
=i Applications

GUIDE
PROGRAMMING IN C

Simon Field,
Kathleen Mandis,
and Dave Myers

A clear and comprehensive
guide to writing Atari ST

applications in C.

| S E L E C T I O N |

COMPUTED

ST Applications
PROGRAMMING IN C

Simon Field,
Kathleen Mandis,
and Dave Myers

COMPUTE! PublicationsJncS
Part of ABC Consumer Magazines, Inc.
One of the ABC Publishing Companies

Greensboro, North Carolina

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the
United States Copyright Act without the permission of the copyright owner is unlawful.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-87455-078-5

The authors and publisher have made every effort in the preparation of this book to insure the accuracy of the programs and
information. However, the information and programs in this book are sold without warranty, either express or implied. Nei­
ther the authors nor COMPUTE! Publications, Inc. will be liable for any damages caused or alleged to be caused directly, in­
directly, incidentally, or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of COMPUTE! Publica­
tions, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-9809, is part of ABC
Consumer Magazines, Inc., one of the ABC Publishing Companies, and is not associated with any manufac­
turer of personal computers. Atari, Atari 520ST, Atari 1040ST, and TOS are trademarks or registered trade­
marks of Atari Corporation. GEM is a trademark of Digital Research, Inc.

Contents

Foreword v

Introduction vii

1. C Programming and the Atari ST 1

2. Creating the GEM Programming Envelope 9

3. Simple Line Graphics 47

4. Business Graphics 59

5. Creating Menus, Dialog Boxes, and Graphics 85

6. Building a Command Shell Desk Accessory 125

7. Changing a Desk Accessory to a Regular Program 165

8. Programming the Sound Chip 173

9. A Debugging Aid 221

10. A Disassembler 261

Appendix: World Map Data 301

Index 322

Disk Coupon 327

Foreword
•••••l The Atari ST has a user interface called GEM. GEM's features in­

clude pull-down menus, icons, sliders to scroll data, mouse-activated
• • • • • • screen selection, the ability to move and rearrange windows, and so
on. In short, GEM is how users get the ST to work. But how do programmers
get GEM features to work in their application programs?

COMPUTEl's ST Applications Guide: Programming in C is written for C
programmers. It does not teach C programming, but rather includes a library of
functions that makes using GEM routines easier to access from your own C
programs. Each function in the library is fully explained and easy to use.

The book begins by introducing the library of routines, called the enve­
lope library. You can write application programs within the envelope and then
use the envelope's functions to access GEM and make its features part of your
program. The rest of the book gives you a series of example application pro­
grams that use the envelope library to interface with GEM.

Examples of the application programs included are a Mandelbrot set of
fractal graphics that takes only minutes, rather than hours, to draw completely;
a Command Shell which allows you to execute the commands copy, move, re­
move, print, list (print with filename), dir, and chdir from a desk accessory; a
debug program that will help you analyze the reason a program crashed; plus a
sound program and graphing applications.

COMPUTEl's ST Applications Guide: Programming in C requires a working
knowledge of C programming and a C compiler for your Atari ST. All the pro­
grams are ready to type in and use. Also available, on a double-sided 3V2-inch
disk, are all the programs from the book. To order the disk, use the coupon in
the back of the book or call 1-800-346-6767 (in New York 212-887-8525).

V

Introduction
••••••• Many programmers learn best by example. As with music, where no

amount of discussion is as good as hearing a performance, seeing ex-
• • • • • amples of good programming is much more useful than reading dry
descriptions of functions and interfaces.

Starting with that premise, this book does not simply describe a function
and list its arguments, leaving you to puzzle over how it is meant to be used.
That's the realm of reference books and dictionaries. Instead, it discusses the
insides of programs, showing how functions fit together to create working
applications for business, art, graphics, and music.

To use this book you'll need an understanding of C programming. This
book is written for programmers who know the C programming language—it is not
intended for the beginning C programmer.

The programs in this book are about the programming interface—known
as GEM—on the Atari 520 and 1040ST. GEM is a rich environment, with hun­
dreds of routines enabling you to program sophisticated, powerful applications.
GEM's features include pull-down menus, icons, sliders to scroll screen data,
mouse-activated screen selections, the ability to move and rearrange windows,
and so on. But that richness has a price. GEM can be complicated and intimi­
dating, hard for all but the most dedicated to program. How do you, the pro­
grammer, get GEM features to work in your applications programs? That's
what this book is about.

Much of the information available about GEM comes from the Atari ST
Software Developer's Kit, which consists of 400-plus pages of technical notes,
and which costs about $300. Although the Kit is designed for developers, as it
is now organized, vital information is dispersed in various nooks, crannies, and
dark corners of the notes. Even more serious is the lack of a clear "system" for
GEM programming in the sense that many procedures needed to program GEM
are either not readily identifiable or are described at a low level of program­
ming. Finally, those procedures and routines that are well documented may
contain errors or other quirks you should know about.

This book rectifies those problems. We build a set of high-level routines
that simplify working with GEM by avoiding the errors and automating much
of GEM's complexity. The routines make the computer take care of the ordi­
nary trivia, and let you concentrate on your applications programming. Think
of the set of routines as an envelope around GEM. You can write applications
programs within the envelope and then use the envelope's routines to access
GEM, coupling its features to your program.

vii

At its simplest level, the envelope provides so much of the user interface
that your application program may never need to interact directly with the user
at all. Whether responding to items selected from a menu, typed characters, or
mouse moves, the envelope calls the appropriate routines to handle the input.
Moreover, all procedures to manage windows or refresh the screen are done
automatically.

Each of the programs in this book uses the envelope routines. Rather
than just presenting the programs, however, we take them apart to show how
their envelope routines control GEM. Piece by piece, the programs unfold to
show how the routines interconnect to create a realistic, working application.

Use the routines, modified or not, in your own programs. They were
written with the idea that youTl want to lift sections of code directly and put
them into other routines or programs. You can also modify the routines to cre­
ate new ways of working with GEM, knowing beforehand what works.

The information in this book comes from many hours of testing and
evaluating the routines in the Atari ST Software Developer's Kit. You do not need
the Kit for programming with GEM. All of the currently available C compilers
for the ST include the libraries and routines necessary for the envelope and for
writing ST applications programs. But, if you don't have the Developer's Kit,
you will need one of the other C compilers. Some of the routines' names may dif­
fer with the various compilers, but the changes should be noted in the compilers'
documentation. If you use another compiler, especially one that cannot link pro­
grams with more than 32K of data, you'll need to make some additional
changes to the routines included in this book; please see the last section of
Chapter 1 for instructions.

By the way, for simplicity we use the term GEM to refer to all of the
software in the ST's ROM and subroutine libraries. If a subroutine or macro is
part of the BIOS, the VDI, the AES, or GEMDOS, we lump it in the class GEM
because the differences are usually irrelevant for what we're doing in this book.
The important distinction is between the routines available to everyone from
Atari or the C compiler, and the routines available only in this book.

This book builds on itself after Chapter 1. That is, the procedures devel­
oped in Chapter 2 are essential for Chapter 3; those in Chapter 3 for Chapter 4,
and so on. The biggest, and most important, chapter is Chapter 2. It is there
that we describe the envelope that is used in every subsequent applications
program in the book. Therefore, once you get through with Chapter 2, you
might be tempted to write your own ST applications program right away. Re­
sist for a while anyway. Later chapters reveal many simplified programming
techniques and may solve some vexing problem you're facing. Then, by the
end of the book, you'll be able to write an ST applications program with a
minimum of fuss.

viii

1 C Programming
and the Atari ST

C Programming
and the Atari ST

How a programmer writes a program can often have quite an effect
on the success of the program. If a program is easy to read, unam­
biguous, and modular, then it is easier to debug, easier to maintain,

easier to build and understand, and easier to share with other programmers.
While style is often a personal matter, and discussions of where to place C's
curly braces often sound like religious arguments, in practice, if a programmer's
style is consistent, then a reader can learn to read it with little trouble.

In this book, the programs were written in a style designed to make pro­
gramming errors less likely to occur, and to make the code as readable and un­
derstandable as possible. Some aspects of this style may be summarized as
follows.

1. Indentation is rigorously used to clearly mark which control statements gov­
ern each block of code. Control statements like // and while always control a
statement or group of statements that is indented on the following line, not
on the same line. Thus you can use

if(index > MAX—INDEX)
return;

instead of placing the return on the same line as the //. Doing otherwise can
lead the reader to think that the wrong statement is being controlled, as in
while(*p+ + = * q + +)

putchar('\ no­
where, if the semicolon was not on a line by itself, the reader might think
the putchar was controlled by the while.

2. Modules are used to make code more understandable and to make the code
re-usable. Functions are, in general, kept short and given meaningful names,
so that the reader can think about them clearly in terms of their function, in­
stead of wrestling with routines that do several different jobs while wearing
one hat.

Some of the longer routines in this book are based on the C switch
statement. Each case in the switch acts like a named subroutine, in that the

3

CHAPTER 1

code is broken down into manageable parts and named by the case it
handles.

Re-usability means that, once a function has been written, it can be
used for more than one purpose or used by more than one program. This
not only makes new programs quicker to write, but it makes them less error-
prone, and more understandable. If a function has been fully debugged in
one program, it's less likely to introduce problems in another program than a
function which has been written from scratch. If the person reading the code
has seen a function before in another program, it's easier for him to under­
stand the new program, since he is on familiar ground, with less new infor­
mation to learn.

3. Global variables are used sparingly. In this book, globals are used carefully,
and are hidden from functions that do not need to know about them. There
are no header files full of external statements, but instead each function de­
clares its own external variables to keep the information close by, where the
reader can refer to it easily, and to make it obvious which functions use a
particular global variable.

The concept of locality helps keep the reader's mind on the task at
hand. If the interface between a subroutine and the outside world is clearly
defined, then the subroutine can be understood by itself. Global variables
muddle this interface, and the reader must know the current state of some
other part of the program in order to understand the subroutine at hand.

4. Braces are placed consistently throughout the book. Open curly braces are
placed at the end of the control statement that governs a block, and end
curly braces are on a line by themselves, indented with the block of state­
ments they terminate. Other styles that are popular have the open brace on a
line by itself, or have the end brace indented at the level of the control state­
ment. If the programmer is consistent, then any of these styles is readable.

5. The use of the goto statement is another "religious" issue. None are used in
this book, but only because none were needed. The use of a goto should be
a flag to the programmer that a function should be split into two functions to
make the code more readable. In cases where speed is of paramount impor­
tance (which is actually quite rare) a well-commented goto statement might
be the best choice.

The goto statement should not be used where structured statements
such as while or break could be used instead. However, since C cannot use
the break statement to get out of a nested loop, a goto is often used when
this needs to be done. When a few extra microseconds will not be missed,
however, it is usually better to put the inner loop in a separate subroutine,
and end the outer loop if the subroutine returns a FALSE when called.

4

Compiling and Linking

Using Libraries
Libraries of functions are a logical outgrowth of the need for modularity and re­
usability. Libraries allow the programmer to save useful functions in a place
where the linker can find them, and to include them in any program that needs
their functionality. If a program needs a slightly different version of a function
in the library, the programmer can merely include the altered function in the
list of files given to the linker, and the linker will use the new version, and not
get the old version from the library.

Such flexibility is used throughout this book to make programming the
ST remarkably easy. As you develop your own functions, you are encouraged
to make them generic and re-usable, and to put them in a library where they
will be easily accessible for future programs.

Programming on the ST
The programs in this book were written with Alcyon C, the C compiler included
in the Atari ST Software Developer's Kit, although other compilers should
present no problem since the programs adhere strictly to the Kernighan and
Ritchie standard for C. In the two last chapters, a very small amount of ma­
chine language is used when the code gets very machine-specific in dealing
with issues of debugging, but converting to another assembler should be trivial.

The Atari ST Software Developer's Kit compiler is somewhat cumbersome
to use, since there is no single command that will compile a C program. The
compiler comes in pieces, and the programmer must use a batch program to ex­
ecute the parts of the compiler in sequence from a script file. Atari supplies
such a batch file, called C.BAT, to be used to compile programs. The C.BAT file
produces object files, which are then linked by another batch file which calls
the linker and a post processor called relmod.prg.

Each program in this book will be presented with a batch file that shows
how to link the program, and which libraries are needed to link with the file.
The batch files are specific to the Atari ST Software Developer's Kit, but can be
used as guidelines for other compilers and linkers, since library names are sur­
prisingly consistent among compilers. To make conversion easier, the library
names and a description of their contents are given here:
Name Contents
gemlib printf, open, sprintf, etc. (C library)
aesbind wincLget, evnt__multi, etc. (AES library)
vdibind v_pline, v_circle, etc. (VDI library)
libf fpadd, fpmul, etc. (floating-point library)
osbind.o gemdosQ, bios(), and xbiosQ routines

5

CHAPTER 1

Modifications to Atari-Supplied Routines
If you are using the Atari ST Software Developer's Kit to compile the programs in
this book, you will need to make some modifications to two of the routines
Atari supplies. These are startup routines that need to be linked as the first
thing in any program. The accstart.o routine is the one you choose for acces­
sories and the gemstart.o routine is for regular programs.

Our reason for recommending that you modify these routines is that
they define very small amounts of stack space (by normal C programming stan­
dards). Good C programs minimize the use of global variables, and instead
make use of local variables on the program's stack. The two startup routines
can be modified so they define about 32K of stack, which is more than ade­
quate for most programs. If you write programs that need more space, you can
increase the size with the following procedure.

In the GEMSTART.S file on the Developer's Kit disk is some code that
looks like this:

move
move
move
move
add.l
add.l
add.l

move,
add.l
and.l
move,

code.

1

a7,a5
4(a5),a5
a5,_base
$c(a5),d0
$14(a5),d0
$lc(a5),d0
#$500,d0

dO,dl
a5,dl
#-2,dl
dl,a7

* save a7 so we can get the basepage address
a5=basepage address
save for C startup

* dO=basepage+textlen+datalen+bsslen (plus IK of user
stack)

* compute stack top
* insure even byte boundary

set up user stack, IK above end of BSS
You need to change the #$500 to #$8100 as is done in the following

The comments have also been changed to reflect the code change.

save a7 so we can get the basepage address
a5=basepage address
save for C startup

* dO=basepage+textlen+datalen+bsslen (plus 32K of user
stack)

* compute stack top
* insure even byte boundary
* set up user stack, IK above end of BSS

move.l a7,a5
move.1 4(a5),a5
move.1 a5,_base
move.l $c(a5),d0
add.l $14(a5),d0
add.l $lc(a5),d0
add.l #$8100,d0

move.l d0,dl
add.l a5,dl
and.l #-2,dl
move.l dl,a7

6

Compiling and Linking

The Atari version of ACCSTART.S defines only 256 bytes of stack. You
can redefine the stack space to 32K bytes with the following changes. First, find
the lines in the ACCSTART.S file that look like this:

.bss

.even
retsav: .ds.l 1

.ds.l 256
ustk: .ds.l 1

and change the 256 to 32768 like this:

.bss

.even
retsav: .ds.l 1

.ds.l 32768
ustk: .ds.l 1

Last, you need to assemble the files ACCSTART.S and GEMSTART.S
using the as68.prg program supplied with the Developer's Kit. From
command.tos, give the following commands:

as68 -1 -u accstart.s
as68 -1 -u gemstart.s

The option —1 tells the assembler to make all address constants 32 bits
instead of 16 bits, and the — u option causes any undefined variables to be de­
clared as global variables. The files ACCSTART.O and GEMSTART.O are
produced.

Other Compilers
If your compiler cannot link programs with more than 32K of data, then some
of the large arrays used in the programs in this book will have to be changed
to use the malloc () subroutine to allocate the memory at runtime. Some of the
programs declare arrays to hold copies of the ST's screen (which is 32,000
bytes long), and some others declare arrays that hold text to be printed (200
lines of 80 characters each). Using malloc () is slightly less efficient, and more
cumbersome, but necessary for some compilers not designed to take advantage
of the ST's 512K (or more) of memory.

The procedure for using the malloc () subroutine to allocate memory for
an array in excess of 32,000 bytes at runtime is to change the array into a
pointer to an array. For example, the line

long int screen[200][40];

will become

long int *screen = 0;

7

CHAPTER 1

Then, before the array (now a pointer) is first referenced, some code like
if (screen = = 0)

screen = (long int *) malloc (200 * 40 * 4);

must be added to initialize the pointer to point to 32,000 bytes of memory
freshly allocated by the malloc routine.

8

2 Creating the
GEM Programming
Envelope

2 Creating the GEM
Programming
Envelope

GEM provides a large number of basic operations for controlling the
computer and creating simple-to-use, graphic user interfaces. Al­
though GEM is somewhat complicated to use, the sophisticated re­

sults you can achieve with it are evidence of its quality as a programming tool.
To make programming easier, you can construct higher-level routines that deal
with GEM.

This chapter simplifies the task of creating new programs with GEM by
creating a set of routines for dealing with GEM on a higher level. You'll be able
to use these routines with any C program; the chapter will explain how to set
the appropriate variables in the routines to change certain GEM interface fea­
tures to suit your particular application program. In effect, your C program
code will be surrounded by these routines, which take care of windows, mice,
keyboard input, and messages from GEM.

This set of routines which surrounds your program is referred to as the
envelope library, or just envelope.

Since the envelope library is general-purpose and knows little about the
program it surrounds, you must provide some routines that connect your pro­
gram with the higher-level envelope routines. These connecting routines are:

got_key Called when a key is pressed
mouse_hit Called when a mouse button is pressed
doit Called when the screen needs refreshing
open_data Deals with input files
build_tree An alternative to RCS for menus
do_menu Called when a menu item has been selected

You can change the default versions provided for these routines accord­
ing to the functions your program needs, such as menus, or mouse and key­
board input.

One more file is necessary for the envelope. That file—config.c—tailors,

11

CHAPTER 2

or configures, the envelope's behavior and appearance to a particular applica­
tion. The config.c file is explained below.

Conceptually, when you execute your application program in the GEM
environment, the various routine sets will look like Figure 2-1.

Figure 2-1. Your C Program and the Envelope Library
Application Program

Connecting Routines, config. C

Envelope Library

GEM

TOS

The config.c File
The config.c file contains the settings for interface variables such as the window
name and size and how the program should react to keyboard and mouse in­
put. Not all the variables in Program 2-1 are used by every program; for ex­
ample, some only apply to a desk accessory and are ignored. However, the
config.c file is designed to contain all the variables that need to be individually
set for each application program.

The first line in config.c specifies the name that is to appear in the top of
a program window. The variable is called wincLname and in the example file
the name of the window is Command Shell.

Next, to make it convenient to choose between building menus with the
GEM Resource Construction Set or to build menus dynamically using our own
functions, the constant USE__RCS is used to initialize the variable named re­
source. If resource is 0, we'll build our own menus; if it is set to a filename,
we'll read menus from a file. In our example, if you type
#define USE_RCS - 1

as the first line in the config.c file, the menus will be read from a file named
SHELL.RSC.

Next, we'll define variables used to define a particular program as a desk
accessory application. Setting up the envelope library in this fashion means it
will work for either type of program—a desk accessory or a regular program—
without modification. The config.c file is the only part that changes. The vari­
able access_name is set to Command Shell, the name which will appear in the
Desk menu on the desktop if this program is a desk accessory. To define this
program as a desk accessory, the L_am_accessory is defined as 1; otherwise it
is 0 for a program.

12

The GEM Programming Envelope

Since desk accessories usually appear in windows that are smaller than
full-screen, window size and placement need to be defined. These small win­
dow variables are only used if i_am__accessory is set to 1. If L_am__accessory is
set to something other than 1, the variables that set the window to a smaller
size are ignored. The variables used are sx, sy—for the x and y coordinates—
and sh, sw—for the height and width. The initial positions of the slider boxes
within the window slider areas are controlled by slv, slh, svs, and shs.

Usually, there is a minimum useful size for an application window. The
min__high and min__wide variables control how small a user can size the pro­
gram window.

For programs that use time intervals, such as some games or a clock, the
interval variable defines the milliseconds between messages from GEM that a
Timer Event has occurred. If interval is set to 0, no timing occurs.

GEM manages the screen windows and input devices such as the mouse
and keyboard. When GEM detects an event, such as a mouse click or a window
being closed or resized on the screen, it will send a message about the event.
The event variable is set to the constants as defined in the GEM Software Devel­
oper's Kit, produced by Digital Research Incorporated, that represent the events
you want for your program. MU—MESAG lets the envelope receive GEM mes­
sages—for example, a message that it's time to repaint the screen.
MU—BUTTON and MU—KEYBD let the envelope receive mouse clicks and
keypresses, respectively. M U _ M l and MU_M2 allow the envelope to receive a
message if the mouse enters a rectangular area you've defined.

This configuration file serves all of our purposes for the library of enve­
lope routines in this book. Since the envelope produces a fairly robust use of
the GEM interface capabilities, and you can replace our C programs with those
of your own, our config.c example file may be adequate for your needs. How­
ever, our example should give you the idea of how to create your own configu­
ration file if you should add new variables or modify the envelope routines.

Program 2-1. config.c

char *wind_name Command Shel1
ifde-f USE_RCS
char r̂esource
el se = "SHELL.RSC";
char r̂esource
endif USE_RCS = 0;

char *access_name
int i_am_accessory = " Command Shel1 ";

- i;
• 20; / * small window size */
• 50;
= 250;
= 125;
- 0; / * small window vertical slider pos * /
= 0; / * small window horizontal slider pos * /
= 1000; / * small window vertical slider size */

int sx
int sy
int sw
int sh
int slv
int slh
int svs

13

CHAPTER 2

int shs m 1000; / * small window horizontal slider size */
int min_wide = 100;
int min_high = 50;
int interval = 30000;
int events = MU_MESAG ! MU_BUTTON ! MU_KEYBD ! MUJ11 ! MU_M2;

The main.c Routine
The first routine in the library is main, Program 2-2. main will set up the
screen so that what is written appears in the GEM desktop interface. The func­
tion calls in main will set up a window with sliders, a title, and so on; handle
all the keyboard and mouse input; change the mouse cursor to a pointing fin­
ger; hide the TOS cursor; and then exit.

The main routine sets up the screen by calling the setup_screen function
(described in detail later), which returns an integer used by GEM to identify the
virtual workstation. There can be several virtual workstations, and each time
setup—screen is called it returns a different one, but we'll use only one virtual
workstation in our program.

The virtual workstation is a concept that allows both you and GEM to
perform graphics operations without knowing what the display device is. By
using a virtual workstation, you can use the same commands to draw on a
plotter as for the screen, even though the pixel resolution, color capabilities,
and drawing methods may be totally different. At display time, GEM does the
appropriate display technique for the device. For example, for printers or plot­
ters, GEM may buffer commands so plotting can be done without having to
reverse the paper. On the screen, the commands are executed immediately and
quickly. When the program says to clear the virtual workstation, GEM issues a
command to the actual device, to either clear the screen or eject a page.

The integer that is returned by the setup_screen call is stored as the vir­
tual workstation handle in the variable vw_hand. This handle is passed to sub­
sequent functions so they can put their windows and graphics on the virtual
workstation screen.

Since these envelope routines work with either desk accessory programs
or regular programs, the type of program must be distinguished in order to
properly set up the desktop. Recall in the config.c file that i_am__accessory is
set to 1 for a desk accessory and 0 for a regular program. If the program is a
desk accessory, the window will be opened only if the user selects the name
from the Desk menu; otherwise, the window should be opened immediately on
running the program.

If this is a regular program, the GEM wincLget function is called to get
the size of the desktop's work area. Normally wincLget is called with a win­
dow handle as its first argument. Here, however, the desktop is always window
number 0.

The setup_window function is called to create a window that contains
our work area. The setup_jwindow function always creates a window that's ca-

14

The GEM Programming Envelope

pable of being full-size, but the window that appears first is the size dictated in
the variables fx, fy, fw, and fh.

Next, the GEM functions graf_mouse and Cursconf are used to change
the mouse to a pointing finger and to hide the TOS text cursor, which doesn't
have any meaning in the GEM desktop environment.

Desk accessory programs need to behave differently: They must continu­
ously run in the background, only appearing in a window when selected from
the Desk menu. To make certain an accessory program never exits, these lines
are added to stay in a loop:
do {

if(open_data(wh,vw_-hand,file))
multi (events,&wh,interval,wind_name,&vw_hand);
} while (i_am_accessory);

In the loop are calls to the function open_data, which handles any data files
for this program, and multi, which handles all input from the mouse or the
keyboard, or messages from GEM that an environment event has occurred
(such as a window being resized). If the multi subroutine returns, and
L_am__accessory is true (1), multi will be called again.

The do_cleanup routine is called whenever there are some application-
specific tasks that must be performed before the program can exit, such as sav­
ing a game score, closing files, and updating records.
do_cleanup(whand,vw)
int whand, vw;{

}
The code for do_cleanup supplied here doesn't do anything, since it's

only useful for an individual program's cleanup requirements and must be tai­
lored to that program. It's only included here as a dummy routine to give our
library a complete set of routines.

For a regular program, don't loop, but rather call the close_all function
to close the window, and the GEM v_clsvwk function to close the virtual
workstation. Last, call GEM's appLexit to exit our application program.

Program 2-2. main.c
/*
t t This is where we begin.
** We set up the screen so we can write things on it.
t t We save the old color map so we can reset it be-fore we exit.
t t We set up windows with sliders, a title, etc.
t t We change the mouse -from an arrow to a pointing -finger (-for -fun),
t t We call multi () to handle all o-f the mouse and keyboard input,
t t Then we restore the color map and exit,
t /

include <osbind.h>
include <gemde-fs.h>
define HIDE_CURSOR 0

15

CHAPTER 2

de-fine SHQW_CURSOR 1

main(ac,av)
int ac;
char ttav;i

extern struct object *main_addr;
extern int i_am_accessory, interval, events;
extern char *wind_name;
char t-file;
int wh, vw_hand, -fx, -fy, fw, fh;

vw_hand • setup_screen();
wh"* -1;
if< i_am_accessory == 0) <

wind_get(0, WF_WORKXYWH, Scfx, Scfy, Scfw, Sc-fh);
wh = setup_wi ndow (wind__name, 0,0,1000, 1000, -fx, fy,-fw,f h);
graf_mouse(POINT_HAND, 0L);
Curscon-f <HIDE_CURSOR, 0);
>

if< ac > 1 >
file = avCll;

else
file - ""j

do i
if(open_data(wh,vw_hand,file))

multi (events, Scwh, interval, wind_name, &vw_hand);
> while(i_an»_accessory);

do_c1eanup(wh,vw_hand);
close_all(main_addr,wh);
v_clsvwk(vw_hand);
appl_exit();
>

The setup—screen Function
To set up the screen, GEM must be informed that libraries are being used. Next
the virtual workstation must be opened, which tells GEM the screen is being
used, and the types of lines and colors to use. Program 2-3 is the program
which does this.

The main routine calls the setup—screen function in order to open a win­
dow on the screen in which our C program can display its screen output.

The setup—screen function uses several GEM-supplied functions to ob­
tain certain information about the screen. First, it calls appLinit to initialize
GEM's internal state so that it's possible to call other GEM functions. Next,
setup_screen calls graf_handle, which returns the width and height of a char­
acter in the font used in menus and dialog boxes, the width and height of a
box large enough to hold a few characters in one of the screen "buttons," and
an integer that represents a GEM Virtual Device Interface workstation handle.
This integer is passed to our open__vwork function, which converts it into a vir­
tual workstation handle the C program will use, such as for screen drawing and
clearing operations. Then, setup—screen returns all this information to the main
routine.

For a desk accessory program, setup—screen calls the GEM menu_register
function, which enters the accessory's name (specified in the config.c file) into
the Desk menu on the desktop.

16

The GEM Programming Envelope

A virtual workstation for an accessory program is opened only after the
user has clicked on the accessory name in the Desk menu. (Regular applications
open the virtual workstation immediately.) Because some routines need to
know when the virtual workstation is open, setup—screen returns — 1 to main,
where main puts it into the vw—hand variable to let other routines know that
it's closed.

Program 2-3. setscrn.c
/*
»* To set up the screen, we must inform GEM that we are using its
** libraries. Then we must open the "virtual workstation", which
»* tells GEM that we are using the screen, and what types o-f lines
t t and colors we want. To open the virtual workstation, we need to
** get a "handle" from graf_handle<) which points to the screen.
* /

include <gemdefs.h>

define NO.VMS -1

int gl_hchar, gl_wchar, gl_wbox, gl_hbox; / * size of characters * /
int menu_id; / * accessory handle */

setup.screen < > <

extern int i_am_accessory, gl_apid;
extern char taccess_name;
int gr_handle;

appl_ini t ();
gr_handle * graf _handle(Scgl_wchar, Scgl__hchar, Scgl_wbox ,Scgl_hbox) ;
if< i_am_accessory)<

menu_id • menu_register(gl_apid,access_name);
return(NO_VWS>7
>

return(open_vwork <gr_handle));
>

The open—vwork Function
The open—vwork function, Program 2-4, tells GEM how to set up the virtual
workstation: which colors to use, graphics characteristics, and device type.

Eleven input parameters are defined and stored in an array whose ad­
dress is passed to open—vwork. A loop is used to set all the values to one, and
then the first and last items are set to different values. The 11 parameters in the
array are:
0 The device ID number. Use V—SCREEN for the screen. Printers, plotters, cameras,

files, and other devices can be specified if they are supported. The constants de­
fined at the beginning of the routine listing use the device ID numbers that are
listed in the Atari ST Software Developer's Kit documentation.

1 Linetype 1 is a solid line
2 Poly Line color 1 is black
3 Poly Marker type 1 is a dot

17

CHAPTER 2

4 Poly Marker color 1 is black
5 Typeface 1 is the sys
6 Text color 1 is black
7 Fill interior style 1 is hollow
8 Fill style 1 is an emp
9 Fill color 1 is black

1 is an empty pattern (no pixels on)

1 is the system type, as in menus

10 This is the flag for Normalized Device Coordinates (NDC) or Raster Coordinates
(RC). A value of 2 selects RC and a value of 1 selects NDC. We'll use RC, even
though it requires that we know the exact screen size since the raster coordinates
correspond to physical positions. Graphics operations are faster with RC because
coordinates don't need converting for the output device. With NDC, coordinates are
given in numbers between 0 and 32767 and produce a graphically correct image on
any peripheral device. However, NDC takes longer because the coordinates must
be converted to the appropriate raster coordinates.

The open—vwork function calls the GEM function v_opnvwk, which, be­
sides putting the 11 parameter values into an array, converts the Virtual Device
Interface handle returned by graf—handle in setup—screen to a GEM virtual
workstation handle. This handle value is returned to main for use with subse­
quent subroutines. This GEM function also returns 58 values—in an array—
that tell the height and width of the screen in pixels, the total number of line
type choices, fill patterns, and so forth.

Program 2-4. openvwrk.c
define V_SCREEN 1
define V_PLOTTER 11
define V_PRINTER 21
define VJ1ETAFILE 31
define V_CAMERA 41
define V_GRAFTAB 51

open_vwork(handle)
int handle;<

register int i;
static int inC113, outC573;
for(i - 0; i < 10; i++)

inCi3 = 1;
inC03 m V_SCREEN;
inC103 = 2;
/ *
tt handle comes in a graf_handle, and goes out a vw_handle
*/
v_opnvwk(in,&h and1e,out);
return(handle);
>

18

The GEM Programming Envelope

The setup—window Function
Whenever a routine wants to open a window, complete with sliders and menus,
it can call the setup_window function, Program 2-5. In the envelope library,
main calls this function for regular programs and the was_msg function (dis­
cussed below) calls it for desk accessory programs.

The setup_window parameters are the window name and the size of the
desktop work area and of the window slider boxes. For a desk accessory pro­
gram, which doesn't use menus, these arguments are simply passed to
open_window, which then opens the accessory window.

For regular programs, usually you'll want to add menus, messages, and
dialog boxes to the program window. GEM needs to know the address of the
text and graphic items. For menu structures and other items constructed with
the Resource Construction Set from the Atari ST Software Developer's Kit, load
the resource file for the menu tree structure and get the address of the root of
the menu tree using the GEM functions rsrc_load and rsrc_.gaddr. If the menus
were constructed using the builcLtree function (discussed below), then call
build_tree, which returns the starting address of the tree.

The data file is read into an area of RAM allocated by GEM in the free
memory left over beyond your program, and then the file is closed.

The address of the menu tree root is placed in the variable main_addr
by rsrc_gaddr.

Note that you have the option of making builcLtree return 0, in which
case the program has no menus. This might be useful for very simple pro­
grams; however, the user probably should be given access to the Desk and File
menus to start desk accessories and quit the program.

Program 2-5. setwind.c
/*
** There are two ways to handle menus.
t t One way is to de-fine the menu structure
t t yourself in an array of object structures.
t t The other way is to construct a resource file
tt with the Resource Construction Set.
tt Using RCS is easy, defining your own structures
t t can be tedious. However, defining the structures
t t in your own program means that you only need one file
t t instead of two, and it has the advantage of being
t t printable.
t /

include <gemdefs.h>

include <obdefs.h>

struct object tmain_addr • 0;

include <window.h>
setup_wi ndow(name,vp,hp,vs,hs,dx,dy,dw,dh)
char tname;

int vp, hp, vs, hs, dx, dy, dw, dh;i

extern char tresource;

19

CHAPTER 2

extern int i__am_accessory;
struct object tbui1d_tree();

if< i_am_accessory == 0)i
if < resource) i

rsrc_load< resource)$
rsrc_gaddr< R_TREE, MAINMENU, 8cmain_addr);
>

else i
main addr = build_tree<);
>

if(main_addr)C
menu_bar< main_addr, 1);
>

>
return< open_window(name, vp, hp, vs, hs, dx, dy, dw, dh));
>

The open_window Function
The open_window function, Program 2-6, is called by setup—window to create
an open window on the screen by expanding a box outline to the correct win­
dow size, placing horizontal and vertical slider boxes in position, and returning
the initial values.

Program 2-6. openwind.c
/ *
** Create the window, grow a box for effect,and open the window.
** Arrange for horizontal and vertical sliders
** to exist, and set them to initial values passed to us.
*/
include <gemdefs.h>
include <osbind.h>
include <wfparts.h>

open_window(name,vertical,horizontal,vsize,hsize,dx,dy,dw,dh)
char ftname;
int vertical, horizontal, vsize, hsize, dx, dy, dw, dh;i

int wi_handle, fx, fy, fw, fh;

„handle
_handl€
.handle

wind_get(0, WF_WORKXYWH, Srfx, &fy, 8<fw, &fh);
wi_handle • wind_create<WF_PARTS,fx,fy,fw,fh);

WF_NAME,name,0,0);
WF_VSLSIZE,vsize,0,0);
WF_HSLSIZE,hsize,0,0);
WF_VSLIDE,1000-vertical,0,0,0,0) ;
WF_HSLIDE,horizontal,0,0) ;

graf_growbox(dx + dw/2, dy + dh/2, 2, 2, dx, dy, dw, dh
wind_open <wi_handle,dx,dy,dw,dh);
return(wi_handle);
>

wi nd_set(w
wi nd_set(wi
wind_set(wi
wind_set(wi_handle,
wind_set (wi__handle,

The arguments used by open_window are the window name, window
size, and the size of the slider boxes.

First, open__window calls GEM's wincLget function to get the size of the
desktop's work area. This will be the maximum size of the window that is cre­
ated. Note that a window is created with the potential to be full-size, even for a

20

The GEM Programming Envelope

desk-accessory type of program which usually opens in a small window. This is
done so a user can resize a small window to the full desktop size.

wind—create is called to set up the data structure for the window and
store the window handle returned by this function so this window can be re­
ferred to later. This window handle is distinct from the virtual workstation han­
dle, which is used for graphics operations. The handle created by wind—create
is used by the GEM wincLget and wincLset functions to control the window.

The wincLset routine tells GEM how long to make the slider boxes and
where to place them in the window that's been created.

To display an expanding box that simulates an enlarging window when
the window is opened, we call the graf__growbox function.

Finally, GEM opens a window on the screen with the wincLopen func­
tion that corresponds to the size passed to it by open_window, which has had
its arguments passed from the setups-window subroutine.

The window size information used by wincLopen and graLgrowbox
may be different depending on whether this is a regular program or an acces­
sory. For a regular program, the window opens to the full desktop area. For a
desk accessory, which usually appears in a smaller window, the window size
specified in the config.c file is used. Although a desk-accessory window usually
is small when it opens, the user can still expand it to fill the desktop because
the window was created full size earlier in this subroutine.

The window handle created by wincLcreate is returned to
setup_window, which returns it to main.

The open-data Function
Programs frequently need to open data files, initialize data, ask for input, and
perform other similar operations while they are executing. With the open_data
function, Program 2-7, a C program using the GEM interface can communicate
with TOS or call other GEM routines.

If your C program requires a data file, you can enter the argument for
the data file in the program's open—data subroutine. An example of this can be
found in the PLOT program which appears later in this book. This routine
serves to "connect" the C application program to GEM and TOS.

The open_data routine is called from main and is passed an argument
that is either a null string or the string that is entered as a parameter on the
command line when the program is run. You can make your program be a
TOS-Takes-Parameters program by adding the .TTP extension to its name; then
your application will accept filenames from the command line. For example,
with the program PLOT.TTP, you could type on the command line:

plot expenses.dat

and the plot program would know that the file named expenses.dat holds its
data values.

21

CHAPTER 2

If your application program requires this function, you have to create it
for the specific application. Later, when the PLOT program is discussed, we'll
explain how to write this routine.

For our purposes of having a prebuilt library of functions that generate a
general-purpose GEM interface, we've included a version that does nothing ex­
cept return a value of 1 to indicate the routine was successful. Zero is returned
if it was not.

This default version of open_data makes it convenient to compile and
link application programs that don't use the function. If you do not supply your
own version, the linker will find this default version in the library, and use it. If
you do have your own version, then the linker will know not to look for an­
other copy in the library. This way, the linker never has to be changed to work
with applications that don't use this function.

Program 2-7. opendata.c
open_data (whand, vw, -f i 1 e)
int whand, vw;
char *-file;<

return <1);
>

The multi Function
Application programs generally require some input—such as a mouse click,
keypress, or mouse movement—while running. After finishing with the
open_data function instructions, the main routine calls the multi function, Pro­
gram 2-8, to handle all input. In main, the statement

multi(events,&wh,interval,win<L-name,&vw_hand)

passes the multi event variables defined in the config.c file to specify the input
types multi should respond to. Our file lists messages from GEM
(MU-MESAG), mouse clicks (MU—BUTTON), keypresses (MU—KEYBD), and
special rectangles on the screen (MU__M1 and MU__M2) as types of input
multi should recognize.

Also passed to multi are addresses of the handles for the window and
the virtual workstation so that functions called by multi can change these val­
ues as new windows or virtual workstations are created. The address of the
value for the handle, rather than a copy of the value, is passed because you
can't change the handle if you don't know its memory location. The other two
arguments for the multi function are the variables from the config.c file that de­
fine the window name and the timer interval.

The multi function is essentially a loop that calls the GEM function
evnt_multi, which monitors the system waiting for an input signal. When an
input event occurs, evnt_multi passes the information to multi, which deter­
mines the proper function to call for the input type.

22

The GEM Programming Envelope

First, multi considers the interval period that originated in the config.c
file and is now stored in the variable milli—sees, and if it isn't 0, the GEM
MLL-TIMER routine is added to the list of events to monitor. Fine and coarse
clock settings are created as timer—high and timer_low, to be used by
evnt_multi in waiting for input events. Note that our routines use only one 16-
bit word for the interval, so intervals can be a maximum of only 65 seconds.

This is generally enough time for most waiting periods, but if you want
a longer interval, you can change the code to make the interval and milli_secs
variables 32-bit numbers.

The multi function passes to evnt_multi a long list of parameters:

1. Which events to wait for: those listed in the config.c file and the timing in­
terval (if it isn't 0).

2. How many mouse clicks to wait for before responding. Two allows double
clicks to be recognized. Note that one mouse click consists of a button-
down and a button-up signal.

3. Which mouse buttons to respond to: 1 is the left button, 2 is the right but­
ton, and 3 is both buttons.

4. What button action to wait for (up or down). Since we usually want to
know about any mouse button activity, we define the btn variable to be the
opposite of the current button state. If the button is down, btn is set to
"wait for button to come up." If the button is up, btn is set to "wait for the
button to go down."

5. Two sets of mouse rectangles are definable. A mouse rectangle is an area
on the screen that sends an event signal when the mouse cursor enters the
area—for example, when the cursor points to a command. Since mouse
rectangles are not used, zeros are placed here. If valid values x, y, w, and h
were placed here, GEM would send a message each time the mouse cursor
entered the rectangle.

6. m is a variable in an array of 8, where interprocess communication (mes­
sages from GEM) and timer messages are stored. These are GEM messages
communicating that a window has been either moved, resized, or closed, or
that a slider box has been moved, and so on.

7. The timer_low and timer_high variables.
8. The addresses of the variables that will hold the x and y coordinate values

for the mouse after an event has occurred.
9. The state of the mouse buttons after the latest mouse event.

10. The state of the shift keys.
11. The character that was typed for a keyboard event.
12. The number of mouse clicks.

After an event has occurred and evnt_multi has returned to multi, the mouse
is displayed with

show_mouse()

23

CHAPTER 2

just in case multi has been called from somewhere other than the main routine,
and the mouse is hidden.

Then multi decides what further action to take, based on which event
has occurred. The event may be a GEM message. The messages that multi re­
ceives from GEM consist of eight integers in the array m[8].

m[0] is the message type
m[l] is the application ID of the sender
m[2] if nonzero, then there is more data beyond the eight integers. With GEM itself

there never is, and this integer is always zero.

m[0
m[3
m[4

The remaining integers, m[3] to m[7], vary depending on the value in
If m[0] is WM_REDRAW, WM_SIZED, or WM_MOVED:

is the window handle
-m[7] are the x, y, w, h values for the operation

If m[0] is WM_TOPPED, WM_CLOSED, WM_FULLED, or
WM_NEWTOP, then

m[3
m[4

m[3
m[4
m[5

m[3
m[4

m[3
m[4
m[5

m[3
m[4

m[3
m[4
m[5

is the window handle
-m[7] are ignored

If m[0] is AC_OPEN, then

is ignored
is the menu ID

-m[7] are ignored

If m[0] is AC_CLOSE, then

is the menu ID
-m[7] are ignored

If m[0] is WM_VSLID or WM_HLID, then

is the window handle
is the slider box position

-m[7] are ignored

If m[0] is WM_ARROWED, then

is the window handle
is the arrow that was clicked: page-up, page-down, and so on

If m[0] is MN-SELECTED, then

is the menu title
is the menu item

-m[7] are ignored

These last elements tell the program which menu tree has been chosen and the
index in the tree of the menu item.

If the event is one of the messages from GEM explained above, the

24

The GEM Programming Envelope

was_msg function is called and the relevant information about the message is
passed. The application ID and message length are not needed (the second and
third message fields, m[l] and m[2]), so they're omitted from the argument list.

If the event is a keystroke, multi calls gotkey. You define the gotkey func­
tion for a specific program so that it returns a nonzero value if the program
should exit when a key is pressed. The gotkey version (shown later) provided
with the envelope routines returns the value 1. If a program doesn't define how
to handle keystrokes, it will exit when a key is pressed.

For a mouse button click, our mouse—hit function is called. This function
returns the new state of the mouse button—whether it's up or down—so that
evnt_multi will be watching for the opposite button state.

Lastly, if evnt_multi detects an event that doesn't correspond to any of
the events we've described, the program notifies us with "What?" in a window
created by the show_form function. A user should never see this message, but
during the development phases it will alert you (the programmer) that some­
thing is amiss and unplanned events are occurring.

Program 2-8. multi.c
/ »
** This is where all input is handled.
** We worry about timer messages, mouse buttons, keyboard typing,
** and messages about window activity.
t t We loop, calling evnt_multi<), until we get a message saying
** that the user clicked on the CLOSE patch in the upper le-ft
** corner o-f the window.
*/

include <gemdefs.h>
include <osbind.h>
multi (events, wh,mi Hi_secs,name, vw)
int events;
int *wh;
int milli_secs;
char Kname;
int *vw;i

static int event, timer_low, timer_high, mu_timer, mC83;
static int bbutton, kstate, nclick, mx, my, keycode, btn, r;

btn = 1;
for(;$)<

timer_high = 0;
i-f < milli_secs) C

timer__low - milli_secs;
mu_timer = MU_TIMER;
>

else t
timer_low = 0;
mu_timer = 0;
>

event =
2, /
3, /
btn, /
0,0,0,0,0, /
0,0,0,0,0, /

evnt_multi(events s ! mu_timer,
/ * how many clicks possible */
/ * any buttons can click */
/ * i-f button down, wait -for up, etc. * /
/ * mouse rectangle 1 * /
/ * mouse rectangle 2 * /

25

CHAPTER 2

m, / * ipc tc timer messages */
timer_low, / * low word of timer value */
timer_high, / * high word */
&mx,&my, / * mouse coordinates */
&bbutton, / * mouse button states */
Sckstate, / * shift key states */
?< key code, / * the key that was hit * /
Scnclick / * number of mouse clicks hit * /
> ;

show_mouse();
if(event Sc MU_MESAG) <

i -f <r=was_msg (mC03,mC3],mC4],mC53,mC63,mC73, wh, name, vw))
return(r)5

>
else if< event Sc MU_KEYBD > {

if(r = got_key(keycode,*wh,*vw))
return(r);

>
el se i i < event & MU__BUTTON) <:

btn = mouse__hi t <btn, mx , my, kstate, ncl ick, *wh, *vw) ;
>

else if< event 8c MU_TIMER)C
clock_ticks(*wh,*vw);
>

el se C
show_-f orm ("What?");
do_di splay(*wh,*vw);
>

>

The show.form Function
The more messages we can provide for ourselves while debugging a program,
the better. By using the show_form function, Program 2-9, we can put a mes­
sage in its own window when the screen may otherwise be busy or unavail­
able. It prints a string in the window along with an OK button and a CANCEL
button.

The show_form function calls GEM's sprintf function to put our string
into the form needed by the GEM form_alert function. The form_alert function
takes the string and a variable for the button that we want to be the default as
its arguments and returns the number of the button that was clicked. In this
program, the OK button returns 1 and the CANCEL button returns 2. The but­
ton value is converted to true/false by subtracting 1. Therefore, an //statement
can be used to decide what action to take, depending on whether show_form
returns true or false.

Program 2-9. showform.c
/*
** Here is a small routine that shows some information in a window
** and waits for the user to read it.
*/

show_-f orm <s)
char *s;i

char str2C1283;

26

The GEM Programming Envelope

sprint*<str2,"CIDCXsHC OK ! CANCEL 3",s);
return< form_alert<2,str2) - 1 >;
>

The was .msg Function
The was_msg function, Program 2-10, is the heart of the envelope library. It
takes care of messages received by the GEM evnt_multi function and performs
the window management routines that characterize GEM programs.

In the following descriptions of the was_msg processes, numerous GEM-
defined constants are used as arguments. The discussion doesn't go into much
detail about them except to explain their relationships to the functions in which
they are used. For a more detailed discussion see the developer's documenta­
tion from Atari.

When the multi function calls was—msg, it passes all the information
about the event that occurred in a form that is ready to be processed. The pro­
cessing in was—msg is basically one switch statement in which the information
in the msg parameter determines the appropriate action.

GEM's wincLupdate routine is called with a 1 parameter to insure that
the window updates are not confused with window updates from other pro­
grams. The wincLupdate function locks out other window activity, from desk
accessories or GEM itself, until we're finished. At the conclusion of the switch
statement, wind_update is called again, this time with a 0 parameter, to unlock
the window updating. If the window updating isn't unlocked, the system can­
not change windows and will appear to be hung up, requiring a system reboot.
Note that for each case in the switch statement, the last action is to break out
of the switch to insure that wincLupdate is turned off.

If the user has clicked on the close box in the upper left corner of the
window, then evnLmulti returns the GEM message WM_CLOSED, which is
then passed to the current was—msg function. In

case WMLCLOSED:

the window is closed, the window handle is set to NO—WINDOW to prevent
its further use, and the exit flag is set to the value BYE_BYE, recognized by
multi as meaning exit. (Accessory programs don't really exit—main will refuse
to exit and will call multi again.)

When the user selects an item from the menu, GEM sends the message
MN-SELECTED to evnLmulti. In

case MN—SELECTED:

the application-specific do_menu function is called with the menu number and
the item within the menu. Later, we'll discuss how to write the do_menu func­
tion for a particular application. do_menu also determines whether or not the
menu item selected means to exit the program, like Quit in the File menu. If
do_menu returns a nonzero value, meaning to exit, then the exit flag is set and
we break out of the switch.

27

CHAPTER 2

If some other screen activity causes the program's window to be over­
written, GEM returns the message WM—REDRAW. Then the program must re­
draw the part that was changed.

case WMLREDRAW:

calls the function do__redraw, which performs the complicated task of cleaning
up the screen after a window has been moved, resized, or closed. As usual, we
break out of this switch when done.

The next switch case,

case AC_CLOSE:

will be used only if the program is a desk accessory. When a user starts a pro­
gram, GEM automatically closes the desk-accessory window (although the ac­
cessory program still runs) to free up the window. Eight is the maximum
number of windows GEM allows and there's no point in having one used up
when it isn't visible. When the current program ends, or the screen is about to
be cleared, or GEM is re-initializing the window library data structures, GEM
sends the message AC—CLOSE to evnt_multi. If the title that is passed
matches the menu_id variable, then it knows that the window that was closed
belonged to the accessory program. Once this information is known, the deci­
sion to reopen the accessory window—by calling the setup_window subrou­
tine—or to take some other action can be made.

In our version of the was—msg function, the accessory window is left
closed. Both the window handle and the virtual workstation handle are closed
so the programs in the library don't try to use the nonexistent window. A spe­
cial code is returned so that the routine that originally called multi can take
application-specific action on AC—CLOSE if required.

When a user selects our accessory program from the Desk menu, GEM
sends the AC_OPEN message. In
case AC_OPEN:

the title variable is set to the window handle for a reason that is explained be­
low. First verify that the menu—id matches, then check that a virtual work­
station and window are not already open, and finally open a virtual
workstation and set up a window just as main does for regular programs. Last,
instead of breaking out of the switch, the execution continues into the code
which will make our window the topmost (active) window: WM_TOPPED and
WM_NEWTOP. The reason the title variable is set to the window handle is so
it can be used in WM-TOPPED.

GEM delivers the WM-TOPPED and WM-NEWTOP messages when
the program window has been made the topmost one either by clicking on it,
or by removing another window from the top:
case WM_NEWTOP:
case WM_TOPPED:

28

The GEM Programming Envelope

The wincL_set is called with the value WF—TOP to make the window
look like a top window by filling in its borders. The function do_display is
called to cause the application program to display the window contents.

Moving or resizing a window causes GEM to issue the WM_SIZED and
WM_MOVED messages. The code for

case WM_SIZED:
case WM-MOVED:

first constrains the window to the minimum size so the borders remain large
enough to use. Then, the current full window is set to the size passed in the
variables x, y, w, and h. The GEM WF_CURRXYWH function sets the values
for the current window, including borders. Using the new size, the actual size
of the work area is calculated and do_display is called to have the program
add the contents of the window. GEM's WF_WORKXYWH function sets the
values for the current window, excluding the borders.

When a user clicks in either the shaded area of the sliders or on the ar­
row icons at either end of the icons, GEM delivers the WM_ARROWED mes­
sage. The switch code in

case WMLARROWED

simply calls the do_arrows routine to take the proper action, and then
do_display is called to redraw the screen.

If the GEM message is WM_VSLID or WM_HSLID, the user has moved
one of the slider boxes. In

case WM_VSLID

and

case WM_HSLID

we call GEM routine wincLset with the window handle (stored in the title vari­
able), the GEM-defined constant WF_VSLIDE or WF_HSLIDE, and the integer
which represents where in the slider area the user has positioned the slider
box. The slider box is set to the new value, and the application-specific func­
tions, v_touched and h_touched, are called to make a particular program be­
have appropriately for the slider action—for example, scrolling text in an
editor. do_display then redraws the screen.

When the user wants to expand a window to its largest size, or to return
it to its previous size if it's already full-sized, he or she clicks on the icon in the
upper right corner of the window. This causes GEM to send the message
WM_FULLED. In the switch code for

case WM_FULLED

the GEM function wincLget returns the current window size using the GEM-
defined constant WF_CURRXYWH as the parameter for the current window.

29

CHAPTER 2

Likewise, by using the GEM constant WF_WORKXYWH as a parameter, you
get the size of the desktop's work area. These two sizes are compared, and if
they are equal, the program window is already full-size. To return the window
to its previous size and location, wincLget is called again with the GEM con­
stant WF_PREVXYWH as a parameter and the returned values are put into the
x, y, w, and h variables. If the two windows are not equal size, simply set the
current window to the variables x, y, w, and h (which were set to be equal to
the size of the desktop's work area when we compared them), recalculate the
size of the work area, and then set the size of the work area. GEM will send a
WM__REDRAW message if the new window needs to be redrawn.

Program 2-10. wasmsg.c
/*
** Here we handle messages received by evnt_multi<>.
tt If we were asked to close the main window, then we
tt return non-zero, which will eventually cause us to exit.
*/
include <gemdefs.h>
include <osbind.h>
include <wfparts.h>

define MIN_WIDTH 10
define MIN__HEIGHT 10
define N0_WIND0W -1
define NO_VWS -1
define BYE_BYE -1
define OBLIVION -2

was_msg(msg,title,x,y,w,h,whand,name,vw)
int msg, title, x, y, w, h, twhand;
char tname;
int tvw; <.

int exit_flag; /t 0 = continue, BYE_BYE - exit */
int xc, yc, wc, he, j;
extern int menu_id, slv, slh, svs, shs, sx, sy, sw, sh;

exit_flag m 0;
wind_update(1) ;
switch(msg){

case WM_CL0SED:
close_window(title);
*whand - N0_WINDOW;
exit_flag - BYE_BYE;
break;

case MN_SELECTED:
if(do_menu<titie,x,twhand,tvw))

exit_flag = BYE_BYE;
break;

case WM_REDRAW:
do_redraw(x,y,w,h,title,tvw);
break;

case AC_CL0SE:
if< title == menu_id ><

twhand = N0_WIND0W;
if< tvw != N0_VWS)

v_clsvwk(tvw);
tvw = NQ_VWS;
exit_flag - OBLIVION;

30

The GEM Programming Envelope

y

case
break;

AC_QPEN:
title = twhand;
if < x != menu_id)

break;
if (tvw == NO_VWS)

tvw = open_vwork(gra-f _handle <&j , & j , & j , & j));
if< twhand == NQ_WINDOW)<

title = twhand = setup_window(name,
si v, slh, svs, shs, sx , sy, sw, sh);

break;
>

/t Fall through to top the window t/
case WM_NEWTOP:
case WM_TOPPED:

wind_set(title,WF_TOP,0,0,0,0);
do_display(title,*vw);
break;

case WM_SIZED:
case WM_MOVED:

if(w < MIN_WIDTH)
w - MIN_WIDTH;

if(h < MIN_HEIGHT)
h « MIN_HEIGHT;

wi nd_set(title,WF_CURRXYWH,x,y,w,h);
wi nd_cal c (WC_WORK, WF_PARTS, x, y, w, h , &x , &y, &w, Sch) ;
wi nd_set(ti 11e,WF_WORKXYWH,x,y,w,h);
do_di splay(title,*vw);
break;

case WM_ARROWED:
do_arrows(x,title,tvw);
do_display(title,tvw);
break;

case WM_VSLID:
wind_set(title,WF_VSLIDE,x,0,0,0);
v_touched(title,tvw,x);
do_display(title,tvw);
break;

case WM_HSLID:
wind_set(title,WF_HSLIDE,x,0,0,0);
h_touched(title,tvw,x);
do_display(title,tvw);
break;

case WM_FULLED:
wi nd_get (t i 11 e, WF_CURRXYWH, Sex c, &yc, S<wc, 8chc) ;
wind_get (0, WF__WORKXYWH, &x , &y, &w, &h) ;
i f (wc == w Ictc he == h)

wi nd_get (title, WF__PREVXYWH, Sex , «cy, &w, 8<h) ;
wi nd_set(title,WF_CURRXYWH,x,y,w,h);
wi nd_ca 1 c (WC_WORK, WF_PARTS, x , y, w, h , Sex , ley, *w, Sch) \
wi nd_set(ti 11e,WF_WORKXYWH,x,y,w,h);
break;

The do—menu Function
This function, Program 2-11, must be written for a specific application program
The envelope library contains the following default version, which simply re­
turns a value of 0 to indicate that the user did not select "exit" or "quit."
Later, you'll see how to develop this function for programs that need menus.

>
wind_update(
return(exit
>

0);
.flag);

31

CHAPTER 2

Program 2-11. domenu.c
do_menu <ti tle,i tern)
int title,item;i

return (0) ;
>

The do_redraw and just_draw Functions
Because GEM allows multiple overlapping windows, it can be a fairly complex
task to redraw a program application's window when it is all or partly obscured
by other windows. To handle this situation, GEM creates a list of sub windows,
each of which is a rectangle.

do_redraw, Program 2-12, figures out what part of the application win­
dow is newly exposed after a covering window has been moved away. Then it
sets a clipping window to the size and location of the part that will be redrawn,
so that only the points within the rectangle will appear on the screen. All
others are "clipped off" and not drawn.

At the start of this function, the mouse is hidden to prevent its being
drawn over. If it isn't hidden, it will leave traces of the old window behind it
when it is moved.

Another important precaution is to set the wincLupdate function to 1, to
lock out all other processes until this one is finished. The window will be un­
locked before exiting this routine.

In the do_redraw code, the declaration
GRECT tl, t2;

specifies a particular data structure for rectangles. This structure is used later in
do_redraw by the GEM rc_intersect routine. The rectangle represented by t2 is
the part of our application window that was covered by the window that's now
gone. GEM has told us about the intersecting area of our window and the cov­
ering window. During the redrawing process, GEM subdivides the window into
subrectangles.

The t2 rectangle is then compared to each of the rectangles in GEM's list
to see if they intersect. When a t l rectangle intersects a t2 rectangle, just—draw,
Program 2-13, is called to redraw the part of the screen defined by the t l rect­
angle. rc_intersect changes the t l rectangle to be the intersection of the old t l
and t2.

Program 2-12. redraw.c
/*
** This routine worries a lot about how to clean up the screen after
** a window has re-sized, moved, or disappeared. Since there can be
** many overlapping windows, the task is not trivial. The trick used
** is to de-fine a list of rectangles -formed wherever the window is
** visible, and then to refresh each rectangle (using the clipping
** functions) wherever it overlaps the dirty rectangle passed to us.
** rc__intersect returns TRUE if there is an overlap, and it puts the
** overlap into its second argument.

32

The GEM Programming Envelope

tt The -function wind_get() is used to get the FIRST rectangle in the
** list, then used again in a loop to get each NEXT rectangle.
*/

include <obdefs.h>
include <gemde-f s. h>

do_redraw(xc,yc,wc,he,whand,vw)
int xc, yc, wc, he, whand, vw;{

int clipC43;
GRECT tl, t2;

hide_mouse <);
wi nd_update<1) ;
t2.g__x = xc;
t2.g_y = yc;
t2.g__w = wc;
t2.g_h = he;
wind_get (whand, WF_FIRSTXYWH, &t 1. g_x , 8ct 1. g_y, &t 1. g_w, let 1. g_h) ;
while (tl.g_w iclc tl.g_h> <.

if <rc_intersect (&t2,«ctl)) <
clipC0j • tl.g_x;
clipClD = tl.g_y;
clipC23 • tl.g_x + tl.g_w - 1;
clipC33 - tl.g_y + tl.g_h - 1;
vs__cl ip (vw, 1, cl ip) ;
just_draw (whand, 11. g_x, 11. g_y, 11.g_w, 11.g_h, vw) ;
>

wind_get (whand, WF JMEXTXYWH, 8<t 1. g_x , &t 1. g_y, &t 1. g_w, &t 1. g_h) ;
>

wind_update(0);
show_mouse();
>

Program 2-13. justdraw.c
just_draw(whand,x,y,w,h,vw)
int whand, x, y, w, h, vw;i

do_display(whand,vw) ;
>

The do—arrows Function
This function, Program 2-14, isn't limited to arrows, as its name implies. It han­
dles the positioning of the slider boxes and screen scrolling that occurs when a
user clicks on the arrow icons at either end of the slider areas, or clicks on the
gray portion of the slider area.

In most programs, the screen contents appear to move up or down, right
or left when the user clicks in the slider area. Clicks on the arrow icons in the
vertical slider area cause the window to move one row up or one row down. In
the horizontal slider area, the arrows move the window one column to the
right or left. In the same way, clicks in the gray areas of the vertical and hori­
zontal slider areas move the window one page up or down and one page right
or left.

33

CHAPTER 2

This do_arrows function calculates the values for window movements
and slider box positioning.

Using GEM's wincLget function to find out the current size of the work
area, do_arrows calculates just how many lines and columns of text fit in the
current window.

A GEM message is passed from the was_msg function to the do_arrows
function, declaring that there's been an event in the slider area such as
PAG—UP, ROW_DN, and PAG_RT. You can see these messages used in the
switch statement in this function.

Depending on the event, the current line and column positions are calcu­
lated in the switch statement. Line and column operations only require incre­
menting or decrementing the cur_line and cur_col variables by 1, whereas
page operations require using the numbers that were calculated for the current
window size.

After setting cur__line and cur_col to their new values, do__arrows calls
our function slide_pos to calculate the new positions of the slider boxes, and
then calls GEM's wincLset subroutine to set the sliders.

Program 2-14. doarrows.c
include <document.h>
include <gemdefs.h>
de-fine PAG.UP 0
define PAG_DN 1
define ROWJJP 2
define ROW_DN 3
define PAG_LF 4
define PAG_RT 5
define COL_LF 6
define COL_RT 7

int xlines;
int cur_line, cur_col;
do_arrow5(operation,whand,vw)
int operation, whand, vw;{

int x, y, w, h, wlines, wcols;
extern cur__line, cur__col, gl_wchar, gl_hchar, xlines;
int vertical, horizontal;

wind_get < whand, WF_WORKXYWH, &x , icy, &w, Sch) ;
wlines - h / gl_hchar;
wcols • w / gl_wchar;
switch(operation)C

case PAGEUP:
cur_line -= wlines;
if(cur_line < 0)

cur_line = 0;
break;

case PAG_DN:
cur_line wlines;
if(cur̂line > NLINES - wlines)

cur_line • NLINES - wlines;
break;

case ROWJJP:
cur_line—;

34

The GEM Programming Envelope

if< cur_line < 0)
cur_line = 0;

break;
case ROW_DN:

cur_line++;
if < cur_line > NLINES - wlines)

cur_line = NLINES - wlines;
break;

case PAG_LF:
cur_col -= wcols;
if<~cur_col < 0)

cur_col = 0;
break;

case PAG_RT:
cur_col wcols;
if< cur_col > NCHARS - wcols)

cur_col m NCHARS - wcols;
break;

case COL_LF:
cur_col—;
if< cur_col < 0)

cur_col = 0;
break;

case COL_RT:
cur_col++j
if< cur_col > NCHARS - wcols)

cur_col • NCHARS - wcols;
break;

>
»lid«_pos< wlines, xlines, cur_line, ̂ vertical);
slide_pos(wcols, NCHARS, cur__col, ̂horizontal);
wind_set(whand, WF_VSLIDE, vertical, 0, 0, 0);
wind_set<whand, WF_HSLIDE, horizontal, 0, 0, 0);
>

The slide.pos Function
One of the particularly nice features about GEM's sliders is that the slider box
is proportional to the total size of the document being scrolled. Placing the box
requires that both the size and position for each slider box be computed. Both
the slider area and the box range from 1 to 1000 in size. The slider box size is
computed in the slide—size function. The position of the slider is calculated in
slide__pos.

In slide__pos, Program 2-15, the function takes the line number of the
document and calculates the position of the top of the slider box in the range of
1 to 1000. Keep in mind that the range is always measured to the top of the
vertical slider box and to the left edge of the horizontal slider box. It is this part
of the box that is positioned within the range.

To calculate the actual position of the top (or left side) of the slider box,
the function multiplies the line number by the maximum slider position of 1000
and divides by the total document size minus the part that's visible. The result
is returned to the GEM wincLset routine to plot the slider box in its new posi­
tion, reflecting the position of the document fraction in the window with re­
spect to the total document.

35

CHAPTER 2

Program 2-15. slidepos.c
/*
** Map a line number into a slider position between
t * 0 and < 1000 - the width of the slider)
** Line numbers are numbered from 0 to nlines-1.
** Works for columns also.
*/
slide_pos(visible, total, line, pos)
int visible, total, line, tpos;i

tpos = 1000L * line / (total - visible);
>

The h_touched, v_touched, and pos_slide Functions
Another method by which the user scrolls the contents of a program window is
"grabbing" the slider box with the mouse and sliding it in the slider area. For
your program, the problem becomes how to tell which lines of the document
correspond to the position of the top of the slider box (or the left edge of the
horizontal slider).

To solve the problem, the functions h__touched and v__touched (Pro­
grams 2-16 and 2-17) are called to alter the global variables cur_line and
cur_col whenever the user moves the slider box. Then cur_line and cur_col
are used by application programs to display the relevant part of scrollable ob­
jects, such as a document.

To determine the new line or column positions from the slider box's po­
sition in the possible range of 1-1000, pos_slide function is called. This func­
tion reverses the operation completed earlier in the slide—pos function
(Program 2-15). It calculates the new line or column number based on the
number of lines or columns in the document and the window, and the maxi­
mum position of the top (or left) of the slider box.

Program 2-16. htouched.c
include <gemdefs.h>
include <document.h>
h_touched(whand,vw,horizontal)
int whand, vw, horizontal;<

int x, y , w, h, wcols;
extern int gl_wchar, cur_col;

wind.get (whand, WF_WORKXYWH, Sex , &y,&w, S c h) ;
wcols = w / gl_wchar;
pos_slide(wcols, NCHARS, &cur_col, horizontal);
>

36

The GEM Programming Envelope

Program 2-17. vtouched.c

Program 2-18. posslide.c
/*
** Map a slider position into a line number (or column)
*/
pos_slide(visible, total, line, pos)
int visible, total, tline, pos;{

«line = (pos * (total - visible)) / 1000L;
>

The hide—mouse and show—mouse Functions
As a programming convenience—so we don't have to worry about how many
times the mouse has been hidden or exposed—we keep the hide—mouse and
show_mouse functions in our envelope library (Program 2-19).

Whenever you want to be sure the mouse is either hidden or displayed,
call one of these functions. These two functions track the status of the mouse
by setting the mouse_gone variable to the current mouse condition. When
either of the routines is called, it first checks this variable to determine whether
the current mouse state is the one called for the program. If it is, the routine
does nothing and returns.

Program 2-19. hidemous.c
/*
tt These routines keep us -from having to worry about how many
tt times we hid the mouse, and how many times we tried to show
** it.
t/

include <gemde-fs.h>

static int mouse_gone; / * is mouse visible? */

hide_mouse()i

if(! mouse_gone)i
graf _mouse (M_OFF, 0x0L) ;
mouse_gone * ! mouse_gone;
>

>

37

include <gemdefs.h>

v_touched(whand,vw,vertical)
int whand, vw, vertical;C

int x, y, w, h, wlines;
extern int gl_hchar, cur_line, xlines;
wind_get (whand, WF_WORKXYWH, *cx , &y, 8cw, &h) ;
wlines • h / gl_hchar;
pos_slide(wlines, xlines, Sccur_line, vertical);
>

CHAPTER 2

show_mouse()i

i-f (mouse_gone) i
graf_mouse(POINT_HAND,0x0L);
graf_mouse(M_ON,0x0L);
mouse gone • ! mouse_gone;
>

>

The do—display and doit Function
These two functions are used in conjunction with one another. The small
do_display function, Program 2-20, makes sure the mouse is hidden before any
screen redrawing occurs with the doit function. If the mouse is showing when
the screen is redrawn, then a fragment of the earlier screen will be seen when
the mouse is moved.

As you can see, do—display begins with a call to hide the mouse; then it
calls the application-specific doit routine with the window handle and the vir­
tual workstation handle, and redisplays the mouse when doit is finished.

The doit function, Program 2-21, is responsible for drawing the screen. It
must be defined for each program's screen output needs. For many applica­
tions, especially those that only return information like maps and pictures, this
is where most of the program's work occurs. In our envelope library, we in­
clude the following default version, which only clears the screen.

Elsewhere in this book, there are several examples of more complicated
versions of this function.

Program 2-20. dodisp.c
/*
** Call the user's paint-screen routine * doitO* to put
** something on the screen. We hide the mouse while it does it
tt so that the mouse won't leave a stain.
*/
do_d i sp1 ay(whand,vw)
int whand, vw;i

hide_mouse();
doi t(whand,vw);
show_mouse();
>

Program 2-21. doit.c
doit(whand,vw)
int whand, vw;i

just_clear(whand,vw);
>

38

The GEM Programming Envelope

The just—clear Function
The purpose of just—clear, Program 2-22, is to clear the work area by drawing a
white bar the width and length of the work area or a subwindow rectangle
used by just_draw.

First, as a precaution in case just_clear has been called by a routine that
didn't hide the mouse, just—clear calls the hide_mouse function.

Then some GEM routines are called to set the interior fill style to 2 (for
pattern), the fill style index to 8 (for solid color), and the fill color to white.
wind_get is used to get the size of the work area and to call the GEM v_bar
routine to generate a rectangle that fills our program's work area with white.
Before exiting just—clear, the fill color is set back to black (1) to show the
mouse.

Program 2-22. justclr.c
/ t
** Clear the display by drawing a white bar whose width is the screen
tt width and whose length is the screen length.
*/

include <gemde-fs.h>
include <obdefs.h>
just_clear(whand,vw_handle)
int whand, vw_handle;{

int tempC4D;
int x, y, w, h;

hide_mouse();
vs-f_interior (vw_handle, 2);
vs-f_style< vw_handle, 8);
vsf_color< vw_handle, WHITE);
wind_get (whand , WF_WORKXYWH, &x , Icy, &w, &h) ;
tempC03 = x ;
tempCI] - y;
tempC2 3 * x • w - 1}
tempC3J = y + h - 1;
v_bar(vw_handle, temp);
vs-f_color< vw_handle, 1);
show_mouse();
>

The clr—display and clip—work Functions
These functions, Programs 2-23 and 2-24, are used when you know you want
to clear the entire work area of a program window. They reset the clipping
window to be the size of the work area. You would not call these functions
from just—draw, which needs to be sensitive to the subwindow rectangles
formed by overlapping windows. It is called when you know you really want
to clear the entire screen, regardless of previous clip settings. If you want to
clear the subwindow rectangles made by overlapping windows, call the
just—clear function.

In clr—display, clip—work is called to set the clipping window to the size

39

CHAPTER 2

of the entire work area, and just—draw is called to draw a white rectangle over
the entire work area.

The simple clip—work function is used to get the size of the work area of
the program window and then to reset the clipping window to be the entire
work area.

Program 2-23. clrdisp.c
include <gemdefs.h>
* include <obde-fs.h>
clr_display(whand,vw_handle)
int whand, vw_handle;<

clip_work(whand, vw_handle);
just__clear(whand, vw_handle);
>

Program 2-24. clipwork.c
include <gemde-fs.h>
include <obde-fs.h>
define NO_CLIP 0
de-fine CLIP 1
clip_work(whand, vw_handle)
int whand, vw_handle;{

int tempC43;
int x, y, w, h;

wi nd_get (whand, WF_WORKXYWH, &x , «cy, &w, 8th) ;
temp[03 • x;
tempC13 = y;
tempC23 • x + w - 1;
t e m p C 3 3 • y • h - l j
vs clip(vw_handle, CLIP, temp);
>

The close .al l and close—window Function
When the user selects the command to quit or exit a program, these functions,
Program 2-25 and 2-26, take care of it.

The close—all function is called by main to close the window, close—all
calls close—window, which deletes the window and draws a shrinking box for
effect.

Last, close—all tidies up by removing the menu bar and freeing up any
resources that were used for RCS data files.

40

The GEM Programming Envelope

Program 2-25. closeall.c

Program 2-26. closewindow.c
include <gemdefs.h>

close_window(whand)
int whand;{

int x, y, w, h, -foo, err;

if < whand != -1) <.
wind_get (whand, WF_WORKXYWH,Sex, 8cy,&w,8ch);
wind_close(whand);
graf_shrinkbox <x+w/2,y+h/2,2,2,x,y, w,h) ;
wind_delete(whand);
>

>

Miscellaneous Routines and Arrays
Different startup functions are used for a desk accessory and regular application
programs. In the case of a desk accessory, the Atari startup routine that initially
calls GEM is called accstart. The startup routine for a regular program is called
gemstart. The accstart routine is a much-shortened startup routine that must be
supplemented with some of the variables from gemstart so that all the func­
tions and variables used in the envelope library are defined.

The accsup.c ("accessory support") file, Program 2-27, defines several
variables we need, the brk function, and a dummy exit function. The brk func­
tion is used to allocate memory for some of the routines in the GEM libraries.
The dummy exit routine is included because a desk accessory might call a func­
tion that exits if it encounters an error. A desk accessory program is never sup­
posed to exit, so the accstart file doesn't include exit. However, if exit is called,
it must be defined, so this exit definition is included as a placebo for the linker,
to keep it from generating an error message.

Program 2-27. accsup.c
include <osbind.h>

define BRK_SIZE

long int cpmrv
char pnameCD
char tnameCD

(256)

= 05
= "Accessory";
• "CON:";

41

include <gemdefs.h>

close_all<main_addr,whand)
struct object tmain_addr;
int whand;<

close_window(whand);
if< main_addr)

menu_bar< main_addr, 0);
rsrc_free<) ;
>

CHAPTER 2

char InameCD = "LST:";
char xeofC3 • "\032";
char brk_memCBRK_SIZE35
char *_break • brk_mem;

brk(val)
char tval;i

if< val < &brk_memCBRK_SIZE-163 X
_break = val;
return <0);
>

return(-1);
>

_exit() < y

The vdidata.c file, Program 2-28, defines some arrays where the VDI
routines keep their input and output variables. They are only used by VDI to
link; the application programs never use them directly.

Program 2-28. vdidata.c
/*
** These are arrays that VDI should have declared for itself,
t t but didn't. This is possibly because the user could declare
tt them to be smaller than this if he knew he was only going to use
tt functions that need the first few elements of each one.
tt We have LOTS of memory on the ST, so lets not be lazy.
*/
int contrlC123$
int intinC1283;
int intoutC128 3;
int ptsinC128D;
int ptsoutC1283;

Additional Envelope Functions
In addition to the functions described, the following functions and header files
are part of the envelope library, addit will be discussed in Chapter 5 and
newwind will be discussed in Chapter 6.

