.b %s",
"move.b %Us",
"move.b %s",
"move.b %s",
"move.b %s",
"move.b %is",

%
%
/%
/%
/%
/%
/%
/x
/%
A
/%
%
/%
/%
/%
/%
/%
/%
%
/%
g
4
/%
/%
/%
/%
/%
/%
’x
/%
/%
e
/%
4]
/%
%
/%
%
/%
%
/%
/%
/%
/%
/%
/%
/%
4
/%
%
/%
/%
/%
/%
/%
%
/n
%
/%
4]
/%
%
/%
4]
/%
/%

At
Az
Az
Az
Az
Az
A:
Al
At
A:
A:
A
A:
A
A
A:
Az
A:
Az
A:
Az
1]
Az
Al
At
Az
Az
Az
Az
Az
Az
Al
A:
At
Al
Az
Az
At
Az
A
A
A:
Al
A:
Az
Al
Ar
Az
Az
Al
Az
Al

Al
Az
Al
Az
Al
Az
At
A:
Al
A:
At
Az
Al

@x13c@
ox 1400
@x 1440
ox 1480
@x14cd
ox 1500
ox 1540
@x 1580
Ox15co
ox 1600
POx 1640
2% 14680
Px16cP
1700
Px 1740
ox 17680
ox17c@d
@x 1800
@x 1840
@x 1880
@x 18c@
ox 1900
Px 1940
@x 1980
P% 19cd
% 1200
Ix1a40
@x1a80
Oxlacd
2x 1b9o2
Px1b4g
2% 1bB0o
Oxibc@
Ox 1cod
Ox1c49
Px1cBo
@xlccd
Oxn1d00
@x 1d4g
ox 1d80
@x 1dc@
Ox 1edd
Ox 1e4d
Px 1eB8@
Pxlecd
ox 100
ox1f40
ox 180
Ox1fcd
Ox 2000
Px 2040
@x 2080
@x20co
%2100
Px2140
Px2180
Px21cd
Ox 2200
ox 2240
2% 22680
Px22cO
Ox 2300
Px 2340
ox 2380
Px23cP
2% 2400
Px 2440

%/
&/
x/
5/
%/
%/
%/
%/
X/
%/
%/
%/
%/
%/
X/
%/
%/
5/
x/
&/
X/
&/
%/
5/
x/
%/
x/
&/
5/
5/
5/
&/
%/
%/
%/
%/
%/
%/
%/
%/
%/
x/
x/
5/
K/
x/
5/
x/
x/
&/
X/
&/
5/
&/
5/
5/
x/
X/
%/
5/
%/
%/
%/
%/
X/
&/

MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,

MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEER,
MOVEEA,
MOVEEA,

MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEER,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEAD,

Ox 1900,
ox 1000,
ox 1000,
ox 1008,
ox 1000,
ox 1000,
ox 1000,
@x 1000,
ox 1000,
ox 1000,
% 1008,
ox 1000,
@% 1000,
2% 1000,
ox 1000,
@x 1000,
ox 10008,
2% 1000,
ox 1000,
o= 1000,
ox 10008,
2% 1000,
ox 19000,
ox 1900,
2% 1009,
Ox 1000,
2% 1000,
ox 1000,
ox 1000,
ox 1000,
ox 1000,
Ox 1000,
2% 1000,
Px 1900,
Ox 1000,
2% 1000,
ox 1000,
ox 1000,
ox 1000,
ox 1000,
ox 1000,
ox 1000,
O 1000,
@x 1000,
ox 1000,
ox 19000,
ox 19000,
ox 1000,
ox 1000,
2% 2000,
Ox 2040,
%2000,
9% 2000,
Ox 2000,
Ox 2000,
%2000,
Ix 2000,
o% 2000,
Ox2240,
ox 2000,
2% 2000,
2% 2000,
D% 2000,
%2000,
ox 2000,
%2000,
@x2440,

Bx f 000,
ox 900,
ox fO00,
oxn 000,
ox f000,
ox f 000,
2% £0008,
ox £ 000,
Ox£000,
ox 003,
ox f000,
% £000,
oxf 000,
@x £ 000,
ox 000,
on 000,
ox 000,
o000,
2% 000,
ox 000,
ox f000,
ox f000,
Ox £ 009,
% f000,
ox f000,
oxf009,
ox f000,
ox f000,
Ox 000,
Ox 000,
Ox f 000,
oxf000,
ox 000,
Ox f000,
Ox £ 000,
Ox 000,
ox f000,
Ox 000,
Ox 000,
ox 000,
ox £009,
ox £000,
Bx 000,
Gx 000,
Ox F000,
o 000,
ox 000,
o= 0008,
ox f008,
ox 000,
oxffchd,
Ox 000,
Ox 000,
ox F000,
ox f000,
ox f 0008,
ox f000,
ox 000,
oxffch,
Ox 000,
Ox 000,
2% 000,
oxf000,
ox 000,
ox f 000,
O 008,
Pxffcod,

277

A Disassembler s

"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
“move.b
"move.b
"move.b
“move.b
“move.b
"move.b
"move.b
"move.b
“move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
“move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
"move.b
“move.b
"move.b
"move.l
"mova.l
"move.l
"move.l
"move.l
“move.l
"move.l
"move.l
“move.l
“mova.l
“move.l
"move.l
"move.l
"move.l
“move.l
"move.l
"move.l
"mova.l

%is",
x-ll ’
%is",
;4 bl
%is",
is",
xs",
%is",
%is",
%is",
%s",
x-ll '
%xis",
x.ll ’
%s",
%s",
s,
xs”,
%s",
rLs" A
%s",
%s",
%is",
is",
%Ls" 5
%is",
is",
xs®,
%ns",
x'll s
xs",
%s",
%is",
rs* p
%is",
%",
%is",
%is",
%is",
%s",
%is",
%is" -
%is",
%is",
%in",
x.ll ’
%s",
z-ll »
%s",
%s",
:-:Aa'.
%a")
Ls" -
%is",
%is",
%s",
z'll »
%s,Al",
%s"
x.ll:
%s",
%s",
As® :
%s",
is",
xs,A2",

s CHAPTER 10

Al
Az
Az
Az
Az
Az
A:
Az
A:
A:
Az
A:
Az
A:
Az
Az
A:
Az
A:
Az
A
A:
A:

A:
A:

Az
Az
Az
Az
A
A:
A
A
Az
Az
Az
A
A:
A:
A:

As
A:
A:
A:
A:
A:
Az
Az

At
Az
Az
A:
A:
A:
A:
A

o% 2480
Ox24cH
Ox 2500
ox 25409
Px 2580
@x25co
Ox 2600
Ox 2640
Px 2680
Ox26cO
Bx 2700
POx 2740
ox 2789
Ox27cod
o 2800
ox 2840
@x 2880
@%28c@
%2900
P 2940
ox 2980
@x29cd
Px2a0@
Ox2a40
Px2aB9
Px2acd
ox2boa
Px2b4g
2% 2bBo
@x2bcd
@x 2c o0
@x2c40
Px2c80
@x2ccd
BOx 2d00
Px2d4@
2x2dB80
Px2dc@d
2% 2e00
0% 2e40
Ox2e80
% 2ecd
Ox 2§00
@x2¢f40
9x 280
Ox2¢cP
O 3I000
2% 3040
Px 3080
D% 30cP
@x3I100
@x3140
2x3180
@x31cd
Ox 3200
Ox 3240
2% 3280
Px32co
Pn3I300
Px 3349
Px 3380
Px33cP
@x 3400
@x 3449
Px 3480
@x34c@
P 3I500

5/
%/
%/
%/
X/
x/
5/
X/
L ¥4
x/
5/
x/
&/
L ¥
X/
x/
%/

%/
%/
X/
%/
X/
x/
L ¥4
&/
X/
x/
x/
x/
%/
%/
x/
x/
3/
x/
%/
X/
X/
x/
X/
x/
X/
x/
X/
x/
x/
x/
x/
x/
x/
x/
X/
X/
X/
X/
x/
L ¥4
X/
x/
%/
X/
x/
x/
%/
X/
&/

MOVEEA,
MOVEERA,
MOVEER,
MOVEEA,
MOVEEAR,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEER,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEER,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEER,
MOVEAD,
MOVEEA,
MOVEEA,
MOVEER,
MOVEEA,
MOVEER,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEEA,
MOVEERA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEERA,
MOVEEA,

Ox 2000,
2% 2000,
D% 2000,
ox 2000,
Ox 2000,
%2000,
Ox 2000,
Px 2640,
Px 2000,
Ox 2000,
ox 2000,
O% 2000,
ox 2000,
ox 2000,
%2000,
9x 2840,
%2000,
Ox 2000,
%2000,
o= 2000,
Ox 2008,
ox 2000,
2x 2000,
@x2a4@,
Ox 2000,
Px 2000,
ox 2000,
9x 2000,
Ox 2000,
Ox 2000,
2% 2000,
@x2ca0,
@x 2000,
o= 2000,
Ox 2000,
Ox 2000,
Ox 2000,
20008,
2000,
x2e48,
Ox 2000,
Ix 2000,
ox 2000,
Ox 2000,
@x 2000,
Ox 2000,
Ox 3000,
@x 3940,
Px 3000,
%3000,
@x 3000,
%3000,
@x 3000,
23000,
Ox 3000,
Px3240,
Px 3000,
@x 3000,
Bx 3000,
Bx 3000,
2x 3000,
Ox 3000,
Ox 3000,
Ox 3440,
%3000,
Ox 3000,
o= 3000,

Ox f000,
ox 0008,
Ox £ 000,
Bx 000,
Ix£0008,
Ox 000,
Ox 000,
Oxffco,
ox f900,
o f000,
o000,
Oxf008,
Ox F 000,
Ox £000,
ox 000,
@xffco,
@x 000,
oxf000,
@x 000,
ox f 000,
ox f 0008,
Ox f 000,
2% 900,
Oxffco,
ox 000,
ox 008,
ox 000,
Ox £000,
ox 000,
ox 000,
2% 000,
oxffco,
ox 000,
Ox 000,
Ox F000,
Ox f 000,
oxf000,
Ox £ 000,
ox £ 000,
Oxffcd,
ox 000,
x990,
P 000,
ox 008,
ox£000,
Oxf000,
@x £ 000,
Oxffco,
o f 000,
oxfo0d,
ox 000,
ox 000,
ox f 008,
Ox 000,
@x 000,
Bxffcod,
ox 0008,
Ox 000,
@x 000,
Ox 000,
ox 009,
ox 000,
ox 000,
oxffco,
Ox 000,
Ox f000,
ox f 000,

278

"move. 1l
"move.l
"move.l
"move.l
"move.l
"move.l
"move.l
"mova.l
"move.l
"move.l
“move.1
"move.l
"move.l
"move.l
"move.l
“mova.l
"move. 1l
"move.l
"move.l
"move.l
"move.l
"move.l
"move.l
"mova.l
"move.l
"move.l
"move.l
"move.l
"move.l
“move.l
"move.l
"mova.l
"move.l
"move.l
"move.l
"move.l
"move.l
"move.l
"move.l
"mova.l
“move.1
"move.l
"move.l
"move.l
"move.l
"move.l
"move.w
"mova.w
"move.w
"move.w
"move.w
"move.w
“"move.w
"move.w
"“move.w
"mova.w
"move.w
"move.w
"move.w
"move.w
"move.w
"move.w
"move.w
"mova.w
"move.w
"move.w
"move.w

%s",
%is",
%is",
%is",
%is",
%is",
z.n’
%s,A3",
A",
x-n'
%s",
%is",
%s",
%s",
%is",
%is,A4",
%" =
x.u'
%is",
%s",
is",
%is",
is",
%s,AS",
7-!11,
z-u,
7.5",
%is",
%is",
%is" 3
%Ls" 5
%s,FP",
%s",
%is",
%is",
%is",
%s",
%is",
“s",
%s,SP",
%s",
%s" 3
%s",
%s",
“is",
rte" .
%is",
%s,AB",
%is",
is",
%e" 4
%is",
%s",
%s",
%s",
%s,AL",
Yg" ;
%rs" s
%s",
%" 3
z‘u’
%ns",
uis",
is,A2",
%s",
%s" G
is",

/%
’x
Iz
/%
'z
/%
/%
/x
’x
/%

/%
’x
/%
’x
/%
/%
/%
/x
/%
/%
/%
x
/%
x
/%
’x
/%
/%
/%
/%
/%
’x
/x
’x
/%
/%
/%
’x
’x
%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/x
/t
/%
’x
/%
/%
/%
/%
s
/%
/%
g
g
/%

A:
Az
A:
At
A:
Az
Ar
Az
Al
Al
A:
Az
A:
A:
A:
Az
A:
Az
Al
Az
Az
Az
Az
Az
A:
Az
A
Ax
Al
A:
At
A
Az
A:
A
A:
At

A:

A
A:
A:
A:
At
At
A:

At
At
Az
Az
A:
Az
A:
Al
Az
Az
Az
At
Az
Az
At
Az
Az

Bx 3540
@x 3580
@x 35ce
Ox 3600
Px 3640
Ox 3689
Px36cd
Gx3I700
@x3740
ox 3780
@x37cP
Ox 3800
ax 3840
Px 3880
@x38cd
Ox 3900
Ix 3940
Ox 3980
@x3I9cP
Bx 3add
@x3add
@x3aB@
@x3acd
@x 3b0@
@x3bad
% 3bB9
@x3bc@
@x3chd
% 3c40
Px3cB@
@x3ccd
2% 3d00
@x3d49
Px3d80
@x3dc@d
O 3edd
Px3edd
Ox 3IeB9
@x3ecd
On 300
@x3f40
on 380
@x3fcd
Ox 4000
Ox 4840
Ox 4080
@x40cd
%4100
Px4140
Px 4180
Px41cd
Ox 4200
Px4240
4280
P%x42cd
Ox 4300
Px 4340
@x 4380
Px43cd
Bx 4400
Px 4440
@x 4480
@x44cP
2% 4500
Px 4540
Ix 4580
Px45co

%/
5/
X/
5/
%/
5/
X/
X/
%/
%/
X/
L ¥
x/
5/
X/
x/
5/
X/
X/
&/
%/
L ¥4
X/
5/
X/
%/
L ¥4
2/
X/
%/
x/
x/
x/
%/
x/
x/
x/
x/
x/
x/
x/
X/
x/
X/
X/
%/
x/
%/
X/
x/
x/
X/
X/
X/
X/
X/
x/
X/
x/
%/
X/
&/
%/
B/
x/
X/
%/

MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEERA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEAD,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
MOVEEA,
EFFADD,
EFFADD,
EFFADD,
NONE,

NONE,

NONE,

WEFFADD,

EFFADD,
EFFADD,
EFFADD,
EFFADD,
NONE,
NONE,
NONE,

WEFFADD,

EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
NONE,

NONE,

2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
a,
2,
2,
2,
2,
2,
2,
2,
@,
3,
2,y
3,
B,
2,
a,
@,
o,
2,
2,
a2,
a,
a,
a,
2,
2,
a,
a,
a,
a,
a,
o,
a,
a,
@,
2,
a,
2,
2,
a,
2,
a,
a,
a,
a,
2,
2,
2,
2,
2,
2,
a,
2,
a,
2,
2,

WEFFADD, @,

EFFADD,

Bx 3000,
%3000,
ox 3000,
Ox 3000,
@x3640,
Ox 3000,
On 3000,
Ox 3000,
2% 3000,
Ox 3000,
3000,
@x 3008,
Px3849,
Pn3000,
On 3008 ,
ox 3003,
x 3000,
Dx 3000,
Px 3000,
Px 3000,
Px3ad4@,
%3000,
Ox 3000,
2% 3000,
Ox 3000,
ox 3000,
Ox 3000,
ox 3000,
@x3c4d,
on 3000,
Ox 3000,
ox 3000,
%3000,
3000,
Ox 3000,
ox 3008,
Px3edd,
Ox 3000,
ox 3000,
@x 3000,
On 3000,
@x 3000,
Px 3000,
@x4000,
Ox 4060,
Bx 4080,
Ox 9090 ,
0% 0000,
Ox 0000,
?%x4180,
Px41cod,
4200,
Px4240,
?x 4280,
ox 0000,
2% 0000 ,
0% 0000,
2x 4389,
@x43cPd,
2x 4400,
4440,
@x 4480,
@x44cd,
Ox 0009 ,
%0000,
@x 4580,
?x45co,

@x f 000,
Gx 000,
% 000,
ox 000,
Gnffco,
Ox 000,
Ox$000,
o000,
ox £ 000,
ox 000,
Ox 000,
Ox f 000,
Pxffchd,
on 000,
Ox 000,
Ox f 000,
POx 000,
ox f000,
ox 000,
ox 000,
Pxffco,
ox 000,
@x £ 000,
2% {909,
Ox £ 000,
ox £ 000,
o {008,
ox £ 908,
Pxffcd,
2x 000,
ox 000,
on 000,
Ox£000,
ox 000,
@x 000,
ox f 000,
Oxffcod,
ox 000,
Gxf 000,
ox f 000,
o= 000,
Oxf000,
@xf 000,
@nffcad,
Ox f fcd,
Oxffcd,
%0000,
Ox 090,
Ox 0000,
Brffco,
@nffco,
Pxffcd,
Brffcod,
@xffco,
Ox 0000,
Ox 0000,
o= 2000,
oxffco,
Pxffcod,
Oxnffco,
@xffco,
oxffco,
dxffca,
dx 0009,
Ox 0000,
Bxffcd,
oxffco,

279

A Disassembler s

"move.w
"move.w
"move.w
"move.w
"mova.w
"move.w
"move.w
"move.w
"move.w
"move.w
"move.w
"move.w
"mova.w
"move.w
"move.w
"move.w
"move.w
"move.w
"move.w
"move.w
"mova.w
"move.w
"move.w
"move.w
"move.w
"move.w
"move.w
"move.w
"mova.w
"move.w
"move.w
"move.w
"move.w
“move.w
"move.w
"move.w
"mova.w
"move.w
"move.w
"move.w
"move.w
"move.w
"move.w
"negx.b
"move.l
"negx.l

%s",
us",
%s",
%is",
%S, A3",
zsu'
%m",
%s",
A,
“s",
%is",
is",
%s,A4",
%is",
%“s",
%s",
%is",
%is",
%s",
%s",
%s,AS",
ks,
%s",
“is",
%s",
is",
x.n’
%“s",
%s,FP",
%s",
%s" ¥
%s",
is",
“is",
is",
%s",
%s,SP",
e,
%s",
%is",
is",
z’u'
x.u.
%s",
SR, %s",
%is",

unimplemented,
unimplemented,
unimplemented,

"chk.w
"lea.l
"clr.b
"clr.w
"elr.l

Do, %s",
%s,AB" ,
%s",
%is" .
%s",

unimplemented,
unimplemented,
unimplemented,

"chk.w
"lea.l
"neg.b
"neg.w
"neg.1
"move

D1,%s",
%s,A1",
%s",
%s",
As”,

%s,CCR",

unimplemented,
unimplemented,

"chk.w
"lea.l

D2,%s",
%s, A",

s CHAPTER 10

Ox 4600
@x 4640
Px 4680
@x46cd
Ox 4700
@x 4740
Px 4780
Px47cOd
O 4800
2»4849
2% 4880
@x48cP
2» 4900
@x 4949
@x 4980
@x49cP
@x4a00
@x 4240
@x4aB80
@x4acd
@x 4b2a
@x 4b4g
% 4b809
@x4bc@
Ox4cOd
@x4cagd
Px4cB9
@x4ccd
@» 4d09
@x4d49
@»4d89
@»4dc@d
@ 4edd
dxded4d
@ 4280
D»d4ecd
@x 4§00
2% 440
@x4¢80
@»4fcad
oS00
OxSP40
Ix 5080
P SOcod
ouS100
Px5149
ox5180
PxS1cod
onS200
@»x5249
ox 5280
IxS2cPd
O S3I00
IxS5340
@x5380
PxS3co
ox 5400
PxS5449
2»5480
PxS54cd
@» 5500
P%5549
oxS580
@%SS5c@d
Ix'S600
PxS640
2% S680

EFFADD, @,
EFFADD, @,
EFFADD, &,
EFFADD, @,
NONE, @,
NONE, &,
WEFFADD, &,
EFFADD, @,
EFFADD, @,
EFFADD, 8,
MOVEM, 8,
MOVEM, 8,
NONE, @,
NONE, @,
WEFFADD, 8,
EFFADD, @,
EFFADD, @,
EFFADD, @,
EFFADD, @,
EFFADD, 1,
NONE, @,
NONE, @,
WEFFADD, 8,
EFFADD, @,

NONE, @,
WEFFADD, @,
EFFADD, @,
NONE, @,
ONEREG, 5S4,
EFFADD, @,
EFFADD, @,
NONE, @,
NONE, @,
WEFFADD, @,
EFFADD, @,
EFFADD, @,
EFFADD, @,
EFFADD, 0,
EFFADD, 8,
EFFADD, @,
EFFADD, 0,
EFFADD, @,
EFFADD, 8,
EFFADD, @,
EFFADD, @,
EFFADD, @,
EFFADD, 8,
EFFADD, @,
EFFADD, @,
EFFADD, @,
EFFADD, 8,
EFFADD, @,
EFFADD, @,
EFFADD, @,
EFFADD, 8,
EFFADD, @,
EFFADD, @,
EFFADD, @,
EFFADD, 8,
EFFADD, @,
EFFADD, @,
EFFADD, @,

ox 4600,
P 4640,
Px 4680,
Pr4bcB,
Ox 0000 ,
Ox 0000,
@x 4780,
Pn47cd,
@x 4800,
@x 4840,
@x 4880,
@%x48co,
Ox 000D,
Ox 0003,
2% 4980,
@x49chd,
@x 4200,
@x4add,
@x4a80,
Pndacd,
@ @000,
%0004,
@x4b80G,
@x4bcd,
Ox 8000,
Gx 099,
@x4cB9,
@xdccd,
B @000,
Gx 9000,
@x4d8o,
@x4dchd,
@ 3000,
@xdedd,
@x4e80,
@x4ecd,
Ox 0000 ,
ox 0000 ,
ox 4§80,
@x4fcd,
@x 5000,
@x5043,
2% 50840,
@xS0cd,
@xS5100,
ox5140,
#x5180,
@xS1co,
@xS5200,
Px5240,
o= 5280,
oxS52co,
IxS300,
PxS340,
@x 5380,
@%53cd,
@x 54900,
@xS44a,
@x5480,
@xS54cO,
@x5500,
Px5540,
@x5580,
Px55co,
@xS600,
PxS640,
@x5680,

Pnffca,
Oxffco,
Pnffcd,
Oxffco,
= 0000,
@x 2000,
oxffco,
Pnffcd,
@xffcoh,
Pnffcad,
Onffca,
Pxffca,
Ix 0000,
9» 0000,
Pxffco,
Pxffca,
@nffcoa,
@xffco,
onffco,
@uffca,
D% PO0a
ox 0008,
@nffcod,
oxffcd,
Ox O00a ,
ax 0000,
@xffcad,
Onffca,
D% 0090,
I P09,
@xffch,
Pxffcad,
dx D009 ,
Pruffff,
@xffcd,
oxffco,
@ O00a,
Ox 0000,
Grffco,
oxffco,
@nffca,
@xffcod,
@xffchd,
Oxffco,
@nffcd,
Pxffcd,
@xffco,
Puffcod,
o ffco,
Oxffco,
Pnffco,
onffco,
Inffca,
Oxffcad,
@xffcad,
Oxffca,
onffch,
oxffcod,
Inffcoa,
Oxffcod,
Onffchd,
Onffchd,
Ixuffcad,
Oxffcd,
oxffca,
Onffcod,
Pnffco,

280

"not.b %s",
"not.w %s",
"not.l %s",
"move.l %s,SR",
unimplemented,
unimplemented,
"chk.w D3,%s",
"lea.l %s,A3",
"nbcd %s",
“pea.l us",
“movm.w %s",
"movm.l %s",

unimplemented,
unimplemented,

"chk.w D4,%s",
"lea.l ¥%s,A4",
"tst.b uUs",
"tst.w ¥%Us",
"tst.l uUs",
"tas.b ¥s",
unimplemented,
unimplemented,
“chk.w DS,%s",
“lea.l %s,AS",

unimplemented,
unimplemented,

"movm.w
“movm. 1

%s",
%s",

unimplemented,
unimplemented,

"chk.w D&,%s",
"lea.l %s,FP",
unimplemented,
"trap wo",
"isr s,
" jmp rs",

unimplemented,
unimplemented,

"chk.w
“lea.l
"addqg.1l
"addq.1
"addg.1l
"st.b
"subq.1l
"subqg.l
"subqg.1l
"sf.b
"addq.1
"addq.1
"addq.1
"shi.b
“subqg.l
"subqg.l
"subq.1
"sls.b
"addqg.1
"addqg.1
"addq.1l
"scc.b
"subqg.l
"subqg.l
"subg.1l
"scs.b
"addq.1l
"addq.1
"addq.1l

D7,%s",
%s, 8P",
#8,%s",
#8,%s",
#8,%s",
x-l.’