Program 2-29. addit.c
include <obdefs.h>
include <osbind.h>
include <gemdefs.h>

define MAXTREE 64
define LEN -2
define CONSOLE 2

int next_item • 0;

addit(tree_list,parent,type,spec,x,y,w,h)
struct object *tree_list;
int parent, type, x, y, w, h;
char tspec;C

int max_x, max_y;

42

The GEM Programming Envelope

extern int Wc:, He;

if(next_item >= MAXTREE)
return(-1);

i f < w mm LEN)
w = strlen(spec);

if(tree_listCparent1.ob_head -1)
tree_listCparent3.ob_head = next_item;

max_x • x * Wc + M < Wc;
max_y m y I He + h * He;
if(parent > 0 SeSc max_x > tree_l i st Cparent 3. ob_width) <

print-f ("Parent Ed's width adjusted to Xd\n", parent, max _x) ;
Beonin(CONSOLE);
tree_listCparent3.ob_width • max_x;
>

i-f(parent > 0 Ittc max_y > tree_l ist Cparent 3. ob_height) <
print-f ("Parent Xd's height adjusted to Xd\n",parent,max_y);
Bconin(CONSOLE);
tree_listCparent3.ob_height • max_y;
>

tree_listCnext_item3.ob_next • -1;
tree_listCnext_item3.ob_head • -1;
tree_l istCnext_item3. ob__tai 1 = -1;
tree_listCnext_item3.ob_type • type;
tree_listCnext_item3.ob_-f lags - NONE;
tree_listCnext_item3.ob_state • NORMAL;
tree_listCnext_item3.ob_spec = spec;
tree_listCnext_item3.ob_x • x t Wc;
tree_listCnext_item3.ob_y - y * He;
tree_listCnext_item3.ob_width * w * Wc;
tree_listCnext_item3.ob_height = h * He;
i-f(ob jc_add <tree_l ist, parent, next_i tern) 0) i

print-f ("Can't add object V.d to parent %d\n",nextitern,parent);
>

return(next_i tem++);
>

Program 2-30. bldtree.c
include <gemde-fs.h>
include <obdefs.h>
struct object *
build_tree()i

return(0L);
>

Program 2-31. clocktic.c
/ »
** Here we handle anything we need to do when we get a clock message
** in multiO. Right now, we just ignore them. Later we might want
** to put some code here to do something automatically every so
t t often.
*/

clock_ticks(wh,vw)
int wh, vw; <

>

43

CHAPTER 2

Program 2-32. doclean.c
do_c1eanup(wh and,vw)
int whand, vw;{

>

Program 2-33. gotkey.c
got_key(ch,whand,vw)
int ch, whand, vw;<

return <1);
>

Program 2-34. mousehit.c
« include <osbind.h>
« include <obdefs.h>
include <gemde-fs.h>

mou se_hi t <butdown,x,y,k st ate,num_c1 i c k s, v w)
int butdown, x, y, kstate, num_clicks, vw;i

i*< butdown == 0)
return <1);

return(0);
>

Program 2-35. newwind.c
* include <obdefs.h>
include <gemdef«.h>
new_window(name,vp,hp,vs,hs,x,y,w,h,vw)
char tname;

int vp, hp, vs, hs, x, y, w, h, tvw; <

int whand, junk, gr;

show_mouse();
whand • setup_window(name,vp,hp,vs,hs,x,y,w,h);
wi n d _set(whand,WF_TOP,0,0,0,0);
clr_display(whand,vw);
return(whand);
>

Program 2-36. pad.c
pad(si,s2,cnt)
char tsl, *s2;
int cnt;<

while(cnt—)
if(*s2)

*sl++
else

*sl++
tsl m 0;
>

*s2++;

44

The GEM Programming Envelope

Program 2-37. slidsize.c

Program 2-38. window.h
define MAINMENU 0

Program 2-39. wfparts.h
define PARTSA (VSLIDE!HSLIDE!UPARROW!DNARROW!LFARROW!RTARROW)
define PARTSB (SIZER!MOVER!FULLER!CLOSER!NAME)
define WF_PARTS (PARTSA!PARTSB)

How to Build the Library
All of these separate functions must be grouped into the envelope library so
they can be linked with programs. The linker (link68.prg is the name of the
linker in the Atari ST Software Developer's Kit) can look through libraries for
functions and data structures that are not defined in the program. The linker
then selects from the library only those files it needs. In this way, the library
can contain functions that are used only if they are not defined in an applica­
tion program. This is why the application-specific functions have default values
that do nothing.

If the program defines one of these routines, the program's version is
used instead of the default library version. If the program doesn't define an
application-specific program, the linker will find a usable version in the library.

To create or add to a library using Alcyon C, which comes with the Atari
ST Software Developer's Kit, we must first compile the source code files created
with a text editor into object code (.O files); then we use the archiver program,
called ar68.prg in the Developer's Kit. We build a batch file to call the archiver
and to give it the names of all the compiled files we want in the library. This
batch file is shown in Program 2-40. If you are using another version of C, re­
fer to your User's Manual for instructions on creating a library.

The archiver program is called with the r flag (for replace), and the v
flag (for verbose; omit the v flag to stop the screen chatter while the library is
being created).

Then the name for our library, env.a, is given and followed by a list of
filenames to be put in the library.

45

slide_size< visible, total, size)
int visible, total, tsize;<

tsize - 1 0 0 0 L * visible / total;
if (tsize <= 0)

•size = - 1 ;
if(tsize > 1 0 0 0)

t s i z e - 1 0 0 0 ;
>

CHAPTER 2

We use several calls to ar68.prg to avoid exceeding the limit on the num­
ber of arguments to a program and also because our preferred programming
style is not to wrap arguments across lines.

When we run this batch file by running batch.ttp from the desktop and
giving archive.bat as the parameter, the file env.a is created. This file is ready
to be used by the linker, as we shall see in the next chapter.

Program 2-40. archive.bat
»r68 r v e n v . a MAIN.O MULT 1.0 WASMSG.O ADDIT.O CLOSEALL .O
a r 6 8 r v e n v . a CLRDISP .O DODISP.O DOIT.O DOMENU.O NEWWIND.O
a r 6 8 r v e n v . a SETSCRN.O SETWIND.O OPENWIND.O SHOWFORM.O REDRAW.0 DOARROWS.O
ar 68 r v e n v . a CLOSWIND.O CLIPWORK.O JUSTCLR.O JUSTDRAW.O
a r 6 8 r v e n v . a HTOUCHED.O VTOUCHED.O SLIDEPOS.O S L IDS IZE .O OPENVWRK.G
ar 68 r v e n v . a CLOCKTIC.O OPENDATA.0 PAD.O HIDEMOUS.O GOTKEY.O MOUSEHIT.O
a r 6 8 r v e n v . a POSSLIDE.O DOCLEAN.0 BLDTREE.O VDIDATA.0 ACCSUP.O
wax t

46

3 Simple Line
Graphics

3 Simple Line
Graphics

• • • • • • The previous chapter described the envelope library which gives you
a ready-made, general-purpose way to build applications programs

• • • • • • with the GEM user interface. Using the envelope can make program­
ming easier. The remainder of this book shows you how easy it is to write
applications programs using the envelope.

The simple line graphics example demonstrating the envelope routines is
a map of the world drawn on the screen. Because the envelope routines are
written to be device-independent, they can draw the map in all three of the
Atari's resolution modes:

low 320 X 200 16 possible colors
medium 640 X 200 4 possible colors
high 640 X 400 2 colors

We begin by customizing the routines specific to the world map pro­
gram. As a brief review of Chapter 2, the nine files that "connect" the envelope
library to an application follow.

config.c file defines global data items used by the library to control the
look and operation of the user interface.

do—menu, defined in domenu.c, determines how the program responds
when a menu item is selected.

just—draw, defined in justdraw.c, redraws the portions of the screen that
are affected when a window is moved, resized, or removed from the desktop.

doit, defined in doit.c, draws the whole screen. You may sometimes de­
cide to use it instead of the just_draw function (which is more complex) if you
determine that doit can draw the screen within a second or two.

do_cleanup defined in doclean.c, is called before a program exits to let
the program close files, print score results, or reset colors to their original states.
If no cleanup is required, do—cleanup does nothing.

got—key, defined in gotkey.c, is called for every keystroke received from
the keyboard; it controls how the program responds to the keystroke.

build—tree, defined in bldtree.c, builds menu trees for the pull-down
menus. If you use the Resource Construction Set from the Atari ST Software De­
veloper's Kit to build your menus, then this routine is never called.

49

CHAPTER 3

mouse_hit, defined in mousehit.c, determines what to do whenever a
mouse button is pressed.

open—data, defined in opendata.c, opens files and does any other setup
tasks necessary before the program is passed any other input.

All of these connecting routines have default versions in the library. This
means you only have to modify the code of those that need to change for your
particular applications program. The default versions of the unchanged routines
will link in automatically.

For the world map program you only need to redefine the config.c file
(Program 3-1) and doit.c (Program 3-2).

First, the file defines the window name to be "World Map." Then, be­
cause the map won't use RCS, the USE—RCS variable is undefined and the re­
source variable is set to 0.

Continuing through the program, setting the Lanuaccessory variable to
0 indicates that this is a regular program and not an accessory. For the purpose
of illustration, the accessory name variable is set to be World Map, which
would appear in the Desk menu if this program were a desk accessory. Al­
though the eight variables that control the appearance of the small (accessory)
window aren't used (because this isn't an accessory program), they must still be
defined for the linker to link the program properly. The program leaves them
set to their default values.

The minimum window size is set to 100 pixels wide and 50 pixels high
so that the smallest possible window will still be large enough for the border
elements to be operable. Since a timer is not needed for this program, the tim­
ing interval is set to 0. Finally, the events variable is set to receive information
about all input events.

Program 3-1. config.c (Map version)

char *wind_name • " World Map
ifdef USE_RCS
char *resource
else = "WORLD-RSC
char «resource
endif USE_RCS = 0;

char *access_name
int i_am_accessory = 0;

= 20; / * snia
= 50;
- 250;
- 125;
= 0; / * sma
= 0; / * sma
« 1000; / * sma
- 1000; / * sma
- 100;
- 50;
« 0;
» MU__MESAG » Mi

World Map
int sx
int sy
int sw
int sh
int slv
int slh
int svs
int shs

/ * small window size */

/ * small window vertical slider pos */
/ * small window horizontal slider pos %/
/% small window vertical slider size */
/ * small window horizontal slider size */

int min_wide
int min__high
int interval
int events MU_BUTTGN MU_KEYBD MU_M1 M U J 1 2 ;

50

Simple Line Graphics

The doit Function for the Map Application
The code below for the doit function is so simple that you may wonder why it
is needed for this program.

This version does only one thing: calls the map function, which is where
all the map-drawing work is done. The reason doit is included in the map pro­
gram is in case you want to expand it to do something more with the map after
it is drawn.

Program 3-2. doit c
doit(whand,vw)

int whand, vw;<

map(whand,vw);
>

Drawing the Map
The map is drawn by connecting a series of points outlining the coastlines of
the world's continents and main islands. The data defining the points is in a
file called world.c. That data is a long series of numbers that has been packed
in order to save space (and typing). The packing method is: multiply each y co­
ordinate by 640 (the number of columns on the screen) and then add the x co­
ordinate value to it. This converts each point's x and y coordinates into one
integer, which is why the data for the points does not appear to have x and y
coordinates. To make the data a bit more manageable, continuous lines are
marked with — 1 at their beginning.

The data for world.c is listed in the Appendix. If you decide to type the
data in instead of purchasing the disk with the data, you may want to draw
only certain coastlines to save time (and finger fatique, not to mention bore­
dom). You can type in any part of the data you wish; just be sure you type in
an entire segment. Each segment begins with a — 1 and continues up to, but
not including, the next — 1 . Type in as many segments as you wish. As you
look through the data segments you'll notice that they have been printed in or­
der of size, starting with the largest coastlines. Remember, though, that the
more segments you type in, the more of the world will appear on the screen.

Program 3-3 draws the map.
In the program, map calls the GEM routine v__pline, which plots lines

between sets of points in an array. Since there are a great many points, we
want to find out how many points v__pline will accept before we call it.

The GEM vq__extnd function tells us the number of points, as well as a
lot of other information we don't need to know right now. It returns 57 values
into the array we pass to it. What those values are depends on the second
argument in the parameter list. We have defined WORKVALS and INQUIRE to
values that point to the values we want. If vq_extnd is given the argument
WORKVALS, the function gives us the same output as opnvwk in multi. If
given the INQUIRE value, the function returns 19 new values (and zeros filling

51

CHAPTER 3

out the array to 57). With these statements the fourteenth item in the INQUIRE
array is located, and that item indicates how many vertices v_pline can accept.
vq_extnd(vw, INQUIRE, info);
max = info[14];

This corresponds to a little more than 100 points on the computer. Larger sys­
tems may differ, as may future machines or ROMs. Note that because of the
data packing, points are constructed from two values: one each for the x and y
coordinates.

The program starts unpacking the data in the world array, converting the
packed numbers back into the original x and y coordinates. A concise method
of unpacking the coastline data should be possible; however, due to some bugs
in the way the compiler handles long integers, some creative programming is
necessary. To work around the bugs, you can define two temporary variables,
row and col, and do each arithmetic operation on a separate line, avoiding the
% operator on long integers. This is not a recommended coding style, but
serves a short-term purpose until the bugs are fixed.

As each integer in the world array is converted to its two corresponding
values, each of the values is placed into the points array and the count variable
is incremented by one.

Then the v__pline routine is called and given the handle of the virtual
workstation, the number of points to be passed to it (one point is two values;
therefore we divide the count by 2), and the address of the array where the x
and y values are stored.

If v_pline could accept a large number of vertices, you could just pass it
all the points between the — 1 markers, calling v_pline once for every — 1
found in the array. But since v_pline accepts just over 100 points, a second if
statement is added to handle long coastlines. The count variable, whose value
equals the number of values in the points array, is compared to the maximum
points v_pline will accept—again multiplied by two since there are two values
per point.

Program 3-3. map.c
include <gemde-fs.h>
define FUDGEX 640L
define FUDGEY 400L
define WORKVALS 0
define INQUIRE 1
static int pointsC5123;

map(whand,vw)
int whand, vw;<

extern long int worldCD;
unsigned int infoC603;
int wx, wy, ww, wh;
static int old_w = -1, old_h = -1;
long int row, col;
register int x, count, max;

52

Simple Line Graphics

wind_get< whand, WF_WORKXYWH, &wx, &wy, Scww, Scwh >|
if (ww == ol d_w &Sc wh == ol d_h)

return;
old_w • ww;
old_h * wh;

clredisplay(whand,vw);
vq_extnd(vw, INQUIRE, info);
max = infoC143; / * max points per v_pline %/
hide_mouse();
count • 0;
for(x = 0; worldCxD; x++)i

if(worldCx3 -1 ><
if(count)

v_pline(vw, count/2, points);
count = 0;
continue;
>

if(count >« (max-l)*2)<
i f(count)

v_pline(vw, count/2, points);
x—; / * use last vertex again */
count = 0;
>

/ * Compiler bugs prevent this from working as originally written,
t t (Alcyon C compiler, very early developer's kit)
t t This version of the compiler cannot do remainder operations on
t t long integers, and cannot do more than one or two long integer
t t operations in one expression without getting confused.
tt pointsCcount++3 = wx + ((worldCxD 7. FUDGEX) * wwl) / FUDGEX;
tt pointsCcount++3 = wy + ((worldCx3 / FUDGEX) * whl) / FUDGEY;
t/

row * worldCxD / FUDGEX;
col • worldCx] - row * FUDGEX;
col t= ww;
row *= wh;
col /= FUDGEX;
row /= FUDGEY;
pointsCcount++3 = wx • col;
pointsCcount++3 • wy + row;
>

show_mouse();
>

Buy an ST and See the World
You can now look at what happens in the program after it has been compiled,
and see what the envelope library does for simple programs. Figure 3-1 shows
what the program will display.

The first thing to appear when you run the program is the border area.
A title bar appears at the top, with a Close box in the upper left corner, a Full
box in the upper right corner, and a Size box in the lower right corner. Sliders
with arrows at either end appear; there are no gray areas visible because the
slider box is filling the whole area. If you click on the slider boxes or arrows,
the sliders flash, but nothing else happens.

The program then draws the map, starting with the long coastlines and
then outlining the lakes and islands.

To see GEM in action, place the mouse on the Size box in the lower

53

CHAPTER 3

Figure 3-1. A Full-Screen Map
_ MAP. PR6

World Map

right corner and hold the mouse button down; collapse the window by moving
it to the upper left corner. GEM adds the "rubber band" window frame for
some nice visual feedback. When you release the button, the map window
shrinks to its smallest size and the map is redrawn, scaled down to the tiny
window size.

Place the mouse on the title World Map, and drag the window to the
center of the screen. Again, the map will redraw.

Try dragging the Size box to make a long skinny window. The map will
stretch and constrict to fit in the window, as if it were drawn on a stretched
sheet of rubber (see Figure 3-2).

To understand the part the envelope library plays in all of this activity,
you need to examine which library functions are operating and the parts they
are playing.

The main routine has called setup_window, which calls open_window
to put up the window. The open_window routine creates the window using
the constant WF_PARTS to define the border areas, and then adds the name
and sliders. The slider boxes fill the area because main passed the maximum
value 1000 through setup—window to vsize and hsize.

The main function calls the multi function. After the Size box is dragged
to the upper left corner and released, multi receives a message from GEM that
something has happened in the border areas, multi calls was_msg with the
contents of the message.

The switch code in was_msg is entered at the WM_SIZED entry point.
The minimum window size is checked; then the current size is set to the values

54

Simple Line Graphics

Figure 3-2. The proportions of the map adjust to fit the dimensions
of the window.

MAP.PR6
|*1 World M a l T

MAP,PRO

55

CHAPTER 3

passed from GEM. Using these values, the was_msg subroutine calculates the
size of the work area and sets it. It then redraws the display.

If the window is enlarged, GEM sends the same WM_SIZED message,
but follows it with a WM_REDRAW message. This causes the window to be
redrawn again because was_msg calls do_redraw, which calls just__draw,
which calls doit. To prevent unnecessary redrawing, map saves the width and
height of the window and only redraws the map when they change.

GEM sends a message to multi when you click on a slider or arrow,
multi sends it to was_msg, which enters the switch code at the
WM-ARROWED, WM_HSLID, or WM-VSLID points. These call routines to
move the sliders, but since our map slider boxes already fill the slider area,
nothing happens. The switch code in all three cases starts a series of calls: They
call do_display, which calls doit, which calls map. The map function deter­
mines that the window size hasn't changed and returns.

Take a look now at how the Full box functions. Click on the Full box in
the upper right corner of the window when the window is small, and it quickly
fills the entire desktop work area. Click on the box again and the window
jumps back to its former size.

Because the Full box is part of the border, GEM sends a message to
multi, which passes it to was_msg, which switches to the WM_FULLED entry
point. Here the size and position of the current application window are put into
the xc, yc, wc, and he variables. The size and position of the desktop work area
(window 0 is the desktop) are put into x, y, w, and h. If the size of the two
windows match, the window is in its "full state, x, y, w, and h variables are
set for the current size to be the previous state, which is what the window is to
become. Then the size of the work area is calculated and set. x, y, w, and h
variables are also set to be the size of the work area just calculated. This step
seems redundant, but without it, subsequent calls to wincLget won't return the
correct values for the new work area size.

Finally, you can trace what happens when the Close box in the upper
left corner of the window is clicked. GEM sends a message to multi, which calls
was_msg, which enters the switch code at WM__CLOSED. The close_window
function is called, which gets the window size, closes the window, draws a
shrinking box, and deletes the window. In was_msg, the window handle is set
to NO__WINDOW and the exit_flag variable is set to BYE_BYE, telling multi to
break out of its loop and return to main. The main routine checks whether this
program is a desk accessory and, since it isn't, terminates the loop.

At the end of the map drawing, some cleanup routines are called. The
do_cleanup function is called, but since it is the default library version, it does
nothing. Then close_all is called, which calls close_window, which also does
nothing because was_msg has set the window handle to — 1. Then the GEM
routines v__clsvwk and appl_exit are called to close the virtual workstation and
exit the program.

56

Simple Line Graphics

Users can also exit the program in two other ways. Pressing any key on
the keyboard will cause the program to exit, since our library default version of
got_key always returns 1, which means exit. Pressing a key will cause multi to
go through the same procedure it did when the Close box was activated. Like­
wise, if there are menus and QUIT is clicked, do__menu will return 1 for exit,
and the same path out of multi will be followed.

Later programs show both of these exiting methods in more detail.

Building the Map Program
After the four subroutines that generate the map are compiled, they are ready
to be linked with the envelope library to build the map program. To link them,
using the Atari ST Software Developer's Kit, we build two files: linkit.bat, which
contains the commands that batch.ttp will execute, and link.arg, which contains
a list of the files the linker will link.

The linkit.bat file, Program 3-4, is only four lines long.

Program 3-4. linkit.bat
c:\bin\lin k 68 C unde-f i ned, symbol s, command Clink, ar g 3 3
c:\bin\relmod a
c:\bin\rm a.68k
c:\bin\wait

By the way, our programs are written for an ST with a hard disk and we
keep our tools on disk C: in the folder \bin. If your system configuration dif­
fers (no hard disk, for instance), youTl need to change the lines in linkit.bat ac­
cordingly—for example,

A:link68[args].

The first line calls the linker program, link68, and includes arguments to
ignore undefined symbols, produce a symbol table for the debugger, and read
the file link.arg for the rest of the commands.

After linking, the linker's output must be converted into a program that
TOS can run. The relmod program does this by reading the linker output in the
file a.68K and creating the program a.prg. We then remove the temporary a.68k
file and wait for a carriage return.

The second file, link.arg (Program 3-5), is only three lines long.

Program 3-5. link.arg
a.68k=c:gemstart.o,main.o,
CONFIG.0,DOIT.0,MAP.0,WORLD.0,
env. a , vdibind, vdidata. o, geml i b, aesbi nd, osbind , 11 b-f

The first line tells the linker to create the file a.68k and to put the file
gemstart.o at the beginning of the program, followed by main.o.

The second line lists the four files created in this chapter for the map

57

file://c:/bin/lin
file://c:/bin/relmod
file://c:/bin/rm
file:///bin/wai

CHAPTER 3

program. Since the linker is not sensitive to upper- or lowercase, the filenames
are distinguished by uppercase.

The last line is the list of libraries necessary to link with our map sub­
routines, starting with the envelope library created in Chapter 2.

After linkit.bat and link.arg have been constructed, the program is linked
by clicking on batch.ttp and typing linkit as the argument. Messages appear on
the screen as A.PRG, the default name for the executable program file, is cre­
ated. When the map program has been linked, you may want to rename A.PRG
to WORLDMAP.PRG from the desktop menu. Then open WORLDMAP.PRG
by clicking on it, and see the world.

58

4 Business Graphics
HHHBH This chapter explores the Virtual Device Interface (VDI) part of

GEM. The VDI routines are responsible for activities that involve
• • • • • input/output devices, such as converting coordinates for a printer or
the screen, writing to a disk, or certain basic graphics operations like circles,
lines, and fill.

The program developed here prints presentation-quality line graphs, bar
charts, and pie charts. It will draw thin and wide lines with varying endpoints;
it will also draw rectangles and pie-chart slices, and scale the output to fit any
window size and resolution. In addition, you'll see how to fill pie slices and the
bars in a bar chart with various patterns such as stripes, bricks, hatches, and so

In the course of showing how to create business graphs and charts, we'll
also demonstrate how to open a file and read data from it. Two ways of giving
a filename to the program are shown: The first is when the filename is entered
as the parameter in a .TTP dialog when the user starts the program, and the
second is from a file-selector dialog box that opens after the program is started.
The two types of dialog boxes are shown in Figure 4-1.

This graphics program, like all the programs in this book, is linked with
the library of routines introduced in Chapter 2 which take care of most of the
GEM-interface behavior. As explained in Chapter 2, there are usually some
connecting routines required to tailor the GEM interface to a specific applica­
tion, and to let the application routines communicate with the GEM routines.
For this program we'll write the following connecting routines:

config.c to give the window name, application type, and so on
open_data.c to find and open a data file so it can be read
doit.c to redraw the screen—for instance, after a window is resized

When all parts of the program are finally linked, there will be the con­
necting routines, the application routines that generate the business graphics
from the data given, and the envelope library routines (in the file named
env.a).

The envelope routines listed in Chapter 2 must be compiled and linked
into the env.a library before they can be used with this application program.

61

CHAPTER 4

Figure 4-1. The Two Types of Dialog Boxes
Desk File View Options

The config.c File
As is normal, the config.c file requires a few changes for this application. Pro­
gram 4-1 indicates the changes.

The window name is set to read "Plots and Charts" and the L a m -
accessory variable is set to 0, since this will be a regular program (not a desk-
accessory program). Neither the Resource Construction Set (RCS) nor the acces-

62

Business Graphics

sory window variables are used, but they are filled just in case we decide to
change things later. Filling these variables is optional, but the variables must be
present or the program won't link.

Program 4-1. config.c
include <gemdefs.h>

char *wind_name = • Plots and Charts

ifde-f USE.RCS
char *resource
else
char Resource
endi-f USE_RCS

char *access_name

= "PLOTS.RSC";

= 0;

= " Plotting ";
int i _am_accessory = 0;
int sx = 20; smal 1 window
int sy 50;
int sw = 250;
int sh • 125;
int slv = 0; /* smal 1 window
int slh = 0; /* smal 1 window
int svs m 1000; /* smal 1 window
int shs m 1000; /* smal 1 window
int min_wide = 100;
int min_high 50;
int interval = 0;
int events = MU_MESAG i MU_BUTTON { MU_ KEYBD !

*/

slider size */
al slider size */

MU_M1 J MU_M2;

Opening and Reading a Data File
The first step is to read the file containing the data to be plotted. This is done
with the functions open_data, select—file, and read—data.

The open_.data function. The open—data function, Program 4-2, is one
of the programs that connect the application and the envelope library, and is
called by the main routine in the envelope library. If a filename exists, it is
passed to open_data in the file argument.

The filename can be passed to main as a parameter when the program is
started for either a .TTP program, or from COMMAND.TOS. If the argument
passed in the file variable is a filename, then the file is immediately opened
and read.

However, if there is no argument, then the file variable is passed as " " ,
the null string, and the user must be prompted to enter a filename. This is done
with a file-selector dialog box, such as the one shown in Figure 4-1.

open—data calls the select—file function to produce this part of the user
interface, (select—file is discussed below.) select—file displays a dialog box and a
list of filenames, if any are present, and allows the user to select or enter a file­
name. This filename is put into the file variable, and then the GEM VDI func­
tion fopen tries to open it. If fopen can't locate the file—for example, the user
entered the wrong filename or the file is on a different disk from the one in the
drive—select—file is called again to prompt the user for another filename. This

63

CHAPTER 4

continues until a file can be opened or the user selects the CANCEL button. Se­
lecting CANCEL causes select—file to return 0, which causes the program to
exit in the main function.

Once the file is open, open—data calls read—data to read it.

Program 4-2. opendata.c
include <stdio.h>

int data_count;

open _d at a < whand, vw, f i 1 e)
int whand, vw;
char *file;C

extern int errno;
FILE tfd, tfopenO;

if (fileC03 — 0)<
if < select_file<file> mm 0)

return < 0);
>

while< <fd - fopen<file, "r")) <» 0)i
form error(errno);
if< select_file(file) == 0)

return < 0);
>

return< data count = read_data(whand, vw, fd));
>

The select—file function: Getting the filename. The purpose of this
function, Program 4-3, is to display the file-selector dialog box and return the
name of the file the user enters to open_data, so the data in the file can be
read.

These few lines of code accomplish quite a bit. They use GEM's
fsel—input function, which puts up a dialog box, fills it with filenames to select
from, and accepts the user's input. The directory path and an array into which
to put the filename must be passed to fsel—input.

The directory path is really entered as a search pattern. To build the
search pattern we get the current disk drive with the GEM Dgetdrv function,
which returns 0 for drive A, 1 for drive B, and so on. The function gets the cur­
rent working directory pathname with the GEM Dgetpath function—for ex­
ample, \ GAMES \ STARTREK or \ PROJECTS \BOOK \CHAP1. Dgetpath is
passed an array, curdir, in which to put the path. The drive returned by
Dgetdrv is also passed, with 1 added to it because Dgetpath names the drives
starting at 1 for A, and so on.

Now that the program has handled all the pieces for the path, the GEM
sprintf function is called to put them together into a string such as
A: \ PROJECTS \PLOT *.PLT

The drive number is given as an argument to sprintf, converted to its
corresponding letter in the drv variable, and the pathname is stored in the
curdir variable.

64

file:///BOOK
file:///CHAP1
file:///PLOT

Business Graphics

sprintf returns a string which is passed to the GEM function fseLinput.
This function then lists, in the dialog box, all the files in the directory
\ PROJECTS \PLOT on drive A that have the .PLT extension. The user can

then select from the list by clicking on the filename with the mouse. The se­
lected filename is placed in the newfile array, and whichever button the user
has picked, OK or CANCEL, is returned in the button variable. If for some rea­
son fsel_input should encounter an error, 0 is returned to indicate failure. Also,
0 is returned to indicate failure to select a file if the user happens to pick the
CANCEL button.

If the user has selected a filename or typed one in and clicked the OK
button, its name is copied from the newfile array to the file array with the
GEM strcpy routine. The file variable is returned to open—data and 1 is re­
turned to indicate success.

Program 4-3. slctfile.c
include <osbind.h>

define CANCEL 0
define OK 1
select file* file)
char *filej{

int button, drv;
char dirC80D, newfileC80J, curdirC803;
drv = Dgetdrv();
Dgetpath(curdir,drv+1) ;
sprintf< dir, " % c i X » \ \ * . P L T » i drv+'A', curdir)$
newfileC0] = 0;
if< f»el_input< dir, newfile, fcbutton) mm 0)

return(0);
if(button == CANCEL)

return < 0 >;
strcpy(file, newfile);
return < 1);
>

The rea<L_data Function: Reading the Data File
After open—data has opened the data file returned by select—file (unless the
user entered the filename as a parameter when the PLOT program was started),
it calls the read—data function to read it.

A data file for use with the PLOT program is structured like this:

Figure 4-2. A Sample Data File
Corporate Profits
LINE
1.0, 1.0 # x Sc y grid increments: don't draw
0.0, 0.0 # lower left point: don't draw
10.0, 10.0 # upper right point: don't draw
1.0, 1.0
3.0, 7.4
4.2, 4.0
5.0, 9.3
6.5, 6.0
7.0, 8.5
8.7, 0.5

65

file:///PLOT

CHAPTER 4

The first line always contains a title and the second line always states
the chart type. Subsequent lines contain data whose structure is specific to a
chart type. Labels are enclosed in double quotes, and any characters following
a # on a line are comments which read—data ignores.

The read_data function, Program 4-4, will read this data and pass it to
the right charting routine.

read—data first looks for the chart title and type, displaying error mes­
sages with show_form, and returning 0 if they cannot be read. The title line is
passed to the GEM routine wind—set, which takes care of displaying it in the
window's title bar.

The function expects the chart type to be LINE, BAR, or PIE in the sec­
ond line of the data file. If it isn't one of these three, a message is displayed,
and the type defaults to a LINE chart.

Next, the GEM fgets function gets lines of data from the file. For each
line, the program calls the extract function to get the individual data items out
of the line, extract handles multiple items on a line by returning after each one,
leaving a pointer to the next character to be read, read—data determines if the
next character is a null byte (end of line) and calls extract again if it isn't. With
this method, it is not necessary to tell the read—data and extract functions how
many numbers are on a line, since they are handled one at a time until the end
of the line is reached. As each data item is read, it is put into the data—set ar­
ray in the place pointed to by the dp (data pointer) variable. Label data items
are returned in the labels and labcnt, the index into the labels array, is
incremented.

Program 4-4. readdata.c
include <stdio.h>
include <gemde-fs.h>
de-fine MAX DATA 100
de-fine LINE_CHART 1
define PIE_CHART 2
define BAR_CHART 3

cher titleC803;
double data_set CMAX_DATA3;
int plot.type, labcnt;
char *1abelsCMAXIDATA3;

read_data(whand, vw, fd)
int whand, vw;
FILE tfd;C

char lineC1283, typeC1283, tip, (extract (), tfgetsO;
int x;
double tdp;

if(fgets(title, sizeof(title), fd) != title)<
show_form< "Missing title line!");
return < 0);
>

66

Business Graphics

strip commente title);
wind_set< whand, WF_NAME, title, 0 , 0) 5
if (fgets< type, sizeof (type) , fd) !« type)C

show_form< "Missing type line!");
return < 0) ;
>

strip_comment< type);
if< strcmp< type, "LINE") — 0)

plot type • LINE CHART;
else if(strcmp< type, "PIE") — 0)

plot type = PIE CHART;
else if(strcmp(type, "BAR") « 0)

plot type « BAR CHART;
else C

sprintf(line,"Unknown type 'Xs's assuming * LINE'",type);
show_form(line);
plot"type - LINE CHART;
>

dp = data_set;
labent » 0 ;
for< x - 0 ; x < MAXIDATA;)<

if(fgets(line, sizeof(1ine), fd) !» line)
break;

strip..comment (line);
lp » line;
while(tip)C

lp - extract < lp, dp, SclabelsClabent3);
if(labelsClabent3)

labent++;
x++;
dp++;
>

>
return < x) ;
>

The strip—comment function. In the course of each data line being
read, comments and trailing white spaces are removed by the strip—comment
function, Program 4-5.

This function scans a string until it finds a # or the end of the string, and
then backs up, replacing any blanks or tabs with null characters.

Program 4-5. stripcmt.c
strip_comment(str)
char tstr;<

while(*str && *str •= '#' && *str '\n')
str++;

while< *str == '#' II *str ' ' II *str == '\t' I I *str == '\n')
*str— = 0;

>

The extract function: Placing the data into an array. The extract func­
tion, Program 4-6, breaks down each line of data from the file into the individ­
ual data items that are separated by spaces, and puts the items into an array for
numbers and an array for labels.

The first nonwhite character is found with a two-line loop that skips
blanks and tabs. Having found a character, the program checks to see if it is a

67

CHAPTER 4

double quote, and if it is, all the characters up to the next double quote are col­
lected and a pointer is put in the *label variable that points to the place in
memory allocated to the block of characters. The standard C functions, strlen
and malloc, are used to set up the memory block and return the pointer. The
second double quote is set to 0 to mark the end of the string. If the character is
not a double quote, *label remains 0 (which was set at the start of this func­
tion). Finally, the C function strcpy is used to copy the string into the label ar­
ray in the allocated position in memory.

To handle the data items that are not labels, a loop is used to collect all
characters up to a comma, null character, or newline character, and then the
program calls the ASCII-to-floating point function atof to convert the character
string into its corresponding binary form. The binary number is put into the
proper element of the data—set array by the pointer, dp.

Finally, the pointer to the the next unread character in the line is re­
turned to read_data to determine whether extract should be called again, or if
it has finished reading the file.

Program 4-6. extract.c
define DQUOTE ' \ " *

char *
extract< str, dp, label)
char tstr;
double *dp;
char ttlabel;<

register char *p;
char tmallocO ;
double atof();

while< tstr * * II *str == '\t*)
str-M-|

(label = 0 ;
if(tstr == DQUOTE)C

p = ++str;
while< tstr != DQUOTE && tstr && tstr != '\n>)

str++;
if< tstr)

tstr++ = 0 ;
else

tstr = 0 ;
tlabel = malloc(strlen(p) + 1 > ;
strcpy< tlabel, p)|
if< tstr —)

str++;
while< tstr tstr == '\t')

str++;
>

for< p * str; tp && tp != &* tp !* *\n*; p++)
;

if< tp — >
tp++ = 0 ;

else
tp = 0 ;

tdp = atof(str);
return < p);
>

68

Business Graphics

The doit Function: Drawing a Specific Type of Chart
Recall that the second item in the data file is the chart type. In the open_data
function of the chart program, the plot-type variable is set to LINE, BAR, or
PIE. In open_data the global variables data_set and data__count are also set.
Here these variables are passed to another one of the routines that connect our
application program to the envelope library and GEM—the doit function, Pro­
gram 4-7.

Several routines in the envelope call the doit function whenever they
need to redraw the screen, doit clears the screen and calculates the size of a
rectangle that nearly fills the window's work area. The rectangle consists of
four global variables—box__x, box_y, box_w, and box__h—that define x, y, w,
and h, and are used by routines called by doit. Chapter 2 discusses another
similar doit function in detail. For now, notice that doit switches on plot—type,
and then the data that open_data put into the data_count and data_set arrays
is passed to one of three subroutines: line—chart, bar_chart, or pie__chart. These
routines actually do the work of drawing the screen.

Program 4-7. doit.c
include <gemde-fs.h>

de-fine LINE_CHART 1
de-fine PIE.CHART 2
define BAR.CHART 3
int box_x, box_y, box_w, box_h;
doit< whand, vw)
int whand, vw;<

extern int gl_wchar, gl_hchar, plot_type, dataccount;
extern double data_setC3;
int xwork, ywork, wwork, hwork;

clr_disp(whand, vw);
wind_get(whand, WF_WORKXYWH, Scxwork, Scywork, Scwwork, Sehwork);
hide_mouse<);
box_x • xwork • gl_wchar;
box_y • ywork • 2 ;
box_w • wwork - gl_wchar * 2 ;
box_h • hwork - gl_hchar * 2 ;
switch(plot.type >C

case LINE.CHART:
line_chart< vw, data_count, data_set);
break;

case BAR.CHARTs
bar_chart< vw, data_count, data_set);
break;

case PIE_CHART:
pie_chart< vw, data_count, data_set);
break;

>
show mouse();
>

69

CHAPTER 4

The line-chart Function: Drawing a Line Chart
The line_chart function will create the line-chart style of graph as shown in
Figure 4-3.

Figure 4-3. A Sample Line Chart

PLOT.PRO

The data to produce the chart shown in Figure 4-3 is in the file line.plt,
Program 4-8.

After the chart type, the structure of the data in a chart data file should
contain at least three pairs of numbers to be used for setting up the plot. Fol­
lowing these are the data pairs, which define the vertices of the graph.

The chart type, LINE, causes doit to run the line_chart function, Pro­
gram 4-9.

Since line__chart takes its data in paired x and y coordinates, it first di­
vides the data count (passed to it by doit) by 2. It then verifies that there are at
least three pairs of numbers.

The first pair are the x and y distances between the lines of the grid that
we'll put behind the graph line. These units are the same as for the rest of the
data, so you can think of the grid lines as occurring every one million dollars if
the graph data is in millions of dollars.

The next two pairs of numbers define the minimum and maximum val­
ues for the graph. This feature lets us improve the graph aesthetically by mak­
ing the edges of the graph area extend past the graph lines, thereby keeping
the graph lines from touching the edges of the graph area.

70

Business Graphics

If the value for the x increment that was given in the first pair of num­
bers equals the maximum x value in the second pair of numbers, then only
horizontal lines will be drawn behind the graph.

The remaining data pairs are interpreted as x and y coordinates that de­
fine the dots to be connected with the v__pline routine, as is done with the map
program in Chapter 3.

As the line_chart function continues to execute, it calls several other
functions we provide, and some functions provided by VDI. The next few para­
graphs summarize these calls and their purposes.

First, the range function is called to verify that the correct minimum and
maximum values are set, to prevent the graph lines from extending beyond the
edge of the chart.

The grid function is next, putting up the background grid for the graph.
This function is used to convert the graph points from the graph units, such as
millions of dollars, to pixel units. Once the set of graph points is in pixel units,
some VDI functions are called to plot them.

The line mode is set to SOLID by calling the VDI vsl_type function.
Several "poly-line" line types are defined at the beginning of the line_chart
file, so you can experiment with the line mode setting if you wish.

You can also experiment with the line width, vertices markers (poly­
markers), and end shapes. VDI's vsm_type sets the type of marker for the
GEM v_pmarker routine to use. v_pmarker is just like v_pline, but it puts dis­
tinct markers at the vertices instead of connecting the points with lines. We use
vsLwidth to set the width of the lines. Thick lines set to eight pixels wide
show up well on overhead slides.

Last, the GEM VDI function v_pline is called, which plots the points
and connects them with lines in the style we indicated in the previous
statements.

Program 4-8. line.pit
Corporate Profits
LINE
1.0, 1.0 # x & y grid increments: don't draw
0.0, 0.0 # lower left point: don't draw
10.0, 10.0 # upper right point: don't draw
1.0, 1.0
3.0, 7.4
4.2, 4.0
5.0, 9.3
6.5, 6.0
7.0, 8.5
8.7, 0.5

Program 4-9. linechrt.c

tt Poly-marker shapes
*/
define DOT 1
define PLUS 2
define STAR 3

71

CHAPTER 4

de-Fine SQUARE 4
define CROSS 5
define DIAMOND 6
ft
tt Poly-line line types
* /
« define SOLID 1
define LONGDASH 2
define DOTTED 3
define DASHDOT 4
define DASH 5
define DASHDOTDOT 6

/*
** Poly-line end styles
* /
define SQUARE 0
« define ARROW 1
define ROUNDED 2

line_chart< vw, count, data)
int vw, count;
double tdata;C

double max_x, max_y, min_x, min_y, x, y;
int i, pointsC5123, off;
extern int box_x, box_y, box_w, box_h;

count /« 2;
if< count < 3)<

show_form<"No data after increments and corners");
return;
>

x • *data++;
y = *data++;
count—;
range(count, data, &max_x, Scmax_y, 8cmin_x, 8cmin_y);
off = grid(vw, x, y, max_x, max_y, min_x, min_y);
data += 4; / * skip corner data */
count -= 2;
for< i • 0; i < count * 2; i 2 ><

pointsCi3 = box_x •
scale(dataCi1,max_x,min_x,box_w-off) + off;

pointsCi+13 • box_y • box_h -
scale(dataCi + 11,max_y,min_y,box_h);

>
vsl_type< vw, SOLID); / * solid lines * /

ifdef THINCLINES
vsm__type(vw, DIAMOND); / * diamonds at vertices * /
v_pmarker< vw, count, points); / * draw the diamonds * /
vsl_width< vw, 1); / * draw thin lines tf

else
vsl_width< vw, 8); / * draw wide lines * /
vsl_ends< vw, ROUNDED, ARROW); /t with fancy ends * /

endif THINCLINES
v_pline< vw, count, points); / * draw the lines */
>

The range Function
The range function, Program 4-10, is called by line__chart to determine the larg­
est and smallest coordinates. The function expects them to be the minimum
and maximum values that were the first two number pairs in the data file.

72

Business Graphics

However, in case an error has been made and one of the other data values is
larger or smaller, this function resets the maximum and minimum x and y vari­
ables to the correct values. This prevents the graph line from extending beyond
the window.

The range function loops through the data array, checking each pair of
numbers against the current minimum and maximum x and y values. If a num­
ber is found that is less than the minimum, the minimum is set to the number.
The same process is done for maximum numbers. When the routine is finished,
max_x and max_y contain the largest x and y values and min_x and min_y
contain the lowest x and y values.

Program 4-10. range.c
range(count, data, max_x, max_y, min_x, min_y)
int count;

double tdata, tmax_x, *max_y, *min_x, *min_y;<

int l|
tmin_x • »max_x = dataC03;
tmin y - *max_y = dataC13;
for(~i » 0; i~< count t 2; i 2)C

if< datati+0 3 < *min_x)
*min_x • dataCi+03;

if< datati+03 > imax_x)
*max_x • dataCi+03;

if< dataCi+13 < *min_y)
*min_y • dataCi+13;

if(dataCi+13 > *max_y)
tmax_y • dataCi+13;

>
>

The grid Function and Its Calls
The line__chart function calls grid, Program 4-11, to label the axes, draw a col­
ored rectangular background with rounded corners and a pattern so it is suit­
able for either a color or monochrome monitor, and draw dotted lines at
intervals to mark the graph divisions.

grid calls the label function, Program 4-12, to label the upper and lower
left corners of the graph with the maximum and minimum values.

The label function converts the stored floating-point values of the mini­
mum and maximum numbers back into text strings with the strval function,
Program 4-13, which follows it.

Program 4-11. grid.c
include <obdefs.h>

/ *
** Poly-marker shapes
*/
define DOT 1
define PLUS 2
define STAR 3
define SQUARE 4

73

CHAPTER 4

define CROSS 5
define DIAMOND 6
/*
** Poly-line line types
*/
define SOLID 1
define LONGDASH 2
define DOTTED 3
define DASHDOT 4
define DASH 5
define DASHDOTDOT 6

/*
** Poly-line end styles
* /
« define SQUARE 0
define ARROW 1
define ROUNDED 2

grid(vw, x, y, max_x, max_y, min_x, min_y)
int vw;
double x, y, max_x, max_y, min_x, min_y; i

int i, mode, lineC163, off, off2, x_inc, y_inc;
char strC803;
extern int box_x, box_y, box_w, box_h, gl_wchar, gl_hchar;

off • label < vw, min_y, box_x, box_y+box_h);
off2 • label < vw, max_y, box_x, box_y+gl_hchar+l);
if< off2 > off)

off = off2;
off t- gl_wchar; / * convert chars to pixels * /
i f < x < max _x)<

label (vw, min_x, box_x+off, box_y+box_h+gl_hchar);
off2 • strval(max_x, str) * gl_wchar;
label< vw, max_x, box_x+box_w-off2, box_y+box_h+gl_hchar);
>

draw_box< vw, box_x+off, box_y, box_w-off, box_h);
vsl_width< vw, 1);
vsl_color< vw, 2);
vsl_type(vw, DOTTED); / * grid made of dotted lines */
vsl_ends< vw, SQUARE, SQUARE); / * with simple ends */
mode • get_mode<vw); / * save old mode */
vswr_mode< vw, MD_TRANS); / * transparent between dots
if< x < max_x)<

x_inc = scale(x, max_x, min_x, box_w-off);
for< i • x_inc; i < box_w-off; i += x_inc)<

lineC03 • i + box_x • off;
lineCID • box_y;
lineC2D • i + box_x + off;
lineC33 • box_y + box_h;
v pline(vw, 2, line);
>"

y_i nc =
for(i

scale(y, max_y, min_y,
= y_inc; i < box_h; i +=
lineC03 - box_
lineCID = box_y
lineC23 = box_x
lineC33 = box_y
v pline(vw, 2,
>

vswr_mode< vw, mode);
vsl_width< vw, 1);
vsl_color< vw, 1);
return(off) ;
>

• off;
• box_h
+ box_w
• box_h
line);

74

box_h);
y_inc)C

- i;
- off;
- i;

/ * return to old mode */

Business Graphics

Program 4-12. label.c

/ * find the end o-f the string */

/ * trim trailing zeros */

75

label< vw, value, x, y)
int vw;
double value;
int x, y;<

char strC803;
int len;

len • strval< value, str);
v_gtext< vw, x, y, str);
return(len);
>

Program 4-13. strval.c
strval(value, str)
double value;
char *str;C

char tp;

sprint*(str,",value);
for< p - str; *p; p++)

5
while(*—p == '0')

*P - 0;
ill tp « >

*P = 0;
return(strlen< str));
>

The strval function uses the C function sprintf to convert a double-
precision floating-point value to a character string. It trims off trailing zeros
and, if the remainder ends in a decimal point, it is also removed. The string
length is found using the C strlen function, and the length is returned to label.

When strval returns the string and its length, label prints the string using
the GEM routine v_gtext and returns the length to grid so the colored back­
ground can be drawn to the right of the labels.

The grid function can draw either a grid, or simply horizontal lines like
those used for bar graphs. If the increment value for the x-axis in the data file
is equal to the maximum x value, only horizontal background lines will be
drawn. The statement in grid
if(x < max_x)

checks for this condition. If x is less than max__x, the program draws the verti­
cal lines for the grid, calling label to put numbers under the first and last line.
The width of the second label is calculated before it is plotted. The length will
be subtracted from the width of the colored background so the label can be
right-justified with the background.

Now the background color and pattern are filled by calling the drawbox
function, Program 4-14, from grid.

In drawbox, the interior fill mode to PATTERN is set by calling
vsLJnterior, and the pattern is selected by calling GEM's vsf_style with pattern

CHAPTER 4

number 3. At the top of the file, you can see that 3 is defined as a hatching
pattern. This is a light pattern that looks good in color or in monochrome and
doesn't interfere with the finer details of our graph.

GEM's vsf_color is used to set the fill color to number 3, which is one
that hasn't been used yet and also is the last color available on a medium-
resolution screen. On a monochrome screen, color 3 is black, but the light pat­
tern will allow us to see the graph lines on it.

To draw a box with rounded corners, giving a finished look to the graph,
v_rbox is used. This is one of those VDI routines that use the upper left and
lower right corners instead of x, y, w, and h, so we add x to w and y to h to ac­
commodate it.

Before the return to grid, the pattern and color are reset to what they
were at startup by the openvwrk function in the envelope library.

Back in grid, the drawing of the grid begins with dotted lines. First, the
width of the grid lines is set to 1 pixel and the color is set to 2 using the VDI
functions vsl_width and vsLcolor. On color monitors, the color associated with
2 is whatever the user has selected for the desktop before running the PLOT
program. On monochrome systems, any color other than 0 (white) is black;
consequently, this program doesn't require any changes to work in
monochrome.

Next, the style of the grid lines and the style of their end markers are
set. The line is defined to be DOTTED; however, you can change it to one of
the other types defined at the top of the grid file, such as dashes or combina­
tions of dashes and dots. The line ends are set to plain SQUARE, although you
can achieve some interesting effects if you set them to ARROW.

Before continuing, the writing mode is saved as it was originally set by
GEM to "REPLACE" and the mode is changed to transparent. If the writing
mode was left as REPLACE, the grid lines would consist of the line pattern
with white between the dots and dashes. This would make the grid lines far
too prominent in our graph. Changing the writing mode to TRANSPARENT
permits the background to appear behind the patterned lines. The old writing
mode is saved because it will be restored when the function is finished. This
lets us call grid from functions that expect the default writing mode, since,
unlike line width and color, this is not one of the parameters that normally
changes.

To get the current writing mode, the getmode function, Program 4-15, is
called.

getmode calls the GEM function vqt_attributes to ask for ten items of
information about VDI text modes. The program specifically wants to know
what the writing mode is set to, which may be REPLACE, TRANSPARENT,
XOR, or REVERSE TRANSPARENT. The writing mode is returned to grid.

The old writing mode having been saved, the mode is reset to TRANS­
PARENT with the GEM vswr_mode function.

76

Business Graphics

All the information needed is now known; all the variables are set to
draw the graph grid and its labels; and we're ready to draw the lines. The pro­
gram decides if it must draw vertical grid lines, and if so, scale, Program 4-16,
is called to convert the graph units (such as dollars) to pixels.

The scale function maps graph units into pixels. It is called whenever we
need to make a graph fill the screen, scale is given a value in graph units (for
example, dollars), the maximum and minimum values in graph units, and the
total height (or width) in pixels of a window. It returns a value in pixels that is
the same proportion to the total size as the first value is to the difference be­
tween the minimum and maximum. For example, if the window is 100 pixels
high, the first value is $20, and the minimum and maximum values are $10
and $100, then scale will return 11 pixels and you will plot a point in the win­
dow 11 pixels high to represent the $20.

After the conversion, v_pline is called to draw the vertical grid lines.
The horizontal grid lines are computed and drawn exactly the same way.
Before returning to the line_chart function, grid resets the parameters that were
changed—the writing mode, line width, and color—and returns the x value of
the left edge of the background so that the graph routines will know where to
start the graphs.

Program 4-14. drawbox.c
define HOLLOW 0
define SOLID 1
define PATTERN 2
define HATCH 3

draw_box(vw,x,y,w,h)
int vw, x, y, w, h;<

int cornersC16 1;

vsf_interior(vw, PATTERN);
vsf_style< vw, 3);
vsf_color< vw, 3);
cornersC03 • x;
cornersC13 » y;
cornersC23 » x • w;
cornersC33 • y • h|
v_rfbox < vw, corners);
vsf_interior(vw, HOLLOW);
vsf_style< vw, 0);
vsf_color< vw, 0);
>

Program 4-15. getmode.c
/*
tt Return the current writing mode (Replace, Transparent, XOR, or
ft* Reverse Transparent)
*/
get_mode(vw)
int vw;€

struct i
int text_face;
int text_color;

77

CHAPTER 4

int angle;
int hor_align;
int verbalign;
int write_mode;
int char_wide;
int char_high;
int cell_wide;
int cell_high;
> info;

vqt_attributes< vw, &info);
return< info-write «od«);
>

Program 4-16. scale.c
scale(datum, max, min, isize)
double datum, max, min;
int isize;i

/%
%% <datum-min) x
t* =
%t max-min isize
*/
return(isize * ((datum-min) / (max-min)));
>

The bar . char t Function: Drawing a Bar Chart
Another very common way to express numerical relationships is with the bar
style of chart. Using many of the same subroutines we developed earlier in this
chapter, it is a simple matter to create the bar chart in Figure 4-4.

Figure 4-4. A Sample Bar Chart

PL0T.PR6

78

Business Graphics

The data used to create this chart is structured like the data file shown in
Program 4-17.

The bar_chart function is listed in Program 4-18.
This function begins by saving the value for the grid line increment, just

as the line__chart subroutine did. There is only one increment value for y, since
this is a bar chart and the "grid" will really consist only of horizontal lines.

Also, minimum and maximum values are only required for the y-axis
and, since there is only one of each value, we can find them with a simple loop
instead of using the range subroutine needed by the line chart program. This
loop searches the data to insure that the maximum and minimum values in the
data file are correct, and resets them if a larger or smaller value is found.

Skipping over the maximum and minimum values, bar_chart calls the
grid function, explained earlier in this chapter, to put up the background and
draw the horizontal lines. The value 0.0 is given for the x-axis to grid so that
the vertical lines aren't drawn.

The bars need to be separated by some arbitrary amount of space to
keep them distinct from each other. We have chosen to make the space 1 / 3 the
size of the bars, so we divide the width of the graph box by the number of
bars, and then divide by 4 to get the width of a space. The width is then multi­
plied by 3 to give the width of each bar. All the bars plus their spaces will ex­
actly fill up the width of the graph. Of course, for your version of the program,
you can modify the width to be any value you want.

Now each bar and its label is ready to be drawn on the graph.

Program 4-17. bar.plt
Yearly Gross Margin
BAR
10 # increment
80 # invisible max
0 # invisible min
"1980", 15
"1981", 26
"1982", 34
"1983", 50
"1984", 77
"1985", 44
"1986", 51

Program 4-18. barchart.c
bar_chart(vw, count, data)
int vw, count;
double tdata;<

double max_y, min_y, y;
int i, bar_space, bar_width, o-ff, loff, 11;
extern int box_x, box_y, box_w, box_h, gl_hchar, gl_wchar;
extern char tlabelsC3;
y • *data++; / * increment -for grid */
count—;
max_y = min_y = dataC03;
for(i = 0; i < count; i++ X

79

CHAPTER 4

max_y m max_y < dataCiD ? dataCiU : max_y;
min_y • min_y > dataCiD ? dataCiD : min_y;
>

data -H" 2; / * invisible max & min for scaling */
count -= 2;
off « grid(vw, 0.0, y, 0-0, max_y, 0.0, min_y);
bar_space = box_w / count / 4;
bar_width - bar_space * 3;
for(i = 0; i < count; i++)<

draw_bar< vw, i % <bar_width + bar_space> + off + bar_space / 2,
bar_width,
scale(dataCi 3,max_y,min y,box_h>,
i+1);

11 = strlen(labelsCi}) * gl_wchar;
if(11 < bar width)

loff = box_x + <bar_width - 11) / 2;
else

loff = box_x;
v_gtext< vw,

i * <bar_width+bar_space) • off + bar_space/2 loff,
box_y • box_h + gl_hchar + 1,
labelsCiU)|

>
>

The draw—bar function. Most of the work for draw—bar, Program 4-19,
is done by bar_chart, which calculates its parameters. When draw_bar is
called, it's given a location to draw the bar, a bar width and height, and a pat­
tern number for the bar fill. The bar height is given in pixels, calculated by the
scale function discussed earlier. The first bar is placed a half-space from the left
margin, resulting in another half-space between the last bar and the right mar­
gin. This way, the bars stand away from the graph edges for a more pleasing
appearance.

draw_bar constructs the corners of the bar from the globally defined
background variables, box_x and box—y, and the parameters passed to it.

The draw__bar function sets the interior fill mode to PATTERN and the
style to its argument. At the beginning of this file you can see a table of pat­
terns for the index. The patterns have been arranged so that adjacent patterns
contrast with each other. The pattern parameter is modulo 24 (the size of the
table) so that if there are more than 24 bars, the routine wraps to the beginning
of the table.

Color is set to black and then the bar is drawn using the VDI routine
v—bar.

As usual, before returning, fill, style, and color are set back to their origi­
nal state.
Program 4-19. drawbar.c
define HOLLOW 0
define SOLID 1
define PATTERN 2
define HATCH 3

/*
*t Put the patterns in a more interesting sequence

80

Business Graphics

int pat_listC3 = <
1,5,7,16,9,20,8,12,4,19,2,6,3,22,10,13,11,24,14,15,17,18,21,23
> ;

draw_bar(vw, x, wide, high, pattern)
int vw, x, wide, high, pattern;i

int xyC43;
extern box__x, box_y, box_w, box_h;
xyC03 * box_x + x;
xyC13 • box_y + box_h;
xyC23 • box_x • x + wide;
xyC33 = box_y +• box_h - high;

vsf_interior< vw, PATTERN);
vs-f_style(vw, pat_listCpattern 7. 243);
vs-f_color< vw, 1);

v_bar< vw, xy);

v»f.interior(vw, HOLLOW);
vsf_style(vw, 0);
vs-f col or (vw, 0);
>

Labeling the bars. After the bars are drawn, the labels are centered un­
der them. In bar_chart, the length of the label is subtracted, in pixels, from the
width of the bar. If it is shorter than the bar, the label is centered by adding
half of the difference to the x value that is passed to v_gtext, which displays
the label. If the label is the same length or longer than the bar, it is simply
aligned with the left side of the bar.

Drawing Pie Charts
Pie charts, like the one in Figure 4-5, are easy to do using GEM VDI routines.

Figure 4-5. A Sample Pie Chart
PLOT.PRG

Ingredients

40,00/. Cherries

18,00A [

15.00/ Flour

I 12,00* Shortening

10,00'/ Mi lk

5,00'/. Eggs

81

CHAPTER 4

The pie_chart function simply sums up all the data items, calculates the
center point and radius of the pie, then draws the pie slice and labels a legend
entry for each data point. The data file for the sample pie chart shown in Fig­
ure 4-5 is listed in Program 4-20.

The code for the program to plot the chart is shown in Program 4-21.
The most complicated part about drawing pie charts in windows of vary­

ing sizes is making sure that the diameter is smaller than the shortest side of
the window. If a radius of 100 pixels on the x-axis is specified, then the radius
will be a little less than 1 / 6 the screen's width (640 pixels in medium and high
resolution). However, the same 100-pixel radius on the y-axis would be 1/2 the
screen's vertical size (in medium and high resolution).

The fact that pixels are taller than they are wide creates the need for
some special treatment. GEM uses the x-axis pixels to define the radius. The
function must calculate the equivalent number of y-axis pixels. To convert y-
axis pixels to x-axis pixels, the function multiplies the number of y-axis pixels
by the width of the screen (measured in pixels). Then it divides that result by
the height of the screen, also measured in pixels. Now the height and width are
in the same units as if the screen were square, and the function can use one-
for-one comparisons.

To get the size of the window, pie_chart calls the GEM wind—get func­
tion. If the width of the window is less than the height, then the radius must
be 1/3 the width to keep the pie chart within the window. If the height is less
than the width, the radius is made 1 / 3 the height.

To position the labels, the starting position of the background box and
the diameter of the pie chart are added, adding two more characters of space to
offset the labels to the right of the pie.

The center of the pie is in the middle of the background vertically, and
the radius plus one character space horizontally.

draw—box is called to draw in the background and loop through the
data, drawing each pie slice and writing its label.

In the loop, the variable this—one is the size of the current pie slice rela­
tive to the total. A fill pattern is selected, and the VDI function v—pieslice is
called with x, y, and radius, the starting position of the slice, and the ending
position. The legend function then puts up the pie slice labels. The last step in
the loop is to make the starting position of the next slice become the current
ending position.

The legend function, Program 4-22, places the pie slice labels next to
small patches of the corresponding fill pattern.

Program 4-20. pie.plt
Ingredients
PIE
"Cherries",
"Sugar",
"Flour
"Shortening",
"Milk",
"Eggs",

40
18
15
12
10
5

82

Business Graphics

Program 4-21. piechart.c
include <gemdefs.h>

define HOLLOW 0
define SOLID 1
« define PATTERN 2
define HATCH 3

pie_chart< vw, count, data)
int vw, count;
double tdata;<

double sum;
int i, this_one, sofar, x, y, w, h, radius, labx;
long int max_w, max_h;
extern int box_x, box_y, box_w, box_h, gl_wbox, gl_hbox, pat_listC3;
extern char tlabelsC3;

sum * 0.0;
for(i • 0; i < count; i++)

sum +- dataCil;
/*
*t dataCiD x
tt =
** sum 3600
*/
wind_get(0, WF_CURRXYWH, &x, Scy, &w, &h);
max_w = box_w;
max_h = box_h;
max.h *= w;
max_h /= h;

if(max_w < max_h)
radius • max w / 3;

else
radius = max_h / 3;

labx = box_x + 2 t radius + gl_wbox * 2;
x • box_x • radius +• gl_wbox;
y • box_y + box_h / 2;
sofar = 0.0;
draw_box< vw, box_x, box_y, box_w, box_h);
for< i • 0; i < count; i++ ><

this_one = (dataCi 3 * 3600.0) / sum;
vsf.interior(vw, PATTERN);
vsf_style< vw, pat_listC <i + l) y. 243);
vsf__color(vw, 1);
v_pieslice(vw, x, y, radius, sofar, sofar+this_one);
legend(vw,labelsCi3,labx,box_y + <i+l) * gl_hbox,dataCi3/sum)
sofar -M" this_one;
>

vsf.interior< vw, HOLLOW);
vsf_style< vw, 0);
vsf color(vw, 0);
>

Program 4-22. legend.c
legend< vw, str, x, y, ratio)
int vw;
char *str;
int x, y;
double ratio;{

int xyC43;
char percentC1003;

83

CHAPTER 4

extern int gl_wchar, gl_hchar;

ratio *= 100.0;
xyC03 = x;
xyC13 = y;
xyC23 • x • gl_wchar * 2;
xyC33 • y + gl_hchar;
v_bar < vw, xy);
sprintf (percent, "7.5.2-fy.% Xs", rati o, str);
v_gtext(vw, x + gl_wchar * 3, y + gl_hchar, percent);
>

legend calculates the percentage of each slice by multiplying the pie slice
ratio by 100. Then it draws a small box that fills with the current fill pattern.
The sprintf function is used to print the label into a string—"40.00% Cherries,"
for example—and put the string onto the screen using GEM's v__gtext.

Putting It All Together
At last, with all the functions entered and compiled, it's time to link them to­
gether. The arguments for the link batch program are kept in a file called
link.arg. Program 4-23 is the listing of this file, with the names of all the func­
tions written for this business graphics application in capital letters.

The linkit.bat file, Program 4-24, for the PLOT program, listed below,
takes most of its arguments from the link.arg file. Again, our programs are writ­
ten for an ST with a hard disk and we keep our tools on disk C: in the folder
\bin. If your system configuration differs (no hard disk, for instance), you'll

need to change the lines in linkit.bat accordingly.
As usual, the linked files are output as a.prg, which you will probably

want to rename to something descriptive like PLOT.PRG or GRAPHICS.TTP.
Remember that by means of the .TTP extension, TOS will give users the oppor­
tunity to type in the name of the data file to be plotted when they start the
application from the desktop.

Program 4-23. link.arg
a.68k=gemstart.o,main.o,
C O N F 1 6 . 0 , L A B E L . 0 , S T R V A L . 0 , L I N E C H R T . O , R A N G E . 0 , S C A L E . O ,
GRID.0 ,DRAWBOX.O,GETMODE.O,BARCHART.0 ,DOIT .O,DRAWBAR.O,PIECHART.O,
LEGEND.O ,OPENDATA.O ,READDATA.0 ,STRIPCMT.0 ,E X T R A C T . 0 , S L C T F I L E . O ,
e n v . a , v d i b i n d , v d i d a t a . o , g e m l i b , a e s b i nd,osb ind,1 i b f

Program 4-24. linkit.bat
c:\bin\link68 Cundef ined,symbols,commandC1 ink.arg3 3
c : \ b i n \ r e l m o d a
c:\bin\rm a.68k
c : \ b i n \ w a i t

84

file:///bin/l
file://c:/bin/relmod
file://c:/bin/rm
file:///bin/wai

5 Creating Menus,
Dialog Boxes,
and Graphics

5 Creating Menus,
Dialog Boxes,
and Graphics

This chapter shows how to create a more complicated user interface
using GEM features such as pull-down menus and event timing. We
also demonstrate two uses of Atari's Line A graphics interface:

speeding up screen drawing, and how to write functions for handling keyboard
input. The Line A interface resides in ROM.

The program used for explaining the various functions explores a math­
ematical object called the Mandelbrot set. A Mandelbrot set is an infinite series
of numbers that exhibit symmetry, both visual and numerical, as they're plot­
ted. Shown on the Atari screen, the Mandelbrot set produces strikingly beauti­
ful images. There's a practical side to it too. The Mandelbrot set is related to
fractals, which are mathematical relationships that occupy a "fraction of a di­
mension"—for instance, somewhere between a line and a plane. Fractal geome­
try has been used to create background scenes of alien planetscapes in movies
and video games.

The complexity of a Mandelbrot set can be seen in Figure 5-1. One dis­
tinctive feature of a Mandelbrot-set image is that you can magnify parts of the
image and get continually greater detail. The GEM interface, with the mouse
and the ability to expand rectangles defined by the user, makes it well-suited to
exploring these images.

As in the other application programs in this book, the GEM envelope li­
brary from Chapter 2 is used to supply most of the functions for this applica­
tion. Recall that the intent of the envelope library is to provide a complete set
of standard interface routines, requiring only specific connecting routines to be
written for each specific application. The list below contains the specific con­
necting routines for the Mandelbrot program. Each of these functions is ex­
plained later in this chapter.

87

• CHAPTER 5

Figure 5-1. A Mandelbrot Set Image
desk f i l e options help

config.c gives the window a name, program type, and so on
do_menu determines the item selected from the menu and calls the appropriate sub­

routine to handle it
doit draws the Mandelbrot set
build_tree sets up the menu tree
mouse_hit responds to mouse events
got_key responds to keyboard input
dialog displays a dialog box for the user to communicate coordinates
just—draw displays the correct screen

In addition to these connecting functions, we'll also describe the program
listings for a number of other functions required for this program to work.

The config.c File
The config.c file (Program 5-1) is the one originally described in Chapter 2, but
modified to define the basic information required for this particular application.

Very few changes are required to config.c. The name is defined as
"MandelZoom!" and Lanuaccessory is set to 0 since this application is not a
desk accessory. The Resource Construction Set is not used in this program;
USE—RCS is undefined and resource is set to 0.

Program 5-1. config.c
i n c l u d e <gemde-fs.h>

c ha r *wind_name • " Mande lZoom! " ;

88

Menus, Dialog Boxes, and Graphics

i-Fde* USE_RCS
cha r * r e s o u r c e
e l s e
c ha r ^ r e s o u r c e
e n d i f USE RCS

• "MANDEL.RSC";

= 0;

c ha r *access_name • • Mande l zoom ! 5
i n t i _ am_ac ce s so r y 0;
i n t s>: 20 ; /* smal 1 wi ndow s i z e */
i n t sy = 50 ;
i n t sw = 250;
i n t sh = 125;

v e r t i c a l s l i d e r p o s */ i n t s l v m 0; /* smal 1 window v e r t i c a l s l i d e r p o s */

i n t s l h m 0; /* smal 1 wi ndow h o r i z o n t a l s l i d e r p o s */

i n t s v s m 1000; /* smal 1 wi ndow v e r t i c a l s l i d e r s i z e */

i n t s h s = 1000; /* smal 1 wi ndow h o r i z o n t a l s l i d e r s i z e */

i n t m in_w ide - 100;
i n t mi n_hi gh = 50 ;
i n t i n t e r v a l = 30000;
i n t e v e n t s = MU__MESAG MU_BUTTON 1 MU_ KEYBD ! MU_M1 ! MU_M2;

The do_menu Function
Chapter 2 discusses the mechanisms in the envelope for handling menus, but
does not develop those mechanisms fully. Instead they consist of only the
minimum code necessary to include them in the standard envelope library. Pro­
gram 5-2 develops the critical routines that actually implement menu handling.
The routines produce the menu and submenus shown in Figure 5-2. The menu
is the horizontal list of items across the top of the window. Vertical submenus,
which contain selectable items, appear when the user pulls down the submenu
by placing the mouse on a menu item.

Figure 5-2. The Mandelbrot Program's Menu and Submenus
Main Menu:
desk file options help

Submenus:
desk file
About MandelZoom Quit
Desk Accessory 1
Desk Accessory2
Desk Accessory3
Desk Accessory4

The do__menu function handles menu activation. It relates to the rest of
the envelope in the following way. The main function in the envelope calls the
multi function which, you may recall, waits for events such as mouse selections
or keyboard input. Another event multi waits for is a menu event, indicating
that the user has pulled down a menu (we'll explain how this menu got there
shortly) and selected a menu item with the mouse.

options help
Coordinates Controls
Square Box
Time Drawings

89

CHAPTER 5

When a menu event occurs, multi calls the do—menu function (Program
5-2), passing it the menu identifier and number of the item in the menu. The
identifier and menu item number are established when the menu is built by the
build—tree function, explained later. The menu identifier in this program (and
all other programs in this book) is 0 because only one menu is used and num­
bering begins with 0. However, the do_menu function includes hooks that en­
able it to handle more than one menu. This helps when you write programs
that use multiple menus.

This version of do_menu has only one switch case because there is only
one menu, and the menu identifier stored in the title variable is always equal to
MAINMENU. The do_main__menu function is called and passes the number of
the menu item that was selected. Of course, if there were more than one menu,
more switch cases, with their respective function calls, would be included.

When do_main_menu has completed its work regarding the selected
menu item and has returned, do_menu calls the GEM routine menu_tnormal.
At this point the selected menu item is in reverse video. The menu_tnormal
changes the selected menu item back into normal video.

At its completion, do__menu returns control to multi and the envelope
library.

Program 5-2. domenu.c
/*
** Handle menu activations.
** Menu messages have two fields of interest to us:
** which menu tree it re-fers to, and which item in that menu.
** Since all of our menu items are from the main menu at
** the top of the screen, we only handle that case here <MAINMENU)
** although we use a switch to leave a hook for more complicated
tt menu structures we might have in the future.
*/

include <mandel.h> / * This defines MAINMENU */
/ * among other things... */

do.menu(title,item,whand,vw)
int title, item, whand, vw;{

int ret;

extern struct object *main_addr;

ret = 0;
switch(title X
case MAINMENU:
default:

ret • do_main_menu(item,whand,vw);
>

menu_tnormal(main_addr,tit1e,1);
menu_tnormal(main_addr,item,1);
return(ret)}
>

90

Menus, Dialog Boxes, and Graphics

The do_main_menu Function
Pull-down menus consist of a vertical list of selectable items that appear when­
ever the mouse pointer touches one of the horizontal menu topics at the top of
the screen. All of the vertical selectable items are assigned menu numbers.
When the user selects an item, its number is passed to do_menu and then to
the correct switch statement for the menu. In this application program, the
do_main_menu function handles all the actions the user could request from
the menu.

The do_main__menu routine determines exactly what action the user has
requested and takes the appropriate action based on the request.

The function checks the menu item number passed to it and compares it
to the global variables About, Quit, Coord, Square, Timer, and Ctrl. These vari­
ables correspond to selectable menu items and are initialized by the builcLtree
routine as it builds the menu tree (explained later).

The build—tree function sets up the four top-level menu items shown in
Figure 5-3: desk, file, options, and help. The setup—window function in the en­
velope (explained in Chapter 2) puts this menu on the screen at the top of the
window.

GEM also gets into the act—it is GEM that causes the pull-down menus
to appear when the user passes the mouse over the top-level menu items. In
addition, GEM handles the case when the user pulls down the desk menu and
then selects a desk accessory. Except for these instances, the do_main—menu
function handles all other menu selections.

The last three lines of this function are executed only if there is a bug is
in the program. These lines help find typos while debugging the program as
you type it in. If you add more selections to the program, this code makes cer­
tain you modify do—main_menu to handle any menu items added to
build—tree.
Program 5-3. domnmenu.c
int make square = 1;

do_main_menu(item,whand,vw)
int item, whand, vw;€

char strC2563;
extern struct object *main_addr;
extern struct object dial_coordC3;
extern int About, Quit, Coord, Square, Timer, Ctrl, do_timit;

if(item == About)<
sprint* (str, " C03 CZs! Xs ! Xs ! fcs i y.s3 C OK 3",

"Mandelzoom! Quickly draw " ,
"the Mandelbrot set as " ,
"described in Sci. Amer. Aug " ,
"1985. Zoom using the
"mouse. Move using arrows. "
> ;

•f orm_al ert (1, str);
return(0);
>

91

CHAPTER 5

else if (item == Quit)<
return(1);
>

else if(item ~ Coord)<
if(coordinates<)) <

clr_display(whand,vw);
do_display(whand,vw) ;
>

return (0);
>

else i-f< item mm Square) i
make_square = !make_square;
menu_icheck(mai n_addr,Square,make_square);
return(0);
>

else if< item == Timer)<
do_timit m 'do.timitj
menu_icheck(main_addr,Timer,do_timit) ;
return(0);
>

else if(item == Ctrl X
give_help();
return(0);
>

spr i ntf (str, " [03 C"/.s %d3C OK 3 ", "Unknown menu number ! " , item);
form_alert(1,str);
return(0);
>

The desk menu. If the user passes the mouse over the desk menu item,
the pull-down menu shown in Figure 5-3 appears.

Figure 5-3. The Desk Pull-Down Menu
liEEM f i l e options help

92

Menus, Dialog Boxes, and Graphics

The desk pull-down menu is a special case. GEM lets the programmer
specify the names to appear in the first two positions in the menu; in this pro­
gram, they are About MandelZoom and the dotted line under it. Up to six names
of desk accessories can follow, which are put in the list by GEM. If there are no
desk accessories to pick from, the pull-down menu for desk will end after the
dotted line.

If the user selects About MandelZoom from the desk menu, GEM sends
a menu event to the multi function in the envelope library and it filters down
to do_menu and then to do__main_menu. The item number will be equal to
the global variable About (initialized in builcLtree), which signals the program
to put a window on the screen with some information about the program. The
GEM form_alert function is then used to display a window with an OK button
and a few terse phrases about the program. Often this message contains the
program author's name, copyright notice, and other information about the pro­
gram or how to use it. The message text for the Mandelbrot program can be
seen in the do_main_menu listing.

The file menu. As shown in Figure 5-4, one of the selections on the
pull-down file menu is Quit.

Figure 5-4. The File Menu

Selecting Quit causes do_main_menu to return 1, defined to mean exit.
The do__menu function first returns the menu item to normal video to deselect
it, and returns the 1 to multi, causing multi and main to exit and return the
user to the desktop.

The options menu. The pull-down menu for the top-level options menu
item is shown in Figure 5-5.

93

CHAPTER 5

Figure 5-5. The Options Menu

The user would select the Coordinates menu item to change the way the
Mandelbrot set is displayed on the screen. For example, Coordinates is a way
to zoom in to a particular area. It calls the coordinates subroutine, explained in
detail below, and then clears and redraws the screen.

The Square Box menu item adjusts the proportions of a magnified image;
Time Drawings keeps track of how long an image takes to draw. These act as
toggle switches, with a check mark next to the item to indicate when the fea­
ture is on. When the menu item has a check mark, selecting the item turns it
off and causes the check to disappear, and vice versa.

The toggle mechanism works through the two global variables kept by
do_main_menu: make_square and do_timit. When the user selects one of the
menu items, do_main_menu sets the appropriate global variable and makes it
a 1 (true) if it was 0 (false), or makes it 0 if it was 1.

Then, do_main_menu calls the menu_icheck function, passing it the in­
dex into the menu tree for Square or Timer. The do__main_menu function also
passes the variable that indicates the condition (on or off) of the feature and
whether a check mark should appear next to the menu item.

The help menu. The pull-down menu for help has only one menu item
in the program. It is shown in Figure 5-6.

When the user selects Controls, the give—help function is called to put
up a succession of windows with instructions about the program.

94

Menus, Dialog Boxes, and Graphics

Figure 5-6. The Help Menu

The give.help Function
The give_help function, Program 5-4, is very simple, consisting mainly of the
help text pages. The GEM function sprintf is called to "print" into a string, fol­
lowed by a call to GEM's form__alert routine, which displays the specified
string in the window. (The form_alert function is explained in Chapter 2.)

Program 5-4. givehelp.c
give_help()€

char strC2563;

sprintf <str, "C03C7.s!7.s!7.s!7.s!7.s3C NEXT 3",
"To zoom in on a section " ,
"of the picture, move the " ,
"mouse to the upper left " ,
"corner of the area you " ,
"want to zoom in on. "
>;

form_alert <1,str);
sprintf <str, " C03 C7.s ! 7.s ! 7.s ! 7.s i 7.s3 C NEXT 3",

"Then hold the left button " ,
"down and drag a rectangle " ,
"to the size you want. The
"screen will begin drawing " ,
"when you let the button go. "
>l

form_alert <1,str);
sprintf <str,"C03C7.sl7.sl7.s!7.s}7.s3C NEXT 3",

"The arrow keys allow you
"to see the parts of the " ,
"picture above, below, and
"to either side. Return " ,

95

CHAPTER 5

"returns you to the start. "
>;

f orm__alert < 1, str);
sprint-f <str, "C03Cy.s57.siy.sl7.siy.s3C NEXT 3",

"The • and - keys will zoom " ,
"in and out o-f the set, with " ,
"the same coordinates. This " ,
"lets you change the amount " ,
"of detail without moving. "
>;

form_alert <1,str);
sprintf (str, " C03 C"/.s ! y.s i "/.s ! y.s! "/.s3 C NEXT 3",

"The vertical slider sets
"how precise each pixel is " ,
"to be. High precision is ",
"slower but has more detail. " , !• ii
> ;

form_alert(1,str);
sprintf (str, " C03 C%s i "/.s ! "/.s ! y.s ! %s3 C LAST 3",

"The Options menu allows you " ,
"to see and modify the set's " ,
"coordinates, square boxes ",
"to prevent distortion, and " ,
"time the drawing. "
> ;

form_alert(1,str);

The build-tree Function: Building a Menu Tree
Menus are built in the GEM environment using a data structure called object to
define a concept like menu, dialog, icon, box, or button. A menu, then, is a list
of objects linked together into a tree. Objects in a tree are said to "contain"
other objects, in which case the "contained" object is a child object of the par­
ent object.

Trees consisting of objects are used throughout GEM. They're a device
that makes it easy for a programmer to draw subpictures by simply picking a
branch of the tree and having GEM draw everything on that branch. Subtrees
are also convenient because the position of an object is always given relative to
its parent object in the tree. If only the x and y location of the parent are
changed, all the children will be drawn in the new place. The builcLtree func­
tion, Program 5-5, demonstrates how this data structure is built.

When the menu structures are displayed, the user will see boxes that
contain text strings. The box and the text strings are each individual objects. To
contain a text string in a box, the size of the box must be the correct width and
height for the string object.

To create the boxes that will hold the items in the menu tree, we start
with a box that is the size of the whole screen. This box is the root of the tree.
The box objects defined are the main parts of the tree, and serve as the parents
for all subsequent text strings. This gives us the flexibility to move the menus
around just by reorganizing the placement of a box in the tree.

The root box is in the upper left and contains two child boxes (objects),

96

http://C03Cy.s57.siy.sl7.siy.s3C

Menus, Dialog Boxes, and Graphics

lbox and ibox. The long, thin box that contains the menu line at the top of the
window is represented by lbox. The rest of the screen is contained in an "in­
visible" box called ibox. An invisible box only contains other objects; it never
has borders drawn on the screen.

The lbox object contains an invisible box called mbox, which holds the
four menu headings: desk, file, options, and help.

The ibox object also contains four boxes: dbox, fbox, obox, and hbox.
These boxes hold the menu items and are positioned below their corresponding
menu headings. As a convention, the first letter of each of the indexes of the
selectable items in the pull-down menus is capitalized. Also, GEM sends a mes­
sage to do_main__menu anytime the user selects one of the items.

The dbox object contains menu items for the desk menu heading. It con­
tains selectable items for About, and for up to six desk accessories. The desk-
accessory strings in the listing are placeholders. GEM will replace the strings
with the names of any desk accessories that exist when the menu is put up on
the screen.

The object called lines is a string of dashes used to visually separate the
About line and the desk-accessory names. The lines object is "disabled" to
make it unselectable and is thus a nonfunctioning menu item.

You can see in the preceding figure what the selectable menu items are
for the file menu (fbox), options menu (obox), and help menu (hbox).

The builcLtree function consists mainly of calls to the addit function. Ba­
sically here's how addit works: The addit function is responsible for adding
new objects into a tree. The parameters for addit are the tree to be added to,
the parent object that will contain the new object, a GEM definition that tells
the object type, a specification for the object, and the x, y, w, and h values for
the new object. The addit function returns the index of the new object in the
tree and maintains the global variable next_item, which contains the index of
the next unused slot in the tree.

We want to give addit the size of the new object in a way that lets us ig­
nore the font resolution (high, medium, or low) until we actually run the pro­
gram. This is done by using characters instead of pixels to specify the x, y, w,
and h of the new object. The global variables Wc and He tell addit the width
and height of one character.

The first call builcLtree makes to addit defines the root object. The sec­
ond argument to addit is always the parent's index, and since root has no par­
ent, — 1 is given for this argument. Note that objects can be bigger than the
screen and that we use 80 characters for the width even though only 40 charac­
ters are displayed in low resolution.

Before addit is called again to add lbox under root, then mbox under
lbox, followed by each of the menu-line headers, three pixels are added to the
height of a character to make the long box taller than the characters it holds.
The three extra pixels are for appearance sake only. After adding all the menu
items in the top line, we set the character height back to normal.

97

CHAPTER 5

Additional calls are made to addit to build most of the remainder of the
menu. By studying the code (see below) you can see the parent-child relation­
ships defined by the second argument to addit, and the items returned by
addit. Note that, for the object types that use character strings such as
G—TITLE,the width argument that is passed to addit is handled by the LEN
variable. In addit, the actual length of the character string is computed to give
us the width of the box. Thus, we can readily change the character string with­
out worrying about how it may change the width of the box.

A few special features are treated slightly differently. To make the
dashed lines unselectable, builcLtree is called to set the object state for the
lines object to DISABLED directly with the statement

t_list[lines].ob_state = DISABLED;

The ob—state is one of the characteristics an object can have. Similarly,
to indicate that the Square Box and Time Drawings features are turned on by
default, the GEM routine menu_icheck is used to put a check mark next to the
menu items.

When all the menu items have been added, the LASTOB flag is set as
the last object. (The value in next—item always points to the slot after the last
object, so next_item—1 will always point to the last object.)

Finally, build—tree returns the address of the tree to do—main_menu.

Program 5-5. bldtree.c
include <gemdefs.h>
include <obdefs.h>
define MAXTREE
define M_BLACK
define TRANSPARENT
define THICK
define BOXCOLOR
define BOXTHIN
define BOXBITS
define LEN

64
15L / * would be 1, but we changed the color map * /

(long)(0xFFL « 16)
(longM (M_BLACK << 12) ! (M_BLACK << 8))
(longM BOXCOLOR ! TRANSPARENT • IPJHOLLOW)
(long)(THICK ! BOXCOLOR ! TRANSPARENT ! IP_HOLLOW)
-2 / * Set the width to the length of the string */

define xx(item) ((t_listCitem3-ob_x + t_listCitem3.ob_width) / Wc)
define yy(item) ((t_listCiteml.ob_y + t_listCitem3.ob_height) / He)
define OFFSET 2 / * so the boxes don't abut the left edge */

int Wc, He;
int About, Quit, Coord, Square, Timer, Ctrl;
struct object t_listCMAXTREE3;

struct object *
build_tree()<

extern int gl__wchar, gl_hchar, next_item;
extern int make_square, do_timit;
int root, mbox, desk, file, options, help;
int dbox, fbox, obox, hbox, ibox, lbox;
int lines, deskl, desk2, desk3, desk4, desks, desk6;

98

Menus, Dialog Boxes, and Graphics

/%
tt There are three invisible boxes that hold everything.
tt The one called root is the whole screen.
t t Root holds a long box called Ibox, which holds an invisible
t t box called mbox which holds all the menu strings. Lbox and
t t mbox are the top line o-f the screen.
t t Root also holds ibox, which is an invisible box that encloses
t t the rest o-f the screen (line 2 to line 25). Ibox holds
t t all of the menu items that pop up in boxes under the
t t menu strings in the top line. The tree looks like this:
t t
t t root —•—> lbox > mbox
t t :
t t •—> ibox * > desk
tt +—> dbox + > file
t t ! •—> About • > options
tt ! +—> lines + > help
t t ! •—> deskl
t t ! +—> desk2
t t ! > desk3
t t ! +—> desk4
t t ! •—> deskS
t t ! +—> desk6
t t
t t +—> fbox
t t ! •—> Quit
* *
t t •—> obox
t t ! •—> Coord
t t ! +—> Square
t t • •—> Time Drawings
11
t t •—> hbox
t t •—> Ctrl

next_item • 0;
He = gl_hchar;
Wc = gl_wchar;

root - addit(t_list,-l,G_IBOX,0L,0,0,80,25);

He = gl_hchar + 3;

lbox • addit(t_list,root,G_BOX,BOXTHIN,0,0,80,1);

mbox = addit(t_list,lbox,G_IBQX,0L,OFFSET,0,27,1);
desk « addit(t_list,mbox,G_TITLE," desk ", 0, 0,LEN,1);
file - addit(t_list,mbox,G_TITLE," file ", xx(desk), 0,LEN,1);
options • addit(t_list,mbox,G_TITLE," options H,xx(file), 0,LEN,1);
help • addit(t_list,mbox,G_TITLE," help ", xx(options),0,LEN,1);
ibox • addit(t_list,root,G_IBOX,0L,0,1,80,14)j
He = gl_hchar;
dbox « addit(t_list,ibox,ĜBOX,BOXBITS,OFFSET,0,19,8);

About = addit(t 1ist,dbox,G STRING," About MandelZoom ",0,0,LEN,1);
lines - addit (t_list,dbox ,G_STRING, " ",0, 1,LEN, 1);
t_listClines3.ob_state - DISABLED;
deskl = addit(t_list,dbox,G_STRING," Desk Accessory 1 ",0,2,LEN,1);
desk2 = addit(t_list,dbox,G_STRING," Desk Accessory 2 ",0,3,LEN,1);
desk3 • addit(t_list,dbox,G_STRING," Desk Accessory 3 ",0,4,LEN,1);
desk4 - addit(t_list,dbox,G_STRING," Desk Accessory 4 ",0,5,LEN,1);
deskS • addit(t_list,dbox,G_STRING," Desk Accessory 5 ",0,6,LEN,1);
desk6 » addit(t_list,dbox,G_STRING," Desk Accessory 6 ",0,7,LEN,1);
fbox • addit(t_list,ibox,G_BOX,BOXBITS,xx(desk)̂OFFSET,0,6,1);
Quit • addit(t_list,fbox,G.STRING," Quit ",0,0,LEN,1);

99

CHAPTER 5

obox • addit<t_list,ibox,G_BOX,BOXBITS,xx<file)+OFFSET,0,18,3);
Coord • addit<t_list,obox,G_STRING," Coordinates ",0,0,LEN,1);
Square = addit <t_list,obox,G_STRING," Square Box ",0,1,LEN,1);
menu_icheck(t_li st,Square,make_square);
Timer • addit(t_list,obox,G_STRING," Time Drawings ",0,2,LEN,1);
menu_icheck(t_list,Timer,do_timit);

hbox - addit <t_list, ibox,G_BOX,BOXBITS,xx <options)+OFFSET,0,11,1);
Ctrl - addit(t_list,hbox,G_STRING," Controls ",0,0,LEN,1);

if< next_item > 0)
t__listCnext__item - 13.ob_flags 5= LASTOB;

return(t_list);
>

The addit Function
The useful addit function, part of the envelope library (Program 2-29), adds
items to a tree data structure. In this application, it is used to construct the
menu tree; in later programs it will be used to construct complicated dialog
boxes that would be difficult to create without the addit function.

After checking whether there is room for the new item being added by
comparing the next_item variable to MAXTREE, addit checks to see if the
width argument is the special value LEN. If it is, the statement

w = strlen(spec);

returns the number of characters passed to addit in the spec variable. This way,
the GEM strlen function is allowed to count the characters for us and the char­
acter string can be changed without having to change the width.

If the parent has no children yet, this object will head the list of chil­
dren. Consequently, the parent's ob_lhead field (part of GEM's object defini­
tions) is filled with the index for the current item, stored in next_item.

The width and height are compared to the child's and, if they are too
small to hold the child, a message is displayed. To keep the message on the
screen until a key is typed, the BIOS calls Bconin. Then the parent's size is ad­
justed to be large enough for the child. The reason a message is displayed, in­
stead of silently adjusting the size, is to help you track errors during your
programming if the menu is wrong.

Next, addit fills in the field definitions for the object being defined.
Some of the fields are set to defaults like NONE and NORMAL, and others are
calculated from the x, y, w, and h parameters. The links between parents, chil­
dren, and siblings are set by the GEM routine objc_add using the link defini­
tion fields ob_next, ob_head, and ob—tail.

After objc_add has linked this object into the tree, the index of the ob­
ject is returned and incremented so it points to the next slot for the next call.

100

Menus, Dialog Boxes, and Graphics

The doit Function: Drawing the Mandelbrot Set
The doit function, Program 5-6, is the heart of the program.

This function contains the mathematics to calculate the Mandelbrot set
and the calls to draw the image on the screen. The set is constructed from the
deceptively simple statement:
Z - Z 2 + c

The variable, Z, and the constant, C, are both complex numbers. To plot
a Mandelbrot set, the x-axis of the screen is used to represent the "real" com­
ponent of the complex number and the y-axis to represent the "imaginary"
component. For each pixel on the screen, the C value is the x value and y value
of the pixel, so the point (35,50) on the screen gives the value 3 5 + 5 0 i for C.

To derive a color value for a pixel the program iterates, calculating
Z = Z 2 + C until Z 2 is greater than 4 or until it has looped more than a
predefined maximum number of times. The color of the pixel is determined by
the number of loops. If the maximum number of loops is made, the color is
black; if not, the color is determined by the low bits of the iteration count.

You can see what's involved in calculating the color of each pixel in the
image by studying the three nested loops that do the work. The first loop steps
through all the rows of pixels: 167 on a color monitor, and 343 on a high reso­
lution, black-and-white monitor. The second loop steps through all the columns
of pixels: 615 on a color monitor, and 620 on a high resolution, black-and-
white monitor. The innermost loop counts the number of times the complex
equation is evaluated, which is variable and can be up to 1000 times in this
program. If all the maximum iterations occur, the inner loop can be executed
up to 212,660,000 times. Obviously, it needs to be as fast as possible.

The mathematics for the inner loop are one complex multiply, one com­
plex add, one complex compare, and one complex assignment. Complex num­
bers are usually expressed with floating-point numbers: one for the "real" part,
and one for the "imaginary" part. In the program, after some algebraic manipu­
lation, the mathematics are done with three multiplies, four adds, four assign­
ments, and one compare.

The ST has no hardware floating-point support and does all floating­
point arithmetic in software. If a floating-point multiply operation takes 1 / 3
millisecond and there are 637,980,000 operations, it could take two days just to
multiply.

By using integer arithmetic, however, all the multiplies can be done in 9-
1/3 minutes. To represent floating-point numbers using integers, the program
multiplies each number by a scaling factor, which must be taken into account
whenever the numbers are used. We chose 2 1 3 as the scaling factor because the
multiplies can be done quickly by shifting. We chose the value 13 because it
gives 13 bits to the right of the decimal place and 19 to the left. This is just
enough accuracy to plot the set, and leaves a magnification capability of 8192 X
for zooming in on a portion of the set.

101

CHAPTER 5

When the inner loop is finished, the program knows the point to be
plotted on the screen. Efficiency is important here also, since there are over
100,000 points to plot. A fast way to plot a point, while still letting TOS worry
about things like screen resolution, is to use the Line A Graphics Interface. The
Line A Interface is a set of sixteen quick-entry points into the operating sys­
tem's graphics code. For our program we use only the first two entry points,
initializing the Line A code so that we can use it and "put pixel" for drawing
the pixel on the screen.

Setting up the Line A interface to work in C calls for some special
manipulations that are done at the beginning of the file. The pointer putpixel is
defined as a pointer to a subroutine. It is set to point to two words of hand-as­
sembled code that we have put in the array line_a. This hand-assembled code
is a function that enters the operating system at the "put pixel" entry point and
then returns.

The same device is used to get into the operating system's "initialize line
A " entry point in the routine line__A_init. When line__A_init is called, it re­
turns a pointer to a block of memory that contains the arguments for the GEM
putpixel routine. These arguments are the x and y coordinates and the color of
the pixel. Thus, to plot a point, we set *x to the x coordinate, *y to the y co­
ordinate, *color to the color, and call putpixel.

The doit function has other functions such as terminating long plots if a
key is pressed. We use the IS—CHAR macro, which calls TOS directly using the
TOS bios routine, to see if a key has been pressed. If there is another character
waiting to be read, GET_CHAR (another macro that calls bios) is used to read
it. Then the bell is rung twice with the statement

printfr \ 7 \ 7 ") ;

The mouse is displayed, and the program returns to do__display, one of the
functions in the envelope library, explained in Chapter 2.

The doit function also lets the user set the number of iterations for cal­
culating a pixel by moving the vertical slider box. The size of the slider box is
set to one character high and is positioned at the bottom of the vertical scroll
area at the right edge of the window. Whenever doit is called, the GEM
wincLget routine is used (see Chapter 2) to read the slider box position and set
the variable niter from it.

The program also tells how long it took to plot the image. To do this
some fixed reference point must be established. The program uses this fixed
point to figure the starting and ending time from it. For this program, January
1, 1980, is the fixed reference point. The time it takes to plot a set is calculated
in the doit function by calling the time—it function, which returns the number
of seconds since 1980. Then the plot is completed. When that occurs time_it is
called again. The elapsed time in seconds is figured by subtracting the latest
value from the first; then time_print is called to figure the time in minutes and
seconds and to display the elapse time in a window.

102

Menus, Dialog Boxes, and Graphics H

103

8192L
2048
13

12
long

The color map is changed to a set of colors in a pleasing gradual scale
with the colors function. Just before exiting, the map is restored to its old val­
ues in the do__cleanup function.

The last thing doit does before returning to do_display is to save the
screen. This will allow just_draw to quickly restore the screen when it is
needed, so it won't have to be plotted all over again.

Program 5-6. doit.c
•
define SCALE
define INSIDE
define LSCALE
define LSCALE2
define PLOT_TYPE

include <gemdefs.h>
include <osbind.h>
/*

* Mandelzoom
* as described in Scientific American, August 1985
* draws beautiful fractal patterns on the screen-
It Handles monochrome, medium resolution (4 colors) color, and
* low resolution (16 colors) color,
t
* Most implementations of Mandelbrot set generators use
* floating point arithmetic in the inner loop (where millions
* of calculations must be performed to generate the picture)
* and take half an hour to six hours to draw the picture.
*
* This program can draw the complete set in less than 2 minutes
* due to the use of fixed point scaled integer arithmetic
* in the inner loop. Because of this speed, exploration of the
* Mandelbrot set at very high resolutions (3000 iterations per
* pixel or higher) become possible, generating very complex and
* beautiful displays,
t
*/

struct lineAinfo i
int vplanes;
int vwrap;
int tcontrl;
int tintin;
int tptsin;
int tintout;
int tptsout;
>5

typedef struct lineAinfo tinfo;

/ *
tt Here we build a short subroutine by hand...
*/
static short int line_aC3 - <

0xa001, / * line A 'put pixel' interrupt */
0x4e75 / * return from subroutine */
> ;

static int (tputpixel)() = (int (*)()) line_a;
info ijptr;

CHAPTER 5

static in-fo
1 ine A init <) <.

static short int line_aC3 = <
0xa000, / * initialize line A code */
0x4e75 / * return -from subroutine */
>5

static in-fo (*init_A)() « (info (*)()) line_a;
return((*init A)()) ;
>

•define MAX_NPIXEL 640

define PRT 0
define AUX 1
define CON 2
define MIDI 3
define KEY 4
define IS_CHAR(x) b i os(1, (x))
define GET_CHAR(x) bios<2, (x))

double orig_real = -2-0;
double orig_imag = -2.0;
double side_r = 4.0;
double side_i = 4.0;
int color_mask = 0xf;
int do_timit = 1|

doit(whand,vw)
int whand, vw;£

/ * Print out how long it took to do it */

register PLOT_TYPE z_real, z_imag, z2_real, z2_imag;
register int count;
register PLOT_TYPE c_real, c_imag;
register int niter;
register int i, j;
int tcolor, *x, *y;
double float_r_pixels, float_i_pixels;
long int t, time_it();
int wwork, hwork, xwork, ywork;
static int vertical - -1;
int n_r_pixel;
int n_i_pixel;
double incrementCMAX_NPIXEL3;
extern int gl_hchar;

clr_display(whand,vw);
wind_get(whand, WF_WORKXYWH, Scxwork, Scywork, Scwwork, Sthwork);
if(vertical < 0) C

vertical = 1000;
wind_set(whand, WF_VSLIDE, vertical, 0, 0, 0);
wind_set(whand, WF_VSLSIZE, gl_hchar, So, So, So) ;
>

else <
wind_get(whand, WF_VSLIDE, Scvertical, So, So, Scj);
>

vertical 1000 - vertical;
i_ptr • 1ine_A_init (); / * setup for line A graphics calls %/
color • 8ci__ptr->intinC03;
x = Sci_ptr->ptsinC0D;
y = Sci_ptr->ptsinC13;
colors(whand,vw);
niter • vertical + 16; / * at least 16 gradations in color */
hi de__mouse ();
float_r_pixels * n_r_pixel = wwork;
f loat__i__pixels = n_i_pixel = hwork;

104

Menus, Dialog Boxes, and Graphics

for <j = 0; j < n_r_pixel; j++> / * Precompute increment */
incrementCJ3 = (orig_real • side_r*j / f1oat_r_pixels) * SCALE;

if(niter < color_mask)
niter = color_mask;

t = time_it <);
-for (i = 0; i < n_i_pixel; i++) i

c_imag • (orig_imag + side_i * i / float_i_pixels) * SCALE;
for (j = 0; j < n_r_pixel; j++) <

z_real • c_real = incrementCj3|
z_imag = c_imag;
for (count • 0; count < niter; count-*--*-) i

z2_real = z j r e a l * z j r e a l ;
z2_imag = z_imag * z_imag;
z2lreal >>=~LSCALE;
z2_imag >>« LSCALE;
if(z2_real + z2_imag > 4 << LSCALE)

break;
z imag • z_real * z_imag;
zlimag >>= LSCALE2;
z_real = z2_real - z2_imag;
z_imag 4m c_imag;
z_real c_real;
>

if(count niter)
count ~ color_mask;

else i
count 8c- color_mask;
if(count == color_mask)

count • 0;
>

(M * i • xwork;
*y m i + ywork;
•color • count;
(tputpixel) ();
>

if(IS_CHAR(CON))i / * bail out * /
GET_CHAR(CON);
printf(M\7\7H);
show_mouse();
return;
>

>
show_mouse() ;
if((Jo.timit)

time_print(time_.it () - t, niter, whand);
save_screen(whand);
>

The t ime. i t and time_print Functions
These two functions (Program 5-7) convert the date and time from the way
they are stored by GEM into a number that represents the seconds since mid­
night, January 1, 1980, and displays the elapsed plot time in a window. GEM
stores the date and time in two separate integers, packing the year, month, and
day in one integer and the hour, minute, and second in another.

The time_it function converts the date and time into seconds in a
straightforward manner. The year, month, and day are unpacked and then the
number of whole days is calculated by adding the days of each year since 1980,
then the days of each month since January, and finally the days since the
month began. If this month is after February in a leap year, an additional day is

105

http://time_.it
http://time.it

CHAPTER 5

added. The number of days is converted to seconds as the hour, minute, and
second values are added. Note that GEM counts only every other second be­
cause there isn't room to store the seconds accurately, so the program multi­
plies the seconds by two.

The time—it function calls the time_print routine, which converts the du­
ration in seconds into days, hours, minutes, and seconds, and uses the GEM
form_alert function to display them in a window. (See Figure 5-7.)

Figure 5-7. The Window Showing the Elapsed Plot Time
desk f i l e options help

i MandelZoon!

11 ninutes 54 seconds
at 26 iterations per pixel
for 212668 pixels on the screen

CS

Program 5-7. timit.c
include <osbind.h>
include <obde-fs.h>
include <gemde-fs.h>

long int yearsCD * {
/ * 80 81 82 83 84 85 86 87 88 8? */

366L, 365L, 365L, 365L, 366L, 365L, 365L, 365L, 366L, 365L,
365L, 365L, 366L, 365L, 365L, 365L, 366L, 365L, 365L, 365L,
366L, 365L, 365L, 365L, 366L, 365L, 365L, 365L, 366L, 365L,
365L, 365L, 366L, 365L, 365L, 365L, 366L, 365L, 365L, 365L,
366L, 365L, 365L, 365L, 366L, 365L, 365L, 365L, 366L, 365L
> ;

long int monthsC] = C
31L, 28L, 31L, 30L, 31L, 30L, 31L, 31L, 30L, 31L, 30L, 31L
>;

long
time_it <)i

long now;
char strC12835

int x, date, time, year, month, day, hour, minute, second;

date = gemdos(0x2a) ; / * TgetdateO */
106

Menus, Dialog Boxes, and Graphics

year = <date » 9) & 0177;
month - (date >> 5) & 017;
day = date & 037;
time - gemdos(0x2c); / * TgettimeO * /
hour • (time >> 11) & 037;
minute - (time >> 5) & 077;
second -time & 037;
now = 0;
•for (x = 0; x < year; x++)

now += yearsCxD;
now monthsCmonth-13;
now += day-1;
i-f(yearsCyear3 == 366 Sc& month > 2)

now++;
/*
** 'now* is the number o-f days since 1980
* /
now *= 24L;
now +• hour; / * hours since 1980 * /
now *= 60L;
now += minute; / * minutes since 1980 * /
now *= 60L;
now += second * 2; / * seconds since 1980 */

return(now);
>

time_print(sees,niter,whand)
long int sees;
int niter, whand;<

unsigned int days, hours, minutes, seconds;
static char dC163, hC163, mC163, stl63, strC803, resC803, pixC803;
long int calc;
int xwork, ywork, wwork, hwork;

wind__get(whand, WF_WORKXYWH, Scxwork, &ywork, Scwwork, Schwork);
calc = hwork;
calc *= wwork;
sprint-f (res, "at V.d iterations per pixel ",niter);
sprintf(pix,"for XD pixels on the screen",calc);
seconds = sees;
seconds X= 60;
sees /= 60;
minutes = sees;
minutes '/.- 60;
sees /= 60;
hours • sees;
hours X» 24;
sees /= 24;
days = sees;
dC03 = hC03 = mC03 • sC03 - 0;
if(days)

sprint-f (d, "7.d day"/.s ",days,days == 1 ? " " s "s");
i -f (hours)

sprintf(h,"Xd hourXs ",hours, hours =- 1 ? "" : "s");
i-f(minutes)

sprintf(m,"%d minute7.5 ",minutes, minutes 1 ? "" : "s");
i -f (seconds)

sprint-f (s, "Xd secondXs", seconds, seconds == 1 ? "" : "s");
sprintf (str, "C13Cy.s7.sy.sy.s!y.s:Xs3C OK 3 " , d, h, m, s, res, pi x) ;
form_alert(1,str);
>

107

CHAPTER 5

The colors Function
The colors function, Program 5-8, is called by the doit function to create the
color map and get the pixel colors in our image. GEM orders the colors in the
color map differently from the Line A graphics we are using. Therefore, we re­
organize the colors to correspond to the values Line A uses, going from white
to black with a continuous color spectrum between.

The colors routine saves the old colors with the subroutine sav_colors,
then chooses new colors according to the screen resolution. To get the screen
resolution we call the macro GET_REZ, which we defined as xbios(4).

If rez equals 0, this is a low-resolution monitor with 16 colors available.
The colors are set from an array into which the colors are arranged in a con­
tinuous spectrum. Since only 16 colors are available, the global variable
color_mask is set hexadecimal f (the four lower bits are set to 1) to allow 16
colors. This variable is used by the doit subroutine to convert large numbers
into the color range using modula arithmetic.

If rez equals 1 this is a medium-resolution monitor with four colors
available, so four colors are chosen from the array and assigned to the first four
colors in the map. The global variable color_mask is set to 2-bits (hexadecimal
0x3) to allow four colors.

If rez equals 2, this is a high-resolution monitor with only black and
white available. The variable color_mask is set to one 1-bit (hexadecimal 0x1)
to allow two colors. Because black-and-white monitors only show the black
part of the Mandelbrot set, we zoom in to expand the central black part of the
image and make it fill more of the screen. This is done by setting the variables
orig_real, orig_imag, side_r, and side_i to smaller values than the initial val­
ues they are given in the doit function.

Program 5-8. colors.c
include <osbind.h>
include <obdefs.h>
include <gemdefs.h>

define GET_REZ(x) xbios(4)
de-fine SET_REZ(x) xbi os (5,-1L,-1L, (x))
/*
** GEM mixes up the colors, so that 0 is always white, and 1 is always
** black, no matter how many colors the device supports.
** Unfortunately for those who use the Line A graphics, it means that
** to set the colors from GEM and use them from Line A, we must undo
** the mapping. When you tell GEM you want color 1, GEM puts a 15 into
** video RAM. When you tell GEM 6, video RAM gets 3. The following
** table sets up the colors so that we can think in terms of the
** video RAM values that the Line A uses, and use 0 for white, 15 for black,
** and get a continuous (red,yellow,green,blue,violet,red) spectrum in
** between.
*/
struct <

int red, green, blue;
> colsC163 = <
U000, 1000, 1000>, / * 0 white */
<0, 0, 0> / * 15 black «/

108

Menus, Dialog Boxes, and Graphics

U000, 0, 0>, /* 1 red * /
U000, 429, 0>, /* 2 red/orange * /
U000, 1000, 0>, / * 4 yellow */
<0, 1000, 0>, /* 6 green */
U000, 714, 0>, / * 3 yellow/orange */
C571, 1000, 0>, / * 5 yellow/green %/
<0, 1000, 714>, /* 7 blue/green »/
C0, 1000, 10001, / * 8 light blue * /
<0, 714, 1000>, /* 9 medium blue %/
<0, 286, 1000>, /* 10 almost blue */
<714, 0, 1000>, /* 12 purple %/
<1000, 0, 571>, / * 14 red/violet */
{0, 0, 1000>, /* 11 definitely blue */
<1000, 0, 1000>, / * 13 violet */
> ;

colors(whand,vw)
int whand, vw;{

int x, rez;
static int did_save = 0;
extern int colnr_mask;
extern double orig_real, orig_imag, side_r, side_i;

if < did_save •« 0)<
save_colors(vw);
did_save = 1;
>

rez = BET_REZ(0);
if < rez == 0) <

color_rnask * 0xf;
for< x - 0; x < 16; x++)

vs_col or (vw, x , &col sCx 3);
>

else if < rez == 1) <
color_mask • 0x3;
vs_color(vw,0,&cols£03);
vs_color(vw,l,&cols[11) ;
vs_color(vw,2,&colsC123>;
vs_color(vw,3,fccolsC143) ;
>

else {
if(color_mask !• 0x1)< / * first time only * /

orig_real = -1.78;
orig_imag = -1.125;
side_r = 2.25;
side i = 2.25;
>

colorjiask • 0x1;
vs_co!or(vw,0,&colsC03);
vs_color(vw,1,&colsC13);
>

>

The save—colors and rest—colors functions. The save—colors function,
Program 5-9, puts all the colors in the GEM color map into an array before the
color map for Line A graphics is rearranged, save—colors is called by the colors
function, which is called by doit to pick colors for the pixels, save—colors calls
the GEM routine vq—color to read the color map and store each color in the
array.

The rest—colors function, Program 5-9, restores the colors to the original
state they were in when the program started—before the color map was rear­
ranged for Line A graphics in the colors routine, rest—colors is called by the

109

CHAPTER 5

do_cleanup function, which is called by main just before the program exits.
rest_colors calls the GEM routine vs_color to read the array saved by
save_colors and set each color back to its original value.

Program 5-9. savcolor.c
/*
** Save and restore the color map.
* /

include <osbind.h>

de-Fine REALIZED 1

struct <
int red, green, blue;
> old_colsC16D;

int old_rez;

save_colors <vw)
int vw;<

int x;

old_rez = Getrez<);
for(x • 0; x < 16; x++)<.

vq_color< vw, x, REALIZED, Stold__colsCx 1);
>

>
rest_colors <vw)
int vw; <.

int x;

Set screen (-1L, -1L, old__rez);
•for(x = 0; x < 16; x++) €

vs_color< vw, x, 8told_col sCx 3);
>

>

The do_cleanup function. Chapter 2 describes a default version of the
do—cleanup function. It's one of the functions that is usually tailored for each
application and called by main just before the program exits. For this program,
do__cleanup, Program 5-10, simply calls the rest_colors function to set the color
map values back to GEM's values before exiting.

Program 5-10. doclean.c
do_c1eanup(whand,vw)
int whand, vw;{

rest_colors<vw);
>

110

Menus, Dialog Boxes, and Graphics

Looking Around the Mandelbrot Image
The image plotted by a Mandelbrot set is intricate. It can be viewed to greater
and greater magnification, revealing seemingly endless details. Explore the set
by zooming in and moving around the image with the mouse or the keyboard,
and by entering coordinates to see specific image sections. As described below,
each of these three methods requires a separate function.

The size, shape, and location of the viewing window into the Mandel­
brot image is changed by altering some variables that define a rectangle in the
complex plane (recall that the Mandelbrot set is drawn as a complex figure).
The altered variables are side__r, side_i, orig_real, and orig_imag. They're used
in the following functions.

The mouse.hit Function
The easiest and most natural way to zoom in on a part of the image is to frame
the part in a box. The portion of the image enclosed by the box then expands
to fill the entire window, thus magnifying the part.

The user can draw this box with the mouse by pointing to the upper left
corner of area to be magnified, and dragging a "rubber rectangle" until the
rectangle frames the chosen area. As soon as the user presses the mouse but­
ton, GEM sends a message to our application. The multi function receives the
message that a mouse event has occurred and calls the mouse__hit function to
handle it. Program 5-11 is the code for mouse—hit.

The mouse_hit routine is called when a mouse button is pressed and
when it is released, its function being to keep multi informed about the current
state of the mouse button. For this application, mouse_hit will call a GEM rou­
tine that uses the mouse-release message, so that multi doesn't have to do any­
thing until the next time a mouse button is pressed. Only the button press is
important; button releases are ignored by returning to multi if the parameter
butdown is 0, which indicates the button is up.

When mouse—hit is called, it is passed several parameters: the x and y
location of the mouse when the button was pressed, the keyboard state (whether
the SHIFT, ALT, or CONTROL keys were pressed), the number of clicks on the
mouse button, and handles for the window and virtual workstation.

Most of the real work is done in the GEM routine graf—rubberbox,
which controls the drawing of the rubber box. When graf_rubberbox receives
the message that the user has released the mouse button, it returns the width
and height of the rectangular area of the image that will be expanded to fill the
window.

The kstate parameter is examined after graf__rubberbox returns to see if
the SHIFT key was down when the mouse button was pressed and released. If
the SHIFT key was down, the program will zoom away from the set, reducing
the current window's contents to fit in the area defined by the new rectangle
and filling the rest of the new window with the surrounding area. If no SHIFT

111

CHAPTER 5

key was down, the program zooms into the set, magnifying the area in the de­
fined rectangle to fill the screen.

The scaling algorithm is essentially the same one used in the PLOT pro­
gram. To zoom out, the program multiplies by the old size and divides by the
new. To zoom in, it multiplies by the new size and divides by the old.

The graf—rubberbox function sets a flag indicating whether or not it was
successful. If it was successful, it receives the message from GEM that the
mouse button was released, and returns to mouse—hit. If graf—rubberbox was
not successful, it returns without processing the mouse-button-released message
and, therefore, mouse—hit must inform multi that it is still expecting the
"mouse up" message. The butdown variable is set to the appropriate state so it
can be returned and multi will know which button state to wait for.

The global variable make_square is checked to see if the user set it by
selecting it from the menu. If it was set, then the width and height of the new
rectangle are averaged to make a square. This prevents the image from being
distorted when the new rectangle is not the same shape as the screen.

Finally, the GEM graf_growbox function is called to draw a growing box
for feedback to the user, the screen is drawn, and the button's new state is re­
turned to the multi function.

Program 5-11. mousehit.c
include <osbind.h>
include <obdefs.h>
include <gemdefs.h>

define ANY_SHIFT 3
define XOR_MODE 3
define RPLC_MODE 1

define MIN_WIDE 25
define MIN_HIGH 25
mouse_hi t(butdown,x,y,kstate,num_cli cks,whand,vw)
int butdown, x, y, kstate, num_clicks, whand, vw;C

double float_r_pixels, f1oat_i_pixels;
int new_x, new_y, new_h, new_w;
int xwork, ywork, wwork, hwork;
extern int make_square;
extern double orig_real, orig_imag, side_r, side_i;

if(butdown == 0)
return <1);

wind_get< whand, WF_WORKXYWH, &xwork, Scywork, Stwwork, &hwork);
f1oat_r_pixels = wwork;
float_i_pixels = hwork;
if< graf.rubberbox< x, y, MIN_WIDE, MIN_HI6H, &new_w, &new_h)) i

x -= xwork;
y -= ywor k;
if< kstate & ANY_SHIFT)<

orig_real = orig_real + side_r*f1oat_r_pixels/x;
orig_imag = orig_imag + side_i*f1oat_i_pixels/y;
side_i = side_i * f1oat_i_pixels / new_h;
side_r = side_r * f1oat_r_pixels / new w;
>

el se i

112

Menus, Dialog Boxes, and Graphics

o r i g _ r e a l = o r i g _ r e a l + s i de_ r *x / f 1 o a t _ r _ p i x e l s ;
o r i g _ i m a g = o r i g _ i m a g + s i d e _ i *y/-f 1 o a t _ i _ p i x e l s;
s i d e _ i = s i d e _ i * new_h / -f 1 o a t _ i _ p i x e l s ;
s i d e _ r = s i d e _ r * new_w / - f 1 o a t _ r _ p i x e l s ;
>

butdown
>

/* r u b b e r b o x a t e t h e ' m o u s e - u p ' */

/* e v n t _ m u l t i must e a t ' m o u s e - u p ' */
e l s e

butdown = 0;
i-f(make_square)

s i d e _ r = s i d e _ i = (s i d e _ r • s i d e _ i) / 2.0;
gra-f _growbox (x , y , new_w, new_h, xwor k, ywor k , wwor k, hwor k) ;
d o _ d i s p l a y (w h a n d , v w) ;
r e t u r n (b u t d o w n) ;

The got—key Function
Whenever the user presses a key, the multi function from the envelope library
calls the got_key function, Program 5-12, which must be tailored for each
application. For the Mandelbrot-set application, the user could move around in
the set with the arrow keys using the got_key function to respond with the
proper action.

The got_key function for this application examines the key code in a
switch statement. If a switch statement changes any of the variables orig_real,
orig_imag, side—r, or side_i, then the program breaks out of the switch and re­
draws the screen before returning.

When an arrow key is pressed, it increments or decrements the appropri­
ate starting point (orig_real or orig_imag) by the width or length of the plot
and the screen is moved by a full page in the direction of the arrow that was
pressed.

If the key was a + or a —, got__key zooms in or out by a factor of 2,
squaring the picture if the global variable make—square is turned on.

If CONTROL-C was pressed, got—key displays a window asking if the
user really wants to exit. The show_form function, discussed earlier, is called to
put up a window with two selectable buttons in it: OK and CANCEL. If the
user clicks on the OK button, 0 is returned to indicate "exit" to the multi func­
tion. If the user selects CANCEL, 1 is returned to cause the keystroke to be
ignored.

When the key pressed is the RETURN key, got_key calls show_form
again to put up a window with buttons asking if the user wants to return to the
original view of the set. If OK is selected, the rectangle is set back to its original
size and the back_to_first function is called to redraw the screen from a copy
saved earlier in the doit function. (This is explained in the discussion of the
just_draw function.)

If the pressed key is not one of those just listed, then a window is dis­
played containing the message that the character is being ignored.

113

CHAPTER 5

Program 5-12. gotkey.c
/*
** He r e i s whe re we h a n d l e k e y s t r o k e s .
** We spend a l o t o f t i m e w i t h t h e a r r o w k e y s , and l e t most o t h e r keys
** p a s s on t h r o u g h t o d o _ k e y s () .
** T h i s r o u t i n e i s one o f t h e a p p l i c a t i o n s p e c i f i c r o u t i n e s t h a t w i l l
** change a l o t d e p e n d i n g on t h e a p p l i c a t i o n . A word p r o c e s s o r wou l d
>* do a l o t h e r e , f o r e x amp l e .
*/

d e f i n e UP ARROW 0x4800
d e f i n e DN ARROW 0x5000
d e f i n e LF ARROW 0x4b00
d e f i n e RT ARROW 0x4d00
d e f i n e C_RETURN p\r'
d e f i n e ESCAPE 0 x l b
d e f i n e CTRL_C 0x03

g o t _ k e y (c h , w h a n d , v w)
i n t c h , whand, vw; (

e x t e r n d o u b l e o r i g _ r e a l , o r i g _ i m a g , s i d e _ r , s i d e _ i ;
e x t e r n i n t make_squa re ;

sw i t c h (c h){
c a s e UP__ARROW:

o r i g _ i m a g —= s i d e _ i ;
i f < make_square)

s i d e _ r m s i d e _ i = (s i d e _ r • s i d e _ i) / 2 . 0 ;
b r e a k ;

c a s e DN ARROW:
o r i g _ i m a g += s i d e _ i ;
i f (make_square)

s i d e _ r = s i d e _ i = <s ide_ r + s i d e _ i > / 2 . 0 ;
b r e a k ;

c a s e RT ARROW:
o r i g _ r e a l += s i d e _ r ;
i f < make_square)

s i d e _ r = s i d e _ i = <s ide_ r + s i d e _ i) / 2 . 0 ;
b r e a k ;

c a s e L F ARROW:
o r i g _ r e a l -= s i d e _ r ;
i f (make_square)

s i d e _ r = s i d e _ i = <s ide_ r • s i d e _ i) / 2 . 0 ;
b r e a k ;

d e f a u l t :
s w i t c h (ch Zc 0 x f f) {

c h a r s t r C 8 0 3 ;
c a s e *•*:

o r i g _ r e a l -= s i d e _ r / 2 . 0 ;
o r i g _ i m a g -= s ide__i / 2 . 0 ;
s i d e _ r *= 2 . 0 ;
s i d e _ i *= 2 . 0 ;
i f < make_squa re)

s i d e _ r = s i d e _ i = <s ide_ r + s i d e _ i) / 2 . 0 ;
b r e a k ;

c a s e *-*:
o r i g _ r e a l += s i d e _ r / 4 . 0 ;
o r i g _ i m a g s i d e _ i / 4 . 0 ;
s i d e _ r /= 2 . 0 ;
s i d e _ i / - 2 . 0 ;
i f < make_squa re)

s i d e _ r «• s ide__i = (s i d e _ r • s i d e _ i) / 2 . 0 ;
b r e a k ;

c a s e CTRL_C:
i f < s h o w _ f o r m (" E x i t t h i s p r og r am"))

114

Menus, Dialog Boxes, and Graphics

r e t u r n (0) ;
r e t u r n (1) ;

c a s e C_RETURN:
i f (s h o w _ f o r m (" R e t u r n t o w h o l e s e t "))

r e t u r n <0);
o r i g _ r e a l = - 2 . 0 ;
o r i g _ i m a g = - 2 . 0 ;
s i d e _ r = 4 . 0 ;
s i d e _ i = 4 . 0 ;
b a c k _ t o _ f i r s t (w h a n d , v w) ;
r e t u r n (0) ;

d e - f a u l t :
d o _ k e y s (c h) ;
r e t u r n (0) ;
>

>
c 1 r _d i s p l a y (w h a n d , v w) ;
do_d i s p l a y (w h a n d , v w) ;
r e t u r n (0) ;
y

d o _ k e y s (c h)
i n t ch;<

cha r s t r C 6 4 3 ;

s p r i n t f (s t r , " I g n o r i n g c h a r a c t e r 0>:7.x\n" , ch) ;
s h o w _ f o r m (s t r) ;
>

The dialog Function
The third way a user can change the view of a Mandelbrot image is by typing
in the coordinates of the area to view. Since the exact coordinates are easy to
communicate, this is particularly useful for users who want to explain exactly
which coordinates to view.

A dialog box like the one shown in Figure 5-8 is used to let the user en­
ter data.

Figure 5-8. The Dialog Box for Entering Coordinates
desk f i le help

MandelZoon!

-l,7488970758r OK
Imaginary; -6,8033803774 1 | CANCEL 1

Nidthi 08.8041454124 1 |ZOOM IN 1

[Height: • 0041454124 1 jzjjjjjj GUT)

CHAPTER 5

The dialog function, Program 5-13, handles all user interaction with this
box, putting up the dialog window, drawing the expanding and shrinking
boxes, and accepting input.

A dialog box is a tree of objects, just like a menu. The coordinates func­
tion, which is the next discussed below, calls the dialog function and passes it a
dialog tree in the array box_tree. The dialog function calls the GEM function
form_center to create a rectangle that centers the dialog on the screen. Then it
calls GEM's form_dial with the parameter FMD_GROW to start the process of
displaying the dialog box and to cause an expanding box to be drawn.

Other GEM routines are called for the dialog box: objc_draw puts the
dialog box on the screen and form_do handles all the mouse and keyboard in­
put. FMD^FINISH is a parameter to form—dial that frees up memory allocated
by FMD—START. When that's all finished, FMD—SHRINK is called to draw a
shrinking box.

When the program returns to coordinates, it passes the index in the ob­
ject tree of the button the user has selected to end the dialog box session.

Program 5-13. dialog.c
include <obde-fs.h>
include <osbind.h>
include <gemde-fs.h>

dialog(box_tree,field)
struct object *box_tree;
int -field; <.

int x, y , w, h;
int littlex, littley, littlew, littleh;
int ret;

i-f(-field < 0) / * Atari doc is wrong */
field • 0; / * -1 blows up, should be 0 or valid */

form_center<box_tree,&x,&y,&h) ;
littlew • littleh = 50;
littlex = x + w / 2 - littlew;
littley = y + h / 2 - littleh;
form_dial <FMD_START,1ittlex,1itt1ey,1itt1ew,1itt1 eh,x,y,w,h);
•form_dial (FMDJ3R0W,1itt1 ex,1ittley,1itt1ew,1itt1 eh,x,y,w,h) ;
objc_draw(box_tree,0,1, x , y,w,h);
ret = form_do(box_tree,-field) ;
form_dial(FMD_SHRINK,1ittlex,1ittley,1ittlew,1ittleh,x,y,w,h);
•form_dial (FMD_FINISH, 1 i ttl ex , 1 i tt 1 ey, 1 i tt 1 ew, 1 i tt 1 eh, x , y, w, h) ;
return(ret) ;
5

The coordinates Function
The coordinates function is called by do_main_menu after the user has se­
lected the Coordinates menu item from the options menu. This function, Pro­
gram 5-14, contains the code that creates the dialog tree used by the dialog
subroutine and is responsible for seeing that a dialog box for this menu item
appears.

When coordinates calls the dialog function, it passes it the address of the

116

Menus, Dialog Boxes, and Graphics

dialog tree that is defined by coordinates in the array diaLcoord. This is an ex­
ample of how to build a tree entirely by hand. It can be done here because the
tree is very simple, with only one parent object (a box) that contains all of the
child objects. The child objects are the four buttons OK, CANCEL, ZOOM IN,
and ZOOM OUT, and four editable text fields where the user will type the
coordinates.

The four buttons have been marked as EXIT buttons via flags defined
and used in the data structure for the dialog tree. This will cause the fonrL_do
function to return when the user clicks on a button. The flags TDEXIT,
DEFEXIT, EXITLAST, and TCHEXIT are defined to represent the exit value and
then included as the fifth parameter in the object definitions for each of the
buttons.

Editable text fields are special GEM structures that tell the form_do
function how the data should be entered and displayed. A TEDINFO structure
(Text EDit INFOrmation) contains three strings and some information about
them such as font, length, and the characterisics of the box that contains the
text field. The form_do uses the first string as the value to display and let the
user change. It uses the second string to label the first string. Wherever an un­
derscore appears in the second string (the template string), form_do replaces it
with a letter from the first string (the text string). Thus, the template string
"How many: " and the text string " 1 5 " would combine on the screen to
read "How many: 15 " . The third string is the validation string, which defines
what types of information the user is allowed to type in the field. If an " X " ap­
pears in a character position, than any character is allowed. If " 9 " appears,
only a digit can be entered in the position. We have specified one character of
any type, allowing a minus sign as the first character, followed by 11 digits.

The dialog tree is placed in the diag_coord array. The data structure for
each item in the object library is just like the menu in the builcLtree routine
discussed earlier. The first three parameters are the index of the next sibling,
the index of the first child, and the index of the last child; they are followed by
the object type which determines the appearance of the object and the user in­
teraction. Then a flag is included for the item (these flags were defined earlier
in the file). The next parameters define how the item should be drawn; for this
application a line is put around the enclosing box and uses the normal fore­
ground and background colors. The next parameter is specific to the object type
and identifies some information about the object. The last four parameters are
the x, y, w, and h of the object's window on the screen.

Program 5-14. coordin.c
i n c l u d e < o s b i n d . h >
i n c l u d e <obde f s . h>
i n c l u d e <gemdefs .h>

d e f i n e BLANK ' '

d e f i n e UNDERSCORE

117

CHAPTER 5

TEDINFO t e d _ r e a l = „ * 2 0 0 0 0 0 0 0 0 0 0 " ,

" R e a l : „x99999999999",

IBM, 0 , T E . L E F T , 0 x F F 8 0 , »

TED INFO t e d _ i m a g - | 1 - 2 0 0 0 0 0 0 0 0 0 0 » ^

••Imaginary: „--^9999999%

IBM, 0 , T E . L E F T , 0*FF80 , -

TEDINFO t e d _ w i d e

" W i d t h :
40000000000"

"X99999999999" ,
IBM, 0, TE_LEFT , 0 x F F 8 0 , 0

TEDINFO t e d _ h i g h

" H e i g h t :
40000000000" .

"X99999999999"
IBM, 0 , TE_LEFT , 0 x F F80 ,

- 2 , 13 26

12, 26

26

26

de- f i ne TDEXIT
d e f i n e DEFEXIT
d e f i n e EXITLAST
d e f i n e TCHEXIT
d e f i n e EDITLAST

(E X I T I TOUCHEXIT ! DEFAULT)
(E X I T ! DEFAULT)
(E X I T ! LASTOB)
(E X I T ! TOUCHEXIT)
(EDITABLE ! LASTOB)

d e f i n e B_OK 1
d e f i n e B_CANCEL 2
d e f i n e B_ZOOM_IN 3
d e f i n e B_ZOOM_OUT 4
d e f i n e EDIT F I E L D 5

s t r u c t o b j e c t d i a l c o o r dC3 = {

-1 , 1, 8, G_BOX, NONE, OUTLINED, 0x2FF00L , 0, 0 , 38 , 12,
f -1 , - i , G_BUTTON, TDEXIT , NORMAL, "OK" , 29, 2, 8, If

3, ~ i , - I , G_BUTTON, TCHEXIT , NORMAL, "CANCEL" , 29 , 4 , 8 , 1,
4, -1 , - 1 , G_BUTTON, TCHEXIT , NORMAL, "ZOOM I N " , 29, 6, 8, 1,

5, -1 , - i f G_BUTTON, TCHEXIT , NORMAL, "ZOOM OUT", 29 , 8 , 8, 1,
6, - i f - I f G_FBOXTEXT,EDITABLE, NORMAL, & t e d _ r e a l , I f 2, 26 ,

7, - 1 . - i , G_FBOXTEXT,EDITABLE, NORMAL, & t e d _ i mag, 1, 4, 26 ,
8, - i f - i f G_FBOXTEXT,EDITABLE, NORMAL, & t e d _ w i d e , I f 6, 26 ,
0?
> ;

- I , -1 , G_FBOXTEXT,EDITLAST. NORMAL, & t e d _ h i g h , 1, 8, 26 ,

d o u b l e
g e t _ v a l (s t r)
c h a r * s t r ;C

cha r h o l dC80D , *p ;
d o u b l e a t o f () ;

w h i l e (* s t r == BLANK I ! * s t r == UNDERSCORE)
s t r + + ;

f o r (p = s t r ; *p ; p++)
i f (*p == BLANK ! ! *p == UNDERSCORE)

»p = ' 0 ' ;
ho l dC03 « s t r C 0 3 ;
h o l d C l] = s t r C I D ;
ho l dC23 = ' . ' :
s t r c p y (S<holdC33,?<strC23) ;
r e t u r n (a t o f (h o i d)) ;

118

Menus, Dialog Boxes, and Graphics

/*
** Our e d i t f i e l d p u t s t h e d e c i m a l p o i n t i n f o r u s .
** I t wan t s t o s e e a s t r i n g o f numbers o n l y , p o s s i b l y p r e c e d e d by a m i n u s .
** T h i s r o u t i n e t a k e s a d o u b l e , c o n v e r t s i t t o a s t r i n g w i t h o u t any
** d e c i m a l p o i n t , and p l u g s i t i n t o t h e e d i t a b l e f i e l d . T h i s a l s o ha s t h e
$t n i c e e f f e c t o f p u t t i n g r e a l l y w i l d v a l u e s i n t o ou r somewhat l i m i t e d
** r a n g e (be tween - 9 . 9 9 9 9 9 9 9 . . . and 9 9 . 9 9 9 9 9 9 9 . . .)
*/

s e t _ v a l (s t r , v a l)
c ha r * s t r ;
d o u b l e v a l : i

cha r ho l dC64D , *p ;

/* some examp le v a l u e s a s t h e y c hange

/ * - 9 9 . 5 , - 1 , - . 0 1 , 5, 34 , 123 */
i f (v a l < 0) i

*s t r++ = ' - • ;
v a l = - v a l ; / * 9 9 . 5 , 1, . 0 1 , * , * * , *** * /

e l s e I f (v a l < 10) / * * * * * « , * , * * * , 5, * * , * * * */
*s t r++ = ' 0 ' ;

i f (v a l < 1) / * * * * * « , *, . 0 1 , * , * * , *** */
*s t r++ = ' 0 ? ;

s p r i n t f (ho i d , *" /..9f " , v a l > ; / * 9 9 . 5 , 1, . 0 1 , 5, 34 , 123 */
f o r (p = h o i d ; *p ; p++)

i f (*p ! = V. ' >
*s t r++ = *p;

/* We r e t u r n : - 9 9 5 , - 1 , - 0 0 1 , 0 5 , 34 , 123 * /
/* I t becomes: - 9 . 9 5 , - 1 0, - 0 . 0 1 , 0 5 . 0 , 34 . 0 , 12

c o o r d i n a t e s \) i

d o u b l e r, i , w, h;
cha r s t r C 8 0 D ;
i n t r e t ;
e x t e r n d o u b l e o r i g _ r e a l , o r i g _ i m a g , s i d e _ r , s i d e _ i ;
e x t e r n i n t make_squa re ;

f i x _ t r e e (d i a l _ c o o r d) ;
s e t _ v a l (t e d _ r e a l . t e _ p t e x t , o r i g _ r e a l) ;
s e t _ v a l (t e d _ i m a g . t e _ p t e x t , o r i g _ i m a g) ;
s e t _ v a l (t ed_w i d e . t e _ p t e x t , s i d e _ r) ;
s e t _ v a l (t e d _ h i g h . t e _ p t e x t , s i d e _ i) ;

r e t = d i a l o g (d i a l _ c o o r d , E D I T _ F I E L D) :
i f (r e t == B_CANCEL)C

d i a l _ c o o r d C B _ C A N C E L 3 . o b _ s t a t e &= ^SELECTED;
r e t u r n (0) ;
>

e l s e i f (r e t == B_ZOOM_IN)€
d i a l _ c o o r d C B _ Z 0 0 M _ I N 3 . o b _ s t a t e &= ^SELECTED;
o r i g _ r e a l += s i d e r / 4 . 0 ;
o r i q i m a g +- s i d e _ i / 4 . 0 ;
s i d e _ r /= 2 . 0 ;
s ide__i /= 2 . 0 ;
i f (make_square)

side__r • s i d e _ i = <s ide_ r + s i d e _ i) / 2 . 0 ;
>

e l s e i f (r e t mm B_Z00M OUT)i
d i a l _ c o o r d C B _ Z 0 0 M _ 0 U T 3 . o b _ s t a t e 8c= ^SELECTED;
o r i g _ r e a l s i d e _ r / 2 . 0 ;
o r i g _ i m a g s i d e _ i / 2 . 0 ;
s i d e ^ r *= 2 . 0 ;
s i d e _ i * = 2 . 0 ;
i f (make_square)

119

CHAPTER 5

side_r = side_i • (side_r side_i> / 2 . 0 ;
>

else if(ret == B_OK)i
dial_coordCB_OK:J.ob_state &= ŜELECTED;
orig_real = get_val(ted_real.te_ptext);
orig_imag = get_val(ted_imag.te_ptext>;
side_r = get_val(ted_wide.te_ptext);
side_i • get_val<ted_high.te_ptext);
if(make_square)

side_r = side_i = <side_r + side_i) / 2 . 0 ;
>

el se i
show_form<"Dialog error...");
>

return(1);
>

•f ix_tree(t)
struct object *t;C

static int already = 0;
extern int gl_wchar, gl_hchar;

i f(already)
return;

for (; ;) i
t->ob_x *= gl_wchar;
t->ob_y *= gl_hchar;
t->ob_width *= gl_wchar;
t->ob_height *= gl_hchar;
t->ob_height += 2;
if(t->ob_flags & LASTOB)

break;
t++;
>

already = 1;
>

The get—val and set—val functions. get_val and set_val set the values
in the text strings and read the values back when the form__do function returns.
These functions would be simple, except that the numbers in the text string are
stored without any decimal points and may contain blanks or underscores.
get_val strips out any blanks and underscores, and inserts a decimal point
before it calls the GEM atof routine to convert the string to a floating-point
number. The set_val subroutine converts the floating-point number back into a
text string.

After everything is defined, coordinates has set up the four editable text
fields and called dialog, and dialog has returned with its values, coordinates
checks the results. If the user has selected the CANCEL button, coordinates de­
selects the button by returning it to normal video, and returns. If ZOOM IN or
ZOOM OUT has been selected, coordinates makes the respective changes in
the zoom window coordinates, deselects the button, and returns. And if the OK
button has been selected, coordinates uses get_val to convert the text strings,
which the user may have modified, and sets the zoom window variables.

120

Menus, Dialog Boxes, and Graphics

The just—draw, save_screen, and copy—first Functions
These three subroutines save the screen images. The user can then always re­
turn to the original image, or the screen can be redrawn after a dialog box or
accessory window disappears, without having to recalculate the Mandelbrot set.
Two images are saved: the first is the original screen; the second is a copy of
the screen the last time it was redrawn. By saving the latest screen into a mem­
ory buffer, it's a simple matter to copy from the buffer back onto the screen
whenever a portion of the screen needs redrawing.

The only difficult part to redrawing after a menu or accessory window
has closed is copying (from the memory buffer) only that part of the screen that
has been obliterated. The resolution of the screen must also be taken into ac­
count because the rectangles are in pixels, which vary with the resolution.

The just_draw, save—screen, and copy_first (Program 5-15) functions
work together, so they are kept in one file. They're closely related to the other
function, back—to—first—also included in this file—which is discussed in the
next section.

The first section of code prepares things for saving the screen by describ­
ing the screen's 32,000 bytes as a union of three arrays to handle the three
resolutions: low, medium, and high. Since it's a union, all three arrays describe
the same 32,000 bytes, organized differently. So 4 bytes can be moved once the
arrays are declared as long int arrays. Then, to save the screen, the long ints
are copied from the screen into memory in a for loop, using the pointers p and
q. The current size of the window (not the screen) is also saved because the
program needs to know what portion of the screen belongs to this application
when the screen is redrawn.

Every time the screen, or a portion of it, is redrawn, doit calls
save—screen to save a copy of it. save_screen hides the mouse so it won't ap­
pear in the copy (since it will probably be in a different location when the copy
is used) and then calls getlogBase to get the address of the screen. At the begin­
ning of the file getlogBase is defined to be xbios(3).

If this is the first time the screen is drawn for the Mandelbrot applica­
tion, a copy of the initial screen also needs to be saved in case the user requests
the original screen be restored. The variable not—yet is defined as true (1) until
the first time save_screen is called, when it is set to false. If not—yet is true,
copy_first is called to place a copy of the current screen in the array
first—screen.

The just—draw function checks not—yet to see if save—screen was ever
called and to see if the size of the window to be redrawn is larger than the last-
saved window. If it is larger, then the portion of the window to be redrawn
was not saved and doit must be called to recalculate the set.

Because of their outlines, dialog boxes are really larger than the window
size that GEM passes to the program. To compensate for this problem, six
pixels are added to make sure everything is redrawn properly.

121

CHAPTER 5

With the use of pointers, tight loops, and long integers, the screen up­
date appears to happen instantaneously.

Program 5-15. justdraw.c
include <osbind.h>
include <gemdefs.h>
int not_yet = 1;
int savex, savey, savew, saveh;
union u_screen C

long int low_resC2003C403;
long int med_resC2003C403;
long int high_resC4003C203;
> u_screen, first_screen;

/*
** Get the address of the screen
*/
union u_screen *
getlogBase()i

return((union u_screen *) xbios(3));
>

define MONOCHROME 2
define MEDIUM_RES 1
define LOWEST_RES 0

just_draw<whand,x, y, w, h, vw)
int whand,x,y,w,h,vw;{

register union u_screen tscrn;
register long int *p, *q, tend;
register int i, j;

hide_mouse <);
if < not_yet ! ! x < savex ! ! y < savey ! ! w > savew ! ! h > saveh) <.

doit(whand,vw);
show_mouse <);
return;
>

if < x > 6) /* Adjust for OUTLINED boxes */
x -= 6;

if(y > 6) /* which are bigger than the xywh
Y — 6;

h += y + 12; /* that we are given by GEM * /
w += x + 12;

that we are given by GEM * /

scrn = get1ogBase(>;
switch < GetrezO)<

case MONOCHROME:
for(i = y; i < h; i++ > i

p = Scscrn->high_resti 3Cx >> 53;
end = &scrn->high_resti3Cw >> 53;
q • &u_screen.high_resCi3Cx >> 53;
do <.

*p++ = *q-«"«-;
> while(p <= end);

>
break;

case MEDIUM_RES:
for(i =y; i < h; i++) i

p = S<scrn->med_resCi 3Cx >> 43;
end = &scrn->med_resCi3Cw >> 43;
q = 8<u_screen.med_resCi 3Cx >> 43;

122

Menus, Dialog Boxes, and Graphi

do i
*p++ = *q++;
> while < p end) ;

>
break;

case LOWEST_RES:
•f or (i=y;i<h;i++) i

p • &scrn->low_resCi3Cx >> 3D;
end = &scrn->low_resCi3Cw >> 33;
q • Stu_screen. low_resCi 3Cx >> 33;
do i

*p++ = *q++;
> while(p < = end) ;

>
break;
break;

>
show_mouse <);
>

save_screen(whand)
int whand;<

long int *p, *q, tendpic;
union u_screen *scrn;
int xwork, ywork, wwork, hwork;

wind_get(whand, WF_WORKXYWH, &xwork, &ywork, Stwwork, Sthwork);
hide_mouse();
scrn = getlogBaseO;
q = &scrn->low_resE03C03;
endpic = &u_screen.1ow_resC2003C03;
ior< p • &u_screen.low_resC03C03; p < endpic;)

*p++ = *q++;
show_mouse <) ;
savex = xwork;
savey = ywork;
savew = wwork;
saveh = hwork;
i -f (not_yet)

copy_-f irst <);
not_yet = 0;
>

copy_-f i rst () <.

long int *p, *q, tendpic;

p • &-f irst_screen. 1ow_resC03C03;
endpic = &u_screen.1ow_resC2003C03;
f or (q = &u_screen. low_resC03 C03; q < endpic;)

*p++ = *q++;
>

back_to_first(whand,vw)
int whand, vw; <.

long int *p, *q, *endpic;
int wwork, hwork, xwork, ywork;
wind_get< whand, WF_WORKXYWH, S<xwork, fcywork, Stwwork, fchwork);
q = S<-f irst_screen. 1ow_resC03C03 ;
endpic = &u_screen.1ow_resC2003C03;
•f or (p = &u_screen. 1 ow_resC03C03; p < endpic;)

*p++ = *q++;
j ust _dr aw(whand,x wor k,ywor k,wwor k,hwor k,vw);
>

123

_ CHAPTER 5

define ABOUT_M 9
define QUIT_M 18
define COORD_M 20
define SOUARE_M 21
define CNTLF_M 23

Building the Mandelbrot Program
As with the other programs earlier in this book, we construct the linkit.bat
batch file for our program as required by the Atari ST Software Developer's Kit.
If you're using some other version of C, refer to your User's Manual for infor­
mation on linking the necessary files.

linkit.bat reads the list of files to be linked from link.arg, Program 5-19.
After these two files are constructed, the program is linked by clicking

on batch.ttp on the desktop and giving linkit as the argument. The last thing
the linkit program does before waiting for the user to press a key is to name
the executable file from a.prg to mandlzum.prg.

Program 5-18. linkit.bat
c:\bin\link68 [undefined,symbols,command CI i n k . a r g 3 1
c:\bin\relmod a
c:\bin\rm a.68k
c:\bi n\wait

Program 5-19. link.arg
a.68k=gemstart.o,main.o,
COLORS.0,COORDIN.0,DIALOG.0,GOTKEY.0,DOCLEAN.0,
DOMENU.0,MOUSEHIT.O,SAVCOLOR. 0, TIMIT. O,CONFIG.0,
BLD TREE.0,DOIT.0,JUS TDRAW.0,DOMNMENU.0,GIVEHELP.O,
env.s,vdibind,vdidata.o,gemlib,aesbi nd,osbind,1 1bf

124

The back—to_first Function
This routine is called by got_key if the user presses the RETURN key and con­
firms that he or she wants to return to the first screen.

The code for back_to_first is the last function in Program 5-14. It simply
redraws the screen using the screen saved earlier in the first—screen array.

Header Files
The following two header files (Programs 5-16 and 5-17) are also needed to
complete our source code.

Program 5-16. mandel.h
de-fine MAINMENU 0

Program 5-17. mandefs.h
/*

** Define where the menu items are in the menu array
*/

file:///bin/l
file://c:/bin/relmod
file://c:/bin/rm

6 Building a Com­
mand Shell Desk
Accessory

6 Building a
Command Shell
Desk Accessory

wmmmmm Desk-accessory programs are special applications in the GEM envi­
ronment that can run in special windows while another regular

• • • • • • application is running. The desk-accessory names are listed by GEM
in the Desk pull-down menu. GEM collects the desk-accessory names at system
boot time, putting the first ones it finds into the accessory list, until a maximum
of six accessories is reached. For an accessory to appear in the list, it must be
on the boot disk. The limit of six accessories can be restrictive, especially since
there are dozens of good desk accessories available.

In this chapter you'll see how to provide many commands in one acces­
sory, thus allowing you to get more mileage out of a single desk accessory.
Also, as the accessory program is built, you will see how to construct a file so
the same source files can be used for both a desk accessory and a regular pro­
gram just by changing the way the files are linked. Chapter 7 will explain what
you need to do to link the files in this chapter to create a regular application
program.

The desk-accessory program built in this chapter is a command inter­
preter similar to command.tos, included with the Atari ST Software Developer's
Kit. Two advantages this accessory has are that it uses the GEM interface and it
is a desk accessory. This means that, in the middle of executing a GEM applica­
tion program, the user can pull down the Desk menu and select this accessory.
An accessory window will appear as illustrated in Figure 6-1, and the user can
then type a command to copy a file from one disk to another, list a directory,
print a file, and so forth, all without exiting the application program. The print­
ing will actually go on in the background as the user resumes using the appli­
cation program.

127

CHAPTER 6

Figure 6-1. The Desk-Accessory Window for the Command.Shell
Program

Desk File View Options

Connand Shell
Path: ; f i ; \
Dir: C:
Last: dir
Msg: 51 f i l es in C:\NE0A*.*

Connand? _

'"Y
F LOPFV DISK

This Command Shell program will be able to execute these commands:
copy, move, remove, print, list (print with filename), dir, and chdir. The argu­
ments to these commands can contain pathnames and wildcards, which dir__list
(see below) expands to a list of full filenames.

Figure 6-2. The dir command opens a second window that can be
scrolled, resized, moved, and closed.

Desk Pile View Options

Connand Shell
Path: ;A:\
Dir: C:\NE0
Last: dir
Msg: 51 f i l

Connand? d

C:\NE0*,*1
K BIRDS
AAFLAG.NEO
AATRfllN.NEO
ATARI,NEO
CHAOS,NEO
EARTN.ANI

MJENHAAHD.ME
AAINSECT.NEO
AATRUMP.NEO
B0TH2.NE0
CHEVAL.NEO
EARTH,NEO

GREATWAV.NEO H0USE3.NE0
KATH7.NE0 KATH8.NE0
MAP34.NE0
MONATW.NEO
SAILBD.NEO
SPACE2.NE0
VAC1.NE0

MAP43I.NE0
NEO.PRG
SCICOVER.NEO
SPACESH2.NE0
WHEELS3.NE0

AAFALL.NEO
AAREPORT.NEO
AAHQRM.NEO
B0TH3.NE0
CHROME.NEO
FIREBALL,NEO
IMPOSFOU.NEO
KATH9.NE0
MEDFLY.NEO
ROBOTMTU.NEO
SIM0N1.NE0
SPIRAL.NEO
WORLDMAP.NEO

AAFAUCET.NEO
AASNAKE.NEO
ANGEL.NEO
BRUNEI.NEO
DEC.NEO
FRACTAL,NEO
JOKEY.NEO
LOTUS.NEO
MICKEY2.NEO
ROBOTTV.NEO
SLIDEANI.PRG
TEST.NEO

128

file://C:/NE0A*.*
file://C:/NE0

Building a Command Shell

129

For some commands, like dir, the Command Shell program opens an­
other window on the desktop, as shown in Figure 6-2.

The configac.c File
As with the other programs in this book, this desk-accessory program uses the
library of envelope routines developed in Chapter 2 for handling most of the
GEM interface programming requirements. To customize the envelope for this
application's needs, config.c must be adapted. Note that we decided to rename
the file to configac.c (Program 6-1) because this is the configuration file for the
accessory version of the command interpreter; this will help us to distinguish it
from the regular application version in Chapter 7.

To set up a program as a desk accessory, the variable i_am_accessory is
set to 1 and the program is linked as an accessory. The linking process is de­
scribed in the section "Building the Desk-Accessory Program" near the end of
this chapter.

The name "Command Shell" is entered for both wincLname and
access_name, and since this is a desk accessory, only the access_name variable
will be used. RCS isn't used in this program, so USE_RCS is undefined; how­
ever, the resource variable is set to SHELL.RSC as an example if you want to
modify the program.

Program 6-1. configac.c
include <gemde-f s. h >

char *wind_name = " Command Shell ";

itde+ U3E_RCS
char fcresource = "SHELL.RSC";
else
char tresource = 0;
endif USE_RCS

char t a c c e s 5_nanie = " Command Shell ";
int 1_am_accessory = 1;
int sx = 20; /* small window size */
int sy = 20;
int sw = 300;
int sh = 1 6 0 ;
int slv = 0; /* small window vertical slider pos */
int slh • 0; /* small window horizontal slider pos */
int svs = 1000; /* small window vertical slider size */
int shs = 1000; /* small window horizontal slider size */
int min_wide = 100;
int min_high = 50;
int interval = 0;
int events = MU_MESAG ! MU_KEYBD;

The doit.c and justdraw.c Functions
Clearing and redrawing all or part of the screen are handled by the doit and
just_draw functions (Program 6-2). In previous programs these routines were
in separate files because they were fairly complex. Since they're short and
closely related in this accessory, it's logical to put them in one file.

CHAPTER 6

The doit function clears the screen and calls the got—key function, pass­
ing it a — 1 parameter so that the screen will be redrawn. got_key is explained
shortly, but notice that in this program got_key does the redrawing because it's
the only function which knows about certain data structures; there is some
information, such as the pointer into the current command string, which must
be hidden from other functions. The C language provides this capability to hide
data to prevent the data from being modified in more than one place, making it
easier to avoid bugs.

The just_draw function is similar to doit, except that it only clears the
part of the window in the current clipping rectangle. The algorithm used to de­
termine the clipping rectangles is explained at length in the discussion of the
do_redraw function in Chapter 2.

Program 6-2. doit.c

doi t(whand,vw)
int whand, vw; C

hide_mouse <);
clr_display(whand,vw) ;
got_key(-1,whand,vw);
show_mouse();
>

just_draw (whand, >;, y, w, h, vw)
int whand, x , y, w, h, vw;C

hide_mouse();
just_clear(whand,vw);
got__key (- 1 , whand, vw);
show_mouse();
>

open_data(file)
char *file;<

return(1);
}

The got—key Function: Responding to Input Commands
Most of the work in the desk accessory occurs in the got—key function, Pro­
gram 6-3. got—key handles input from either of two windows: the Shell win­
dow and a directory window. From got—key, some of the screen-handling
functions such as multi and do—redraw are used in indirect recursion to refresh
the accessory window after commands are entered, refresh the directory
subwindow that's created when the dir command is typed, and collect the char­
acters the user types to initiate commands.

The first two if statements in this function are used to determine
whether a directory subwindow is open, and whether it should be refreshed or
closed. If a window is moved, resized, or uncovered, it must be redrawn. These
statements are easier to understand in context, so they'll be discussed in detail
with the do—dir—wind function.

130

Building a Command Shell

If the window handle variable (whand) equals — 1 , then the Command
Shell window is closed. This should never happen, but this statement has been
included as a precaution.

If got—key is somehow called when the Shell window is closed, the
got—key function benignly returns 0 to multi so it continues.

If the window handle is not — 1 (and it shouldn't be under normal cir­
cumstances), then GEM's wincLget function is called to get the size of the
Shell window's area and figure out where to put the prompt.

If the character passed to got_key in the ch variable is — 1 , it means "re­
draw the window." The contents of the window shown in Figure 6-1 are
redrawn.

When the user selects the Command Shell from the Desk pull-down
menu, GEM sends the event message AC_OPEN to the multi function, which
calls the was_message routine, and the switch statement is entered at the
AC_OPEN entry point. The AC—OPEN event says that a desk accessory has
been activated. The Command Shell window appears looking like Figure 6-1.
GEM routines have drawn the window frame and the window has all the regu­
lar features: It can be sized, fulled, closed, or moved as the user wishes. The
size of this "small" accessory window is dictated in the configac.c file.

The text in this window is generated by the got—key function, and will
be redrawn on the screen whenever got—key receives the — 1 argument. In the
upper left corner the program prints the current command search path, the cur­
rent directory, the last command executed, and any status or error message the
last command may have issued. The last line is a prompt for a command.

The current command search path consists of the list of directories GEM
will search to find a program to run, which TOS sets at boot time. To find out
what the path is so it can be printed from the Command Shell window,
got—key calls the GEM shel—envrn routine with the instruction to search for
"PATH = " in the Shell's environment space and to put the found value into
the array pathp. The result is printed on the screen with the GEM functions,
sprintf and v—gtext.

Getting the current directory is done the same way it is in the PLOT
program, by using Dgetdrv to get the drive number and Dgetpath to get the di­
rectory. The result is printed under the path.

The last command the user types is recorded by got—key in the array
lastcom and the user's command is echoed by printing the characters on the
screen beneath the current directory. Because the last command has been re­
corded, the user is given a shorthand way to repeat the last command. By typ­
ing two exclamation points, !!, the last command entered will be executed
again.

Since some commands result in input or error messages for the user, a
way to print the messages on the screen is required. As you'll see in a moment,
the array errmsg serves as the buffer where commands store their messages.

131

CHAPTER 6

Next, the location of the last line in the window is calculated for po­
sitioning the Command prompt line and the underscore that represents the
cursor.

The pointer p is set to point into the command buffer and the first char­
acter in the buffer is set to 0 to clear it of any previous command and make it
ready to receive a new one. got_key then returns 0 to the multi subroutine so
that it won't exit.

The third function of the got_key routine is to respond to the user's key­
board input. The HELP function key must be dealt with separately because it's
not an ASCII character, but a 16-bit character whose low 8 bits are zero.

When got_key gets the message that the HELP key has been pressed, it
calls the give—help function, which, except for the text, is very similar to the
PLOT program version.

Normal ASCII character keys are sorted out by doing a switch on the
low eight bits of the character. If the pressed key is ESCAPE or CONTROL-C,
then a 1 will be returned so the multi function will exit back to the desktop.
(This statement was added in order to plan ahead to the regular version of this
program. Desk accessories can't exit, so ESCAPE and CONTROL-C have no ef­
fect from the user's perspective.)

Typing on the keyboard, as long as the character is not RETURN or
BACKSPACE, causes the switch to enter the default case. In this case, we hide
the mouse, put the character into the buffer using the pointer p, print the char­
acter on the screen using v_gtext, increment the column number, and display
the cursor and the mouse.