#8,%s",
#8,%s",
#8,%s",
%s",

#1,%s",
#1,%s",
#1,%s",
x'n’

#1,%s",
#1,%s”,
#1,%s",
%s",

#2,%s",
#2,%s",
#2,%s",
%s",

#2,%s",
w2,%s",
#2,%s",
%is",

#3,%s",
#3,%s",
#3,%s",

PnS6cP
PxS700
2%S5740
2%5780
2% S57cd
@ S80@
@x 5840
@x5880
@xS8cP
2% 5909
oD% 5940
@x 5980
?x59ch
@%Sad0
PxSad@
?xSaBd
@xSacd
@x Sb@d
@x5b4d
@xSbBo
@xSbcd
IxScod
@x5cad
% ScBd
@xSccd
PxSdeo
@xSdag
?x5Sd8a
?xSdcd
B Sedd
@xSedd
@x SeBd
PxSecd
PuSfO0
@xSfa0
@xS¥80
@xSfcd
% 6000
2x b040
@x 6080
Px 68cP
Prb1009
Px 6140
Pxb180
Pxblcd
Ox 6200
@x 6240
Ox 6280
Pnb2cd
Ix 6300
Px 6340
Ix 6380
POn63cd
PR 6400
Px 6449
@x 6489
Pxb64c@
Bx 6500
Bx 6540
Px 6580
@»65cd
B 6600
Px 6640
Px 6680
Prbbcd
P &700
@x 6740

EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,
BRANCH,

@xSecd,
@nS709,
PxS740,
?»5780,
@x57cd,
2x580@,
%5849,
9»5880,
@x58chd,
#x 5900,
@x5940,
?x 5980,
@»59cd,
@xS5add,
@»Sadd,
»SaBe,
PxSacd,
Px5bod,
Px5bagd,
?»5b8a,
@xSbcd,
2%5Scodd,
@xScag,
#»Sc8d,
@xSccd,
@xSdoa,
Px5dagd,
@xS5d8a,
@»Sdc@,
% Sedd,
@xSedd,
?xSeB0,
@xSecd,
2%S5+08,
9xS5f40,
oxS5+80,
@xSfcd,
Ox 6000,
Pr 6040,
Px 6080,
Gxb@cd,
@xb100,
Pxb6140,
#x 6180,
Pxbicd,
226200,
Px 6240,
2x 6280,
Bxb&2cPd,
Px 6300,
Gx 6340,
Px 6380,
Prb&3co,
InbAD0,
Pnb6448,
gx 6480,
Pxbacd,
Ox 6500,
Oxn 6540,
Pn 6580,
Px465cd,
Pr 6600,
Pxb640,
Pn 6680,
P bbed,
G 67008,
Ox 6740,

Gxffcd,
@xffcd,
frffcd,
@xffcad,
@rnffcd,
Gnffcd,
@xffco,
P ffcad,
dxffco,
orffchd,
oxffch,
@xffco,
onffcd,
onffcd,
@xffcd,
oxffcd,
xffco,
onffcd,
Pxffcd,
O ffco,
Pxffco,
Gnffco,
@xffcd,
Oxffco,
oxffch,
@nffcad,
oxffcod,
dnffcd,
Pxffch,
onffco,
xffcd,
oxffcd,
Dxffcd,
oxffco,
@xffcod,
oxffcd,
@xffco,
oxffoo,
orff00,
oxffoo,
oxf 00,
anffoa,
oxf 00,
oxf§008,
oxff00,
ox 00,
oxff00,
%08,
Oxffod,
onff00,
Oxff0D,
ox 00,
Orff00,
oxff00,
onff00,
oxff00,
oxff0a,
oxff00,
oxffod,
ox {00,
oxff0B,
oxf 08,
oxf 00,
onffod,
Onf 00,
Oxf 00,
oxff00,

281

A Disassembler s

"sne.b
"subq.1
"subq.1
"subqg.1l
"seq.b
"addqg.1
"addq.1
“addq.1
"svc.b
"subq.l
"subq.1
"subq.l
"svs.b
"addqg.1
"addq.1
"addq.1l
"spl.b
"subqg.l
"subqg.1l
"subq.l
"smi.b
"addq.1l
"addqg.1
"addq.1
"sge.b
"subq.1l
"subq.l
"subq.1
"slt.b
"addqg.1l
"addg.1l
"addqg.1l
"sgt.b
"subqg.l
"subqg.l
"subq.1l
"sle.b
"bra.b
"bra.b
"bra.b
“"bra.b
"bsr.b
"bsr.b
"bsr.b
“bsr.b
"bhi.b
"bhi.b
"bhi.b
"bhi.b
"bls.b
"bls.b
"bls.b
"bls.b
"bcc.b
"bec.b
"bece.b
"bce.b
"bcs.b
"becs.b
"bes.b
"bcs.b
"bne.b
"bne.b
"bne.b
"bne.b
"beq.b
"beq.b

%s",

#3,%s",
#3,%s",
#3,%s",

%s",

$4,%s",
#4,%s",
#4,%s",

%s",

#4,%s",
#4,%s",
#4,%s",

%s",

#s,%s",
#5,%s",
#5,%s",

%s",

#5, %8,
#5,%s",
#5,%s",

%s",

#6,%s",
#6,%s",
#o,%s",

#6,%s",
#6,%s",
#6,%s",

%s",

#7,%s",
#7,%s",
#7,%s",

%us",

#7,%s",
#7,%s",
#7,%s",

%s",
%s",

e CHAPTER 10

/% A1 @x&780 %/ BRANCH, @, 2% 6788, Oxff09, "beq.b ¥Us",
/% A: Pxb67cP x/ BRANCH, @, Oxb67cd, Oxff00, "beq.b uUs",
/% A: 9x6808 %X/ BRANCH, @, 9% 6800, Oxff86, "bvc.b %s",
/% A: Ox6B40 %/ BRANCH, @, ox 6840, OxffO@, "bvc.b Us",
/% A: Oxb6B880 x/ BRANCH, 9, @x 6880, Oxff00, "bvc.b %s",
/% A: Ox6B8cP@ X/ BRANCH, &, Px68c@, OxffOO, "bvc.b is",
/% A: @xb6900 %/ BRANCH, @, @n 6900, Oxff00, "bvs.b is",
/% A: @x46940 %/ BRANCH, @, Px 6740, Oxffo0, "bvs.b Us",
/% A: Px&980 %/ BRANCH, @, 9% 6980, Oxff08, "bvs.b Ys",
/% A: Pxb69cd X/ BRANCH, @, 8% 69cPd, OxffOB, "bvs.b Ys",
/% A: Oxbadd %/ BRANCH, @, Px6add, Oxffo0, "bpl.b ¥Us",
/% A: Ox6a4@ %/ BRANCH, @, Oxbadd, Oxff00, "bpl.b us",
/% A: PxbaB@ %/ BRANCH, 9, Pxb6aB0, OxnffO@, "bpl.b Us",
/% A: @xbacd %/ BRANCH, 8, Prbacld, Oxffodd, "bpl.b ¥Us",
/% A: Ox6bBB &/ BRANCH, @, Px6bP0B, OxffBB, "bmi.b Us",
/% A: Ox6b4d %/ BRANCH, @, Pxb6bad, Oxff@@, “"bmi.b %s",
/% A: Ox6bB@ X/ BRANCH, @, @x6b80, Oxff0@, "bmi.b %Us",
/% A: Oxb6bcP %X/ BRANCH, @, Oxbbcd, Oxff00, "bmi.b %Us”,
/% A: @x6cPP %/ BRANCH, @, OxbcPdP, Oxff00, "bge.b %s",
/% A: Oxb6c40 %X/ BRANCH, @, Pxb6caP, OxFfO0, "bge.b YUs",
/% A: @x6cBO %/ BRANCH, o, P#x6cBO, Oxff0O, "bge.b ¥s",
/% A: @xbccd ¥/ BRANCH, @, Pxb6ccd, OxffO00, "bge.b YUs",
/% A: Pxb6&dBG x/ BRANCH, @, Px6d0@, Oxff08, "blt.b Us",
/% A: Px6d49 %/ BRANCH, o, Pxb6dad, Oxff00, "blt.b %Us",
/% A: Ox6d8@ ¥/ BRANCH, @, Px6dB80, Oxff0O8, "blt.b %s",
/% A: Pxbdc@ X/ BRANCH, &, Pxbdcd, OxffO0, "blt.b Us",
/% A: Ox6ePd ¥/ BRANCH, @, Oxbedd, Oxffd0, "bgt.b %Us",
/% A: Oxbed4d x/ BRANCH, &, @xbedd, Oxffd@, "bgt.b %us",
/¥ A: OxbeBP %/ BRANCH, @, OxbeB0, Oxff@@, "bgt.b %Us",
/% A: @xbecd %/ BRANCH, @, Oxbecd, Oxff@@, "bgt.b %Us",
/% A: Px6Ff08 %/ BRANCH, 0, Px6f00, Oxff0@, "ble.b %s",
/% A: Gx6F48 %/ BRANCH, @, Dx6f40, Oxff00, "ble.b Ys",
/% A Ox6f80 x/ BRANCH, 9, Ox6f80, OxffB0, "ble.b ¥s",
/% A: @xnbfc@ X/ BRANCH, 4, Oxbfcd, OxffOO, "ble.b ¥Us",
/% A: Ox7000 %/ MOVE_Q, &, ox7000, Oxff0@, “"movq.l ¥%s,DO",
/% A: Gx7040 %/ MOVE_Q, @, @x7000, oxffod, "movq.l %s,D@",
/% A: Px7080 x/ MOVE_Q, @, ox7000, Oxf+00, "movg.l %s,DE@",
/% A: @x70cd x/ MOVE_Q, @, #7000, Oxff08, "movg.l %s,DE",
/% A: 9x7100 x/ MOVE_@Q, &, Ox 7008, 0xff00, "movq.l %s,D@",
/% A: Px7140 %/ MOVE_Q, 9, %7000, @xff08, "movq.l %s,DO",
/% A: 9x7180 %/ MOVE_Q, @, %7000, Oxff00, "movqg.l %s,DE",
/X A: @x71cd x/ MOVE_QR, @, ox7000, Oxffd0, "movq.l %s,D@",
/% A1 Bx7200 %/ MOVE_Q, @, 2»7200, Oxff08, "movq.l %s,D1",
/% A: @x7240 %/ MOVE_Q, @, %7200, OxffPO, "movq.l %s,D1",
/% A: 9x7280 %/ MOVE_OQ, @, 7200, Oxffe@, "movg.l %s,D1",
/% A: @x72c@ x/ MOVE_Q, @, @x720@, dxff00, "movq.l %s,D1",
/¥ A: @x730@ x/ MOVE_Q, @, %7208, @x{f98, "movq.l %s,D1",
/% A: @x7340 %/ MOVE_@Q, @, 027208, Oxff00, "movq.l %s,D1",
/¥ A: @x738@ x/ MOVE_Q, @, %7200, @xf{08, "movq.l %s,D1",
/% A: @x73c@ x/ MOVE_Q, 9, %7200, Oxff00, "movq.l ¥%s,D1",
/% A: Bx740G0 %/ MOVE_O, a, 2x7400, Oxff00, "movg.l %s,D2",
/% A: @x744@0 x/ MOVE_Q, 9, Ox7400, Oxff06, "movqg.l ¥%s,D2",
/% A: O»7489 %/ MOVE_Q, @, Ox7400, Oxff00, "movq.l ¥%s,D2",
/% A: @x74cP x/ MOVE_Q, @, Ox7400, OxffO0O, "movq.l ¥s,D2",
/% A: @x7508 %/ MOVE_Q, @, 0% 7400, Oxff00, "movq.l %s,D2",
/%X A: @x7549 %/ MOVE_Q, @, ox7400, Oxff0d, "movq.l %s,D2",
/% A: @Bx7580 x/ MOVE_Q, @, ox740@, @xff@@#, "movq.l %s,D2",
/% A: @x7Scd %/ MOVE_Q, @, 9x7400, Oxff08, "movq.l ¥%s,D2",
/% A: 2x74600 %/ MOVE_Q, @, Pn7600, Oxff00, "movqg.l %s,D3",
/% A: @x7640 x/ MOVE_Q, @, In7600, OxffOO, "movq.l %s,D3",
/% A: #7680 x/ MOVE_Q, @, @x7600, SxffO0, "movq.l %s,D3I",
/% A: @x76cH %/ MOVE_Q, @, Ix7600, Onffo00@, "movq.l %s,D3",
/X A: @x770@ %/ MOVE_Q, @, 0%76090, Oxffo0, "movq.l %s,D3",
/% A: @x7740 x/ MOVE_Q, @, @x 7600, Oxffo0@, "movq.l %s,D3",
/% A: Ox7780 x/ MOVE_Q, @, Px7608, @xff00, "movq.l %s,D3",
/% A: @x77c@® X/ MOVE_Q, @, ox7600, Oxff00, "movq.l %s,D3",

282

Az
A:
Az
A:
A:
A:
A:
A
Az
Az
Az
Az
Az
Az

A:

A:
Az
A:
Az
At
A
Az

A:
A:x
Al
Az
Az
Az
Az
Az
Az
A:
A:
Az
A
A:
Az

Az
Az
Az
At
A:
A:
Az
A
A:
A:
A
Az
Az
Az

At
A
At
A:
A:
A:
A
Az
Al

@y 7800
Px 7840
@x 7880
@x78c@
2x 7900
2% 7940
@x 7980
@x79c@
Ox 7 aldd
@x7a4@
@x 7280
ox7ac®
@x 7b@0
@»7b4d
@»7bB@
@x7bc@d
@»7codd
@x7cad
Px7cBa
@x7ccd
@x7d09
@x7d4@
@x7d80
@x7dc@d
Px7edd
2x7edd
2»7eB0
B@x7ecd
Ox 700
Gx 740
ox 7§80
Px7fcod
@» 8000
?x B8040
o= 8080
@xBBcod
2xB8100
@xB8149
@x8180
@»xB81cd
o= 8200
2x 8240
2x 8280
@xB82c@
2% 8300
?x 8340
2» 8380
@xB3cd
@x 8400
@x 8440
@x 8480
@xB84c@
2% 8500
@x BS540
2x 8580
@%B8Scd
Ox 8600
PxBL40
?x 8680
2x86cd
2x 8700
?x 8740
2xB8780
@xB87c@d
2x 8800
2% 8840
@= 8880

MOVE_Q,
MOVE_Q,
MOVE_Q,
MOVE_Q,
MOVE_@,
MOVE_@,
MOVE_Q,
MOVE_@,
MOVE_@,
MOVE_@,
MOVE_Q,
MOVE_Q,
MOVE_@,
MOVE_Q@,
MOVE_@,
MOVE_Q,
MOVE_Q,
MOVE_@,
MOVE_@,
MOVE_Q,
MOVE_Q,
MOVE_@,
MOVE_@,
MOVE_Q,
MOVE_@,
MOVE_Q,
MOVE_Q,
MOVE_@,
MOVE_Q,
MOVE_Q@,
MOVE_Q,
MOVE_Q,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,

ox 78040,
@x 7800,
@x 7800,
ox 7800,
@» 7800,
@x 7808,
@» 7800,
9x 7800,
Px7a00,
ox7ad@,
ox7add,
@x7add,
@xT7add,
@9x7add,
@x7add,
?%7add,
Ox7cod,
@x7cdd,
on7cdd,
Ox7cod,
@x7cod,
x7cod,
n7cod,
Px7cod,
ox7edd,
@x7edd,
oxT7edd,
ox7edd,
Ox7edd,
Px7edd,
Px7edd,
Ox7edd,
#x 8000,
?x B8040,
@x 8080,
@»8@cad,
9x81060,
ox8140,
2x8180,
@xB81c@d,
ox 8200,
#xB249,
2% 8280,
@xB82cH,
@xB8300,
?x8340,
2= 8380,
#xB3cd,
?x 8400,
@x 8440,
@»8480,
P9xB84cod,
ox 8500,
2% 8548,
?» 85840,
PxB85cd,
oxB600,
PxB8640,
2x 8680,
@xB86cH,
2x 8700,
?xB8740,
@x8780,
@x87cd,
2= 8800,
2x8849,
?x 8880,

@xf 00,
onffol,
onff0Q,
Onf 0D,
onf 09,
onffOd,
onff00,
oxffO0,
oxff00,
o008,
Gxff00,
oxff00,
@x 00,
oxff00,
onf 00,
P00,
onf$00,
onff00,
oxff00,
onffO0,
Ox 09,
oxffoa,
oxff00,
oxf 00,
ox 00,
Ox 00,
oxf$00,
onffO0,
ox 00,
OxffOd,
oxff00,
oxff00,
xffca,
Pxffco,
@xffchd,
onffcd,
oxffco,
oxffcad,
oxffcd,
Onffcod,
oxffcd,
Oxffco,
@xffch,
Ixffcl,
nffco,
onffco,
@nffco,
@xffchd,
Oxffco,
Oxffco,
onffco,
oxffcd,
oxffcod,
onffco,
oxffca,
Oxffcod,
oxffchd,
Pxffco,
oxffco,
Pnffco,
Oxffco,
Onffcad,
onffcd,
Pxffco,
Pnffcd,
Onffcd,
oxffcd,

283

A Disassembler s

"movqg.l
"movqg.l
“movqg.l
"movq.1l
"movqg.l
"movq.1l
"movqg.l
"movq.l
"movq.l
"movqg.l
"movqg.l
“movqg.l
"movq.l
“movqg.1
“movqg.l
“"movqg.l
"movqg.l
"movqg.l
"movqg.l
“"movq.l
"movg.l
"movq.l
"movq.1l
"movqg.l
"movqg.l
“movg.l
"movg.l
"movg.l
"movqg.l
"movq.1l
"movq.1l
"movq.l
"or.b
"or.w
"or.l
“divs.l
"or.b
"or.w
‘or.l
"divu.l
"or.b
"or.w
“or.l
"divs.l
"or.b
"or.w
"or.l
"divu.l
"or.b
"or.w
Yor.l
"divs.1
"or.b
"or.w
"or.l
"divu.l
"or.b
"or.w
"or.l
"divs.1l
“or.b
"or.w
"or.l
"diwvu.l
"or.b
"or.w
"or.l

%s,D4",
%s,Da",
%s,D4",
%s,D4",
%s,D4",
%s,Da",
%s,Da",
%s,D4",
%s,DS5",
%s,D3",
%s,DS",
%s,DS5",
%s,D5",
%s,D5",
%s,D5",
%s,D5",
%s,D&",
%s,D&",
%s,D&",
%s,D6",
%s,D&",
%s,D6",
%s,D6",
%s,D&",
%s,D7",
%s,D7",
%s,D7",
%s,D7",
%s,D7",
%s,D7",
%s,D7",
%s,D7",
%s,D@",
%s,D8",
%s,D0",
%s,D@",
D@, %s",
Da, %s",
D@, %s",
%s,D@",
%s,D1",
%s,D1",
%s,D1",
%s,D1",
D1,%s",
D1,%s",
D1,%s",
%s,D1",
%s,D2",
%s,D2",
%s,D2",
¥%s,D2",
D2,%s",
D2,%s",
D2,%s",
%s,D2",
%s,D3",
%s,D3",
%s,D3",
%“s,D3",
D3,%s",
D3, %s",
D3, %s",
%s,D3",
%s,D4",
%s,Da",
%s,D4",