By pressing RETURN, the user signals that the input command can be
executed. got_key first clears the errmsg array so old messages have no chance
of being displayed (in case the command just given doesn't issue a message).
To end the string, the command string is terminated with a null. Then the
buffer is checked to see if it's empty (buf[0]), which means that the user just
pressed RETURN or NEWLINE alone. In this case, got—key is called recursively
with a — 1 to redraw the screen, giving the user feedback by causing the screen
to blink.

If the buffer contains a command, a check is made to see if it's the spe­
cial " ! !" command, meaning to repeat the previous command. If it is, the previ­
ous command is executed by calling the calLsys function with the array
lastcom.

If the command in the buffer is not "!!", the command is copied into the
array lastcom, and the calLsys function is called with the command buffer to
execute the command.

A backspace in the buffer means that the user wants to correct a typing
error. The pointer p is decremented to make it point to the last character that
was typed and replace that character with a 0 to terminate the string. To make
the characters disappear and the cursor appear to move to the left, a space is
printed where the cursor is, the column number is decremented, and the cursor

132

Building a Command Shell

133

is printed where the erased character was located. The bell is rung when every­
thing is erased.

The last line in this routine contains a return statement, in which we put
a 1 to cause multi to exit the program. In fact, the program should never reach
this statement because of the return statements in each switch case. If it does,
then modifications to the program have left out a return statement, and by
exiting the program, the program alerts a programmer to the fact that a return
is missing.

Program 6-3. gotkey.c
include <gemde-fs.h>

include <osbind-h>
define RETURN 015
define NEWLINE 012
define CTRL_C 003
define ESCAPE 033
define BACKSPACE 010
define HELPKEY 0x6200
define LEFT_ED6E (x + gl_wchar * 1)
define PATHY (y + gl_hchar * 1)
define DIRY < y + gl_hchar * 2)
define LASTY (y + gl_hchar * 3)
define ERRORY I y + gl_hchar * 4)
define FILESY (y + gl_hchar * 5 >

char errmsgC512D;
char tprompt, tpathp;
int dir__window • 0;

got_key(ch,whand,vw)
int ch;
int whand, vw;{

static char bufC2583, curdirC2583, 1astcomC2583, msgC2583, *p = buf;
static int col, line;
int drv;
int x, y, w, h;
extern int gl_wchar, gl_hchar;
extern int i_am_accessory;

if(whand mm dir_window)i
if(ch != -1)

return <1);
redo_dir(whand,vw) ;
return(0);
>

if(whand mm -1)
return(0);

wind_get (whand, WF_WORKXYWH, &x , S.y, &w, 8<h) ;
if (ch == -1)i

just_clear(whand,vw);
hi de_mouse();
prompt • "Command? ";

shel_envrn (Scpathp, "PATH=") ;
sprintf (msg, "Path: y.s",pathp);
v_gtext(vw, LEFT_EDGE, PATHY, msg);

drv • Dgetdrv();
Dgetpath(curdir,drv+i);

CHAPTER 6

sprintf(msg,"Dir: %c: Xs" , drv+'A', curdir);
v_gtext(vw, LEFT_EDGE, DIRY, msg >;

sprint-f (msg, "Last: 7.s" , lastcom) ;
v_gtext(vw, LEFT_EDGE, LASTY, msg);

sprintf(msg,"Msg: Xs",errmsg);
v_gtext(vw, LEFT_EDGE, ERRORY, msg);

col = x / gl_wchar l;
line = (y + h) / gl_hchar - 1}
v_gtext(vw, col * gl_wchar, line * gl_hchar, prompt);
col += strlen(prompt);
v_gtext(vw,col*gl_wchar,1ine*gl_hchar,"_");
p = buf;
*P - 0;
show_mouse();
return(0);
>

i f(ch == HELPKEY)<
give_help(whand,vw);
return(0);
y

ch &= 0xff;
switch (ch) <.

case CTRL_C:
case ESCAPE:

return(1);
case NEWLINE:
case RETURN:

errmsgC03 = 0;
*P - 0;
p = buf;
if (bufC03) <

if(strcmp(buf,"!!") == 0)<
call_sys(lastcom,whand,vw);
>

else i
strcpy(1astcom,buf);
call_sys(buf,whand,vw);
>

>
else

got_key(-1,whand,vw);
return(0);

case BACKSPACE:
hide_mouse();
if(p > buf)i

P — ;
*P = 0;
v_gtext(vw,col*gl_wchar,1ine*gl_hchar,"
col —;
v_gtext (vw, col *gl__wchar, 1 inetgl_hchar, "
>

el se
printf(M\7");

show_mouse();
return(0);

default:
hide_mouse();
if(p > &bufC2553)

printf("\7");
el se {

*p++ = ch;
*P - 0;

134

Building a Command Shell

v_gtext(vw,col*gl_wchar,1ine*gl_hchar,p-1);
col++;
v_gtext(vw,col*gl_wchar,1inetgl_hchar,"_");
>

show_mouse <) ;
return(0);

>
return(1);

The give_Jielp function. In the Command Shell desk-accessory pro­
gram, the user can ask for help in three ways: pressing the HELP key, or by
typing "help" or " ? " at the command prompt in the Command Shell window.
When the Command Shell runs as a regular program, the user can select Help
from the main menu. Any of these events causes got_key to call the give_help
function listed in Program 6-4.

Each help screen's text is put into the array str by the GEM sprintf func­
tion. The program flips through the six help screens as the user clicks on the
NEXT button printed in the help window and returns to got_key after the last
screen.

Program 6-4. givehelp.c

gi ve_help(whand,vw)
int whand, vw;<

char strC2563;

sprintf (str, "C03C7.si7.si7.si7.si7.s3C NEXT 3",
"To copy files, you can type ",
" copy * . * directory " ,
" copy t.doc directory " ,
" or just " ,
" copy filelfile2 "
>;

form_alert(1,str);
sprintf (str, " C03 C7.s ! 7.s i 7.s ! 7.s ! 7.s3 C NEXT 3",

"Move is just like copy, but " ,
"it removes the files after " ,
"it copies them. On single " ,
"file moves, it just renames ",
"the file.
> ;

form_alert(1,str);
sprintf (str, " C03 C7.s S 7.s i 7.s ! 7.s ! 7.s3 C NEXT 3",

"To remove files, you can type ",
" remove t.bad t.old junk.* " ,
" remove ..WjunkWt.* " ,
" or just " ,
" remove file "
> ;

form_alert(1,str);
sprintf (str, "C 03 C7.si7.si 7.s ! 7.s ! 7.s 3 C NEXT 3",

"To print files, you can type ",
" print t.doc *.h t.C " ,
" print . . WdocsW*. * " ,
" or just " ,
" print file "
>;

135

http://C03C7.si7.si7.si7.si7.s3C
http://C7.si7.si

CHAPTER 6

•f orm_al ert (1, str) ;
sprintf (str, " C03 C7.s i 7.s i 7.s ! 7.s ! 7.s3 C NEXT 1" ,

"To show a directory, you type ",
" dir " ,
" or
" dir *.o *.c *.h . . WdocsW*. * " ,
"Use chdir to change directory."
> ;

form_alert(1,str);
sprintf (str, " C0D C7.s ! 7.s ! 7.s i 7.s ! 7.sD C LAST 3",

"Some abréviations are cp, mv, " ,
"lpr, Is, and cd. The command ",
"rm is like remove but doesn't ",
"ask -for confirmation. List is ",
"like print, but with titles. "
>;

form_alert(1,str);

The call—sys, isprg, and set—screen Functions
After the user has typed a command and pressed RETURN, got_key calls the
calLsys function (Program 6-5), passing it the buffer containing the command
and its arguments. As you look at the code, youTl see that this routine is writ­
ten so that it can function as a desk accessory, or as a regular program from
which other programs can be called.

The GEM function Pexec, which executes another program from the cur­
rent program, appears in the following code, and will be used by the regular
program that's built in Chapter 7. Executing another program does not work
from a desk accessory because accessories run as part of the desktop. When a
program is executed from an accessory with Pexec, the new program clears the
screen and menu using the desktop's resources, but without GEM being aware
of it. As a result, the desktop does not know to refresh the screen and menu.

The command buffer is copied into a local array and the command is
separated from its arguments by locating the first white space and replacing it
with a 0 to terminate the command. The pointer args is left pointing to the first
nonblank character after the 0, and str is left pointing to the first character of
the command. Then the arguments are placed in the arguments array, reserving
the first character for the string length of the arguments, because the Pexec
function requires that the first character be the length of the argument string.
The first word we isolated is now copied into the command array.

Next, the program must determine if the command that was entered is
one of the commands built into this program, or whether another program
must be executed. Because accessories cannot execute other programs, we need
to know if this is an accessory. This is done by first calling the built—in func­
tion to execute the command. If it's not a built-in command, the function will
return 0 and then check to see if the current program is a desk accessory. If it
is, the program returns, since the desktop will be ruined if an accessory exe­
cutes another program. If the command was one of the subroutines included in
this program, the built—in function will execute it.

136

Building a Command Shell

If the function finds that this is not a built-in command, and this pro­
gram is a regular program, then the calLsys function calls fincLcmd, which
looks for the command in each possible command directory listed in the PATH
string found in the environment. If it finds the command, the command's full
pathname is returned in the array named command, the same array in which
the word was originally passed. Because the pathname is returned in this array,
80 bytes have been allocated for the command array, even though the word
passed to fincLcmd will never be that long.

Because executing another command changes the appearance of the
screen, it is necessary to save all the information about it in order to restore the
screen at the command's completion. It's possible to save the entire screen and
then restore it as was done in the MandelZoom program; however, there is an­
other way that redraws the screen much faster. It's the method used to achieve
the rapid screen changes required by animation applications, and requires
changing the pointer to the screen memory location.

GEM keeps two pointers to the screen memory location. These pointers
may point to the same place, or to two different places where different screen
memories are kept. The screen contents are written to one of these places while
the contents of the other screen memory location are displayed by display
hardware.

The GEM routines Physbase and Logbase are used to get the location of
the screen's memory, and to save the pointer in phys and log. The phys pointer
indicates what the hardware should draw on the screen and the log pointer in­
dicates where the screen contents are written. Thus, while the hardware is dis­
playing the contents of one screen memory (pointed to by phys), the next
screen can be prepared behind the scenes in the location pointed to by log.
Using the GEM Setscreen routine, we can change phys to point to log, thereby
causing a new screen to appear instantaneously, and change log to phys, to
start drawing the next screen. After saving the screen memory's location in
phys and log, we also save the current screen resolution, in case the program
being called changes it.

Then the save_screen function is called to save the current screen in an
array called screen, which is aligned to a 256-byte boundary because the screen
hardware requires that the screen memory's location begin on an even bound­
ary. This gives us a copy of the original screen, and lets us use GEM's
Setscreen routine to set the screen location pointer to this location in memory
before the command is executed. Executing the command will then write over
the copy, but the original screen is saved, with its location stored in phys and
log, and can instantly be restored when it's needed.

Before Pexec can be called to execute the command (remember that
Pexec will call another program only if this is a regular program), the mouse
cursor must either be left on or turned off. The isprg function checks to see if
the command ends in the .PRG extension. If it does, it's a GEM program; the
mouse cursor should be ON and the text cursor should be OFF, so the

137

_ CHAPTER 6

i n c l u d e <gemdefs .h>
i n c l u d e < o s b i n d . h >
i n c l u d e < o b d e f s . h >
i n c l u d e < w f p a r t s . h >

d e f i n e LOADGO
d e f i n e JUSTLOAD
d e f i n e BASEPAGE
d e f i n e JUSTGO

0
3
4
5

d e f i n e NOCLIP

d e f i n e C L I P

0

d e f i n e EXITAES

d e f i n e RUNCMD

0

d e f i n e LOCK

d e f i n e UNLOCK
0

d e f i n e BLANK

d e f i n e TAB

d e f i n e SKIPWHITE(x)

d e f i n e SKIPCHARS <>: >

w h i l e (*x mm BLANK ! ! *x == TAB) x++;
w h i l e (*x *x »= BLANK &?< *x != TAB) x++;

d e f i n e HIDE_CURSOR

d e f i n e SHOW_CURSOR

0

d e f i n e ON

d e f i n e OFF
0

l o n g i n t r e t ;
c h a r a rgumen t sC2563;

138

show__mouse function is called to set the cursors. If the command ends in the
.TOS or .TTP extensions, then the opposite needs to happen, and GEM's
Cursconf is called to display the text cursor and hide_mouse is called to hide
the mouse.

With the cursors displayed properly for the command, Setscreen is used
to set the screen to the duplicate copy and call Pexec to execute the command.
When the command is completed, the cursors are restored to their original stat
and Setscreen returns the screen pointer to log, its original location. This pro­
duces the effect of very quickly restoring the appearance of the Shell window.

The command's exit status is put in errmsg, and the program returns.
Because they're closely related to the call_sys function, the code for

isprg and the code for save_screen are included in the same file. The purpose
of the short isprg function is to see if the command ends in .PRG. It looks at
the last four bytes of a string and returns 1 if they are .prg or .PRG.

The save_screen function in this program is a short version of the same
routine in the MandelZoom program. Since save_screen simply saves a copy o
the screen, resolution is irrelevant and the data can just be copied as long inte­
gers for efficiency.

Program 6-5. callsys.c

Building a Command Shell

cha r s t rbu- f C2563 ;
c h a r commandC801 ;

l o n g i n t
c a l 1 _ s y s (s t r , w h a n d , v w _ h a n d l e)
c ha r * s t r ;
i n t whand, v w _ h a n d l e ; i

r e g i s t e r i n t a r g l e n ;
r e g i s t e r c h a r * a r g s , *p ;
i n t i s _ g r a p h , i s _ a e s , e x , c y , cw, c h , wx, wy, ww, wh, i , r e z ;
i n t d x , d y , dw, d h , tempC83;
l o n g i n t «phys , ftlog;
e x t e r n i n t g l _ w c h a r , g l _ h c h a r , i _ a m _ a c c e s s o r y ;
e x t e r n s t r u c t o b j e c t *ma in_add r ;
e x t e r n c h a r e r r m s g C l ;

s t r C 2 5 5 3 = 0;
f o r (p = s t r b u f ; p <

*p++ = 0;
s t r e p y (s t r b u f , s t r) ;
s t r = s t r b u f ;

S K I P W H I T E (s t r) ;
a r g s • s t r ;
S K I P C H A R S (a r g s) ;
*args++ = 0;
S K I P W H I T E (a r g s) ;

a rgumentsC03 = s t r l e n (a r g s) ;
s t r e p y (Stargumentst 1 1 , a r g s) ;

s t r e p y (c o m m a n d , s t r) ;
i f (b u i 1 t _ i n (c o m m a n d , a r g s , w h a n d , v w _ h a n d 1 e))

r e t u r n ;

i f (i _ a m _ a c c e s s o r y) /* a c c e s s o r i e s c a n ' t h a n d l e menus, s o */
r e t u r n ; / * t h e y c a n ' t c a l l p r og rams w i t h menus */

i f (f i n d c m d (c o m m a n d , s t r)) i
h i d e_mouse () ;
phys = P h y s b a s e O ;
1og = L o g b a s e () ;
r e z = G e t r e z () ;
s c r e e n &= ~ 0 x f f ;
s a v e _ s c r e e n (s c r e e n) ;
i f (i s p rg (command))i

S e t s c r e e n (s c r e e n , s c r e e n , - 1) ;
show_mouse () ;
i = Pexe c (LOADGO, command , a r gumen t s , 0 L) ;
h i d e_mouse () ;
S e t s c r e e n (1 o g , p h y s , - 1) ;

e l s e i
Curscon f (SHOW_CURSOR,0) ;
S e t s c r e e n (s c r e e n , s c r e e n , - 1) ;
i • P exec (LOADGO, command ,a rgumen t s , 0 L) ;
Cu r s con f (H IDE_CURSOR ,0) ;
S e t s c r e e n (1 o g , p h y s , - 1) ;
>

s p r i n t f (e r r m s g , " % s r e t u r n e d %d" , c ommand , i) ;
show_mouse() ;
>

e l s e i
i = - 1 ;
s p r i n t f (e r rmsg , " C a n ' t f i n d ' 7 . s ' " , s t r) ;
>

r e t u r n (i) ;
>

fcstrbufC2553;)

/* g o t _ k e y () w i l l c l o b b e r s t r i f c a l l e d */
/ * s o we c opy i t i n t o a s a f e p l a c e */

139

CHAPTER 6

i s p r g (s t r)
c h a r * s t r ; i

i n t x;

x • s t r 1 en (s t r) ;
i f < x > 4) <

s t r = & s t r C x - 4 3;
i f < s t r c m p (s t r , " . p r g ") = = 0 1 ! s t r c m p (s t r , " . P R G ") == 0)

r e t u r n (1) ;

r e t u r n (0) ;
>

r e d o _ d e s k () <

i n t x , y , w, h, i , msgC83;

w i n d _ g e t (0, WF_CURRXYWH, S<x, 8<y, &w, &h) ;
w += x ;
h += y;
x = y = 0;
msgC03 = WM_REDRAW;
msgCID = msgC23 = 0;
msgC43 = x;
msgC53 = y;
msgC63 - w; J
msgC73 = h; /
f o r (i • 0; i < 8; i ++)C

msgC3 3 = i ;
a p p l _ w r i t e (0, 16, msg) ;
>

j
tu rn_me <on_of f)
i n t o n _ o f f ; i

i n t msgC83;
e x t e r n i n t g l _ a p i d , menu_ i d ;

i f (o n _ o f f)
msgC0 3 = AC_OPEN;

e l s e
msgC03 w AC_CLOSE;

msgC13 = msgC2 3 = msgC53 = msgC63 = <nsgC7 3 = 0;
msgC33 = menu_ i d ;
msgC4 3 = menu_ id ;
a p p l _ w r i t e (g l _ a p i d , 16, msg) ;
}

/ *
** Get t h e a d d r e s s o f t h e s c r e e n
*/
l o n g i n t *
g e t 1 o g B a s e () i

r e t u r n ((l o n g i n t *) x b i o s (3)) ;
}

s a v e _ s c r e e n (s c r e e n)
l o n g i n t s c r eenC3C403 ;<

l o n g i n t *p , * q , * e n d p i c ;

h i d e _ m o u s e () ;
q = g e t 1 o g B a s e () ;
e n d p i c = s c r e e n C 2 0 0 3 ;
f o r (p = s c r e e n ; p < e n d p i c ;)

*p++ = *q++;
show_mouse () ;
y

140

Building a Command Shell

i f d e f DEBUG
d e b u g (* t r , a , b, c , d , e , 1 , g)
cha r * s t r ;
i n t a , b , c , d , e , f , g ; (

c h a r b u f C1283 , *p ;
s t a t i c i n t n o t _ y e t ;

i f (n o t _ y e t == 0) C
Rscon-f (7 , - 1 , - 1 , - 1 , - 1 , - 1) ;
f o r (p = "He l l o ! \ r \ n " ; *p; p++)

C a u x o u t (* p) ;
n o t _ ye t++;
3

s p r i n t f (buf , s t r , a , b , c , d , e , - f , g) ;
f o r (p = b u f ; *p ; p++)

C a u x o u t (* p) ;
C a u x o u t (' \ r *) ;
Cauxou t (•' \ n *) ;
>

e n d i f DEBUG

i n t Wc, He;

s t r u c t o b j e c t d_menuC103;
dummy_up_menu(str)
c ha r * s t r ; <

e x t e r n i n t n e x t _ i t e m , g l _ w c h a r , g l _ h c h a r . He, Wc;
i n t mbox;

n e x t _ i t e m = 0;
He = g l _ h c h a r ;
Wc - g l _ w c h a r ;
mbox • a d d i t (d _ m e n u , - 1 , G _ I B O X , 0 L , 0 , 0 , 8 0 , 1) ;
a d d i t (d _ m e n u , m b o x , G _ T I T L E , s t r , 0 , 0 , - 2 , 1) ;
>

m e n u _ o n () i

dummy_up_menu (" ") ;
menu_bar(d_menu,ON);
>

m e n u _ o f f () i

menu_bar (d_menu ,OFF) ;

j

The findcmd.c function. To get the full pathname of a command, the
findemd function, Program 6-6, calls the GEM routine shel_find, which
searches each directory in the environment's PATH list, looking for the file.

If shel_find cannot find the command, the user may not have added an
extension, so the routine appends the different extensions and searches again. If
the command still can't be found, 0 is returned to calLsys, which displays a
message telling the user the command couldn't be found.

141

CHAPTER 6

Program 6-6. findcmd.c
f i ndcmd(command,s t r >
c ha r tcommand, * s t r ; {

i-f< s h e l _- f ind (command))
return(1);

s p r i n t - f (command, " 7 . s . p r g " , s t r) ;
i-f(s h e l _ f i n d (c o m m a n d))

return(1);
s p r i n t - f (command, "7.s. t o s " , s t r) ;
i-f (s h e l _-f i nd (command))

return(1);
s p r i n t - f (command, "7.s. t t p " , s t r) ;
i-f (s h e l _-f i nd (command))

return(1);
r e t u r n (0) ;
y

The built-in Function
The built-in commands offer quick access to commonly needed functions such
as file copying, removing, and printing. They demonstrate another way of en­
tering commands besides the pull-down command menus. The built—in func­
tion, Program 6-7, handles the following commands for this shell program:
help, cd, cp, mv, rm, Is, print, and list.

For those commands that take filename arguments, the user can enter
the * wildcard character and the program will expand it into a list of filenames.
For example, with the copy command the user can enter

cp *.c A: \onefile.c

and, as long as *.c is only one file, the command will work. Likewise, the user
can type

cp *.c A: \ backh­

and the command will work as long as bac*.dir is a single directory.
The user can set the current working directory by typing the cd or chdir

commands. The GEM Dsetpath routine is called to change to the directory
given as an argument.

The copy command allows the user to copy a list of files into a directory,
in addition to simply copying one file to another. It calls three functions that
are explained below, but summarized here. The copy command calls save_iast
to save the last filename in the list as the target file or directory. Then, it calls
the dir list function to expand any wildcards in the arguments except the last
one into a list of filenames. And last, do_copy is called to actually copy the
files.

The move command is similar to the copy command, except that the
do_move function is called instead of do_copy.

The rm and remove commands remove files by calling the dir list func­
tion to expand the wildcards, and do_rm to remove the files. The rm command

142

file:///onefile.c

Building a Command Shell

will not prompt the user if the file should really be removed, because it passes
the DONTASK argument to do_rm. The remove command passes the ASK
argument to do_rm, causing do_rm to ask for confirmation.

The dir or Is commands list the files in a directory. The case where no
argument is entered after the command is handled by setting the argument to
., meaning everything. To conserve space, the JUSTFILE argument is used
when the dir—list function is called so that it prints only the filenames, remov­
ing any directory path information it finds. Then the do—dir_window function
is called to display the filenames in a window with the regular GEM interface
borders, enabling the user to resize and scroll the window.

The lpr, print, and list commands call the dir—list and print—files func­
tions to send files to the printer. The titles variable is set by the list command
to cause the filename to be printed at the top of each file. The list command
causes title to be nonzero so that the title is printed; otherwise it is not.

After a command is executed, the screen needs refreshing. All the com­
mands except dir, which has its own window, fall through to the do_display
function call to redraw the screen and print any messages, stored in errmsg,
that might exist.

If the command is one of the built-in commands, built-in returns 1 to let
call—sys know it can return. When the command is not built in, built—in re­
turns 0.

Program 6-7. builtin.c
i n c l u d e <gemdefs .h>

i n c l u d e < o s b i n d . h >
i n c l u d e <document .h>

d e f i n e ASK 1
d e f i n e DONT_ASK 0

i d e f i n e J U S T F I L E 0

d e f i n e FULLPATH 1

i n t t i t l e s = 0;

b u i l t _ i n (c o m m a n d , a r g s , w h a n d , v w)
c ha r tcommand, targs;
i n t whand, vw;<

e x t e r n i n t g l _ w c h a r , g l _ h c h a r , x l i n e s ;
e x t e r n c h a r e r rmsgCD;
c h a r * l a s t , * s a v e _ l a s t () ;
i n t r e t , x;

r e t = 0;
i f (commandC0D == 0)

r e t - 1;
e l s e i f (s t r c m p (c o m m a n d , " ? ") == 0 ! ! s t r c m p (c o m m a n d , " h e l p ") == 0) i

g i v e _ h e l p (w h a n d , v w) ;
r e t = 1;
>

e l s e i f (s t r c m p (c o m m a n d , " c d ") == 0 IS s t r c m p (c o m m a n d , " c h d i r ") == 0){
D s e t p a t h (a r g s) ;
r e t = 1;

143

CHAPTER 6

e l s e i f (s t r c m p (c o m m a n d , " c p ") == 0 !I s t r c m p (c o m m a n d , " c o p y ") mm 0)t
l a s t = s a v e _ l a s t (a r g s) ;
i f (l a s t) C

x l i n e s = d i r _ l i s t (a r g s , F U L L P A T H) ;
d o_ copy (x l i n e s , l a s t , whand, vw >;
>

r e t = 1;
y

e l s e i f < s t r cmp(command , "mv") == 0 l I s t r cmp(command , "move") mm 0 >{
l a s t = s a v e _ l a s t (a r g s) ;
i f (l a s t) <

x l i n e s = d i r _ l i s t (a r g s , F U L L P A T H) ;
do_move(x l i n e s , l a s t , whand, vw) ;
y

r e t = I j

e l s e i i (s t r cmp(command , " rm") == 0) {
x l i n e s = d i r _ l i s t (a r g s , F U L L P A T H) ;
do_rm(x l i n e s , DONT_ASK, whand, vw) ;
r e t = 1;
>

e l s e i f (s t r cmp(command , " r emove ") == 0) {
x l i n e s = d i r _ l i s t (a r g s , F U L L P A T H) ;
do_rm(x l i n e s , ASK, whand, vw) ;
r e t = 1;
y

e l s e i-f(s t r c m p (command, " I s ") == 0 ! ! s t r cmp (command, " d i r ") == 0) C
i f (argsC03 mm 0)

s t r c p y (a r g s , " * . * ") ;
x l i n e s = d i r _ l i s t (a r g s , J U S T F I L E) ;
d o _ d i r_wi ndow(x1 i n e s , a r g s , w h a n d , v w) ;
r e t u r n (1) ;
>

e l s e i f (s t r cmp (command, " l p r ") = = 0 .' ! s t r cmp (command, " p r i n t ") 0)<
r e t = 1;
t i t l e s = 0;
i f (a rgsC0D == 0)

s t r c p y (e r r m s g , " P r i n t w h a t ? ") ;
e l s e C

x m d i r _ l i s t (a r g s , F U L L P A T H) ;
pr i n t _ f i 1 e s (x , w h a n d , v w) ;

e l s e i f (s t r c m p (c o m m a n d , " 1 i s t ") == 0)C
r e t = 1;
t i t l e s = 1;
i f (a rgsC0D == 0)

s t r c p y (e r r m s g , " L i s t w h a t ? ") ;
e l s e C

x « d i r _ l i s t (a r g s , F U L L P A T H) ;
p r i n t _ f i 1 e s (x , w h a n d , v w) ;
y

y
d o _ d i s p l a y (w h a n d , v w) ;
r e t u r n (r e t) ;

The save—last function. The user can type two types of arguments to
the move and copy commands: the source file or files, and the target file or di­
rectory. If the target is a file, there can be only one source file to copy into it. If
the target is a directory, then a list of files can be moved or copied into it. The
program needs to identify the last argument in the list, expand any wildcards,
and determine that the argument is a unique file or directory name. It does this
with the save_last function, Program 6-8.

144

Building a Command Shell

To find the last argument, save_last goes to the end of the string it was
passed, then moves backward one character at a time until it finds a white
space. An error message will be displayed if it reaches the beginning of the
string without finding a white space, indicating that the user didn't enter a sec­
ond argument for the target.

The last argument is copied into the retval array and passed to the
dir list function, which expands wildcards into a list of files and then sorts
them alphabetically. We'll talk about dir list in a moment, but for now note
that if the target name is not unique, a message is displayed and the program
returns. If dir list finds a filename that matches, it returns it in the dir—strs ar­
ray and it is copied into the retval array. If a matching name isn't found, then
the original string becomes the name of a new file and is copied into retval.
The white space before the first character is included with the string because
the first character distinguishes directories from files. The white space serves as
a flag that this is a file. The Shell will create files from arguments, but directo­
ries must be created separately.

After the last argument is removed, any extra white space that remains
after the last argument is also deleted, and the last argument is returned to the
built-in function.

Program 6-8. savelast.c
d e f i n e FULLPATH 1

i n c l u d e < o s b i n d . h >

cha r *
s a v e _ l a s t (s t r)
cha r * s t r ; i

c ha r *p;
i n t x ;
s t a t i c c h a r r e t v a l C 1 2 8 D ;
e x t e r n c h a r e r rmsgC3 , * d i r _ s t r s C 3 ;

p = s t r ;

w h i l e (* s t r) /* go t o end */
s t r + + ;

w h i l e < * s t r != * s t r != ' \ t * &Sc s t r > p) /* f i n d w h i t e */

s p r i n t f (e r r m s g , " M i s s i n g l a s t a r g u m e n t ") ;
r e t u r n (0) ; /* no w h i t e f o u n d */

x = d i r
i f (x >

s t r c p y (
i f (d i r

i f (d i r

r e t v a l , s t r + 1) ;
s t r s C 0 3)
d i r _ s t r s C 0 3 C 0 3 = 0;
1 i s t (r e t v a l , F U L L P A T H) ;
1) <
s p r i n t f (e r r m s g , " T a r g e t i s more t h a n 1 f i l e ") ;
r e t u r n (0) ;
>
s t r s C 0 3 d i r _ s t r s C 0 D C 0 D) <
s t r c p y (r e t v a l , d i r _ s t r s C 0 D) ;

e l se C

145

CHAPTER 6

strcpy(retval, str);
y

while(str > p <*str == * ' ! ! *str == '\t'))
«str— = 0; / * clobber white */

return < retval);

The dir_list function: expanding wildcards. When a function needs to
expand filenames that contain wildcards, it calls the dir_Jist function, dir list
takes a list of filenames, wildcards included, and copies the real filenames into
an array called storage. As each filename is put in storage, its new address is
placed in the array dir_strs. Thus, dir_strs is an array of pointers, each of
which points to a filename stored in the storage array. The list of pointers can
be manipulated, sorted, or indexed conveniently.

The dir list file includes the document.h file, shown in Program 6-9.

Program 6-9. document.h
define NFILES 200
define NLIIMES 200
define NCHARS 80

The three lines specify the number of files, lines, and characters that
dir_list can handle. Keeping these separated makes it easy to make global
changes in the sizes.

Two functions that are only used in this routine are included in this file:
the cmpfile and next_arg routines. You can see the cmpfile subroutine at the
beginning of the listing. This subroutine uses the GEM strcmp subroutine to
compare two strings and is used by the GEM qsort subroutine.

The next_arg routine appears at the end of the listing. It finds successive
arguments in a list, leaving a pointer pointing to the first character of the argu­
ment. It looks for the next argument in a list by finding the white space separa­
tor, and then replaces it with a 0 to terminate the string. Remaining white
space is skipped and a pointer to the first nonwhite character of the next argu­
ment is returned. The pointer points to the end of the string when there are no
nonwhite characters.

dir list, Program 6-10, gets filenames by calling the GEM routines Fsfirst
and Fsnext, which return the first filename in a directory, and then succeeding
filenames. They return their data to a place called a Data Transfer Address,
which must be set by the routine with the GEM Fsetdta subroutine. Because
this address is used by other programs, we use Fgetdta to save the old Data
Transfer Address and then restore it when we've finished. The Data Transfer
Address is set to point to the fs structure. The data returned by Fsfirst and
Fsnext is placed in the fs array, whose data structure is defined to correspond
to the shape of the returned data. Of importance to this routine is the fs__attr
field, in which one of the returned bits indicates whether the name is a direc­
tory name.

146

Building a Command Shell

To expand wildcards in the arguments, two loops are used, one inside
the other. The outer one loops to locate each argument and passes it to the in­
ner loop, which looks for files in the directory that match the current argument
with its wildcards.

In the outer loop, each argument is isolated by putting a zero in the
space between the arguments, and a pointer is moved to successive arguments.

To keep a pathname of an argument, which is indicated because the
fullpath variable is nonzero, the get_head subroutine is called to return the
path prefix to the filename. The pathname fragment is stored in head, which
can then be inserted in front of each filename returned by Fsfirst and Fsnext to
produce a complete pathname that commands like print can use.

Fsfirst returns 0 if a file that matches the argument is found. If the file is
not one of the special directory names " . " or / ' . . , ,

/ it is copied into storage with
a special character called DIR_CHAR that indicates whether it is a directory,
and the pathname. On the screen, this special character appears as the box con­
taining a diamond shape. The head variable will be empty if fullpath is 0.

The Fsnext function returns the next filename, and the comparing pro­
cess continues looking for another match. Fsnext returns nonzero when there
are no more files that match the argument, and the loop terminates.

Fsfirst returns nonzero if there are one or no files that match the argu­
ment. Any filename that is returned is copied into storage and the pointer in
dir__strs is incremented.

At the end of the outer loop, the arguments variable is set to next so the
next argument will be used, and the loop repeats. When all arguments have
been processed, the old Data Transfer Address is restored and the filenames are
sorted alphabetically by calling qsort, the "quicker sort" routine that is part of
the C library. The number of files that are found is returned to save_last.

Program 6-10. dirlist.c
include <gemde-fs.h>
include <osbind.h>
include <document.h>

define IS_DIRECTORY 16

define DIR_CHAR 7

define STORE (8*1024)

char storageCSTORE+323, *sp;
char *dir_strsCNFILES3;
int dir_index;

cmpfi1e(a,b)
char **a, **b;<

return< strcmp(*a, *b));
>

dir_list (arguments, ful 1 path)
char (arguments;
int f ul 1 path; <.

U7

CHAPTER 6

struct -fs C
char -f s_junkC213;
char -fs_attr;
unsigned int fs_time;
unsigned int -fs_date;
long int -fs_size;
char -fs_nameC 133;
> *s;

long int save_dta;
int x ;
char thead, *p, *q, tnext, *next_arg(), *get_head();
extern char *dir_strsCNFILES3;

sp = storage;
*sp m 0;
dir_strsC03 • sp;
•fs. -fs_nameC03 • 0;
dir_index • 0;
save_dta = FgetdtaO;
Fsetdta(&fs>;
p = -f s. f s_name;
while(argumentsC03 && sp < &storageCST0RE3) <.

next = next_arg(arguments);
i-f(-fullpath)C

head p get_head(arguments);
>

else i
head « ;
>

x = Fs-f irst (arguments, 0x3-f) ;
i-f (x ==0) {

do i
if(sp > &storageCST0RE3)

break;
if(strcmp (p, " . ") 8t8t strcmp (p, " - - "))i

dir_strsCdir_index++3 • sp;
if< fs.-fs_attr & IS_DIRECTORY)

*sp++ • DIR_CHAR;
el se

*sp++ = * * ;
for(q • head; *sp++ • *q++;)C

if(sp > S*storageCSTQRE3) i
*sp— - 0;
break;
>

>
sp—;
for< q = p; *sp++ = *q++;)<

if(sp > S<storageCST0RE3 > C
*sp— m 0;
break;
>

>
>

> while< dir_index < NFILES ScS< FsnextO ==0);
>

else lf< pC03)
•trncpy(dir_strsCdir__index++3,p, 13) ;

arguments = next;
>

Fsetdta(save_dta) ;
qsort (dir_strs, dir_index, sizeof (di r_strsC03) ,cmp-f ile) ;
return(dir_index);
>

char *
next_arg(a)
char *a; i

148

Building a Command Shell

while< *a ScSc *a != " ' &8c *a != 'At') / * find white space */
a++;

if (*a)i
*a - 0;
a++;
while< ta tdi (*a == ' ' ! ! *a == ' \t *))

a++;
return(a);
>

el se
return(a);

>

The get_head function. With the get-head subroutine, you can identify
and save the part of a file's pathname that precedes the filename. This can be
especially handy for constructing a complete pathname for a series of filenames,
for example, to send them to the printer.

If a pathname of

c: \ programs \ shell \gethead.c

is given, the get—head function, Program 6-11, will return

c: \ programs \ shell

The function scans the string for the backslash character and replaces the
last one it finds with a 0 to terminate the string. It then returns a pointer to the
start of the truncated string.

If there are no backslashes, a null string is returned to the calling
routine.

Now let's take a look at the way the individual commands that call
dir list use the data it returns.

Program 6-11. gethead.c
char *
get_head(str)
char *str;{

static char headC2*10243;
char *h, *last_slash;

last_slash = 0;
h = head;
while(*str)i

th++ = *str;
if(*str++ == 'W)

last_slash = h;
>

if< last_slash)<
*last_slash = 0;
return(head);
>

return("");
}

149

CHAPTER 6

The do—copy Function: Copying Files
The Shell program lets the user copy one or more files into another file or into
a directory. It does this by using the dir_list function discussed earlier to create
a list of filenames which is returned to the built—in routine, built—in then calls
do_copy (Program 6-12), passing it the number of files and the target filename
(in last) into which to copy them. The target can be a file or a directory.

The function checks the dir_strs array to verify that there is at least one
file to copy, and prints an error message on the screen if there isn't.

To find out if the target is a directory, the first character of the target is
checked. Remember that in the dir list routine the DIR_CHAR character (a box
with a diamond in it) was inserted in the first position of a directory name. The
is—dir flag was set according to whether or not this was a directory.

For each source file in the global dir—strs array, several error-checks are
made and then the file is copied to the target. Before copying the source file(s),
the program checks that each source file is not a directory. The program also
compares the source and target names to make sure they aren't the same. The
following paragraphs explain how the program does this checking.

This version of a copy command lets a user copy only one file at a time
into another. That is, as a precaution against inadvertent input error, we don't
let the user copy several files into one. The is—dir variable indicates whether
the target is a directory or not. If the target is not a directory, and the number
of source files being copied is more than 1, the program prints an error mes­
sage and returns to built—in.

The list of source filenames in the global dir—strs array is examined to
see if any of the filenames are directories. In this command, if a directory is
found among the source files, a message is printed and the function returns to
built—in, where the user can try retyping the command.

Next, a filename into which the source file will be copied is created. A
filename from the dir—strs array is copied into the variable p, and the first char­
acter (which is blank for filenames) is skipped over. If the user has entered a
directory as the target, then the program constructs the complete pathname by
joining target and p (separated by a backslash), and puts the pathname in
tofile. A plain file simply has its filename put in tofile. The name in tofile is
now compared to the name in p to confirm that they are not identical. If they
are, an error message is printed and the program returns.

Then the GEM fdelete routine is called to remove any existing target file
so we don't run the risk of having parts of an old file appended to the newly
copied file, as would happen if the old file were longer than the file being copied.
The Fcreate is called to create a new file and return its file descriptor in to—fd.
Next fopen is called to open the source file so the data can be read from it.

sprintf is called to construct a message about which file is currently be­
ing copied, and do_display to refresh the screen and display the message. This
message feature is especially useful to a user who is copying many files, since
the information it contains tells the user the status of the copying process.

150

Building a Command Shell

Finally, everything has been confirmed and the source and destination
files opened. The GEM routines Fread and Fwrite are called to read from the
source file and write to the target. Fread returns the number of bytes it has read
from the source file and stored in fbuf. Fwrite collects only that number of
bytes from fbuf, and writes the data to the new file. LSIZE is used because
Fread needs a 32-bit number for the byte count, and SIZE is a 16-bit number.
Fread returns 0 on end of file, and negative numbers for errors, so the loop will
terminate on either condition. When the file is copied, Fclose is called to close
the source and destination files; then it goes through the loop again for the
next filename in the dir_strs array.

The ST floppy disks are quite fast, but the software overhead in transfer­
ring small records can easily hide that speed. If large records are being trans­
ferred, like the 8K records used here, the software is only called upon to set up
the transfer once every 8K, and the disk transfer speed is quite good. The
constants SIZE and LSIZE control the size of the transfers. Making them bigger
than 8K doesn't increase the speed by much, since we reach diminishing re­
turns when the number of transfers per file gets below 3 or 4. Making them
smaller will make the copies take longer, but may be desirable when memory
is at a premium, as on 512K STs with a RAMDISK installed.

Program 6-12. docopy.c
include <osbind.h>

include <document.h>

de-fine DIR_CHAR 7

define SIZE (1024*8)
define LSIZE ((long int)SIZE)
do_copy(count, target, whand, vw)
int count;
char *target;
int whand, vw;<

int is_dir, x, to_fd, from_fd;
long int numbytes;
char tofileC1283, *p;
extern char errmsgCJ, *dir_strsCNFILES3, fbufCH;
if(dir_strsC03 == 0 > <

sprintf(errmsg,"No 'from* file!");
return;
>

if(targetC03 — DIR_CHAR)
is_dir = If

el se
is_dir • 0;

target++;
if(is_dir == 0 &«c count != 1)<

sprintf(errmsg,"Usage: copy file file OR copy files directory");
return;
>

for(x • 0; x < count; x++){
p = dir_strsCxD;

151

CHAPTER 6

p++;
if(is_dir)

sprint* (tofile, "'/.s\V/.s" , target, p) ;
el se

sprintf (tofile, ""/.s" , target) ;
i-f(strcmp (target, p) == 0) <

sprintf(errmsg,"Copying *7.s' to itself!",target);
return;
>

Fdelete(tofile) ;
to_fd • Fcreate (to-f i le, 0) ;
if(to_fd < 0)<.

sprintf (errmsg, "Can't create ' 7.s* " , tof i 1 e) ;
return;
>

from_fd = Fopen(p,0);
if (from_fd < 0) <:

sprintf(errmsg,"Can't open *%s,",p);
return;
>

sprintf (errmsg, "copy '7.s* to * %s* " , p, tof i le) ;
do_display(whand,vw);
while((numbytes = Fread(from_fd, LSIZE, fbuf) > > 0) i

if(Fwrite(to_fd, numbytes, fbuf > < 0) <.
sprintf (errmsg, "Write error on ' 7.s'" , tof i le) ;
return;
>

>
Fclose(to_fd);
Fclose(from_fd);
>

The do—move Subroutine: Renaming Files
The move command is similar to the copy command, except that the source file
is removed after the copy. The do_move function, Program 6-13, takes each
filename as the source and renames it to the target name by either changing
the spelling of the filename, or copying the file and giving it the target name,
then deleting the source file. The target can be in a different directory or on an­
other drive.

Most of the do_move function is very similar to the do_copy function
discussed in the previous section. After setting up the directory status, path­
name (if any), and so on, the program renames the file.

A simple, fast way to change the spelling of a filename to a target name
on the same disk and in the same directory is with the GEM Frename routine.
Frename checks whether the target is in a different directory and if the target
filename exists; if either is true, it returns an error message and the program
drops into the copy loop. The program always tries to use Frename to change
the spelling before resorting to the more expensive technique of copying the
file.

If a filename can't simply be respelled, then the source file must be
copied into the new file, with the target filename. This is done in a for loop,
which has the same function as the one in do__copy, except that the old file is
removed after the copy is completed.

152

Building a Command Shell

Program 6-13. domove.c

define DIR_CHAR 7
define SIZE (1024*8)
define LSIZE ((long int)SIZE)
char fbufCSIZE3;

do_move(count, target, whand, vw)
int count;
char *target;
int whand, vw;i

int is_dir, x, attributes, to_fd, from_fd;
long int numbytes;
char tofileC1283, *p;
extern char errmsgCD, *dir_strsCNFILES3, fbufC3;
if(dir_strsC03 == 0)C

sprintf(errmsg,"No 'from* file!");
return;
>

if(targetC03 mm DIR_CHAR)
is_dir = If

el se
is_dir = 0;

target++;
if(is_dir == 0 && count != 1)C

sprintf(errmsg,"Usage: move file OR move files directory");
return;
>

if(is_dir mm 0 ScSc count == 1) C
p • dir_strsC03;
P++;

• if(Frename(0, p, target) >= 0)£
sprintf (errmsg, "renamed *5Cs* to *Xs,n,

p,target);
do_display(whand,vw);
return;
>

>
f or (x = 0; x < count; x++) <.

p = dir_strsCx3;
P++;
if(is_dir)

sprintf (tof ile, "Xs\\7.s" , target, p) ;
el se

sprintf (tof i le, "7.s", target) ;
if(strcmp(target,p) mm 0)<

sprintf (errmsg, "Moving *7.s* to itself !",target) ;
return;
>

Fdelete(tofile);
to_fd = Fcreate(tofile,0);

153

include <osbind.h>
include <document.h>
define IS_READDNLY 1
define IS_HIDDEN 2
define IS_SYSTEM 4
define IS_VOL_LABEL 8
define IS_DIRECTORY 16
define IS_CLOSED 32

CHAPTER 6

if (to_fd < 0)<
sprintf(errmsg,"Can't create '%s' " , tof i le);
return;
>

from_fd = Fopen(p,0);
if(from_fd < 0)i

sprintf(errmsg,"Can't open 'Xs'",p);
return;
>

sprintf(errmsg,"move '%s' to '%s'",p,tofile);
do_display(whand,vw);
while((numbytes = Fread(from_fd, LSIZE, fbuf)) > 0)<

if(Fwrite(to_fd, numbytes, fbuf) < 0)<.
sprintf (errmsg, "Write error on ' 7.s'", tof i le);
return;
>

>
Fclose(to_fd);
Fclose(from_fd);
Fdelete(p);
>

>

The d e r m Subroutine: Deleting Files
To delete files from a disk, the user types the remove command in the shell.
The code for removing files is much simpler than for moving them (Program 6-
14).

The program verifies that an argument has been entered, and then, if the
ask flag is set, asks the user to confirm that the file should be deleted. If the
user typed "remove" for the command, then the ask flag is true, and it is false
if he typed "rm".

The GEM Fdelete routine takes care of deleting the file from the disk
and directory.

Program 6-14. dorm.c
include <osbind.h>
include <document.h>
do_rm< count, ask, whand, vw)
int count, ask, whand, vw;(

extern char *dir_strsCNFILES3, errmsgC3;
char bufC2563, *p;
int x;

if(dir_strsC03 == 0)<
sprintf(errmsg,"No file to remove!");
return;
>

for(x • 0; x < count; x++)i
p = dir_strsCxD;
p++;
if(ask)i

sprintf(buf,"Remove '%s'?",p);
if< show_form(buf))

continue;
>

sprintf(errmsg,"removing 'Xs'",p);

154

Bullding a Command Shell

dodisplay(wnand,vw);
Fdelete(p);
>

>

The prntfile.c and do—title Functions
When the user gives the shell the print or list command, the function
print—files (Program 6-15) is called to send files to the printer.

The for loop in print—files cycles through the list of files in the dir—strs
array that was created by dir list, printing the name of each file and a number
showing where it is in the list—for example, "main.c:5 of 32" . If a file cannot
be opened, an error message is printed on the screen. The list command simply
means that the filename should be printed at the top of the file. If the user
types list, built—in calls do—title with a 1 in the titles variable to print the title.
Otherwise, do_title does nothing.

print—files then prints the file by copying from the file into a buffer and,
for each character in the buffer, calling the BIOS routine Cprnout to send the
character to the printer.

If the shell is running as a desk accessory, then printing can occur in the
background, while other GEM programs run in the foreground. To allow the
other GEM program to run, GEM's evnt—timer routine is called, which GEM
uses to decide which program gets to run. GEM can only get control when a
GEM call is made, so by calling evnt—timer with a 0, GEM can reschedule the
different tasks running on the computer.

The programmer has to decide how often to call evnt—timer. Calling it
for every character will cause very slow printing, even if no other processes are
running. Calling evnt—timer too seldom will make any competing application
run too slowly.

Calling evnt—timer every other character is a good tradeoff for printers
that operate at 120-180 characters per second. The printer runs almost con­
stantly without slowing down other programs. If your printer has a large RAM
buffer or is very fast, you can change the line that keeps track of every odd
character:

if (y & 1)

to

if ((y &3) 0)

to call evnt—timer every four characters.
When printing is finished, print—file sends a FORMFEED character to

advance the paper, and closes the file. The next file in dir_strs is opened, and
the loop is performed again, until all the files have been printed.

155

CHAPTER 6

Program 6-15. prntfile.c
include <gemdefs.h>
include <osbind.h>
include <document.h>

de-Fine PRINTER 0
define FORMFEED 0 1 4
define BUFSIZ 4 0 9 6 L

print_fi1 es(count,whand,vw)
int count, whand, vw; {

int x, fd;
long int num, y;
char tfname;
static char bufCBUFSIZ3;
extern char errmsgCD;
extern char *dir_strsCNFILES3;

for(x = 0 ; x < count; x++) {.
fname = dir_strsCxD;
fname++;
spr intf (errmsg, "7.si V.d of %d" , fname, x + 1 , count) ;
do_display(whand,vw);
fd = Fopen(fname,0);
if (fd < 0 > <

spr intf (errmsg, "Can* t open ' y.s' " , fname) ;
do_display(whand,vw);
return;
>

do_titie(fname);
while((num = Fread(fd,BUFSIZ,buf)) > 0) <

for(y • 0 ; y < num; y++)£
Cprnout(buf Cy]);
/ *
** Every other character, we let GEM decide
** if another program should get a chance.
*/
if (y 8c 1)

evnt_timer(0,0);
>

>
Cprnout(FORMFEED);
Fclose(fd);
>

do_title(str)
char *str;<

extern int titles;

if (titles == 0 >
return;

while(*str)
Cprnout(*str++);

Cprnout(*\r *);
Cprnout('\n');
>

156

Building a Command Shell

The do_dir_window Function
Issuing the dir (directory) command to the shell produces a window on the
screen containing a neatly arranged list of filenames like the one in Figure 6-3.
The built—in routine calls do—dir_window, Program 6-16, to create this win­
dow, complete with the sliders, close and resize boxes, and other features of a
GEM window. In the code for this program, youTl see how indirect recursion is
used to call several of the functions created for the main application, such as
multi and got—key.

First, the function constructs the directory pathname so it can include it
at the top of the directory window and in a status message. It uses the GEM
routines used before, Dgetdriv and Dgetpath, to get the drive and path. Then
sprintf is called to put the pathname in the array, name, sprintf is called again
to construct a message that is printed in the shell window after the directory
window is closed, telling the user how many files were in the directory—for
example, "32 files in b: \ examples \ shell". Since the user may have included
wildcards in the argument to dir, (or given no argument in which case built—in
added *.* as the default), the status may not be an exact directory name, but
something like "14 files in A: \ games * .PRG".

Determining the maximum possible size that the directory window can
be is the next step. GEM's wind—get function, originally introduced in Chapter
2, is used to get the size. After the size is determined, do_dir—window calls
calc_dir, discussed in more detail later, to put all the filenames in columns that
will fill a window no bigger than the desktop's work area. In addition, if the
list of filenames doesn't fill the window when it's at the maximum size, then
cak—dir reduces the window to the smallest size it can be and still show all the
files.

Now do_dir_window sets up the window borders by calling several of
the envelope routines developed in Chapter 2. It uses slide—size and slide—pos
to calculate the size and position of the slider boxes, which depend on the size
of the window and the amount it must be scrolled in order for you to see its
complete contents. The height of the window in pixels is returned in h by
cak—dir and is converted to the number of lines in the window by dividing the
height in pixels by the height of a character. You may notice that there is no
provision for horizontal slider boxes. This is because we carefully calculate how
many columns will fit horizontally in calc_dir, thus eliminating the need for
horizontal scrolling and making things a little more convenient for the user.

To create the new window, the new_window function (discussed below)
is called and passed the name array, the slider positions and sizes (vs, hs, vp,
and hp) that were calculated, and the name and address of a new virtual work­
station handle to be used for this window. new_window will call the envelope
function setup—window to create the new window, wind—set to make it the
current, topmost window, and clr—display to clear the background part of the
screen from the window. The handle of the new window is returned in whand.

157

CHAPTER 6

Before calling multi to process input to the window, the events variable
is set to MU—MESAG and MU—KEYBD since mouse clicks and keypresses are
the only types of input this window will accept.

In order to have the directory window redrawn when the user presses a
key, the global variable dir_window is set to whand. This will cause the
got—key subroutine to call redo_dir, which redraws directory windows when­
ever the screen needs redrawing.

Next, we take advantage of the functions developed in the envelope li­
brary that create a GEM window in a regular application program. The multi
function is called recursively, and it takes over. Notice that the program hasn't
returned from the first call to multi, so that this call occurs within the first call.
In the same way that an application program like the MandelZoom program
opens a window and accepts input, the directory window will be drawn and
mouse and keyboard input will cause events to be passed to multi, which will
call was_msg to handle window oepration and got_key to handle characters.

Window operations will work normally, since none of the functions
called by multi can tell that this is not the application's original main window.
The program is able to do this because we have been very careful to pass the
handles for the virtual workstation and the window, and not let the functions
use global window handles.

To close a directory window, the user can type any key, or click on the
close box in the window border, got—key handles the character input by return­
ing 1, meaning exit, when the dir_window variable is nonzero. This causes
multi to return do—dir_window, and we close the window and set dir—window
0.

Before do—dir_window can return, there's one more thing to consider. If
do_dir—window is running as a desk accessory, then it is possible it got an
AC—CLOSE message from GEM while processing the multi function. AC—CLOSE
is sent by GEM when GEM has closed all of an application's windows because
some other program has taken over the screen. If this happens, then our pro­
gram must close the main application window as well as the directory window.
A clean way to do this is to arrange for the first call to multi to get another
AC_CLOSE message, replacing the one that the second, nested call to multi
intercepted.

The close_me function, which appears at the end of the Program 6-16,
dodirwind.c, calls the GEM appl—write routine to send the AC—CLOSE mes­
sage to the Shell program's own application id (gl_apid). Thus, the next time
evnt_multi is called, which occurs when the first instance of multi loops after
got_key returns, the AC—CLOSE message is received by evnt_multi and the
application's windows are closed properly.

158

Building a Command Shell

Program 6-16. dodirwnd.c

do_dir __wi ndow <count, args, old_wh, old_vw)
int count;
char targs;
int old_wh, old_vw;<

int whand, vp, hp, vs, hs, x, y, w, h, drv, vw, events, nlines;
int save_x, save_y, save_w, save_h, wlines, retval;
static char curdirC1003, nameC100 3;
extern int gl_wchar, gl_hchar, menu_id, dir__window;
extern char errmsgC3;

drv • Ogetdrv(>;
Dgetpath(curdi r,drv+1);
sprintf(name,M%c:%s\\%sH, drv+'A*, curdir, args);
sprintf (errmsg, "Xd file'/.s in Xs",count,count == 1 ? "" : "s",name);

wi nd_get (old_wh, WF_CURRXYWH, &save_x, &save_y, &save_w, &save_h);
wind_get (0, WF_WORKXYWH, 8<x , Scy, &w, &h);

vw = old__vw;
nlines = calc_dir (count, S<x, &y, &w, Sth);
if(nlines <= 0)

return;

wlines - h / gl_hchar;
slide_size(wlines, nlines, &vs);
slide_size(1, 1, &hs);
slide_pos(wlines, nlines, 0, &vp);
slide_pos(wlines, nlines, 0, &hp);
whand • new_wi ndow (name, 1000-vp, hp, vs,hs,x,y,w, h,S<vw) ;
events = MU_MESAG ! MU_KEYBD;
dir_window = whand;
retval • multi (events,Scwhand,0,name,&vw);
close_window(whand);
dir__window • 0;
/ *
** If the previous call to multi got an AC_CLOSE,
** then it returned OBLIVION. We must send another
** AC_CLOSE to the multi that is called by mainO,
** so that the virtual workstation gets handled
** properly, and the other window gets closed properly.
*/
if(retval == OBLIVION)

close_me();
>

/*
** This routine sends a message to multi, faking an AC_CLOSE.
** This allows routines to be decoupled from actions that
** take place in was_msg(): the caller only needs to know that
** he wants to do whatever action AC_CLOSE causes, without having
tt to know anything about the internal workings of was_msg.
*/
close_me()<

int mC8D;
extern int gl_apid, menu_id, i_am_accessory;
if(i_am_accessory)<

mC0D = AC_CLOSE;

159

include <gemdefs.h>
include <osbind.h>
define BYEJBYE -1
define OBLIVION -2

CHAPTER 6

mC33 • menu_id;
mC13 = mC23~= mC43 = mC53 = mC63 = mC73 = 0;
appl_write<gl_apid,16,m);
>

>

The calc_dir function. The purpose of the calc_dir function, Program 6-
17, is to put the largest number of filenames from a list into the smallest win­
dow that will hold them. For large directories, the window will be the entire
desktop work area and the user can move the slider boxes to see the parts that
extend past the window borders.

The calc_dir function is called by do_-dir_window, which passes it the
number of filenames in count, and the dimensions of the desktop area in x, y,
w, and h.

calc_dir sets the rows variable to the maximum number of lines possible
by dividing the height of the window by the height of one character. Then col­
umns is set to the maximum number of columns possible in the window. A col­
umn is 13 characters wide: 8 for the filename, 1 for the period, 3 for the
extension, and 1 for a space (the space is replaced by a box containing a dia­
mond shape for a directory name).

If the window is less than 13 characters wide, then columns is 0. To in­
sure that at least part of filename list shows, columns is set equal to one col­
umn, and allows the extra characters to be clipped off by the window.

Then calc_dir executes a for loop which searches for the smallest num­
ber of columns that will hold the filenames and display as many as it can. The
objective is to open the smallest window that displays as many filenames as
possible, while keeping the relationship of the window height and width the
same, no matter what the window size.

Walking through the loop with sample data will demonstrate how the
loop consistently creates a rectangular window with the same proportions, in­
dependent of size. If a line is 78 characters long, and the window can hold 10
lines, then rows is 10 and columns will be 6 as the loop is begun. The follow­
ing table gives the value for each i of the expression:
i * ((i * rows) / columns)

i Value Resulting Value
0 0
1 1
2 6
3 15
4 24
5 40
6 60
7 77
8 104
9 135

10 160

160

Building a Command Shell

If there were 30 files to display (count = 30), they would be shown in a
table with 5 columns, since the loop would stop when i reached 5 because the
count is less than 40.

To calculate the number of lines in integer arithmetic, count is rounded
up by adding columns — 1 , and dividing by columns. The result is compared to
NLINES, which was defined to be the number of lines in the pi array, where
the list of filenames will be stored. If the number of lines equals or exceeds
NLINES, the number is limited to NLINES —1 to prevent the array from over­
flowing. (You can increase NLINES to accommodate huge directories, but it is
already a generous 200 files.)

To determine the final size of the directory window, including the bor­
ders, the window dimensions of the area that displays the filenames are put in
the variables tx, ty, tw, and th, and passed to the GEM wincLcalc function
with the WC_BORDER parameter. wincLcalc calculates the outside dimensions
of the window including the borders.

As a programming precaution, we have included some code to confirm
that the new window fits on the desktop's work area. The calc—dir program is
written to be general enough that it's a useful function for other programs. It's
possible that the dimensions passed to calc_dir are incorrect and would result
in an erroneous window size; hence, code is included that double-checks the
feasibility of the new window. The available space for a window is obtained
with the GEM wincLget function. If this space is less than the new window,
the window's size is limited to the size returned by wind—get.

Finally, calc_dir fills in the pi array by executing a loop for each line and
a loop for each column, calling the pad subroutine to add spaces to each file­
name until it is 13 characters wide. The GEM strcat routine copies the data into
the array. The array is terminated with a null string when the loops are com­
pleted, and calc_dir returns the number of lines in the array to do_dir—window.

Program 6-17. calcdir.c
include <w-fparts.h>
include <gemde-fs.h>
include <document.h>

char piCNLINES1CNCHARS3;
int xlines;

calc_dir(count,x, y,w,h)
int count, *x, *y, tw, *h; <.

int i, j, k, columns, rows, tx, ty, tw, th;
char paddedC323;
extern int gl_wchar, gl_hchar;
extern char *dir_strsCNFILES3;

rows = *h / gl_hchar;
columns = *w / gl_wchar / 13;
if (columns < 1)

columns • 1;
•for (i = 0; i < columns; i++)<

161

CHAPTER 6

if(count <= i * <<i * rows) / columns))i
columns • i ;
break;
>

>
xlines • (count + columns-1) / columns;
if< xlines >= NLINES)

xlines - NLINES-1;
tw = columns * 13 * gl_wchar + gl_wchar * 2;
th = xlines * gl_hchar • gl_hchar;
tx = <*w - tw) / 2;
ty = <*h - th) / 2;
wind_calc (WC_BORDER,WF_PARTS,tx,ty,tw,th,x,y,w,h);
wind_get(0, WF_WORKXYWH, &tx, &ty, 8ctw, 8cth) ;
if < *w > tw) *w = tw;
if (*h > th) *h • th;
if (*x < tx) *x - tx;
if(*y < ty) *y = ty;
k = 0;
for < i = 0; i <= xlines; i++) £

plCiK01 - ' ' ;
pi Ci 3C13 = 0;
for (j = 0; j < columns && k < count; k++)£

pad(padded,dir_strsCk3,13);
strcat(piCi1,padded);
>

>
plCilC01 - 0;
return(xlines);
>

The new—window function. The purpose of the new_window function
is to create a new window, put it on top of all other windows on the desktop,
and make it blank by clearing the background from the window. This function
belongs in the envelope library and was included in Chapter 2.

The size of the window to create is passed to new_window from the
do_dir__window function, along with the slider box positions and sizes in vp,
hp, vs, and hs. The functions you've seen before—setup—window, wincLset,
and clr__display—are called to put up the window.

The pad function. The simple pad function takes a string and adds as
many characters as specified in the cnt variable that's passed to it. For the di­
rectory listings, each filename is padded to 13 characters. It also can be found
in Chapter 2 as part of the envelope library.

Printing the Directory with the doit Function
At this point, calc_dir has created an array of filenames in the directory, and
the names must now be printed in the window. Let's examine the call graph
showing the path of the program through the subroutines.

do_dir_window
new—window Creates a new window

When a new window is created, GEM is notified, and it sends a RE­
DRAW message to multi (the second multi call) to handle the input. Continu­
ing with the call graph:

162

Building a Command Shell

multi Handles the input (REDRAW)
was_msg Delegates the action required by input
do_redraw Handles clipping windows
just_draw Handles screen refresh and calls got—key with — 1
got—key Handles screen input

redo—dir Draws directory listing on screen because the global
variable dir_window was set by do—dir—window to the new win­
dow's handle

This activity results in a window that's the optimum size for the direc­
tory listing, and the directory filenames arranged in columns that are scrollable
vertically.

The redo—dir function. To copy the array of filenames onto the screen,
the redo_dir function is called by got_key. The redo_dir function, Program 6-
18, considers the possibility that redo_dir is called more than once, and that
the user may have resized the window since do—dir—wind created it. As insur­
ance that the window is the right size for the names, redo—dir calls wind—get
to get the size of the desktop work area and then calls cak—dir again to recal­
culate the directory listing. The sliders are set up again, and then print—dir is
called to print the filename listing in the window.

Program 6-18. redodir.c
include <gemdefs.h>
include <document.h>
redo_dir(whand,vw)
int whand, vw;£

int x, y, w, h, nlines, wlines, wcols, vs, hs;
extern int dir_index, gl_hchar, gl_wchar;
int vertical, horizontal, junk;

hi de_mouse();
just_clear< whand, vw);
wind_get(whand, WF_WORKXYWH, &x, &y, &w, &h);
wlines = h / gl_hchar;
wcols = w / gl__wchar;
nlines = calc_dir(dir_index, &x, 8<y, Sew, Sth);
slide_size(wlines, nlines, &vs);
slide_size(wcols, NCHARS, &hs);
wind_set(whand, WF_VSLSIZE, vs, 0, 0, 0);
wind_set(whand, WFJHSLSIZE, hs, 0, 0, 0);
print_dir(nlines, whand, vw);
showmouse<);
}

The print—dir function. Using a loop, the print—dir function, Program
6-19, calls the GEM routine v_gtext to copy the array of filenames onto the
screen.

Notice that print—dir carefully monitors the envelope's global variables
cur_line and cur—col, which are set by the envelope whenever the sliders are
changed by the user. This is to insure that the correct portion of the directory is
displayed in the window.

163

_ CHAPTER 6

Program 6-19. printdir.c

include <gemdefs.h>
include <document.h>
print_dir(count,whand, vw)
int count, whand, vw;{

int x, y, w, h, i;
extern int gl_wchar, gl_hchar, cur_col, cur_line;
extern char piCNLINES3 CNCHARS];

wind_get (whand, WF_WORKXYWH, Sex , &y, &w, &h);
just_clear(whand,vw);
hide_mouse();
f or (i = cur_line; i < count; i+.+) C

if(strlen(plCi3) > cur_col)
v_gtext(vw, x, y+gl_hchar+(i-cur_line)*gl_hchar,

&plCi3Ccur_col1);
>

show_mouse();
>

Building the Desk-Accessory Program
The functions described in this chapter are ready to be linked into an ST desk-
accessory program. If you are using a version of C other than Alcyon C, in­
cluded in the Atari ST Software Developer's Kit, refer to your User's Manual for
specific instructions for creating a desk accessory program.

After each of the functions has been compiled, they are linked in the
usual way using batch and argument files. The list of filenames for linking is in
a file named linkacc.arg, and contains the code shown in Program 6-20.

Notice that in the file, accstart.o is used instead of gemstart.o (used for
regular programs), and an extra file, accsup.o, is included in the file to define
some items that Atari left out of accstart.o to save space. Earlier, in Chapter 2,
both accstart.o and accsup.o were listed and discussed.

The batch file to create the library is called linkacc.bat and contains the
code shown in Program 6-21.

When the program is linked (youTl need to rename the output file to
shell.acc from a.prg), you can boot the desktop from the disk containing this
file, and see the Command Shell listed among other desk accessories on the
DESK pull-down menu.

Program 6-20. linkacc.arg
a . 6 8 k ~ c : a c c s t a r t . o , m a i n . o ,
CALLSYS.O, DOIT.O,BUILTIN.O,CALCDIR.O,CONFIGAC.O, DIRLIST. 0, DORM. 0, DOMOVE-O,
D0DIRWND.0,FINDCMD.0,RRINTDIR.0,PRNTFILE.0,RED0DIR.0,G0TKEY.0,D0C0PY.0,
SAVELAST.O,GETHEAD.O,GIVEHELP.O,
a c c s u p . o , e n v . a , v d i b i n d , v d i d a t a . o , g e m l i b , a e s b i n d , o s b i n d , 1 i b f

Program 6-21. linkacc.bat
c : \ b i n \ l i n k 6 8 Cundef i n ed , s ymbo l s , c ommandC1 i n k a c c . a r g 1 1
c : \ b i n \ r e l m o d a
c : \ b i n \ r m a .68k
c : \ b i n \wa i t

164

file://c:/bin/relmod
file://c:/bin/rm

7 Changing a Desk
Accessory to a
Regular Program

7 Changing a Desk
Accessory to a
Regular Program

This chapter takes the functions created in Chapter 6 and shows
how they can be linked together to form a regular program. Part of
the intent of Chapters 6 and 7 is to show how to convert a regular

program to a desk accessory, and vice versa. By knowing how to do this con­
version, you're not restricted to using a program as one or the other, but can
link the object files into an accessory or a program, as your needs dictate.

Turning the Shell functions into a regular program is relatively simple,
partly because the functions were written in such a way that no major changes
are now needed.

The functions in Chapter 6, and a few additional routines covered here,
create a program from which TOS commands can be issued. Mainly, we just
need to add some menus and then link the functions using the gemstart.o file
instead of the accstart.o and accsup.o routines.

The configap.c File
Accessories begin to differ from regular applications in the configuration file.
The configuration information in the configap.c file resembles that in Chapter
6; however, this time the wincLname (Command Shell) will be used instead of
access_name, and the i_am__accessory is set to 0, meaning this program is not
a desk-accessory program type.

Setting the correct name variable and setting the accessory flag to 0 is
the extent of the changes required to make this file work for a regular program.

Program 7-1. configap.c
i

i n c l u d e <gemdefs .h>

cha r *wind_name = " Command S h e l l *';

i f d e f USE_RCS

c ha r * r e s o u r c e = "SHELL .RSC " ;

e l s e

167

CHAPTER 7

char *resource = 0;
endif USE_RCS

char *access_name = " Command Shell ";
nt i_am_accessory = 0;
nt sx = 20; / * small window size */
nt sy = 50;
nt sw - 250;
nt sh = 200;
nt slv - 0; / * small window vertical slider pos */
nt slh =• 0; / * small window horizontal slider pos »/
nt svs = 1000; / * small window vertical slider size */
nt shs = 1000; / * small window horizontal slider size %/
nt min_wide = 100;
nt min_high = 50;
nt interval = 0;

int events = MU_MESAG ! MU_KEYBD;

The build-tree Function
Applications that have menus make it convenient for the user to get help, per­
form file operations, and give users access to the desk accessories.

The menus are built and operated by the builcLtree, do_menu, and
do__main__menu functions, very similar to the ones used in the MandelZoom
and Noise program. The routines presented here are stripped-down versions of
those programs that can be inserted in any program that needs menus. For ex­
ample, they could be used to add menus to the World Map and Plot programs
developed earlier in this book.

Using these routines in another program is simply a matter of changing
the "Commands" string that appears when the user activates the Help menu
item. For example, you might change it to "Map info" in the World Map pro­
gram. You may also want to add more help topics to the list. And, of course,
the give_help function that contains the actual help text must be modified to fit
the program. The text under the About menu selection in the do__main._menu
routine also must be changed to reflect the new program.

Program 7-2. bldtree.c
include <gemdefs.h>
include <obdefs.h>
de-fine MAXTREE 64
define M_BLACK 15L / * would be 1, but we changed the color map */
define TRANSPARENT 0
define THICK (long)(0xFFL << 16)
define BOXCOLOR (long)((M_BLACK << 12) i (M_BLACK << 8))
define BOXTHIN (long)(BOXCOLOR ! TRANSPARENT J IP_HOLLOW)
define BOXBITS (long) (THICK ! BOXCOLOR ! TRANSPARENT ! IPJ-IOLLOW)
define LEN -2 /» Set the width to the length of the string */

define xx(item) ((t_listCitem3.ob_x + t_listCitem3.ob_width> / Wc)
define yy(item) ((t_listCitem3.ob_y + t_listCiteml.ob_height) / He)
define OFFSET 2 / * so the boxes don't abut the left edge */

int Wc, He;
int About, Quit, Help;

168

Desk Accessory to Regular Program

struct object t_listCMAXTREE3;

struct object *
build_tree()<

extern int gl_wchar, gl_hchar, next_item;
int root, mbox, desk, file, help;
int dbox, fbox, obox, hbox, ibox, lbox;
int lines, deskl, desk2, desk3, desk4, desk5, desk6;

next_item = 0;
He = gl__hchar;
Wc = gl_wchar;

root = addit<t_list,-l,G_IBOX,0L,0,0,80,25);

He = gl_hchar + 3;

lbox • addit(t_list,root,G_BOX,BOXTHIN,0,0,80,1);

mbox = addit(t_list,lbox,G_IBOX,0L,OFFSET,0,27,1);
desk * addit(t_list,mbox,G_TITLE," desk ", 0, 0,LEN,1);
file = addit (t_list, mbox, 6_TIXLE, " file *', xx (desk) , 0,LEN,1);
help - addit(t_list,mbox,G_TITLE," help xx(file),0,LEN,1);
ibox = addit(t_list,root,G_IBOX,0L,0,1,80,14);
He = gl_hchar;
dbox m addit(t_list,ibox,G_BOX,BOXBITS,OFFSET,0,19,8);

About • addit(t_list,dbox,G_STRING," Command Shell ",0,0,LEN,1);
lines = addit(t_list,dbox,G_STRING," ",0, 1,LEN, 1) ;
t_listClines3.ob_state = DISABLED;
deskl = addit(t_list,dbox,G_STRING," Desk Accessory 1 ",0,2,LEN,1);
d»sk2 = addit(t_list,dbox,G_STRING," Desk Accessory 2 ",0,3,LEN,1);
desk3 = addit(t_list,dbox,G_STRING," Desk Accessory 3 ",0,4,LEN,1);
desk4 • addit (t__list, dbox, B_STRING, " Desk Accessory 4 " , 0, 5, LEN, 1) ;
desk5 • addit(t_list,dbox,G_STRING,• Desk Accessory 5 ",0,6,LEN,1);
desk6 m addit(t_list,dbox,G_STRING," Desk Accessory 6 ",0,7,LEN,1);
fbox = addit(t_list,ibox,G_BOX,BOXBITS,xx(desk)-MDFFSET,0,6,1);
Quit • addit(t_list,fbox,6_STRING," Quit ",0,0,LEN,1);

hbox = addit(t_list,ibox,G_BOX,BOXBITS,xx(file)+OFFSET,0,11,1);
Help = addit(t_list,hbox,G_STRING," Commands ",0,0,LEN,1);

if(next_item > 0)
t_listCnext_itern - 13.ob_flags != LASTOB;

return(t list);
>

The do—menu and do_main—menu Functions
These functions are very basic and can be used with any program to support
the menu structure. When the user clicks on a menu item, a message is sent
to GEM. GEM sends a message to multi, which calls was—msg, which calls
do—menu, which calls do_main_menu. It figures out which command the user
selected and then calls the correct function—for example, give__help if a help
command was clicked.

The do—menu code is shown in Program 7-3 and should look familiar;
likewise, you have seen do__main_menu, Program 7-4, before.

169

CHAPTER 7

Program 7-3. domenu.c

include <obde-fs.h>
do_menu(title,item,whand,vw)
int title, item, whand, vw;(

int ret;
extern struct object *main_addr;
ret = do_main_menu(item,whand,vw);
menu_tnormal(main_addr,title,1);
menu_tnormal(mai n_addr,i tern,1);
return(ret);
>

Program 7-4. domnmenu.c
do_mai n_menu(i tern,whand,vw)
int item, whand, vw;{

char strC2563;
extern int About, Quit, Help;
if(item == About)C

sprint* (str, " C03 C"/.s ! "/.s ! "/.s ! 7.s! 7.s3 C OK 3",
" This is a GEM based command ",
" interpreter. It can execute ",
" programs, copy, move, print ",
" or remove -files, and it can ",
" display directories. "
> ;

-f orm_al ert (1, str);
return(0);
>

else i-f(item mm Quit)<
return(1);
>

else if(item == Help)C
gi ve_help(whand,vw);
return(0);
>

spr int-f (str, " C03 LY.s %d3t OK 3 " , "Unknown menu number ! " , item);
•f orm_alert (1, str) ;
return(0);
>

Building the Shell Application
Building the Shell as a regular program is similar to all the other applications
we've built. To change the Shell accessory link file to one for a regular pro­
gram, we use the gemstart.o file instead of accstart.o. We remove accsup.o and
we add the filenames bldtree.o, domenu.o, and domnmenu.o to the list.

Program 7-5. link.arg
a.68k=c:gemstart.o,main.o,
CALL 3 Y S .0 , D O IT.O,BUILT I N . G , C A L C D I R .0 , C O N F I G A P .0 , D I R L1 S T . 0 , D O R M .0 , D 0 M 0 V E . 0 ,
D O D I R W N D . 0 , F I M D C M D . C , P R I N T D I R .0 , P R N T F I L E .0 , R E D O D I R .0 , G O T K E Y .0 , D O C O P Y .0 ,
S A V E L A S T .0 , G E T H E A D .G , B L D T R E E .0 , D O M E N U .0 , D O M N M E N U .0 , G I V E H E L P .0 ,
env . a, vdi b I n d , vdi data. o, geml i b, aesbi nd , osbi nd, 1 i t-f

170

Desk Accessory to Regular Program

Program 7-6. linkit.bat

171

c : \ b i n \1 i nk63 Cunde-f i n e d , symbol s , command C 1 i nk . a r g 3 1
c : \ b i n \ r e l m o d a
c : \ b i n \ r m a .68k
c : \ b i n \ w a i t

file:///bin/rel
file:///bin/wait

rogramming the
Sound Chip

8 Programming the
Sound Chip
The ST is equipped with a sound chip with which you can create a
wide variety of tones including musical notes, drum sounds, and
train whistles, similar to the electronic sound capabilities of a syn­

thesizer. In this chapter, you'll see how to program this internal sound chip to
generate its full sound assortment.

To explore the sound chip, we'll write a program that puts a two-octave
keyboard on the screen and lets a user play it with the top two rows of alpha­
betic keys on the keyboard. The program also creates an interface that lets a
user configure the duration and shape of the notes by moving slider boxes and
selecting buttons from a special control panel.

The pull-down menus in the program will include selectable options that
let a user change the sound emitted by the sound chip and then display the
sound chip's internal registers as numbers. You can use the program as a sound
editor and, by knowing the internal register numbers, you can add the sound
effects to other programs. Using more menu options, we'll also demonstrate
how to create a rhythm section.

As in the other programs in this book, the envelope library is used to in­
terface with functions that were developed in Chapter 2. That library continues
to demonstrate its value here by taking care of standard GEM interface pro­
gramming issues. We have only to provide the functions for this particular
application and tailor the standard connecting files and functions, like config.c
and got_key, for our sound chip program.

The config.c File
This is, as usual, the first file for this application.

The window name is defined as "Noise ! " and the resource and
access_name variables are set, even though they are not used (just in case you
want to make this into a desk accessory). Since this program is not a desk ac­
cessory and the Resource Construction Set is not used, L_am_accessory and re­
source are set to 0.

This config.c file (Program 8-1) is essentially the same as the others in
the book except the interval variable is set to 20 milliseconds. This will cause

175

CHAPTER 8

GEM to send a message to our multi function 50 times each second. You'll see
this used when the rhythm section and the clock_tick function are discussed.

Program 8-1. config.c
include :'gemde-f s. h >
char *wind_name

« ifdef USE_RCS
char (resource
S else
char (resource
endi-f USE_RCS

c h a r *access_name
i n t i _ a m _ a c c e s s o r y
i n t sx
i n t s y
i n t sw
i n t sh
i n t s l v
i n t s l h
i n t s v s
i n t s h s
i n t m i n_w i de
i n t m i n _ h i g h
i n t i n t e r v a l

" Noise! ";

"NOISE.R5C"

0;

Noi s e 1

= 0;

50 ;
250;
125;

100;
50 ;
20 ;

/* s m a l l w indow s i z e */

• 0; /* s m a l l w indow v e r t i c a l s l i d e r p o s */
= 0; /* s m a l l w indow h o r i z o n t a l s l i d e r p o s */
= 1000; /* s m a l l w indow v e r t i c a l s l i d e r s i z e */
= 1000; /* s m a l l w indow h o r i z o n t a l s l i d e r s i z e */

/* e v e r y 5 0 t h o f a s e c o n d */
i n t e v e n t s = MU_MESAG ! MU_BUTTON ! MU_KEYBD ! MU_M1 ! MU_M2;

The doit Function
The doit function is responsible for creating the piano keyboard display shown
in Figure 8-1. When the user presses a key on the keyboard that corresponds to
one of the piano keys, the note is played and the key flickers by rapidly chang­
ing to gray, then back to its original color.

Figure 8-1. The Two-Octave Keyboard Created by the doit Function
desk f i l e options help

Noise!

4 • 5 • 6
II III

176

Programming the Sound Chip

doit, Program 8-2, calls the save_screen function, which is the same as
the one used in the MandelZoom program. Note that a default version of doit
appears in the envelope library and that it must be changed to this default ver­
sion in order for this program to work properly.

The doit routine calls the show_Jkeys function to display the piano key­
board. Then it calls save_screen to save a copy of this screen so that it can be
quickly redrawn when a window or dialog box disappears.

Program 8-2. doit.c
doit(whand, vw)
int whand, vw;{

show_keys(whand, vw);
save_5creen(whand);
>

The just_draw Function
The just_draw function used here is exactly the same as the just_draw routine
used in Chapter 5 with the Mandelbrot set. Therefore, you should copy
justdraw.c from Chapter 5, Program 5-15, and include it with the other func­
tions in this group.

The show—keys Function
The keyboard and screen background shown in Figure 8-1 are actually drawn
by the show_keys function listed in Program 8-3.

The first thing show__keys does, before drawing the keyboard, is to get
the current size of the window with the GEM function wincLget. Then it can
calculate the keyboard size in relation to the size of the window, enlarging or
shrinking the keys accordingly. The size and position of the keys are defined in
the variables white__wide, height, w__col, and b_col.

Then, show_keys calls the hide_mouse and clr_display functions devel­
oped for the envelope (and described earlier in this book) to hide the mouse
and clear the screen. With the use of GEM's functions vsf_color, vsL-perimeter,
vsf_interior, and vsf_style, the background pattern for the keyboard is drawn,
setting the color, perimeter, interior fill, and fill style. To fill in the entire win­
dow, fill_box is called (described below).

With the background set up, the keyboard is next. To draw each key, a
loop is executed, calling the do_white function to draw the white keys, and the
do_black function to draw the black keys. To draw the white keys, the three
shapes of the white keys must be considered (Figure 8-2).

The position of each type of white key is listed in the array w_keys. For
each key, the position is passed to the do_white function as its fifth parameter.
In order to let the user know which key on the keyboard will play which piano
key, a letter is passed as the sixth parameter to do_white. This information is
kept in the array white_chars, indexed by the piano key position.

177

_ CHAPTER 8

As with the different shapes of the white keys, special consideration
must also be given to the positions of the black keys. Some white keys have no
associated black keys; thus the b_keys array is used to tell the routine when to
draw a black key and when to skip one. The letters needed appear on the black
piano keys in the array black_chars.

To map the ST keys to the piano keys, and vice versa, two arrays are
used. The askeys array is indexed by the piano key position and holds the ST
key for each piano key. The other array is the key_info array with 128 posi­
tions, using one for each ASCII character on the keyboard. The structure of the
key__info array contains three elements: the index for the key, the type (shape),
and the pitch. This array is defined in the keys.h file. The column on which the
left edge of each piano key lies is placed into the key_Jnfo index element in the
loop that draws the keys. Using this index, a piano key can be redrawn when
the user presses the ST key mapped to it, providing feedback to the user.

Program 8-3. showkeys.c
include <gemde-fs.h>
include <obdefs.h>
include <keys.h>

int w_keysC3 = £
C,D,E, C,D,D,E, C,D,E, C,D,D,E
> ;

int b_keysC3 m i
1,1,0,1,1,1,0,1,1,0,1,1,1,0
> ;

char black_charsC3 - "12 456 89
char white_charsC3 - "\tQWERTYUIOPC3\r\177 " ;
char askeysC3 - "\tQWERTYUIOPC D\r\1771245689-='";
int white_wide, height;
struct key_in-fo key_infoC1283;
int start__y;
show_keys(whand,VM)
int whand, vw; {

int x, y, w, h, i, w_col, b_col, ch;
extern gl_wchar, gl_hchar;

178

Figure 8-2. The Three Possible Shapes for the White Piano Keys

file:///tQWERTYUIOPC
file:///tQWERTYU

Programming the Sound Chip

wind_get< whand, WF_WORKXYWH, &x, Scy, &w, &h);
start_y • yj
white_wide = w / <NUM_WHITE+1) Sc 3̂;
height - h / 2 & 3̂;
w_col • x + (M - NUM_WHITE * white_wide) / 2;
b_col = w_col * white_wide * 3 / 4;
clr_display(whand, vw);
hi de_mouse();
vs-f_color< vw, RED);
vs-f_peri meter (vw, 1);
vsOnterior < vw, PATTERN);
vsf_style(vw, 1);
fill_box(vw, x, y, w, h);
for(~i = 0; i < NUM__WHITE; t++-lt

ch • white_charsCi3 ;
do_white< vw, w_col, white_wide, height, w_keysCi3, ch, UP);
key_in-foCwhite_charsCi 3 3. index = w_col;
if < b_keysCi 3)<

ch = black_charsCi1 ;
do_black(vw, b_col, white_wide, height, ch, UP);
key_in-foCblack_charsCi 33. index • b_col ;
>

w_col += white_wide;
b_col +- white_wide;

The keys.h file. The piano keys have a number of characteristics that
must be defined: the shape, the fill pattern, the key's up or down state, and po­
sition. The header file listed in Program 8-4 is used to record these characteris­
tics, and then it's included in the functions that need it.

By keeping all the data about the keys in one file, it's easy to change the
items when you want to change a key characteristic, such as the color or fill
pattern.

This file also defines the structure for the key_info array so that it con­
tains three key descriptors: the index to the ST key, the piano key shape, and
the note the key's position represents.

In addition, some macros are defined for calculating the dimensions of a
key. You'll see these macros used frequently.

Program 8-4. keys.h

>
show_mouse<);
>

de-fine NUM_WHITE

define HOLLOW
de-fine SOLID
de-fine PATTERN
de-fine HATCH

de-fine C 1
define D 2
de-fine E 3
«
de-fine UP 0
de-fine DOWN 1

1
2
3

14

0

struct key__in-fo <

179

CHAPTER 8

int index;
int type;
int pitch;
> ;

define KLEFT
define KRIGHT
define KMIDL
define KMIDR
define KTOP
define KMIDY
define KBOTTOM
define KBWIDE

start
(start+wide)

<start+wide/4>
<start+wide*3/4)
<start_y+high-high/6>
<KT0P+high*2/3)
(KTOP+high)

<start+wide/2)

The fill—box function. The f i lLbox function is passed a rectangle, and
it converts the x, y, w, and h into a list of points used as arguments to the
GEM routine v_fillarea. Although the GEM's v__bar routine—which has a sim­
pler interface (used in the PLOT program)—could have been used, this demon­
strates how you can fill more complicated shapes with a more versatile routine.

Note the list of points (x,y pairs) can be longer for different shapes, simi­
lar to the v_pline routine in the MAP program in Chapter 3.

Program 8-5. fillbox.c
fill_box< vw, x, y, w, h)
int vw, x, y, w, h; i

int aC323;

aC03 = x; aC13 = y;
aC23 • x • w; aC33 = y;
aC43 = x + w; aC53 • y • *vj
aC63 = x; aC73 = y + h;
aC83 • x; aC93 = y;
v_fillarea< vw, 5, a);
>

The do_white function. To draw the white keys of the piano, the
do__white function, Program 8-6, is called and passed the starting column for
the key, the width and height, the shape (type) of the key to be drawn, a char­
acter to print on the key, and a flag that tells whether the key is up or down.

As part of the setup process, the character that represents the TAB key
character on the piano is defined, since the printed TAB character is not com­
monly recognized. We chose the dagger character because it resembles a T but
won't be confused with the letter T that is printed on another key.

Next, the line color for the perimeter line is set to black and the fill
parameter is set to 0 to prevent the fill from erasing the perimeter lines. The fill
color is white and the interior, solid, if the key is UP. If it's DOWN, the fill
color is black and the interior pattern is 4, a light shading. This is how the key
is made to flicker when the user presses a key.

In the array a, the points are set to the key shapes (C, D, or E) for which
macros are defined in the keys.h file.

180

Programming the Sound Chip

Finally, using GEM routines, the key is drawn by calling v_fillarea to fill
in the key and v_pline to outline it, giving the same arguments to both
routines. The letter is placed on the key by setting the color to black, the writ­
ing mode to transparent (so a white box doesn't appear around the character),
and calling v_gtext to print the letter. The string s that is passed to v_gtext
contains only the single character that goes on the key. The other arguments to
v_gtext make sure that the letter is centered on the key.

Before returning, the writing mode is set back to REPLACE with
vswr_mode.

Program 8-6. dowhite.c
include <keys.h>
include <obdefs.h>
do_white< vw, start, wide, high, type, ch, up_down)
int vw, start, wide, high, type, ch, up_down;(

int aC323, x, y, w, h;
char sC23;
extern int gl_wchar, gl_hchar, start__y;

ifich mm *\f) / * make
ch - ' ; ' ! 0200; / * dagg<

sC03 = ch;
sC13 = 0;
vsl_color(vw, BLACK);
vsf_perimeter< vw, 0);
if < up_down == UP) {

vsf_color< vw, WHITE);
vsf_interior< vw, SOLID);
>

else <
vs-f .interior < vw, PATTERN);
vsf_style< vw, 4 >;
vs-f color (vw, BLACK);
>

i-f < type mm C) C
aC03 * KLEFT;
a[23 = KMIDR;
aC43 m KMIDR;
aC63 • KRIGHT;
aC83 = KRIGHT;
aC10 3 * KLEFT;
aC123 = KLEFT;
v_-fillarea< vw, 7, a);
v_pline(vw, 7, a) ;
>

else if(type — D)<
aC03 • KMIDL;
aC23 - KMIDR;
aC43 - KMIDR;
aC63 - KRIGHT;
aC8D = KRIGHT;
aC103 * KLEFT;
•C123 - KLEFT;
aC14D = KMIDL;
aC163 - KMIDL;
v_fillarea< vw, 9, a);
v piine(vw, 9, a);
>

else if < type — EX
•C03 - KMIDL; aC13 = KTOP;

tab print nicely */
»rs look like 't's don't they? * /

aC13 m KTOP;
aC33 • KTOP;
aC53 • KMIDY;
aC73 - KMIDY;
aC93 - KBOTTOM;
aC113 m KBOTTOM;
aC133 - KTOP;

at 13 - KTOP;
aC33 - KTOP;
aC53 - KMIDY;
aC73 m KMIDY;
aC93 - KBOTTOM;
aC113 - KBOTTOM;
aC133 = KMIDY;
aC153 m KMIDY;
aC173 = KTOP;

181

CHAPTER 8

aE23 « KRIGHT;
aC43 - KRIGHT;
aC63 - KLEFT;
aC83 - KLEFT;
aC103 = KMIDL;
aC123 - KMIDL;
v_-fillarea< vw, 7, a
v pline< vw, 7, a);
>

vmt_color(vw, BLACK);
vswr mode(vw, MD TRANS >;
v_gtext< vw, KLEFT+wide/2-gl.
vswr_mode< vw, MD.REPLACE);

aC33 - KTOP;
aC53 - KBOTTOM;
aC73 * KBOTTOM;
aC93 - KMIDY;
aC113 - KMIDY;
at 133 • KTOP;

5

/2, KBOTTOM-gl_hchar, s);

The do.black function. The do—black function, Program 8-7, operates
in essentially the same way as the do—white function, except that it doesn't
have to deal with different key shapes.

This time the fill color is set to black and the perimeter to 1, to include
the perimeter line in the fill. Also, the character color is set to white so that it
will show up on the black key; then the color is reset to black before returning.

Program 8-7. doblack.c
include <key*.h>
include <obdefs.h>
include <sliders.h>

do_black< vw, start, wide, high, ch, up_down)
int vw, start, wide, high, ch, up_down;i

int aC323;
char sC2J;
extern int gl_wchar, gl_hchar, start_y;

sC03 - ch;
sC13 - 0;
v»-f_color< vw, BLACK);
vsf_perimeter< vw, i);
if< up_down mm UP > <

vsf..interior(vw, SOLID >;
>

else <
vs*_interior< vw, PATTERN);
vsf_style< vw, 4);
>

aC03 « KLEFT; aC13 - KTOP;
aC23 - KBWIDE; aC33 - KTOP;
aC43 - KBWIDE; aCS3 • KMIDY;
aC63 - KLEFT; aC73 - KMIDY;
•C83 - KLEFT; aC93 * KTOP;
v_-fillarea< vw, 5, a);
vswr mode(vw, MD_TRANS >;
v»t_color< vw, WHITE);
v_gtext< vw, KLEFT«-wide/4-gl_wchar/2, KMIDY-gl__hchar, s);
vswr_mode(vw, MD_REPLACE);
vet color(vw, BLACK);
>

182

Programming the Sound Chip

The open—data, get—clicks, no—clicks, put—clicks, and
do.cleanup Functions
The clicking sound you hear every time you press a key on the ST's keyboard
is produced by the sound chip, which receives a signal from the operating sys­
tem telling it to emit the click. This needs to be disabled so that when the user
plays a note on the piano by pressing a key, he or she hears the note instead of
the clicking sound.

The key clicks must be turned off early in the program, before a key is
pressed. When a key is pressed, the main function in the envelope will call the
multi function, main also calls open_data before calling multi, and since it's de­
sirable to disable the key clicks to set up the keyboard, open_data is used to
accomplish this task.

The listing shown in Program 8-8 contains the code for open__data and
also for the other functions it calls: get_clicks, no_clicks, put_clicks, and
do_cleanup.

To turn off the key click, bell, and key-repeat features, three bits need to
be cleared. The ST BIOS looks at this byte before generating a noise, and if the
bits are cleared it doesn't make any sound. There is a catch that prevents us
from just changing the bits: BIOS keeps its data in low memory, where it is
protected by the Memory Management Unit, so ordinary programs will bomb if
they reference low memory. In order to change the byte that controls the sound
chip, the program must be in Supervisor mode.

To solve this problem, the BIOS has a special routine called SUPEXEC
(xbios interrupt call number 38) which, when given the name of a function, will
set Supervisor mode, call the named function, then reset to User mode.

In open__data SUPEXEC is used to call the get_clicks function, which re­
turns the contents of the protected byte. Then, it uses SUPEXEC to call
no_clicks, which clears the three bits and thus turns off the key click, key re­
peat, and bell.

Once the automatic keyboard sounds have been silenced, the program
prepares to draw the piano and play the notes. The open_data function loops
through the askeys array, entering the key type (C, D, or E) and pitch into the
key_info array. The note pitches are initialized in the pitches array at the start
of this file.

Finally, open_data calls the period function (explained below) to set the
duration of the note to 10,000, a period we have found produces a pleasant
sound that combines the bell and piano tones. This will now be the sound
heard when the user strikes a key.

When the program exits, the key clicks, key repeat, and bell are reset.
The do_cleanup function uses SUPEXEC to call put_clicks to put back the old
value for the key click byte. do_cleanup also prints the bell character, telling
the BIOS to ring the bell. The BIOS sets the sound chip back to the default
value. This is a convenient way to reset the sound chip as we exit.

183

CHAPTER 8

Program 8-8. opendata.c
include <keys.h>

int pitchesC3 - <
/•tab Q W E R T Y U I OP C 3 CR Del * /
/ • C D E F G A B C D E F G A B C * /
0654,0575,0523,0500,0435,0376,0342,0326,0276,0252,0240,0217,0177,0161,0153,

/ * 1 2 4 5 6 8 9 - « « * /
ft C# D# F# G« A# C# D# F# G# A# */
0624,0550, 0456,0415,0360, 0312,0264, 0227,0207,0170

> ;
define SUPEXEC(x) (xbios(38,(x)))
char con_info; / * a place to store key_click DN/OFF info */

open_data <whand,vw,file)
int whand, vw;
char *file;{

int x, ch;
extern int get_clicks(), no_clicks<), w_keysC3;
extern char askeysC3;
extern struct key_info key_infot3;
con_info - SUPEXEC(get__clicks);
SUPEXEC(no_clicks); / * turn off key clicks */
for(x = 0; askeysCx3; x++ ><

ch = askeysCx3;
if (x > NUM_WHITE)

key_infotch3.type • 0;
else

key_infoCch3.type m w_keysCx3;
key_infoCch3.pitch • pitchesCx3;
>

period(10000);
>

do_cleanup()<
extern int put__cl icks <);
SUPEXEC(put_clicks); / * turn key clicks back on * /
printf<"\7"); / * ring bell to reset sound chip */

char tconterm • 0x484;

no_clicks()<

/ *
** Atari documentation is wrong:
** Values for conterm are:
*t Bit Mask Function
** 0 (01) Enable key click
** 1 (02) Enable key repeat
** 2 (04) Enable bell
*/

tconterm *c= * (1+2+4);
>

get_clicks()<
return(tconterm);
>

put_clicks()<

extern char con_info;

•conterm • con info;
>

184

Programming the Sound Chip

The got—key Function
Pressing a key causes an event message to be sent to the multi function, which
then calls the got_key function, Program 8-9, to handle the key.

If the key is not one of the ST keys superimposed on the piano key­
board, the got_key function returns 0 for "don't exit." If the key is the ES­
CAPE key (value 033), got__key returns 1 for exit, and the program is exited.

To make sure that the sound registers are configured for the piano, the
rest—State function is called. This subroutine, and its complement save_state,
keep track of the sound registers that are affected by the rhythm section of the
program. Both of these routines will be discussed again later, but for now no­
tice that rest_state is called here to insure that the piano keys don't sound like
a snare drum.

The sound chip has three voices, or possible simultaneous sounds it can
make. All three voices are needed to have the same tone, or pitch, for each pi­
ano note, so each of the three voices is set to the pitch for the key that has
been pressed, and play—note is called to start the sound.

To show that a piano key has been played when a corresponding ST key
is pressed, got_key calls the do__white or do_black routines with the DOWN
parameter to cause the key to be drawn in its shaded, "down" state. By imme­
diately redrawing the key in the UP state, the key is shaded only for an instant,
giving the illusion that it has been pressed. Note that when the graphics accel­
erator chip (the "blitter" chip) is available for the ST, this may happen too fast
to see. You may have to add a delay loop between the calls to the do__white or
do—black routines with the DOWN parameter to make the "down" state last
longer.

The piano keyboard has been arbitrarily ended on the B note because it
looks symmetrical that way. However, when you play the two octaves, your
ear expects to hear a C as the final note. For this reason, we have made the
DEL key make the C note, although there's no piano key corresponding to it.

Program 8-9. gotkey.c
include <keys.h>

got_key<ch, whand, vw)
int ch, whand, vw;{

int type, pitch, col, x, y, w, h;
extern white_wide, height;
extern struct key_in-fo key_in-foC3;

ch 8c= 0x7f; / * ascii only */
if< ch >= 'a* Ic* ch <= 'z')

ch 0̂40; / * convert lower case to upper */
if(key_infoCch3.pitch mm 0)

return <0);
if< ch 033)

return <1);
rest_state<);
tone(0, key_i n-foCchD.pitch);
tone(1, key_infoCchJ.pitch);

185

CHAPTER 8

tone< 2, key_infoCch3.pitch >|
play_note();
if< ch 0177)

return(0); / * keyboard looks better without DEL * /
clip_work(whand, vw >;
type • key_infoCchD.type;
col • key_in-foCch3-index;
if. I type >C

do_white(vw, col, white_wide, height, type, ch, DOWN);
do_white(vw, col, white_wide, height, type, ch, UP);
>

else <
do_black(vw, col, white_wide, height, ch, DOWN);
do_black(vw, col, white_wide, height, ch, UP);
>

return <0);
>

Building an Interactive Sound Control Panel
In addition to the piano keyboard that produces a reasonably good imitation of
piano sounds, the application being created here gives the user a method for
changing the tones and noises produced by the sound chip. The interface for
designing the sounds is a dialog box with sliders and buttons, like the one
shown in Figure 8-3.

Figure 8-3. A Sound Control Panel in a Dialog Box
desk f i l e IMWl'Mj help

Noise!

• 0 • 0 • B

ll ll ll
• • B • • •

m

HHK SiHK EHH BSD

iir
I [] i J

The next functions explained show how to create the menus, sliders, and
buttons that produce this interface. By the way, the type of button used is
called a radio button, which is analogous to the buttons on a car radio. Push
one, and another pops out, so only one at a time can be active. The slider

186

Programming the Sound Chip

boxes are moved along the slider track by using the mouse to drag the boxes,
or clicking on the arrows at the end of each slider.

The captions on the figure describe what each slider and button is for;
now let's examine how to draw them and make them work.

The sliders.h Header File
We start by defining a header file that will be included in many of the routines.
In the header file we define a structure called slide to contain a register value, a
minimum and maximum for the slider range, a flag to tell whether a slider is
vertical or horizontal, a track and slider index into the tree, and indexes for the
arrows at the ends of the slider tracks.

Also in this file are defined macros that name the parts of the dialog box
so we can tell which sound register to set. The macro naming patterns such as
S - T - A and S - V - B stand for Slider-Tone-A and Slider-Volume-B.

Program 8-10. sliders.h
define NUM_SLIDERS 12

struct slide {
int value, min, max, is_vert;
int track, slider, inc, dec;
> ;

define SLIDER
de-fine INC_ARR0W 2
de-fine DEC_ARROW 3
de-fine NOTE OP 4

define QUIT_0P 5

define S_T_A 0
define S T B 1
define S T C 2
define S V A 3

define S_V_B 4
define S V C 5
define S N 6
define S S 7

define S P 8

1

The build-tree Function
The object trees for the dialog box and the menu are somewhat complex to set
up. The build_tree function used in this program is similar to the one in the
MandelZoom program, except that it has different menu entries for the file, op­
tions and help menus, and it calls another routine, blcLsliders, to build a tree
for the dialog box that will be used to set the sound chip registers, build—tree
sets the next—item variable to 0 before calling bid—sliders, and will set it to 0
again after the call because build—tree and bid—sliders are adding items to dif­
ferent trees.

During the discussion of do—main—menu, we'll talk about the menu se­
lections. The slider boxes inside the dialog box are the topic of interest for now.

187

CHAPTER 8

Program 8-11. bldtree.c
include <obdefs.h>

define
define
define
define
define
define
define

MAXTREE
TRANSPARENT
THICK
MBXCOLOR
BOXTHIN
BOXBITS
LEN

define
define
define

xx(item)
yy(item)
OFFSET

64
0
(long)(0xFFL << 16)
(long)((BLACK « 12) ! (BLACK << 8))
(long)(MBXCOLOR ! TRANSPARENT ! IP_HOLLOW)
(long)(THICK ! MBXCOLOR ! TRANSPARENT ! IP_HOLLOW)
-2 /% Set the width to the length of the string * /

((t_listCitem3-ob_x + t_listCitem}.ob width) / Wc)
(<t_listCitem3.ob_y + t_listCitem3.ob!height) / He)

2 / * so the boxes don't abut the left edge * /

int About, Quit, Set_snd, Rhythms, Effects, Print vals;
int HSet_snd, HRhythms, HEffects, HPrint vals;
int Wc, He; '

build_tree()<

extern int gl_wchar, gl_hchar;
extern int next_item;
extern struct object *slid_tree, *bld_sliders<);
int root, mbox, desk, file, options, help;
int dbox, fbox, obox, hbox, ibox, lbox;
int lines, deskl, desk2, desk3, desk4, desk5, desk6;

static struct object t__listCMAXTREE3;

next_item = 0;
Wc = gl__wchar;
He = gl_hchar;
slid_tree • bld__sliders();

next_i
root
He +
lbox
mbox =
desk
file
option
help
i box
He = g
dbox

tern = 0;

addit(t_list,-l,G_IBOX,0L,0,0,80,25);
3;
addi t(t_li st,root,G_BOX,BOXTHIN,0,0,80,1);
addi t (t__l i st, 1 box , G_IBOX, 0L, OFFSET, 0,27, 1);

- addit(t_list,mbox,G_TITLE," desk 0,
= addit(t_list,mbox,G_TITLE," file xx(desk),
- addit(t_list,mbox,G_TITLE," options xx(file),

0,LEN,1);
0,LEN,1);
0,LEN,1);

m ï î î i t ?7 ! '•box'Q-TITLE»" h«lp », xx(options),0,LEN,1); addi t(t_li st,root,G_IBOX,0L,0,1,80,14);
ll_hchar ;

addi t(t_li st,ibox,G_BOX,BOXBITS,OFFSET,0,19,8);

About
lines
t_list
deskl
desk2
desk3
desk4 *
desk5 i
desk6 «

fbox =
Quit -

= addit
- addit
Clines]
= addit
« addit
= addit
= addit
= addit
* addit

(t_list,dbox
<t_list,dbox
.ob_state =
<t_list,dbox
(t_list,dbox
<t_list,dbox
<t_list,dbox
(t_list,dbox
(t_list,dbox

c,G_STRING,"
*,G_STRING,M-
DISABLED;
x,G_STRING,"
x,G_STRING,"
x,G_STRING,"
x,G_STRING,"
X, G__STRING, "
c,G_STRING,"

About Noise

Desk Accessory 1
Desk Accessory 2
Desk Accessory 3
Desk Accessory 4
Desk Accessory 5
Desk Accessory 6

",0,0,LEN,1);
—",0,1,LEN,1);

M,0,2,LEN,1);
",0,3,LEN,D;
%0,4,LEN,1);
",0,5,LEN,1);
",0,6,LEN,1);
",0,7,LEN,1);

addi t(t_li st,i box,G_BOX,BOXBITS,xx(desk)+OFFSET,0,6,1);
addit(t_list,fbox,GASTRINS," Quit ",0,0,LEN,1);

q»r«„H Z -̂lls '̂lbox'B-B°X,BOXBITS,xx (file) +OFFSET,0, 16,4);
Set_snd - addit(t_list,obox,G_STRING,» Set Sound »,0 0 LEN.l ;
Print_vals = addit(t_list,obox,G.STRING,» Print Values %0,LLEN\>.
Rhythms - addit(t.list,obox,G_STRING,» Rhythms »,0,2̂ , n ?

188

Programming the Sound Chip

Effects = addit(t_list,obox,G_STRING,• Sound Effects ",0,3,LEN,1);

hbox - addit<t_li*t,ibox,G_BOX,BGXBITS,xx(options)+OFFSET,0,16,4);
HSet_snd = addit(t_list,hbox,G_STRING," Set Sound ",0,0,LEN,1);
HPrint_vals • addit<t_list,hbox,G_STRING," Print Values ",0,1,LEN,1);
HRhythms = addit<t list,hbox,G_STRING," Rhythms ",0,2,LEN,1)}
HEffects * addit(t_list,hbox,G_STRING,• Sound Effects -,0,3,LEN,1);

if(next item > 0)
t_li»tCnext_item - 13.ob_flags != LASTOB;

return< t_list)$
>

The bid—sliders functions. The blcLsliders function, Program 8-12, as­
sembles the dialog box that contains the sliders and buttons shown in Figure 8-3.

To add items into the dialog box object tree s_tree, blcLsliders calls the
addit function, which is the same addit routine introduced for the MandelZoom
program in Chapter 5. If you're going to enter and run this sound chip pro­
gram, then be sure to link the addit function into the envelope library.

The first item in the dialog box tree is the box that will hold the buttons
and sliders. To make the box be outlined and shadowed, we change bits in its
ob_state field after addit has returned.

Next, the NOTE and QUIT buttons are added to the object tree. Their
ob_flags bits are set to TOUCHEXIT so the GEM form—do routine will return
when the button is clicked. The DEFAULT bit is set on the NOTE button so
that a note sounds when the user presses the RETURN key while the dialog
box is open.

We want to add sliders for the tone, volume, noise, shape, and period of
the three sound chip voices. Sliders are added to the tree by calling the
adcLslider function, which is explained below. The slider location is passed in
the TONEA parameter, defined at the beginning of the file, and we also hand a
character for the slider box to adcLslider.

The six buttons, one noise button and one tone button for each voice,
are added next to enable noise and tone output for each voice. Again, a charac­
ter is passed for the button and the button location. The button locations are
defined at the start of the file, in the variables TONEA, TONEB, and TONEC.

The three radio buttons control the envelope generator on the sound
chip. Radio buttons are constructed as buttons within a single parent box. If the
RBUTTON flag bit is set, the GEM form_do routine insures that only one but­
ton at a time is selected in the box.

The final statements of the blcLsliders function give each slider its
proper inital value by calling the alLsliders function. The LASTOB bit in the
flags field of the last item in the tree is set to terminate the list and the
max_Jtems variable is set to the item number of the last item. Finally, the ad­
dress of the tree is returned to blcLtree.

189

CHAPTER 8

Program 8-12. bldslide.c
include <obdefs.h>
include <sliders.h>
define BOXFILL ((IP_6PATT << 4) ! GREEN)
define BOXCOLOR ((long)((GREEN << 12) I (GREEN << 8) ! BOXFILL))
define BX 0
define BY 0
define BW 33
define BH 19
define S_HOR 0
define S_VER 1
define N_W 5
define N_X 21
« define Q_W N_W
define Q_X <N_X+N_W+1)
define TOP 2
define V_WIDE 2
define H_HIGH 1
define T_HIGH 8
define TONE MIN 0
define TONE_MAX 1023 / * (x 4) would be 4095 with LONG sliders «/
define VOL_MIN 0
define VOL_MAX 15
define NSE_MIN 0
define NSE_MAX 31
define E_PJ1IN 0
define E P MAX 4095 /t (x 16) would be 65535 with LONG sliders * /
define E_S_MIN 8
define E_S_MAX 15
define CHAN_WIDE 11
define TONEA 2
define VOL.A 6
define TONEB (CHAN_WIDE+TONEA)
define VOL_B (CHAN_WIDE+VOL_A)
« define TONEC (CHAN_WIDE * 2+TQNEA)
define VOL_C (CHAN WIDE*2+V0L_A)
define TGLS_Y 13
define E_P_Y 15
define E P W 29
define NSE_Y 17
define NSE_W 7
define E S X 12
define E_S_W 7
define RAX VOL_A
define RBX VOL_B
define RCX VOL.C
define RAY 12
define GET -1
int note_op, quit_op;

int n_en_a, n_en_b, n_en_c;
int t_en_a, t_en_b, t_en_c;
int r_e_a, r_e_b, r_e_c;
int r_m_a, r_m_b, r_m_c;
int radio_a, radio_b, radio_c;

struct object t
bld_sliders()i

int box, x;
static struct object s_treeC 128 D;

190

Programming the Sound Chip

extern struct slide s_valsCD;
extern int next_item, max_itern;

next_item • 0j
box = addit<s tree,-1,G_BOX,BOXCOLOR,BX,BY,BW,BH);
s treeCbox3.ob state != OUTLINED ! SHADOWED;
note.op - addi t <s_tree,box,G_BUTTON,"NOTE",N X,NSE Y,N W,H HIGH);
qui t_op - addi t <s_tree,box,G_BUTTON,"QUIT",Q_X,NSE_Y,Q_W,H_HIGH);
»_treeCnote_op3.ob_flags - TOUCHEXIT ! DEFAULT;
s_treetquit_op3.ob_flags - TOUCHEXIT;

add_slider<s_tree,s_vals,box,S_T_A,TONEA,TOP,V_WIDE,T_HIGH,S_VER,"T");
add_»lider <»_tree,s_vals,box,S_T_B,TONEB,TOP,V_WIDE,T_HIGH,S_VER,"T");
add_sli der <s_tree,s_va1s,box,S_T_C,TONEC,TOP,V_WIDE,T_HIGH,S_VER,"T");

add_»lider <»_tree,s_vals,box,S_V_A,VOL_A,TOP,V_WIDE,T HIGH,S_VER,"V");
add_sl ider <s_tree, s_vals, box, S_V_B, VQL_B, TOP, V_WIDE, T_HIGH, S_VER, "V");
add_sli der(i.tree,s_vals,box,S_V_C,VOL_C,TOP,V_WIDE,T_HIGH,S_VER,"V");

add_slider <s_tree,s_vals,box,SJM,TONEA,NSE_Y,NSE_W,H_HIGH,S_HOR,"N");
add_sl i der <s_tree, s_val s, box, S_S, E_S_X, NSE_Y,E_S_W, H_H I GH, S~HOR, "S");
add_slider <s_tree,s_vals,box,S_P,TONEA,E_P_Y,E_P_W,H_HIGH,S_HOR,"P");

n_en_a - addit<s_tree,box,G_BUTTON,"n",TONEA,TGLS Y,l,l);
n_en_b * addit<s_tree,box,G_BUTTON,"n",TONEB,TGLS_Y,1,1);
n_en_c - addit<s_tree,box,G_BUTTON,"n",TONEC,TGLS_Y,1,1>;
s_treeCn_en_a3.ob_flags != TOUCHEXIT ! SELECTABLE;
•_treeCn_en_b3.ob_flags !« TOUCHEXIT i SELECTABLE;
s_treeCn_en_c3.ob_flags }- TOUCHEXIT ! SELECTABLE;

t_en_a » addi t(s_tree,box,G_BUTTQN,"t",TONEA+2,TGLS_Y,1,1);
t_en_b • addit<s_tree,box,G_BUTTQN,"t",TONEB+2,TGLS_Y,1,1);
t_en_c - addit(s_tree,box,G_BUTTQN,"t",TQNEC+2,TGLS Y,l,l);
s_.treeCt_en_a3.ob_flags i~ TOUCHEXIT ! SELECTABLE;
s_treeCt_en_b3.ob_flags != TOUCHEXIT ! SELECTABLE;
s_treeCt_en_c3.ob_flags J- TOUCHEXIT ! SELECTABLE;

radio_a m addit<s_tree,box,G_BOX,BOXCOLOR,RAX,RAY,2,2);
radio_b m addit(s_tree,box,G_BOX,BOXCOLOR,RBX,RAY,2,2);
radio_c • addit(s_tree,box,G_BOX,BOXCOLOR,RCX,RAY,2,2);

r_e_a • addit<s_tree,radio_a,G_BUTTON,"E",0,0,2,1);
r_m_a - addit<s_tree,radio_a,G_BUTTON,"M",0,1,2,1);
s_treeCr_e_aD.ob_flags != TOUCHEXIT ! SELECTABLE ! RBUTTON;
s_treeCr_m_a3.ob_flags {- TOUCHEXIT ! SELECTABLE ! RBUTTON;

r_e_b - addit(s_tree,radio_b,G_BUTTON,"E",0,0,2,l);
r_m_b - addit<s_tree,radio_b,G_BUTTON,"M",0,1,2,1);
s_treeCr_e_b3.ob_flags !« TOUCHEXIT ! SELECTABLE ! RBUTTON;
s_treeCr_m_b3.ob_flags TOUCHEXIT ! SELECTABLE ! RBUTTON;

r_e_c • addit(s_tree,radio_c,G_BUTTON,"E",0,0,2,1);
r_m_c • addit<s_tree,radio_c,G_BUTTON,"M",0,1,2,1);
s_treeCr_e_c3.ob_flags }- TOUCHEXIT { SELECTABLE ! RBUTTON;
s_treeCr_m_c3.ob_flags != TOUCHEXIT ! SELECTABLE ! RBUTTON;

all_sliders(s_tree);

•_treeCnext_item-13.ob_flags ! * LASTOB;
max_iterns = next_item;
return < s tree);
>

191

http://s_.treeCt_en_a3.ob_f

CHAPTER 8

The adcLslider function. The blcLsliders function calls add—slider
(Program 8-13) to add each slider to the dialog box tree.. A slider consists of
four parts: the slider box, the track in which the box moves, and the two ar­
rows in boxes at either end of the track. When blcLsliders calls adcLslider, it
passes the dialog box tree, the slider location and orientation (vertical or hori­
zontal), a character to put in the slider button, and pointers to this slider's par­
ticulars (s_vals and vaLindex) in the array of slider information.

First, the adcLslider routine adds the track by calling addit with param­
eters that specify a box drawn in TRKCOLOR, which is set to black. Next, the
arrow boxes are added by giving the object type G_BUTTON and the slider box
is added by passing addit the object type G_BOXCHAR. The G-BOXCHAR
type is a box with a character in it. The character is put into the ob_spec field
in the object structure, along with the color of the box and character.

The track orientation is controlled by the is_ver variable, and determines
where on the track the slider box starts and how wide it is. Vertical sliders are
two characters wide and horizontal sliders are one character wide, as specified
in the parameter to addit for the width.

Next, the ob_flags bits for the slider boxes and buttons are set to
TOUCHEXIT so form_do will return if the user clicks on them.

The last thing that's needed is to save the tree indexes of the slider's var­
ious parts in the appropriate fields of the s__vals structure. This lets us cross-
reference between the slider values in s_vals and the slider appearance as it is
defined in the dialog tree. This allows for both reading the value from the slid­
ers when the user changes the settings, and setting the value from the s_vals
array when we want the program to control the tone and volume.

Program 8-13. addslide.c
include <obdefs.h>
include <sliders.h>
define SLDCOLOR ((long)((0xFFL<<16) ! (RED<<12) ! (RED<<8)))
define TRKCOLOR ((long)((0xFFL<<16)!(BLACK<<12)!(BLACK<<8)!TRKFILL))
define TRKFILL ((IP_1PATT « 4) ! BLACK)
define INC VER
define DEC_VER ,,\2"
define DEC_HOR "\Z"
define INC_HOR ,,\4"

add_sli der(s_tree,s_vals,box,val_i ndex,x,y,w,h,is_ver,ch)
struct object *s_tree;
struct slide *s_vals;
int box, val_index, x, y, w, h, is_ver;
char *ch;<

int track, slider, inc_button, dec_button;
long int c;

c - *ch;
c • SLDCOLOR ! (c << 24);
track • addit(s_tree,box,G_BOX,TRKCOLOR,x,y,w,h);
i f(i s_ver)i

inc_button - addit(s_tree,box,G_BUTTON,INC_VER,x,y-1,2,1);
dec_button - addit (s__tree, box , G_BUTTON, DEC_VER, x , y+h, 2, 1);

192

Programming the Sound Chip

slider • addit(s_tree,track,G_BOXCHAR,c,0,0,2,1>;
>

else C
inc_button • addit<s_tree,box,6_BUTT0N,INC_HOR,x-1,y,1,1);
dec_button - addit<s_tree,box,G_BUTTON,DEC_HOR,x+w,y,1,1);
slider • addit<s_tree,track,GJBOXCHAR,c,0,0,1,1);
>

s_treeCslider3.ob_flags - TOUCHEXIT;
s_treeCinc_button3.ob_flags - TOUCHEXIT;
s_treeCdec_button3.ob_/f lags = TOUCHEXIT;
s_valsCval_index3.track • track;
s_valsCval_index3-slider m slider;
s_valsCval_index3 -inc • inc_button;
s_valsCval_index3.dec - dec_button;
s_valsCval_index3.is_vert • is_ver;

The all—sliders Subroutine: Getting the Sound Register Values
When blcLsliders has finished building the dialog tree box, it calls the
all—sliders function, Program 8-14. The purpose of this subroutine is to read
the sound chip registers and set the slider locations to reflect the register
contents.

blcLsliders reads the sound chip registers and sets the slider locations by
calling the seLslider function.

The sound chip has three voices, and therefore has three tone registers.
Among the parameters for seLslider is a call to the tone routine. To reference
the first tone register, tone is passed a 0 as well as GET to read the value.

The tone register can hold a value from 0 to 4095, which is too large to
use conveniently in the slider. This range is divided by shifting the value right
by two bits, effectively dividing by 4 and giving a range of 0 to 1024. Although
the slider boxes can now only set or display the tone registers in increments of
four, 1024 different tones are plenty for this program.

Among the arguments to the seLslider function are the address of a
slider within the s_vals array, the dialog box tree, and a range. The range is
defined as TONE_MIN and TONE—MAX, and the addresses of the different
sliders' s_vals structures are defined in sliders.h as S_T__A for SLIDER TONE
voice A, S _ T _ B for SLIDER TONE voice B, S _ V _ A for SLIDER VOLUME
voice A, and so on.

The same is done for all the sound registers, except for the shape regis­
ter, which requires some special consideration. Because of the way the hard­
ware is designed, the shape register has 10 meaningful values out of 16
possible values, and 2 of the 10 are redundant.

To simplify things, the redundant choices are eliminated to create a
range of 8 to 15. All values less than 4 are changed into 9 and the values 5
through 7 into 15. Now each shape is unique.

Once the shape register values are determined, the shape sliders are built
to reflect the changes in the register.

To shade the buttons, indicating that the button is ON (or SELECTED),
the selecLon function is called. Last, the settings of the sound registers are

193

CHAPTER 8

saved by the save_state subroutine, keeping them readily available for got_key
to insure that the settings are correct for the piano tones.

Program 8-14. allslide.c
include <obdefs.h>
include <sliders.h>

define GET -1
define TONE_MIN 0
define TONE_MAX 1023 / * (x 4) would be 4095 with LONG sliders */
define V0LJ1IN 0
define VOL_MAX 15
define NSEJ1IN 0
define NSE_MAX 31
define E_P_MIN 0
define E_P_MAX 4095 / * (x 16) would be 65535 with LONG sliders «/
define E_S_MIN 8
define E_S_MAX 15 al1_sli ders(s_tree)
struct object *s_tree;<

unsigned int period<);
int x;
extern struct slide s_valsC3;
extern int n_en_a, n_en_b, n_en_c;
extern int t_en_a, t_en_b, t~en~c;
extern int r_e_a, r_e_b, r_e_c;
extern int r_m_a, r_m_b, r_m_c;
extern int radio_a, radio_b, radio_c;

»et_»lider (Scs_valsCS_T_A3,s_tree, tone (0, GET) » 2, TQNE_MIN, TONE_MAX);
set_slider (&s_valsCS_T_B3, s_tree, tone (1, GET) >> 2, TQNE_MIN, TONE_MAX);
set_slider (&s_valsCS_T_C3,s_tree,tone(2,GET) >> 2,T0NEJ1IN,TONE_MAX);
set_slider (&s_val sCS_V_A3, s__tree, volume (0, GET) , VOL MIN,VOL_MAX);
set__slider (&s_valsCS_V_B3,s_tree,volume <1,GET),V0LJ1IN,VOL_MAX);
set_sl i der (Scs_val sCS_V_C3 , s_tree, vol ume <2, GET) , VOL_MIN, VOL_MAX) ;
set_slider (8<s_val sCS_N3 , s_tree, noi se (GET) , NSEJ1IN, NSEJ1AX) ;
x * shape(GET);
if (x < 4) /« redundant shapes 0-3 —> 9 * /

x = 9;
if(x < 8) /% redundant shapes 4-7 —> 15 * /

x - 15;
shape(x);
set_sl ider (Scs_valsCS_S3, s_tree, shape (GET) ,E S MIN,E_S MAX);
set_sl ider (Scs_valsCS_P3, s_tree, period (GET) >> 4, E_P_MIN, E_P J1AX);
select_on(s_tree, noise_enable(0,GET), n_en_a);
select_on(s_tree, noise_enable(1,GET), n_en_b);
select_on(s_tree, noise_enable(2,GET), n_en_c);
select_on(s_tree, tone_enable(0,GET), t_en_a);
select_on< s_tree, tone_enable(1,GET), t_en_b);
select_on< s_tree, tone_enable(2,GET), t_en_c);
select_on(s_tree, mode_bit(0,GET), r_e_a);
select_on(s__tree, ! mode_bi t (0, GET), r_m_a);
select_on< s_tree, mode_bit(1,GET), r_e_b);
select_on(s_tree, !mode_bit(1,GET), r_m_b);
select_on(s_tree, mode_bit(2,GET), r_e_c);
select_on(s_tree, !mode_bit(2,GET), r_m_c);
save_state();
>

194

Programming the Sound Chip

The set_slider function. The exact placement of the slider box within
the track is done by calling the seL_slider function, Program 8-15, which takes
a sound register value and converts it to a position for the top or left side of the
slider box.

The sound register value and the minimum and maximum values are
first stored in the slider value array using the pointer s. Then we get a pointer
into the dialog box tree for this slider's object, which happens to be BOXCHAR
(a character with a box around it). This is the slider box that slides on the track.

The slider-box position on the track is determined by the sound register
value, which was passed to set_slider. The values are scaled to fit the range
(max-min) that was established for the height or width of the slider track. The
result goes into the ob_y field for a vertical slider, or the ob_x field for a hori­
zontal slider. This x or y value will determine where the left side or top of the
slider box will be positioned in the track.

Program 8-15. setslide.c
include <obdefs.h>
include <sliders.h>
set_slider(s,s_tree,value,min,max)
struct slide *s;
struct object *s_tree;
int value, min, max;*

struct object *t;
long int high, wide;
extern int gl_hchar, gl_wchar;

s->value • value;
s->min = min;
s->max = max;
t = Scs_treeCs->sl ider 1;
high • value - min;
high *= s_treeCs->track3.ob_height
high /= max - min;
wide = value - min;
wide *= s_treeCs->track3.ob_width
wide /= max - min;
i-f < s->is_vert)

t->ob_y • high;
el se

t->ob_x = wide;
>

The do_menu Function
When the user selects a menu item, the multi function calls the do_menu func­
tion, Program 8-16.

You may recognize this function as the same as the do_menu version in
the MandelZoom program. It's important that this version be used instead of
the default version in the envelope library. From here, the program calls the
do_main__menu function to handle the menu item the user has selected.

- gl_hchar;

- gl_wchar;

195

CHAPTER 8

Program 8-16. domenu.c

include <obdefs.h>

do_menu(title,item,whand,vw)
int title, item, whand, vw;{

int ret;
extern struct object *main_addr;

ret = do_main_menu(itern,whand,vw);
men u_t n or ma1(mai n _addr,t i 11 e, 1);
menu_tnormal(mai n_addr,i tern,1);
return(ret);
>

The do_main—menu Function
The do_main_menu function (Program 8-17) is notified that a menu item has
been selected, and then determines what action to take depending on the
menu.

Selecting the menu items About or one of the Help menu items causes
do__main_menu to call the GEM forrrL_alert routine to display the information
that we provide. If the user selects the Quit menu item, then the value 1 is re­
turned, causing the multi function to exit.

The other menu items that went into the menu tree built earlier with
bid—tree produce the menu shown in Figure 8-4, and are the other four possi­
ble menu choices for the user.

Figure 8-4. The Four Options
desk f i l e l»|iUl! iU help

0 Set Sound
Print Values
Rhythns
Sound Effects

Noise!

4 • •

R T

I! Ill
u i M i l

196

Programming the Sound Chip

When Select sound (Set_snd) is selected, the do_slide function is called
to put up the dialog box of sliders and buttons that let the user change the
sound chip registers. The registers are saved in memory with the save__state
routine so they can be restored should they be changed temporarily—for ex­
ample, when the rhythm option uses the registers to emit drum sounds.

By selecting Rhythms, the program calls the do_rhythms function to
produce rhythmic beat patterns. do__rhythms is discussed later, and you'll see
that each time do__rhythms is called, it changes the current rhythm being
played. It starts with silence and cycles through all of the patterns, then starts
over again with no rhythm.

The Print Values (Print__vals) menu item prints the register contents in a
window, as numbers that you can copy down and use in programs. A program­
mer can design a sound by moving the slider boxes around, then select this
menu item to see the register values. This window showing the register con­
tents appears in Figure 8-5.

Figure 8-5. The Window Showing the Values of the Sound Chip
Registers

desk f i l e
Noise!

Channel ft B C
Volune: 0 B B
Tone: 52 B B
Period: 10000 Noise: B Shape: 9

cm

[] %

Selecting Sound Effects (Effects) produces a sampler of noises—primarily
gunshots and explosions such as you might want to use in game programs.

Program 8-17. domnmenu.c
do_main_menu(item,whand,vw)
int item, whand, vw;{

char strC2563;
extern int About, Quit, Set_snd, Rhythms, Ef-fects, Print_vals;

197

CHAPTER 8

extern int HSet_snd, HRhythms, HEffects, HPrint_vals;
if < item == About)<

sprintf (str, "C03[7.s!7.s!7.s!7.s!7.s3C OK 3",
" Noise! Control the sound ",
" chip in your Atari ST. ",
" Set the chip's registers, ",
" play a piano, ",
" or percussion rhythms. "
) ;

form_alert <1,str);
return (0);
>

else if< item mm Quit)i
return <1);
>

else if< item » Set_snd)i
do_slide();
save_state();
return(0);
>

else if (item == Rhythms ><
do_rhythms<);
return <0);
>

else if (item mm Print_vals)i
print_vals <);
return(0);
>

else if(item == Effects)C
do_effects<> j
return <0);
>

else if< item == HSet.snd)<
sprintf(str,MC03Cy.s!7.s!y.s!Xs!7.s3C NEXT 3",

" There are 3 tone/volume " ,
" slider sets, one -for each M ,
" voice. Beneath them is a " ,
" set o-f buttons -for enabling ",
" tone, noise, and envelopes. "
>J

•f orm__al ert (1, str);
sprint* <str,MC03C7.s!7.sS7.s{7.s!7.s3C DONE]",

" E enables envelope control, " ,
" M is -for manual control via ",
" the volume sliders. Below " ,
" are the noise, shape, and " ,
• period sliders. •
) ;

•form_alert < 1,str);
return(0);
>

else i f(i tern == HRhythms)<
sprintf (str,MC03C7.sS7.s{7.s{7.s!7.s3C OK 3M,

" Each time you click on
" the rhythm menu item,
" a new rhythm begins.
" Loop through al 1 o-f
" them, and they stop.
> ;

•f orm_al ert < 1, str);
return(0);
>

else if< item == HEffects X
sprintf (str,"C03C7.s!7.s{7.s:7.s!7.s3C OK 3'

" Select the effects menu ",
" item to hear some sound " ,

198

Programming the Sound Chip

" effects such as gunshots, " ,
" explosions, and other " ,
" varieties of mayhem. "
>5

form_alert <l,str);
return(0);
>

else if< item mm HPrint_vals)<
sprintf (str, " C03 CXs! %s i 7.s i y.s! %s3 C OK 3",

" After setting up a sound, " ,
• select the print values " ,
" item to print out the " ,
" sound register contents. M ,
ii it
> ;

form_alert <1,str);
return(0);
>

sprintf <str, " C03C7.S %d3C OK 3","Unknown menu number ! " , item) ;
form_alert <1,str);
return(0);
>

The do_slider and sliders functions. The do_slider function (Program
8-18) is called by do_main_menu when the user selects the Set Sound menu
item in order to change the sounds. It's a short routine that first calls the
alLsliders function to make sure the sliders reflect the current sound, and then
calls the sliders function (Program 8-19) to show the slider dialog box and let
the user change the register values.

You probably recognize the sliders function as similar to the dialog sub­
routine in the Mandelbrot program.

The GEM routines form_center and form_dial center the dialog box and
make it expand. Then sliders performs a loop in which it calls GEM's form__do
routine to handle the mouse and keyboard input, and sl_set to set up the dia­
log box until sLset returns 0, indicating that the user clicked the QUIT button.

Program 8-18. doslide.c
include <sliders.h>
include <obdefs.h>
struct slide s_valsCNUM_SLIDERS3;
struct object *slid_tree;

do_slide<)i

ml 1_sli ders(siid_tree>;
sliders(slid tree, 0, s vals);
>

Program 8-19. sliders.c
« include <obdefs.h>
include <gemdefs.h>

siiders(box_tree,field,vals)
struct object *box_tree;
int field;

199

CHAPTER 8

struct slide tvals;<

int x, y, w, h;
int littlex, littley, littlew, littleh;
int operation;

if< field < 0 > / * Atari doc is wrong */
field = 0; / * -1 blows up, should be 0 or valid */

f orm_center (box tree,&x,&y,&w,&h);
littlew = littleh = 50;
littlex - x + w / 2 - littlew;
littley • y + h / 2 - littleh;
form_dial(FMD_START,1ittlex,1ittley,1ittlew,1ittleh,x,y,w,h);
form_dial(FMD_GROW,littlex,littley,littlew,littleh,x,y,w,h);
objc_draw(box_tree,0,9,x,y,w,h);
do <

operation • form_do(box__tree,field);
> while(sl_set(box_tree,field,vals,operation));

form_dial(FMD_SHRINK,littlex,littley,littlew,littleh,x,y,w,h);
form_dial(FMD_FINISH,littlex,littley,littlew,littleh,x,y,w,h);
return(operation);
>

The si—set Function
Inside the dialog box, there are five different types of items: the sliders, the tog­
gle buttons, the radio buttons, the QUIT button, and the NOTE button. The
sLse t function, Program 8-20, organizes the different types and how they are
handled.

To determine which object was modified, the which__one function is
called. If the object was one of the noise- or volume-enable (n_en_a and
t_en_c) toggle buttons, it is taken care of by calling the toggles function. The
radio buttons are handled with the racLbutton function. These routines are dis­
cussed in more detail later.

For the QUIT button, the function simply returns 0 so the sliders func­
tion will break out of its loop.

For the NOTE button, the slider-box positions in their tracks are up­
dated, and the play_note is called to make the speaker generate the current
sound.

When the user moves the slider boxes or clicks on the arrows, the
set_slider subroutine is called to move the slider; then slicLval, to update the
registers and play the note; and finally the GEM objc_draw routine, to draw
the slider in its new position.

When the user drags a slider box, the sLse t routine calls the GEM
graf_slidebox routine to handle the slider's movement. It draws a small rectan­
gle that follows the mouse up and down the slider track. When the mouse but­
ton is released, letting go of the slider box, graL_slidebox returns a value from 0
to 1000, indicating the box's position. This is scaled in the usual way to a value
between s->min and s->max, the minimum and maximum values allowed for a
particular slider. This value is then passed to set_slider.

When the user clicks on the arrows at either end of a slider track, the
function checks to see if there's room to increment or decrement the value in

200

Programming the Sound Chip

the range, and then it calls set_slider with the new value so it can convert it to
the new position for the slider box.

Program 8-20. slset.c
include <obde-fs.h>

include <sliders.h>

int max_ i tems - 0;

sl_set (tree, -field, vals, operation)
struct object ttree;
int -field;
struct slide tvals;
int operation; <.

struct slide *s;
struct object *p;
int val_index, type, val, step;
long 1, range;
extern int t_en_c, n__en_a;

p * tree;
i-f(operation < 0 II operation > max_iterns)

return(1);
i-f< operation >* n_en_a operation <= t_en_c)<

toggles(operation, tree);
all ..sliders (tree) ;
play_note();
return <1);
>

i-f(treeCoperation3.ob_flags Sc RBUTTON X
rad_button< operation, tree);
all_sliders(tree);
play_note();
return(1);
>

val_index = which one(vals, operation, Sctype);
i*(type — N0TE_0P)<

tree[operation}.ob_state Sc= ŜELECTED;
all_sliders(tree);
piay_note();
return(1);
>

if(type mm QUIT_0P)
return(0);

s = Scval sCval_index 3;
range = s->max - s->min;
switch< type)<

case SLIDERs
1 • gra-f_slidebox (tree,s->track,s->slider,s->is_vert);
1 *= range;
1 300;
1 /= 1000;
val • s->min + 1;
set_slider(s,tree,val,s->min,s->max);
break;

case DEC_ARROW:
i-f(s->value < s->max)

set_slider(s,tree,s->value+l,s->min,s->max);
break;

case INC.ARROW:
i-f(s->value > s->min)

set_slider(s,tree,s->value-l,s->min,s->max);
break;

201

CHAPTER 8

>
slid_val(tree,val_index,s->value);
objc_draw<p,s->track,9,p->ob_x,p->ob_y,p->ob_width,p->ob_height);
return(1);
>

The which_one function. The which_one subroutine converts a tree in­
dex into a slider index. In this application, it's called by sl_set to determine
which object the user has modified.

It checks for the object type NOTE_OP and QUIT__OP, then loops
through the array of slider information, looking for a match between the index
of the object selected in the dialog tree and the dialog tree indices stored in the
slider array. When a match is found, the type variable is filled in and the slider
index is returned to the sl_set function.

Program 8-21. whichone.c
include <sliders.h>

/ *
tt Which_one takes an index into an object tree, and returns
** an index into the value array for the sliders. It puts the
** type of the operation (SLIDER,INC_ARROW,DEC_ARROW) into type.
* /
which_one(vals, operation, type)
struct slide tvals;
int operation, *type;i

int x |
extern int note_op, quit_op;

if(operation « note_op)<
ttype - NOTE_OP;
return(-1);
>

if(operation mm quit__op)i
ttype = QUIT_OP;
return(-1);
>

for(x « 0; x < NUM_SLIDERS; x++ If
if(valsCx 3. si ider operation) <.

ttype = SLIDER;
return(x);
>

else if(valstxl.inc mm operation)i
•type = INC_ARROW;
return(x);
>

else if(valsCxl.dec m m operation)i
•type - DEC_ARROW;
return(x);
>

>
return(~1);
>

202

Programming the Sound Chip

The save—state and rest—state Functions
The sound chip register settings need to be saved so they can be restored.
When the user plays the rhythm section of this application, the sound chip is
set to the rhythm sounds. When the rhythm section is finished, the user should
be able to return to the dialog box and find it unchanged. The save__state and
rest__state functions (Program 8-22), which are complementary routines, share
the same data about the register values. They are only concerned with the reg­
isters that are changed by the rhythm section.

When sl_set returns 0 to the sliders function, sliders closes the dialog
box and returns to do__slide, which returns to do_main__menu. The
do__main__menu routine calls save_state to copy the sound chip's register val­
ues into memory.

Program 8-22. savstate.c
« define GET -1

int tl, t2, t3, p, n, tel, te2, te3, nel, ne2, ne3;

save_state<)<

tl • tone(0,GET);
t2 * toned,GET);
t3 - tone(2,GET);
tel • tone_enable(0,GET);
te2 - tone_enable(l,GET);
te3 = tone_enable(3,GET);
nel * noise_enable(0,6ET);
ne2 = noise_enable<1,GET);
ni3 * noise_enable(2,GET);
p • period(GET);
n = noise(GET);
>

rest_state()<

tone(0,tl);
tone(l,t2);
tone(2,t3);
tone_enable(0,tel);
tone_enable(1,te2);
tone_enable(3,te3);
noi se_enable(0,nel);
noi se_enable(1,ne2);
noise_enable(2,ne3);
period(p);
noise(n);
>

Notes on the Sound Chip Registers
The ST's sound chip has 16 read/write control registers. The registers control
the tone, volume, period, and shape of the note and noise that construct the
sound emitted from the speaker. Note that the last two registers control I /O
(not sound) and, consequently, are of no interest to us here.

203

CHAPTER 8

The following descriptions of the functions that set these registers will be
easier to understand if you refer to Figure 8-15 to see how the registers are
used.

The play_note Function
Reading the shape register and then putting the same value back into the regis­
ter will generate a sound. This is what the play—note function, Program 8-23,
does when it's called by sl_set.

The GEM BIOS routine Giaccess is used to read the shape register,
which is register 13 (called R15 because the registers are numbered in octal in­
stead of decimal). Then the shape register is set to the same value with the
SET_THE—REG argument to Giaccess. Because the argument is other than GET
(— 1), the register is set instead of read.

Program 8-23. playnote.c
include <osbind.h>

define GET -1

define SET__THE_REG 0x80

define SHAPEREG 015

play_note <)<

int x;

x = Giaccess<0,SHAPEREG);
Giaccess<x,SHAPEREG ! SET_THE REG);
>

The toggles and select—on Functions
The toggles function, Program 8-24, takes advantage of the fact that the noise
and tone information are arranged sequentially in the object tree array s_tree
by the bid—sliders function.

The index into the array tells whether this was a tone or noise button
that the user toggled, and by subtracting the selected object's index from the
first tone or noise-enable indices into the array, we find out which voice is af­
fected—voice 0, 1, or 2.

Once the voice number is known, tone_enable or noise—enable is called
to "toggle" the voice register on or off, depending on its current state. To tog­
gle the register, the opposite of the current value is passed to tone—enable or
noise—enable, so that if the register was set to 1, it is reset to 0, and vice versa.

Then the select—on function is called with the current register value to
make the button be drawn dark for selected (on), or white for unselected (off).
The GEM routine objc_draw then redraws the button in its new state.

The select—on function, Program 8-25, sets or clears the SELECTED bit
in the ob_state field of an object, depending on the value passed in the
true_false argument.

204

Programming the Sound Chip

Program 8-24. toggles.c
include <obde-fs.h>

define GET -1

toggles* index, p)
int index;
struct object *p; <.

int i;
extern int t_en_a, n_en_a;
if < index >= t_en_a)<

i = index - t_en_a;
tone_enable(i, !tone_enab1e<i,GET));
selection(p, tone_enable(i,GET), index);
>

else C
i = index - n_en_a;
noise_enable(i, înoise_enable<i,GET));
select_on< p, noise_enable(i,GET), index);
>

objc_draw(p,index,9,p->ob_x,p->ob_y,p->ob_width,p->ob height);
>

Program 8-25. selecton.c
include <obdefs.h>

selection < s_tree, true_false, index)
struct object *s_tree;
int true_false, index;C

if< true_false)
s__treeCindex3.ob_state i = SELECTED;

el se
s_treeCindex3.ob_state Sc= ŜELECTED;

>

The tone.enable and noise—enable Functions
The tone—enable and noise—enable functions (Programs 8-26 and 8-27) set or
read the tone-enable or noise-enable bits from the sound chip.

When the tone_enable or noise_enable functions are passed the value
GET, they return the current value from the sound chip registers. Otherwise,
the register is set to the value that was passed. The GEM BIOS routine Giaccess
is used to access the registers. If the register number passed to Giaccess has the
high bit set by adding SET—THE—REG, then the register is set; otherwise its
current value is returned.

Program 8-26. toneenab.c
include <osbind.h>
define GET -1
define SET_THE_REG 0x80

205

CHAPTER 8

define MIXERREG 07

/*

** Reed or set the tone enable bit in the mixer register.
t t Note that turning a bit in the mixer ON turns the feature OFF.
t /
tone_enable<channel,on_off)
int channel, on_off;<

int old_val;

if< on_off »- GET)
return(!(<Giaccess(0,MIXERREG) >> channel) & 1));

old.val - Giaccess(0,MIXERREG)|
if< on_off)

old_val «c- *M1 « channel); / t turn the bit OFF t /
else

old_val 1*1« channel;- / t turn the bit ON t /
Giaccess< old_val, MIXERREG • SET THE REG);
>

Program 8-27. noisenab.c
include <osbind.h>
define GET -1
define SET THE REG 0x80
define MIXERREG 07
tt
t t Read or set the noise enable bit in the mixer register
t t Just like tone_enable, but the noise bits are three bits to the left
t t of the tone bits.
t t Note that turning a bit in the mixer ON turns the feature OFF.
t /
noi se_en ab1e(channel,on_of f)
int channel, on_off|C

int old_val;

if< on off mm GET)
return< !<(Giaccess(0,MIXERREG) » <channel+3>) & 1));

old val - Giaccess(0,MIXERREG);
if(on_off)

old val *c« 'Ml « (channel+3)); / t turn the bit OFF t /
else

old val ! - 1 << (channel+3); / t turn the bit ON t /
Giaccess(old val, MIXERREG + SET THE.REG);
>

The rad—button Function
When a radio button is selected, the racLbutton function is called. The radio
buttons for each voice determine whether the envelope generator will control
the volume, or whether the volume will be set manually by the VOLUME
slider boxes.

Each voice has its own pair of radio buttons, kept in parent boxes called
radio_a, radio—b, and radio_c. When a button is selected, GEM changes the
SELECTED bit, and the rad—button subroutine displays the changed button.

206

Programming the Sound Chip

When rad—button is passed a button index, it calls mode—bit to select a
mode bit in the sound chip's MIXER register and change it. It then sets the in­
dex to the parent box of the radio buttons affected, and calls the objc_draw
subroutine to draw the subtree containing the parent and its two children.

Program 8-28. radbutn.c
include <obde-fs.h>

r*d_button< index, p)
int index;
struct object tp;C

extern int r_e_a, r_e_b, r_e_c, r_m_a, r_m_b, r_m_c;
extern int radio_a, radio_b, radio_c;

i-f < index == r_e_a) i
mode_bit< 0 , 1);
index • radio_a;
>

else if< index == r_e_b) <
mode_bit< 1, 1)|
index • radio_b;
>

else if< index «• r_e_c)<
mode_bit< 2, 1);
index • radio_c;
>

else i-f< index »• r_m_a)<
mode_bit(0 , 0) ;
index - radio a;
>

else if< index == r_m_b)<
mode_bit(1, 0) ;
index • radio_b;
>

else if< index == r_m_c)i
mode_bit(2, 0) ;
index m radio_c;
>

ob jc_draw(p, index ,9,p->ob x,p->ob y, p->ob__width, p->ob height);
>

The slid-val Function
Moving a slider box calls the slid—val function with an index telling which
slider changed and its new positional value.

slid—val calls the tone function to set one of the three tone registers, or
the volume subroutine for one of the three volume registers, or the noise,
shape, or period subroutines to set those registers. These functions, which all
look somewhat similar, are explained in the next sections.

Last, it calls the all—sliders routine to update the slider values, and then
play—note to produce a sound as feedback to the user.

207

CHAPTER 8

Program 8-29. slideval.c
include <obdefs.h>
include <sliders.h>

slid_val(tree,val_index,value)
struct object ttree;
int val_index,value;<

unsigned int period<>;

switch< val_index)<
case S. _T_As

tone<0,value << 2);
break;

case S.
toned, value << 2);
break;

case s. J_Cs
tone(2,value << 2);
break;

case s. _V_A:
volume(0,value);
break;

case s. _v_B:
volume(1,value);
break;

case s. _v_Cs
volume(2,value);
break;

case s. JMi
noise(value);
break;

case s. .Si
shape<value);
break;

case s. _P:
period(value << 4);
break;

>
all.sliders(tree);
play noteO ;
>

The tone function. To vary the tone of the sound register, the tone
function, Program 8-30, has to set two registers: one for coarse tone and one
for fine.

The fine tone is the low 8 bits and the coarse tone is the high 4 bits of
the 12-bit tone value. These are selected by adding two times the voice number
(channel) to the TONEREGS constant, which selects which register set to use.

The value GET is used as an argument for the GEM BIOS Giaccess rou­
tine, which accesses the registers. If GET equals — 1, the current value is returned;
if any other values are used, then the fine and coarse tone registers are set.

208

Programming the Sound Chip

Program 8-30. tone.c
include <osbind.h>

define GET -1

define SET_THE_REG 0xG0

/ t
t t The six tone registers are 0 and 1 for channel A,
t t 2 and 3 for channel B, and
** 4 and 5 for channel C. The even register is the fine tune register,
t t and the odd register is the coarse tune register.
t /
define TONEREGS 0
tone(channel,value)
int channel, value;{

int coarse, fine;

if(value GET >< / t just return the current value t /
coarse = Gi access(0,TONEREGS+channelt2+l);
fine = Giaccess(0,TONEREGS+channelt2) ;
value • ((coarse & 0xf) << Q) ! fine;
return(value);
>

/ t
t t Set the value
t /
coarse = (value >> S) & 0xf;
fine = value & 0xff;
Gi access(coarse,TONEREGS+channelt2+l+SET_THE_REG);
Gi access(fine,TONEREGS+channelt2+SET_THE REG);
>

The volume and mode_bit functions. The fifth bit in the amplitude
(volume) register is the envelope control bit, which is not affected by changing
the volume slider. Thus, the volume subroutine has to isolate the low four bits
from the envelope control bit.

To change only the four volume bits, the volume function, Program 8-
31, performs an AND operation on the register value with ENV_CONTROL,
which has been defined to have a bit set only in bit 5 (hexadecimal 0x10). Then
an OR operation is performed on the result and the low four bits of the value,
and the register is set to the resulting value.

The envelope generator is controlled by the fifth bit in the volume regis­
ter, which is set and cleared with the mode—bit function, Program 8-32. Setting
and clearing it is simply a matter of using the AND and OR operations on the
ENV—CONTROL bit in the register for the proper voice.

Program 8-31. volume.c
include <osbind.h>
define GET -1

define SET_THE_REG 0x60

/ t
t t The three volume registers are 10, 11, and 12, for channels A, B, and C
t /

209

CHAPTER 8

define VOLREGS 010
define ENV_CQNTRQL 0x10
volume(channel,value)
int channel, value;<

int gi.val;

gi_val « Giaccess(0,VOLREGS+channel);
if(value == GET)i /% just return the current value »/

return(gi val & 0xf);
>

value » (gi val & ENV_CONTROL) ! (value Sc 0xf);
/ *
** Set the value
* /
Gi access(value,VOLREGS+channel+SET_THE_REG);
>

Program 8-32. modebits.c
include <osbind.h>
define GET -1
define VOLREGS 010
« define ENV CONTROL 0x10
define SET THE REG 0x80
/«
tt Read or set the amplitude mode bit in the amplitude register
*/
mode_bit(channel,on_off)
int channel, on_off;€

int old_val;

if(on_off »« GET)
return((Giaccess(0,VOLREGS+channel) & ENV_CONTROL) 0);

old_val - Giaccess(0,VOLREGS+channel);
if(on_off)

old val 1» ENV CONTROL;
else

old_val Sc« ÊNV.CONTROLj
Giaccess(old val, VOLREGS + channel + SET THE REG);
>

The noise, period, and shape functions. The noise function (Program 8-
33) sets the 5-bit noise register (R6) in a manner similar to the tone and volume
functions.

The period function (Program 8-34) has to set two registers like the tone
subroutine—a coarse and fine register. These registers are eight bits each, and
are shifted and ORed to set or read the period value.

The shape function (Program 8-35) changes the shape register, causing
the sound chip to express itself. The shape register (R15) has 4 bits, but we use
only the high 8 values out of the 16 that are possible, since the low 8 are re­
dundant. The shape registers are illustrated back in Figure 8-5, showing which
registers create redundant shapes.

210

Programming the Sound Chip

Program 8-33. noise.c

Program 8-34. period.c
include <osbind.h>

define GET -1

define SET_THE_REG 0x80

ft
%% The envelope period registers are 13 and 14, for fine and coarse tune.
* /
define PERIODREG 013
unsigned int
period(value)
unsigned int value;{

unsigned int coarse, fine;

if(value « GET)C / * just return the current value * /
coarse = Giaccess(0,PERIODREG+1);
fine - Giaccess(0,PERIODREG);
value = ((coarse & 0xff) << 8) i fine;
return(value);
>

/*
* t Set the value
%/
coarse - (value >> 8) & 0xff;
fine = value & 0xff;
Giaccess(coarse,PERIODREG+1+SET_THE REG);
Gi access(fine,PERIODREG+SET_THE REG);
>

Program 8-35. shape.c
include <osbind.h>

define GET -1

« define SET_THE_REG 0x80

define SHAPEREG 01S

shape(value)
211

• include <ombind.h>

* define GET -1

define SET_THE_REG 0x80

* define NOISEREG 06

/ t
t t Set or return the value in the noise register
*/
noise(value)
int valuej<

if(value « GET ><
value - Giaccess(0,NOISEREG) & 0xlf;
return(value)|
>

Giaccess(value & 0xlf, NOISEREG * SET THE_REG);
>

CHAPTER 8

int value;{

if< value — GET) C
value - Giaccess(0,SHAPEREG) ;
return< value);
>

Gi access (value Sc 0xf, SHAPEREG+SET THE_REG) ;
>

The print_vals Function: The Print Values Menu Selection
When the user selects Print Values from the menu, the do_main_menu func­
tion calls the print__vals function, Program 8-36. print_vals calls the GEM
form_alert function to display a window with the character strings in the str ar­
ray, and the register values in numeric form.

As print_vals calls the various subroutines such as volume and tone, it
passes the GET argument of — 1 , causing the appropriate sound chip register to
be read.

Program 8-36. printval.c
define GET -1

print valsO i
char strC1283;
sprintf <str, "C03C7.s!7.s7.5d7.5d7.5d!7.s7.5d7.5d7.5d!7.s7.5u 7.s7.2d 7.s7.2d3C OK D",

"Channel A B CM,
"Volume: ",volume(0,GET),volume(1,GET),volume(2,GET),
"Tones ",tone(0,GET),toned,GET),tone(2,GET),
"Period: ",period(GET),
"Noi se: ",noi se(GET),
"Shape: ",shape(GET)
>!

form_alert(0,str);
>

Generating Rhythms with the Clock
The next few functions show how you can produce rhythms and noises with
the ST's interval timing mechanism. In the beginning of this chapter, we set the
interval variable to 20 milliseconds, causing GEM to send multi a message ev­
ery 1/50 second.

Thus, 50 times a second, multi gets a message and calls the clock—ticks
function, which checks the value of the cur_rhythm variable that is set by the
do_rhythm function. If the cur_rhythm variable is not 0, the percussion sub­
routine is called to make sounds according to a specified pattern in order to
produce rhythms.

The drums.h header file. The rhythm structure consists of a duration
and an instrument. The instrument names are defined in the drums.h header
file, Program 8-37. We define 17 possible "instruments/' which are actually
sounds played in structured patterns, and assign an arbitrary value to each in­
strument. We'll use this value later to quickly identify a pattern.

212

Programming the Sound Chip

Program 8-37. drums.h
define
define
« define
« define
« define
define
define
define
define
define
define
define
« define
define
define
define
« define

BASS_DRUM
SNARE_DRUM
TOMTOMLOW
TOMTQMMED
TOMTOMHIGH

EXPLOSION
BROKEN_GLASS

CYMBALS
BLOCKLOW
BLOCKMED
BLOCKHIGH
BELLLOW
BELLMED
BELLHIGH
SILENCE
BRUSHES
GUNSHOT

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

struct rhythm i
cher duration;
char instrument;
> ;

/ * how many 50ths of a second */

The do—rhythm and do_e£fects functions. When the user selects
Rhythms from the options pull-down menu, the DboDo_main_menu function
calls do_rhythm, Program 8-38. For our purpose here, which is to illustrate
how to generate these rhythms, we use a somewhat simple routine that must
run through the complete list of rhythms before it ends. Once the user selects
the Rhythms option, a sound pattern begins and continues until he or she se­
lects the option again, which produces another sound. The user cycles through
all seven rhythm patterns we've defined in order to return to silence.