mmmms CHAPTER 10

/% A: PxB8BcP® %X/ EFFADD, @, 9x88cP, Oxffcd, "divs.l %s,Da",
/% A: PxB8900 %/ EFFADD, 1, #x 8900, Oxffch, "or.b D4,%s",
/% A: 9xB949 %/ EFFADD, @, %8940, Oxffchd, "or.w D4,%s",
/% A: 9xB8980 %/ EFFADD, @, @x8980, OxffcHd, "or.l D4,%s",
/% A: OxB9c@® %/ EFFADD, @, 0x89cPd, Pxffcd, "divu.l %s,Da",
/% A: @xBad@d x/ EFFADD, @4, ?xBadd, OxffcH, "or.b %s,D5",
/% A: @xBadd x/ EFFADD, @, ?xBad4@, @xffcd, "or.w ¥%s,D5",
/% A: 9xBaB@® %/ EFFADD, @, #xBaB@, Oxffcd, "or.l %s,D5",
/% A: @xBacd %/ EFFADD, 0@, PxBac@d, Oxffc@, "divs.l ¥%s,D5",
/% A: @xBbo@ x/ EFFADD, 1, ?x8b0B, Oxffch, "or.b DS, %s",
/% A: OxBb4@ %/ EFFADD, O, 9xBb4g, Oxnffcd, "or.w DS, %s",
/% A: PxBbBO x/ EFFADD, @, 2x8b8A, Onuffch, "or.l DS, %s",
/% A: @xBbcPd %/ EFFADD, 9, @%x8bcd, Oxuffcd, "divu.l ¥%s,D5",
/% A: Ox8cOP %/ EFFADD, @, @x8cPP, Onffchd, "or.b %Us,Db&",
/% A: @xBc4d %/ EFFADD, @, Px8c4@, Oxffch, "or.w ¥%s,D&",
/% A: OxBcBO® ¥/ EFFADD, @, @xB8cBO, @xffch, "or.l %s,Dé&",
/% A: @xBcc@® %/ EFFADD, @, @xBcch, Oxffchd, "divs.l %s,D&",
/% A: &xBdO@ x/ EFFADD, 1, 2x8do9, Oxffcd, "or.b D&, %s",
/% A: 9xBd4@ x/ EFFADD, @, @x8d40, Oxffcd, "or.w D&, %s",
/% A: PxB8dBG ¥/ EFFADD, @, ?x8dB8@, @xffcHd, "or.l Db, %s",
/% A: PxBdc?@ %/ EFFADD, @, PxBdcPd, Oxffch, "divu.l ¥s,Db&",
/% A: OxBedd %/ EFFADD, 9, ?xBe@d, OxffcH, "or.b %s,D7",
/% A: OxBedd %/ EFFADD, 9, PxBedd, Oxffchd, "or.w %s,D7",
/% A: OxBeBO® %/ EFFADD, 9, P?xBeBP, OxffcH, "or.l %s,D7",
/% A: OxBec?d X%/ EFFADD, @, P?xBecd, Pxffc@d, "divs.l %s,D7",
/% A: OxB8f00 %/ EFFADD, 1, %800, OxffcHd, "or.b D7,%s",
/% A: OxBf40 x/ EFFADD, @, oxB8f40, Oxffchd, "or.w D7,%s",
/% A: Ox8f80 %/ EFFADD, @, 2% 880, @xffchd, "or.l D7,%s",
/% A: OxBfcd %/ EFFADD, @, @x8fcd, Oxffcd, "divu.l ¥%s,D7",
/% A: %9900 %/ EFFADD, 4, Ox 9000, Oxffc, "sub.b %s,DE",
/% A: @x9940 x/ EFFADD, @, Px9040, Oxffcd, "sub.w %s,DE8",
/% A: Ox9980 %/ EFFADD, @, %9080, Oxffch, “sub.l %Us,DEB",
/%X A: @x9dc@d X/ ADDREA, @, @xF0cd, Pxffcd, "suba.w %s,AD",
/% A: Ox9100 %/ EFFADD, 1, %9100, Oxffcd, "sub.b DO,%s",
/% A: @x9140 x/ EFFADD, 1, Px9140, Oxffcd, "sub.w DB,%s",
/% A: @x9180 %/ EFFADD, 1, ox71890, Oxffcd, "sub.l DO,%s",
/% A: @x91c@ %/ ADDREA, @, @x91cd, Oxffc@®, "suba.l %Ls,Ad",
/% A: 9x9200 x/ EFFADD, @, Px 9200, Onffch, "sub.b %s,D1",
/% A: @x9240 x/ EFFADD, &, Px72408, Oxnffc@®, "sub.w %s,D1",
/% A: @x9280 %/ EFFADD, @, 9x9280, Oxffcd, "sub.l ¥%s,D1",
/% A: @x92cd %/ ADDREA, @, Px92cP, Oxffch, "suba.w %s,Al",
/% A: @x9300 x/ EFFADD, 1, ox 9300, OxffcB, "sub.b Di,%s",
/% A: @x9349 x/ EFFADD, 1, Px9340, Oxffc@d, "sub.w Di,%s",
/¥ A: 9x9380 x/ EFFADD, 1, %9380, Pxffcd, "sub.l Di1,%s",
/% A: @x93c@ x/ ADDREA, @, @%x93cP, Mxffch, "suba.l %Us,AL1",
/% A: Px940@ x/ EFFADD, 9, %7400, Oxffc@d, "sub.b %s,D2",
/% A: @x9440 %/ EFFADD, @, %9440, @xffcd, "sub.w %s,D2",
/% A: @x9480 %/ EFFADD, @, 9x9480, Oxffc@d, "sub.l ¥s,D2",
/% A: @x94c@® x/ ADDREA, @, PxF4c@d, Oxffc@, "suba.w %s,A2",
/% A: Ox9500 ¥/ EFFADD, 1, ox 9500, Oxffch, "sub.b D2,%Us",
/% A: @Px9540 X/ EFFADD, 1, @x 9540, Oxffc@, "sub.w D2,%s",
/% A: 9x9586 x/ EFFADD, 1, %9580, Oxffcd, "sub.l D2,%s",
/% A: @x95c@ %/ ADDREA, @, @x95cP, Oxffch, "suba.l %s,A2",
/% A: @x9600 x/ EFFADD, @, %9600, Oxffcd, "sub.b %s,D3",
/% A: @x9640 %/ EFFADD, @, #x9640, @xffcd, “"sub.w ¥%s,D3",
/% A: 9x9680 x/ EFFADD, 4, %9688, @xffcP, "sub.l %s,D3",
/% A: Ox96cd %/ ADDREA, @, 2% 96c@, @xffcd, "suba.w %s,A3",
/% A: Ox9700 x/ EFFADD, 1, 9x9700, Oxffcd, "sub.b D3I, %Us",
/% A: Ox974@ %/ EFFADD, 1, %9740, Oxffc@d, "sub.w D3,%s",
/% A: @x9789 %/ EFFADD, 1, @x97808, Oxffcd, "sub.l D3,%s",
/% A: @x97c® %/ ADDREA, @, 2%97c@, Oxffc®, "suba.l %s,A3",
/% A: 9x9800 %/ EFFADD, @, 0% 9800, Sxffc@, "sub.b %s,DA",
/% A: 9x9840 x/ EFFADD, @, 9% 9840, Oxffc@, “"sub.w %s,Da",
/% A: @x9880 ¥/ EFFADD, @, #%x 9880, @xffcH, "sub.l %s,DA",
/% A: @x98c@® %/ ADDREA, @, @%98cd, Oxffc@d, "suba.w %s,As",
/% A: @x99¢@ %/ EFFADD, i, %9909, @xffcB, "sub.b D4,%s",

284

[

ol

>2D»P22P2P2PDDP2D>D

Bin4d
D T980
dx F9ca
@y Fa@a
@xFadd
i Fatd
@xFace
@x I aD
D Fbad
@x9b8@
@x 9bcd
@ 9cop
@ Fca@d
@»9cBa@
@ Fccd
@x9dOD
@xd4@
@»9d8a
@xFdcd
2 Fedd
@x Fedd
x FeBd
@xFecd
@x 9+ 09
@xIf40
@x9f80
% 9fcd
D a@Pd
@x adad
?x adBad
@xabdc@d
oxaldo
dxalad
PxalBa
@xalc@d
ox a209
@na24p
@x a280
Pxa2cd
@» al30d
Pxa340d
?»a3Bod
@xa3cd
D% ad00
Dxadad
@xad80
@xadcd
ox aS500
@xaS40
Pxa589
@x aSc@d
@x» abB@
@xab40
PrabB9
PGxabcd
@x a70@
Gxa7ad
@xa78@
@xac@d
@x aBod
POxaB4ad
9% aBBO
PxaBc@d
Ox a?0d
Px a4
@» a780@
?xa9cd

EFFADD,
EFFADD,
ADDREA,
EFFADD,

/ EFFADD,

EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDRER,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,

9129940,
9»9989,
@x99cd,
@xa0d,
#xFadd,
@»FaBd,
@xFac@d,
@»Ib@a@,
@»Fbad,
@»9b8d,
@%9bcd,
@»9codd,
@xFcad,
?x9c8a@,
ox9ccd,
@x9doa,
Pn9dAad,
@x9d8a,
@x9dcd,
9% Fedd,
gxFedd,
9% Fe80,
@»Fecd,
x990,
2xFf4@,
@xI£88,
@xFfcd,
@x adood ,
Pxa@dad,
@ aP8ad,
@xadcd,
@naldd,
Pxaldd,
?xalBa,
Pxalcd,
?xa200,
Pxa24@,
Pxa284d,
@xa2c@d,
@»a3dd,
Pral34d,
@xa3Bgd,
@xa3cd,
@xad@d,
@xada@,
@»ad8o,
@xadcd,
@xa59d,
Dx»aSagd,
@»aS84a,
PxaScd,
Pxabdd,
Pxabld,
D% abBa,
Pnabcd,
Ona700,
@xa74d,
Pxa789,
@xa7cd,
P»aBO@,
@xaBag,
?xaB88,
@xaBc@d,
Oxa?0o,
@xa94@,
?xa980,
@xa%cd,

@ ffcd,
o ffcd,
o ffcd,
@xffcd,
@ ffca,
@ ffca,
duffco,
o ffchd,
@ ffco,
Onffcd,
anffcd,
Onffcd,
Pnffco,
onffcod,
axffcd,
onffcd,
Gxffcd,
2% ffcd,
@xffco,
xffcd,
@xffcd,
@xffco,
@xffcld,
Bxffcod,
oxffcd,
oxffco,
@xffca,
oxf000,
oy £ 090,
@y f 000,
o f 090,
@ £ 000,
o f 060,
On £ 000,
Px 000,
On £ 000,
onf 000,
Ox 009,
On £ 000,
2% $000,
Ix £ 000,
@x 000,
Px 008,
Ox £ 000,
ax f000,
Ix 000,
axf000,
@000,
ox f000,
ox 000,
o» £ 000,
% § 080,
ox 000,
oxf 000,
Oxnf B0,
Ox £200,
Ax 0003,
Ox£000,
Ox £ 200,
o £ 000,
Ox £ 000,
Ox £ 999,
Ox 000,
O 000,
axf 008,
@x f 000,
ox 000,

285

A Disassembler s

"sub.w
"sub.l
"suba.l
"sub.b

"sub.w

"sub.l

"suba.w
“sub.b

"sub.w

"sub. 1

“suba.l
"sub.b

“"sub.w

"sub.l

"suba.w
"sub.b

"sub.w

“"sub.l

"suba.l
"sub.b

"sub.w

"sub.l

"suba.w
"sub.b

"sub.w

“sub.l

“suba.l
“line
"line
"line
"line
"line
*line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
“line
"line
"line
"line
“"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line

»P>P>»DPPPPPPPRPPLPPDPPRPDDPDDDPRPDPRP2DPDDDPDDPDRP2DDD

D4,%s",
D4,%s",
%s,A4",
%s,D5",
%s,DS",
%s,DS",
%s,AS",
DS,%s",
DS, %s",
DS, %s",
%s,AS",
%s,D6",
%s,D&",
%s,D&",
%s,FP",
D&, %s",
D&, %s",
D&, %s",
%s,FP",
%s,D7",
%s,D7",
%s,D7",
%s,8P",
D7,%s",
D7,%s",
D7,%s",
%s,SP",
%s",

%s",

mm—— CHAPTER 10

@xaadd
@xaadd
@xaabBo
@raacd
Pxabdd
Pxabd4g
PxabBo
@xabcP
% acod
Pxacd4d
@x acB0
@xaccd
@x adod
@xad4d
PxadBg
@xadcd
Ox aedd
@y aedd
Px aeB@
Dxaecd
Oxaf oo
Pxafao
PxafBo
@rafcod
Bxb@od
Oxb@4@
2xbo8o
PxbBcd
@xb 100
@xbl40d
oxb180
Pxblcd
@xb200
Oxb240
@xb280
@xb2c@
@xb3I00
@xb340
Ixb3I80
Bxb3c@
2xb4oo
Pxb44g
Oxb4B8a
@xb4cad
PxbS00
@xb546
@xbS80
@xbSca
@xb&00
AxbbA0
@xbb&BG
Dxbbcd
@xb700
@xb746
@xb780
@xb7ce
@xb8o@
@xbB4@
2xb88a
@xbBcad
Pxb?00
@xbI40
@xb980
@xbFcd
Pxbada
@xbad@
?xbaB@

LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
LINE_A,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,

@y aadd,
Pxaadod,
OxaaB@,
@xaacd,
Pxab@d@d,
Oxaba@,
PxabB8@,
Pxabcd,
D acdd,
Pracad,
@xac8a,
@naccd,
@xaddd,
@xadagd,
Pxad8d,
@xadc@d,
Oxaedd,
Oxaedd,
PxaeBd,
Pxaecd,
@xafdd,
@xafad,
Graf80,
@xafco,
oxb@oB,
Pxboad,
2»xb@8a,
@xbéca,
oxb180,
Pxbl14g,
@xb18@,
@xblco,
Oxb200,
dxb24a,
@xb280,
@xb2cd,
@xb300,
Pxb349,
#xb380,
@xb3cad,
@xb4g@,
@xb44o,
@»xb48@,
Gxb4cd,
?xb500,
@xb54a,
@xb580,
?xbS5ca,
@xbédad,
@xbb4ad,
@xbé&80,
@nbéecad,
@xb70@,
Pxb740,
2xb780,
@xb7cd,
@xb8oa,
@xb8aa,
@xbB8a,
@xbBcod,
Pxb90@,
?xbF449,
@»xb980,
?»xb%cad,
@nbadd,
Pxbad@d,
@xba8@,

Ox 000,
@x 000,
Px £ 000,
@000,
@ £ 000,
Ox 000,
2% 000,
o fo08,
Ox f 000,
D% £ 003,
o f 000,
Ox 000,
oxf 000,
oxf090,
Ox £ 000,
Ox f000,
O f 008,
Ox f 003,
ox f 000,
2x 003,
ox 000,
anf o008,
ox f 000,
Ox f 000,
Pnffca,
Oxffcad,
Onffcd,
Onffca,
Pnffca,
Onffca,
@nffco,
@nffcad,
@nffco,
Oxffco,
Inffco,
Oxffcad,
onffco,
Ixffca,
@xffca,
Oxffca,
@xffco,
Onffco,
Oxffco,
Pxffca,
I ffco,
Oxffco,
Pnffcd,
Oxffcd,
Dnffca,
Pxffco,
Oxffco,
Gnffcod,
Pnffcd,
Oxffcad,
P ffco,
Oxffcad,
Dnffco,
oxffcad,
@z ffco,
Oxffca,
BOrffco,
Onffcd,
O ffcd,
PnFfcl,
oxffco,
dnffca,
@xffco,

286

"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"line
"eor.b
"eor.w
"eor.l
"cmpa.w
"emp.b
"cmp.w
"emp.l
"cmpa.l
"eor.b
"eor.w
"eor.l
"cmpa.w
"cmp.b
"emp.w
"emp.l
"cmpa.l
"eor.b
"eor.w
"eor.l
"cmpa.w
"cmp.b
"cmp.w
"cmp.l
"cmpa.l
"eor.b
"eor.w
"eor.l
"cmpa.w
"cmp.b
"cmp.w
"emp.l
"cmpa.l
"eor.b
"eor.w
“eor.l1l
"cmpa.w
“cmp.b
"Ccmp.w
"cmp.l
"cmpa.l
"eor.b
"eor.w
"eor.l

>PPPPPPPPDPDPDDPDDPDDDDDDDDDD

DS, %s",

%a % 32 Be 48 e TR T P e o e

DDPDDDDDD‘DDDDDEDDDDD_}??DD

.

A:

@xbac@d
@xbbo@
@xbb4@
@xbbB2
@xbbcd
@xbcBd
@xbcad
@»bcBO
@xbccd
@xbd@@
@xbdad
@xbd8@
@xbdc@
@»bedd
Pxbedd
rbeB@
@xbecd
@xbf@ad
@xbfad
@xbfBo
@xbfcd
@ncOaD
Gxc@4d
@»caBo
dxchcd
@nc 108
@xc149
Pxc189
@xclcd
@y c 200
@xc249
@»c280
Pnc2c@d
Gxc3I00
Pxc349
Pnc380
@xc3cP
@rci400
dxca40
% c480
Pxcl4cd
BxcS0a
@xc540@
PxcS80
@xcScd
Prcb&OD
@xcbad
Pxcé6&B89
Pxcbecd
Pxc7 00
@xc740
@xc780
@xc7cd
% cB0a@
PxcBad
2»cB80
@xcBcd
OxcT00
@xc49
Oxc980
PxcFcd
@Gxcadd
Pxcadd
@xcab@
@xcacd
@%cb@d

ADDREA,
EFEADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,

?xbacad,
?%xbbogd,
@xbb4d,
?»bbB8@,
@xbbc@d,
@xbc@dd,
@xbcad,
@xbcB89,
@xbccd,
@xbdda,
?»bdaad,
#xbdBa,
@xbdcd,
?xbedd,
@xbedd,
?xbe8d,
@nbecd,
@xbfdd,
@xbfad,
@xbf8@,
@xbfcad,
@xcPod,
@xcPag,
PncP8e,
OxcPcd,
Oxnci199,
dxclag,
@xc18d,
@xclcd,
@xc200,
@xc249,
@xc280,
@xnc2cd,
@xc300,
Pxc348,
@xc380,
Pxc3cd,
Oxca0d,
@xc44d,
@»c480,
@xcacd,
@xcS00,
gxcS4d,
@xcS80,
@xcScd,
@xcoboa,
Pnchbad,
Pxcs84,
Pxncbed,
oxc790,
xc749,
@xc789,
@xc7cd,
@xcBoo,
PxcB840,
PxcB88a,
PxcBcd,
oncI00,
Pxnc409,
Pxc980,
Pxc9cd,
dxcadd,
P@xcadd,
PxcabB@,
Gncacd,
Pxcbh@d,

@xffcad,
Oxffco,
@ ffcad,
@xffco,
@xffco,
@xffco,
Pxffchd,
@xffcd,
@nffcd,
Pxffca,
@nffcd,
@rffcd,
P ffcod,
oxffcd,
oxffcd,
@xffcd,
Onffcd,
@nffco,
@nffcd,
@nffca,
Pnffchd,
o ffco,
@y ffcd,
oxffcd,
Pxffcd,
oxffcd,
@gxffcd,
@rnffcod,
Oxffco,
oxffco,
@nffcad,
@xffcoh,
@nffco,
Ixffcd,
dnffco,
Gnffco,
Oxffcod,
oxffcd,
Oxffcod,
oxffcod,
@xffco,
Gnffco,
@xffco,
@xffco,
@xffcd,
@nffco,
Oxffcad,
Oxffch,
oxffco,
Prffcd,
Oxffco,
@xffca,
@xffcd,
oxffcd,
Oxffcd,
Pxffca,
Oxffco,
dnffco,
oxffcd,
oxffcd,
onffcd,
onffcod,
Oxffco,
@xffco,
Pxffchd,
@nffca,

287

A Disassembler s

"cmpa.w
"cmp.b
"cmp.w
“cmp.l
"cmpa.l
"eor.b
Yeor.w
"eor.l
"cmpa.w
"emp.b
"cmp.w
"emp.l
"cmpa.l
"eor.b
"eor.w
"eor.l
"Cmpa.w
“cmp.b
"cmp.w
"cmp.l
"cmpa.l
"and.b
"and.w
"and.l
"muls.l
"and.b
"and.w
"and.l
"mulu.l
"and.b
"and.w
"and.l
"muls.1
"and.b
“"and.w
"and.1
"mulu.l
"and.b
"and.w
"and.l
"muls.l
"and.b
"and.w
"and.l
"mulu.l
"and.b
"and.w
"and.1l
“muls.l
"and.b
"and.w
"and.l
"mulu.l
"and.b
"and.w
“"and.l
"muls.l
"and.b
"and.w
"and.1
"mulu.l
"and.b
"and.w
"and.l
"muls.1
"and.b

%s, AS",
DS, %s",
DS, %s",
DS, %s",
%s,AS",
D&, %s",
D&, %s",
D&, %s",
ws, FP",
D&, %s",
D&, %s",
D&, %s",
“s,FP",
D7, %s",
D7,%s",
D7,%s",
¥%s,SP",
D7,%s",
D7,%s",
D7,%s",
%s,S5P",
%s,D@",
%s,Da",
%s,D@",
%s,D@",
D@, %s",
D@, %s",
D@,%s",
%s,D8",
%“s,D1",
%s,D1",
%s,D1",
%s,D1",
Di,%s",
D1,%s",
D1,%s",
%s,D1",
%s,D2",
%s,D2",
%s,D2",
%s,D2",
D2,%s",
D2,%s",
D2,%s",
%s,D2",
%s,D3",
%s,D3",
%s,D3",
%s,D3",
D3,%s",
D3, %s",
D3,%s",
%s,D3",
%s,D4",
%s,D4",
%s,D4",
%s,D4",
D4,%s",
D4,%s",
D4,%s",
%s,Da4",
%s,D5",
%s,D5",
%s,D5",
%s,D3",
DS, %s",

s CHAPTER 10

L 222222 DPDDDDDDD

>I>DDPDDDDDDDDDDDD

@xcba@
@xcbB@
@xcbcd
@xccod
Pxccad
@xccB8o
@xccchd
@x cdod
@xcda4@
@xcdBg
@xcdc@d
Pxcedd
Dxcedd
@xceBd
Pxcecd
Oxcfoo
@xcfao
dxcfBo
@xcfcd
Oxdoda
Oxd@49
@xd@Bo
@xd@cd
@xd 100
@xd149
Pxd18d
Pxdicd
Pxd209
Pxd240
@xd280
@xd2cad
Oxd300
@xd340
@xd380
@xd3c@
dnd4@a
@xd44a
@xd480
@xd4ce
% dS00
2xdS49
2xdS8@
@%xdSco
Pxdo&oad
@xdb64d
@xd&8a
@xdbcd
@xd709
@xd749
Pxd78@
@xd7cd
% dBoa
@xdB4g
@xd880
@xdBc@d
Axd0D
Bxd49
@»d980
?xd9c@d
@xdad@
@xdadd
@xda8o
@xdac@d
B dba@
Ixdba@
@xdb8a@
@xdbc@

EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,

@xcbag,
PxcbBd,
@xcbcd,
Pxccdd,
@xccad,
@xccBo,
dxccecad,
@xcddd,
@xcdad,
Pxcd8@,
@xcdc@d,
Oxcedd,
dxcedd,
@xceBO,
@xcecd,
@xcfod,
Gxcfad,
dxcfBa,
Ixcfca,
gxdoda,
Ixdoag,
@xda8g,
@xd@dcad,
Pxd160,
@xdl14ad,
Pxd18@,
@xdlic@d,
@xd209,
@xd249,
9»d280,
@xd2cad,
@xd30a,
@xd344,
@»d384,
@xd3c@d,
@xd4dd,
@xdaaad,
Pxdasa,
@xd4cad,
@xdSe0,
@xdS54@,
@xd584,
@xdScad,
Dxdé&od,
@xdbaa@,
2xd&80,
@xdécd,
Oxd708,
@xd74a,
@xd780,
@xd7cad,
@ dB80d,
@xdB4agd,
2%d88a,
2% dBca@,
9xd999,
@xdIF49,
@xd78@,
@xdFcd,
Pxdadd,
@xdadd,
dxdaB@,
@xdacd,
@xdbda,
@xdb4@,
@xdb8@,
@xdbec@d,

@xffca,
Oxffca,
Pxffcod,
@xffca,
Pxffco,
Bnffco,
oxffco,
@xffco,
Oxffcad,
Oxffca,
oxffca,
@xffcad,
@xffcd,
Oxffco,
Oxffco,
Pxffco,
Pxffcld,
Pxffco,
Pxffco,
dxffca,
@xffcad,
dnffca,
Oxffcd,
Ixffcad,
@xffcad,
Oxffca,
@xffco,
oxffca,
Oxffcod,
Dxffch,
oxffco,
dxffcd,
oxffca,
@nffcad,
@xffcad,
Oxffcod,
@xffca,
dnffca,
Ixffca,
Gnffca,
@xffch,
@xffco,
dxffco,
Oxffcod,
Oxffco,
dxffca,
oxffca,
dxffca,
Py ffcd,
Ixffcd,
@xffco,
Bxffco,
@xffco,
Pxffca,
2% ffco,
@xffcd,
dxffca,
@xffco,
@xffca,
@xffcd,
@ ffcd,
oxffca,
Oxffcd,
Bxffca,
@xffca,
duffcad,
@xffca,

288

"and.w
"and.1l
"mulu.l
"and.b
"and.w
"and.1
"muls.l
"and.b
"and.w
"and.1l
"mulu.l
"and.b
"and.w
"and.1
"muls.l
"and.b
"and.w
"and.l
"mulu.l
"add.b
"add.w
"add.1l
"adda.w
"add.b
"add.w
"add.1
"adda.l
"add.b
"add.w
"add.1
"adda.w
"add.b
"add.w
"add.1l
"adda.l
"add.b
"add.w
"add. 1
"adda.w
"add.b
"add.w
"add.1
"adda.l
"add.b
"add.w
"add.1
"adda.w
"add.b
"add.w
"add.1
"adda.l
"add.b
"add.w
"add.1l
"adda.w
"add.b
"add.w
"add.1
"adda.l
"add.b
"add.w
"add.1l
"adda.w
"add.b
"add.w
"add. 1l
"adda.l

DS, %s",
DS, %s",
¥%s,D5",
%s,D&",
%s,D&",
%s,D&",
%s,D6",
D&, %s",
D&, %s",
D&, %s",
%s,D&",
%s,D7",
%s,D7",
%s,D7",
¥%s,D7%,
D7,%s",
D7,%s",
D7,%s",
%s,D7",
%s,Do",
%s,Do",
%s,D@",
%s,A0",
Do, %s",
D@, %s",
D&, %s",
%s,A0",
%s,D1",
%s,D1",
%s,D1",
%s,Al",
Di,%s",
Di,%s",
Di,%s",
%s,A1",
%s,D2",
%s,D2",
%s,D2",
%s,A2",
D2,%s",
D2, %s",
D2,%s",
%s,A2",
%s,D3",
%s,D3",
%s,D3",
%s,A3",
D3, %s",
D3,%s",
DI, %s",
%s,A3",
%s,D4",
¥%s,D4",
%s,Da",
%s,A4",
Da,%s",
D4,%s",
D4,%s",
%“s,A4",
%s,D5",
%s,D5",
%s,;D5",
s, A5,
DS, %",
DS, %s",
DS, %s",
%s,AS",

.

I

>PD>PDp>2DPDPD

>PD»»>»D>>pDDDDD

@»dc@d
@ndcad
@ dcB8a
@xdccd
@ dd @@
@xdd4ad
@xddB8o
@xddc@
¢xdedd
dxdedd
#xdeBO
@ndecd
Oxdfad
@xdfaad
OxdfB8a@
@xdfcd
Ox edDd
@xedsd
@x e@Bd
@y edcd
Pneldd
@xeldd
PxelB80
@xelcd
GneZod
Dxe240
Pxe280
@xe2cd
@x e300
Gxe340
?xe380
@xe3cd
Oxeddd
dnedse
Pxed8d
@xedcd
PxeS00
oxe544
2»eS8d
oxeScd
Drebdd
dnebdd
% ebHBd
Prebcd
ne700
Gxe7A0
Pxe780
2xe7cd
% e800
xeB40
2 eBB80
@xeBc@
Pxe?00
re749
2% e980
@xeFcd
Pxeadd
Pxeadd
POxeaBd
Oxeacd
@x ebdd
@xebad
oxebB0
Pxebcd
Oxecdd
Precdd

EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
EFFADD,
EFFADD,
EFFADD,
ADDREA,
SFTROT,
SFTROT,
SFTROT,
EFFADD,
SFTROT,
SFTROT,
SFTROT,
EFFADD,
SFTROT,
SFTROT,
SFTROT,
EFFADD,
SFTROT,
SFTROT,
SFTROT,
EFFADD,
SFTROT,
SFTROT,
SFTROT,
EFFADD,
SFTROT,
SFTROT,
SFTROT,
EFFADD,
SFTROT,
SFTROT,
SFTROT,
EFFADD,
SFTROT,
SFTROT,
SFTROT,
EFFADD,
SFTROT,
SFTROT,
SFTROT,
NONE,

SFTROT,
SFTROT,
SFTROT,
NONE,

SFTROT,
SFTROT,
SFTROT,
NONE,

SFTROT,
SFTROT,
SFTROT,
NONE,

SFTROT,
SFTROT,

@x»dcad,
@xdc4d,
@»dc8d,
@xdccd,
@»ddod,
@»ddad,
2 ddBg,
@xddchd,
@ndedd,
@xdedd,
?xdeBd,
@xdecd,
Frd+ 00,
@ndfag,
o9xdf80,
@xdfcd,
P eddd,
oxedad,
@xedBd,
dxedcd,
gxeldd,
dxnelld,
@»el80,
oxelcd,
2% e200,
gre24d,
Pxe28d,
@nelcd,
@xel3fd,
Pxe34d,
@»xe380,
@rel3cd,
@xeddd,
oneddd,
@»eq8o,
@xedcd,
oxeS500,
@xeS4d,
?xeS8d,
@xeScd,
Prebdd,
Pnebdd,
PnebBd,
dnebcd,
oxe700,
oxe749,
oxe7846,
@xe7cd,
o»eB0d,
oxeBad,
@xeB80,
ox 0008,
xe990,
Ixe?40,
9»xe980,
0803,
Preadd,
Preadd,
PreaBd,
Ox 8000 ,
Oxebdd,
@xebdd,
@xebB@,
o003,
@xecdd,
Oxecdd,

@xffcd,
@xffch,
oxffcod,
o ffcd,
Pxffcd,
nffcd,
@xffcod,
@xffchd,
dnffcad,
axffcd,
Pnffcd,
@xffcd,
@nffcad,
@nffchd,
dnffcd,
o ffcd,
@nffcd,
oxffcod,
oxffcod,
@nffcd,
@nffcd,
oxffcd,
2nffcd,
oxffco,
oxffchd,
P ffcd,
Gnffcoa,
@xffcd,
@xffcd,
Pxffco,
@xffcd,
onffcd,
oxnffcd,
Inffch,
@xffchd,
Bxffco,
oxnffco,
gxffco,
Oxffco,
@xffco,
nffcad,
oxffchd,
onffcd,
@xffch,
oxffch,
onffch,
oxffchd,
Gxffcd,
Pxffcd,
@xffco,
@xffch,
ox 0000,
oxffch,
axffcd,
onffcd,
2% 0000,
oxffcd,
Gxffco,
Oxffcd,
D% 00D,
@nffco,
@nffcd,
@xffcad,
ox 0000,
oxffchd,
oxffchd,

289

A Disassembler s

"add.b ¥%s,D&",
“add.w %s,D&",
"add.l %s,D&6",
nadda.w %s,FP",
"add.b D&,%s",
"add.w D&,%s",
v"add.l Dé6,%s",
"adda.l %s,FP",
"add.b %s,D7",
"add.w %s,D7",
"add.l %s,D7",
"adda.w %s,SP",
"add.b D7,%s",
"add.w D7,%s",
"add.l D7,%s",
"adda.l ¥%s,SP",
wier.b ¥Ys",
"ger.w As",
wier.l iUs",
"asr.l %s",
"¥%sl.b %s",
"ysl.w uUs",
“Isl.l Us",
vasl.l %As",
wisr.b %As",
"ysr.w %s",
wysr.l %s",
"ler.l %s",
"isl.b %s",
"Ysl.w %s",
"¥isl.l %s",
"1sl.1 ¥%s",
nysr.b %s",
“AsSr.w As",
nysr.l ¥%s",
"roxr.l %s",
"%sl.b ¥s",
wisl.w #%s",
"isl.l %s",
"roxl.l %s",
"“%sr.b %s",
nysr.w %As",
"¥sr.l us",
"ror.l ¥%s",
"%sl.b %s",
nygsl.w ¥%s",
"%sl.l ¥s",
"rol.l %s",
"Ysr.b ¥%s",
"Ysr.w %As",
"Y%sr.l us",
unimplemented,
"Ysl.b %s",
"%sl.w ¥s",
"isl.l us”,
unimplemented,
"Ysr.b ¥s",
"Y%sr.w %s",
"dsr.l us",
unimplemented,
"¥%sl.b %us",
"Ysl.w #Us",
"¥%sl.l uUs",
unimplemented,
"¥sr.b ¥s",
"ysr.w %Us",

T
e CHAPTER 10

/% A: @xecBP x/ SFTROT, @, OxecBO, Oxffch, "¥%sr.l 7%s",
/% A: @xeccd X/ NONE, 2, Ox9000, Ox000@, unimplemented,
/% A: @xed®® ¥/ SFTROT, @, Oxedd®, Oxffcd, “"¥%sl.b %s",
/% A: Oxedd4d %/ SFTROT, @, @xed4d, Oxffcd, "Y%sl.w %s",
/% A1 PxedBP %/ SFTROT, O, OxedB@, Oxffcd, "%sl.l %s",
/% A: @xedcd %/ NONE, a, Ox 0000, OxO000, unimplemented,
/% A: OxeedP %/ SFTROT, O, Oxeedd, Oxffc®, "¥%sr.b %s",
/% A: Oxeedd %/ SFTROT, a, Oxeedd, Oxffcd, "Vsr.w %is",
/% A: OxeeBO %/ SFTROT, @, PxeeBf, Oxffcod, "¥%sr.l ¥Us",
/% A: Bxeecd X/ NONE, 2, Ox 0000, Ox@080, unimplemented,
/% A: Oxefd@® %/ SFTROT, O, Oxefdd, Oxffc@, "Y%sl.b %s",
/% A: Oxefd® ¥/ SFTROT, @, Oxefdd, Oxffcd, "VUsl.w ¥s",
/% A: 9xefB@ &/ SFTROT, @, OxefB0, Oxffcod, "%Usl.l us",
/% A: OxefcPd %/ NONE, a, %0000, Ox@000, unimplemented,
/% A: OxfO00 %/ LINE_F, @, Ox 000, Oxf008, "line F %s",
/% A: @xfP40 X/ LINE_F, 0, OxfB40, DxfO0B, "line F %s",
/% A: Ox$080 %/ LINE_F, @, Oxf08@, OxfOPO, "line F %s",
/% A: PxfPcd %/ LINE_F, @, OxfOcO, Oxf000, “"line F %s",
/% A: Oxf108 &/ LINE_F, @, xf100, OxfO00, "line F %s",
/% A: Dxf148 %/ LINE_F, @, Oxf140, Oxf00@, “"line F %s",
/% A: Oxf180 %/ LINE_F, @, Pxf180, OxfPO@, "line F %s"
/% A: Oxflcd %/ LINE_F, 9, Dxflcd, OxfO0O, "line F ¥%s"
/% A: Oxf200 %/ LINE_F, @, Pxf200, Oxf@0B, "line F %s",
/% A: Oxf240 ¥/ LINE_F, 8, Ox 240, Oxf00B, "line F %s"
/% A: Bx¥280 %/ LINE_F, @, Ox£280, Oxf000, "line F %s"
/% A: Ox$2cP %/ LINE_F, @, Oxf2cO, OnfO08, "line F %s",
/% A: Oxf300 %/ LINE_F, @, Oxf300, OxfP00, "line F %s"
/% A: Ox¥340 x/ LINE_F, @, Ox£340, OxfPOO, "line F %s",
/% A: Bx£380 X/ LINE_F, @, Ox£380, Oxf008, "line F %s",
/% A: Px¥3c® &/ LINE_F, @, Ox£3cO, OxfO08, "line F %s",
/% Ar Oxf400 ¥/ LINE_F, @, Oxf400, Oxf@0O, "line F %s",
/% A: Oxf440 %/ LINE_F, O, @xf440, OxfO0@, “"line F %is",
/% A: Oxf480 %/ LINE_F, @, @xf480, OxfO00, "line F %s",
/% A: @xf4co® %/ LINE_F, @, @xf4co, Oxf000, “"line F %s",
/% A: OxfSO0 %/ LINE_F, @, Px£500, Oxf000, "line F %s",
/% A: BxfS540 ¥/ LINE_F, @, 9x$549, Oxf008, "line F %s"
/% A: Ox¥580 %/ LINE_F, @, x£580, Oxf000, "line F ¥%s"
/% A: OxfSc@ ¥/ LINE_F, @, Pxf5c@, OxfO00, "line F Y%s",
/% A Oxf&P@ %/ LINE_F, @, Ox 600, Oxf086, "line F %s"
/% A: Pxfb48 %/ LINE_F, a, Oxfo40, OxfO00, "line F %s",
/% A: Onf&B0 %/ LINE_F, o, Oxf680, OxfO0P, "line F %s"”,
/% A: Oxfb6cP X/ LINE_F, @, Pxfbcd, OxfO00, "line F %s",
/% A: Oxf700 %/ LINE_F, @, Oxf700, OxfP09, "line F %s",
/% A: Ox$740 %/ LINE_F, a, Oxf740, OxfO0O, "line F %s"
/% A: Oxf780 %/ LINE_F, a, x 780, OxfOPO, "line F %As",
/% A: Oxf7cO %/ LINE_F, @, Oxf7c@, OxfO0@, “"line F %As",
/% A: OxfBOG %/ LINE_F, O, OxfB0O, OxfP90, "line F %s"
/% A: PxfB4a8 x/ LINE_F, @, Ox 840, Oxf000, "line F %s",
/% A: Oxf880 %/ LINE_F, @, ox£880@, OxfP0d, "line F %s",
/% A: Ox$Bco %/ LINE_F, @, OxfBcP, Dxf000, "line F %s",
/% A: Oxf900 2/ LINE_F, O, Ox£900, OxfOOB, "line F %s",
/% A: Oxf940 %/ LINE_F, @, Oxf740, Oxf000, "line F ¥%s",
/¥ A: Oxf9808 x/ LINE_F, @, 9% 980, OxfoP0, "line F %s",
/% A: Oxf9cO x/ LINE_F, @, Bx£9cd, OxfP00, “"line F %s",
/% A: Oxfad@ %/ LINE_F, @, Oxfald, OxfoPd, “"line F %Ls",
/% A: Oxfad4@ %/ LINE_F, @, Oxfadd, Oxf000, "line F %s"”,
/% A: OxfaBP %/ LINE_F, a, @xfaB@, Oxf@0@, "line F %s",
/% A: Oxfacd %/ LINE_F, @, Pxfacd, Oxf@0@, "line F %s",
/% A: @xfbo@ %/ LINE_F, @, OxfbdB, Bxf006, “line F %s",
/% A: Oxfb4B x/ LINE_F, @, @xfb4d, Oxf000, “line F %s",
/% A: PxfbBO %/ LINE_F, @, PxfbB8, OxfO0H, "line F %s",
/% A: Pxfbcd %/ LINE_F, a, Pxfbcd, OxfO0B, "line F %s"
/% A: Onfc@dd %/ LINE_F, a, Onfcod, OnfOPB, "line F %s"
/% A: Bxfc4@ %/ LINE_F, a, Oxfcad, OxfOPB, "line F %s"
/% A: OxfcBP %/ LINE_F, @, Ox$c80, @xf008, "line F %s",
/% A: Oxfccd x/ LINE_F, @, Pxfccd, Oxf@00, "line F %s",
/% A: Ox¥d@o %/ LINE_F, @, Ox£dOD, OxfPOO, “"line F %s",

290

A:
A:
A:
A:
Az
Az
Az
A:
A:
Az
A:

Px fdad
@x fdBa
@xfdc@d
Ox f e0d
ox fedd
IxfeBO
@xfecd
@ f 00
dxff40
2% £ 80
@xnffcd
es
33

x/

%/
X/
x/
%/
x/

%/
x/

struct hash_tab

/%
/%
/%
/%
/%
/%

B:
B:
B:
B:
B:
B:
B:
B:
B:
B1
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:

@x 1300
2»0bBa
@ @dB8ad
@» 0200
9240
o» 0280
Px02cd
Px @300
ox @340
ox 0380
Pr@3co
9x 0400
@x @440
@» 0480
@»94chd
2x 2S00
@ 9540
2= 9580
IxD5cd
Px 0640
D D680
P»@6cd
D» 0700
D740
@xe780
@x@7cd
@x 0800
ox2840
2» 0880
Px@8cd
Ox 0900
9940
2% 9980
@x99co
@x Dedd
OxOedd
@x deBO
PxPecd
Ox 000
oxOf 40
ox0f 80
ondfcod
Bx 10900
2% 1049
@y 1080
9 10co
%1100
@x1140
Px 1180
@xnilco
Ox 1200
ox 1240
ox 1280

x/
x/
X/
x/
x/

LINE_F,
LINE_F,
LINE_F,
LINE_F,
LINE_F,
LINE_F,
LINE_F,
LINE_F,
LINE_F,
LINE_F,
LINE_F,
ﬂ,

table_BL]

ONEREG,
LINKOP,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,

@xfdaad,
@x» £dBa,
Pxfdcd,
Oxfedd,
@xfedd,
oxfe8d,
@xfecd,
oxff0a,
onffad,
oxf$80,
Pxffca,
2,

= {

@475,
@»4e56,
@x4eSe,
9» 4880,
?x 4881,
@» 4882,
@»x 4883,
@x 4884,
?x 4885,
Px 4886,
#x 4887,
?»48c@,
@x48c1,
@»48c2,
@x48cT,
@»48c4,
¢ 48cS,
@»48cb,
@x4B8c7,
@xdedl,
Px4ed2,
@x4e43,
@x4edd,
@x4eds,
@xdeds,
@x4e47,
@x4e48,
ox4e49,
@xdeda,
@x4edb,
@x4edc,
@x4e4d,
Mxdede,
Ox4eaf,
Px4ebd,
@xdebl,
@x4eb2,
@rnleb3,
Px4ebs,
Pxdebs,
Pxdebs,
@ deb7,
@x4eb8,
@x4eb?,
Pxdeba,
Ox4ebb,
@xdebc,
@x4ebd,
@x debe,
Pxdebf,
dxde70,
@x4e71,

ox4e72,

2x 000,
O £000,
ax 000,
@x £ 000,
O£ 000,
Ox £ 000,
Ox 000,
ox 000,
ox 009,
o 099,
ox £ 000,
a

Oxffff,
Onffie,
Oxffff,
OxFFE,
OxfFef,
Orffff,
Ouffff,
@uffff,
Gnffff,
oxffff,
Oxffff,
ouffff,
axffff,
axffff,
Ouffff,
axffff,
Duffff,
Gnfffs,
Gnffff,
Oxffff,
PrfFff,
dxffff,
Brffff,
dnffff,
orffff,
Onffff,
OufFEE,
Onffff,
Ouffff,
Orffff,
Orffff,
Grffff,
Orffff,
dxffff,
BrfFff,
oxffff,
Orffff,
oxffff,
Duffff,
Oxffff,
Orffff,
Orffff,
Ouffff,
Brffff,
Ouffsf,
OxFFff,
Gxffff,
Gxffff,
Puffff,
OufFef,
Ouffff,
Gxffff,
Ouffff,

291

A Disassembler s

"line
"line
"line
"line
"line
"line
"line
“line
“line
"line
"line

MAMTATMTATAMNTTT

"rts",
"link.w
"unlk.w
"ext.w
"ext.w
"ext.w
"ext.w
"ext.w
"ext.w
"ext.w
"ext.w
"ext.l
"ext.l
"ext.l
"ext.1
"ext.l
"ext.l
"ext.l
"ext.l
“trap
“trap
“trap
“"trap
"trap
"trap
"trap
"trap
"trap
"trap
"trap
"trap
"trap
"trap
"trap
"move.l
"move.l
"move.l
"move.l
"move.l
"move.l
"move.l
"move.l
"move.l
"move.l
"move.l
"move.l
“move.l
"move.l
"move.l
"move.l
“reset”,

FP,¥%s",
FP",
pg",
pi",
p2",
D3",
pa~,
DS",
Dbll,
D7",
Dgu‘
D1",
pz2",
D3",
pa-,
s
D&",
p7",
#r,
"2,
#3",
#an,
#5",
#6",
"7",
a8,
29",
#a",
#b",
#c",
#d",
*.Il'
»e",
AB,USP",
AL,UsP",
AZ,USP",
A3,UsSP",
A4,USP",
As,USP",
FP,USP",
SP,USP",
usP, AB",
usP,A1",
usP,A2",
usP,A3",
USP,A4",
useP,As",
use,FP",
usP,SP",

mmm— CHAPTER 10

B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B3
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:

Ox12cd
Ox 1340
Px 1380
Ox 00BD
Ox 094D
@x 0080
O 98cod
20100
@x@140
Ix0180
Gx@1co
@x Badd
OxBadd
@x@abo
@xBacd
DxObOB
@x@bag
PxPbcd
OxBcodo
@xOca9
@x dc B0
@xdcchd
% 2d oD
@x0dad
@xO0dcod
Px13co
Ox 1400
2% 1440
@x 1480
Pul1d4co
% 1500
@x 1540
@x 1589
@x15ce
Ox 1600
Px 1649
Px 1680
Ox16ch
Ox 1700
@x 1749
Px 1780
@x17c@
?x 1800
Px 1849
?x 1880
Px 18cP
% 1960
@x 1940
@x 1980
2% 19co
Px 1209
Px1a40
Ox1a80
@xlacd
@x 1b0o
@x 1b4g
@x 1b8o
@x1bco
Ox 1c@d
Bx1ca4@
% 1cB@
Pxlccd
@ 1do@
Ox1d4@
@x 1d80
@x 1dc@
O 1e0d

ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
ONEREG,
LINKOP,
LINKOP,
LINKOP,
LINKOP,
LINKOP,
LINKOP,
LINKOP,
ONEREG,
ONEREG,
ONEREG,
ONERES,
ONEREG,
ONEREG,
ONEREG,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,

" DBRNCH,

DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DERNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,

@x4e73,
dx4e76,
Ix4e77,
Gz 4840,
ox 4841,
?x 4842,
2x4843,
2% 4844,
@x 4845,
Px 4846,
2% 4847,
2% 4e58,
@x 4e51,
@x4e52,
Px4e53,
2x4e54,
Px 4e55,
ox4e57,
oxn4e58,
9459,
@x4eSa,
@x4eSb,
@x4eSc,
@x4eSd,
ox4eSf,
xSH6c8,
@x51c8,
?x52c8,
@x53c8,
@x54c8,
#x55c8,
PxS&c8,
@x57c8,
@x58c8,
#x59c8,
PxSac8,
?%Sbc8,
@xScc8,
@xSdc8,
#xSecB,
@xS5fc8,
@xSOAc,
@x51c?,
@x52c?,
#x53c9,
?xS54c9,
oIxnSS5c,
PxS6c,
oxS7c?,
Px58c?,
#x59c9,
@xSac?,
% Sbc?,
B@xScc?,
PxSdc?,
@xSec?,
onSfc?,
PxS@ca,
@xSica,
PxS52ca,
@x353ca,
@xS4ca,
P#xS55ca,
@xSé6ca,
PxS57ca,
PxSB8ca,
@x5S%9ca,

Gxfef,
Ouffff,
Guffff,
Prffff,
Pxffff,
Prffff,
PufFEE,
Ouffee,
Oxffff,
Onffff,
Gxffff,
Oxffff,
OxfFEf,
Orffff,
Oxffff,
Orfffe,
Oxfffe,
Ouffff,
oxffff,
Pufffe,
Oxffif,
Oxffff,
Oxffff,
Pxffff,
Onfffsf,
Onfffsf,
Onffif,
OxfFés,
Oxffff,
Oxffff,
Oxffff,
Brffff,
Grffff,
Pnffff,
OnfEff,
OxfFff,
POxfFfe,
xffff,
onffff,
Onffff,
onffif,
OnfFff,
Gxffff,
ORFfff,
OrfFEf,
Onffff,
Oxffff,
POxffff,
onffff,
Ouffff,
Gnffff,
Oxffff,
Gxffff,
Orffff,
oxffff,
OxFFEf,
Duffff,
Oxffff,
Onffff,
Oxffff,
Puffff,
Onfffsf,
Oxffff,
Ouffff,
Oxfffs,
Oxffff,
Onffff,