First, we describe one cycle of seven different rhythm arrays, specifying
the duration and instrument for each note. Except for the last array, battle, the
rhythm cycles will repeat until the user selects Rhythms again. Each time the
user selects Rhythms and do_rhythms is called, the rhythm number stored in x
is incremented and the global variable cur_rhythm is set to the next rhythm.
As long as cur_-rhythm is not set to 0, the percussion subroutine will be called
to play the sound pattern.

Selecting the Effects menu option will produce only one result: a series
of battle noises. The do_effects subroutine sets the cur_rhythm variable to the
battle rhythm array. Note the special value Oxff at the end of the array; it will
be used to stop the battle sounds from being repeated.

Program 8-38. dorhythm.c
include <drums.h>

struct rhythm rocknrollC] * <.
12,SNARE_DRUM, 12,BASS_DRUM, 12,BASS_DRUM, 12,BRUSHES,
0 , 0
>;

struct rhythm justbassCD = i
20,BASS_DRUM,
10,BASS_DRUM,

213

CHAPTER 8

10,BASS_DRUM,
0,0
> ;

define S SNARE_DRUM
struct rhythm justsnareC] = C

2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,
20,SNARE_DRUM,
20, SNARE_DRUM,
2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,2,S,
10,SNARE_DRUM,
10,SNARE_ DRUM,
20,SNARE_DRUM,
0,0
> ;

struct rhythm justbrushCD = i
4,BRUSHES,
8,BRUSHES,
4,BRUSHES,
8,BRUSHES,
24,BRUSHES,
0,0
> ;

struct rhythm bell_blocksC1 - t
24,BELLL0W, 8,BL0CKL0W, 8,BL0CKLQW, 8,BL0CKL0W,
24,BELLMED, 8,BLOCKMED, 8,BLOCKMED, 8,BLOCKMED,
24,BELLHI6H, 8,BLOCKHIGH, 8,BLOCKHIGH, 8,BLOCKHIGH,
48,SILENCE,
0,0
> ;

struct rhythm tomtomsC] = C
20,TOMTOMLOW, 10,TOMTOMMED, 10,TOMTOMHIGH,
20,TOMTOMLOW, 10,TOMTOMMED, 10,TOMTOMHIGH,
20,TOMTOMLOW, 10,TOMTOMMED, 10,TOMTOMHIGH,
20,TOMTOMLOW, 10,TOMTOMMED, 10,TOMTOMHIGH,
5,TOMTOMHIGH, 5,TOMTOMHIGH, 5,TOMTOMHIGH, 5,TOMTOMHIGH,
10,TOMTOMMED, 10,TOMTOMMED,
20,TOMTOMLOW, 20,TOMTOMLOW,
20,TOMTOMMED,
5,TOMTOMHIGH, 5,TOMTOMHIGH, 5,TOMTOMHIGH, 5,TOMTOMHIGH,
10,TOMTOMMED, 10,TOMTOMMED,
20,TOMTOMLOW, 20,TOMTOMLOW,
20,TOMTOMMED,
0,0
>!

struct rhythm battleCD = i
7,GUNSHOT,
11,GUNSHOT,
13,GUNSHOT,
8,GUNSHOT,
10,GUNSHOT,
20,EXPLOSION,
16,GUNSHOT,
11,GUNSHOT,
14,GUNSHOT,
10,EXPLOSION, 5,BROKEN_GLASS, 7,BROKEN_GLASS, 3,BROKENJ3LASS,

8,BROKEN GLASS, 9,BROKEN_GLASS,
7,GUNSHOT,
13,GUNSHOT,
30,EXPLOSION,
0xff,SILENCE,
0,0
> ;

struct rhythm *cur_rhythmj
int rhythm_ind»x • 0;
do_rhythms<> <

214

Programming the Sound Chip

static int x • 0;

rhythm_index
s w i t c h 7 x + +) <

case 0:
cur_rhythm = rocknrol1;
break;

case Is
cur_rhythm = justbass;
break;

case 2:
cur_rhythm = justsnare;
break;

case 3:
cur_rhythm = justbrush;
break;

case 4:

cur_rhythm = bell_blocks;
break;

case 5:
cur_rhythm = tomtoms;
break;

default :
cur_rhythm = 0;
x = 0;
break;

>
>

do_ef fectsO <

rhythm_index = 0;
cur_rhythm = battle;
>

The clock—ticks Function
The cur_rhythm variable is used by the clock—ticks function, Program 8-39,
which is called by multi 50 times a second. The calling is controlled by the in­
terval variable initialized in the config.c file.

If the cur_rhythm variable is 0, clock—ticks returns without making a
sound.

As soon as the user selects the Rhythm option, do_rhythm sets the
cur_rhythm variable to one of its rhythm arrays, clock—ticks finds that the vari­
able does not equal 0, and sets the time—count variable to the duration of the
first instrument in the specified rhythm array. The percussion function is called
to play the sound, the rhythm—index is advanced to point to the next note, and
time—count is decremented by 1. Now, every 1/50 second, clock—ticks finds
that cur—rhythm is not 0, and decrements time—count and returns until
clock—tics has been called the number of times specified in the duration. When
time—count reaches 0, we play the note, move to the next duration and instru­
ment in the array, and repeat the process.

For the Effects menu item, we only play the sound pattern once instead
of repeating it, as we do for the other rhythms, clock—ticks looks for the special
duration value of Oxff and returns if it finds this value.

215

CHAPTER 8

Program 8-39. clocktic.c
include <drums.h>

clock_ticks(whand,vw)
int whand, vw;C

static int time_count = 0;
extern struct rhythm »cur_rhythm;
extern int rhythm_index;

if< cur_rhythm 0)
return;

if(—time_count > 0)
return;

time_count * cur_rhythmCrhythm_index3.duration;
percussion(cur_rhythmCrhythm_index3.instrument);
r h y t h m_ i n d ex ;
if< cur_rhythmCrhythm_index3.duration mm 0)

rhythm_index • 0;
if(cur_rhythmErhythm_index3.duration == 0xff)

cur rhythm • 0;
>

The percussion and bellblock functions. The rhythmic sound patterns
are made by the percussion function, Program 8-40, which sets the sound chip
registers and then sets the shape register to sound the note, as explained in the
discussion of the play_note function. By experimenting with the different
sounds caused by different register settings, we selected the ones most similar
to the instruments we want to synthesize.

Some of the instruments are easy to imitate, so the register value is set
for the tone subroutine to use.

The sounds for bells, block, and tomtoms are available in high, medium,
and low pitches. To efficiently program the pitches, we take advantage of the
ability of the C switch statement to provide multiple entry points to the same
code. In other words, to make a low tomtom sound, the code is entered at
case TOMTOMLOW

and tone_val is incremented by 800. Then execution continues to TOMTOMMED,
where another 400 is added, and then to TOMTOMHIGH, where 2047 is added.
The resulting value, 3247, produces the low pitch. For TOMTOMMED, only the
400 value is added to 2047, resulting in a higher pitch. For TOMTOMHIGH,
only 2047 is passed to tone to produce the highest pitch.

percussion calls the bellblock function, Program 8-41, to sound the
woodblock and bell sounds, which are the same except that the woodblock has
a shorter envelope period. Because they are the same sound, we use the same
routine to generate them.

The arguments for bellblock are the tone value and envelope period,
with which the subroutine sets the registers.

216

Programming the Sound Chip

Program 8-40. percussn.c

217

include <drums.h>

percussi on(i nstrument)
int instrument?<

int tone_val * 0;

volume(0,0);
volume(1,0);
volume(2,0);
switch(instrument){

case BASS_DRUM:
period(8208);
mode_bit(0, 1) ;
mode_bit(1, 1);
mode_bit(2, 1) |
noi se_enab1e(0,1);
noi se_enable(1,0);
noise_enable(2,0);
tone(0,4092); tone_enable(0,1);
tone(1,4092); tone_enable(1,1);
tone(2,4092); tone_enable(2,1);
break;

case SNARE_DRUM:
mode_bit(0, 1);
mode_bit< 1, 1);
mode_bit< 2, 1);
period(2000);
noise_enable(0,1);
noi se_enable(1,1);
noise_enable(2,1);
noise(4);
tone_enable(0,0);
tone_enable(1,0);
t one_en ab1e(2,0);
break;

case TGMT0ML0W:
tone_val +** 800;

case T0MT0MMED:
tone_val +- 400;

case T0MT0MHIGH:
tone_val += 2047;
period(8208);
mode_bit(0, 1);
mode_bit< 1, 1);
mode_bit(2, 1);
noi se_enable(0,1);
noise_enable(l,0);
noise_enable(2,0);
tone <0,tone_val); tone_enable(0,1);
tone(1,tone_val); tone.enable(1,1);
tone(2,tone_val); tone_enable(2,1);
break;

case CYMBALS:
break;

case BL0CKL0W:
tone_val 8;

case BLOCKMEDs
tone val += 4;

case BLOCKHIGH:
tone val +• 60;
beilblock(tone_val,752);
break;

case BELLLOW:
tone_val 8;

CHAPTER 8

case BELLMED:
tone_val +• 4;

case BELLHIGH:
tone_val 60;
bel1block (tone_val,9632);
break;

case SILENCEi
break;

case BRUSHES8
mode_bit(0, 1);
mode_bit(1, 0);
mode_bit(2, 0);
period(8000);
noise(0);
noi se_enable(0,1);
noise_enable(1,0);
noise_enable(2,0);
tone_enable(0,0);
tone_enable(1,0);
tone_enab1e(2,0);
break;

case GUNSHOTs
noi se(15);
noise_enable(0,1);
noi se_enable(1,1);
noise_enable<2,1);
tone_enab1e(0,0);
tone_enab1e(1,0 >;
tone_enable(2,0);
mode_bit(0, 1);
mode_bi t(1, 1);
mode_bit< 2, 1);
period(8192);
break;

case EXPLOSION:
noi se(0);
noi se_enable(0,1);
noise_enable(1,1);
noise_enable(2,1);
tone__enable(0,0);
tone_enab1e(1,0);
tone_enable(2,0);
mode_bit(0, 1);
mode_bit(1, 1);
mode_bit(2, 1);
period(28672);
break;

case BR0KEN_6LASS:
noise_enable(0,0);
noise_enable<1,0);
noise_enable(2,0);
tone_enable(0,1);
tone_enable(1,0);
tone_enable(2,0);
mode_bit(0, 1);
mode_bit(1, 1);
mode_bitC 2, 1);
period(8192);
break;

>
shape(9);
>

218

Programming the Sound Chip

Program 8-41. bellblok.c

The Music
After each of these functions has been compiled, they are linked all together,
when using the Atari ST Software Developer's Kit linker, with the linkit.bat batch
file, Program 8-42, which reads a list of arguments from the link.arg file. The
link.arg file, Program 8-43, lists all the programs and files constructed in this
chapter; they appear in uppercase.

Note that one of the files listed is env.a, which is in the library of func­
tions constructed in Chapter 2. Those files need to be linked for this application
to work.

After constructing and compiling the files in the following listings, you
can click on batch.ttp on the desktop and give "linkit" for the argument. After
linking everything, and renaming the a.prg file to noise.prg, the program will
wait for you to press a key.

Program 8-42. linkit.bat
c : \ b i n \ l i n k 6 8 Cunde-f i ned , symbol s , commandC 1 i n k . a r g] 3
c : \ b i n \ r e l m o d a
c : \ b i n \ r m a .68k
c : \ b i n \ w a i t

Program 8-43. link.arg
a . 6 8 k = c : g e m s t a r t . o , m a i n . o ,
CONF IG . • ,DOMENU . • ,DOIT .O , J USTDRAW.0,SLIDERS.0,DOMNMENU.0,
SHOWKEYS.0 ,FILLBOX.O,DOWHITE.0 ,DOBLACK.O,OPENDATA.O,
GOTKEY. O, DORHYTHM. 0 , CLOCKT I C O , PERCUSSN. 0 , BELLBLOK. 0 ,
PR INTVAL .O ,SAVSTATE .O ,DOSL IDE .O ,SLSET .O ,SL IDEVAL . 0 ,MODEB ITS . 0 ,
WHICHONE.0 ,BLDSLIDE.0 ,ALLSLIDE .6 , TOGGLES.O,RADBUTN.O,
SELECTON .0 ,ADDSL IDE .0 ,SETSL IDE .O ,BLDTREE .0 ,VOLUME .O ,TONE .0 ,
NOISE .0 , TONEENAB .O ,NOISENAB .O ,PER IOD .0 ,SHAPE .O ,PLAYNOTE .0 ,
en v . a , v d i b i n d , v d i d a t a . o , g e m l i b , a e s b i n d , o s b i n d , 1 i b f

219

bel1b1oc k(t on e_va1,p)
int tona_val, p;i

mode_bit< 0 , 1) ;
mode_bit< 1, 1)|
mode_bit< 2, 1) ;
noise_enable(0,0)|
noi se_enable(1,0);
noise_enable <2, 0) |
tone_enable < 0 , 1) ;
tone_enab 1 •(1, 1))
tone_tnable(2,1) ;
period(p);
tone(0,tone_ val) ;
tone(1,tone_val) |
tone(2,tone val);
>

file:///bin/l
file://c:/bin/relmod
file:///bin/rm
file:///bin/wai

9 A Debugging Aid

9 A Debugging Aid
• • • • • • This chapter will discuss programs that misbehave. Specifically we'll

discuss programs that bomb—programs that produce fancy bomb
icons in the middle of your screen—and (if you're lucky) return to

the desktop, or (if you're not lucky) hang up the system. We'll talk about why
they behave this way, and how to find and fix the problems that cause pro­
gram crashes. To aid in debugging programs, a desk accessory will be pre­
sented that points out exactly where the program crashed by listing the names
of all the functions that led up to the crash, and their arguments. It will also
show the contents of all of the registers at the time of the crash, and allow you
to page through a disassembled listing of the program, so you can see exactly
what the problem was.

Exception Handling on the 68000
To explain program crashes, it is necessary to talk about the Central Processing
Unit (CPU) in the ST: the M68000 CPU, or 68000, for short. The 68000 has a
mechanism for handling severe program errors. This mechanism is called excep­
tion handling, and the severe errors that cause exception handling to be neces­
sary are called exceptions.

Exceptions occur when the programmer inadvertently asks the 68000 to
do something it cannot do. The exceptions that we're concerned with are Bus
Errors, Address Errors, Illegal Instructions, Dividing by Zero, Indexing Errors
(when protected by the CHK instruction), Overflow Errors (when protected by
the TRAPV instruction), and Privilege Violations.

Bus errors. Bus Errors occur when the programmer references memory
that does not exist, or is protected from being referenced. The ST has a Mem­
ory Management Unit that enables it to protect memory from being referenced
by normal user programs to prevent the operating system's memory from acci­
dentally being clobbered. Certain addresses in the lower part of the ST's mem­
ory can only be accessed by a user's program when it is in Supervisor mode,
which is the mode that TOS runs in. If a normal program tries to read or alter
this memory, a Bus Error results, and two bomb icons appear on the screen. To
access this memory, a User-mode program can ask TOS to temporarily put it in
Supervisor mode while it references the memory.

Address Errors. Address Errors occur when the 68000 is asked to refer­
ence a 2- or 4-byte object (an integer or a long integer) on an odd byte bound­
ary. The 68000 requires that all references to integers or long integers be on

223

CHAPTER 9

even boundaries. If they are not, three bomb icons appear on the screen.
Illegal Instructions. Illegal Instruction Errors happen when an instruc­

tion is encountered that is not in the 68000's instruction set. Since 68000 in­
structions are all at least 16 bits long, there are 65,536 possible instructions.
The 68000 only recognizes a little over 1000 of these possible instructions, so
the odds are good that if your program tries to execute a subroutine that has
been damaged by accidentally writing data in it, you'll see four bomb icons on
your screen. There is a special instruction in the 68000's instruction set called
illegal. It can be placed where the program should never execute, to catch er­
rors that would be difficult to find otherwise.

Zero Divide. Zero Divide Errors happen when a program tries to divide
something by zero. In mathematics and in programming, the result would be
undefined. The 68000 will generate a Zero Divide exception when this occurs.
But you are likely never to see five bomb icons on the screen, since TOS does
not consider this to be a serious error and just returns to the program, letting
the result of the division be random garbage. We will show how to detect Zero
Divide Errors without interfering with the execution of the program that has
them.

CHK Instruction (Indexing Errors). Indexing Errors are caused by a spe­
cial instruction in the 68000 called the CHK instruction. Some compilers (and
some assembly language programmers) use the CHK instruction to make sure
that indexes into arrays are never negative, and are never bigger than the size
of the array. If they are, the the CHK instruction causes an Indexing Error ex­
ception, and six bomb icons appear on the screen.

TRAPV Instruction (Overflow). The Overflow Error is also caused by a
special instruction, the TRAPV instruction. If the program tries to add two
numbers whose result is too big to store, then an overflow is said to occur. If
the compiler (or assembly language programmer) puts a TRAPV instruction
after the ADD instruction, then seven bomb icons will appear on the screen
whenever the ADD causes overflow.

Privilege Violations. Last, Privilege Violations occur when the program
is in User mode and tries to execute an instruction that is only allowed in Su­
pervisor mode, such as RESET or STOP. Eight bombs will appear if this ever
happens.

A Desk Accessory for Catching Bugs
When TOS puts the bomb icons on the screen, it also saves some information
about the program in a safe place. This place is not cleared when you push the
RESET button, and can thus be examined after a crash. The 68000's registers
are stored there, along with the last 32 bytes of the Supervisor mode stack,
which contains the Program Counter (the address at which the program
bombed) and some other information about the crash.

Unfortunately, the program itself does not survive in memory for us to
look at, and the information about where the program was loaded in memory

224

A Debugging Aid

is also lost. This makes the information saved by TOS almost useless as an aid
in debugging the program.

We can make the information useful by arranging for some code of our
own to be executed whenever an exception occurs, but before TOS prints the
bomb icons. This code will save the information needed to debug the program,
and then let TOS blow up the program.

The desk accessory being built in this chapter can be thought of as two
programs. One half is concerned with catching the exceptions and saving the
critical information about the crash. The other half is concerned with displaying
the information to the user. We'll describe the first half of the program first:
how to catch the exceptions and save the data.

The 68000 assigns numbers to its exceptions. TOS uses the exception
number to determine how many bombs should be printed on the screen. Thus
there are two bombs for Bus Error, which is exception number two. (Exception
number one is system reset, which we don't consider to be a programming error.)

The 68000 has an array of pointers in low memory that point to subrou­
tines that are called whenever an exception occurs. TOS sets these pointers at
boot time, so that when a Bus Error occurs, the 68000 jumps to the TOS rou­
tine to handle Bus Errors. TOS provides a special function called Setexc (Set ex­
ception) that allows us to replace an exception pointer with one of our own,
thus causing the 68000 to call our subroutine whenever the exception occurs.

The Setexc function takes two arguments: an exception number (for ex­
ample, 2 for Bus Error), and a function address. It returns the old address, so
we can store it somewhere and replace it when we no longer need to intercept
the interrupt ourselves.

The configac.c File
The config file, Program 9-1, for this accessory is much the same as that of the
shell. The changes are the usual ones involving the name of the program, and
the size of the initial window is a little bigger to accommodate the information
it needs to hold.

Program 9-1. configac.c

cha r *wind_name Bombs i t e Î

i f d e f USE_RCS
cha r ł r e s o u r c e
e l s e

"BOMBSITE .RSC";

c ha r * r e s o u r c e
endi-f USE_RCS

= 0;

c ha r *access_name
i n t i _ a m _ a c c e s s o r y

Bombsi t e Î

i n t sx
i n t sy
i n t sw

= l ;
= 20 ;
= 30 ;
= 350;

/» s m a l l w indow s i z e */

225

CHAPTER 9

int sh = 100;
int slv • 0; / * small window vertical slider pos * /
int slh = 0; / * small window horizontal slider pos * /
int svs • 1; / * small window vertical slider size * /
int shs =1; / * small window horizontal slider size * /
int min_wide = 20;
int min_high • 20;
int interval 3 5 0;
int events « MUJ1ESAG ! MU_KEYBD;

The open—data Function
The desk accessory that will help in debugging is called "Bombsite!" and it
uses Setexc in its open_data function, Program 9-2.

The routines h__bus__err, h_addr__err, h_illegaL_err, h_zerodiv_err,
h_chk_err, h—trapv__err, and h_priv_err are the routines that will handle the
exceptions. The pointers, olderr2 (and olderr3, and so on), will hold the old
pointers that we are replacing.

The open__data function is called whenever the accessory is reopened
after an application program is run. If it were allowed to execute twice, then
the "olderr" values would be clobbered, so we keep a static variable called
only__once which will be set to 1 when open__data has already been called.
Then open_data can just return if it finds it has been called once already.

The set_top function is called by opendata to find out how much mem­
ory this ST has. This value will be used later to make sure that our accessory
does not try to reference memory that is not there (it will be examining another
program, so the normal precaution of only using its own data will not be suffi­
cient to prevent errors).

Then open__data calls Setexc for each exception we wish to retarget to
our own routines.

Program 9-2. opendata.c.
i n c l u d e <osbind .h>

o p e n _ d a t a (f i l e , w h a n d , v w)
char t - f i l e ;
i n t whand, vw;C

s t a t i c i n t only_once = 0 ;
e x t e r n i n t h _ b u s _ e r r <) , h _ a d d r _ t r r <) , h _ i 1 1 e g a l _ e r r () ;
e x t e r n i n t h _ z e r o d i v _ e r r <) , h__chk_err <>, h _ t r a p v _ e r r <) , h _ p r i v _ e r r () ;
e x t e r n i n t (* o l d e r r 2) () ;
e x t e r n i n t (* o l d e r r 3) () ;
e x t e r n i n t (* o l d e r r 4) () ;
e x t e r n i n t (t o l d e r r S) <) ;
e x t e r n i n t (* o l d e r r 6) () ;
e x t e r n i n t < * o l d e r r 7) <) ;
e x t e r n i n t < * o l d e r r 8) <) ;

i-f< only_once)<
r e t u r n ;
>

only_once • 1 ;
s e t . t o p () |
o l d e r r 2 - S e t e x c < 2 , h _ b u s _ e r r) ;

226

A Debugging Aid

oldsrr3 • Sstsxc(3,h_«ddr_srr>;
oldsrr4 • 8«t»xc(4,h_i11egal_mrr>;
olderr5 - 8sttxc<5,h_zsrodiv_srr);
oldsrr6 • Sstsxc<6,h_chk_srr);
oldsrr7 - Sstsxc<7,h_tr«pv_srr)|
olds-rrB • Sstsxc<8,h priv «rr)|
>

The set—top Function
The set_top function, Program 9-3, is responsible for setting the phystop vari­
able, which holds the highest RAM address (the top of physical memory). It
calls a special routine called getlong which is able to read any address in RAM
(even protected memory) because it runs in Supervisor mode (youTl see how it
does that later). The address PHYSTOP is where TOS stores the value we
want. It is in protected memory, and if getlong isn't used to get it, it could
cause a Bus Error exception, and crash. If getlong returns a value for phystop
that is less than 256K (hexadecimal 0x40000), then we assume that something
is very wrong, and we set it to — 1 (all of possible memory) and continue, in
the hope that we can help the programmer discover the problem. 256K is the
smallest ST made, so this value should be reasonable.

Program 9-3. settop.c
« ds-fins PHYSTOP 0x042eL

sst_top()<

extern long int phystop;

phystop - getlong(PHYSTOP)i
if< phystop < 0x40000)

phystop • -1;
>

The errors.c File
Now that the exception array contains pointers to our subroutines, we can look
at what happens when an exception occurs. Since the exception-handling
routines are all similar, we group them into one file, called errors.c.

The error-handling routines need to do things that are not easily done
from C, like saving and restoring all of the registers, and jumping to the TOS
exception handler without disturbing any registers. Since the amount of work
we need to do in assembler is small, we use the asm feature of C to include in­
line assembly instructions into the code at this point.

The h__bus_err routine is used as an example, since all of the other
routines follow the same logic. The first line uses the move multiple instruction
to copy all 16 68000 registers into the array saveregs. The second line calls the
function get_trace, which will save the critical data from the program that has
caused the exception. The third line restores all 16 registers from the saveregs
array. We need to save and restore the registers, because the get_trace function
will be changing them, and we want them in their original state for the next
few lines.

227

CHAPTER 9

The next three lines implement an assembly language trick that allows
the accessory to jump to TOS at the place where TOS would have been entered
if we hadn't intercepted the exception. To TOS, we wish the state of the machine
to be exactly the same as if we had never interfered. To do this, we must remove
from the stack anything that our subroutine placed there. When h_bus_err was
called, it placed register A6 on the stack as part of the normal C subroutine call
sequence. A6 is also called the "frame pointer," or in DRI assembly language,
R14. The UNLK instruction removes it, and puts the stack back in the state it
was in when h_bus_err was called. Then h_bus_err pushes the old exception
pointer onto the stack and executes a RTS instruction, which pops it back off
the stack and jumps to it (this is the trick we use to jump through a pointer
without disturbing any registers).

All of the other exception-handling routines are similar. They differ only
in the old pointer they jump to, and in the way they call get_trace. Bus Errors
and Address Errors have extra information on the stack that the other excep­
tions don't have. This information includes the address being referenced that
caused the exception to occur (such as the address that was out of bounds or
odd). Get_trace is given an initial argument of 1 to indicate that this extra
information is there, and 0 if it is not there. In most exceptions, the Program
Counter (the address of the instruction that caused the exception) is pointing at
the instruction AFTER the one that caused the error. In the case of Illegal In­
structions, or Privilege Violations, however, the address is pointing right at the
offending instruction. The second argument to get_trace is 0 if the Program
Counter points beyond the instruction, and 1 if it points at it.

The last argument to get_trace is the name of the exception.

Program 9-4. errors.c
i n t < * o l d e r r 2 > () j
i n t < * o l d e r r 3 > <) ;
i n t (* o l d e r r 4 > <) j
i n t (* o l d e r r 5 > (> ;
i n t < t o l d e r r 6 > < > j
i n t < * o l d e r r 7 > () ;
i n t (* o l d e r r 8) < > y

long i n t saveregsC1635

h_bus_err <arg>
s h o r t i n t t a r g ; i

asm ("movem. 1 d 0 - d 7 / a 0 - a 7 , s a v e r e g s ") ;
g e t _ t r a c e < I , 0 , "Bus E r r o r ")p
asm <"movem.1 _ s a v e r e g s f d 0 - d 7 / a 0 - a 7 ") j
asmC'unlk R 1 4 ") ; / * pop o f f f p * /
asm("move.1 _ o l d e r r 2 , - (s p) ") ; / * move o l d t r a p address onto s tack * /
asmC' r ts") ; / * jump t o o l d t r a p address * /
>

h_addr_er r<arg)
shor t i n t * a r g ; {

asm("movem.1 d 0 - d 7 / a 0 - a 7 , . s a v e r e g s ") ;
g e t _ t r a c e < 1 , 0 , "Address E r r o r ") j

228

A Debugging Aid

asm("movem.1 _saveregs , d0-d7 /a0- -a7") ;
asmC'unlk R 1 4 M) | / t pop o f f f p t /
asm("move.1 o l d e r r 3 , - (s p) ") ;
a s m C ' r t s ") ;
>

h . i 1 1 é g a l . e r r <arg)
mhort i n t t a r g ; i

asm("movem.1 d 0 - d 7 / a 0 - a 7 , s a v e r e g s ") ;
g e t . t r a c e < 0 , 1 , " I l l e g a l I n e t r u c t l o n ") ;
asm("movem.1 . s a v e r e g s , d 0 - d 7 / a 0 - a 7 ") ;
asm("unik R 1 4 ") | / t pop o f f f p * /
asm<"move.1 o l d e r r 4 , - < s p) ") ;
asm<"r ts"> !
>

h . z e r o d i v . e r r < a r g)
shor t i n t t a r g ; <

asm("movem.1 d 0 - d 7 / a 0 ~ a 7 , s a v e r e g s ") ;
g e t _ t r a c e (0 , 0 , "Zero D i v i d e ") ;
asm("movem.1 . s a v e r e g s , d 0 - d 7 / a 0 - a 7 ") ;
asmC'unlk R 1 4 ") ; / t pop o f f f p * /
asm<"move.1 o l d e r r 5 , - (s p) ") ;
a s m C ' r t s ") ;
>

h . c h k . e r r (a r g)
shor t i n t t a r g ; i

asm("movem.1 d0 - d 7 / a 0 - a 7 , s a v e r e g s ") ;
g e t . t r a c e (0 , 0 , "Chk I n s t r u c t i o n ") ;
asm <"movem.1 . s a v e r e g s , d 0 - d 7 / a 0 - a 7 ") ;
asmC'unlk R14">; / t pop o f f f p t /
asm("move.1 _ o l d e r r 6 , - (s p) ") ;
a s m (" r t s ") ;
>

h . t r a p v . e r r (a r g)
shor t i n t t a r g ; i

asm <"movem.1 d 0 - d 7 / a 0 - a 7 , . s a v e r e g s ") ;
g e t . t r a c e (0 , 0 , "Trapv I n s t r u c t i o n ") ;
asm("movem.1 . s a v e r e g s , d 0 - d 7 / a 0 - a 7 ") ;
asmC'unlk R 1 4 ") ; / t pop o f f f p t /
asm("move.1 _ o l d e r r 7 , - (s p) ") ;
asmC' r ts") ;
>

h . p r i v . e r r (a r g)
shor t i n t t a r g ; <

asm("movem.1 d 0 - d 7 / a 0 - a 7 , . s a v e r e g s ") ;
g e t . t r a c e (0 , 1 , " P r i v i l e g e V i o l a t i o n ") ;
asm("movem.1 . s a v e r e g s , d 0 - d 7 / a 0 - a 7 ") ;
asmC'unlk R 1 4 ") ; / t pop o f f f p t /
asm("move.1 . o l d e r r 8 , - (s p) " > ;
asmC' r ts") ;
>

The get- trace Function
The get—trace function, Program 9-5, looks at the stack to see where the defec­
tive program has been. Because each time a function is called in C the return
address and frame pointer are pushed on the stack, the stack has a record of
every function that was called before the crash. All get_trace needs to do is to
read the stack and decipher the information. (Since all the exception pointers
now end up calling get_trace, we need to protect ourselves from exceptions

229

http://get.tr

CHAPTER 9

while within get—trace. If one were to occur, then get—trace would be called
from within itself, which could lead to confusion. The static integer already—in
causes get—trace to return immediately if it is ever called from within itself by
accident.)

The address of the top of the stack is the address of the last thing
pushed on the stack. In this case, the last thing pushed was the first argument
to get—trace, the integer bus_or_addr.

The pointer short—ptr is set to point at the top of the stack, and it is then
used to get the frame pointer and the Program Counter of the crashing pro­
gram into the variables fp and pc. If there was extra information on the stack
(because the exception was a Bus Error or an Address Error) then the pc (Pro­
gram Counter) will be found 11 short integers up the stack. If no extra infor­
mation was on the stack, then the pc will be found 7 short integers up the
stack. (Refer to Figure 9-1 to see where these numbers come from.)

If neither the fp or the pc could be found (getlong returns 0 if it can't get
the data), then get—trace gives up and returns. If the pc was found, and it
points to memory that exists, then the get—dis routine is called to disassemble
the area around the crash location, producing an assembly listing of the pro­
gram at that point.

Note: All of the code that deals with disassembling the offending program is
placed between ifdef and endif statements. This allows you to build the stack
trace and bomb info parts of the program, and leave the disassembler until
later. The disassembler is in the next chapter. If you're typing this program in,
you'll then get immediate use out of the program, and not have to type in the
disassembler.

Program 9-5. gettrace.c
include <debug.h>
include <document.h>
de-fine TRACE.NUM 32
define NUM_ARGS 32

long int real_pcsCTRACE JMUM+i3;
int numpcs = 0;

pc.compar(a,b)
long int ta, *b;<

return < ta - tb)j
>

struct trc savtrc CTRACE_NUM3;

get_trace<bus_or_addr, exact_pc, err_etr)
short int bus_or_addr, exact.pc;
char »err_str|C

long int tfp, *fp_addr, **long_ptr, getlong();
short int *pc, *short ptr, getshortO$
int i, j;
extern long int proc_pcj

230

A Debugging Aid

extern short int *get_realpc ();
static int already_in = 0;

if(already_in++)< /% Guard against errors while in get_trace */
return;
>

/*
tt Get the frame pointer which is stacked before the arguments
* /
short_ptr • &bus_or_addr;
long_ptr • (long int **) (&short_ptrC-43);
fp * get long(llong ptr);
lf(fp mm 0)C

already_in * 0;
return;
>

if(bus_or_addr)
pc • (short int t) getlong (IcShort ptrC113);

else
pc • (short int *) getlong(feshort ptrC73);

if (pc mm 0)<
already_in = 0;
return;
>

proc_pc * (long int) pc;
ifdef HAS_DISASSEMBLY

if(getshort(proc_pc))
get_dis(NLINES, exact.pc);

endif HAS_DISASSEMBLY

for(i - 0; fp mm i < TRACE_NUM-1; i++) i
savtrcCil.fp • fp;
savtrcCi3-ret_pc * pc;
pc • (short int t)getlong(fp+1);
if(i)

savtrcCi3.real_pc • get realpc(pc);
else

savtrcCi3.real_pc • savtrcCi3.ret_pc - !exact_pc;
savtrcCi3-num_args = get_args(fp,pc,1,savtrcCi3.args);
fp_addr • fp;
fp • (long int »)getlong(fp_addr);
if< fp == fpaddr)

break;
>

savtrcCi3.fp = 0;
numpcs = 0;
for(j • 0; j < i; j++)<

if(savtrcCj3-real__pc)
real_pcsCnumpcs++3 - savtrcCj3.real pc;

>
qsort(real_pcs,numpcs,sizeof(real_pcsC0 3),pc_compar);
already in = 0;
>

The stack. At several points in this program we'll be very cautious about
pointers found on the stack. Since the program we are examining is known to
be misbehaving, it may have destroyed part or all of its stack, or its program
code. This is why get—trace checks fp and pc so carefully, and why it checks to
make sure that the pc points to valid memory before calling get_dis.

At this point, the picture of the stack structure in Figure 9-1 will be
worth a thousand words.

231

CHAPTER 9

Figure 9-1. The Stack Trace Structure

&short_ptr[-4] -> , .
low word of old Frame Pointer

high word of old Frame Pointer

low word of Return Address

high word of Return Address
&bus_or_addr ->

bus_or__addr

exact_pc

low word of err_str

high word of err_str

low word of h__bus_err fp

high word of h_bus_err fp

function code

low word of access address

high word of access address

instruction that failed

status register
&short_ptr[l 1]

low word of program counter

high word of program counter

In the C function calling sequence, the current frame pointer always
points at the saved copy of the previous frame pointer. In this way, the frame
pointers form a linked list of pointers that we can follow. In normal execution
(for instance, in the absence of exceptions) the return address of a function is
always found immediately after the frame pointer. This can be seen in the top
four items in the illustration of the stack frame. In the exception frame, the pro­
gram counter and the old frame pointer are separated by the status register. If
the exception was a Bus Error or an Address Error, they are separated by a

232

A Debugging Aid

function code, the address that caused the problem, and the first word of the
instruction that failed.

To follow the linked list of stack frames, get—trace loops until the value
it gets for fp is invalid (zero), or the space reserved for storing stack frames is
used up (when i is greater than or equal to TRACE—NUM —1). The fp is put
into savtrc[i].fp, and the pc is put into savtrc[i].ret_pc. Notice that this pc is the
return address, not the address of the function.

Get—trace then gets the next pc by using getlong to fetch the long inte­
ger just above the current frame pointer (fp+1) . If this is the first stack frame
(if i = 0) then the get—realpc function will not be able to find the real address
of the start of the function, since it needs the previous stack frame to work
from. (We will discuss get—realpc in a moment. Its purpose is to guarantee that
we know the current function's name by looking at how the previous subrou­
tine called it.) In the case of the first stack frame, we set savtrc[i].real_pc to the
best guess we have of the address: the current return address (minus one word
if the exception was not an Illegal Instruction or a Privilege Violation).

The arguments of the function are collected off the stack by the get—args
routine, which returns the number of arguments found. Last, the new frame
pointer is fetched (easily, since the current fp always points to the next one). In
case the stack was damaged, we check to make sure that it is different from the
old one to prevent loops.

After the loop, we collect all of the real—pc entries, and save them in an
array called real—pes, which we sort using qsort. This sorted list of subroutine
addresses will be used by a very tricky routine (called get—base) which will at­
tempt to reconstruct the program's load address with the symbol table from the
program and the sorted list in real—pes.

The get—real Function
The stack trace that get—trace builds is just a list of addresses and function ar­
guments. It's difficult to read a list of numbers and try to figure out which
functions the list refers to. The purpose of the get—realpc function, Program 9-
6, is to aid later functions (get—base and get—name) in putting real names in
the trace instead of just numbers.

TOS does not save an important ingredient needed to do this: the load
address of the program. The names of all the functions are stored in the symbol
table of the program on the disk that the user double-clicked on. These names
have addresses associated with them, but the addresses are all relative to the
beginning of the file. When TOS loads a program, it picks an address in mem­
ory where the program will reside, and then it adds that address to each ad­
dress in the symbol table. When get—trace finds an address, it is the result of
that addition. In order to compare the address of a subroutine name with that
of an address, the load address must be added to the address found in the sym­
bol table. The first step in finding the load address is to collect all of the known
subroutine entry points possible.

233

CHAPTER 9

The get__realpc function tries to find the address of the beginning of a
subroutine by looking at the way that subroutine was called. The get_realpc
subroutine is passed the address that the target subroutine will return to when
it is done. That address will point to the instruction just after the instruction
that called the target subroutine.

There are five possible ways that a C routine can call another C routine
(there are actually more ways to do it, but C compilers generally limit them­
selves to these five). They are:

short branch to subroutine (bsr.b)
long branch to subroutine (bsr.w)
short jump to subroutine (jsr.w)
long jump to subroutine (jsr.l)
indirect jump to subroutine (jsr (AO))

Each of these instructions calculates the address to jump to in a different
way. The first one stores a number in the instruction itself; that number is
added to the address of next instruction, and the result is where it jumps. The
second one stores a similar number after the instruction, and adds to it the ad­
dress of the next instruction to arrive at a target address. The third type of in­
struction stores a number after the instruction that is the address itself, and
needs no addition to obtain a target address. The fourth type is like the third,
but the number stored is 32 bits long instead of 16, so the entire addressing
range of the 68000 is addressable using it.

The last type of jump is the indirect jump, and no numbers are stored
after it. Instead, the target address is in a register.

In all but the last type of function call, get_realpc can examine the in­
struction that called the target subroutine, determine which type of instruction
it was that did the call, and reconstruct the address that was called. This gives
the address of the beginning of the subroutine that was called.

The get—realpc function starts by calculating the addresses of the possi­
ble subroutine call instructions. There are three possible instruction lengths:
two bytes (address in bret), four bytes (address in sret), and six bytes (address
in lret). The instructions found at these addresses are placed in b_instr, s_instr,
and Linstr , respectively. If get__realpc is unable to get any of these, it assumes
that the program is corrupted, and gives up.

If the s_instr word matches the BSRW pattern, then it must be a long
branch to subroutine instruction. The offset is taken from the next word, and
added to the address of the word following the instruction. This is done with
the expression:
&sret [(of fset» l)+ l]

The result is the address of the subroutine that the long branch to sub­
routine jumped to.

234

A Debugging Aid

The short branch to subroutine is handled in a similar manner, but the
offset is taken out of the low byte of the instruction itself.

The jump to subroutine instructions are simple, since the address is
found immediately after the instruction, and no addition is necessary.

For the indirect jump case, there is nothing to be done, since there is no
easy way to reconstruct the value in the register that was used for the jump.
For this case get__realpc just returns 0, to indicate that it was unable to get a
good value. Likewise, if none of the instructions matched a known instruction,
then 0 is returned.

Program 9-6. getreal.c
define BSR LEN 0X00FF /* bsr instr. offset */
define BSR_INSTR 0x6100 /* bsr instr. */

define BSR MASK 0xFF00 /* mask for bsr instr. */
define BSRW_INSTR 0x6100 /* bsr word instr. «/
define BSRW MASK 0xFFFF /* mask for bsr instr. */
define JSRL INSTR 0X4EB9 /* jsr abs long instr. */ • define JSRL_MASK 0xFFFF /* mask for jsr instr. */
define JSRW INSTR 0x4EB8 /* jsr abs short instr. */
define JSRW_MASK 0xFFFF /* mask for jsr instr. */

* define JSRI_INSTR 0x4E90 /* jsr indirect instr. */
define JSRI_MASK 0xFFF8 /* mask for jsr instr. */
short int *
get_realpc(retadr)
short int tretadr;i

int i ;
unsigned short l_instr, s_instr, b_instr;
short int *shortp, getshort();
long int getlongO;
char offset;
short int tlret, tsret, tbret;

lret = retadr—3;
sret = retadr—2;
bret = retadr—1;
l_instr = getshort(lret);
if (l_instr == 0)

return(0L>;
s_instr • getshort(sret);
if(s_instr « 0)

return(0L);
b_instr = getshort(bret);
if (b__instr == 0)

return(0L);
if ((s_instr fc BSRW_MASK) — BSRŴINSTR) i

offset = getshort (Scsr etC 13) ;
retadr • StsretC (of f set>>1)-»-13 ;
return(retadr);
>

if ((b_instr & BSR_MASK) — BSR_INSTR) i
offset - b_instr & BSRJ-EN;
retadr • ScbretC (of f set >>1) +13;
return(retadr);
>

if ((l_instr Sc JSRL_MASK) JSRL_INSTR> €
retadr = getlong(&1retC13);
return(retadr);
>

235

CHAPTER 9

if <<s_instr & JSRWJ1ASK) JSRW_INSTR) <
retadr • (short int *) getshort (8<sret C13) ;
return(retadr);
>

i-f ((b_instr & JSRI_MASK> JSRI_INSTR> i
return(0L);
>

return(0L);
>

The get—args Function
The get—args function, Program 9-7, uses a similar trick to find out how many
arguments were passed to a subroutine.

When a function is called, the arguments to the function are pushed on
the stack first; then the function is called. When the function returns, the in­
struction after the function call is usually an instruction that pops the argu­
ments back off the stack. By examining this instruction, get—args can determine
how many arguments were popped off, which usually correlates with how
many arguments were pushed.

There are three instructions that are commonly used by C compilers to
remove arguments from the stack. They are the ADDQ instruction, the ADDL
instruction, and the LEA instruction. The ADDQ stores the number of argu­
ments in the instruction itself, and get—args extracts that number into the vari­
able nargs. If nargs was 0, then the 68000 interprets it as 8 (since adding 0 to
something is useless), so get—args changes 0 to 8 on all ADDQ instructions.

The ADDL and LEA instructions simply store the number of arguments
after the instruction, and it is a simple matter to read them into nargs.

If the instruction was a branch or a jump, then get—args assumes that
the instruction that pops the stack is at the other end of the branch. It calcu­
lates the branch target address, and calls itself again to handle it. To avoid
loops, the recurse argument insures that this is done only once, on the assump­
tion that the code being read may have been damaged by the crash.

To complicate matters, the first argument is not pushed onto the stack,
but merely moved onto the top of the stack, so functions that only have one
argument have no code that cleans up the stack after the subroutine call. If
there are no recognizable instructions after the function call, get—args sets nargs
to the size of a long integer.

Since nargs is calculated in bytes, get—args divides it by two to get
words, then adds one for the first argument, which was not popped. Then it
loops nargs times, collecting each argument and putting it in the array args.
Finally, it returns the number of arguments found.

Program 9-7. getargs.c
define ADDQLJ1ASK 0xFlFF
define ADDQL_INSTR 0x508F
define ADDQL_SHIFT 9
define ADDL_INSTR 0xDFFC
define LEA.INSTR 0x4FEF
define BRA_MASK 0xFF00

/ * mask for addql instr. * /
/ * format of addql instr. */
/ * shift count for addql * /
/ * addl instruction * /
/ * format of lea instr. %/
/% mask for bra instr. * /

236

A Debugging Aid

define BRA_INSTR 0x6000 / * bra instr. * /
define BRAJJEN 0X00FF / * displ for bra instr. * /
define JMP_MASK 0xFFFF / * mask for jmp instr. * /
define JMP_INSTR 0x4EF9 / * jmp long abs instr. * /

get_args(fp,retadr,recurse,args)
long int *fp;
short int tretadr;
int recurse;
short int targs;i

int i;
unsigned short instr;
short int *shortp;
char nargs;
extern long int getlongO;

instr = getshort(retadr);
if (instr == 0)

return;
nargs = 0;
if ((instr Sc BRA_MASK) == BRA_INSTR) i

nargs m instr & BRA_LEN;
if (nargs == 0)

nargs = getshort (Scretadr C 13) ;
else if (nargs == -1)

nargs • getlong (Scretadr C 13) ;
retadr = ?<retadr Cnargs+11;
if (recurse)

get_args(fp,retadr,recurse-1,args);
return;
>

if ((instr & JMP_MASK) — JMP_INSTR) i
retadr = get1ong(fcretadrC13);
if(recurse)

get__args (fp, retadr, recurse-1, args);
return;
>

if ((instr S< ADDQL_MASK) == ADDQL_INSTR) i
nargs = (instr & ~ADDQL_MASK) >> ADDQL_SHIFT;
if (nargs mm 0)

nargs = 8;
>

else if (instr == ADDL_INSTR)i
nargs = get 1 ong (Scretadr C1 3) ;
>

else if (instr — LEA__INSTR) i
nargs = getshort (Scretadr Z 1 3) ;
>

else <
nargs = sizeof(1ong);
>

nargs /= sizeof(short); / * convert to number of arguments * /
nargs++;
fp 2; / * step over linked fp and return address */
shortp • fp;
for(i = 0; i < nargs; i++)i

argsCi3 • getshort(shortp++);
>

return(nargs);
>

237

CHAPTER 9

The getlong, getshort, and getbyte Functions
The getlong and getshort functions have been used extensively in the program
so far to safely get values out of memory, no matter where they are. To do this,
they need to do two things. One is to make sure that there is RAM at the loca­
tion referenced. The other is to make sure the actual accessing is done in super­
visor mode when accessing protected memory.

The getlong, getshort, and getbyte functions are all in one file, Program
9-8, for convenience, since they are all very similar.

Look at getshort as a typical example. The address passed is first com­
pared to the pointer phystop, which was set when open_data called settop. If
the address is beyond phystop, then getshort returns 0. (While experimenting
with this program, you may want to know when this is occurring. There is an
error message printed by show_form that will greatly aid in debugging any en­
hancements you make, but can be removed when you are content with the code.)

Getshort then sets the global Sadr to the address, and uses the macro
Supexec (defined at the top of the file) to set Supervisor mode while the
Getshort routine is called to fetch a short integer in supervisor mode. The result
is masked off and returned.

Program 9-8. getlong.c
include <osbind.h>
de-fine Supexec (x) xbios(38,x)
long int biosO , xbiosO;

char tCadr;
short int *Sadr;
long int tLadr;

short int tphystop = 0x40000;

Getbyte (X

return(tCadr);
>

short int
Getshort <)i

return <*Sadr);
>

long int
Getlong<)i

return(tLadr);
>

getbyte(adr)
short int tadr;C

char strC1283;

if< adr >= phystop) <.
sprintf<str,"Getbyte: adr(%X> >= phystop<XX)adr,phystop);
show_-f orm (str);
return <0);
>

i-f< adr >= phystop)
return <0);

238

A Debugging Aid

Cadr = adr;
return(Supexec(Getbyte) & 0x-ff);
>

short int
getshort(adr)
short int tadr;C

char strC1283;

if< adr >= phystop X
sprintf(str,"Getshort: adr<7.X) >= phystop(XX)",adr,phystop);
show_form(str);
return <0);
>

i-M adr >= phystop)
return(0);

Sadr = adr;
return (Supexec (Getshort) & 0x-f-ff-f);
>

long int
getlong(adr)
long int tadr;i

char strC128J;

if(adr >= phystop)<
sprint-f (str, "Getlong: adr (XX) >= phystop (XX) " , adr, phystop) ;
show_form(str);
return(0);
>

i-f(adr >= phystop)
return(0);

Ladr = adr;
return(Supexec(Getlong));
>

The doit Function
That ends the discussion of the first half of the program, the half that collects
the data. The second half is concerned with presenting the data to the user, and
starts with the doit function, Program 9-9.

The doit and just—draw functions put a simple menu on the screen that
prompts the user to type T for a stack trace, or B for the bomb information. If
the disassembler is included, then the D option is also displayed. The output of
each of these commands will be shown in a separate window, just like the di­
rectory window in the shell program. To make this happen, the dis_window
variable is used (just like dir_window in the shell) in the show__info function
to indicate that a different routine is to be used to display the data (in this case,
the showwnd routine).

The initial window looks like Figure 9-2.

239

CHAPTER 9

Figure 9-2. The Initial Bombsite! Screen

Program 9-9. doit.c
include <gemdefs.h>

int dis_window * 0;

char *infoC3 = i
"Press HELP for help.",
"Press T to show the stack trace.",

ifdef HAS_DISASSEMBLY
"Press D to show the disassembly.",

endif HAS_DISASSEMBLY
"Press B to show the bomb information.",
0
> ;

doit(whand,vw)
int whand, vw; C

hide_mouse();
clr_display(whand,vw);
show_info(whand,vw);
show__mouse ();
>

show_info(whand,vw)
int whand, vw; i

int x, y, w, h, i;
extern int gl_wchar, gl_hchar;
hide__mouse ();
if(whand == dis_window)

showwnd(whand,vw);
el se t

wind_get(whand, WF_WORKXYWH, &x, &y, &w, Sch) ;
f or (i • 0; infoCi3; i++)

v_gtext(vw, x+gl_wchar, y+(i-«-l) *gl_hchar, infoCil);
>

240

A Debugging Aid

show_mouse(>;
>

just_draw <whand,x,y,w,h,vw)
int whand, x, y, w, h, vw;{

hi de_mouse();
just_clear(whand,vw);
show_info(whand,vw);
show_mouse() ;
>

The got—key Function
When a key is pressed, got_key (Program 9-10) is called to handle it.

As in the Command Shell program, got_key returns 1 to indicate EXIT if
the window that got the key was not the initial window.

If the key was the HELP key, then the familiar give_help function is
called to lend assistance.

got_key then creates a string to be used by form_alert, requesting the
user to select one of the options. After converting the character to uppercase
ASCII, got—key selects a command from TRACE, BOMBINFO, or (optionally)
DISASSEMBLE. If the key was not T, D, or B, then form_alert is called to ask
in a different way.

Then a switch statement is used to call the appropriate routine (trace,
disassem, or bombinfo) to format the data, and do_new__window (similar to
the Command Shell's do_dir_window) to create a new window to display the
data.

Program 9-10. gotkey.c
include <document.h>
include <debug.h>
define RETURN
define NEWLINE
define CTRL C
define ESCAPE
define BACKSPACE
define HELP
define UNDO

define TRACE
define BOMBINFO
define DISASSEMBLE

got_key(ch,whand,vw)
int ch, whand, vw;{

char SC1283;
int cmd;
extern int highlight, dis_window;
if(whand » dis_window)

return(1);
if< ch mm HELP >€

give_help(whand,vw);
return(0);
>

241

015
012

003
033

010
0x6200
0x6100

1
2
3

CHAPTER 9

ifdef HAS_DISASSEMBLY
sprintf (*, "y.sy.s",

"CIDC Select one of these functions: 3",
"C TRACE S BOMBINFO ! DISASSEM 3");

else
sprintf (s,"y.sy.s",

"C13C Select one of these functions: 3",
"C TRACE ! BOMBINFO 3M);

endif HAS DISASSEMBLY
highlight « 0;
ch 8c* 0xdf; /» convert to upper case, 1 byte only */
if< ch *T*)

cnid * TRACE;
else if< ch «• 'D')

Cffld * DISASSEMBLE;
else if(ch *B*)

cmd * BOMBINFO;
else

cmd • form_alert<1,s);
switch< cmd)C

case TRACE:
trace(whand,vw);
do_new_window<"Stack Trace",whand,vw,60,20);
break;

case BOMBINFO:
bomb_info<whand,vw);
do_new_window("Bomb Information",whand,vw,60,20);
break;

ifdef HAS_DISASSEMBLY
case DISASSEMBLE:

highlight • 1;
disassem(whand,vw,NLINES);
do_new_window("Disassembly",whand,vw,65,24);
break;

endif HAS_DISASSEMBLY

>
return(0);
>

The give.help Function
The give—help function should look familiar—Program 9-11.

Give—help puts up form—alert windows telling how to operate the pro­
gram, explaining the trace, disassembly (if HAS—DISASSEMBLY was defined),
and bomb information functions.

Program 9-11. givehelp.c

include <debug.h>

g i ve_he1p(whand,vw)
int whand, vw; C

char strC2563;

sprintf (str, "C03Cy.s!"/.s!y.s!y-s:y.s3C NEXT 3",
"Type * T* for a trace, showing",
"which routines were called in",
"what order, and the arguments",

242

A Debugging Aid

"to the routines, up until the",
"program failed. ('Bombed'). "
> ;

f orm__al ert (1, str);
sprintf (str, "C03C7.s!7.s!7.s!7.s!7.s3C NEXT 3",

"The program will prompt for a",
"program name to read a symbol",
"table from. Select the name " ,
"of the program that crashed. ",

> ;
form_al ert (1, str);

ifdef HAS_DISASSEMBLY
sprintf (str, "C03C7.s!7.s!7.s!7.s!7.s3C NEXT 3",

"Type * D' for a disassembly of",
"the 2̂00 lines of code around",
"the point at which the faulty",
"program crashed. The failure",
"will be printed in bold face."
> ;

form_alert(1,str);
endif HAS_DISASSEMBLY

sprintf (str, " C03 C7.s ! 7.s ! 7.s ! 7.s ! 7.s3 C LAST 3",
"Type *B* for a register dump,",
"showing the registers at the " ,
"time of the crash, including ",
"the decoded Status Register, ",
"and User Stack Pointer. "
> ;

form_alert(1,str);

The trace Function
When the user types T, got—key calls the trace function, Program 9-12. The
trace subroutine is responsible for formatting and printing the information
saved by get_trace in the first half of the program. As with the shell program,
trace will put its data into the array pl[], which will be displayed by showwnd
when GEM sends a REDRAW message. Multi will catch the REDRAW mes­
sage, pass it to was_msg, which calls do_redraw, which calls just_draw, which
calls show_info, which calls showwnd.

Trace clears the pl[] array by putting zeros in the first byte of each line
(thus making each line look like a null string to v_gtext). If there is no stack
trace to print (for instance, savtrc[0].fp is still zero), then trace places a message
into the pl[] array and returns. The message will be displayed when the RE­
DRAW message is received.

Trace then calls get_syms to prompt for a filename. This file (presum­
ably the name of the program which crashed) will be read, and its symbol table
(the list of subroutine names and their addresses) extracted and sorted. Trace
calls get—base to use this symbol table (and the list of sorted subroutine ad­
dresses collected by get—trace) to figure out where the program was loaded.
Since the procedure used is not guaranteed to yield a unique load address (after
all, get_base is trying to reconstruct information that has been thrown away),
trace will present all of the possible interpretations, and the user can pick the
one that looks right. In practice, if there are more than three functions in the

243

CHAPTER 9

trace, get_base will find a unique load address, and only one stack trace will
appear. The more data get—base has to work with, the better its guess will be.

To put the stack trace (or traces) into the pl[] array, trace calls the bt
subroutine (short for backtrace). Before going into bt, a look at get_syms and
get__base is in order.

Program 9-12. trace.c

include <document.h>
include <debug.h>
long int basesC2563;
long int prog_base;

trace(whand,vw)
int whand, vw; i

int x, next_line, num_bases;
extern char piCNLINES3CNCHARS3;
extern int xlines;
extern struct trc savtrcC3;

xlines - NLINES;
for(x = 0; x < NLINES; x++)

plCx3C03 = 0;
clr_disp(whand,vw);
if(savtrcC03.fp == 0)C

sprint-f (pi C03 , "No program has bombed since");
sprint-f (pi C 13, "this accessory has been loaded");
sprint-f (pi C23, "so there is no stack trace to");
sprint-f (pi C33, "di spl ay. ");
return;
>

get_syms(whand,vw);
num_bases = get_base();
next_line = 0;
•f or (x = 0; x < num_bases; x++)

next_line = bt(next_line, basesCx3);
>

The get—syms Subroutine
The get—syms function, Program 9-13, uses the familiar Dgetdrv, Dgetpath,
and fsel_input routines to put up a file selection window, just like the Plot pro­
gram. Then it reads and processes the symbol table.

Each executable file on the ST begins with a file header, and each file
header takes the form of the "head" structure declared in get—syms. Get—syms
constructs a filename by combining the directory and the filename returned by
fsel—input, and uses it to open the file with Fopen. It then reads the file header
into the "head" structure. Get—syms is interested in the symbol table, which is
stored in the file after the program code and data. To get to the symbol table,
get—syms adds the size of the header to the size of the program code and data,
and puts the result in seek—ptr. Then Fseek is called to "seek" to the beginning
of the symbol table in the file. The number of symbols is calculated using the
size of a symbol structure and the number of bytes in the symbol table (stored
in ssize in the header). If there are too many symbols (unlikely), then an error

244

A Debugging Aid

message is shown, and the number of symbols is adjusted by ignoring the sym­
bols that don't fit.

Get_syms then loops, calling Fread to read each symbol into the array
syms[]. Only TEXT symbols are stored; DATA symbols (and anything else) are
ignored, since subroutine names are always TEXT symbols. The file is closed
after the loop, and qsort is called to sort the symbols by their addresses. Fi­
nally, get—syms returns 1 to indicate success.

Program 9-13. getsyms.c
include <osbind.h>
include <debug.h>
de-Fine CANCEL 0
define OK 1

struct sym symsC2563;

int count;

static compar<a,b)
struct sym *a, *b; <

return< a->value - b->value);
>

define TEXT 0x200

long int
get_syms(whand,vw)
int whand, vw;C

int fd, x, button, drv, t_count;
long int seek_ptr, ref;
struct head i

int magic;
long tsize, dsize, bsize, ssize, zsize, entry;
int reloc;
> head;

static char dirC2563, fileC2563;
char strC1283, programC1283, *p, *last_slash;
if< dirC03 mm 0 X

drv m Dgetdrv();
Dgetpath (str,drv+l);
sprintf< dir, "XĉsWJ.t", drv+'A', str);
>

if< fsel_input (dir, file, Scbutton) 0) <.
show_formCError in file selection!No file selected");
return <0);
>

if< button mm CANCEL)
return <0);

strcpy(symsC03.name,"nameless");
symsC03.value 3 0;
symsC03.type = 0;
strcpy<str,dir);
last_slash = str;
for(p • str; tp; p-t"«-)

if< tp == 'W)
last_slash = p;

tlast_slash - 0;
sprintf (program, "EsWXs" , str, f i le) ;

245

CHAPTER 9

fd • Fopen (program, 0);
if< fd < 0)i

sprintf(str,"Can*t open *%s*",program);
show_form(str);
return(0);
>

count • Fread (f d, (long int)sizeof (head),Sthead);
seek_ptr = sizeof(head)+head.tsize+head.dsize;
Fseek(seek_ptr,fd,0);
count = head.seize / sizeof(symsC03)|
if(count > sizeof(syms) / sizeof<symsC03) - 2)C

count = sizeof(syms) / sizeof(symsC03) - 2;
sprintf (str, "Too many symbols: using y.d",count);
show form(str);
>

t_count • 0;
for(x = 1; x < count; x++) <

Fread(fd,(long int)sizeof(symsC03),ksymsCt_count3);
if (symsCt._count3.type 8c TEXT)

t count++;
>

count • t_count;
Fclose(fd7;
qsort(syms,count,sizeof(symsC03),compar);
return(1);
>

The get—base Function
Get_base is a deceptively simple routine (Program 9-14) that tries to figure out
where the program was loaded, given only a list of subroutine addresses from
the executable file (relative to zero) and a list of function addresses from the
crashed program (relative to the unknown load address).

The idea is to compare the distances between the function addresses in
each list, trying to find an address that, when added to each function address
in the file, will produce an exact match with a corresponding address in the list
from the crashed program. For example,
File addresses Program addresses
12 (_junk) A0502 (unknownl)
22 (_main) A0530 (unknown2)
50 (_subl) A0570 (unknown3)
74 (_sub2) A06E0 (unknown4)
90 (_sub3)
140 (_sub4)
200 (_sub5)

If get—base can find a number that can be subtracted from each Program
address and will yield an exact match with one of the File addresses, then that
number is a plausible load address. Such a number for this example might be
A04E0. This would make unknownl match the name _main, unknown2 would
match __subl, unknown3 would match _sub3, and unknown4 would match
_sub5.

To find the matches, get—base tries each possible base address in a loop,
constructing the trial base address by subtracting each File address in turn from

246

http://symsCt._count3.type

A Debugging Aid

the first Program address. In the loop, the routine ismatch is called to check all
of the Program addresses for an exact match with the File addresses. If a match
is found, that base address is stored in an array of base addresses called bases.

Because get_trace may not have had enough information to guarantee a
correct list of Program addresses, it is possible that no exact matches were
found. The ismatch function has maintained an index of the highest Program
address that matches, just for this contingency. Get—base throws out this high­
est value, on the assumption that it was the value that caused the matches to
fail. Get_base then calls itself to try again with the new (shorter) list, hoping
for better luck now that the spurious entry is removed.

get—base returns the number of possible load addresses found and
placed in the bases array.

Program 9-14. getbase.c
include <debug.h>

int max_index = 0;

get_base <)i

int x, y, be;
long int base;
extern long int real_pcsC3, basesCD;
extern int count, numpes;
extern struct sym symsC3;

max_index = 0;
be • 0;
•for (x = 0; x < count 8t& numpes > 0; x++) C

base • real_pcsC03 - symsCx3.value;
i4i ismatch(x, base, 1))<

basesCbc++3 = base;
>

>
if < be == 0)<

i-f< max_index > 1) t
for< x = max__index; x < numpes; x++)

real_pcsCx3 = real __pcsCx + l 3 ;
numpes—;
return< get_base(>);
>

>
return(be) ;
>

The ismatch Function
The first thing ismatch, Program 9-15, does is check to see if there are any Pro­
gram addresses to match. If there are none, it returns 1 for success, because it
has reached the end of the list without failing (all of which will be clearer in a
moment). It then updates max__index for the benefit of get_base.

ismatch then loops through each File address, checking to see if the pro­
posed base address, when added to the File address, matches the current Pro­
gram address. If it does, then ismatch calls itself to process the rest of the

247

CHAPTER 9

Program address list in an identical manner (this is how it can reach the end of
the list and be successful). If the base address plus the File address are greater
than the Program address, then there is no use looking any further, since the
lists are sorted in increasing address order, ismatch returns 0 to report failure.

Notice that by calling itself recursively to process the remainder of the
list, ismatch can deal with the problem of intervening subroutines in the File
address list that are not in the Program address list (look at —sub2 and —sub4
in the example above). This problem is not a simple one to solve any other
way, but ismatch does it simply and elegantly.

Program 9-15. ismatch.c

include <debug.h>

ismatch < tab_index, base, pc__index)
int tab_index;
long int base;
int pc__index; i

int x;
extern long int real_pcs£3;
extern int count, max_index, numpcs;
extern struct sym symsC3;

if(pc_index >= numpcs)
return(1);

i-f(pc_index > max_index) <
max_index = pc_index;
>

•for(x • 0 ; x < count; x++) i
if(symsCx3.value + base mm real_pcsCpc_index3)<

return(ismatch(x, base, pc_index + 1)) ;
>

if< symsCx3.value + base > real_pcstpc_index3)
return < 0);

>
return(0);
>

The bt Function
Now that all the possible base addresses have been found (there is usually only
one, except in cases where the program crashed in the first or second subrou­
tine in the program, and those problems are usually easy to solve), the bt func­
tion (program 9-16) can be called to print a stack trace for each possibility.

A stack trace looks like Figure 9-3. There is a line that shows the pro­
gram load address (in this example there was a unique address found), and a
list of lines that look like function calls, in the reverse order of when they were
called (so that the user does not have to page down to see where the error
occurred).

Note that some function names have a question mark after them. (See
Figure 9-3.) This indicates that an exact address was not available, and a best
guess was used. The guess is almost always correct, but can be wrong if the

248

A Debugging Aid

crash damaged the stack in just the right way. The function names without
question marks can always be trusted, since they were obtained by get_realpc
from the code itself.

Figure 9-3. A Stack Trace
Desk File Uiew Options

The bt function is simple, since all of the work has been done for it. It
loops through the savtrc array built by get—trace, and calls get—name to find
the name of the function in the symbol table, using the real—pc entry, and the
base address supplied by get—base.

After printing the function name and an open parenthesis, it loops
through all of the arguments collected by get—args, and prints them, followed
by an end parenthesis. It leaves one blank line at the end of the list to separate
it from any other traces that may follow (if there is more than one possible load
address) and returns the next line that can be printed on. (The word "print"
here is used loosely, since the data is really going into the pl[] array, which
will be printed later by showwnd).

Program 9-16. bt.c
include <debug.h>
include <document.h>
include <stdio.h>

bt <1ine,base)
int line;
1ong int base;i

long int prog_base;
char *str, bu-fC323, *get_name() , *exact_name<) ;
extern char piCNLINES3CNCHARS1;

249

CHAPTER 9

extern struct trc savtrcC3;
int i, j;

sprintf(piC1ine3,"For program based at 7.X",base);
for(i = 0; savtrcCi3.fp i+line+1 < NLINES; i++) <

str = plCi+line+13;
if(savtrcCi 3 . real_pc)

get_name(savtrcCi 3. real _pc, buf , base) ;
else

get_name (savtrcCi 3 . ret_pc , bu-f , base) ;
sprintf (str, " 7.9. 9s (", bu-f) ;
f or (j = 0; j < savtrcCi 3 .num_args; j++)<

sprintf(str,"%sXx",str,savtrcCi 3.argsCj 3);
i-f(j < savtrcCi 3. num_args-l)

sprint-f (str, "%s, ", str) ;
>

sprintf(str,"%s)",str);
>

pi Ci+line+13C03 = 0;
return(i +1 i ne+1);

The get—name Function
This function simply loops through the symbol table, looking for a match be­
tween the address passed to it, and the sum of the base address and the ad­
dress in the table. If it finds an exact match, it returns a copy of the function
name. If there was no exact match, it returns the last function name whose ad­
dress was less than the target address, on the assumption that the target ad­
dress must be inside that function. To indicate that this is merely an
assumption (although almost always correct), it puts a question mark after the
name. If there was no symbol table to look through, or the address was beyond
all of the symbols, the address is returned in a string as a hexadecimal value.

Program 9-17. getname.c

include <debug.h>

char *
get_name(addr,buf,base)
long int addr;
char *buf ;
1ong int base;C

int x;
extern struct sym symsC3;
extern int count;

i f (count)<
•for (x • 1; x < count; x++) <

i-f (symsCx 3 . val ue + base == addr) <
if(symsCx3.nameC03 ==)

sprintf (buf , "7.7. 7s" , StsymsCx 3 . nameC 13);
e l se

sprintf (buf , "7.8. 8s" , symsCx 3 . name) ;
return(buf) ;

if< symsCx3.value + base > addr)t
if(x == 1)

break ;

250

x — ;

A Debugging Aid

i f (symsCx3.nameC03 " ' >
s p r i n t f (b u f , "7.7. 7 s ? " , 8<symsCx 3 . nameC 1 3) ;

e l s e
s p r i n t f (b u f , "7.8. 8 s ? " , symsCx 3 . name) ;

r e t u r n (b u f) ;
>

s p r i n t f (b u f , "7.X'*, addr) ;
r e t u r n (b u f) ;

The bomb—info Function
Now that there is a way of finding the load address of the crashed program,
the information saved by TOS after a crash becomes useful. When the user
types a B, got_key calls the bomb_info function, Program 9-18, to format and
print this information.

Bomb—info clears the pl[] array (just as trace did), and loops, calling
getlong to collect the saved register information from the place TOS put it, and
calls getshort to collect the information from the saved copy of the supervisor
stack. TOS stores this information, along with the User Stack Pointer (USP)
and the Exception Number, in low memory, at the addresses given at the top of
the bomb_Jnfo listing. Figure 9-4 shows an example of a bomb information
window.

Figure 9-4. A Bomb Information Window
Desk File Vien Options

Bonb Infornation
Transient Progran Area: fliBO to F8B00
Data fron the last exception:

Pc: R763E Status: 388 (Level 3:)
Usp: B45CE Exception: 3 (Address Error)

Registers Supervisor Stack
DO: 2B HB: 1 8: 4251 8
Dl: 6 Dl: 8 2: 1 4258
D2: B 12 i DB8 4: 388 A
D3: 8 03: 8 6: 763E 1
D4: B A4: AA384 8: 168 288
D5: B IS: A72DF 18: 8 1662
D6: 8 AS: B45D6 12: 8 162C
D7: B A7: 4DAA 14! FC 925E

The first thing that is printed in the window are the beginning and end­
ing addresses of the Transient Program Area (TPA), the area of memory re­
served for loading programs off of the disk. The crashed program must have

251

CHAPTER 9

been loaded somewhere in this area, and any addresses that are outside of this
area cannot belong to the program that crashed.

If the exception was a Bus Error or an Address Error, the extra infor­
mation that was placed on the supervisor stack for these two exceptions is de­
coded and printed. This information tells what the program was attempting to
do (read or write memory from the user or supervisor program or data space)
and at what address it was trying to do it.

The program counter is located in the saved stack information in the
same way that get—trace located it in the real stack earlier, by counting up­
wards past the status register and any saved data.

The program counter, status register, user stack pointer, and the excep­
tion number are printed, followed by the Registers and the saved supervisor
stack information. The exception number is decoded, telling the user what it
was that went wrong (in this case it was an Address Error).

Program 9-18. bombinfo.c

include <document.h>
de-fine PROC_LIVES 0x380L
define PROC_DREGS 0x384L
define PROC_AREGS 0x3A4L
define PROC_ENUM 0x3C4L
define PROC USP 0x3C8L
define PROC_STACK 0x3CCL
define STATMASK 0x58E0
define MEMBOT 0X0432L
define MEMTOP 0X0436L
define TPASTART 0X0492L
define TPALEN 0X0496L

char tEnumsC] = t
"Reset 0",
"Reset 1",
"Bus Error",
"Address Error",
"Illegal Instruction",
"Zero Divide",
"CHK instruction",
"TRAPV instruction",
"Privilege Violation",
"Trace",
"Line A",
"Line F",
"Unassigned 12",
"Unassigned 13",
"Format Error",
"Uninitialized Interrupt",
"Unassigned 16",
"Unassigned 17",
"Unassigned 18",
"Unassigned 19",
"Unassigned 20",
"Unassigned 21",
"Unassigned 22",
"Unassigned 23",
"Spurious Interrupt",
"Levé1 1 Autovect or",
"Level 2 Autovector",

252

A Debugging Aid

"Level 3 Autovector",
"Level 4 Autovector",
"Level 5 Autovector",
"Level 6 Autovector",
"Level 7 Autovector"
>l

cher tre-f classesC3 = i
"?",
"user data space",
"user program space",
"??",
"???",
"supervisor data space",
"supervisor program space",
"interrupt acknowledge"
>!

long int re-f;
long int proc_enum, proc_usp, proc_pc;
long int proc_lives, proc_dregC83, proc_aregC83;
int statusreg;
int tr.linej
bomb_in-f o(whand, vw)
int whand, vw;{

unsigned short int proc_stakC163;
extern int mainO, gl_hchar, gl_wchar, xlines;
extern char *decode_status<), piCNLINES3CNCHARS3;
extern long int get_syms(), getlong<>j
int i, x, y, w, h|
int dx, dy, dw, dh, sx, sy, sw, sh;
long int bad addr;
char extraC1283;

xlines - NLINES;
for(x - 0; x < NLINES| x++)

plCx3I03 • 0;
hide_mouse() ;
clr_display(whand,vw);
tr.line - 0|
proc.lives = getlong(PROC JL IVES);
•for < i • 0; i < 8; i++)<

proc_dregC i 3 = getlong <PROC_DREGS+i *sizeo-f (long)) ;
proc_aregCi 3 = get 1 ong <PROC_AREGS+i *si zeof (long));
proc_stakC2*i+03 - getshort7pROC_STACK-M2*i+0) tsizeof (short));
proc stakC2*i+13 - getshort (PROC STACK-M2*i «•1) *sizeo-f (short)) J
>

proc_enum • getbyte(PROC_ENUM);
proc_usp = getlong <PROC_USP);
extraC03 = 0;
if(proc_enum == 2 ! ! proc_enum == 3) <

bad_addr = proc_stakC13;
badladdr = (bad~addr << 16) ! proc_stakC23;
sprintf(extra," Trying to X* X* at XX",

proc_stakC03 & 0x10 ? "read" : "write",
ref_classesCproc_stakC03 & 73,
bad_addr);

proc_pc • proc_stakC1+43|
proc_pc • (proc_pc << 16) 5 proc_stakC2+43;
statusreg = proc stakC0+43;
>

else <
proc_pc - proc_stakC13;
proc_pc • (proc_pc << 16) J proc_stakC23;
statusreg = proc stakC03;
>

253

CHAPTER 9

•print*<plCtr 1ine++3," Transient Program Area: XX to y.X",
getlong(MEMBOT), get1 ong(MEMTOP))|

•print*(plCtr_line++3," Data from the last exception:")|
sprintf<plCtr 1ine++3,extra);
sprintf(piCtr_line++3," Pc: 7.8X Status: X4x (Xs)",

proc pc, statusreg, decode_status(statusreg));
sprintf (plCtr_line++3," Usp: X8X Exception: y.2X (Xs)",

proc_usp,proc_enum,
proc_enum < 32 ? EnumsCproc_enum Sc 0xlf3 : " ">|

sprintf <pl Ctr_line++3,MM>i
sprintf (plCtr_line-n-3,

" Registers Supervisor Stack")} for< i « 0; i < 8; i++)<.
sprintf(piCtr line++3,

" DXd: y.8X AXd: X8X y.2.2d: X4x %4x",
i,proc_dregCi 3,i,proc_aregCi 3,i *2,
proc_stakCi »23,proc_stakC i »2+13) ;

show mouse();
>

The decode—status Function
The decode status function, Program 9-19, decodes the status register, naming
each of the seven important bits (if any are set) and printing the interrupt prior-
ltv level at t h p t i m e r»f tUn r ° r r V A X

ity level at the time of the crash.

Program 9-19. decstat.c
char *
decode status(stat)
int statj<

static char strC323;
char *ptr;

»printf<«tr, "Level y.d: " , (stat »8) 8c7);
ptr - ScstrC93|
if(stat Sc 0x8000)

*ptr++ - 'T'j
if(stat & 0x2000)

tptr-M- - 'S* |
if (stat it 0x10)

*ptr++ « *X»|
if (stat 8c 0x8)

tptr++ - 'N'j
if (stat Sc 0x4)

ptr++ = 'Z|
if (stat 8c 0x2)

tptr-n- •
if (stat 8c 0x1)

tptr-n- • *C;
*ptr = 0;
return(str);
>

The do—new_window Function
After goUcey has called trace or bombinfo, it calls do_new_window, Program III ;i ,ue a

 wint™ t o h o l d t h e information. Do_new_window is almost
exactly the same as the do_dir_window function in the shell, except that the

254

A Debugging Aid

name and the dis_window variable have changed to make the routine more
generic.

Do_new_window sets the variable dis_window to the new window
handle so that show_info (called from doit) will know to call showwnd.