292

"rten,
"trapv",

"Swap.w
"swap.w
"swap.w
"swap.w
"swap.w
"sSwap.w
"Swap.w
"link.w
"link.w
"link.w
"link.w
"link.w
"link.w
"link.w
"unlk.w
"unlk.w
"unlk.w
"unlk.w
"unlk.w
"unlk.w
"unlk.w
"dbt
"db¥f
"dbhi
"dbls
"dbcc
"dbcs
“"dbne
“dbeq
“dbvc
“"dbvs
"dbpl
"dbmi
"dbge
"dblt
“dbgt
"dble
"dbt
"dbf
"dbhi
"dbls
"dbcc
"dbcs
"dbne
"dbeq
"dbve
"dbvs
"dbpl
“dbmi
"dbge
"dblt
"dbgt
"dble
"dbt
"db¥f
"dbhi
"dbls
"dbecc
"dbcs
"dbne
"dbeq
"dbvc
"dbvs

Dﬂ",
D1 %,

D2",

D3",

Da",

bs",

D&",

D7%,

AB, %s",
Al,%s",
A2,%s",
A3,%s",
Ad,%s",
AS, %s",
SP,%s",
AB",

AL",

AZ",

A3",

A4",

AS",

spP",

Do, %s",
D@, %s",
D@, %s",
D@, %s",
D@, %s",
D@,%s",
D@, %s",
Do, %s",
D@, %s",
D@, %s",
D@, %s",
Dg,%s",
D@, %s",
D@, %s",
Do, %s",
D@, %s",
Di,%s",
Di,%s",
D1,%s",
Di,%s",
Di,%s",
D1,%s",
Di,%s",
Di,%s",
D1,%s",
D1,%s",
D1,%s",
Di,%s",
Di,%s",
Di,%s",
Di,%s",
Di,%s",
D2, %s",
D2,%s",
D2,%s",
D2,%s",
D2,%s",
D2,%s",
D2,%s",
D2,%s",
D2,%s",
D2,%s",

B:
B:
B:
B:
B:
B:
B:
B:

B:
B:
B:
B:
B:

B:
B:
B:
B:
B:
B:
B:
B:
B:
B:

B:
B:
B:
B:
B:
Bs
B:

B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:

Ox ledd
@x 1eB89
@x lecd
ox 100
Px1f40
@ 1§80
Ox1fc@d
0% 2000
@x 2040
Px 2088
Ox 20cd
Ix2100
@x2140
@»2180
ox21cd
912200
@n2240
9» 2280
@%22cO
P% 2309
Px 2340
2»2380
Gx23ch
9» 2400
Px 2440
2x 2480
Px24cd
Px 2500
Ox 2549
2% 2580
#»25cd
9 2609
Pr 2649
@x 2680
Px26cd
B% 2700
Px2740
ox 2780
Px27cd
2% 2800
@x 2840
2»x 2880
% 28c@
Px 2900
%2940
ox 29680
ox29cd
Ox2add
Ox2a49
ox2aB9
@Ox2acd
2% 2b 0@
Px2b40
2% 2bBo
@x2bc@
Ox2c 09
@x2c40
@x2cB8
@x2ccd
@x 2d 08
@x2d40
@x2dB0
@x2dc@
% 2edd
@x2e4d@
Px 2280

DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DERNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DERNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DERNCH,
DBERNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DERNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,

@xSaca,
@xSbca,
PxScca,
@xSdca,
PxSeca,
?»Sfca,
?xSPcb,
PxS1icb,
#x52ch,
#x53ch,
@xS4chb,
#x55ch,
#xSéch,
@57cb,
#xS8cb,
@#x59cb,
?xSacb,
@»'Sbcb,
?:Sccb,
@»Sdcb,
@xSechb,
PxSfchb,
@xSPcc,
oxSlcc,
#xS52cc,
#xS3cc,
@ S4cc,
#xSScc,
PuSbcc,
#xS7cc,
@xS8cc,
@xS9cc,
@xSacc,
@xSbcc,
@xSccc,
PxSdcc,
@xSecc,
oxSfcc,
@xS0cd,
@xSicd,
@xS2cd,
#x53cd,
@xS4cd,
#»55cd,
PxSécd,
@xS7cd,
@x58cd,
@x5%9cd,
@xSacd,
@»5Sbcd,
@xSccd,
@»Sdcd,
@xSecd,
@xSfcd,
?xSoce,
@xSlice,
oxS2ce,
@xS53ce,
PxS4ce,
?xS55ce,
PxSkce,
#xS7ce,
#x58ce,
uS%ce,
PxSace,
?%xSbce,

Ouffff,
Guffff,
Onffff,
Onfffsf,
onffff,
Ornfife,
Oxffff,
oufffsf,
oxffff,
oxffff,
Gnfffe,
onffff,
PufEfe,
onffff,
Oufffsf,
OnffEs,
PufFfe,
OrfFff,
Onffef,
Onffff,
OxFFEf,
Oxffff,
onfffs,
Orfffs,
OxfFff,
Onffff,
Prffef,
Pnffff,
Onffff,
Gnffff,
PufFee,
Pxfffe,
oufffsf,
Gxfffsf,
Onffef,
@nffff,
Guffff,
Gnffff,
Onffff,
Pnffff,
onffff,
onffff,
onffff,
ouffff,
OnffEe,
Orffesf,
Onffff,
Oufffe,
Ouffef,
Ouffff,
OnfFfe,
Onffff,
Oufffsf,
onffff,
Oxffff,
Ouffff,
Onffff,
@nfffsf,
Onffff,
onfffsf,
ornffff,
ouffff,
Oxffff,
onffff,
Oxffef,
orffff,

293

"dbpl
"dbmi
“"dbge
"dblt
"dbgt
"dble
"dbt
"db+
"dbhi
"dbls
"dbece
"dbcs
"dbne
"dbeq
“dbvc
"dbvs
"dbpl
"dbmi
"dbge
"dblt
"dbgt
"dble
"dbt
"dbf
"dbhi
"dbls
"dbcc
"dbcs
"dbne
"dbeq
"dbve
"dbvs
"dbpl
“dbmi
"dbge
"dblt
"dbgt
“dble
"dbt
"db¥
"dbhi
“dbls
"dbcc
"dbcs
"dbne
“"dbeq
"dbvc
"dbvs
"dbpl
"dbmi
"dbge
“dblt
"dbgt
"dble
"dbt
"db¥f
"dbhi
"dbls
"dbcc
"dbcs
"dbne
"dbeq
"dbve
"dbvs
"dbpl
"dbmi

[EESas i
=]
A Disassembler s

D2, %s",
D2,%s",
D2,%s",
D2,%s",
D2,%s",
D2,%s",
D3,%s",
D3, %s",
D3, %s",
D3, %s",
D3, %s",
D3,%s",
D3,%s",
D3,%s",
D3, %s",
D3, %s",
D3, %s",
D3,%s",
D3, %s",
D3, %s",
D3,%s",
D3,%s",
Da,%s",
D4, %s",
D4,%s",
DA, %E™;
D4, %s",
D4,%s",
D4, %s",
D4, %s",
D4, %s",
D4, %",
D4,%s",
D4,%s",
D4,%s",
D4,%s",
D4,%s",
Da,%s",
DS, %s",
DS, %s",
DS, %s",
DS, %s",
DS, %s",
DS, %s",
DS, %s",
o, ke,
DS, %s",
DS, %s",
DS, %s",
DS, %s",
DS, %s",
0, s,
DS, %s",
DS, 18",
D&, %s",
D&, %s",
D&, %s",
D&, %s",
D&, %s",
D&, %s",
D&, %s",
D&, %s",
D&, %s",
D&, %s",
D&, %s",
D&, %s",

mmmms CHAPTER 10

%
/%
/%
/%
'
/%
/%
/%
/%
4
%
A
/%
/%
’%
/%
’x
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
4
/%
/%
/%
/%
’x
/%
/%
/%
rx
/%
’x
/%
’x
/%
’x
/%
’x
/%
’x
%
/X
/x
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
’x
4
/%
/%
/%
e]
/%

B:
B:
B:
B:
B:
B:
B:
B1
B:

B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:

B:
B:
B:
B:
B
B:
B:

B:
B:
B:
B:
B:
B:
B:

B:
B:
B:
B
B:

@x 2ecd
POx2¢00
x2f40
on2§80
On2fco
D% 3000
%3040
ox 3089
Ix3IPcd
ox3100
@x3140
?x3180
Px31cod
13200
@x3240
2x 3280
Px32cd
@x 3300
Px 3340
2% 3380
@x33ch
Ox 3400
@x 3440
2x 3480
Bx34c@d
Px 3500
P% 3540
2% 3580
@%35cP
Ox 3600
@x 3640
Px 3680
Pn3b6cP
On3I700
Ox3740
ox 3780
Ox37cd
Bx 3800
ox3840
Px 3880
Px3Bc@d
%3900
2% 3940
Px 3980
Ox39cO
@x3ad0
@x3a40
x3aB0
@x3acd
@x3b0d
Px3b4@
2% 3bBo
@x3bc@
2% 3coo
Px3c49
@x3cB80
Px3ccd
@x 3d00
@x3d40
Ox 3d8o
@x3dc@
2% 3edd
Ox3edd
ox3eB0
Px3ecd
@x3f00
Px3f40

DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
DBRNCH,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREB,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,

@xScce,
@xSdce,
@xSece,
#xSfce,
onS@cf,
@xSicf,
oxS2cf,
@xS3cf,
@xS4ct,
@x55cf,
@xS6ct,
@xS7ctf,
@xS8cf,
@nS9cF,
@xSact,
PxSbct,
@xSccf,
@xSdcf,
@xSecf,
oxSfcf,
@x8108,
@x 8300,
%8500,
@x 8708,
#x 8900,
#xBboo,
2% B8doa,
ox 800,
2x9100,
ox9300,
Gx 9500,
2x9700,
%9900,
2% 9b0B,
Px9dos,
x990,
ox91408,
@x 9340,
@x9540,
#x 9740,
Px9940,
@x9baod,
Px9dagd,
ox9F40,
?x9180,
x 9380,
@x 9580,
ox9780,
%9980,
@x 989,
@x7d8d,
2x9¢80,
Pxb1@8,
@xb308,
@xb508,
@xb708,
@xb908,
@xbb@8,
@xbd@B,
@xbf08,
@xbl48,
Poxb348,
#xb548,
2xb748,
#xb948,
@xbb4sg,
@xbd48,

PxffEf,
onffff,
Oxffff,
Ouffff,
OxFEFE,
OxfEfs,
OxfFf,
OxFFff,
Oxffff,
drffff,
Grffff,
@xffff,
Oxffff,
Ixffff,
Oxffff,
Oxffff,
Prffff,
OxEEEE,
OxfFf,
Oxfiff,
oxfffd,
Gxfffo,
oufffo,
onfffa,
oxfffo,
onfifd,
OxfFD,
Oufffo,
BxFFfa,
oxfffo,
oxfffo,
PxfF§0,
OnfffD,
Oxf¥£0,
PxfFEO,
Oxfff0,
onfffo,
oxfffo,
Onfffo,
onfffo,
Pxfffo,
oxfF§0,
oxfffo,
onfffo,
OxFffD,
Oxfffa,
oxfffo@,
2xfffo,
onfffo,
oxfffa,
oxfffo,
oxfffo,
POxff£8,
oxf§48,
oxff8,
oxff£8,
oxfff8,
oxff£8,
oxff£8,
Bxff£8,
Bxfff8,
oxfff8,
oxff£8,
oxff£8,
ox§$£8,
oxff£8,
oxf§£8,

294

"dbge
"dblt
"dbgt
"dble
"dbt
"dbf
"dbhi
"dbls
"dbec
"dbcs
“dbne
“"dbeq
"dbvc
"dbvs
"dbpl
"dbmi
"dbge
"dblt
"dbgt
"dble
"sbcd
"sbcd
"sbed
“sbcd
"sbcd
"sbcd
"sbcd
"sbcd
"subx.b
"subx.b
"subx.b
"subx.b
"subx.b
"subx.b
"subx.b
"subx.b
"subx.w
"subx.w
"subx.w
"subx.w
"subx.w
"subx.w
"subx.w
"subx.w
"subx.l
"subx.l
"subx.l
"subx.1l
"subx.l
"subx.l
"subx.l
"subx.l
"cmpm.b
"cmpm.b
"cmpm.b
"cmpm.b
"cmpm.b
"cmpm.b
"cmpm.b
"cmpm.b
"cmpm.w
"cmpm.w
"cmpm.w
"cmpm.w
"cmpm.w
"cmpm.w
"cmpm.w

D&, %s",
D&, %s",
D&, %s",
D&, %s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
D7,%s",
xs",
%S,
Yg" i
%s",
%s",
%s",
?-II.
A
z-“:
%s",
%s",
%is",
%is" ¢
is",
%s",
is",
%" §
%s",
%.Il'
s,
%s",
%s",
is" ;
is",
z'rl’
is",
is",
%s" "
%s" ¥
%s",
x.n.
%5",
AB,Ys",
Al,%s",
A2,%s",
A3, %us",
A4,us",
AS,%s",
FP,%s",
SP,%us",
AB,%s",
Al,%s",
A2,%s",
A3, %s",
A4,%s",
AS,%s",
FP,%s",

B:
B:
B:
B:
B:
B:
B:

B:

B:
B:
B:
B:

B:
B:
B:
B:

B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:

@x380
?x3fcod
Ox 4000
2» 4040
P» 4080
Ox40cd
Px4100
Bx 4140
?x4180
@x41c@d
Ox 4200
@x 4240
ox 4280
Px42cd
Px 4300
?% 4340
@x 4380
@x43cd
x 4400
Ox 4440
9x 4480
@xd4cd
@ 4500
Px 4549
Px 4580
@x45cd
Ox 4609
Gr 4640
Ox 4689
ndb6beP
@ 4700
Px4740
@x 4780
@x47cd
D% 4800
@x 4840
?x 4880
2% 48co
Ox 4900
0» 4949
2» 4980
2% 49c@d
Ox 4200
@x4ad4d
@x4aB0
@x4ac@
@x4b0d
@x4b4@d
Px 4bB9
@x4bcd
@x4cOd
@xi4cap
@x 4cBO
@x4ccd
Gx 4d0S
@x4d4g
@x 4d80
@xA4dcd
Ox4edd
Pxd4edd
Px4eB0
?x4ecd
ox4f00
oxafaa
ox 480
Ox4fcod

CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
CMPREG,
EXDREG,
EXDREG,
EXDREG,
EXDREG,
EXDREG,
EXDREG,
EXDREG,
EXDREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
EXAREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
BCDREG,
MOVE_P,

Gxbf4a8,
#xb188,
#xb388,
?xb588,
@»b788,
@xb988,
@»bb88,
@xbd88,
oxbf88,
xclag,
Pxc340,
PxcS40,
Pxc740,
@xc40,
@xcb4d,
@xcdagd,
@xcfad,
@xcl48,
@xc348,
@xcSa8,
@xc748,
@xc748,
@xcb48,
@xcd48,
@xcf48,
@xc188,
@xc388,
Pxc588,
@xc788,
@xco88,
@»cb8s,
@xcd8s,
oxcf88,
@ncloo,
@xc390,
PncSo0,
@nc790,
Gxc08,
Pnchod,
Bxcdoad,
Ixcfog,
Pxd10@,
9»xd309,
PxdS098,
oxd709,
Pxd90@,
?xdb@d,
@xddod,
Pxdf 00,
@rd14o@,
Pxd340,
PxdS40,
2xd740,
@xd940,
@xdb4@d,
@xddag,
oxdfad,
@xd18@,
@xd380,
@xd580,
@xd780,
@xd980,
@xdbB@,
@xddB8a,
@xdf80,
ox@100,

oxf££8,
oxff£8,
onff£8,
Pxff£8,
onff£8,
onfffB,
oxf 8,
onfffB,
@xfff8,
onff£8,
onFFB,
OxFF€B,
oxff$8,
oxff$8,
nfff8,
oxff£8,
onff£8,
onff8,
orfff8,
PxFFf8,
OxfF48,
oxfFf8,
oxfff8,
OxFF§8,
oxfFE8,
oxfFFB,
onfffB,
axfff8,
oxF§8,
axfffa,
oxff£8,
oxf££8,
oxfF£8,
PnfffO,
orFFF0,
O fffD,
Pufffo,
oxfffo,
oxfffo,
onfffo,
onfffa,
oxfffo,
onfffa,
Oxfff0,
onfffo,
axfffa,
oxfffo,
onfffa,
oxfFf0,
onfffd,
oxfffo,
oxfffo,
onfffo,
Orfffa,
oxfff0,
Gxfffa,
onfffo,
oxfffo,
onfffo,
Pxfffd,
Onfffo,
BxFEF0,
oxff0,
onfffo,
onfffO,
oxfffa,

295

A Disassembler s

"cmpm. w
"cmpm.1
"cmpm. 1
"cmpm. 1
"cmpm. 1
"empm. 1
"cmpm. 1
“"cmpm. 1
"cmpm. 1
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"exg.l
"abcd
"abcd
"abcd
"abcd
"abcd
"abcd
"abcd
"abcd
"addx.b
"addx.b
"addx.b
"addx.b
"addx.b
"addx.b
“addx.b
“addx.b
"addx.w
"addx.w
"addx.w
"addx.w
"addx.w
"addx.w
"addx.w
"addx.w
"addx.1
"addx.1
"addx.1
"addx.1
“addx.1
“addx.1l
“addx.1l
"addx.1
"movp.w

= CHAPTER 10

/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:
/% B:

PxS000 x/
oxS040 x/
Ix5080 %/
@xS@cd x/
Ix5100 %/
@x5140 x/
#x5180 %/
@xS1cd %/
PxS5200 %/
Px5240 %/
#x5280 x/
Px52cP %/
OnS3I00 %/
@xS5340 %/
IxS380 %/
@xS3c@ x/
PxS5400 %/
#x5440 %/
?x5480 %/
@xS4cPd %/
@x550@ %/ MOVE_P, @,
@x5540 %/
@x5580 x/ MOVE_P, @,
@xSS5c@d %/
OxS600 £/ i
Px5640 x/ MOVE_P, @,
@x5680 ¥/ MOVE_P, 9,
@xS56cHd %/
PnS700 %/
ox5740 %/
oxS780 %/
@x57cP® %/
oxSB8O0 %/
9x5840 %/

MOVE_P, 4,
MOVE_P, @,
MOVE_P, @,
MOVE_P, @,
MOVE_P, @,
MOVE_P, @,
MOVE_P, @,
MOVE_P, @,

IMMCCR, @,

9x5880 %/ IMMSR, @,

9% P6P@ %/ ONEREG, @,
2, 2, 2,
33

ox 8140,
ox 9180,

@xB1icd,,

Gr @300,
ox 0348,
Px0380,
Ix03cd,
ax@500,
@540,
#x 0588,
Pn@S5cd,
ox87908,
@x@748,
ox@780,
@x@7ch,
Px 09008,
@948,
on@980,
@ @9cP,
OxPbBa,
PxObad,
@xobBa,
oxPbcd,
ox@doo,
?x@d4d,
P»@d8@,
@xBdcd,
Pr@f00,
OxOF40,
ox 0§80,
IxPfco,
9xP23c,
Ind27c,
@xPa3c,
oxPavc,
Pxdafc,
a,

oxffia,
Bxffi4,
Brfffa,
oxfffa,
oxE£§4a,
Pxfffa,
oxffia,
Pxfffa,
oxfifa,
Bxffia,
oxfffa,
oxfffa,
oxfffa,
oxfffa,
oxfifa,
Oxfffa,
oxfffa,
Oxfffa,
oxfffa,
oxffia,
onfEia,
oxffEa,
onffia,
oxfffa,
Oxffa,
x4,
Brfffa,
Bxffta,
oxfEfa,
oxfifa,
oxfffa,
oxfiif,
Oxfifsf,
onfiisf,
Oxfffe,
OxfEFE,
o

“movp.1l
"movp.w
"movp.l
"movp.w
"movp.l
"movp.w
"movp.l
"movp.w
"movp.l
"movp.w
"movp.l
"movp.w
"movp.l
"movp.w
"movp.l
"movp.w
"movp.1l
"movp.w
"movp.l
"movp.w
"movp.l
"movp.w
"movp.l
"movp.w
"movp.l
"movp.w
"movp.l
"movp.w
"movp.l
"MmoOvp.w
"movp.l
"andi.b
"and.w

"eori.b
"eori.w

%s,D@",
D@, %s",
D@, %s",
%s,D1",
%s,D1",
Di,%s",
D1i,%s",
%s,D2",
%s,D2",
D2,%s",
D2, %s",
%s,D3",
%s,D3",
D3, %s",
D3, %s",
%s,D4",
%s,Da",
D4,%s",
D4,%s",
%s,D5",
%s,D5",
DS, %s",
DS, %s",
%s,D&",
%s,D&",
D&, %s",
D&, %s",
%u; D7™,
%s,D7",
D7,%s",
D7,%s",
%s,CCR",
%s,SR",
%s,CCR",
%s,SR",

"illegal",

The linkacc.bat and linkacc.arg files
The linkacc.bat and linkacc.arg files (Programs 10-10 and 10-11) are used to

link the accessory. They are similar to the versions in the previous chapter, ex-
cept they contain the new functions.

Program 10-10. linkacc.bat

c:\bin\linké8 [undefined,symbols,commandllinkacc.argl]

c:\bin\relmod a
c:\bin\rm a.&8k
c:\bin\wait

Program 10-11. linkacc.arg

a.éBk=craccstart.o,main.o,

CONFIBAC.0, BT.0, DONEWWND. O, ISMATCH. 0, GETBASE . 0, DECSTAT. 0, BETNAME. O,
SHOWWND . 0, GETSYMS. 0, TRACE. O, OPENDATA. 0, ERRORS. 0, SETTOP. 0, GETLONG. O,

BOMBINFO.O,GETREAL.O, GETARGS. 0,

GIVEHELP.0,GOTKEY.O0,DOIT.0,GETTRACE. O,

296

file:///bin/l
file:///bin/relmod
file://c:/bin/rm

[1YES!

CHARTER SUBSCRIPTION FORM

[] Payment enclosed [] Charge my VISA/MasterCard

Sign me up for six Credit Card # Exp. Date
issues (a full year's

subscription) at the ~ Signature

special introductory e

price of just $59.95.

| save more than $17 Address

off the newsstand

price. City State Zip

Outside U.S.A., please add $6 (U.S.) per year for postage.

Here’s your chance to cash in with big
savings on COMPUTE!Ss Atari ST Disk &
Magazine—the exciting new publication
devoted exclusively to the special needs
and interests of Atari ST users like you.

.
bappest s turmas

* Summer CES

-

the user
en dis-
i get

ral func-

Every other month, COMPUTE!s
Atari ST Disk & Magazine brings you ex-
citing new action-packed programs
already on disk! Just load and you're
ready to run.

You can depend on getting at least
five new programs in each issue—high-
quality applications, educational, home fi-
nance, utility, and game programs you
and the entire family will use, enjoy, and
profit from all year long.

And here’s even more good news.
Subscribe now to COMPUTE!s Atari ST
Disk & Magazine and take advantage of
big Charter Subscription savings. Get a
full year's subscription for just $59.95.
You save over $17 off the newsstand
price.

No other publication gives you more
for your Atari ST than COMPUTE!S Atari
ST Disk & Magazine. So sign up now by
using the coupon above—or call 1-800-
247-5470 (in lowa 1-800-532-1272).

ive set of
e sub-
of error
ropriate
n that
ght

om as-
AL, or
ess of the
fore the

vill re-
rinted,
aally. The
isassem-
1ot reflect
r, and

/%
/%
/%
/%
/%
/%
/%
/%
/®
/%
/%
/%
/x
/%
’x
/%
/%
%
/%
/%
/%
/%
/%
/%
’x
/%
/%
/%

’x
/%
/%
/x
/%
/%
/%

a.é
CON
SHO
BOM

GIV

" | I " Norosace | &
NECESSARY I
IF MAILED
IN THE
UNITED STATES
15 T R Y AR
BUSINESS REPLY MAIL ——
FIRST CLASS PERMITNO. 7551 DES MOINES, IA =
POSTAGE WILL BE PAID BY ADDRESSEE I ——
COMPUTE"’s Atari ST -
Disk & Magazine oo o
PO. Box 10775 F
Des Moines, |IA 50347-0775
!lIIIIIIllllI'Il|I|ll|l||Iillllllllllllllllll“IIIII

NEW FOR ATARI ST USERS

COMPUTE"’s ATARI ST
DISK & MAGAZINE

Only COMPUTE!’s Atari ST Disk &
Magazine gives you all this and more
in each big issue:

TOP QUALITY PROGRAMS: Applica-
tion programs for home and business.
Utilities. Games. Educational programs for
the youngsters. All are already on an
enclosed disk and ready to run. For exam-
ple: a typical disk might contain an elabo-
rate adventure game written in BASIC, a
programming utility written in machine
language, a dazzling graphics
demo in compiled Pascal, and a
useful home or business ap-
plication written in Forth or C.

NEOCHROME OF THE
MONTH: What are computer
artists doing with the Atari ST?
Each issue contains a Neo- | |
chrome picture file—ready to |
load and admire.

REGULAR COLUMNS: If |
you're a programmer—or would |
like to be—you'll love our col-

umns on ST programming techniques and
the C language. Or check out our column
on the latest events and happenings
throughout the ST community. Or send
your questions and helpful hints to our
Reader’s Feedback column.

REVIEWS: Honest evaluations of the
latest, best software and hardware for the
Atari ST.

NEWS & PRODUCTS: A comprehen-
sive listing of all the new software and
peripherals for your ST.

AND MORE: Interviews with
ST newsmakers, reports on the
latest industry trade shows, and
overviews of significant new
product introductions.

Don't miss a single big issue. Sub-
scribe to COMPUTE!s Atari ST
Disk & Magazine now through
this special money-saving offer.
Return coupon above or call
1-800-247-5470 (in lowa
1-800-532-1272).

COMPUTE! Publications, Inc.

Port of ABC Consumer Magannes. inc
One of the ABC Publishing Companies

RETURN COUPON ABOVE TO ENJOY
CHARTER SUBSCRIPTION PRIVILEGES

A Disassembler s

DISASSEM.0,SETUPDIS.O0, IMMEDIAT.O,GETDIS. 0, PCABSIMM. 0, MATCHB. O,
TABLES. 0, EFFADD. O, ADDRMODE. O,

accsup.o,env.a,vdibind,vdidata.o,gemlib, aesbind,osbind,libf

The test Program

Finally, there is a simple program that tests the accessory by allowing the user
to deliberately crash a program in any of the seven ways that have been dis-
cussed in these two chapters. This is a separate program, and does not get
linked in with the desk accessory.

The test program arranges for a nice stack trace by nesting several func-
tion calls before getting down to business. Each function has a distinctive set of
arguments, to show how the stack trace works. The bomb routine is the sub-
routine that prints a menu and asks for a number to select which type of error
the user would like to cause. When the user selects a number, the appropriate
routine is called, and it prints out the address just before the instruction that
will cause the crash, to confirm that the debugging aid is getting the right
information.

Some of the routines that cause the crashes need special help from as-
sembly language, since there is no way to cause TRAPV, CHK, ILLEGAL, or
RESET instructions from C. In addition, the trick used to find the address of the
errant instruction involves using an asm function to put a label just before the
instruction, which C can reference and print.

Since TOS ignores division by zero errors, the zerodiv routine will re-
turn, unlike any of the others. The message “Oops! didn't die!!!!!” is printed,
and the program waits for a key to be pressed before terminating normally. The
debugging aid will still have caught the exception, and the trace and disassem-
bly listings will reflect the division error. The bombinfo printout will not reflect
the divide error, since it relies on information TOS saves after the error, and
TOS ignored it.

Program 10-12. test.c

main(ac,av)
int acj;
char ¥%av;(
int main_arg = @;

foo(main_arg,1,2,3,4,9);
>

foo{main_arg,a,b,c,d,e)
int main_arg, a, b, c, d, e;{

int (xfunc_ptr) ();
int bar();

297

meees CHAPTER 10

func_ptr = barj;
(xfunc_ptr) (6,7,8);
3

bar {(x,y,z)
int x, y, z23¢(

int a = 12;

foozle(9,16,11,a);
¥

foozlei(x, y, z, a)

int %; v, z; agt

int = *§%;

bomb(’a’,’b?,’c”,’d","e’,f)}
3

bomb(a,b,c,d,e,f)

int a, b, c, d, ®, 3¢

int x;

for(x = @3 % < 25; x++)

printf("\n")j;
printf ("Enter for bus error\n");
printf ("Enter for address error\n")j
printf ("Enter for illegal instruction\n")j;
printf ("Enter for zero divide\n");
printf ("Enter for CHK instruction\n”)j;
printf ("Enter for TRAPV instruction\n®)j;
printf ("Enter for Privilege violation\n");
switch(bios(2,2)){

NS UWN=-

case "17: bus_error(); breaks;
case "2’: addr_error () ; break;
case *3%: illegal (); break;
case "47; zerodivi(); break;
case "S5": chk_instr(); break;
case "&”7: trapv_instr(); break;
case "77: priv_error(); break;
default: printf("No error generated\n"); breakj
3

printf("Oops! didn’t die!!!!!\n");

bios(2,2);

3
bus_error () {

extern dieloci();
char f¥ptr = @xOL;

printf {"About to bus error near location %X\n",dielocl);
asm("_dielocl:");

ptr = O

b

addr_error () {

extern dieloc2();
int fptr = @xil;

printf("About to address error near location %ZX\n",dieloc2);
asm("_dieloc2:");

ptr = &;

b]

illegal () ¢
extern dieloc3();

printf("About to bomb near location ¥%X\n",dieloc3);

298

asm("_dieloc3:")j
asm("illegal");
3

zerodivi{) {

extern dieloc4();
int %, vyj

x = 35;

y = @3

printf("About to divide by
asm(”_dieloc4:");

return(x / vy);

b
chk_instr{){

extern dielocS();

printf ("About to bomb near
asm("_dielocS5:");
asm{"move.l #4,R8");
asm({"chk.w #3,R8");
¥
trapv_instr () {

extern dielocé();

printf ("About to bomb near
asm(" _dielocé:");
asm("move.w #2,ccr");
asm("trapv");

3
priv_error(){

extern dieloc7();
printf ("About to bomb near
asm("_dieloc7:");

asm("reset");
3

The linktst.bat File

ERErEEic
O REEReT i
A Disassembler s

zero near location %X\n",dieloc4);

location %X\n",dielocS);

location %X\n",dielocé);

location %X\n",dieloc7);

To link the test program, use the linktst.bat file, Program 10-13.

Program 10-13. linktst.bat

c:\bin\linké&8 [u,s] a.&68k=c:gemstart.o, TEST.O0,vdibind,gemlib, aesbind,osbind,libf

c:\bin\relmod a
c:\bin\rm a.&8k
c:\bin\wait

299

file:///bin/l
file://c:/bin/relmod
file:///bin/rm
file:///bin/wai

T

Appendix

World Map Data

s This appendix includes the data for World Map (world.c), discussed
in Chapter 3. The Program listed in this appendix must be used with
BN the discussion and program described in Chapter 3.

If you decide to type the data in instead of purchasing the disk with the
data, you may want to draw only certain coastlines to save time (and finger fa-
tigue, not to mention boredom). You can type in any part of the data you wish;
just be sure you type in an entire segment. Each segment begins with a —1 and
continues up to, but not including, the next —1. Type in as many segments as
you wish. As you look through the data segments you'll notice that they have
been printed in order of size, starting with the largest coastlines. Remember,

though, that the more segments you type in, the more of the world will appear
on the screen.

301

cog

Program A-1. world.c

/%

% Map coordinates are stored as row % FUDGEX + col

x/

long int worldfl = ¢

-1,128177,128817, 129456, 130737, 131374, 132015, 132656, 133937,

134578, 135220, 136509, 137142, 138422, 139704, 140985, 141626, 141627,
142269, 142910, 142912, 143553, 144195, 145475, 146755, 147395, 148674,
149314, 150594, 151234, 152514, 153793, 154433, 155713, 156352, 157633,
158912, 159552, 160831, 152110, 162750, 164029, 164669, 165949, 167229,
167869, 168510, 168511, 169151, 169790, 171970, 171718, 172349, 172989,
172348, 171709, 171068, 172347, 172987, 173627, 174995, 174997, 175547,
176827,176186, 177466, 178185, 178745, 180026, 179387, 180827, 181306,
181307, 181947, 181946, 182586, 182588, 183229, 183870, 183871, 183233,
183871, 184513, 183874, 183234, 182595, 182597, 182598, 181957, 180677,
180037, 179399, 178759, 178120, 176842, 175563, 175561, 174280, 173000,
172362, 172363, 171084, 170444, 169805, 169804, 169806, 169807, 169165,
168524, 167885, 167888, 167889, 1664609, 165329, 165331, 165332, 165334,
164495, 164697, 143418, 162139, 161498, 160857, 168216, 159576, 160218,
1606860, 160861, 160862, 160224, 159584, 158946, 157667, 157929, 156398,
155111, 154473, 153833, 152553, 151913, 151274, 149996, 149357, 149358,
148720, 148721, 148723, 148725, 147447, 146168, 145529, 144249, 143610,
142970, 141050, 140410, 139132, 137854, 137215, 136576, 135297, 134658,
133377, 132736, 132734, 132092, 131451, 139809, 130148, 130806, 130164,
130162, 130160, 129520, 129519, 128877, 128236, 128235, 129513, 128233,
128231, 128870, 128868, 127589, 126951, 126311, 126319, 123747, 123106,
123104, 123103, 122461, 1230899, 122458, 122457, 121815, 121175, 120534,
129532, 120531, 119250, 119249, 118608, 118609, 118608, 118607, 118606,
119244,119243, 118602, 118600, 118599, 118598, 117958, 117956, 117315,
117953, 118593, 119872, 119232, 118593, 117952, 117313, 117312, 117318,
117949,117948, 117947, 118585, 119225, 119864, 121143, 120502, 119860,
119219, 119858, 119856, 120495, 119854, 119213, 118571, 117931, 117291,
115371,114732, 114091, 114089, 114088, 114086, 114084, 114083, 113442,
112803, 111523, 110884, 189604, 108965, 168323, 108322, 108960, 189599,

£0¢

110239,111516, 119875, 111514, 111513, 111512, 111511, 119869, 119228,
189587, 188947, 197026, 186386, 105106, 1044467, 103187, 102547, 101998,
101270, 100631, 100633, 99994, 190636, 100637, 101278, 161279, 180641,
190000, 99361 , 100003, 100004, 99366, 100008, 100649, 100010, 101292,
102573, 103213, 103854, 104495, 165136, 104497, 101296, 100015, 99375,
980996, 97457, 96819, 96180, 95542, 95543, 74264, 94263, 93625,

92985, 92344, 91783, 90423, 89785, 90424, 91705, 91706, 90426,
96426,89788, 87879, 87872, 87233, 87234, 87235, 86594, 85954,

85315, 84677, 84678, 84039, 83400, 83402, 83403, 82764, 82765,

83404, 84042,85322, 84484, 84044, 84048, 83409, 83411, 82772,
82133,82132, 80852, 81491, 82776, 82768, 82767, 82126, 82125,

81484, 80844, 89203, 79562, 79564, 78925, 78285, 782684, 78282,

78281, 78280, 78919, 78918, 79556, 86835, 80833, 80194, 79556,

78278, 77639, 77640, 77001, 76362, 76363, 76365, 76366, 76347,

76368, 76369,77011,77613, 75735, 75097, 75099, 74460, 73180,
71899,71898, 70616, 78617, 69975, 89332, 68692, 68051 , 66770,

65490, 64849, 63568, 62927 , 51646, 51005, 51004, 62284, 62923,

62922, 64199, 62918, 62917, 62276, 60996, 59716, 59976, 59075,

59973, 58432, 57151, 56510, 55849, 56507 , 56505, 55864, 55862,
56501,57141,57782, 58421, 59701, 68982, 61622, 62261, 62260,

63541, 64182, 64822, 66103, 66743, 68023, 68662, 69301, 69949,
69938,71219, 72499, 73139, 73780, 74419, 75058, 75057, 73775,

72493, 71854, 70573, 49294, 69292, 69290, 69289, 68647 , 68005,

68004, 67363, 66722, 66080, 66078, 66077 , 66076, 64795, 64155,

63514, 62873, 63512, 652231, 61591, 68311, 59672, 59932, 57753,
57114,56475, 55195, 55197, 54559, 53919, 52640, 52642, 51344,

50085, 48805, 46887, 46245, 45608, 46891 , 45613, 44975, 43055,

42413, 41133, 39855, 37935, 37933, 36652, 36010, 36008, 37928,

39848, 41128, 42406, 43686, 43685, 42403, 41123, 39843,37922,

39849, 38559, 37277, 36635, 34717, 33436, 32155, 39873, 28952,

27673, 26393, 25754, 25756, 24477 , 22559, 20638, 19994, 21270,

22550, 24478, 26391, 27671, 29591, 30229, 32149, 34068, 35990,
37273,38551, 40472, 41750, 43929, 42388, 46467 , 39830, 37908,

35986, 37904, 38543, 39826, 41104, 43024, 43922, 42379, 41737,

Fog

40454,39172,39810, 39807, 41086, 41728, 43007, 42365, 41724,
42361,42999, 42357, 42355, 41077, 39796, 39154, 38511, 37868,
37226,35944,35941,37860, 37219, 35299, 37217, 36575, 35295,

33372, 35291, 35939, 34649, 35287, 36564, 37203, 36561, 37199,

38478, 39758, 38476, 37834, 36552, 36549, 35908, 35266, 35264,

35262, 346208, 34618, 33975, 33973, 33970, 32689, 32686, 30762,

32680, 32677, 33955, 34593, 35871, 37150, 38429, 39067, 39065,

40984, 41626, 42908, 44189, 44831, 46112, 46749, 46109, 46107,
46745,47383, 48661 , 48662, 48664, 50584, 51227 , 50589, 51231,

50592, 49954, 51233, 52514, 53154, 53791, 54432, 53788, 54427,

56346, 57625, 58266, 59547, 60828, 61469, 61470, 60832, 61473,

62753, 62754, 62756, 63397, 63399, 62760, 64840, 65320, 65958,

66597, 67236, 67875, 67873, 68511, 69150, 69148, 69787, 69789,

69150, 69152, 68513, 68515, 67876, 67878, 67238, 66600, 65961 ,

65322, 64684, 64046, 62767, 62126, 651488, 60849, 59569, 58930,

58292, 58293, 59571, 60211, 61490, 62130, 62131, 61493, 649854,

60856, 59576, 58936, 58938, 58939, 59580, 60222, 60864, 60866,

60867, 69869, 61510, 60872, 62152, 62153, 62795, 63436, 64077,

64718, 65999, 66639, 67280, 66640, 65360, 64720, 64879, 63440,

64080, 65361 , 66001 , 65362, 66003, 660082, 67281 , 68563, 69204,

67924, 67283, 67925, 69206, 69847, 69849, 79488,71127,71768,

72499, 73050, 73691, 74332, 74973, 75614, 76255, 76257, 76898,
76899,77540,76901,78181, 78822, 79462, 80102, 79461, 79460,

78818, 79458, 89739, 82619, 82021, 82019, 82640, 83939, 85219,

85858, 87779, 70340, 99981, 91621, 91623, 92263, 92903, 94825,

95447, 95468, 96199, 96751, 97392, 98672, 99954, 109594, 161236,
101877, 102516, 102515, 163157, 163158, 1803799, 104440, 105080, 105721,
106363, 107004, 107005, 105724, 105723, 104442, 1936801, 192529, 101879,
101238, 99956, 99316, 98676, 98677, 98678, 99959, 181249, 161882,
192523, 103164, 103805, 105087, 106369, 107011, 187652, 118213, 119854,
111496,111497,111498, 112139, 112140, 112782, 112784, 113426, 113427,
114068, 114069, 113430, 113431, 113433, 114074, 114716, 115357, 115359,
116000, 116002, 116004, 117286, 117927, 118567, 119208, 119209, 119850,
120491, 120492, 120493, 121135, 121776, 121137, 120498, 119859, 120500,

S0¢

121141,121782, 123862, 123702, 124342, 125621, 125620, 126260, 126899,

127537,

-1,39939,37757,37114,36472, 36478, 36467 , 35825, 35822,
37742, 39023, 39662, 40301 , 39920, 38378, 37098, 37199, 35818,
37997,37736,37893,37891, 37888, 37985, 36443, 35163, 33883,
32601 ,32599, 32596, 32594, 32592, 33239, 31950, 31309, 31307,
30026, 28105, 28103, 28100, 26817, 26815, 26172, 26169, 27450,
278447 ,29367 , 30648, 30645, 30642, 30901 , 30639, 31278, 30636,
29355, 30634, 32554, 33192, 32551, 31269, 29348, 28069, 26150,
24228, 23585, 22941, 22938, 24217, 25498, 25496, 25492, 24850,
22930, 22928, 22285, 22923, 23561, 21900, 19721, 19978, 21900,
22920, 22918,22277, 21635, 22274, 23555, 24193, 24839, 24829,
22910,22272,20354, 19976, 17799, 16521, 14602, 12681, 12639,
11397, 19754, 16751, 12028, 16110, 19108, 16165, 8828,8184,
8821, 16099, 12619, 12615, 12656, 13291, 12652, 13288, 13285,
14563, 15260, 15837, 17115, 18393, 20313, 21594, 22231, 22868,
22865, 23502, 25423, 27343, 27985, 29266, 29904, 28623, 27981,
27979, 26697 ,27976, 28618, 29257, 28616, 29254, 30535, 31818,
31816,31173,29253, 27974, 26053, 24772, 26693, 27973, 28612,
29250, 31169,32451, 33731, 35811, 36930, 38851, 38853, 40132,
41412,43332,43971,45250, 46528, 47167, 45885, 45247, 43968,
42689, 41499, 40130, 38848, 37568, 35648, 33728, 32448, 36527,
29248, 27969, 26689, 25406, 23486, 24124, 25403, 27322, 28601,
30521,31798, 33678, 34359, 35638, 36918, 37560, 38841, 40122,
41401 ,40760,39478,38837,38195, 38193, 36911, 369089, 35626,
34344,34983, 36264, 36906, 38187, 38828, 401097, 40106, 40744,
38824, 39463, 40741, 40999, 40737, 40735, 38815, 40094, 40732,
41370, 42098, 42647 , 43285, 44565, 45203, 45202, 43919, 42640,
42642,41362,40721,40718, 40076,41358, 43278, 44557, 45198,
46478,47117,46476,46474,47113,48391, 49030, 49671, 50952,
50950, 50308, 49666, 49665, 51586, 51587, 52867, 52865, 51583,
50941, 49661,49021,47741, 46459, 45818, 44537, 45178, 45820,
46462,46464,47106,47107,47110,46472,45833,43913, 43272,

90¢€

41999, 41349, 40967, 39425, 38783, 38141, 37498, 36858, 36216,
36855, 36213, 34938, 35573, 34295, 33653, 32371, 32369, 34287,
32367, 33645, 31725, 32364, 33643, 32361, 33639, 34918, 35555,
35553, 36832, 37479, 38750, 38751, 46929, 38749, 40928, 38108,
39387, 40025, 40666, 41304, 42582, 41304, 41306, 41308, 42586,
43865,45144,45783, 47063, 48342, 49621 , 56259, 51538, 52817,
53456, 52815, 54095, 54732, 56011, 56649, 57288, 58548, 59848,
60488, 61129, 62409, 62410, 63689, 64332, 64973, 64335, 63057,
62418, 63699, 64988, 65621, 66261 , 67542, 68823, 68824, 68825,
67545, 67547 , 67548, 66998, 65629, 64989, 64349, 63071, 62432,
61792, 60512,59871, 59230, 58590, 573108, 56670, 54752, 54113,
53475, 52836, 51558, 58917, 48997, 48998, 48361, 48362, 48363,
49904, 50284, 50283, 51562, 52841, 54119, 54758, 56037, 564677,
57958, 59237, 59879, 61161, 61163, 66524, 59886, 59888, 59899,
60531, 60532,61173,61171,61810, 62447, 61805, 61804, 62442,
62441, 63081, 64362, 64363, 65003, 66283, 66281, 64999, 65638,
66277, 67557, 68837, 69476, 70115, 76754, 70753, 70112, 70111,
70109,70748, 70746,71385, 78743, 760163, 70741, 71379,71378,
79737, 69456, 68817, 68177, 67539, 67538, 66258, 65617, 66255,
67534, 68174, 68814, 70095, 78735, 71375, 72014, 72012, 72610,
72649,73298, 73929, 72648, 73928, 745466, 75205, 75844, 75843,
77122,77121,78409,77758,77757, 77756, 78397 , 79937, 79036,
79935, 79933, 79931, 79671, 80313, 80314, 80315, 89956, 81596,
82878, 83518, 84157, 85437, 85436, 85435, 85433, 85432, 85430,
85429, 85428, 85427, 85425, 86064, 86704, 87344, 89264, 99543,
91184, 92464, 93166,92467,93108, 93756, 93111,93112,93114,
93115,93116,91837, 91838, 91200, 89919, 89280, 884641, 88003,
87364, 846725, 86086, 85448, 86989, 86090, 86091 , 85453, 84814,
84175,84816,84817,846739, 86740, 88021 , 88024, 88665, 89306,
89397, 99588, 91228, 91867, 91229, 89949, 89318, 89951, 88671,
88670, 88028, 87387, 87385, 86744, 85444, 84822, 84181, 83541,
82903, 83543, 83544, 83546, 84186, 85467, 854469, 86118,86751,
86752,87394, 88674, 89955, 91236, 91878, 91240, 91881, 91883,
91241,89319, 88680, 89321, 88683, 88684, 88685, 88687, 89326,

L0€

88687,88689, 88691, 88692, 89338, 89329, 89328, 89327, 89965,
89967,91247,91887, 92528, 93169,93811,93814,93175, 93816,

93818, 93819, 93181, 93182, 93183, 93823, 94443, 95103, 96382,
97661,98940, 98938, 99577, 98936, 98935, 98934, 98933, 99571,

98939, 98929, 98927, 98926, 98925, 98924, 98283, 98282, 78281,

97639, 97638, 97637, 97636, 98275, 98915, 99555, 160193, 99552,

99551, 98999, 98998, 98267, 97626, 97625, 97624, 97622, 97621,

96979, 96338, 95698, 94419, 93778, 93139, 93138, 92496, 93135,

93133, 93131, 93129, 93127, 93126, 93125, 93123, 93761, 94400,

94398, 95036, 94394, 95032, 94399, 94389, 95028, 96307 , 96306,

96945, 97584, 98223, 98862, 99502, 100782, 161421, 161420, 162058,
182696, 163336, 183974, 164614, 165893, 186532, 167171, 167810, 169089,
169731,119376, 111651, 112291, 113570, 114849, 115490, 116770, 117411,
118693, 119335, 119976, 120616, 121257, 121899, 122541, 123183, 123825,
124466, 123828, 123839, 123191, 123193, 123834, 123834, 123198, 123199,
123201, 122563, 122564, 122565, 122566, 122568, 124490, 124492, 123854,
123855, 125137, 127056,