Program 9-20. donewwnd.c

include <gemde-fs.h>
include <document.h>
define BYE BYE -1
define OBLIVION - 2
do_new_wi ndow(name,old__wh,old_vw,w,h)
char tname;
int old_wh, old__vw, w, h; <.

int whand, vp, hp, vs, hs, x, y, dx, dy, dw, dh, vw, events;
int wlines, wcols, retval;
extern int gl .wchar, gl__hchar, dis_window;
extern int cur_line, cur_col, bold_line, highlight;

w t*= gl_wchar;
h t * gl_hchar;
wind_get(old_wh, WF_CURRXYWH, Stx, Sty, Stdw, Stdh);
wind_get(0, WF_WORKXYWH, Stdx, Stdy, Stdw, Stdh);
if(M > dw-x)

w = dw-x;
if (h > dh-y)

h * dh-y;

wlines - h / gl_hchar;
wcols = w / gl_wchar;
cur_line * cur_col • 0;
if (highlight StSc bold.line > wlines / 2)

cur_line • bold_line - wlines / 2 ;
slide_pos(wlines, NLINES, cur_line, Stvp);
slide_pos(wcols, NCHARS, cur_col, Sthp);
slide_size< wlines, NLINES, Scvs);
slide_size(wcols, NCHARS, Sths);

vw = old_vw;
whand = new_window(name, 1000-vp,hp, vs,hs,x,y,w,h,Stvw);
events = MU_MESAG ! MU_KEYBD;
dis_window = whand;
retval = multi (events,Scwhand,0,name,Stvw);
c1ose_wi ndow(whand);
dis window = 0;
/ *
tt If the previous call to multi got an AC_CL0SE,
tt then it returned OBLIVION. We must send another
** AC_CL0SE to the multi that is called by mainO,
t t so that the virtual workstation gets handled
t t properly, and the other window gets closed properly.
t /
if(retval « OBLIVION)

close_me();
>

/ t
t t This routine sends a message to multi, faking an AC_CL0SE.
t t This allows routines to be decoupled from actions that
t t take place in was_msg(): the caller only needs to know that
t t he wants to do whatever action AC_CL0SE causes, without having

255

CHAPTER 9

** to know anything about the internal workings o-f was_msg.
*/
c1ose_me(){

int mC83;
extern int gl_apid, menu_id, i_am_accessory;
if< i_am_accessory)<

mC03 - AC_CLOSE;
mC33 - menu_id;
mC13 = mC23 - mC43 - mC53 - n>C63 - mC73 = 0;
appl _wn te (gl _api d, 16,m) ;
>

>

The showwnd Function
The showwnd function, Program 9-21, sets up the slider positions in the now
familiar manner, using slide_pos and slide—size, and then calls just—clear to
clear the screen.

To actually print the information in the pl[] array onto the screen,
showwnd loops, starting at cur_iine and iterating up to the number of lines in
the window. The special variables highlight and bold—line control a special fea­
ture used by the disassembly routines: One line is selected to be highlighted in
boldface to indicate where in the disassembly the bomb occurred.

Program 9-21. showwnd.c
include <gemdefs.h>
include <document.h>
define E_NORMAL
define E_THICK
define E_LIGHT
define E_SKEWED
define E_UNDERLINED
define E_OUTLINED
define E_SHADOWED

int highlight = 0;
int bold_line = 0;
char piCNLINES3CNCHARS3;

showwnd(whand,vw)
int whand, vw;<

int x, y, w, h, i, hs, vs, hp, vp, count, wlines, wcols;
extern int gl_wchar, gl_hchar, cur_col, cur_line;

wind_get (whand, WF_WORKXYWH, «cx , Sty, Sew, &h> ;
count = cur_line + h / gl__hchar;
if(count >= NLINES)

count • NLINES - cur_line - 1;
wlines - h / gl_hchar;
wcols • w / gl_wchar;
slide_pos(wlines, NLINES, cur_line, Stvp);
slide_pos(wcols, NCHARS, cur_col, Sehp);
slide_size< wlines, NLINES, Stvs);
slide_size(wcols, NCHARS, Schs);
wind_set(whand, WF_VSLIDE, hp, 0, 0, 0);
wind_set(whand, WF_VSLIDE, vp, 0, 0, 0);

0
1
2
4
8
16
32

256

A Debugging Aid

wind_set(whand, WF_VSLSIZE, vs, 0, 0, 0);
wind_set(whand, WF_HSLSIZE, hs, 0, 0, 0 >;
just_clear(whand,vw);
hide_mouse() ;
f or < i » cur_line; i < count; i++)i

if (strlen(plCi3) > cur_col ><
i-f(highlight StSc bold_line == i)

vst_effects(vw, EJTHICK >;
v_gtext(vw, x, y+gl_hchar+(i-cur_line) *gl_hchar,

&plCi3Ccur_col3);
if (highlight StSt bold_line mm i)

vst_effects(vw, E_NORMAL);
>

>
s h o w m o u s e () ;
>

The debug.h File
The file debug.h, Program 9-22, is an include file that contains macro defini­
tions and structures used throughout this chapter.

Program 9-22.debug.h

* define NUM_ARGS 32
struct trc <

short int *fp;
short int *ret_pc;
short int *real_pc;
short int num_args;
short int argsCNUM_ARGS3;
> ;

struct sym (.
char nameC83;
int type;
long int value;
>;

ifdef HAS_DISASSEMBLY

define BCDREG 0
define BRANCH 1
define CMPREG 2

define EFFADD 3
define EXAREG 4

define EXDREG 5
define IMMCCR 6
define IMMSR 7
define LINE_A 8
define LINE_F 9
define MOVEEA 10

define MOVE P 11
* define MOVE Q 12
define NONE 13
define ONEREG 14

define SFTROT 15
define LINKOP 16

define MOVEM 17
define ADDREA 18
define IMMEA 19
define MOVEAD 20

define DBRNCH 21

257

CHAPTER 9

define WEFFADD 22
struct hash_tab <

char addrmode;
char numhits;
short value;
short mask;
char (string;
> ;

* # define DATA REG 0
define ADDR REG 1

define INDIR 2
define POSTINCR 3
define PREDECR 4
define DISPLACE 5
define INDEXED 6

u
define PCABSIMM 7

define ABS SHORT 0
define ABS.LQNG 1
define PC DISP 2
define PC INDEX 3
define IMMEDIATE 4

define BYTE 0
define WORD 1

define LONG 2

extern short int tAddress, word, getshortO;
extern char objectC3;

define NEXTWORDO i \
word • getshort (Address-*-*-); \
sprintf (object, "X* 5C04.4x", object, (unsigned short) word); \
>

endif HAS_DISASSEMBLY

The linkone.bat and linkone.arg Files
To link the debugging aid accessory, the linkone.bat file and linkone.arg files
are used.

The files that contain conditionally compiled code (such as the ones that
reference the HAS—DISASSEMBLY macro) are separated in the argument file
to remind programmers that they will need to be recompiled with the
HAS—DISASSEMBLY macro defined if the disassembler is to be included.

The linkacc.bat and linkacc.arg files for the disassembler are shown in
the next chapter.

Progaram 9-23. linkone.bat

ci\bin\link68 Cundefined,symbols,commandC1inkone.arg33
c:\bin\relmod a
c:\bin\rm a.68k
c:\bin\wait

258

file:///bin/link68
file://c:/bin/relmod
file://c:/bin/rm
file:///bin/wai

A Debugging Aid

Program 9-24. linkone.arg

259

a. 68k«=c : accstart. o, main, o,
CONFIQAC.Q,BT.0,DONEWWND.0,1SMATCH.0,GETBASE.0,DECSTAT.0,GETNAME.0,
SHOWWND.0,GETSYMS.0,TRACE.O,OPENDATA.0,ERRORS.O,SETTOP.O,GETLONG.0,
BOMBINFO.O,GETREAL.O,GETARGS.O,

GIVEHELP.0,GOTKEY.O,DOIT.0,GETTRACE.0,

accsup. o, env. a, vdibind, vdidata.o,geml ib, aesbind,osbind, 1 ib-f

10 A Disassembler

10 A Disassembler
In this chapter, the debugging aid presented in Chapter 9 is aug­
mented by a disassembler, a program that undoes the operation of
an assembler, turning bits in the ST's memory back into symbolic

assembly notation. This allows a programmer to understand the nature of the
problem at the detailed level of the machine itself.

This tool is called an annotated disassembler because the instruction that
caused the program to crash is printed out in boldface, and arrows point from
the word BOMB! to the offending line. With this kind of exposure and the sym­
bolic stack trace, program crashes become much easier to find and repair.

Figure 10-1. The disassembler prints out the instructions surround­
ing the point at which the program crashed.

Desk File View Options

At the time of a program crash, the desk accessory presented in the last
chapter calls the get—dis routine presented here to capture the 100 instructions
on either side of the program fault, and decodes them into humanly readable
form before the operating system re-uses the dying program's memory. This
decoded information can then be called up by the programmer for close exami­
nation after the operating system has cleaned up the mess.

263

CHAPTER 10

Note that some programs can lock up the system in such a way as to
preclude GEM from operating. This debugging aid is not designed to handle
such problems, but the techniques shown in other parts of the book (notably
the chapter on the Command Shell program) can be used to print the infor­
mation gathered (stack trace, annotated disassembly) onto a disk file for perusal
after the reset button is pressed. This is possible because most lock-ups affect
only the higher-level GEM features such as mouse control of windows, and do
not affect the low-level disk operations. Just be sure to close the file so that all of
the data is written to the disk before the reset.

The get_dis Function
The get_dis routine, Program 10-1, is called by get_trace (described in the pre­
vious chapter), and is passed the number of lines to disassemble, and a flag
that tells it whether the global variable proc_pc points to the instruction that
failed, or to the instruction after the one that failed. (The 68000 processor de­
tects some errors before advancing the program counter, but most are detected
after the instruction is completed, or as the instruction's address is decoded,
causing the need for the exact_pc flag.)

The get__dis function starts disassembling the code 200 words (a word is
16 bits) above the place where the program bombed, on the assumption that
the average instruction length is 2 words. It then loops 200 times (nlines is 200,
although it can be changed by changing the NLINES macro in the document.h
file), disassembling the code.

As the loop progresses, there will come a time when the Address vari­
able which is advancing throughout the code passes up the location at which
the program failed. If the exact_pc flag is zero, then the previous instruction is
the one that failed, and the line that must be annotated is the line that has
been processed by the previous turn through the loop. get_dis annotates it by
setting the bold—line variable to the previous line number, and adds arrows
and the word BOMB! to the line. The arrows are created by the backslashed
4's, which denote the fourth letter in the ST extended alphabet, a leftward-
pointing arrow.

Once that is taken care of, the pointer to the current line is set to the
proper line in the da[] array (for Disassembly), and the current program ad­
dress is placed in the line.

The macro NEXTWORD is defined in the debug.h file; it fetches the next
word out of the ST's memory and adds its hexadecimal representation to the
character array object, which will be printed after the address when the instruc­
tion is fully decoded.

The disassembler consists of three parts. The first two are tables of de­
coded instructions called table_A and table_B. The third part is a set of sub­
routines that can decode the 68000's addressing modes. To get the instruction,
the disassembler creates an index into table_A by putting the high ten bits of

264

A Disassembler

the current word (fetched by NEXTWORD) into the variable hashA. The
numhits attribute of each element of table_A tells whether the high ten bits of
the instruction uniquely determine the instruction, or whether there was more
than one instruction with the same ten high bits. If more than one instruction is
indicated, table_B is searched for an exact match, via the matchB subroutine. If
an exact match is found in table_B, then the table_B entry is used. If not, then
the original table_A entry is used. This technique is probably familiar to you as
a method of "hashing" (quickly selecting an item from a table by a calculation).
The second table is known as an overflow table, to catch the items that the cal­
culation did not uniquely address.

No matter which table the entry came from, the action performed is the
same. The addrmode function is called to decode the addressing mode, and the
hexadecimal object code (from the object array) is added to the line. If the in­
struction was a shift or a rotate instruction, it needs special treatment (because
these instructions are not as regular in construction as the others), and it is built
by combining the instruction from the table, an entry from the shfts array, and
the addressing mode. If it was not a shift or rotate, then the instruction from
the table and the decode addressing mode are combined. The result is put into
the current line, and the line is annotated (if the exact_pc flag was nonzero,
and the instruction just processed was the one that caused the error).

Program 10-1. getdis.c
i n c l u d e <gemdefs .h>

de- f i ne HAS_DISASSEMBLY

i n c l u d e <debug.h>
i n c l u d e <document .h>
s h o r t i n t * A d d r e s s , w o r d ;

c h a r o b j e c t C 5 0 3 ;

"D0", "Dl", "D2", "D3", "D4H, "D5", "D6", "U7",
,,A0H, MA1", "A2", "A3", "A4", "AS", "FP", "SP"
> ;

char tshftsCD » <
"as", "Is", "rox", Hro"
> ;

get_dis<nlines,exact_pc)
int nlines, exact_pc;<

static char bu*C1283, *str, «line;
static int hashA, hashB, i;
extern short int *proc_pc;
short int tsave_addr;
extern char daCNLINESDCNCHARS3;
extern char taddrmodeO;
extern struct hash_tab table_AC3, table_BC3;
extern short int getshortO;
extern long int getlongO;
extern int bold_line;

265

CHAPTER 10

Address = Scproc_pcC-nl ines3 ;
bold_line « -1;
line - buf;
bufC03 - 0;
for(i = 0; i < nlines; i++ ><

save_addr = Address;
if (exact_pc « 0 && bold_line < 0 && Address >= proc_pc) i

bold_line - i-1;' ~
sprintf (line, "y.sy.s", line," \4 \4 \4 BOMB !");
>

line • daCi3;
sprintf <line, "y.08.8X: H , Address) ;
object[03 = 0;
NEXTWORD();
hashA - (word » 6) & 0x3ff;
if< table_AChashA3.numhits && (hashB « matchB(word)) >= 0) <.

str » addrmode (Setable_BChashB3) ;
sprintf (line, "y.s7.-20. 20s " , line,object) ;
if (table_BChashB3.addrmode « SFTROT)i

sprintf (buf, table BC hashB3.string,
shftsC (word »3)&33, str) ;

>
else

sprintf (buf, table__BChashB3.string,str, "oops! ") ;
sprintf(line,"XsXs",1ine,buf>;
if (exact_pc Sc& bold_line < 0 Mi save_addr >= proc_pc)<

bold_line • i;
sprintf (line, "Xsy-s", line," \4 \4 BOMB ! ") ;
>

continue;
>

str • addrmode(Sctable_AChashA3) ;
spr i nt f (1 i ne, "y.s%-20. 20s " , 1 i ne, ob ject) ;
if(table_AChashA3.addrmode — SFTROT)<

sprintf(buf,table AChashA3.string,
shftsC (word>>3)8c33,str) ;

>
else

sprintf(buf,table_AChashA3.string,str,"OOPS!");
sprintf (line, "y.sXs", line,buf) ;
if(exact_pc && bold_line < 0 && save_addr >= proc_pc)<

bold_line « i;
sprintf (line, "y.sy.s", line," \4 \4 BOMB ! ") ;
>

>
>

The matchB Function
The matchB function, Program 10-2, is a simple linear search of the table_B ar­
ray, masking the current instruction word and comparing it to the masked word
from the array. The masking insures that only the bits that matter are com­
pared, and the bits that have nothing to do with the instruction itself (such as
the addressing mode bits) do not affect the comparison. Speed is not an issue
here, or a faster search technique would be warranted. The table_B array is not
often needed (most of the instructions are in the fast table_A array) and the
most often used entries in the table_B array are placed at the front, where they
will be found immediately. To compute the index, the address of the table is
subtracted from the pointer that is pointing at the element found, and the result
put in a long integer. (Even though the result is placed in a long integer, the

266

A Disassembler

DRI C compiler warns that pointer subtraction yields long integers. Ignore this
warning. Too bad the compiler is not smart enough to see that the code is
using long integers, and eliminate the warning.)

Program 10-2. matchb.c
define HAS_DISASSEMBLY

include <debug.h>

matchB(wrd)
register short int wrd;<

register struct hash_tab tptr;
extern struct hash_tab tableJBC3;
long int retval;

ptr = table_B;
whileC ptr->string)<.

if(<wrd & ptr->mask) <ptr->value & ptr->mask))i
retval = ptr - table_B;
return(retval);

>
ptr++;
>

return(-1);
>

The addrmode Function
The addrmode function, Program 10-3, is the longest routine in this book, but
it is really just one large switch statement, whose regular structure makes it
easy to understand despite its length.

Each element in the instruction decode tables contains an address mode
field (tab->addrmode) which tells the addrmode function how to decode the
address. The BRANCH mode means that the instruction was a branch of some
sort, and addrmode decodes the branch address by adding the data after the in­
struction to the current address, and returning the result as a hexadecimal
string in the buf array.

The DBRNCH mode is similar, but simpler, since the data is always one
word long, instead of either a byte, a word, or a long word, as in the BRANCH
case.

The ADDREA, MOVEAD, IMMEA, EFFADD, WEFFADD, MOVEM, and
MOVEP modes all just set up a call to the effadd routine which will decode the
effective address fields of the instruction. The pieces of the effective address
field are the register, mode, and size, and are extracted from the instruction
word and passed to effadd. The difference in each of these modes is mainly in
the way the size field is calculated, and that is due to the somewhat haphazard
way the size data was encoded when the 68000's instruction set was designed.

The MOVEEA mode is for the general MOVE instruction, which has two
effective address fields, and can thus move data from memory to memory using
a variety of addressing modes. Just to make things difficult, the size field is
unlike that of the other instructions, and the register and mode fields in the

267

CHAPTER 10

source operand are in the reverse order of those in the destination. The effadd
routine is called twice to handle both operands.

The LINKOP mode is simple. The word after the instruction is printed in
hexadecimal, taking care to put a minus sign in front of negative numbers. The
MOVE—Q mode handles the move quick instruction's addressing mode, where
the data is the low byte of the instruction itself.

The SFTROT, BCDREG, CMPREG, EXAREG, and EXDREG modes han­
dle instructions that operate on registers or immediate data that is encoded in
the instruction itself, just like the MOVE_Q mode.

Finally, for the ONEREG, IMMCCR, IMMSR, LINE_A, and LINE_F
modes, nothing needs to be done, since the operands (if any) are encoded in
the high ten bits of the instruction, and are thus handled by the hash tables di­
rectly. A question mark is returned, to make errors visible in case the code is
being typed in or modified.

Program 10-3. addrmode.c
define HAS_DISASSEMBLY

include <debug.h>

char >
addrmode(tab)
struct hash_tab ttab;C

static int mode, reg, size;
static long int save, save2;
static char byte;
static short int op;
static char bufC1283;
static char tempCI283;

extern char teffaddO;
extern short int getshort();
extern long int getlongO;
extern char tregsC3;

switch(tab->addrmode)C
case BRANCH:

op = word;
save = (long int) Address;
if((op & 0xff) == 0)<

NEXTWORD(>;
save += word;
>

else if ((op Sc 0xff) mm 0xff ><
NEXTWORD();
save2 = word & 0xffff;
NEXTWORD();
save += (save2 << 16) ! (word Sc 0xffff);
>

else C
byte • word;
save += byte;
>

spr intf (buf, " 7.08. 8X " , save);
return(buf);

case DBRNCH:
save • (long int) Address;
NEXTWORD();

268

A Disassembler

save += word;
sprintf(buf,"7.08. 8Xsave);
return(buf);

case ADDREA:
mode = (word >> 3) 8c 7;
reg = word & 7;
size = (word >> 8) Sc 1;
if(size « 0)

size - WORD;
else

size - L0N6;
sprintf(buf,"%s",effadd(mode, reg, size));
return(buf);

case MOVEAD:
mode «• (word >> 3) & 7;
reg • word 8c 7;
size = (word » 12) 8c 3;
if(size == 3)

size = WORD;
else if(size == 2)

size m LONG;
else

return("Bad size in movea");
sprintf(buf,"Xs",effadd(mode, reg, size));
return(buf);

case IMMEA:
mode = (word >> 3) 8c 7;
reg • word 8c 7;
size = (word » 6) 8c 3;
NEXTWORD();
save = (unsigned short int) word;
if(size == LONG)<

NEXTWORDO;
save • (save << 16) ! ((unsigned short) word)
sprintf (buf, "#7.08.8X, 7.s",

save,effadd(mode, reg, size));
>

else
sprintf (buf, "#7.08.8X,7.s",

save,effadd(mode, reg, size));
return(buf);

case EFFADD:
mode • (word >> 3) 8c 7;
reg • word 8c 7;
size * (word >> 6) 8c 3;
sprintf(buf,"%s",effadd(mode, reg, size));
return(buf);

case WEFFADD:
mode = (word >> 3) 8c 7;
reg • word 8c 7;
size = WORD;
sprintf (buf, "7.s", eff add (mode, reg, size));
return(buf);

case LINKOP:
NEXTWORDO ;
if(word < 0)

sprintf (buf, "#-7.x",-word);
else

sprintf (buf, "#7.xM,word);
return(buf);

case MOVEM:
mode = (word >> 3) 8c 7;
reg = word 8c 7;
size = (word >> 6) 8c 3;
NEXTWORDO;
save * word 8c 0xffff;

269

CHAPTER 10

sprintf (buf, Htt%4.4X, 7.s",
save,effadd< mode, reg, size));

return (buf);
case MOVEEA:

mode - (word » 3) 8c 7 ;
reg = word 8< 7;
size = (word » 12) 8c 3;
if < size » 1) / t size in the move instruction * /

size - BYTE; / * is different than in others */
else if(size == 3)

size = WORD;
else

size - LONG;
save = word;
sprintf (temp, "7.s", eff add (mode, reg, size));
mode - (save >> 6) 8c 7 ;
reg = (save >> 9) Sc 7 ;
sprintf(buf,"%s,%s",temp,effadd(mode, reg, size));
return(buf);

case MOVE_Qt
sprintf (buf ,"#7.2.2x",word 8c 0xff);
return(buf);

case SFTROT:
if(word 8c 0x20)

sprintf (buf, " D7.d, D7.d " , (word>>9)&7, wordSc7);
else

sprintf (buf, M#7.d,D"/.dH, (word>>9)8c7, word8c7);
return(buf);

case BCDREG:
if (word 8c 8)

sprintf (buf, "-<%«) ,-(7.s)
regsC8+word8c73, regsC8+ (word>>9) 8c73) ;

else
sprintf (buf, ,,D7-d,D7-d",word8c7, (word>>9)8c7);

return(buf);
case CMPREGz

sprintf (buf, " (7.s)+, (7.s)-t-M,
regsC8+word&7 3 , regsC8+ (word>>9) 8c73) ;

return(buf);
case M0VE_Pi

size » word 8c 0x40;
if(size)

size - LONG;
else

size - WORD;
sprintf (buf ,"7.s",ef f add (5, word 8c 7 , size));
return(buf);

case EXAREG:
sprintf (buf, M7.s",regsC8+word8c73);
return(buf);

case EXDREG:
sprintf (buf, HD7.dM,word8c7);
return(buf);

case ONEREG:
case IMMCCR:
case IMMSR:
case LINE Ai
case LINE.Fi
case NONE:
default:

return<"?M);
>

270

A Disassembler

The effadd Function
The effadd function, Program 10-4, handles the simple cases directly, and
hands the complicated case to the pcabsimm routine. The simplest case is the
data register direct mode, where all that is required is the name of the data reg­
ister. Since addrmode passed the register number to effadd, all efgfadd needs to
do is print it with a D in front.

The address register direct mode is similar, but an array of address regis­
ter names is used so that the alternate forms FP and SP can be used for the
registers A6 and A7, to make their use as the Frame Pointer and Stack Pointer
apparent.

The INDIR, POSTINCR, and PREDECR modes all enclose an address
register inside parentheses to indicate indirection, with pluses and minuses to
indicate incrementing and decrementing. The DISPLACE mode is similar, ex­
cept that the next word is fetched and printed as an offset before the register.

The INDEXED mode fetches the index word, checks it for validity, and
decodes it, putting the displacement, index register, address register, and size in
their proper location.

Last, the PCABSIMM mode is handled by calling the pcabsimm routine.

Program 10-4. effadd.c
de-fine HASDISASSEMBL Y

include <debug.h>

char *
effadd (mode, reg, size)
int mode, reg, size; <.

static char stringC1283, byte;
extern short int getshortO;
extern long int getlongO;
extern char tregsC3;
extern char tpcabsimmO;

switch(mode) i
case DATA.REG:

spr int -f (string, "Dy-o", reg);
break;

case ADDR.REG:
sprintf (string, "7-s", regsCreg+83);
break;

case INDIR:
sprintf (string, " (y.s)% regsCreg+83);
break;

case POSTINCR:
sprintf (string, " (y.s)+", regsCreg+83);
break;

case PREDECR:
sprintf (string, "-(y-s)", regsCreg+83);
break;

case DISPLACE:
NEXTWORD();
sprintf (string, My.d (%s) word, regsCreg+83);
break;

case INDEXED:

271

CHAPTER 10

NEXTWORDO ;
if(word & 0x0700)<

sprintf (string, "Bad indexed addressing mode");
>

else i
byte • word;
sprintf (string, "7.d (7-s,7.s.7-c) ",

byte, regsCreg+83, regsC (word>>12)8<0xf 1,
(word 8c 0x0800) ? '1' : 'w');

>
break;

case PCABSIMM:
pcabsimm(string,mode,reg,size);
break;
>

return(string);
>

The pcabsimm Function
The pcabsimm function handles the absolute addressing modes, and the pro­
gram counter relative modes directly, and in the tradition established in the
effadd routine, handles the hard part by calling the immediate routine to han­
dle the immediate modes.

In the ABS_SHORT and ABS-LONG modes, the address is the short or
long word following the instruction. Pcabsimm converts the address to hexa­
decimal and returns the result string. The PC—DISP and PC_INDEX are very
much like the DISPLACE and INDEXED modes in effadd, except that since the
address is relative to the current program counter, which is known at this point
(it is pointing to this instruction), the true target address can be printed in
square brackets after the decoded addressing mode. As mentioned, the immedi­
ate modes are handled by calling immediate.

Program 10-5. pcabsimmx

de-fine HAS_DISASSEMBLY

include <debug.h>

char *
pcabsimm(string,mode,reg,size)
char (string;
int mode, reg, size; <.

static long longword, offset;
static char byte;
extern short int getshortO;
extern long int getlongO;
extern char tregsC3;
extern char *immediate();

switch(reg) €
case ABS_SHORT:

NEXTWORDO;
sprintf (string, »y.04.4x.W", (unsigned short int) word);
return(string);

case ABS_L0N6:
NEXTWORDO ;
longword = word;

272

A Disassembler

NEXTWORD O;
sprintf (stri ng, "7-08.8X.L",

(longword<<16) ! ((unsigned short int) word));
return(string);

case PCJDISP:
offset = (long int) Address;
NEXTWORD<)|
o-f-fset +«= word;
sprint-f (string, "7.04.4x (pc) C7-X3",

(unsigned short int) word, o-f-fset);
return(string);

case PC_INDEX:
offset • (long int) Address;
NEXTWORD();
byte = word;
offset +=* byte;
sprintf (string, "7..2x(pc,7.s.7.c) C7.X3",

byte, regsC(word>>12>&0xf3,
(word & 0x0800) ? »1» s *w*, offset);

return(string);
case IMMEDIATEs

immediate(string,size);
return(string);

default i
return("??");

>
>

The immediate Function
The immediate function handles byte-, word-, and long word-sized immediate
data.

The BYTE mode reads the next word, and uses only the low byte of it.
The WORD mode uses the entire word, and the LONG mode fetches two
words, and patches them together into a long word. All modes convert the re­
sults to hexadecimal and return.

Program 10-6. immediat.c
define HAS_DISASSEMBLY

include <debug.h>

char *
immediate(string,size)
char (string;
int size;<

static long int longword;
extern short int getshortO;
extern long int getlongO;

switch(size) C
case BYTEs

NEXTW0RDO;
sprintf (string, "#7.04.4xM,word & 0xff);
return(string);

default:
case WORD:

NEXTWORD();
sprintf (string,"#7.04.4x", (unsigned short int) word);
return(string);

273

CHAPTER 10

case LONGi
NEXTWORD <);
longword • word;
NEXTW0RDO;
spr i nti (str i ng, "#7.08. 8X M ,

<longword<<16) ! ((unsigned short int) word));
return(string);

>
>

The disassem Function
Once the get—dis function has captured the information it needs, it returns to
get—trace, which eventually returns to the exception handler routine, which
jumps to TOS to print the bomb icons and clean up. To have the desk acces­
sory show the disassembly listing, the user presses the D key, and the disassem
function, Program 10-7, is called.

The disassem function calls setup—dis to set the slider values (since the
disassembly is several pages long, the slider will be needed to allow the user to
display the parts that don't fit on the initial screen). Then disassem loops
through all the lines, copying the da[] array which holds the disassembly list­
ing into the pl[] array, which is what showwnd prints on the screen.

After the disassem function has been called (by got—key), got—key calls
the do—new—wnd routine to create a window into which showwnd will print
the pl[] array. GEM will send multi a REDRAW message, which will be passed
to wasmsg, which calls do—redraw, which calls just—draw, which calls doit,
which calls show—info, which calls showwnd, which prints the pl[] array.

Program 10-7. disassem.c

include <document.h>

char daCNLINES3 CNCHARS3;

di sassem(whand,vw,nlines)
int whand, vw, nlines;C

int i;
extern int xlines;
extern char piCNLINES3CNCHARS3;

xlines - nlines;
setup_dis(whand,vw,nlines);
for(i • 0; i < NLINES; i++)

strncpy(plCi3, daCiH, NCHARS);
>

The setup—dis Function
The setup—dis function, Program 10-8, should look familiar by now. It calls
wind—get, slide—size, slide—pos, and wind—set to set the sliders to the proper
size and position to reflect the size and position of the window within the en­
tire disassembly listing.

274

A Disassembler

Program 10-8. setupdis.c

The tables.c File
The tables table__A and table_B are long (Program 10-9), but their format is
regular enough that typing them in with a good editor does not really take that
long.

The hash—tab structure is defined in debug.h, and has five elements.
These are the addressing mode (addrmode), the number of instructions that
share the same high ten bits as this one (numhits), the instruction itself (value),
a mask to tell which bits in the instruction are relevant to the instruction and
which are irrelevant (for instance, which are parts of the addressing mode and
not parts of the instruction), and a string that has the decode name of the in­
struction, usually with a format field (%s) which sprintf will use to place the
decoded address in the right place in the string.

Program 10-9. tables.c

>

* define HA5_DISASSEMBLY

include <debug.h>

char unimplernentedC3 " un i mp 1 etnen ted";
struct hash_tab table_AC3
/ * As 0x0000 */ IMMEA, 0,
/« As 0x0040 */ IMMEA, 0,
/* As 0x0080 */ IMMEA, 0,
/ * As 0X00C0 */ NONE, 0,
/* As 0x0100 */ EFFADD, 1,
/ * As 0x0140 */ EFFADD, 1,
/ * As 0x0180 «/ EFFADD, 1,
/ * As 0x01c0 «/ EFFADD, 1,
/« As 0x0200 */ IMMEA, 1,
/ * As 0x0240 */ IMMEA, 1,
It As 0x0280 */ IMMEA, 0,
/ * As 0x02c0 */ NONE, 0,

0x0000, 0xffc0, "ori.b %m**
0x0040, 0xffc0, "ori.w Xs",
0x0080, 0xffc0, "ori.l 7.s",
0x0000, 0x0000, unimplernented,
0x0100, 0xffc0, "btst.l D0,y.s",
0x0140, 0xffc0, "bchg.l D0,"/.sM,
0x0180, 0xffc0, "bclr.l D0,y.s",
0x01c0, 0xffc0, "bset.l D0,y.sM

v

0x0200, 0xffc0, "andi.b 7.s",
0x0240, 0xffc0, "andi.w 7.s",
0x0280, 0xffc0, "andi.l */.s",
0x0000, 0x0000, unimplernented,

275

include <gemdefs.h>
setup_dis < whand,vw,nlines)
int whand, vw, nlines;{

static int x, y, w, h, wlines, hs, vs, hp, vp;
extern int gl_hcharj

wind_get< whand, WF_W0RKXYWH, Sex, Scy, Sew, Sch);
wlines » h / gl_hcharj
slide_size< wlines, nlines, Scvs)|
slidelsize< 1, 1, Schs >$
slide_pos(wlines, nlines, 0, Scvp);
slide_pos(wlines, nlines, 0, fchp);
wind_set(whand, WF_VSLSIZE, vs, 0, 0, 0);
wind_set< whand, WF_HSLSIZE, hs, 0, 0, 0);
wind set(whand, WF.VSLIDE, vp, 0, 0, 0);
wind set< whand, WF_HSLIDE, hp, 0, 0, 0);

CHAPTER 10

/* A: 0x0300 */ EFFADD,
/* A: 0x0340 */ EFFADD,
/* A: 0x0380 */ EFFADD,
/* A: 0x03c0 */ EFFADD,
/* A: 0x0400 */ IMMEA,
/ * A: 0x0440 */ IMMEA,
/« A: 0x0480 «/ IMMEA,
/ * As 0x04c0 */ NONE,
/* A: 0x0500 */ EFFADD,
/ * A: 0x0540 */ EFFADD,
/* A: 0x0580 */ EFFADD,
/ * A: 0x05c0 */ EFFADD,
/* A: 0x0600 */ IMMEA,
/ * A: 0x0640 t / IMMEA,
/* A: 0x0680 */ IMMEA,
/ * A: 0x06c0 */ NONE,
/* A: 0x0700 */ EFFADD,
/* A: 0x0740 */ EFFADD,
/* A: 0x0780 «/ EFFADD,
/* A: 0x07c0 */ EFFADD,
/* A: 0x 0800 */ NONE,
/* A: 0x0840 */ NONE,
/* A: 0x0880 */ NONE, 0»
/* A: 0x08c0 */ NONE,
/* A: 0x0900 */ EFFADD,
/* A: 0x0940 */ EFFADD,
/* A: 0x0980 */ EFFADD,
/* A: 0x09c0 */ EFFADD,
/* A: 0x 0a00 */ IMMEA,
/* A: 0x0a40 */ IMMEA,
/* A: 0x0a80 */ IMMEA, 0,
/ * As 0x0ac0 */ NONE, 09

/* As 0x0b00 */ EFFADD,
/ * As 0x0b40 */ EFFADD,
/* As 0x0b80 */ EFFADD,
/ * As 0x0bc0 */ EFFADD,
/« As 0X0C00 */ IMMEA, 09
/ * As 0x0c40 */ IMMEA, 09
/* As 0x0c80 */ IMMEA, 09
/* As 0X0CC0 */ NONE, 09
/* As 0x0d00 */ EFFADD,
/ * As 0x0d40 */ EFFADD,
/« As 0x0d80 */ EFFADD, l\

/« As 0x0dc0 */ EFFADD, 1,
/* As 0x0e00 */ NONE, 09
/ * As 0x 0e40 */ NONE, 09
/* As 0x0e80 */ NONE, 09
/ * As 0x0ec0 */ NONE, 09
/* As 0X04 00 */ EFFADD, 1,
/ * As 0x0*40 */ EFFADD, 1,
/* As 0x0f80 */ EFFADD, 1,
/ * As 0X04C0 */ EFFADD, 1,
/* As 0x1000 «/ MOVEEA, 0,
/* As 0x1040 */ MOVEEA, 09
/* As 0x1080 */ MOVEEA, 09
/ * As 0x10C0 */ MOVEEA, 09
/ t As 0x1100 t / MOVEEA, 09
/ * As 0x1140 */ MOVEEA, 09
/* As 0x1180 »/ MOVEEA, 09
/« As 0x1lc0 */ MOVEEA, 09
/» As 0x1200 »/ MOVEEA, 09
/% As 0x1240 »/ MOVEEA, 09
/* As 0x1280 */ MOVEEA, 09
/* As 0x12c0 %/ MOVEEA, 09
/* As 0x1300 %/ MOVEEA, 09
/ * As 0x1340 */ MOVEEA, 09
/* As 0x1380 %/ MOVEEA, 09

0x0300, 0xffc0, "btst.l Dl,y.s",
0x0340, 0xffc0, "bchg.l Dl,*/.s",
0x0380, 0xffc0, "bclr.l Dl,7.sM,
0x03c0, 0xffc0, "bset.l D1,X»*,
0x0400, 0xffc0, "subi.b 7.s",
0x0440, 0xffc0, "subi.w Xs",
0x0480, 0x-ffc0, "subi-l y.s",
0x0000, 0x0000, unimplemented,
0x0500, 0xffc0, "btst.l D2,y.s",
0x0540, 0xffc0, "bchg.l D2,y.s",
0x0580, 0x-f-fc0, "bclr.l D2,y.s",
0x05c0, 0xffc0, "bset.l D2,y.s",
0x0600, 0xffc0, "addi.b y.s",
0x0640, 0xffc0, "addi.w 7.5",
0x0680, 0xffc0, "addi.l y.s",
0x0000, 0x0000, unimplemented,
0x0700, 0xffc0, "btst.l D3,y.s",
0x0740, 0xffc0, "bchg.l D3,y.s",
0x0780, 0xf*c0, "bclr.l D3,y.s",
0x07c0, 0x-ffc0, "bset.l D3,"/.s",
0x0000, 0x0000, unimplemented,
0x0000, 0x0000, unimplemented,
0x0000, 0x0000, unimplemented,
0x0000, 0x0000, unimplemented,
0x0900, 0xf-fc0, "btst.l D4,y.s",
0x0940, 0xf-fc0, "bchg.l D4,y.s",
0x0980, 0x-ffc0, "bclr.l D4,"/.s",
0x09c0, 0x-f-fc0, "bset.l D4,7.s",
0x0a00, 0xf-fc0, "eori.b y.s",
0x0a40, 0x-ffc0, "eori.w 7.s",
0x0a80, 0xf-fc0, "eori.l %s",
0x0000, 0x0000, unimplemented,
0x0b00, 0xffc0, "btst.l D5,7.s",
0x0b40, 0xffc0, "bchg.l D5,7.s",
0x0b80, 0x-ffc0, "bclr.l D5,7.s",
0x0bc0, 0xffc0, "bset.l D5,7.s",
0x0c00, 0xf-fc0, "cmpi.b 7.s",
0x0c40, 0xffc0, "cmpi.w Xs",
0x0c80, 0xffc0, "cmpi.l Xs",
0x0000, 0x0000, unimplemented,
0x0d00, 0xf-fc0, "btst.l D6,7.s",
0x0d40, 0xffc0, "bchg.l D6,Xs",
0x0d80, 0xffc0, "bclr.l D6,7.s",
0x0dc0, 0x*fc0, "bset.l D6,Xs",
0x0000, 0x0000, unimplemented,
0x0000, 0x0000, unimplemented,
0x0000, 0x0000, unimplemented,
0x0000, 0x0000, unimplemented,
0x0*00, 0xffc0, "btst.l D7,Xs",
0x0f40, 0x-ffc0, "bchg.l D7,7.s",
0x0-f80, 0x-ffc0, "bclr.l D7,Xs",
0x0fc0, 0x-Ffc0, "bset.l D7,7.s",
0x1000, 0x̂000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",
0x1000, 0x4000, "move.b Xs",

276

A Disassembler

ft As 0x13c0 */ MQVEEA, 09 0x1000, 0x4000, "move.b 7.»",
ft A: 0x1400 tt MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
t t A: 0x1440 t t MQVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft A: 0x1480 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft A: 0x14c0 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.sM,
t t A: 0x1500 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft A: 0x1540 t t MOVEEA, 09 0x1000., 0x4000, "move.b y.»",
t t A: 0x1580 t t MOVEEA, 09 0x1000, 0x4000, "move.b %s",
/* A: 0x15c0 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.s",
t t A: 0x1600 t t MOVEEA, 09 0X1000, 0x4000, "move.b y.s",
/* A: 0x1640 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.«",
/* A: 0x1680 tt MOVEEA, 09 0x1000, 0x4000, "move.b y.s",
/ * A: 0x16c0 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.s",
/* A: 0x1700 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.s",
/* A: 0x1740 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.s",
/* A: 0x1780 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.s",
/* A: 0x17c0 tt MOVEEA, 09 0x1000, 0x4000, "move.b y.»",
/* A: 0x1800 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.s",
/* A: 0x1840 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.»",
/* A: 0x1880 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.s",
/* A: 0x18c0 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.s",
t t As 0x1900 t t MOVEEA, 09 0x1000, 0x4000, "move.b •/.©",
/* A: 0x1940 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.s",
t t A: 0x1980 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.5",
/ * A: 0x19c0 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.»",
/* As 0 X 1 3 0 0 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.s",
/ * A: 0x1a40 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.»",
t t As 0x1a80 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft A: 0x1ac0 t t MOVEEA, 09 0x1000, 0x4000, "move.b y.»",
ft As 0x1D00 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft As 0x1b40 t t MOVEEA, 09 0x1000, 0x4000, "move.b %»",
ft As 0x1b80 tt MOVEEA, 09 0X1000, 0x4000, "move.b 7.s",
ft A: 0x1bc0 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.5",
ft As 0 X 1 C 0 0 tt MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft As 0x1c40 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft As 0x1c80 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft As 0xlcc0 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft As 0x1d00 tt MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft A: 0x1d40 t t MOVEEA, 09 0X1000, 0x4000, "move.b 7.5",
ft As 0x1d80 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft As 0xldc0 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft A: 0x1e00 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft As 0x1e40 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft As 0x1e80 t t MOVEEA, 09 0X1000, 0x4000, "move.b 7.5",
ft As 0xlec0 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.»",
ft As 0x1400 tt MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft As 0x1440 t t MOVEEA, 09 0X1000, 0x4000, "move.b 7.»",
ft As 0x1480 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.s",
ft As 0xlfc0 t t MOVEEA, 09 0x1000, 0x4000, "move.b 7.»",
ft As 0x2000 t t MOVEEA, 09 0x2000, 0x4000, "move.1 7.s",
ft As 0x2040 t t MOVEAD, 09 0x2040, 0x44c0, "mova.1 7.s,A0",
ft As 0x2080 t t MOVEEA, 09 0x2000, 0x4000, "move.1 7.s",
ft As 0x20c0 t t MOVEEA, 09 0x2000, 0x4000, "move.1 7-s",
ft As 0x2100 t t MOVEEA, 09 0x2000, 0x4000, "move.1 7.5",
ft As 0x2140 tt MOVEEA, 09 0x2000, 0x4000, "move.1 7.5",
ft As 0x2180 t t MOVEEA, 09 0x2000, 0x4000, "move.1 7.s",
ft As 0x21c0 t t MOVEEA, 09 0x2000, 0x4000, "move.1 7.5",
ft As 0x2200 t t MOVEEA, 09 0x2000, 0x4000, "move.1 7.s",
ft As 0x2240 t t MOVEAD, 09 0x2240, 0x44c0, "mova.1 7-s, Al",
ft As 0x2280 t t MOVEEA, 09 0x2000, 0x4000, "move.1 7.s",
ft As 0x22c0 t t MOVEEA, 09 0x2000, 0x4000, "move.1 Xs",
ft As 0x2300 t t MOVEEA, 09 0x2000, 0x4000, "move.1 7.s",
ft As 0x2340 tt MOVEEA, 09 0x2000, 0x4000, "move.1 7.5",
ft As 0x2380 t t MOVEEA, 09 0x2000, 0x4000, "move.1 7-s",
ft As 0x23c0 t t MOVEEA, 09 0x2000, 0x4000, "move.1 7.5",
ft As 0x2400 tt MOVEEA, 09 0x2000, 0x4000, "move.1 7.5",
ft A: 0x2440 t t MOVEAD, 09 0x2440, 0x44c0, "mova.1 7.5, A2",

277

CHAPTER 10

/* As 0x2480 %/ MOVEEA, *>, 0x2000, 0x4 000, "move.1 y.s",
/ * As 0x24c0 t/ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.»»,
/* As 0x2500 %/ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/ * As 0x2540 %/ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.m%
/* As 0x2580 %/ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/ * As 0x25c0 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.»»,
/* As 0x2600 %/ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/» As 0x2640 %/ MOVEAD, 0, 0x2640, 0x44c0, "mova.1 y.s,A3",
/ * As 0x2680 %/ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/ * A : 0x26c0 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.a»,
/* A i 0x2700 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 7.5",
/ * A : 0x2740 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.*",
/* A : 0x2780 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/ * A : 0x27c0 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.S",
/* A : 0x2800 */ MOVEEA, 0s 0x2000, 0x4000, "move.1 y.S",
/ * A : 0x2840 */ MOVEAD, 0, 0x2840, 0x44c0, "mova.1 y.s,A4",
/ * A 0x2880 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/ * A I 0x28c0 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 7.5",
/* A 0x2900 t/ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/ * A 0x2940 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/* A 0x2980 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 7.5",
/* A 0x29c0 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/* A: 0x2a00 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/* A-0x2a40 */ MOVEAD, 0, 0x2a40, 0x44c0, "mova.1 y.s,A5",
/* A: 0x2a80 t/ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/* A: 0x2ac0 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/* A: 0x2b00 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/* A: 0x2b40 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/* A: 0x2b80 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.S",
/* A: 0x2bc0 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/* A: 0x 2c 00 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/% A: 0x2c40 */ MOVEAD, 0, 0x2c40, 0x44c0, "mova.1 y.s,FP",
/* As 0x2c80 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 7.5",
/% A: 0x2cc0 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.5",
/% A: 0x2d00 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/% A: 0x2d40 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/* A: 0x2d80 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 7.s",
/* A: 0x2dc0 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/* A: 0x 2e00 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 7.5",
/ * As 0x2e40 */ MOVEAD, 0, 0x2e40, 0x44c0, "mova.1 y.s,sp",
/* A: 0x2e80 */ MOVEEA, 0s 0x2000, 0x4000, "move.1 7.s",
/* As 0x2ec0 */ MOVEEA, 0s 0x2000, 0x4000, "move.1 y.S",
/* As 0x2400 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 7.5",
/* As 0x2f40 */ MOVEEA, 0, 0x2000, 0x4000, "move.1 y.s",
/* A: 0x2480 */ MOVEEA, 0s 0x2000, 0x4000, "move.1 7.5",
/* A: 0x24c0 */ MOVEEA, 0s 0x2000, 0x4000, "move.1 y.s",
/* A: 0x 3000 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.5",
/* As 0x3040 */ MOVEAD, 0s 0x3040, 0x44c0, "mova.w y.s,A0",
/* As 0x3080 t/ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.s",
/* As 0x30c0 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.5",
/* As 0x3100 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.s",
/* As 0x3140 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.5",
/« As 0x3180 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.5",
/* A: 0x31c0 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.s",
/* A: 0x3200 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.s",
/* A: 0x3240 */ MOVEAD, 0s 0x3240, 0x44c0, "mova.w 7.s, Al",
/* As 0x3280 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.5",
/* As 0x32c0 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.5",
/* As 0x3300 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.5",
/* As 0x 3340 */ MOVEEA, 0s 0x3000, 0x4000, "move.H 7.5",
/* As 0x3380 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.s",
/* As 0x33c0 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.5",
/* As 0x3400 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.5",
/* As 0x3440 */ MOVEAD, 0s 0x3440, 0x44c0, "mova.w 7.s, A2",
/* As 0x3480 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.s",
/* As 0x34c0 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.5",
/* As 0x3500 */ MOVEEA, 0s 0x3000, 0x4000, "move.w 7.5",

278

A Disassembler

/% A: 0x3540 */ MOVEEA, 0f 0x3000, 0xf000, move. w %s",
/t A: 0x3580 t/ MOVEEA, 0> 0x3000, 0x-f000, "move-N 7.s",
/* A: 0x35c0 t/ MOVEEA, toy 0x3000, 0x-f000, "move.w y.s",
/* A: 0x3600 t/ MOVEEA, 0, 0x3000, 0xf000, "move.w y.s",
/* A: 0x3640 t/ MOVEAD, 0, 0x3640, 0xffc0, "mova.w y.s,A3",
/* A: 0x3680 tf MOVEEA, 0, 0x3000, 0x-f 000, "move.w y.s",
/* A: 0x36c0 t/ MOVEEA, 0, 0x3000, 0xf000, "move.w y.s",
/* A: 0x3700 t/ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/* A: 0x3740 t/ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/* A: 0x3780 t/ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/* A: 0x37c0 t/ MOVEEA, 09 0x3000, 0X-F000, "move.w y . s " ,
/* A: 0x3800 t/ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/* A: 0x3840 t/ MOVEAD, 09 0x3840, 0xffc0, "mova.w y.s,A4",
/* A: 0x3880 t/ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/* A: 0x38c0 t/ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
It As 0x3900 t/ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/% A: 0x3940 t/ MOVEEA, 09 0x3000, 0xf000, "move.w y . s " ,
/% A: 0x3980 t/ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/t A: 0x39c0 t/ MOVEEA, 09 0x3000, 0X-F000, "move.w y.s",
/* A: 0x 3a00 t/ MOVEEA, 09 0x3000, 0x-f 000, "move.w y.s",
/* A: 0x3a40 t/ MOVEAD, 09 0x3a40, 0xffc0, "mova.w y.s, A5",
It A: 0x 3a80 t/ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/% A: 0x3ac0 */ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/t A: 0x3b00 t/ MOVEEA, 09 0x3000, 0x-f 000, "move.w y.s",
/t A: 0x3b40 t/ MOVEEA, 09 0x3000, 0xf000, "move.M y.s",
It A: 0x3b80 t/ MOVEEA, 09 0x3000, 0x-f 000, "move.w y.s",
/t A: 0x3bc0 t/ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/t A: 0x3c00 t/ MOVEEA, 09 0x3000, 0x-f000, "move.w y.s",
/t A: 0x3c40 t/ MOVEAD, 09 0x3c40, 0xffc0, "mova.w •/.S,FP",
ft A: 0x3c80 t/ MOVEEA, 09 0x 3000, 0xf000, "move.w y.s",
/t A: 0x3cc0 */ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/t A: 0x 3d00 */ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/t A: 0x3d40 */ MOVEEA, 09 0x3000, 0xf000, "move.M y.s",
/t A: 0x3d80 */ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/t A: 0x3dc0 */ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/t A: 0x3e00 */ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/t A: 0x3e40 */ MOVEAD, 09 0x3e40, 0xffC0, "mova.w y.s,sp",
/t A: 0x3e80 */ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/t A: 0x3ec0 */ MOVEEA, 09 0x 3000, 0xf000, "move.w y.s",
/t A: 0x3f00 */ MOVEEA, 09 0x3000, 0x-f 000, "move.w y.s",
/* A: 0x3f40 */ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/* A: 0x3*80 »/ MOVEEA, 09 0x3000, 0xf000, "move.w y.s",
/* A: 0x3fc0 */ MOVEEA, 09 0x3000, 0x-f 000, "move.w y.s",
/* A: 0x 4000 */ EFFADD, 09 0x4000, 0xffC0, "negx.b y.s",
/* A: 0x4040 */ EFFADD, 09 0x4060, 0x-f f C 0 , "move.1 SR,"/.S",

/* A: 0x4080 */ EFFADD, 09 0x4080, 0xffc0, "negx.1 y.s",
/* A: 0x40c0 */ NONE, 09 0 X 0 0 0 0 , 0 X 0 0 0 0 , unimplemented,
/* As 0x4100 */ NONE, 09 0 X 0 0 0 0 , 0 X 0 0 0 0 , uni mp1emented,
/* A: 0x4140 */ NONE, 09 0 X 0 0 0 0 , 0 X 0 0 0 0 , unimplemented,
/* A: 0x4180 t/ WEFFADD j 09 0x4180, 0xffc0, "chk.w D0,y.s",
/* A: 0x41c0 t/ EFFADD, 09 0x41c0, 0xffC0, "lea.l Xs,A0",
/* A: 0x4200 t/ EFFADD, 09 0x4200, 0Xffc0, "clr.b y.s",
/* A: 0x4240 t/ EFFADD, 09 0x4240, 0Xffc0, "clr.w y . s " ,
/t A: 0x4280 t/ EFFADD, 09 0x4280, 0x-f-fc0, "clr.1 y.s",
/t A: 0x42c0 t/ NONE, 09 0 X 0 0 0 0 , 0 X 0 0 0 0 , unimplemented,
It A: 0x4300 */ NONE, 09 0x0000, 0 X 0 0 0 0 , unimplemented,
/* A: 0x4340 */ NONE, 09 0X0000, 0 X 0 0 0 0 , un i mp1emented,
/* A: 0x4380 t / WEFFADD, 09 0x4380, 0x-ffc0, "chk.w DI,-/.S",

/* A: 0x43c0 */ EFFADD, 09 0x43c0, 0xffc0, "lea.l y.s,Ai",
/* A: 0x4400 */ EFFADD, 09 0x4400, 0x-f-fc0, "neg.b y.s",
/* A: 0x4440 */ EFFADD, 09 0x4440, 0xffc0, "neg.w y.s",
/* A: 0x4480 */ EFFADD, 09 0x4480, 0x-f-f C 0 , "neg.1 y.s",
/* A: 0x44c0 */ EFFADD, 09 0x44c0, 0xffc0, " move y.s,ccR",
/* A: 0x4500 */ NONE, 09 0x0000, 0 X 0 0 0 0 , un i mp1emented,
/* A: 0x4540 */ NONE, 09 0 X 0 0 0 0 , 0 X 0 0 0 0 , unimplemented,
/t A: 0x4580 */ WEFFADD, 09 0x4580, 0xffC0, "chk.M D2,y.s",
/t A: 0x45c0 */ EFFADD, 09 0x45c0, 0xffC0, "lea.1 Xs,A2",

279

CHAPTER 10

/* A: 0x4600 */ EFFADD, to, 0x4600, 0xffC0, "not-b 7.s",
/* A: 0x4640 */ EFFADD, to, 0x4640, 0x-ffc0, "not.w 7.s",
/* A: 0x4680 */ EFFADD, to, 0x4680, 0xffc0, "not.1 7-s",
/* A : 0x46c0 */ EFFADD, to, 0x46c0, 0xffc0, "move.1 7.s,SR",
/* A : 0x4700 %/ NONE, to, 0 X 0 0 0 0 , 0x0000, un i mp1emented,
/* A : 0x4740 %/ NONE, to, 0 X 0 0 0 0 , 0 X 0 0 0 0 , uni mplemented,
/* A • 0x4780 %/ WEFFADD ,to, 0x4780, 0xf-f C 0 , "chk.M D3,7.s",
/ * A s 0x47c0 %/ EFFADD, to, 0x47c0, 0xffC0, "lea.1 '/.s, A3",
/* A 0x 4800 */ EFFADD, to, 0x4800, 0xffc0, "nbcd 7.s",
/ * A 0x4840 */ EFFADD, 8, 0x4840, 0x-Ffc0, "pea.1 7.s",
/* A 0x4880 */ MOVEM, 8, 0x4880, 0x-f-fc0, "movm.w 7.s",
/* A 0x48c0 */ MOVEM, 8, 0x 48c 0, 0x-f f C 0 , "movm.1 7.s",
/* A 0x4900 */ NONE, to, 0x0000, 0 X 0 0 0 0 , unimplemented,
/* A . 0 x 4940 */ NONE, to, 0x0000, 0 X 0 0 0 0 , unimplemented,
/* A 0x4980 */ WEFFADD .to, 0x4980, 0xf-fc0, "chk.w D4,7.s",
/* A : 0x49c0 */ EFFADD, to, 0x49c0, 0xffC0, "lea.1 7.s,A4",
/* A : 0x4a00 */ EFFADD, to, 0x4a00, 0x-f "f C 0 , "tst.b 7.s",
/ * A : 0x4a40 */ EFFADD, to, 0x4a40, 0xffc0, "tst.w 7.s",
/* A : 0x4a80 */ EFFADD, to, 0x4a80, 0xffC0, "tst.l 7.s",
/* A : 0x4ac0 */ EFFADD, 1, 0x4ac0, 0xf-f C 0 , "tas.b 7.s",
/* A : 0x4b00 */ NONE, to, 0x0000, 0 X 0 0 0 0 , unimplemented,
/« A : 0x4b40 */ NONE, to, 0x0000, 0x0000, un i mp1emented,
/* A : 0x4b80 */ WEFFADD ,to, 0x4b80, 0xf -f C 0 , "chk.w D5,7.s",
/* A : 0x4bc0 */ EFFADD, to, 0x4bc0, 0 X f f C 0 , "lea.l 7.s,A5",
/* A 0x4c00 */ NONE, to, 0x0000, 0X0000, uni mplemented,
/* A : 0x4c40 */ NONE, to, 0 X 0 0 0 0 , 0 X 0 0 0 0 , unimplemented,
/* A 0x4c80 */ MOVEM, to, 0x 4c 80, 0xffC0, "movm.w 7.s",
/* A 0x4cc0 */ MOVEM, to, 0x4cc0, 0x-f-f C 0 , "movm.1 7.s",
/* A 0x4d00 */ NONE, to, 0x0000, 0x0000, unimplemented,
/* A 0x4d40 */ NONE, to, 0 X 0 0 0 0 , 0 X 0 0 0 0 , unimplemented,
/* A 0x4d80 */ WEFFADD ,to, 0x4d80, 0xf-f C 0 , "chk.w D6,7.s",
/* A 0x4dc0 */ EFFADD, to, 0x4dc0, 0X"f f C 0 , "lea.1 7.s,FP",
/ * A 0>:4e00 */ NONE, to, 0x0000, 0X 0 0 0 0 , unimplemented,
/* A 0x4e40 */ ONEREG, 54, 0x4e40, 0xfiii, "trap #0",
/* A 0x4e80 */ EFFADD, to, 0x4e80, 0xffC0, " jsr 7.s",
/* A 0x4ec0 */ EFFADD, to, 0x4ec0, 0xffC0, " jmp 7.s",
/* A 0x4f00 */ NONE, to, 0 X 0 0 0 0 , 0 X 0 0 0 0 , un i mp1emented,
/* A 0x4f40 */ NONE, to, 0x 0000, 0 x 0 0 0 0 , unimplemented,
/* A- 0x4*80 */ WEFFADD ,to, 0x4*80, 0xf-f C 0 , "chk.w D7,7.s",
/* A. 0x4fc0 */ EFFADD, to, 0x4fc0, 0XffC0, "lea.1 7.s,SP",
/ * A: 0x5000 */ EFFADD, to, 0x5000, 0x-f-f c0, "addq.1 #8,7.s",
/ * A: 0x5040 */ EFFADD, to, 0x5040, 0x-ffc0, "addq.1 #8,7.s",
/* A: 0x5080 */ EFFADD, to, 0x5080, 0xf-f C 0 , "addq.1 #8,7.s",
/* A: 0x50c0 */ EFFADD, 8, 0x50c0, 0xffc0, "st.b
/% A: 0x5100 */ EFFADD, to, 0x5100, 0xffc0, "subq.1 #8,7.s",
/* A: 0x5140 */ EFFADD, to. 0x5140, 0xf-f C 0 , "subq.l #8,7.s",
/* A: 0x5180 «/ EFFADD, to, 0x5180, 0x-f-fc0, "subq.1 #8,7.s",
/* A: 0x51c0 */ EFFADD, 8, 0x51c0, 0xf-f C 0 , "sf .b 7.s",
/* A: 0x5200 */ EFFADD, to* 0x5200, 0x-f-fc0, "addq.1 #l,7.s",
/* A: 0x5240 */ EFFADD, to, 0x5240, 0xffc0, "addq.1 #l,7.s",
/* A: 0x5280 */ EFFADD, to, 0x5280, 0xffc0, "addq.1 #l,7.s",
/* A: 0x52c0 */ EFFADD, 8, 0x52c0, 0xffc0, "shi.b 7.s",
/* A: 0x5300 */ EFFADD, to, 0x5300, 0xffc0, "subq.1 #l,7.s",
/* A: 0x5340 */ EFFADD, to, 0x5340, 0xffC0, "subq.1 #l,7.s",
/* A: 0x5380 */ EFFADD, to, 0x5380, 0xf "f C 0 , "subq.1 #l,7.s",
/* A: 0x53c0 */ EFFADD, 8» 0x53c0, 0 X f " f C 0 , "sls.b 7.s",
/* A: 0x5400 */ EFFADD, to, 0x5400, 0xf-f c0, "addq.1 #2,7.s",
/* A 0x5440 */ EFFADD, to, 0x5440, 0x-ffc0, "addq.1 #2,7.s",
/* A: 0x5480 */ EFFADD, to, 0x5480, 0xf-f C 0 , "addq.1 #2,7.s",
/* A: 0x54c0 */ EFFADD, 8, 0x54c0, 0xffc0, "scc.b 7.s",
/* A: 0x 5500 */ EFFADD, to, 0x5500, 0x-f-f C 0 , "subq.1 #2,7.s",
/* A: 0x5540 */ EFFADD, to, 0x5540, 0xffc0, "subq.1 #2,7.s",
/* A: 0x5580 */ EFFADD, to, 0x5580, 0x-f-f C 0 , "subq.1 #2,7.s",
/* A: 0x55c0 */ EFFADD, 8, 0x55c0, 0xffc0, "scs.b 7.s",
/* A: 0x5600 */ EFFADD, to, 0x5600, 0xf i C 0 , "addq.1 #3,7.s",
/* A: 0x5640 */ EFFADD, to, 0x5640, 0xffC0, "addq.1 #3,7.s",
/* A: 0x5680 */ EFFADD, to, 0x5680, 0 X f * C 0 , "addq.1 #3,7.s",

280

A Disassembler

ft A: 0x56c0 */ EFFADD, 8,

ft A: 0x5700 */ EFFADD, 0 ,

ft A: 0x5740 */ EFFADD, •• / * A: 0x5780 * / EFFADD, 0 ,
/* A: 0x57c0 */ EFFADD, 8 ,

/ * A: 0x5800 */ EFFADD, 0 ,
/* A: 0x5840 * / EFFADD, 0 ,

/ * A: 0x5880 */ EFFADD, 0 ,

/ * A: 0x58c0 */ EFFADD, 8 ,
/* A: 0x5900 */ EFFADD, 0 ,
/* A: 0x5940 */ EFFADD, 0 ,
/* A: 0x5980 */ EFFADD, 0 ,
/* A: 0x59c0 */ EFFADD, 8,

/ * A: 0x5a00 */ EFFADD, 0 ,
/* A: 0x5a40 */ EFFADD, 0 ,
/* A; 0x5a80 */ EFFADD, 0 ,
/* A 0x5ac0 */ EFFADD, 8 ,
/* A 0x5b00 */ EFFADD, 0 ,
/* A 0x5b40 */ EFFADD, 0 ,

/ * A 0x5b80 */ EFFADD, 0 ,
/* A 0x5bc0 */ EFFADD, 8 ,
/* A 0x5c00 */ EFFADD, 0 ,
/* A 0x5c40 */ EFFADD, 0 ,

ft A 0x5c80 */ EFFADD, 0 ,

/t A 0 x 5 c c 0 */ EFFADD, 8 ,

/t A 0x5d00 */ EFFADD, 0 ,

/t A 0x5d40 */ EFFADD, 0 ,

/t A 0x5d80 */ EFFADD, 0 ,

/t A 0x5dc0 */ EFFADD, 8 ,

ft A 0x 5e00 */ EFFADD, 0 ,

ft A 0x5e40 */ EFFADD, 0 ,

ft A 0x5e80 */ EFFADD, 0 ,

ft A 0x5e c0 */ EFFADD, 8 ,

ft A 0x5*00 */ EFFADD, 0 ,

ft A 0 x 5 f 4 0 */ EFFADD, 0 ,

ft A 0x5-f80 */ EFFADD, 0 ,

ft A 0 x 5 f c 0 */ EFFADD, 8 ,

ft A 0x 6000 */ BRANCH, 0 ,

ft A 0x6040 tf BRANCH, 0 ,

ft A 0x6080 tf BRANCH, 0 ,

ft A 0x60c0 tf BRANCH, 0 ,

ft A: 0x6100 tf BRANCH, 0 ,

ft A: 0x6140 tf BRANCH, 0 ,

ft A: 0x6180 tf BRANCH, 0 ,

ft A : 0x61c0 tf BRANCH, 0 ,

ft A: 0x6200 tf BRANCH, 0 ,

ft A: 0x6240 tf BRANCH, 0 ,

ft A: 0x6280 tf BRANCH, 0 ,

ft A : 0x62c0 tf BRANCH, 0 ,

ft A: 0x6300 tf BRANCH, 0 ,

ft A: 0x6340 tf BRANCH, 0 ,

ft A: 0x6380 tf BRANCH, 0 ,

ft A: 0x63c0 tf BRANCH, 0 ,

ft A: 0x6400 tf BRANCH, 0 ,

ft A: 0x6440 tf BRANCH, 0 ,

ft A: 0x6480 tf BRANCH, 0 ,

ft A: 0x64c0 tf BRANCH, 0 ,

ft A: 0x6500 tf BRANCH, 0 ,

ft A: 0x6540 tf BRANCH, 0 ,

ft A: 0x6580 tf BRANCH, 0 ,

ft A: 0x65c0 tf BRANCH, 0 ,

ft A: 0x6600 tf BRANCH, 0 ,

ft A: 0x6640 tf BRANCH, 0 ,

ft A: 0x6680 tf BRANCH, 0 ,

ft A: 0x66c0 tf BRANCH, 0 ,

ft A: 0x6700 tf BRANCH, 0 ,

ft A: 0x6740 tf BRANCH, 0 ,

0 x 5 6 c 0 , 0 X * f C 0 , " s n e . b y.s" 9
0x5700 , 0 x f - f c 0 , " s u b q . 1 #3, 7.s"
0x5740 , 0 x f f c 0 , " s u b q . 1 #3, 7.s"
0x5780 , 0xf-f C 0 , " s u b q . 1 #3, y.s"
0 x 5 7 c 0 , 0 x- f f C 0 , " s e q . b 7.s" 9
0x5800 , 0 x f - f c 0 , " a ddq . 1 #4, y.s"
0x5840 , 0X"f f C 0 , " addq .1 #4, 7.s"
0 x5880 , 0 x f f c 0 , " addq .1 #4, y.s"
0 x 5 8 c 0 , 0 X f f C 0 , " s v c . b 7.s' 9
0x5900 , 0 X f f C 0 , " s u b q . 1 #4, y.s"
0x5940 , 0 x f f C 0 , " s u b q . 1 #4, 7.s"
0x5980 , 0 x - f f c 0 , " s u b q . 1 #4, 7.s"
0 x 5 9 c 0 , 0X"f f C 0 , " s v s . b 7.s' 9
0x5a00 , 0x-f i c 0 , " a ddq . 1 #5, 7.s"
0 x5a40 , 0 x f f c 0 , " a d d q . l #5, 7.s"
0 x5a80 , 0x-f -f c 0 , " a ddq . 1 4*5, 7.s"
0 x 5 a c 0 , 0 x f f C 0 , " s p l . b 7.s* 9
0x5b00 , 0 x f f c 0 , " s u b q . 1 #5, 7.s"
0 x5b40 , 0 x f * C 0 , " s u b q . 1 #5, 7.s"
0 x5b80 , 0X"f f C 0 , " s u b q . 1 #5, 7.s"
0 x 5 b c 0 , 0X-f iC0, " s m i . b 7.s' 9
0 x 5 c 0 0 , 0 x f f c 0 , " a ddq . 1 #6, 7.s"
0 x 5 c 4 0 , 0 x f f c 0 , " a ddq . 1 #6, 7.s"
0 x 5 c 8 0 , 0x f -Fc0 , " a ddq . 1 #6, 7.s"
0 x 5 c c 0 , 0 x f f C 0 , " s g e . b 7.s" p
0x5d00 , 0 x f f c 0 , " s u b q . 1 #6, 7.s"
0x5d40 , 0 x f f C 0 , " s u b q . 1 #6, 7.s"
0 x5d80 , 0xf-f c 0 , " s u b q . 1 #6, 7.s"
0 x 5 d c 0 , 0x-f f C 0 , " s l t . b 7.s* 9
0x5e00 , 0 x f "f C 0 , " addq . 1 #7, 7.s"
0 x5e40 , 0x-f-f C 0 , " a ddq . 1 #7, 7.s"
0 x5e80 , 0x f - fc0, " a ddq . 1 #7, 7.s"
0 x 5 e c 0 , 0 x f f C 0 , " s g t . b 7.5' 9
0x5-f00, 0xf-f C 0 , " s u b q . 1 #7, 7.s"
0 x 5 f 4 0 , 0 x f f C 0 , " s u b q . 1 #7, 7.s"
0 x 5 f 8 0 , 0 x f f C 0 , " s u b q . 1 #7, 7.s"
0 x 5 f c 0 , 0 x f f C 0 , " s l e . b 7.s' 9
0x6000 , 0 X f f 0 0 , " b r a . b 7.s' 9
0x6040 , 0x-f -f 0 0 , " b r a . b 7.s P
0x6080 , 0x f - f 00 , " b r a . b 7.s' 9
0 x 6 0 c 0 , 0 x f f 0 0 , " b r a . b 7.s",
0 x6100 , 0x-f-f00, " b s r . b 7.s 9
0x6140 , 0 x f f 0 0 , " b s r . b 7.s 9
0x6180 , 0X-F-F00, " b s r . b 7.s 9
0 x 6 1 c 0 , 0x-f-f 0 0 , " b s r . b 7.s 9
0x6200 , 0x-f-f00, " b h i . b 7.s",
0 x6240 , 0 x f f 0 0 , " b h i . b 7.s 9
0x6280 , 0 x f ^ 0 0 , " b h i . b 7.s 9
0 x 6 2 c 0 , 0x-f f 0 0 , " b h i . b 7.s 9
0x6300 , 0 x f f 0 0 , " b l s . b 7.s 9
0x6340 , 0 x f f 0 0 , " b l s . b 7.s 9
0x6380 , 0x - f f 00 , " b l s . b 7.s 9
0 x 6 3 c 0 , 0 X f f 0 0 , " b l s . b 7.s 9
0x6400 , 0x f -f 00 , " b c c . b 7.s 9
0x6440 , 0x-f-f00, " b c c . b 7.s 9
0x6480 , 0x-f f 0 0 , " b c c . b 7.s 9
0 x 6 4 c 0 , 0 x f f 0 0 , " b c c . b 7.s 9
0x6500 , 0x-f-F00, " b c s . b 7.s 9
0x6540 , 0 X f f 0 0 , " b c s . b 7.s 9
0x6580 , 0x f - f 00 , " b c s . b 7.s 9
0 x 6 5 c 0 , 0x-f f 0 0 , " b c s . b 7.s 9
0x6600 , 0 x f -F00, " b n e . b 7.s 9
0x6640 , 0 X f f 0 0 , " b n e . b 7.s II

9 0x6680 , 0 x f f 0 0 , " b n e . b 7.s 9
0 x 6 6 c 0 , 0 x f f 0 0 , " b n e . b 7.s 9
0x6700 , 0x-f-f00, " b e q . b 7.s 9
0x6740 , 0 X f f 0 0 , " b e q . b 7.s ll

9

281

CHAPTER 10

/ * A:
/ * A:
/% A:
/ * A:
/ * A:
/ * A:
/ * A:
/ * A:
/ * A:
/ * A:
/ * A:
/ * A:
/ * A:
/ * A:
/ * A:

0x6780
0x67c0
0x6800
0x6840
0x6880
0x68c0
0x6900
0x6940
0x6980
0x69c0
0x6a00
0x6a40
0x6a80
0x6ac0
0x6b00
0x6b40
0x6b80
0x6bc0
0x6c00
0x6c40
0x6c80
0x6cc0
0x6d00
0x6d40
0x6d80
0x6dc0
0x 6e00
0x6e40
0x6e80
0x6ec0
0x6*00
0X6-F40
0x6f80
0x6fc0
0x 7000
0x7040
0x7080
0x70c0
0x7100
0x7140
0x7180
0x71c0
0x7200
0x7240
0x7280
0x72c0
0x7300
0x7340
0x 7380
0x73c0
0x7400
0x7440
0x 7480
0x74c0
0x7500
0x 7540
0x7580
0x75c0
0x 7600
0x7640
0x7680
0x76c0
0x7700
0x7740
0x7780
0x77c0

0,
0,
0,
0,

*/ BRANCH, 0,
*/ BRANCH, 0,
* / BRANCH, 0,
* / BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
* / BRANCH, 0,
* / BRANCH, 0,
* / BRANCH,
«/ BRANCH,
* / BRANCH,
* / BRANCH,
* / BRANCH,
* / BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
*/ BRANCH, 0,
* / BRANCH, 0,
*/ MOVE_Q, 0,
*/ MOVEJ3, 0,
*/ MOVE_Q,
* / MOVEJ3,
*/ MOVE_Q,
*/ MOVE_Q,
*/ MOVE_Q,
*/ MOVE_Q,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q,
*/ MOVE_Q,
*/ MOVE_Q,
*/ MOVE_Q,
*/ MOVE_Q,
*/ MOVE_Q,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVEJ3, 0,
* / MOVE_Q,
*/ MOVE_Q,
* / MOVEJ3,
*/ MOVE_Q,
*/ MOVE Q,
* / MOVE_Q,
*/ MOVE_Q,
*/ MOVE_Q,
*/ MOVEJ3,

0,
0,
0,
0>
0,
0,

0,
0,
0,
0,
0,
0,

0,
0,
0,
0,
0,
0,
0,
0,

0x6780,
0x67c0,
0x6800,
0x6840,
0x6880,
0x68c0,
0x6900,
0x6940,
0x6980,
0x69c0,
0x6a00,
0x6a40,
0x6a80,
0x6ac0,
0x6b00,
0x6b40,
0x6b80,
0x6bc0,
0x6c00,
0x6c40,
0x6c80,
0x6cc0,
0x6d00,
0x6d40,
0x6d80,
0x6dc0,
0x6e00,
0x6e40,
0x6e80,
0x6ec0,
0x6*00,
0x6f40,
0x6*80,
0x6fc0,
0x7000,
0x7000,
0x7000,
0x7000,
0x7000,
0x7000,
0x7000,
0x7000,
0x 7200,
0x7200,
0x7200,
0x7200,
0x7200,
0x7200,
0x7200,
0x7200,
0x7400,
0x7400,
0x7400,
0x7400,
0x7400,
0x7400,
0x7400,
0x7400,
0x7600,
0x7600,
0x7600,
0x7600,
0x7600,
0x7600,
0x7600,
0x7600,

0 x f * 0 0 ,
0 x f f 0 0 ,
0 x f f 0 0 ,
0 x - f f 0 0 ,
0x-f-f00,
0xf-F00,
0xf-f 0 0 ,
0 x - f f 0 0 ,
0x-f-f00,
0 x f f 0 0 ,
0 x f - f 0 0 ,
0xff00,
0 x f - f 0 0 ,
0 x f f 0 0 ,
0 X f f 0 0 ,

0xf-f 0 0 ,
0xf-f00,
0xff00,
0 x f f 0 0 ,
0 x f f 0 0 ,
0x-f-f00,
0xf-f00,
0 x f f 0 0 ,
0 X f f 0 0 ,
0 x f - f 0 0 ,
0 x f f 0 0 ,
0 x f f 0 0 ,
0 x f f 0 0 ,
0 x f f 0 0 ,
0 x - f f 0 0 ,
0 X f f 0 0 ,
0 X f f 0 0 ,

0 x f - f 0 0 ,
0x - f - f 0 0 ,
0 x f - f 0 0 ,
0 X f f 0 0 ,
0x-f-f00,

0 X f f 0 0 ,
0x-f f 0 0 ,
0 x f f 0 0 ,
0xi400,
0 X f f 0 0 ,
0x f -f 0 0 ,
0xf f 0 0 ,
0 X f f 0 0 ,
0 x f f 0 0 ,
0 x f - f 0 0 ,
0 X f i 0 0 ,
0 x f f 0 0 ,
0xf-f 0 0 ,
0x4i00,
0x4400,
0x4400,
0x4400,
0x4400,
0x4400,
0x4400,
0x4400,
0x4400,
0x4400,
0x4400,
0x4400,
0x4400,
0x4400,
0x4400,
0x4400,

"beq.b
"beq.b
"bvc.b
"bvc.b
"bvc.b
"bvc.b
"bvs.b
"bvs.b
"bvs.b
"bvs.b
"bpl.b
"bpl.b
"bpl.b
"bpl.b
"bmi.b
"bmi.b
"bmi.b
"bmi.b
"bge.b
"bge.b
"bge.b
"bge.b
"blt.b
"blt.b
"blt.b
"blt.b
"bgt.b
"bgt.b
"bgt.b
"bgt.b
"ble.b
"ble.b
"ble.b
"ble.b
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
"movq.
" movq.
"movq.
"movq.