-1, 128336, 128975, 129616, 130257, 130898, 131539, 1321681, 132821,

134102, 135383, 136023, 136643, 137304, 139223, 139862, 141781, 142420,
143700, 144341, 144982, 146263, 147544, 148185, 149465, 156105, 151386,
152667, 153367, 154589, 155239, 156510, 157151, 159972, 160352, 160353,
160995, 160357, 168358, 159720, 160361 , 160363, 159724, 159725, 159727,
159088, 159089, 158451, 157172, 156533, 155894, 154615, 154617, 153338,
152058, 151418, 156779, 150781, 156142, 149502, 148222, 147582, 145661,
145662, 145824, 143745, 143747, 143109, 142479, 141831, 141192, 139271,
137991, 137351, 136710, 134149, 132869, 132229, 130950, 129672, 129934,
128395, 127756, 127117, 126479, 125841, 125202, 124563, 123925, 123286,
122647, 122007, 126728, 120089, 119449, 118178, 1175306, 117529, 118147,
118166, 118165, 118164, 118803, 118801, 118799, 118797, 118155, 116876,
116235, 115593, 114952, 114951, 114316, 113669, 111748, 1111086, 189825,
169186, 107995, 197994, 187263, 106623, 105342, 104701, 103420, 162779,
192138, 161497, 106217, 161498, 102139, 162780, 162141, 182782, 163423,
104705, 105346, 195987, 107268, 107999, 198549, 199831,111112,111753,

80€

112394, 113675, 114315, 114956, 116236, 116877, 116879, 116241, 116242,
116244, 115605, 114967, 114969, 114330, 114332, 113054, 113056, 113058,
112419,111780,111141, 111142, 199862, 199863, 189224, 198585, 107945,
106664, 106663, 106661, 195389, 104100, 104738, 105377, 106016, 106014,
106652, 106651, 106810, 105371, 104891, 105369, 164728, 103448, 192807,
192166, 190885, 100244, 199247, 100248, 100889, 192170, 192812, 103454,
104095, 104097, 103458, 193459, 1834561, 104741, 104742, 104743, 104744,
194746, 195387, 185389, 1905398, 165392, 105394, 105395, 104757, 195398,
106039, 106680, 187321, 167323, 187324, 187963, 167962, 108603, 189245,
199246, 189247, 169889, 111169, 113730, 114370, 115612, 116292, 116933,
117574, 118854, 119495, 128776, 120778, 120140, 118860, 117581, 116942,
114382, 114383, 113745, 112467, 111828, 111829, 110550, 118552, 199913,
109274, 108635, 167996, 198638, 108649, 108001 , 108002, 108643, 199284,
110565, 110566, 112487, 114498, 114499, 113770, 113132, 113773, 114413,
116334, 118255, 119534, 120814, 121455, 122096, 122737, 124018, 124658,
125299, 125940, 126582, 127223, 127225, 1253083, 124023, 123382, 122741,
122100, 122099, 121458, 120817, 119535, 117616, 116977, 116339, 116984,
117622, 118262, 1189983, 118985, 119544, 120186, 120187, 126188, 118999,
118910, 118271, 118273, 117633, 115713, 115673, 113791, 113150, 112508,
119587, 199399, 199310, 108672, 108674, 189956, 109315, 108677, 198679,
108040, 108041, 108043, 107404, 107406, 106768, 106129, 1054906, 164851,
1904212, 163573, 192934, 192295, 161655, 100375, 100374, 99735, 99995,
999956, 97815, 96533, 95892, 95251, 94612, 93974, 93335, 93337,

92696, 92695, 92693, 93332, 92691, 92049, 91408, 96769, 98771,

89493, 88855, 88856, 89496, 99135, 91415, 99776, 90138, 99140,
90141,90142, 92861, 92062, 92063, 93344, 93343, 93984, 95264,

95995, 95266, 95268, 95269, 93989, 93349, 92668, 91427, 99785,

90145, 89507, 88849, 88230, 87590, 86951, 86313, 86314, 86956,
86317,86318, 85679, 844981, 83763, 83124, 81845, 81205, 79927,

79288, 78649, 77369, 76729, 76089, 74810, 74178, 728908, 72249,

71608, 70967 , 780966, 72245, 72243, 76964, 78963, 70961 , 79320,

69681, 69042, 68403, 67764, 67125, 65847, 65208, 639308, 63931,

62653, 62654, 62656, 52658, 62668, 62661 , 62662, 62664, 62024,

62026, 62027 , 62669, 62668, 63309, 63311, 62673, 62675, 62033,

60€

61394, 60115, 60116,58837, 58198, 575608, 57561, 57563, 57564,
58843, 60124, 59485, 58846, 58208, 57569, 56929, 56289, 55651,
56931,57570, 58850, 60128, 60127 , 62045, 62684, 63323, 63962,
65248, 65239, 65238, 66517, 67156, 67796, 68435, 69715, 79996,
72276,73556,74197,74837,76117,75479, 74840, 74201, 73561,
72922,72923, 71643, 78366, 70367 , 69086, 68447, 68449, 67169,
66528, 65249, 65248, 64607 , 63968, 63329, 62689, 61409, 61411,
61412, 60773, 60774,61414,60776,60137, 60138, 60140, 60781,
60142, 60144, 59505, 58867, 57588, 57589, 56951, 56952, 56314,
56316, 56957, 55678, 53757, 53116, 51835, 51195, 51197, 50558,

-1,250291, 248369, 244524, 241321, 238759, 238121, 238765, 236845,

236201 ,234919, 232998, 231078, 230441, 231086, 233648, 234932, 233657,
231740,229180, 2279900, 225979, 225984 , 2247087 , 225350, 224071 , 224074,
222797,222159, 222163, 222805, 224087 , 225369, 226652, 226654, 225374,
223455,222177, 220898, 219621, 218340, 218342, 219624, 220266, 218986,
219629, 219632, 220911, 222191, 223473, 224118, 222840, 221560, 220279,
219641, 220281, 221562, 222844, 223487 , 222207 , 221565, 220285, 229287,
229928, 222207 , 223489, 223491 , 222854, 222214, 222217, 222220, 222862,
220940, 2203081, 219659, 219622, 219924, 217742, 218380, 217097,217109,
217739,217743, 218385, 219926, 219666, 219668, 219829, 217749,217746,
216465,215823, 215180, 215182, 215185, 215187, 215830, 216476,217113,
217116,217759, 217762, 217765, 217768, 217770,217132,217775,217778,
218420, 217140, 216501,217144,217146,217788, 219667, 219970, 218433,
218435,217798, 217168, 216520, 215240, 214600, 213320, 212039,211398,
210118, 216120, 269481 , 209480, 208201 , 207568, 207558, 207556, 206276,
205638, 205639, 206279, 206280, 206282, 205642, 205003, 204364 , 203086,
2024446, 203088, 201898, 201810, 201170, 200534, 199895, 199897, 199258,
200536, 200538, 201818, 201176, 201815, 201174, 201812, 282451, 203089,
2043469, 205008, 204367 , 205646, 205645, 206284, 207563, 208204, 209484,
209486, 209488, 218769, 212049, 212696, 213971, 214611, 215250, 216531,
217171,217813, 218453, 219690, 219731, 221012, 222290, 223579, 223568,
225488, 226766, 228683, 230600, 231244, 231248, 231253, 231897, 233820,
235104, 237028, 238952, 248875, 241521, 241527, 240891 , 237695, 235137,

01€

233220, 231303, 230026, 228749, 226832, 225553, 224277, 222357, 221720,
220443, 219805, 219168, 217891, 217893, 217255, 217258, 215979, 215344,
214698, 214058, 214059, 214700, 214061 , 213422, 214064, 215344, 214706,
213426,212787,212789,214669,2140671,214074,212794,212155,212157,
212798,213437,214978, 214720, 214082, 213444, 212806, 212168,212171,
211532,211535,212177,211539,211542, 212185, 212187, 212199, 212192,
212195,212198, 212849, 212203, 212204, 212297, 211579, 211573, 218935,
210936, 210939, 209659, 209020, 209662, 219393, 210945, 210947, 211588,
210949,210310, 209033, 208394, 207756, 267758, 207761 , 207123, 267125,
207127,207768, 207129, 266488, 205209, 264571 , 204572, 203935, 264577,
204579, 205221 , 205859, 205861, 206502, 206504, 206507 , 207149, 207151,
2067152, 207155, 207797, 267799, 207801 , 267163, 208443, 289984 , 299725,
210363,211003, 211643, 212925, 212287, 211645, 211608, 2110106,2110612,
211653,211015, 210376, 209738, 209098, 268460, 267822, 267824, 266546,
206548, 206550, 205913, 205915, 205917, 205919, 205921 , 2052683, 205284,
205286, 205288, 205930, 205292, 205933, 205294, 205296, 205297 , 205298,
204660, 204022, 204664 , 204666, 204668, 205309, 20531 1 , 205953, 205955,
204676, 204678, 204039, 264041 , 204683, 205324, 205326, 205968, 205971,
205973, 205975, 205337 , 205978, 205980, 205343, 204704 , 205346, 265987,
206628, 205990, 205350, 204712, 204714, 204716, 204718, 264720, 205361,
205363, 205365, 205367 , 206099 , 206011, 206014, 206656, 207296, 207297,
207299, 267940, 208580, 209223, 208584, 209226, 208587 , 209230, 269233,
209875, 210516, 269879, 219521, 211163,2111465, 211805, 213986, 212448,
211809, 213089, 213092, 213694, 213736, 214379, 215021, 214382, 215643,
215662,216942,217581, 218859, 218856, 220136, 226775, 221413, 222053,
223331, 223969, 225888, 2271468, 229989, 231999, 232930, 234850, 236132,
238694, 239331, 241246, 244443, 248923, 250843,

-1, 160524,161165,161166,161168, 161169, 168531, 159892, 159894,

159895, 159896, 159897, 159899, 1592468, 158621, 158623, 157985, 157986,
157988, 157358, 157351, 157353, 157994, 157995, 157996, 158638, 159279,
160560, 161200, 160561, 159923, 158644, 159924, 160564, 161203, 161204,
168565, 161205, 161845, 161846, 162487, 163127, 164408, 164410, 165051,
165053, 165694, 165056, 165057, 165058, 165699, 164422, 164423, 164425,

I1€

163786, 162506, 161227,
154832, 154192, 152271,
147784, 145861, 145219,
138813, 138172, 139451,
143927, 143286, 143285,
139443, 139441, 139440,
139432, 139431, 1400671,

149703, 141342, 141981,
145175, 145814, 145813,
147723, 148362, 149002,

160588, 159308, 158670, 158631, 156751, 156112,
151631, 150350, 149708, 149867, 148426, 148425,
143939, 143298, 141377, 140736, 140735, 139454,
140091, 141371, 142011, 143290, 143930, 143928,
142643, 142642, 142001, 141360, 140721, 140982,
138798, 138797, 138796, 138154, 139434, 139433,
140710, 141350, 141349, 141987, 140706, 140705,
14262ﬁ,142&19,143259,143258,143896,144537,
145812, 145811, 146449, 146448, 147086, 147724,
149641, 150921, 151562, 151561, 152202, 153482,

154763, 155404, 156684, 157325, 158605, 160524,

-1, 6590,7232, 7235, 7875, 8518, 9155, 9793, 19435,
11977,11716, 12998, 13641, 13004, 12367, 12370, 14293, 14296,
16216, 17497, 18779, 21339, 22621, 24541, 26460, 27741, 29660,
30944, 29665, 31586, 32228, 34148, 32866, 32863, 34783, 36702,
37984,37347, 36068, 37989, 39909, 39906, 41185, 43104, 45024,
446304, 47584, 48866, 50147 ,51427,527908, 53348, 55279, 57192,
57833,59114, 59757, 59758, 68399, 61041, 61043,59763,579124,
57844, 56565, 55284, 54646, 53367, 52728, 51448, 49527, 49528,
48889, 48251, 48254, 47616, 46338, 45699, 44420, 43141, 41862,
41224,41226, 49588, 39951, 39313, 38675, 37396, 36758, 35479,
34837, 34195, 34833, 33555, 31634, 30996, 32276, 33557, 34198,
34201 ,32281, 31001, 29679, 27797, 27156, 27798, 28440,27161,
25240, 24599, 23960, 23321 , 23323, 22043, 21401, 20125, 18206,
18204, 16285, 14365, 12444, 12441, 11161 ,9883, 19527, 9887,
7966, 7325, 6045, 5467, 5409,

-1, 29600, 39882, 32803, 34084, 35367, 35370, 36613, 35375,

36658, 36659, 34741, 36822, 37945, 39864, 38584, 40508, 41150,
43070,43711,44998, 46269, 46997 , 48189, 48827, 48825, 48822,
49460,50749, 52021 , 52024, 51385, 51387, 52029, 526708, 52672,
53952, 54593, 55235, 55236, 56519, 56520, 57162, 55882, 55241,
54599, 53958, 52677, 53319, 53961, 54603, 54605, 53325, 52684,

1t

51404 ,50123, 49481, 48200, 462680, 47563, 48844, 50126, 48847,
48209, 46929, 45650, 45009, 43727, 43085, 41804, 41801, 40519,
38599, 38601, 36679, 35400, 34118, 32836, 30913, 29631, 29628,
27708, 26427 , 27865, 25783, 25781, 27859, 27057, 27695, 26416,
24495, 22575, 21932, 23210, 25128, 27047, 28327 , 29608, 28326,
27046,25766,23847, 22568, 21930, 21928, 21925, 22563, 24481,
257608, 274688, 29600,

-1, 129192, 129833, 130474, 130476, 129837, 130476, 130474, 131755,

131117, 131758, 132400, 132401, 132402, 132403, 133045, 135604, 135605,
135606, 135607, 135608, 135689, 136251, 1356253, 136254, 134975, 134976,
134978, 135619, 136260, 136901, 137543, 137544, 137546, 137547, 136995,
136904, 135623, 134341, 134342, 133701, 133700, 133059, 131777, 131775,
131133, 131132, 1306491, 130489, 136487, 129845, 129843, 130482, 131121,

131119, 130478, 129837, 128557, 128556, 128554, 129192,
-1,77109,76471,77113,76474,76476,75837, 76478, 76480,
75841,75201,74562,73282, 72641 , 73280, 72000, 71359, 790077,
68797, 68155, 68154, 66875, 66236, 64956, 64955, 64953, 65592,
64953, 64314, 63672, 63671, 64310, 65587, 65588, 66229, 66869,
467510, 68150, 68788, 68789, 68791, 70078, 79072, 70074, 79714,
71994,72633,71991,73271,73272,73912, 74550, 74552, 75194,
74555,75193, 75192, 76471 ,77109,

-1,30188, 39830, 32110, 32752, 33395, 33397, 34039, 34677,
344674,35312, 37233, 37875, 37878, 39799, 39801, 39804, 38527,
38529,37251, 38533, 39175, 38537, 37899, 36618, 36620, 34701,
34058,33415, 32134, 29574, 27653, 26372, 24454, 23175, 21893,
22530, 24449, 26368, 25085, 25083, 24441, 25718, 23798, 23796,
25074,25712, 26350, 28268, 39188,
-1,84242,86164,87446,88727,89369, 89367, 91286, 92566,
92568, 93210, 93211,93212, 93214, 93215, 91935, 91295, 96655,
9¢914,89373, 88733, 88734, 88736, 88737, 87455, 87454, 88093,
86813,86171,85530, 84248, 84250, 83611 ,82973, 83614, 83615,
83616,82335, 814695, 819653, 81951, 81948, 81687, 81686, 82325,
82324, 83603,

£1€

-1, 130450, 131732, 133913, 132373, 131693, 130454, 131094, 131735,
132377, 133617, 133018, 131737, 130456, 129816, 129178, 129179, 129177,
129175, 129174, 128533, 127894, 127895, 127896, 127898, 127990, 127901,
127262, 127260, 127258, 127257, 127255, 127894, 127892, 128532, 129172,
129811, 139459,

-1,86768, 87409, 88951 , 88692, 88054, 88695, 88056, 87418,
87419,87421,87422, 87423, 88065, 88706, 88708, 88799, 88719,
88711,880972,87433,86153,86151, 85519, 84228, 84226, 83585,

83583, 83582, 84229, 84219, 83578, 83577, 82299, 82298, 82297,

82296, 81654, 82933, 82932, 84211, 84850, 85489,
-1,30491,31773, 33055, 33698, 33701, 33062, 32419, 30498,

28578, 27298, 25379, 24161, 22182, 20264, 18986, 17067, 15794,

14513, 13876, 13239, 12602, 16682, 19048, 16677, 11955, 12592,

12588, 13865, 15143, 15782, 17058, 18338, 26257, 22175, 23456,

24734, 26653, 27933, 28571, 30491,

-1,95912, 96553, 95914, 95915, 95916, 95278, 95920, 96559,

97200, 95922, 95282, 95925, 95286, 95287, 95289, 94649, 93369,
92739,91450,99811,99171, 88890, 88890, 88249, 90168, 91447,

92086, 92725, 93364, 93363, 92723, 93362, 74001 , 94638, 94637,

94636, 95274, 95913,

-1, 123369, 124909, 124651, 125292, 125933, 126575, 127215, 127857,
128498, 129778, 130419, 131761, 132343, 132985, 132986, 132347, 1310867,
130427, 130426, 129144, 128504, 127863, 127222, 126580, 126578, 125297,
124655, 124914, 123373, 123372, 123370, 123369,

-1, 127233, 128513, 129155, 136435, 131076, 136438, 131078, 131080,
131082, 131723, 131725, 131086,129167, 128528, 127249, 127251, 1264609,
125969, 125328, 124689, 124050, 123409, 122127, 122766, 123404, 124043,
124681, 125328, 125958, 125957, 126595, 126593,

-1,48916, 48918, 48919, 48920, 49559, 50837, 50839, 52120,

52759, 52762, 53404, 54046, 52768, 52779,52131, 51494, 50215,

48935, 48293, 46373, 47012, 46371, 47010, 47648, 47097 , 47005,

47003, 48923, 48921 ,47641, 46360, 46359, 46997, 48916,

-1, 182597, 182596, 183235, 183874, 183876, 184515, 185155, 184514,

1483

185153, 184512, 183869, 183228, 183227, 183868, 184509, 185150, 185792,
186433, 186434, 187075, 187978, 187719, 187080, 186441, 186443, 185862,
185160, 184519, 183238,

-1, 147596, 148876, 149517, 156799, 151444, 156802, 150163, 149524,
148884, 148245, 146965, 146326, 145686, 144467, 143767, 141848, 141849,
140568, 138647, 139286, 141843, 141841, 142479, 143118, 144397, 1454678,
146318, 146957,

-1, 84003, 83345, 84644, 85284, 85924, 86564, 87206, 85926,
84644,83367, 83368, 82730, 83372, 84012, 84652, 85294, 84654,
83375,84016,840617,82737, 82096, 82095, 82093, 82092, 82091,

82089, 82087, 82725, 82724, 84003,

-1,72251,73531,74171,74811,76092,76731,77372, 780612,
79291,79932,81211,82491, 81852, 81853, 81213, 80572, 79933,
78653, 78015, 78656, 77375, 76734, 76094, 75454, 74813, 73534,
72894,72253,71613, 79972, 72252,
-1,79574,80216,806217,80219, 80220, 89221 , 89860, 89861,

80864, 81505, 80865, 80226, 79585, 80224, 78945, 78944, 78304,
77662,77661,77668,77019,76379, 75740, 74461 , 75899, 76378,
77817,77657,78296,78936,79574,

-1,16110, 16753, 17395, 16117, 17398, 18034, 19319, 18481,

18043, 16765, 17409, 16771, 15491, 13572, 12930, 12287, 18366,
11004, 12283, 12924, 14845, 14842, 13561, 12279, 11637, 11634,
12913,14191,16118,

-1,49920, 48001, 47360, 46082, 47362, 48643, 48644, 48645,
48647,49927,50569,51211,51852, 50573, 49934, 48654, 48656,
446738, 46096,44815,44172, 44170, 42889, 42247, 490965, 49323,
39682, 38400,

-1, 213304, 214585, 215226, 215867, 215869, 217150, 217153, 217155,
216517,215238, 214598, 213318, 212677, 211396, 216116, 209475, 269473,
210753, 211393,212674,213312, 213319, 213307, 213304,

-1, 166388, 167030, 167031, 1683109, 168951, 168312, 167673, 166394,
165755, 164476, 164475, 164473, 164472, 163192, 163191, 161999, 161268,
161267, 161907, 163189, 163190, 164470, 165110, 166368,

18

-1, 174055, 174696, 174697, 175339, 174701, 174062, 173423, 172144,
172145, 171507, 178866, 170228, 168949, 168307, 167666, 168305, 168944,
179223, 179222, 171500, 171499, 172138, 173416, 174055,
-1,9749,11629, 12311, 12314, 12956, 14236, 16156, 18076,

18720, 19363, 19366, 19369, 18991, 18734, 18097, 16818, 15538,

14255, 14252, 14249, 14885, 14242, 13599, 11678, 11637, 11934,
9752,9749,

-1, 198329, 198330, 197691, 197693, 187695, 187697, 168338, 198340,
198982, 116264, 119265, 109627, 189625, 168984, 108342, 187700, 1867699,
167057, 107056, 167054, 167052, 107690,
-1,5287,5288, 5289, 5927, 6564, 7207, 7203, 8483,

9125,9123, 10401, 11681, 12324, 12328, 114698, 12333, 11695,

12336, 11699, 18421, 9139,7862, 7221, 7225, 5946, 5306,

5388, 5313,

-1,134267, 134269, 134910, 134912, 134914, 135556, 135557, 135559,
135569, 135562, 134923, 134921, 134920, 134277, 1342756, 134274, 134272,
133631, 133630, 133628, 1342467,

-1,46817, 46820, 46823, 47465, 48103, 48742, 50021 , 50023,

48195, 50825, 48748, 48106, 48109, 46830, 46188, 46186, 45547,

44998, 44266, 45544, 45542, 46180, 46817,

-1,84948, 87408, 88248, 87618, 86968, 86978, 86971, 86972,
87614,86974, 86336, 86337, 85697, 85056, 85054, 84413, 83772,
83771,84411,85951, 85699, 86329, 86968,

-1,5459, 6100, 6743, 6746,7384, 8664, 9946, 11870,

9959, 8672, 7393, 6113, 6115, 6756, 7398, 8676, 9320,
8044,46761,6119,5478,5473,5477, 5482, 5485, 5487,

-1,113812, 115693, 115094, 116375, 116376, 115737, 117019, 117020,
116379, 115738, 115736, 115095, 113816, 113177,111896, 111895, 111894,
112533, 113173,

-1,58352, 58994, 58995, 58996, 58358, 57719, 57720, 56441,

55803, 55804, 55166, 55164, 55163,55161, 56440, 56439, 56437,

55795, 57076, 57075, 58354, 58352,
-1,73991,75182, 74544, 74545, 73997, 73908, 72629, 71989,

91e

70709, 70069, 69427 , 69426, 69425, 70795, 79703, 70792, 71343,
72623,73263, 73962, 73991,

-1,74743,75385, 75386,74747,74198, 73469, 73471,72193,
71554, 78914, 69634, 68995, 68993, 78273, 71551, 72198, 72829,
73448,74746,74745,74743,

-1,53285, 53287, 53927, 53929, 53298, 52651, 52652, 52654,

53935, 52657, 52015, 51374, 50093, 49451, 48809, 46889, 481467,
49446,50726, 52006, 53285,

-1, 134205, 136207, 136209, 135571, 136212, 136214, 136216, 135578,
135579, 135578, 135576, 135574, 135572, 135571, 135570, 135568, 135567,
135565,

-1,25097,26378, 27658, 27660, 28942, 30864, 29586, 28948,

27029, 25108, 24465, 22547, 20626, 21264, 21262, 21900, 23179,

24461, 24458, 25097,
-1,81436,80798, 81440, 808062, 801463, 81443, 80804, 81446,
81447,81449, 80809, 79529, 79527, 78886, 78884, 78243, 78881,

80160, 80159,80797,
-1,28257,29540, 32161 , 36823, 39825, 28907, 26348, 25070,

23793, 23155, 21872, 19951, 19947, 18664, 19942, 20579, 23149,

25059, 26978, 28257,
-1,111547,111548,111556, 111551, 112193, 111555, 111556, 111558,
119917, 110916, 119274, 119272, 119271, 118279, 111551, 111549, 111548,
-1,1221356, 121497, 121499, 121500, 122789, 122781, 123422, 122782,
122783, 122144, 120864, 119582, 120221, 120860, 120859, 126857, 121496,
-1,11013, 12294, 13575, 15497, 14859, 16781, 16785, 14866,

12946, 11666, 11023, 110620, 11658, 12938, 11657, 11615, 110613,
-1,12259, 13541, 13543, 13545, 12267, 11628, 12271, 19993,
9712,8434,7792,9071, 8428, 9966, 18344, 11622, 12259,
-1,5251,5255,5893, 6535, 6538, 6549, 7822,7184,

7187,7189, 5266, 6544, 4543, 5992, 5259, 5257, 5254,

5252, 5251,

-1, 133063, 133704, 133795, 133797, 133069, 131799, 131788, 132429,
133067, 133066, 133665, 133064, 133063,

L1€

-1,167617,168897, 1786177, 179818, 171468, 178181, 169542, 168903,
168261, 168260, 168259, 167618, 167617,

-1,71823,73104,74385, 74387, 75027, 75667 , 76308, 75629,
73747,73187,72466,71826,71185,71184, 71823,
-1,82301,82942, 82943, 82945, 83586, 82946, 81667, 81628,
81929,81928, 81026, 81665, 81663, 81662, 823061,

-1, 16563, 18485, 18487, 17849, 17211, 17853, 17215, 15937,

14015, 14914, 12731, 14650, 12726, 14004, 16563,
-1,72460,73100,73192,74381,74383, 75024, 76304, 76306,
75664,74384,74383,73742,73163,72461, 724608,

-1,83010, 83651,830611,82372,81734,81736,82378,81739,
81738,81736,81734,81733,81731,830149,

-1,83623, 85543, 85544, 85545, 85547, 84908, 83629, 82988,
81708,817067,81706,82345, 82984, 83623,
-1,76252,76893,76894,77535, 78177, 78819, 79440, 78188,
77539,76898, 76257, 76255, 76254, 75612,
-1,87211,87852, 87853, 87855, 87216, 87217, 86578, 86579,
85937,86576,86575,87213,87212,

-1,181971, 182612, 181974, 182615, 181977, 181334, 181335, 181334,
181332, 181972, 181971,

-1, 129656, 130298, 130299, 129659, 129920, 1277498, 127738, 127737,
128376, 129656,

-1, 137499, 1368460, 136222, 136224, 135585, 135584, 135582, 135581,
136220, 136859,

-1, 120781, 122761, 122793, 1227064, 122065, 126784, 119503, 119501,
120141, 120781,

-1,118936, 118937, 120218, 119580, 118948, 118939, 118298, 118297,
117656, 118296,
-1,57341,58622, 59262, 58624, 57343, 56063, 55422, 55421,

56062, 56701,57341,
-1,91861,92503, 92504, 93145, 93146, 92506, 91867, 91866,
91865,91864,918462,

81€E

-1,97189,97831,98471,99111,99112, 99113, 97833, 97193,

96552, 96551, 97189,
-1,5759,5450,5140,5120, 195200, 250240, 250549 , 250859,
259879,59519,5759,

-1,85938, 85300, 85301, 85942, 85303, 85304, 84663, 84662,

84459, 85298,
-1,58613,59894, 60534, 61175, 60536, 60537, 59258, 58616,
57974,58613,
-1,7@483,71763, 73045, 74327, 73046, 72406,71765,71126,

71125, 79483,

-1,63482, 63484, 62205, 62207 , 62209 , 62208, 62207 , 61566,

62204, 63482,
-1,21937,23216,25137,25779, 25141, 25143, 22583, 21941,
21939,21937,

-1,198611, 198612, 197974, 197975, 197337, 197335, 198612, 198611,
-1, 120848, 120849, 120210, 119571, 118292, 118931, 119579, 120208,
-1, 138620, 139260, 140541, 141182, 139261, 136701, 137340, 138621,
-1,7536, 6899, 6903, 6906, 5626, 5624, 5621, 5619,

5618, 6897, 7536,

-1, 65965, 66606, 65967 , 65329, 645688, 64049, 64047 , 64686,

65965,

-1,77005,77646,78288, 78289, 78299, 77648, 77897 , 77096,

77605,

-1, 47336, 66698, 66058, 65418, 64779, 64138, 64777, 66057,

67336,

-1, 15300, 17221, 18504, 18507, 16587, 15944, 15941, 15399,
-1,185212, 185213, 185854, 186494, 185215, 185214, 185212,
-1,11708206, 117661, 11830606, 118301, 118392, 117822, 117929,
-1,1311067,131198, 131169, 131111, 130469, 130448, 130467,
-1,146531, 147813, 147814, 1484556, 147815, 147173, 146532,

-1,110592,111872, 111874, 1112356, 110596, 169955, 118593,
-1,212664,212666,212668, 211389, 210747, 211385, 2126464,
-1,130507,131148,131149,131799, 131791, 131159, 131148,

61¢€

-1,43062, 44343, 43705, 43066,41787,41144, 436462,
-1,7798,8438,8441,7804,7164,7162,7160,7798,
-1,111549,112182,111543, 112184, 111543, 111541,
-1,53135,53776,54418, 53780, 53778, 53137, 53135,
-1, 106773, 198053, 186775, 185496, 195494, 1866133,
-1, 60182, 49823, 60824, 60826, 60185, 60183, 60182,
-1,97194,97835, 97197, 96558, 95917, 96556, 96555,
-1, 168508, 170427, 170429, 169789, 169149, 168508,
-1,115543,116183, 116825, 116187, 116185, 115543,
-1,81485,82127,82128,81489,81488, 81487, 81486,
-1,950697,95738, 95699, 94461 , 944606, 95098, 95097,
-1,68819, 69459, 69440, 69461, 68822, 68180, 68819,
-1, 127265, 127996, 128547, 127998, 127267, 126627,
-1,177722, 179002, 179003, 178364, 178363, 177722,
-1,6518, 6521, 6522, 6525, 5886, 5883, 5879, 6518,
-1, 23609, 24251, 24894, 23614, 21692, 22330, 23669,
-1,234215, 234218, 232941, 232938, 231655, 234215,
-1,5272,5274, 6556, 6561, 5923, 5285, 5287, 5284,
-1, 95681, 95083, 95085, 95086, 75084, 94443, 94441,
-1,88654, 89274, 98576, 89937, 89297, 88814, 88654,
-1,16788, 17430, 18073, 16153, 14872, 14870, 16788,
-1,91877,93158, 93159, 93168, 92528, 91879, 91877,
-1,84420,84421,83782, 83144,83782, 84429,
-1,88508, 88509, 88510, 88512, 88510, 868508,

-1, 40086, 39448, 38169, 36887, 381466, 49986,
-1,67377,67378, 68017, 68018, 67379, 67377,
-1,56491,56492,55214,55213, 55212, 56491,
-1,228533, 229176, 227898, 227256, 228533,

-1, 143356, 143358, 143359, 142718, 143356,
-1,139532, 140174, 146175, 140174, 139532,
-1,250275, 247075, 243234, 240673, 240668,

-1, 129786, 136428, 131969, 129788, 1297864,
-1,111560,111562, 111563, 111561, 111569,
-1,133491, 134132, 135414, 134774, 132211,

0z€e

-1,201805, 202447, 201149, 201808, 201805,
-1,138799, 138791, 138793, 138152, 138799,
-1,116373,117014,117615, 116375, 116373,
-1,55857,57137,57139, 55859, 55857,
-1,72494,73135,73136, 72495, 72494,
-1, 65587, 64948, 63648, 64307, 65587,
-1,7827,8470,8474,7836,7191,7827,
-1,7812,9993,9735,8454,76814,7812,
-1,5324,5323, 5318, 5955, 5951, 6590,
-1, 14827, 14829, 12919, 13548, 14827,
-1,71762,71763,71704,71663,71792,
-1,86735,87375,87376, 86736, 86735,
-1,5606,5607,5611,6254,5617,5617,
-1, 32000, 32641, 31365, 30083, 30080,
-1,82732,82733, 82094, 82733, 82732,
-1, 240668, 2432308, 245149, 250269,
-1, 105140, 106422, 195781, 195141,
-1,119250, 119251, 118611, 118618,
-1, 199259, 199992, 199268, 199259,
-1, 136851, 136852, 137493, 136212,
-1,7154,7796,7797,6517,7154,
-1,89923, 99565, 89925, 89923,
-1,76755,77396,76116,76755,

-1, 20408, 21689, 21699, 20498,
-1,63969, 63331, 63338, 63969,
-1,16774,16776,15494, 16774,

-1, 156486, 16926, 16928, 15646,

-1, 65632, 66272, 564993, 65632,

-1, 135563, 135564, 135543,

-1, 195437, 195440, 194798,

-1, 131103, 131745, 131103,
-1,162482, 162484, 161842,
-1,129825, 129827, 129186,
-1,175977, 175338, 175977,

1ze

-1, 128551, 128552, 128551,
-1, 198841, 198843, 198841,
-1, 128560, 129201, 128560,
-1,146977,146978, 146977,
-1,134943, 134944, 134943,
-1,129135, 129775, 129135,
-1,127212,127853, 127213,
-1,116324, 116964, 117604,
-1, 135580, 135582, 135580,
-1,116894,117535, 1146894,
-1, 134952, 134313, 134952,
-1,134317,133678, 133677,
-1, 136283, 136924, 136283,
-1,137566, 137568, 137565,
-1, 102050, 161411, 162050,
-1, 170886, 170887, 1798864,
-1,144634, 1445636, 143995,
-1,131671, 139432, 130431,
-1, 102054, 101415, 162054,
-1, 108198, 198849, 198198,
@

33

Index

Specific routines are listed under the program in which they appear.

** 143

absolute addressing modes 272
accstart 41, 164

ACCSTART.S 7

accsup.o 164

address errors 223-24

address mode field 267
address of handle 22

address register direct mode 271
AES viii

Alcyon C 5, 45

annotated disassembler 263
archiver program 45
arguments 236

arrow icons 33

asm 227

Atari ST Software Developer’s Kit vii, 5, 19, 45, 49,

127, 219
batch file 5
BIOS viii, 183
blitter chip 185
bomb information 251-52
bombs 223-24
boxes 96
braces 4
break 4
brk function 41
bugs 52
building a menu tree 96-101, 117
building an interactive sound control panel
186-203
build_tree. See specific program entry
bus errors 223
C compilers viii
central processing unit (CPU) 223
CHK instruction error 224
clearing work area 39
clock 212
column 160
command interpreter 127
“Command Shell” 127-71
build_tree 167-69
built_in 142-44
calc_dir 160-62
call_sys 136-41
configac.c 129
configap.c 167-68
dir_list 146-49

322

do_copy 150-52
do_dir_window 157-60
doit 162
doit.c 129-30
do_main_menu 169-70
do_menu 169-70
do_move 152-54
do_rm 154
do_title 155-56
findemd.c 141-42
get_head 149
give_help 135-36
got_key 130-35
isprg 136-38
justdraw.c 129-30
linkacc.arg 164
linkacc.bat 165
link.arg 170
linkit,bat 171
new_window 162
pad 162
print_dir 163-64
prntfile.c 155-56
redo_dir 163
save_last 144-46
set_screen 136-38
compiler modifications 6-8
config.c. See specific program entry
connecting routines 11
control statements 3
copying files 150-52
C routine, calling 234
cursor, text 15
dagger 180
data files 21
data register direct mode 271
data transfer address 146
“Bombsite!” 224-61
bomb_info 251-54
bt 248-50
configac.c 225-26
debug.h 257-58
decode_status 254-55
doit 239-41
do_new_window 254-56
errors.c 227-29
get_args 236-37
get_base 246-47

getbyte 238-39
getlong 238-39
get_name 250-51
get_real 233-36
getshort 238-39
get_syms 244-46
get_trace 229-31
give_help 242-43
got_key 241-42
ismatch 247-48
just_draw 239
linkone.arg 259
linkone.bat 258
open_data 226-27
set_top 227
showwnd 256-57
trace 243-44
debugging 223-59
deleting files 154
desk accessory programs 15, 127
desk menu 92
dialog box 116, 200
dir_char 147, 150
disassembler 239, 258, 263, 264

disassembler portion of “Bombsite!” 263-99

addrmode 267-70

disassem 274

effadd 271-72

get_dis 265-66

hash_tab structure 275

immediate 273-74

linktst.bat 299

matchB 266-67

pcabsimm 272-73

setup_dis 274--75

tables.c 275-98
disassembly listing 274
do_menu. See specific program entry
doit. See specific program entry
drawing a bar chart 78-81
drawing a line chart 70-72
drawing pie charts 81-84
drawing the screen 38
drawing the Mandelbrot set 101-5
dummy exit function 41
editable text fields 117
envelope 11
envelope control bit 209
envelope generator 209
envelope library v, vii, viii, 11
envelope library routines 12-46

addit.c 42

archive.bat 46

bldtree.c 43, 50

clip_work 39-40

clocktic.c 43

close_all 40-41

close_window 40-41

clr_display 39-40

323

config.c 12-14, 50
do_arrows 33-35
doclean 44, 50
do_display 38
doit 38, 50
do_menu 31, 50
do_redraw 32-33
gotkey.c 44, 50
hide_mouse 37
h_touched 36
just_clear 39
just_draw 32-33, 50
main.c 14-16
mousehit.c 44, 50
multi 22-26
newwind 42, 44
nfparts.h 45
open_data 21-22, 50
open_vwork 17-18
open_window 20-21
pad.c 44
pos_slide 36-37
setup_screen 16-17
setup_window 19-20
show_form 26
show_mouse 37
slide_pos 35-36
slidsize.c 45
vdidata.c program 42
v_touched 36-37
was_.msg 27-31
window.h 45
error-handling routines 227
everything 143
exception handling 223
exception number 251
exceptions 223, 225
exclamation points 131
exit a program 40
file header 244
file menu 93
filename 160, 244
fractals 87
frame pointer 228, 229, 232
function addresses 246
functions 3
GEM v, vii, viii
GEMDOS viii
gemstart 41, 164, 167, 170
GEMSTART.S 6
Giaccess 204, 205, 208
global variables 4
got_key. See specific program entry
goto statement 4
graphics accelerator chip 185
handle 14, 158
address 22
virtual workstation 17, 38
window 21, 38

hard disk 57

hashing 265

hatching pattern 76

header file 124, 187

help menu 94

illegal instructions 224
immediate modes 272
indentation 3

index 266

indexing errors 224

indirect recursion 157

input 22

input devices 13

instruction 224, 236
instruction lengths 234
instruments 212

interface variables 12
interprocess communication 23
interrupt priority level 254
Kernighan and Ritchie standard 5
keyboard 177

libraries 5

library names 5

Line A graphics interface 87, 102
linear search 266

linker 45, 50

load address 233, 243

long integers 52

low memory 183

malloc () subroutine 7

Mandelbrot Program’s Menu and Submenus figure

89

Mandelbrot set 87

“MandelZoom!” 87-124
addit 97, 100
back_to_first 124
build_tree 88, 96-101
colors 108-10
config. ¢ 88-89
coordinates 116-20
dialog 88, 115-16
copy_first 121
do_cleanup 110
doit 88, 101-5
do_main_menu 91-95
do_menu 88, 89-90
get_val 120
give_help 95-96
got_key 88, 113-15
just_draw 88, 121-23
link.arg 124
linkit.bat 124
mouse_hit 88, 111-13
rest_colors 109-10
save_colors 109-10
save_screen 121
set_val 120
time_it 105-7
time_print 105-7

mandlzum. See “MandelZoom"

masking 266

memory management unit 223

324

menu activation 89
menus 168
messages 26
modulars 3

mouse 15, 37, 38

mouse_hit. See specific program entry

MOVE instruction 267

move multiple instruction 227

“Noise!” 175-219
add_slider 192-93
all_sliders 193-94
bellblock 216-19
bld_sliders 189-91
build_tree 187-89
clock_ticks 215-16
config.c 175-76
do_black 182
do_cleanup 183
do_effects 213-15
doit 176-77

do_main_menu 196-99

do_menu 195-96
do_rhythm 213-15
do_slider 199
do_white 180-82
drums.h 212-13
fill_box 180
get_clicks 183
got_key 185-86
just_draw 177
keys.h 179-80
link.arg 219
linkit.bat 219
mode_bit 209-10
no—clicks 183
noise 210-11
noise_enable 205-6
open_data 183-84
percussion 216-18
period 210-11
play_note 204
print_vals 212
put_clicks 183
rad_button 205-7
rest_state 203
save_state 203
select_on 204-5
set_slider 195
shape 210-12
show_keys 177-79
sliders 199-200
sliders.h 187
slid_val 207-8
sl_set 200-202
toggles 204-5
tone 208-9
tone_enable 205-6
volume 209-10
which_one 202

null string 63

object 96

object code 45

open_data. See specific program entry
options menu 93-94
overflow error 224
overflow table 265
packing 51
pathname 141, 149
phystop variable 227
piano keys 179
pitches 216
“Plots and Charts” 61-84
bar_chart 78-81
config.c 61, 62-63
doit.c 61
draw_bar 80-81
drawbox.c 77
extract 67-68
getmode.c 77
grid 73-78
label.c 75
line_chart 70-72
link.arg 84
linkit.bat 84
open_data 63-64
open_data.c 61
pie—chart 81-84
range 72-73
read_data 65-67
scale.c 78
select_file 64-65
strip_comment 67
strval.c 75
pointers 226
post processor 5
Print Values menu selection 212
printing the directory 162
privilege violations error 224
program addresses 247
program code 231
program counter 224, 228, 252
program counter relative modes 272
programming 5
question mark 248, 250, 268
quit a program 40
radio button 186, 206
RCS 50, 62
renaming files 152-54
resolution 108, 121
resolution modes 49
resource construction set. See RCS
return address 229
re-usability 4

rhythms, generating with the clock 212-19

screen 16

screen memory location 137
script file 5

scrolling, screen 33

setexc 225, 226

shape register 204

slider 189, 192, 256

slider box 33, 35, 35, 195, 207

slider index 202
sound chip 175
sound chip registers 197, 203-12
sound register values 193-95
stack 229, 231-33
stack space 6
stack trace 248)
Stack Trace Structure, The (figure) 232
startup routines 6, 41
status register 254
subroutine addresses 246
subwindows 32
supervisor mode 183, 223, 224, 227
SUPEXEC 183
switch statement 3
symbol table 233, 243, 244, 250
system reset 225
TAB character 180
TEDINFO structure 117
template string 117
text editor 45
text string 117
time intervals 13
toggle switches 94
tone 208
TOS-Takes-Parameters 21
transient program area (TPA) 251
TRAPYV instruction error 224
tree 96
tree index 202
.TTP extension 21
user mode 224
user stack pointer (USP) 251
validation string 117
values 120
VDI viii, 61
VDI routines 42
virtual device interface. See VDI
virtual workstation 14, 17

handle 14, 38

input parameters 17
voice register 204
volume 206, 209
while 4
wildcards 146

window 12, 13, 19, 20, 28, 40, 157, 162, 254

window handle 21, 38
window management routines 27
“World Map” 50-58

config.c 50

doit 51

link.arg 57

linkit.bat 57

map 52-53
“World Map” data 303-23
writing a program 3, 4
writing mode 76
zero divide error 224

oS ﬂ“-!h
éwts wﬂi Jrntmry
51RO nieey
96 hahmrmhsm

A= g '\;ﬁiﬂb&ﬁ‘ﬂ' o s

G0 AR Sy die gamesay aedont

) »ﬁ‘ S A A) R wedee :

Y frdidl Ve avEne

B oEN ke

e -l:M")! nlﬁm
65?.- .EA. A
FR b sq'm{x
x‘lﬂ HI AP wmeit
t‘,.-« g &3 *’9" B B Bk i

m:g P
A‘.‘F}ul""" q&-.' a5,

To order your copy of COMPUTE!’s ST Applications Guide:
Programming in C Disk, call our toll-free US order line: 1-800-
346-6767 (in NY 212-887-8525) or send your prepaid order to:

COMPUTE!’s ST Applications Guide Disk
COMPUTE! Publications

P.O. Box 5038

F.D.R. Station

New York, NY 10150

All orders must be prepaid (check, charge, or money order). NC
residents add 5% sales tax. NY residents add 8.25% sales tax.

Send copies of COMPUTE!'s ST Applications Guide Disk at
$16.95 per copy.

Please note: The COMPUTE!'s ST Applications Guide: Programming
in C Disk is a 3z-inch, double-sided disk.

Subtotal $

Shipping and Handling: $2.00/disk $
Sales tax (if applicable) $

Total payment enclosed $

o Payment enclosed
o Charge o Visa 0 MasterCard o American Express

Acct. No. Exp. Date e
Name

Address

City State Zip

Please allow 4-5 weeks for delivery.

327

Programming the Atari ST

GEM on the Atari ST is a rich environment, with hundreds of routines enabling you
to create sophisticated, powerful applications. GEM's features include pull-down
menus, icons, sliders to scroll screen data, mouse-activated screen selections, the
ability to move and rearrange windows, and so on.

Written for the C programmer, COMPUTE!’s ST Applications Guide: Program-
ming in C contains a set of high-level routines that make working with GEM easier.
By using these routines and making them part of your programs, you'll be able to
access GEM quickly and effortlessly. Each routine is fully explained in easy-to-under-
stand language.

Also included are a series of six application programs that illustrate how to
use the routines to access GEM. These applications show and explain how to use
slider boxes, pull-down menus, windows, and much more. The applications in-
cluded are:

» Plot routines that create pie, bar, and line graphs

* A very fast Mandelbrot set

» A line-drawing routine that creates a world map

» Command Shell desk accessory which allows desktop commands to be used
while an application is running

» Sound board simulation using the sound chip

» Debugger utility

COMPUTE!'s ST Applications Guide: Programming in C is for intermediate to
advanced C programmers. Written in the clear and concise style that has become
the hallmark of all COMPUTE! publications, COMPUTE!'s ST Applications Guide:
Programming in C includes all the programs to help you access GEM from your C
programs. This is a book all Atari ST C programmers will want to add to their refer-
ence libraries.

All the programs in this book are ready to type in and use. If you prefer not to type in
the programs, however, a companion double-sided disk is available. See the coupon in
the back of the book for details.

0-87455-078-5 $19.95