7.s",
7.s",
•/.s",
7.s»,
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.5",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.s",
7.5",
7.s",
7.s",
7.s, D0 " ,
7.s,D0",
7.s,D0",
7.s,D0",
7.s,D0"
7.s,D0"
7.s,D0",
7.s,D0",
7.s,Dl'
7.s,Dl",
7.s,Dl'
7.s,Dl'
7.S.D1"
7.s,Dl",
7.s,Dl",
7.s,Dl",
7-s, D2"
7.s,D2"
7.s,D2"
7.s,D2"
7.S.D2",
7.s,D2"
7.S.D2"
7.s,D2"
7.s,D3"
7.s,D3"
7.s,D3",
7.s,D3",
7.s,D3",
7.s,D3",
7.s,D3"
7.s,D3"

282

A Disassembler

/* A: 0x7800
/« A: 0x7840
/* A: 0x7880
/* A: 0x78c0
/* A: 0x7900
/* A: 0x7940
/* A: 0x7980
/* A: 0x79c0
/% A: 0x7a00
/% A: 0x7a40
/% A: 0x7a80
/% A: 0x7ac0
/% A: 0x7b00
/% A: 0x7b40
/* A: 0x7b80
/* A: 0x7bc0
/* A: 0x7c00
/* A 0x7c40
/* A' 0x7c80
/* A 0x7cc0
/* A 0x7d00
/* A 0x7d40
/» A 0x7d80
/* A 0x7dc0
/* A 0x 7e00
/* A 0x7e40
/* A 0x7e80
/* A 0x7ec0
/* A 0x7*00
/* A 0x7f40
/* A 0x7*80
/* A 0x7*c0
/* A 0x8000
/* A 0x8040
/* A 0x8080
/% A 0x80c0
/t A 0x8100
/t A 0x8140
ft A: 0x8180
/* A: 0x81c0
ft A: 0x8200
/* A : 0x8240
/* As 0x8280
/* A: 0x82c0
/* A: 0x8300
/* A: 0x8340
/* A: 0x8380
/* A: 0x83c0
/* A: 0x8400
/* A: 0x8440
/* A: 0x8480
/* A: 0x84c0
/* A: 0x8500
/* A : 0x8540
ft A: 0x8580
/t A: 0x85c0
ft A: 0x8600
/t A: 0x8640
/t A: 0x8680
/t A : 0x86c0
/t As 0x8700
/t A: 0x8740
ft A: 0x8780
/* A: 0x87c0
/* A: 0x8800
/* A: 0x8840
/* A: 0x8880

*/ M0VEJ3, 0,
*/ M0VEJ3, 0,
*/ M0VEJ3, 0,
*/ M0VEJ3, 0,
*/ M0VEJ3, 0,
»/ MOVE_Q, 0,
*/ M0VEJ3, 0,
*/ M0VEJ3, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVEJ3, 0,
*/ MOVEJ3, 0,
*/ MOVEJ3, 0,
*/ MOVEJ3, 0,
*/ MOVE_Q, 0,
*/ MOVEJ3, 0,
*/ MOVE_Q, 0,
%/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVÊQ, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ MOVE_Q, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 1,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 1,
*/ EFFADD, 0,
*/ EFFADD, 0,
«/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 1,
*/ EFFADD, 0,
*/ EFFADD, 0,
t/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 1,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
t/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,

0x7800, 0x**00,
0x7800, 0x**00,
0x7800, 0x**00,
0x7800, 0x**00,
0x7800, 0x**00,
0x7800, 0x**00,
0x7800, 0x**00,
0x7800, 0x**00,
0x7a00, 0x**00,
0x7a00, 0x**00,
0x7a00, 0x**00,
0x7a00, 0x**00,
0x7a00, 0x**00,
0x7a00, 0x**00,
0x7a00, 0x**00,
0x7a00, 0x**00,
0x7c00, 0x**00,
0x7c00, 0x**00,
0x7c00, 0x**00,
0x7c00, 0x**00,
0x7c00, 0x**00,
0x7c00, 0x**00,
0x7c00, 0x**00,
0x7c00, 0x**00,
0x7e00, 0x**00,
0x7e00, 0x**00,
0x7e00, 0x**00,
0x7e00, 0x**00,
0x7e00, 0x**00,
0x7e00, 0x**00,
0x7e00, 0x**00,
0x7e007 0x**00,
0x8000, 0x**c0,
0x8040, 0x**c0,
0x8080, 0x**c0,
0x80c0, 0x**c0,
0x8100, 0x**c0,
0x8140, 0x**c0,
0x8180, 0x**c0,
0x81c0, 0x**c0,
0x8200, 0x**c0,
0x8240, 0x**c0,
0x8280, 0x**c0,
0x82c0, 0x**c0,
0x8300, 0x**c0,
0x8340, 0x**c0,
0x8380, 0x**c0,
0x83c0, 0x**c0,
0x8400, 0x**c0,
0x8440, 0x**c0,
0x8480, 0x**c0,
0x84c0, 0x**c0,
0x8500, 0x**c0,
0x8540, 0x**c0,
0x8580, 0x**c0,
0x85c0, 0x**c0,
0x8600, 0x**c0,
0x8640, 0x**c0,
0x8680, 0x**c0,
0x86c0, 0x**c0,
0x8700, 0x**c0,
0x8740, 0x**c0,
0x8780, 0x**c0,
0x87c0, 0x**c0,
0x8800, 0x**c0,
0x8840, 0x**c0,
0x8880, 0x**c0,

"movq.] V.s,D4",
"movq.] y.s,D4",
"movq.] 7.s,D4",
"movq.1 •/.s,D4",
"movq.] y.s,D4",
"movq. y.s,D4",
"movq. y.s,D4",
"movq. y.s,D4",
"movq. "/.s,D5",
"movq. y.s,D5",
"movq. "/.s,D5",
"movq. y.s,D5",
"movq. "/.s,D5",
"movq. y.s,D5",
"movq. y.s,D5",
"movq. y.s,D5",
"movq. y.s,D6",
"movq. y.s,D6",
"movq. y.s,D6",
"movq. %s,D6",
"movq. "/.s,D6",
"movq. y.s,D6",
"movq. y.s,D6",
"movq. y.s,D6",
"movq. "/.s,D7",
"movq. y.s,D7",
"movq. "/.s,D7",
"movq. y.s,D7",
"movq. y.s,D7",
"movq. y.s,D7",
"movq. 7.s,D7",
"movq. 7.s,D7",
" or. b y.s,D0",
"or. w y.s,D0",
"or.l y.s,D0",
"divs. 1 y.s,D0",
"or .b D0,y.s",
"or. w D0,y.s",
"or. 1 D0, y.s",
"divu. 1 y.s,D0",
" or. b y.s,Di",
"or. w y.s,Di",
"or. 1 y.s,Di",
"divs. 1 y.s,Di",
"or .b DI , - / . S " ,
"or.w DI , " / . S " ,
"or.l Di,y.s",
"divu. 1 y.s,Di",
"or.b y.s,D2",
"or.w y.s,D2",
"or.l y.s,D2",
"divs. 1 y.s,D2",
"or.b D2,"/.s",
"or. w D2,y.s",
"or.l D2,y.s",
"divu. 1 y.s,D2",
" or. b "/.s,D3",
"or. M y.s,D3",
"or.l y.s,D3",
"divs. 1 "/.s,D3",
"or.b D3,*/.s",
"or.w D3,y.s",
"or. 1 D3,y.s",
"divu. 1 y.s,D3",
" or. b "/.s,D4",
"or.w y.s,D4",
" or. 1 -/.s,D4",

283

CHAPTER 10

/ * A: 0x88c0 */ EFFADD, 0
/* A: 0x8900 */ EFFADD,
/* A : 0x8940 */ EFFADD, 0
/ * A: 0x8980 */ EFFADD, 0
/* A : 0x89c0 */ EFFADD, 0
/* A : 0x8a00 */ EFFADD, 0
/* A : 0x8a40 */ EFFADD, 0

/* A : 0x8a80 */ EFFADD, 0
/ * A : 0x8ac0 «/ EFFADD, 0
/* A : 0x8b00 */ EFFADD,
/ * A : 0x8b40 */ EFFADD, 0
/* A : 0x8b80 */ EFFADD, 0
/ * A : 0x8bc0 */ EFFADD, 0
/* A : 0x8c00 */ EFFADD, 0
/* A : 0 x8 c40 */ EFFADD, to,

/* A : 0x8c80 */ EFFADD, to,

/* A : 0x8cc0 */ EFFADD, 0

/* A : 0x8d00 */ EFFADD,
/ * A : 0x8d40 */ EFFADD, 0
/ * A : 0x8d80 */ EFFADD, to,

/ * A : 0x8dc0 */ EFFADD, to,

/* A: 0x8e00 */ EFFADD, to,

/* A: 0x8e40 */ EFFADD, to,

/* A : 0x8e80 */ EFFADD, to,

/* A : 0 x8e c0 */ EFFADD, to,

/* A: 0x8-f00 */ EFFADD, 1,

/* A : 0x8*40 */ EFFADD, to,

/ * A: 0x8*80 »/ EFFADD, to,
/ * A: 0x8*c0 */ EFFADD, to,
/» A: 0x9000 */ EFFADD, to,
/* A: 0x9040 */ EFFADD, to,
/* A : 0x9080 */ EFFADD, to,
/ * A : 0x90c0 */ ADDREA, to,
/* A: 0x9100 */ EFFADD, 1,

/* A: 0x9140 */ EFFADD, 1,

/ * A: 0x9180 */ EFFADD, 1,
/ * A : 0 x91c0 */ ADDREA, to,
/* A 0x9200 */ EFFADD, to,
/* A . 0x9240 */ EFFADD, to,
/* A 0x9280 */ EFFADD, to,
/* A 0x92c0 */ ADDREA, to,
/* A 0x9300 */ EFFADD, 1,

/* A 0x9340 */ EFFADD, 1,

/* A: 0x9380 */ EFFADD, 1,

/* Ai 0x93c0 */ ADDREA, to,
/* A: 0x9400 */ EFFADD, to,

/ * A: 0x9440 */ EFFADD, to,
/* A: 0x9480 * / EFFADD, to,
/ * A: 0x94c0 »/ ADDREA, to,
/ * A: 0x9500 */ EFFADD, 1,

/ * A: 0x9540 */ EFFADD, 1,

/* A: 0x9580 */ EFFADD, 1,

/ * A: 0x95c0 * / ADDREA, to,
/ * A: 0x9600 * / EFFADD, to,
/ * A: 0x9640 * / EFFADD, to,
/ * A: 0x9680 * / EFFADD, to,
/ * A: 0x96c0 */ ADDREA, to,
/ * A: 0x 9700 * / EFFADD, 1,

/ * A: 0x9740 */ EFFADD, 1,

/ * A: 0x9780 */ EFFADD, 1,

/ * A: 0x97c0 * / ADDREA, to,
/ * A: 0x 9800 »/ EFFADD, to,
/ * A: 0x9840 * / EFFADD, to,
/ * A: 0x9880 * / EFFADD, to,
/ * A: 0 x98 c0 * / ADDREA, to,
/» A: 0x9900 */ EFFADD, 1,

0x88c0, 0 X * * C 0 , "divs.1 y.s,D4",
0x8900, 0 X * * C 0 , " or. b D4,"/.sl 9
0x8940, 0 X * * C 0 , "or.w D4,7.s' 9
0x8980, 0 X * * C 0 , "or.l D4,7.s' 9
0x89c0, 0 X * * C 0 , "di vu.1 7.s,D4' 9
0x8a00, 0 X * * C 0 , "or. b "/.s,D5' 9
0x8a40, 0 X * * C 0 , "or.w y.s,D5" 9
0x8a80, 0 X * * C 0 , "or. 1 •/.s,D5' 9
0x8ac0, 0 X * * C 0 , "divs.1 y.s,D5' 9
0x8b00, 0 X * * C 0 , "or. b D5,y.s» 9
0x8b40, 0 X * * C 0 , "or. w D5,"/.s' 9
0x8b80, 0 X * * C 0 , "or.l D5,y.s' 9
0x8bc0, 0 X * * C 0 , "divu.l y.s,D5' t
0x8c00, 0 X * * C 0 , "or.b y.s,D6' 9
0x8c40, 0 X * * C 0 , "or. w y.s,D6' 9
0x8c80, 0 X * * C 0 , " or. 1 "/.s,D6" 9
0x8cc0, 0 X * * C 0 , "divs.1 y.s,D6" 9
0x8d00, 0 X * * C 0 , "or.b D6,y.s" 9
0x8d40, 0 X * * C 0 , "or.w D6,y.s" 9
0x8d80, 0 X * * C 0 , "or. 1 D6,*/.s" 9
0x8dc0, 0 X * * C 0 , "divu.1 y.s,D6" 9
0x8e00, 0 X * * C 0 , "or.b •/.s,D7" 9
0x8e40, 0 X * * C 0 , "or. w "/.s,D7" 9
0x8e80, 0 X * * C 0 , "or. 1 y.s,D7" 9
0x8ec0, 0 X * * C 0 , "divs.1 y.s,D7" 9
0x8*00, 0 X * * C 0 , " or. b D7,y.s" 9
0x8*40, 0 X * * C 0 , "or.w D7,y.s" 9
0x8*80 , 0 X * * C 0 , "or. 1 D7,y.s" 9
0x8*c0, 0 X * * C 0 , "divu.1 y.s,D7" 9
0x9000, 0 X * * C 0 , "sub.b y.s,D0" 9
0x9040, 0 X * * C 0 , "sub.w y.s,D0" 9
0x9080, 0 X * * C 0 , "sub.1 y.s,D0" 9
0x 90c 0 , 0 X * * C 0 , "suba.w y.s,A0" 9
0x9100, 0 X * * C 0 , "sub.b D0,y.s"
0x9140 , 0 X * * C 0 , "sub.w D0,y.s" 9
0x9180, 0 X * * C 0 , "sub.l D0,y.sn 9
0 x 9 1 c 0 , 0 X * * C 0 , "suba.1 y.s,A0" 9
0x9200 , 0 X * * C 0 , "sub.b y.s,Di" 9
0x9240 , 0 X * * C 0 , "sub.w y.s,Di" 9
0x9280 , 0 X * * C 0 , "sub.1 y.s,Di" 9
0 x 9 2 c 0 , 0 X * * C 0 , "suba.w y.s,Ai" 9
0x9300 , 0 X * * C 0 , "sub.b Di,y.s" 9
0x9340 , 0 X * * C 0 , "sub.w Di,y.s" 9
0x9380 , 0 x * * c 0 , "sub.1 Di,y.s"
0 x 9 3 c 0 , 0 X * * C 0 , "suba.1 y.s, Ai"
0x9400 , 0 X * * C 0 , "sub.b y.s,D2"
0x9440 , 0 X * * C 0 , "sub.w "/.s,D2" 9
0x9480 , 0 X * * C 0 , "sub.1 y.s,D2"
0 x 9 4 c 0 , 0 X * * C 0 , "suba.w y.s, A2"
0x9500 , 0 X * * C 0 , "sub.b D2,y.s" 9
0x9540 , 0 X * * C 0 , "sub.w D2,y.s" ,
0x9580 , 0 x * * c 0 , "sub.1 D2,*/.s" 9
0 x 9 5 c 0 , 0 X * * C 0 , "suba.1 7 .S , A2"
0x9600 , 0 X * * C 0 , "sub.b 7.s,D3"
0x9640 , 0 X * * C 0 , "sub.w •/.s,D3M

0x9680 , 0 X * * C 0 , "sub.1 */.s,D3" 1
0 x 9 6 c 0 , 0 X * * C 0 , "suba.w 7 .S , A3" ,
0x9700 , 0 X * * C 0 , "sub.b D3,*/.s" 9
0x9740 , 0 x * * c 0 , "sub.w D3, y.s"
0x9780 , 0 X * * C 0 , "sub.1 D3,7.s"
0 x 9 7 c 0 , 0 X * * C 0 , "suba.1 y.s, A3" f
0x9800 , 0 X * * C 0 , "sub.b 7.s,D4" }
0x9840 , 0 X * * C 0 , "sub.w •/.s,D4"
0x9880 , 0 X * * C 0 , "sub.1 y.s, D4 "
0 x 9 8 c 0 , 0 X * * C 0 , "suba.w •/.s, A4 " >
0x9900 , 0 X * * C 0 , "sub.b D4,y.s"

284

A Disassembler

0x9940 »/
0x9980 */
0x99c0
0x9a00 */

/ * A:
/ * A:
/ * A:
/ * A:
/* A:
/ * A:
/ * A:
/ * A:
/ * A:
/ * A:
/ * A:
/ * A:
/* A:
/ * A:
/ * A:
/ * A:
/ * A:
/ * A:
/* A:
/ * A:
/ * A:
/ * A:

0x9a40 */
0>:9a80 */
0>:9ac0 */
0x9b00 */
0x9b40 */
0>:9b80 */
0x9bc0 */
0x9c00 */
0x9c40 */
0x9c80 */
0 x 9 c c 0 */
0x9d00 */
0x9d40 */
0x9d80 */
0x9dc0 */
0x9e00 */
0x9e40 * /
0x9e80 */
0x9e c0 */
0x9400 */
0 x 9 f 4 0 */
0 x 9 f 8 0 * /
0 x 9 f c 0 */

0X3000 */
0X3040 */
0X3080 */
0X30C0 */
0X3100 */
0X3140 */
0X3180 */
0X31C0 */
0X3200 */
0X3240 */
0X3280 */
0 x s 2 c 0 */
0X3300 */
0X3340 */
0X3380 */
0X33C0 */
0X3400 */
0xs440 * /
0X3480 */
0X34C0 */
0X3500 */
0X3540 */
0X3580 */
0X35C0 */
0X3600 */
0X3640 */
0X3680 */
0X36C0 */
0X3700 */
0X3740 */
0X3780 */
0X37C0 */
0X3800 */
0X3840 */
0X3880 */
0X38C0 */
0X3900 */
0X3940 */
0X3980 */
0X39C0 */

EFFADD, 1,
EFFADD, 1,
ADDREA, 0,
EFFADD, 0 ,
EFFADD, 0 ,
EFFADD, 0 ,
ADDREA, 0 ,
EFFADD, 1,
EFFADD, 1 ,
EFFADD, 1 ,
ADDREA, 0 ,
EFFADD, 0 ,
EFFADD, 0,
EFFADD, 0 ,
ADDREA, 0,
EFFADD, 1 ,
EFFADD, 1 ,
EFFADD, 1 ,
ADDREA, 0,
EFFADD, 0 ,
EFFADD, 0,
EFFADD, 0 ,
ADDREA, 0 ,
EFFADD, 1 ,
EFFADD, 1 ,
EFFADD, 1 ,
ADDREA, 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L I N E . A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
LINE__A, 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
LINE__A, 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,
L INE_A , 0 ,

0x9940
0x9980
0x99c0
0x9a00
0x9a40
0x9380
0X93C0
0x9b00
0x9b40
0x9b80
0x9bc0
0x9c00
0x9c40
0x9c80
0x9cc0
0x9d00
0x9d40
0x9d80
0x9dc0
0 x 9e00
0x9e40
0x9e80
0x9ec0
0x9-f 0 0
0x9f40
0x9f80
0x9fc0

0 x 3000
0X3040
0 x 3080
0X30C0
0X3100
0X3140
0X3180
0X31C0
0X3200
0X3240
0X3280
0xs2c0
0 X 3300
0 x 3340
0 x 3380
0X33C0
0 X3400
0X3440
0X3480
0xa4c0
0X3500
0X3540
0 x 3580
0xa5c0
0 X 3600
0X3640
0 x 3680
0X36C0
0X3700
0X3740
0X3780
0X37C0
0 X3800
0X3840
0 x 3880
0xa8c0
0X 3900
0X3940
0X3980
0X39C0

0xffC0
0xffC0
0xf4C0
0x4 4 C0
0x44C0
0X f fC0
0x-f 4C0
0 x f f C 0
0 x f f C 0
0 x f i c 0
0 x- f f C 0
0 x f i c 0
0 x f f C 0
0 X f f c 0
0 X f f C 0
0 x f f C 0
0 x f i C 0
0 x f f C 0
0 x f f C 0
0 x f -f C 0
0 x f f C 0
0 x f - f c 0
0 x f "f C 0
0 x f i C 0
0 x f - f C 0
0 x - f + c 0
0 x f f C 0
0 x - f 0 0 0
0 x f 0 0 0
0 x f 0 0 0
0 x -f 0 0 0
0 x f 0 0 0
0 x f 0 0 0
0 x f 0 0 0
0 x- f 0 0 0

0 x f 0 0 0
0x-f000
0 x f 0 0 0
0 x f 0 0 0
0 x f 0 0 0
0 x f 0 0 0
0 X f 0 0 0
0 x f 0 0 0
0x-f 0 0 0
0 x f 0 0 0
0x-f 0 0 0
0 x - f 0 0 0
0 x - f 0 0 0
0 x f 0 0 0
0 x - f 0 0 0
0 x - f 0 0 0
0 x f 0 0 0
0X-F000
0xi000
0x4000
0x4000
0x4000
0x4000
0x4000
0x4000
0x4000
0x4000
0x4000
0x4000
0x4000
0x4000
0x4000

" s u b . w
" s u b . 1
" sub a . 1
" s u b . b
" s u b . w
" s u b . 1
" s u b a . w
" s u b . b
" s u b . w
" s u b . 1
"sub3. 1
" s u b . b
" s u b . w
" s u b . 1
" s u b a . w
" s u b . b
" s u b . w
" s u b . 1
" sub 3 . 1
" s u b . b
" s u b . w
" s u b . 1
" s u b a . w
" s u b . b
" s u b . w
" s u b . 1
" s u b a . 1
" l i n e A
" 1 i n e

i n e

m e
i ne
m e
i n e

ne
ne

1 i n e
ne
ne

i n e
i n e
i n e
i n e
i n e
i n e
i n e

" 1
" 1
" 1
" 1
" 1
" 1
" 1
" 1
" 1
" 1
" 1 i ne
" l i n e
" 1 i ne
" 1 i ne
" 1 i ne
" 1 i ne
" 1 i ne
" 1 i ne
" 1 i ne
" 1 i ne

" 1 in«
" 1 in«

D4,7.5,>

D4,7 .5"
'/Is, A4"
/:s,D5'*
7.s, D5"
7.s,D5"
X s , A 5 "
D5,7.s"
D5,7.s"
D5,7.s"
7.s, A5 "
7.s,D6"
7.s,D6"
7.s,D6"
7.s ,FP"
D6,7.s"
D6,7.s"
D6,7.s"
X s , F P "
7.s,D7"
7.s,D7"
7.s,D7"
7.s,SP"
D7,7.s"
D7,7.s"
D7,7.s"
7.s,SP"
7.s",
X s " ,

7-s",
7.s",
X s " ,
X s " ,
X s " ,
7-s",
X s " ,
X s " ,

X s " ,
7-s",
X s " ,
X s " ,
X s " ,
7.s",
X s " ,
7.s",
X s " ,
X s " ,
7.s",
7-s",
X s " ,
7-s",
X s " ,
7-s",
X s " ,
X s " ,
X s " ,
X s " ,
X s " ,
7.s",
X s " ,
X s " ,
X s " ,
X s " ,
X s " ,
7-s",

285

CHAPTER 10

/ * A: 0>:aa00
/ * A: 0xaa40
/ * A: 0xaa80
/ * A: 0xaac0
/ * A: 0xab00
/ * A: 0xab40
/ * A: 0xab80
/ * A: 0xabc0
/ * A: 0xac00
/ * A: 0xac40
/ * A: 0xac80
/ * A: 0xacc0
/ * A: 0xad00
/ * A: 0xad40
/* A: 0xad80
/* A: 0xadc0
/* A: 0x ae00
/* A: 0xae40
/* A: 0xae80
/* A: 0xaec0
/« A: 0x a-F 00
/* A: 0xaf40
/* A: 0xa-f80
/* A: 0xa-f c0
/ * A: 0xb000
/ * A: 0xb040
/* A: 0xb080
/* A: 0xb0c0
/* A: 0xbl00
/« A: 0xbl40
/* A: 0xbl80
/* A: 0xblc0
/* A: 0xb200
/* A: 0xb240
/* A: 0xb280
/* A: 0xb2c0
/* A: 0xb300
/* A: 0xb340
/* A: 0xb380
/* A: 0xb3c0
/* A: 0xb400
/* A: 0xb440
/* A: 0xb480
/* A: 0xb4c0
/* A: 0xb500
/* A: 0xb540
/* A: 0xb580
/* A: 0xb5c0
/* A: 0>:b600
/* A: 0xb640
/* A: 0xb680
/* A: 0xb6c0
/* A: 0xb700
/* A: 0xb740
/* A: 0xb780
/* A: 0xb7c0
/ * A: 0xb800
/* A: 0xb840
/* A: 0xb880
/* A: 0xb8c0
/» A: 0xb900
/* A: 0xb940
/ * A: 0xb980
/ * A: 0xb9c0
/* A: 0xba00
/* A: 0xba40
/ * A: 0xba80

* / LINE_A, 0,
* / LINE_A, 0,
* / LINE_A, 0,
*/ LINE_A, 0,
*/ LINE_A, 0,
* / LINE_A, 0,
*/ LINE_A, 0,
* / LINE_A, 0,
* / LINE_A, 0,
* / LINE_A, 0,
* / LINE_A, 0,
* / LINE_A, 0,
*/ LINE_A, 0,
* / LINE_A, 0,
* / LINE_A, 0,
* / LINE_A, 0,
*/ LINE_A, 0,
* / LINE_A, 0,
* / LINE_A, 0,
* / LINE_A, 0,
* / LINE_A, 0,
*/ LINE_A, 0,
* / LINE_A, 0,
* / LINE__A, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
* / ADDREA, 0,
«/ EFFADD, 1,
* / EFFADD, 1,
* / EFFADD, 1,
* / ADDREA, 0,
*/ EFFADD, 0,
* / EFFADD, 0,
* / EFFADD, 0,
*/ ADDREA, 0,
*/ EFFADD, 1,
* / EFFADD, 1,
*/ EFFADD, 1,
* / ADDREA, 0,
*/ EFFADD, 0,
* / EFFADD, 0,
* / EFFADD, 0,
*/ ADDREA, 0,
*/ EFFADD, 1,
*/ EFFADD, 1,
*/ EFFADD, 1,
*/ ADDREA, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ ADDREA, 0,
*/ EFFADD, 1,
*/ EFFADD, 1,
* / EFFADD, 1,
* / ADDREA, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ ADDREA, 0,
*/ EFFADD, 1,
*/ EFFADD, 1,
*/ EFFADD, 1,
*/ ADDREA, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,
*/ EFFADD, 0,

0xaa00, 0xf000,
0xaa40, 0xf000,
0xaa80, 0xf000,
0xaac0, 0x-f000,
0xab00, 0xf000,
0xab40, 0xf000,
0xab80, 0x-f000,
0xabc0, 0xf000,
0xac00, 0x-f000,
0xac40, 0xf000,
0xac80, 0x-f000,
0xacc0, 0xf000,
0xad00, 0x-f000,
0xad40, 0xf000,
0xad80, 0xf000,
0xadc0, 0xf000,
0xae00, 0x-f000,
0xae40, 0X-F000,
0xae80, 0x-f000,
0xaec0, 0xf000,
0xaf00, 0xf000,
0xaf40, 0xf000,
0xaf80, 0X-F000,
0xafc0, 0xf000,
0xb000, 0xf-fc0,
0xb040, 0xf-fc0,
0xb080, 0xffc0,
0xb0c0, 0xffc0,
0xbl00, 0xf-fc0,
0xbl40, 0xffc0,
0xbl80, 0xffc0,
0xblc0, 0x-f-fc0,
0xb200, 0xf-fc0,
0xb240, 0xf-fc0,
0xb280, 0xf-fc0,
0xb2c0, 0xffc0,
0xb300, 0xf-fc0,
0xb340, 0xffc0,
0xb380, 0x-f-fc0,
0xb3c0, 0xf-fc0,
0xb400, 0xf-fc0,
0xb440, 0x-f-fc0,
0xb480, 0xf-fc0,
0xb4c0, 0x-f-fc0,
0xb500, 0xffc0,
0xb540, 0xffc0,
0xb580, 0xf-fc0,
0xb5c0, 0xffc0,
0xb600, 0x-f-fc0,
0xb640, 0xffc0,
0xb680, 0xf-fc0,
0xb6c0, 0x-ffc0,
0xb700, 0xf-fc0,
0xb740, 0x-ffc0,
0xb780, 0xf-fc0,
0xb7c0, 0xf-fc0,
0xb800, 0x-ffc0,
0xb840, 0xffc0,
0xb880, 0xffc0,
0xb8c0, 0x-ffc0,
0xb900, 0x-ffc0,
0xb940, 0xffc0,
0xb980, 0xffc0,
0xb9c0, 0xffc0,
0xba00, 0x-ffc0,
0xba40, 0x-ffc0,
0xba80, 0xffc0,

"line A y.5",
"line A 7.s",
"line A 7.5",

"1 ine A 7.s",
"1 ine A 7.5",

"1 ine A 7.5",

"1 ine A 7.5",

"1 ine A 7.5",

"1 ine A 7.5",

"1 ine A 7.s",
" 1 ine A 7.5",

"1 ine A Xs",
"1 ine A 7.5",

"line A 7.5",

"1 ine A 7.5",

"line A 7.5",

"1 ine A 7.5",

"line A 7.5",

"1 ine A 7.5",

"1 i ne A 7.5",

"line A 7.5",

"line A 7.5",

" 1 ine A 7.5",

"line A 7.5",

"eor.b D0,7.s",
"eor.M D0,7.s' *

"eor.1 D0,7.s' f
"cmpa. w 7.s,A0' 9
"cmp.b D0,7.s' 9
"cmp.u D0,7.s' 9
"cmp.1 D0,7.s' 9
"cmpa. 1 7.s,A0» 9
"eor.b Dl,7.s' 9
"eor.w Dl,7.s' 9
"eor.1 Dl,7.s" 9
"cmpa. w 7.s,Al" 9
"cmp.b Dl,7.s" 9
"cmp.W D l,7.s" 9
"cmp.1 Dl,7.s" 9
"cmpa. 1 7.s, Al" 9
"eor.b D2,7.s" 9
"eor.M D2,7.s" 9
"eor.1 D2,7.s" 9
"cmpa. w 7.5, A2" 9
"cmp.b D2,7.s" 9
"cmp.M D2,7.s" 9
"cmp.1 D2,7.s" 9
"cmpa. 1 7.s, A2" 9
"eor.b D3,7.s" 9
"eor.M D3,7.s" 9
"eor.1 D3,7.s" 9
"cmpa. H 7.s,A3" 9
"cmp.b D3,7.s" 9
"cmp.M D3,7.s" 9
"cmp.1 D3,7.s" 9
"cmpa.1 7.s, A3" 9
"eor.b D4,7.s" 9
"eor.w D4,7.s" 9
"eor.1 D4,7.s" 9
"cmpa.w 7.5, A4" 9
"cmp.b D4,7.s" "
"cmp.M D4,7.s" 9
"cmp.1 D4,7.s" 9
"cmpa.1 7.s, A4" 9
"eor.b D5,7.s" 9
"eor.w D5,7.s" *

"eor.1 D5, 7.s "

286

A Disassembler

/* A: 0xbac0 */ ADDREA, to,
ft A: 0xbb00 */ EFFADD, 1,
/% A: 0xbb40 */ EFFADD, 1,
/% A: 0xbb80 */ EFFADD, 1,
/% A: 0xbbc0 */ ADDREA, to,
/% A: 0xbc00 • / EFFADD, to,

/* A: 0xbc40 */ EFFADD, to,
/* A: 0xbc80 */ EFFADD, to,
/ * A: 0 X D C C 0 */ ADDREA, to,
/ * A: 0xbd00 */ EFFADD, 1,
/ * A: 0xbd40 */ EFFADD, 1,
/ * A: 0xbd80 */ EFFADD, 1,
/ * A: 0xbdc0 */ ADDREA, to,
/ * A: 0xbe00 */ EFFADD, to.
/* A: 0xbe40 */ EFFADD, to.
/* A: 0xbe80 */ EFFADD, to,
/ * A: 0xbec0 */ ADDREA, to,
/* A: 0xbf00 */ EFFADD, 1,
/* A: 0xbf40 */ EFFADD, 1,
/* A: 0xbf80 */ EFFADD, 1,
/* A: 0xbfc0 */ ADDREA, to.
/ * A: 0xc000 */ EFFADD, to.
/* A: 0xc040 */ EFFADD, to,

/ * A: 0xc080 */ EFFADD, to,
/* A: 0XC0C0 */ EFFADD, to,
/* A: 0x c100 */ EFFADD, 1,
/* A: 0xcl40 */ EFFADD, 2
/» A: 0xcl80 */ EFFADD, 1,
/* A" 0xclc0 */ EFFADD, to,
/* A: 0xc200 */ EFFADD, to,
/* A 0xc240 */ EFFADD, to,
/* A 0xc280 */ EFFADD, to,
/* A 0xc2c0 */ EFFADD, to,
/* A 0xc300 */ EFFADD, 1,
/* A: 0xc340 */ EFFADD, 2,
/* A ! 0xc380 */ EFFADD, 1,
/* A : 0xc3c0 */ EFFADD, to,
/* A : 0xc400 */ EFFADD, to,
/* A : 0xc440 */ EFFADD, to,

/* A : 0xc480 */ EFFADD, to,

/* A : 0xc4c0 */ EFFADD, to,

/* A : 0xc500 */ EFFADD, 1,
/* A : 0xc540 */ EFFADD, 2,
/% A : 0xc580 */ EFFADD, 1,
/% A : 0xc5c0 */ EFFADD, to,
/% A : 0xc600 */ EFFADD, to,
/% A : 0xc640 */ EFFADD, to,

/% A : 0xc680 */ EFFADD, to,

/* A : 0xc6c0 */ EFFADD, 0
/* A : 0xc700 */ EFFADD, 1
/* A : 0xc740 */ EFFADD, 2
/* A : 0xc780 */ EFFADD, 1
/* A : 0xc7c0 */ EFFADD, 0
/* A : 0xc800 */ EFFADD, 0
/* A : 0xc840 */ EFFADD, 0
/* A : 0xc880 */ EFFADD, 0
/* A : 0xc8c0 */ EFFADD, 0
/* A : 0xc900 */ EFFADD,
/* A : 0xc940 */ EFFADD, 2
ft A s 0xc980 */ EFFADD,
/% A : 0xc9c0 */ EFFADD, 0
/* A : 0xca00 */ EFFADD, 0
/* A : 0xca40 %/ EFFADD, 0
/* A : 0xca80 */ EFFADD, 0
/* A : 0xcac0 */ EFFADD, 0
/* A : 0xcb00 */ EFFADD,

0xbac0, 0X"f f C 0 , "cmpa. w */.s,A5" t
0xbb00, 0xff c0, "cmp.b D5,7.s " t
0xbb40, 0xfiC0, "cmp.w D5,"/.s"
0xbb80, 0xf-fc0, "cmp.1 D5,7.s" t
0xbbc0, 0xffc0, "cmpa.1 7.s, A5" t
0xbc00, 0X"f f C 0 , "eor.b D6,7.s"
0xbc40, 0xffC0, "eor.w D6,7.s" *

0xbc80, 0xfiC0, "eor.1 D6,7.s"
0xbcc0, 0 x f f C 0 , "cmpa.w 7.s,FP"
0xbd00, 0 X f * C 0 , "cmp.b D6,7.s"
0xbd40, 0 x f f C 0 , "cmp.w D6,7.s" *

0xbd80, 0xf-f C 0 , "cmp.1 D6,7.s" J
0xbdc0, 0x4-fc0, "cmpa.1 7.s,FP" t
0xbe00, 0xf-fc0, "eor.b D7,7.s"
0xbe40, 0xffC0, "eor.w D7,7.s" f
0xbe80, 0 x f f c 0 , "eor.1 D7,7.s" f
0xbec0, 0xffC0, "cmpa.w 7.s,SP" t
0xb-f 0 0 , 0 x f - f c 0 , "cmp.b D7,7.s" 5
0xb-f40, 0 x f f C 0 , "cmp.w D7,7.s" 9
0xb-f80, 0xffc0, "cmp.1 D7,7.s" 9
0xbfc0, 0Xffc0, "cmpa.1 7.s,SP" 9
0XC000, 0xffC0, "and.b 7.s,D0" ,
0xc040, 0xffC0, "and.w 7.s,D0" 9
0xc080, 0xf-fc0, "and.1 7.s,D0" ,
0 X C 0 C 0 , 0xffC0, "muls.1 7.s,D0" 9
0x c100, 0xffc0, "and.b D0,7.s" 9
0xcl40, 0 X f f C 0 , "and.w D0,7.s" 9
0xcl80, 0xf -f C 0 , "and.1 D0,7.s" 9
0xclc0, 0xf*C0, "mulu.1 7.s,D0" 9
0xc200, 0 X f ^ C 0 , "and.b 7.s,Dl" 9
0xc240, 0xffC0, "and.w 7.s,Dl" 9
0xc280, 0xf-fc0, "and.1 7.s,Dl" 9
0xc2c0, 0x-f f C 0 , "muls.1 7.s,Dl" 9
0xc300, 0xf-fc0, "and.b Dl,7.s" 9
0xc340, 0x-f<fc0, "and.w Dl,7.s" t
0xc380, 0x-f-fc0, "and.l Dl,7.s" 9
0xc3c0, 0xffC0, "mulu.1 7.s,Dl" 9
0xc400, 0xffC0, "and.b y.s,D2" 9
0xc440, 0x-f f C 0 , "and.w 7.s,D2" 9
0xc480, 0xffC0, "and.l 7.s,D2" 9
0xc4c0, 0xffC0, "muls.1 7.s,D2" 9
0xc500, 0xffC0, "and.b D2,7.s" 9
0xc540, 0xffC0, "and.w D2,7.s" 9
0xc580, 0x-f-f C 0 , "and.1 D2,7.s" 9
0xc5c0, 0xffC0, "mulu.1 7.s,D2" 9
0xc600, 0xffc0, "and.b 7.s,D3" 9
0xc640, 0xffc0, "and.w 7.s,D3" 9
0xc680, 0xf-fc0, "and.1 7.s,D3* 9
0xc6c0, 0xffC0, "muls.1 7.s,D3' 9
0xc700, 43xf f C 0 , "and.b D3,7.s' 9
0xc740, 0xffC0, "and.w D3,7.s' 9
0xc780, 0xf-f C 0 , "and.1 D3,7.s' 9
0xc7c0, 0xfic0, "mulu.1 y.s,D3" 9
0xc800, 0xf-fc0, "and.b 7.s,D4' 9
0xc840, 0xffC0, "and.w 7.s,D4' 9
0xc880, 0 X f * C 0 , "and.1 7.s,D4' 9
0xc8c0, 0xffC0, "muls.1 7.s,D4",
0xc900, 0xf-fc0, "and.b D4,7.s' 9
0xc940, 0xffC0, "and.w D4,7.s",
0xc980, 0xffC0, "and.1 D4,7.s' 9
0xc9c0, 0xffC0, "mulu.1 7.s,D4' 9
0xca00, 0xf-f C 0 , "and.b 7.s,D5' 9
0xca40, 0xf-f C 0 , "and.w 7.s,D5' l

9 0xca80, 0xffC0, "and.1 7.s,D5",
0xcac0, 0Xffc0, "muls.1 7.s,D5' t
0xcb00, 0xf-Fc0, "and.b D5,7.s' 9

287

CHAPTER 10

/* >: 0xcb40 */ EFFADD, 2
/ * 0 : 0 x cb80 */ EFFADD,
/* A : 0 x c b c 0 */ EFFADD,
/% A : 0 x c c 0 0 */ EFFADD,
/ * A : 0 x c c 4 0 */ EFFADD,
/ * A : 0 x c c 8 0 */ EFFADD,
/ * A : 0 x c c c 0 */ EFFADD,
/ * A : 0 x cd00 */ EFFADD,
/ * A : 0 x cd40 */ EFFADD,
/ * A : 0 x cd80 */ EFFADD,
/ * A : 0 x c d c 0 */ EFFADD,
/ * A : 0 x c e00 */ EFFADD,
/ * A : 0 x c e40 */ EFFADD,
/ * A : 0 x c e 8 0 */ EFFADD,
/ * A : 0 x c e c 0 */ EFFADD,
/ * A : 0 x c f 0 0 */ EFFADD,
/ * A : 0 x c f 4 0 */ EFFADD,
/ * A : 0xc-f80 */ EFFADD,
/ * A : 0 x c f c 0 */ EFFADD,
/ * A : 0xd000 */ EFFADD,
/ * A : 0xd040 */ EFFADD,
/ * A : 0xd080 */ EFFADD, to,
/ * A : 0 xd0 c0 «/ ADDREA, to,
/« A : 0 x d l 0 0 */ EFFADD,
/ * A : 0 x d l 4 0 */ EFFADD,
/ * A : 0 x d l 8 0 */ EFFADD,
/« A : 0 x d l c 0 */ ADDREA, to,
/ * A : 0xd200 */ EFFADD, to,
/ * A : 0xd240 */ EFFADD, to,
/ * A : 0xd280 */ EFFADD, to,
/ * A : 0 xd2 c0 */ ADDREA, to,
/ * A . 0xd300 */ EFFADD, 1,
/ * A . 0xd340 */ EFFADD, 1,
/ * A 0xd380 */ EFFADD, 1,
/ * A 0xd3c0 */ ADDREA, to,
/* A: 0xd400 */ EFFADD, to,
/ * A 0xd440 */ EFFADD, to,
/ * A: 0xd480 */ EFFADD, to,
/ * A: 0 xd4 c0 */ ADDREA, to,
/ * A: 0xd500 */ EFFADD, 1,
/ * A: 0xd540 */ EFFADD, 1,
/ * A: 0xd580 */ EFFADD, 1,
/ * A: 0 xd5 c0 */ ADDREA, to,
/ * A: 0xd600 */ EFFADD, to,
/ * A: 0xd640 */ EFFADD, to,
/ * A: 0xd680 */ EFFADD, to,
/ * A: 0 xd6 c0 */ ADDREA, to,
/* A: 0xd700 */ EFFADD, 1,
/ * A: 0xd740 */ EFFADD, 1,
/* A: 0xd780 */ EFFADD, 1,
/ * A: 0xd7c0 */ ADDREA, to,
/ * A: 0xd800 */ EFFADD, to,
/ * A: 0xd840 */ EFFADD, to,
/ * A: 0xd880 */ EFFADD, to,
/ * A: 0xd8c0 */ ADDREA, to,
/ * A: 0xd900 */ EFFADD, 1,
/ * A: 0xd940 */ EFFADD, l ,
/* A: 0xd980 */ EFFADD, l ,
/ * A: 0xd9c0 */ ADDREA, to,
/* A: 0xda00 */ EFFADD, to,
/ * A: 0xda40 */ EFFADD, to,
/* A: 0xda80 */ EFFADD, to,
/* A: 0 x d a c 0 */ ADDREA, to,
/* A: 0xdb00 */ EFFADD, 1,
/ * A: 0xdb40 */ EFFADD, 1,
/* A: 0xdb80 */ EFFADD, 1,
/* A: 0 xdbc0 */ ADDREA, to,

0 x c b 4 0 , 0 x f f C 0 , " and .w D5,7 .s" ,
0 x c bS0 , 0 X f f C 0 , " and . 1 D5,7 .s " ,
0 x c b c 0 , 0 x f f c 0 , "mu lu .1 7.s ,D5",
0 X C C 0 0 , 0xf-f C 0 , " a n d . b 7.s ,D6",
0 x c c 4 0 , 0 x f f c 0 , " a n d . N 7.s,D6",
0 x c c 8 0 , 0 X f f c 0 , " a nd . 1 7.s,D6",
0 X C C C 0 , 0 x f f C 0 , " m u l s . 1 7.s,D6",
0 x c d 0 0 , 0 x f f C 0 , " a n d . b D6,7 .s " ,
0 x c d 4 0 , 0 x f f c 0 , " a n d . M D6,7.s" ,
0 x c d 8 0 , 0 x f f C 0 , " and . 1 D6,7 .s " ,
0 x c d c 0 , 0 x f f C 0 , "mu l u . 1 7.s,D6",
0 x c e 0 0 , 0 x f -f C 0 , " a n d . b 7.s ,D7",
0 x c e 4 0 , 0 x f f c 0 , " a n d . N 7.s,D7",
0 x c e 8 0 , 0xf-f C 0 , " and . 1 7.s ,D7",
0 X C G C 0 , 0 x f f C 0 , " m u l s . 1 7.s ,D7",
0 x c f 0 0 , 0 x f f c 0 , " a n d . b D7,7 .s " ,
0 x c f 4 0 , 0xf-f C 0 , " and .w D7,7 .s " ,
0xc-f 8 0 , 0 x f f c 0 , " and . 1 D7,7 .s " ,
0 x c f C 0 ,

0 x f i C 0 ,
"mu l u . 1 7.s,D7",

0xd000 , 0 x f f C 0 , " a d d . b 7.s ,D0",
0xd040 , 0 x f f c 0 , " a dd .w 7.s ,D0",
0 xd080 , 0 x f f c 0 , " a d d . 1 7.s ,D0",
0 x d 0 c 0 , 0 x f f C 0 , " adda .w 7 .s ,A0" ,
0 x d l 0 0 , 0 x f f C 0 , " a d d . b D0,7 .s " ,
0 x d l 4 0 , 0 x f f C 0 , " add .w D0,7 .s" ,
0 x d l 8 0 ,

0x-f i c 0 ,
" a d d . l D0, 7.s " ,

0 x d l c 0 , 0 X f f C 0 , " a d d a . l X s , A 0 " ,
0 xd200 , 0 X f f C 0 , " a d d . b 7 . s , D l " ,
0xd240 , 0 x f f C 0 , " add .w 7 . s , D l " ,
0 xd280 , 0xf-f C 0 , " a d d . 1 7 . s , D l " ,
0 x d 2 c 0 , 0 x f f C 0 , " adda .w 7 . s , A l " ,
0xd300 ,

0 x f i C 0 ,
" a d d . b D l , 7 . s " ,

0 xd340 , 0 x f f C 0 , " add .w D l , 7 . s " ,
0 xd380 , 0 x f - f c 0 , " a d d . l D l , 7 . s " ,
0 x d 3 c 0 , 0 x f f C 0 , " a d d a . 1 7.s, A l " ,
0 xd400 , 0 x f f C 0 , " a d d . b 7.s ,D2",
0xd440 , 0 X f f C 0 , " add .w 7.s ,D2",
0xd480 , 0 x f f C 0 , " a dd . 1 7.s ,D2",
0 x d 4 c 0 , 0x-f f C 0 , " a dda .w 7 .s ,A2" ,
0 xd500 , 0 X f f C 0 , " a d d . b D2,7 .s " ,
0xd540 , 0 x f f C 0 , " add .w D2,7 .s" ,
0xd580 , 0 x f f c 0 , " a dd . 1 D2,7 .s " ,
0 x d 5 c 0 ,

0 x f i C 0 ,
" a dda . 1 7 .s ,A2" ,

0xd600 , 0x-f f C 0 , " a d d . b 7.s ,D3",
0xd640 , 0 x f f c 0 , " add .w 7.s ,D3",
0 xd680 ,

0 x f i C 0 ,
" add . 1 7.5, D 3 " ,

0 x d 6 c 0 , 0 x f f C 0 , " adda .w 7.s, A 3 " ,
0 xd700 , 0 x f f C 0 , " a d d . b D3,7 .s " ,
0xd740 , 0x-f-fc0, " add .w D3,7.s" ,
0 xd780 , 0xf-f C 0 , " add . 1 D3,7 .s " ,
0 x d 7 c 0 ,

0 x f i c 0 ,
" adda . 1 7.s, A 3 " ,

0xd800 , 0 x - f f C 0 , " a d d . b 7.s,D4",
0xd840 , 0 x f f c 0 , " add .w 7.s, D4 " ,
0 xd880 , 0xf-f C 0 , " a dd . 1 7.s, D 4 " ,
0 x d 8 c 0 ,

0 x f i C 0 ,
" adda .w 7.s, A 4 " ,

0xd900 , 0 x f - f c 0 , " a d d . b D4,7 .s " ,
0xd940 , 0 x- f f C 0 , " add .w D4,7.s" ,
0xd980 , 0 x f f C 0 , " add . 1 D4,7 .s " ,
0 x d 9 c 0 ,

0 X f i C 0 ,
" a d d a . 1 7.s, A 4 " ,

0 xda00 , 0 x f - f c 0 , " a d d . b 7.s, D5 " ,
0 xda40 , 0 X f f C 0 , " add .w 7.s,D5",
0 xda80 , 0 X f f C 0 , " a dd . 1 7.s ,D5",
0 x d a c 0 , 0 x f f C 0 , " adda .w 7.s, A 5 " ,
0 xdb00 , 0 x- f f C 0 , " a d d . b D5,7 .s" ,
0 xdb40 , 0 x f f c 0 , " add .w D5,7 .s" ,
0 xdb80 , 0 X f f C 0 , " a dd . 1 D5, 7.s " ,
0 x d b c 0 , 0 x f f C 0 , " a dda . 1 7.s, A 5 " ,

288

A Disassembler

/%
r%
/%
r%
ft
ft
ft
ft
/%
ft
ft
ft

0>:dc00 * / EFFADD,
0>:dc40 * / EFFADD,
0>:dc80 * / EFFADD,
0 x d c c 0 tf ADDREA,
0>:dd00 * / EFFADD,
0xdd40 * / EFFADD,
0>:dd80 * / EFFADD,
0>:ddc0 * / ADDREA,
0>:de00 * / EFFADD,
0>:de40 * / EFFADD,
0>:de80 * / EFFADD,
0>:dec0 tf ADDREA,
0>:df00 * / EFFADD,
0>;df40 * / EFFADD,
0>:df80 * / EFFADD,
0xdfc0 * / ADDREA,
0xe000 * / SFTROT,
0xe040 * / SFTROT,
0xe080 * / SFTROT,
0xe0c0 * / EFFADD,
0xel00 * / SFTROT,
0xel40 * / SFTROT,
0 x e l 8 0 * / SFTROT,
0>;elc0 * / EFFADD,
0xe200 * / SFTROT,
0xe240 * / SFTROT,
0xe280 tf SFTROT,
0xe2c0 * / EFFADD,
0xe300 tf SFTROT,
0xe340 * / SFTROT,
0xe380 * / SFTROT, 0,
0xe3c0 * / EFFADD, 0,
0xe400 * / SFTROT,
0xe440 tf SFTROT,
0xe480 * / SFTROT,
0xe4c0 * / EFFADD,
0xe500 * / SFTROT,
0xe540 * / SFTROT,
0xe580 * / SFTROT,
0xe5c0 * / EFFADD,
0xe600 * / SFTROT,
0xe640 * / SFTROT,
0xe680 * / SFTROT,
0xe6c0 * / EFFADD, 0,
0xe700 * / SFTROT, 0,
0xe740 * / SFTROT,
0xe780 * / SFTROT,
0xe7c0 * / EFFADD,
0xe800 * / SFTROT,
0xe840 * / SFTROT,
0xe880 * / SFTROT,
0xe8c0 tf NONE,

/ * A: 0xe900 * / SFTROT,
/ * A: 0xe940 * / SFTROT,
/ * A: 0xe980 * / SFTROT,
/ * A: 0xe9c0 * / NONE,
/ * A: 0xea00 * / SFTROT,
/ * A: 0xea40 * / SFTROT,
/ * A: 0xea80 * / SFTROT,
/ * A: 0xeac0 * / NONE,
/ * A: 0xeb00 * / SFTROT,
/ * A: 0xeb40 * / SFTROT,
ft A: 0xeb80 * / SFTROT,
/ * A: 0xebc0 * / NONE,
ft A: 0xec00 * / SFTROT,
/ * A: 0xec40 * / SFTROT,

/ *
/ *
/ *
/ *
ft
f t
/%
f t
ft
/ *
f t A
/ * A
/ * A
/ * A
/ * A
/ * A
/ * A
/ * A
/* A
f t A
/ * A
/ * A
/ * A
/ * A
/ * A
/ * A
/ * A
/ * A
f t A
/ * A
/ * A:
/ * A:
/ * A:
/ * A:
/*
/*
/*
/*

0 ,
0 ,
0 ,
1,
Ip
1,
0 ,
0 ,
0 ,
0 ,
0 ,
1,
ii
if
0 ,
0 ,
0 ,
0,
0 ,
0,
0 ,
0 ,
0 ,
0 ,
0 ,
0 ,
0 ,
0 ,
0,

0,
0,
0,
0,
0,
0 ,
0,
0>

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,

0xdc00,
0xdc40,
0xdc80,
0xdcc0,
0xdd00,
0xdd40,
0xdd80,
0xddc0,
0xde00,
0xde40,
0xde80,
0xdec0,
0xd-f 00,
0xdf40,
0xdf80,
0xdfc0,
0x e000,
0xe040,
0xe080,
0xe0c0,
0xel00,
0xel40,
0xel80,
0xelc0,
0xe200,
0xe240,
0xe280,
0xe2c0,
0x e300,
0xe340,
0xe380,
0xe3c0,
0xe400,
0x e440,
0xe480,
0xe4c0,
0xe500,
0xe540,
0xe580,
0xe5c0,
0xe600,
0xe640,
0xe680,
0xe6c0,
0xe700,
0xe740,
0xe780,
0xe7c0,
0xe800,
0xe840,
0xe880,
0x0000,
0xe900,
0xe940,
0xe980,
0 X 0 0 0 0 ,
0xea00,
0xea40,
0xea80,
0 x 0 0 0 0 ,
0xeb00,
0xeb40,
0xeb80,
0 x 0 0 0 0 ,
0xec00,
0xec40,

0 x f i C 0 ,
0 x f f C 0 ,
0x-f-f C 0 ,
0 x f - f c 0 ,
0 x f f c 0 ,
0 x - f f C 0 ,
0 x f f C 0 ,
0 x f - F c 0 ,
0 x f - f C 0 ,
0 x- f f c 0 ,
0 x- f f C 0 ,
0 x f f c 0 ,

0 x f f C 0 ,
0 x f - f c 0 ,
0 x f f C 0 ,
0xffC0,
0 x f - f c 0 ,
0xffc0,
0xf-fc0,
0xffc0,
0x-ff C 0 ,
0xffC0,
0xffc0,
0x-ff C 0 ,
0xf-Fc0,
0x-f f c0,
0 x f * c 0 ,
0 x f f C 0 ,
0 x f - f c 0 ,
0xf-fc0,
0xf-fc0,
0 X f f C 0 ,
0xffc0,
0x*fc0,
0xffc0,
0 X * f C 0 ,
0x-Ffc0,
0xffc0,
0xffc0,
0 x f f C 0 ,
0 x f f C 0 ,
0xffC0,
0xf-fc0,
0xffC0,
0 X f * C 0 ,
0xffC0,
0xf-fc0,
0x-f-fc0,
0xfic0,
0xffc0,
0xf -f C 0 ,
0 X 0 0 0 0 ,
0x-f f C 0 ,
0xffC0,

0x-f-fc0,
0 X 0 0 0 0 ,
0x-ffc0,
0xf-fc0,
0x-f "f C 0 ,
0 X 0 0 0 0 ,
0xf-f C 0 ,
0xffc0,
0xf-fc0,
0 X 0 0 0 0 ,
0x-f-fc0,
0X"f f C 0 ,

"add.b y.s,D6",
"add.w 7.s,D6",
"add.1 7.s,D6",
"adda.w 7.s,FP",
"add.b D6,7.s",
"add.w D6,7.s",
"add.1 D6,7.s" ,
"adda.1 7.s,FP",
"add.b 7.s,D7",
"add.w 7.s,D7",
"add.1 7.5, D7",
"adda.w 7.s,SP",
"add.b D7,7.s" ,
"add.w D7,7.5",
"add.1 D7,7.5" ,
"adda.1 7.s,SP",
"7.sr .b y.s",

" 7.sr. w Xs",
"7-sr. 1 Xs",
"asr.1 y.s",
"7.sl.b y.s",
"Xsl.W 7.s",
"7.sl.l Xs",
"asl.l
"Xsr.b y.s",
" Xsr. w y-s",
"7.sr.l y-s",
"lsr.l y.5",
"7.sl .b Xs",
"Xsl .w
"7.51.1 y-s",
"lsl.l Xs",
"Xsr.b y-s-,
M 7,sr. w
"Xsr.l 7-5",
"roxr.1 Xs",
"7.5l .b Xs",
"7.sl. w Xs",
"7.sl . 1 Xs",
"rox1.1 Xs",
"7.sr .b Xs",
" 7.sr. w Xs",
"7.sr. 1 Xs",
"ror.1 Xs",
"7.sl .b 7.s",
"7.sl .w Xs",
"7.B1.1 7-s",
"rol.l 7.s",
"7.sr.b 7.s",
"Xsr.w 7.s",
••y.sr. 1 Xs",
uni mplemented,
"•/.sl.b 7-s",
"Xsl.w 7-s",
"•/.sl.l Xs",
uni mp1emented,
"•/.sr.b Xs",
"Xsr.w 7.s",
"Xsr.1 7-s",
unimplemented,
"•/.si .b Xs",
•"/.si .w 7-s",
""/.si. 1 Xs",
uni mplemented,
"•/.sr.b Xs",
"Xsr.w Xs",

289

CHAPTER 10

0,

0 ,

/ * A: 0xec80 * / SFTROT,
/ * A: 0xecc0 * / NONE,
/ * A: 0xed00 %/ SFTROT,
/ * As 0xed40 * / SFTROT,
/ * A: 0xed80 * / SFTROT,
/ * A: 0xedc0 %/ NONE,
/ * As 0xee00 * / SFTROT,
/ * A: 0xee40 * / SFTROT, 0,
/ * A: 0xee80 * / SFTROT, 0,
/ * A: 0xeec0 * / NONE, 0,
/ * Aï 0xef00 * / SFTROT, 0,
/ * A: 0xef40 * / SFTROT, 0,
/ * A: 0xe*80 * / SFTROT, 0,
/ * A: 0xefc0 * / NONE, 0,
/ * A: 0xf000 * / LINE_F, 0,
/ * A: 0xf040 * / LINE_F, 0,
/ * A: 0xf080 * / LINE_F, 0,
/ * A: 0xf0c0 * / LINE_F, 0,
/ * A: 0x4100 * / LINE_F, 0,
/ * A: 0xfl40 * / LINE_F, 0,
/ * A: 0X-F180 * / LINE_F, 0,
/ * A: 0xflc0 * / LINE_F, 0,
/« A: 0x-f200 * / LINE_F, 0,
/ * A: 0xf240 * / LINE_F, 0,
/« A: 0X-F280 * / LINE_F, 0,
/ * A: 0xf2c0 * / LINE_F, 0,
/ * A: 0x4Z00 * / LINE_F, 0,
/ * A: 0xf340 «/ LINE_F, 0,
/» A: 0x-f380 * / LINE_F, 0,
/ * A: 0xf3c0 * / LINE__F, 0,
/ * A: 0x-f400 * / LINE_F, 0,
/ * A: 0xf440 »/ LINE_F,
/ * A: 0xf480 * / LINE__F,
/ * A: 0xf4c0 »/ LINE_F,
/ * A: 0x4500 * / LINE_F,
/ * A: 0xf540 * / LINE__F,
ft A: 0xf580 * / LINE_F,
/ * A: 0xf5c0 * / LINE_F,
/ * A: 0xf600 * / LINE_F,
/ * A: 0xf640 * / LINEJF,
/ * A: 0x-f680 * / LINE_F, 0,
/« A: 0xf6c0 * / LINE_F,
/» A: 0x-f700 * / LINE_F,
/ * A: 0xf740 * / LINE_F,
/ * A: 0xf780 * / LINE_F,
/ * A: 0xf7c0 «/ LINE_F,
/ * A: 0x4300 * / LINE_F,
/ * A: 0xf840 * / LINE_F,
/ * A: 0xf880 * / LINE_F, 0,
/ * A: 0xf8c0 * / LINE_F, 0,
/ * As 0xf900 * / LINE_F, 0,
/ * As 0xf940 * / LINE_F, 0,
/ * As 0xf980 * / LINE_F, 0,
/ * As 0x-f9c0 * / LINE_F, 0,
/ * As 0x4*00 * / LINE_F, 0,
/ * As 0xfa40 * / LINE_F, 0,
/ * As 0xfa80 * / LINE_F, 0,

0xfac0 * / LINE_F, 0,
0x4b00 * / LINE_F, 0,
0xfb40 * / LINE_F, 0,

0 ,

0,
0,
0,
0,
0,
0,
0,

0,
0,
0,

/ * As
/ * As
/ * As
/ * As
/ * As
/ * As
/ * As

0xfbc0 * / LINE_F,
0x4c00 * / LINE_F,
0xfc40 * / LINE_F,

/ * As 0xfc80 * / LINE_F,
/ * As 0xfcc0 * / LINE_F,
/ * As 0x4000 %/ LINE_F,

0,
0,
0,
0,
0,
0,

0xec80, 0xf-fc0,
0x0000, 0x0000,
0xed00, 0xf-fc0,
0xed40, 0x-ffc0,
0xed80, 0xffc0,
0x0000, 0x0000,
0xee00, 0x-ffc0,
0xee40, 0xf-fc0,
0xee80, 0x-ffc0,
0x0000, 0x0000,
0xef00, 0xf-fc0,
0xe-f40, 0x-f-fc0,
0xe-f80, 0xffc0,
0x0000, 0x0000,
0x-f000, 0x4000,
0xf040, 0x4000,
0xf080, 0x4000,
0x40c0, 0x4000,
0x4100, 0x4000,
0x4140, 0x4000,
0x4130, 0x4000,
0x41c0, 0x4000,
0x4200, 0x4000,
0x4240, 0x4000,
0x4230, 0x4000,
0x42c0, 0x4000,
0x4Z00, 0xf000,
0xf340, 0x4000,
0x-f380, 0x4000,
0x4Zc0, 0x4000,
0x4400, 0x4000,
0x4440, 0x4000,
0x4430, 0x4000,
0x44c0, 0x4000,
0x4500, 0x4000,
0xf540, 0x4000,
0xf580, 0x-f000,
0xf5c0, 0x4000,
0x4600, 0x4000,
0x4640, 0x4000,
0x4630, 0x4000,
0x46c0, 0x4000,
0x4700, 0x4000,
0x4740, 0x4000,
0x4730, 0x4000,
0xf7c0, 0x4000,
0x4300, 0x4000,
0X-F840, 0xf000,
0x-f880, 0x4000,
0xf8c0, 0x4000,
0x4900, 0x4000,
0x4940, 0x4000,
0x4930, 0x4000,
0x49c0, 0x4000,
0x4a00, 0x4000,
0xfa40, 0x4000,
0x4a30, 0x4000,
0x4ac0, 0x4000,
0x4b00, 0x4000,
0xfb40, 0x4000,
0xfb80, 0xf000,
0xfbc0, 0x4000,
0x4c00, 0x4000,
0x4c40, 0x4000,
0x4c30, 0x4000,
0xfcc0, 0x-f000,
0x4000, 0x4000,

"y.sr.l 7-s",
uni mplemented,
"Xsl.b y.s",
My.sl.w "/.s",
"7-sl.l 7.5",
uni mplemented,
"•/.sr.b 7.5",
"Xsr.w Xs",
"7.sr.l 7.s",
unimplemented,
"7.sl.b 7.s",
"7.sl.w 7.s",
"7.sl.l 7.s",
unimplemented,
"lin
" 1 i ne
"lin
"1 ine
"1 ine
"lin
"1 ine
"lim
"1 ine
"lin
"lin
"lin
"lim
"lim
"1 ine
"lin
"line
"1 ine
"lin
"1 ine
"1 ine
"line
"1 ine
"line
"1 ine
"line
"1 ine
"line
"1 ine
"line
"1 ine
"line
"1 ine
"1 ine
"1 ine
"line
"1 ine
"line
"line
"1 ine
"1 ine
"line
"1 ine
"1 ine
"1 ine
"1 i ne
"1 ine
"line
"1 ine
"line
"1 ine
" 1 ine
" 1 ine

7.5",
7.5",
7.5",
7.5",
7.5",
7.5",
7.5",
7.5»,
7.5",
Xs",
7.5",
Xs",
Xs",
7.5",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
7.5",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
Xs",
7.s",

290

A Disassembler

/* A: 0xfd40 */ LINE_F, 0,
/* A: 0x-f d80 */ LINE F, 0,
/* A: 0xfdc0 */ LINE F, 0,
/* A: 0x f e00 */ LINE F, 0,
/* A: 0xfe40 */ LINE F, 0,
/* A: 0xfe80 */ LINE F, 0,
/* A: 0xfec0 */ LINE_F, 0,
/* A: 0xff00 */ LINE_F, 0,
/* A: 0xff40 */ LINE F, 0,
/* A: 0xff80 */ LINE F, 0,
/* A: 0xffC0

0, \ •
•> 9

*/ LINE F,
0,

0,
0,

struct hash_tab table_BC3
/ * B : 0x1300 */ ONEREG, 0,
/ * B : 0x0b80 */ LINKOP, 0,
/ * B: 0x0d80 */ ONEREG, 0,
/* B: 0x0200 */ ONEREG, 0,
/ * B: 0x0240 */ ONEREG, 0,
/* B: 0x 0280 */ ONEREG, 0,
/* B: 0x02c0 */ ONEREG, 0,
/* B: 0x0300 */ ONEREG, 0,
/* B: 0x0340 */ ONEREG, 0,
/* B: 0x0380 */ ONEREG, 0,
/* B: 0x03c0 */ ONEREG, 0,
/* B: 0x 0400 */ ONEREG, 0,
/* B: 0x0440 */ ONEREG, 0,
/* B: 0x0480 */ ONEREG, 0,
/ * B: 0x04c0 */ ONEREG, 09
/* B: 0 x 0500 */ ONEREG, 09
/ * B: 0x0540 * / ONEREG, »,
/ * B: 0x0880 */ ONEREG, 0,
/* B: 0x05c0 »/ ONEREG, 09
/» B: 0x0640 tf ONEREG, 0,
/* B: 0x0680 t/ ONEREG, 09
/ * B: 0x06c0 %/ ONEREG, 09
/ * B: 0x0700 %/ ONEREG, 09
ft B: 0x0740 %/ ONEREG, 09
/% B: 0x0780 %/ ONEREG, 0,
/% B: 0x07c0 */ ONEREG, 09
/ * B: 0x0800 */ ONEREG, 09
ft B: 0x0840 */ ONEREG, 09
/t B: 0x0880 */ ONEREG, 09
/t B: 0x08c0 */ ONEREG, 09
/* B: 0x0900 */ ONEREG, 09
/* B: 0x0940 */ ONEREG, 09
/* B: 0x0980 */ ONEREG, 09
/* B: 0x09c0 */ ONEREG, 09
/* B: 0x0e00 */ ONEREG, 0,
/* B: 0x0e40 */ ONEREG, 0,
/* B: 0X0G80 */ ONEREG, 09
/* B: 0x0ec0 */ ONEREG, 09
/* B: 0 X 0 f 0 0 */ ONEREG, 09
/* B: 0x0f40 */ ONEREG, 09
/* B: 0x0-f 80 */ ONEREG, 09
/* B: 0 X 0 f C 0 */ ONEREG, 09
/* B: 0x1000 */ ONEREG, 09
/* B: 0x1040 */ ONEREG, 09
/* B: 0x1080 */ ONEREG, 09
/* B:

0X10C0 */ ONEREG, 09
/t B: 0X1100 */ ONEREG, 0,
ft B: 0x1140 */ ONEREG, 09
/t B: 0x1180 */ ONEREG, 0,
/t Bs 0x11C0 */ ONEREG, 09
/* B: 0x1200 */ ONEREG, 09
/* B: 0x1240 */ ONEREG, 09
/* B: 0x1280 */ ONEREG, 09

0xfd40, 0xf000, " 1 ine F y.s»,
0xfdS0, 0x-f000, "line F
0x-f dc0, 0xf000, "1 ine F *s",
0X-f G 0 0 , 0x-f 000, "1 ine F 7.s",
0xfe40, 0xf000, "1 ine F 7.S",
0xfe80, 0xf000, "1 ine F 7.S",
0xfec0, 0xf000, "1 ine F 7.s",
0xf-f00, 0xf000, "1 ine F •/-s",
0xff40, 0x-f 000, "1 ine F Ks",
0xf*80, 0xf000, "1 ine F 7.s",
0xf-f C 0 , 0 X f 000, "1 ine F y.s",
0, 0

= c
0x4e75, 0xffif, "rts",
0 x 4e56, 0xf̂ ff, " 1 i n k. w FP,7.s",
0x4e5e, 0x-ff f f , "unlk.w FP",
0x4880, 0x-f-ff f , "ext.w D0",
0x4881, 0xf -ff i , "ext.w Dl",
0x4882, 0 X f f f f , "ext-w D2",
0x4883, 0xf f f-f , "ext.w D3",
0x4884, 0xf*f "f , "ext.w D4",
0x4885, 0xffff, "ext.w D5",
0x4886, "ext.w D6",
0x4887, 0xffff, "ext.w D7",
0x48c0, 0x-f-ff f, "ext.l D0",
0x48cl, 0x-Fff f, "ext.1 Dl",
0x48c2, 0 x f - f f f, "ext.1 D2",
0x48c3, 0 x f i f i , "ext.1 D3",
0x48c4, 0 X f f f f , "ext.1 D4",
0x48c5, 0xffff, "ext.1 D5",
0x48c6, 0xffff, "ext.1 D6",
0x4Bc7, 0xffff, "ext.1 D7",
0x4e41, 0xffff, "trap #1",
0x4e42, 0xffff, "trap #2",
0x4e43, 0xffff, "trap #3",
0x4e44, 0xffff, "trap #4",
0x4e45, 0xffff, "trap #5",
0x4e46, 0xffff, "trap #6",
0x4e47, 0Xffff , "trap #7",
0x4e48, 0xffff, "trap #8",
0x4e49, 0Xffff , "trap #9",
0x4e4a, 0xffff , "trap #a",
0x4e4b, 0xffff, "trap #b",
0x4e4c, 0Xffff, "trap #c",
0x4e4d, 0Xffff, "trap #d",
0x4e4e, 0Xffff, "trap #e",
0x4e4f, 0Xffff, "trap #f " ,
0x4e60, 0xffff, "move.1 A0,USP",
0x4e61, 0xffff, "move.1 A1,USP",
0x4e62, 0xffff, "move.1 A2,USP",
0x4e63, 0xffff, "move.1 A3,USP",
0x4e64, 0 X f f f f , "move.1 A4,USP",
0x4e65, 0xffff, "move.1 A5,USP",
0x4e66, 0xffff, "move.1 FP,USP",
0x4e67, 0Xffff, "move.1 SP,USP",
0x4e68, 0 X f f f f , "move.1 USP,A0",
0x4e69, 0 X f f f f , "move.1 USP,Al",
0x4e6a, 0xffff, "move.1 USP,A2",
0x4e6b, 0xffff, "move.1 USP,A3",
0x4e6c, 0xffff, "move.1 USP,A4",
0x4e6d, 0xffff, "move.1 USP,A5",
0x4e6e, 0Xffff, "move.1 USP,FP",
0x4e6f, 0xffff, "move.1 USP,SP",
0x4e70, 0Xffff, "reset" i 0x4e71, 0xffff, "nop",
0x4e72, 0xffff, "stop",

291

CHAPTER 10

/ * B: 0xl2c0 * / ONEREG, 0,
/ * B: 0x1340 * / ONEREG, 0,
/ * B: 0x1380 * / ONEREG, 0,
/ * B: 0x0000 * / ONEREG, 0,
/ * B: 0x0040 */ ONEREG, 0,
/ * B: 0x0080 */ ONEREG, 0,
/ * B: 0x00c0 */ ONEREG, 0,
/ * B: 0x0100 * / ONEREG, 0,
/ * B: 0x0140 * / ONEREG, 0,
/ * B: 0x0180 * / ONEREG, 0,
/ * B: 0x01c0 */ ONEREG, 0,
/* B : 0x0a00 */ LINKOP, 0,
/* B : 0x0a40 */ LINKOP, 0,
/* B : 0x0a80 */ LINKOP, 0,
/* B : 0x0ac0 */ LINKOP, 0,
/* B : 0x0b00 */ LINKOP, 0,
/* B : 0x0b40 */ LINKOP, 0,
/* B : 0x0bc0 t/ LINKOP, 0,
/* B : 0x0c00 t/ ONEREG, 0,
/ * B : 0x0c40 t/ ONEREG, 0,
/* B : 0x0c80 t/ ONEREG, 0,
/* B : 0x0cc0 t/ ONEREG, 0,
/* B : 0x0d00 t/ ONEREG, 0,
/« B : 0x0d40 t/ ONEREG, 0,
/* B : 0x0dc0 */ ONEREG, 0,
/ * B : 0x13c0 */ DBRNCH, 0,
/* B : 0x1400 */ DBRNCH, 0,
/ * B : 0x1440 */ DBRNCH, 0,
/* B : 0x1480 */ DBRNCH, 0,
/ * B : 0x14c0 */ DBRNCH, 0,
/* B 0x1500 */ DBRNCH, 0,
/* B : 0x1540 */ DBRNCH, 0,
/* B 0x1580 */ DBRNCH, 0,
/* B 0x15c0 */ DBRNCH, 0,
/* B- 0x1600 */ DBRNCH, 0,
/* B 0x1640 */ DBRNCH, 0,
/* B: 0x1680 */ DBRNCH, 0,
/* B: 0x16c0 */ DBRNCH, 0,
/* B: 0x1700 */ DBRNCH, 0,
/* B: 0x1740 */ DBRNCH, 0, /% B: 0x1780 */ DBRNCH, 0,
ft B: 0x17c0 */ DBRNCH, 0,
/t B: 0x1800 */ DBRNCH, 0,
/t B: 0x1840 */ DBRNCH, 0,
/t B: 0x1880 */ DBRNCH, 0,
/t B: 0x18c0 */ DBRNCH, 0,
/t B: 0x1900 t/ DBRNCH, 0,
/t B: 0x1940 t/ DBRNCH, 0,
/t B: 0x1980 t/ DBRNCH, 0,
/* B: 0x19c0 */ DBRNCH, 0,
/* B: 0x1a00 */ DBRNCH, 0,
/* B: 0xla40 */ DBRNCH, 0,
/* B: 0x1a80 */ DBRNCH, 0,
/* B: 0x1ac0 */ DBRNCH, 0,
/* B: 0x1D00 */ DBRNCH, 0,
/* B: 0x1b40 */ DBRNCH, 0,
/* B: 0x1b80 */ DBRNCH, 0,
/* B: 0xlbc0 */ DBRNCH, 0,
/* B: 0 X 1 C 0 0 «/ DBRNCH, 0,
/ * B: 0xlc40 */ DBRNCH, 0,
/* B: 0x1c80 »/ DBRNCH, 0,
/* B: 0xlcc0 */ DBRNCH, 0,
/* B: 0x1d00 */ DBRNCH, 0,
/* B: 0xld40 */ DBRNCH, 0,
/* B: 0x1d80 */ DBRNCH, 0,
/* B: 0x ldc0 */ DBRNCH, 0,
/* B: 0x1e00 */ DBRNCH, 0,

0x4e73, 0xf f f f, "rte",
0x4e76, 0xffff, "trapv" 9
0x4e77, 0xf-ff -f, "rtr",
0x4840, 0xffff, "swap. w D0",
0x4841, 0xf -ff i, "swap. w Dl",
0x4842, 0xffff, "swap. w D2",
0x4843, 0xf-F-ff, "swap. w D3",
0x4844, 0xffff, "swap. w D4",
0x4845, 0xffif, "swap. w D5",
0x4846, 0x-ff f f, "swap. w D6",
0x4847, 0xfiff, "swap. w D7",
0x4e50, 0xffii, "link. w A0, 7.s •

i 0x4e51, 0xf f f-f , "link. w Al,7.s i
0x4e52, 0xf-ff f, "link. w A2,7.s 9
0x4e53, 0xf-f-f-f, "link. w A3,7.s f
0x4e54, 0xffff, "1 ink. w A4,7.s 9
0x4e55, 0xf-f-ff, "link. w A5,7.s 9
0x4e57, 0xff-ff, "1 ink. w SP,7.s 9
0x4e58, 0xffff, "unlk. w A0",
0x4e59, 0xffff, "unlk. w Al",
0x4e5a, 0x-f-fff, "unlk. w A2",
0x4e5b, 0xffff, "unlk. w A3",
0x 4e5c, 0xf-ff f, "unlk. w A4",
0x4e5d, 0xf f-ff, "unlk. w A5",
0x4e5-f, 0xii*t, "unlk. w SP",
0x50c8, 0xffff, "dbt D0,7.s* 9
0x51c8, 0xff f-f, "dbf D0,7.s' 9
0x52c8, 0xffff, "dbhi D0,7.s' l

9 0x53c8, 0xf-f-ff, "dbls D0,7.s' 9
0x54c8, 0xfffi, "dbcc D0,7.s' 1

9 0x55c8, 0x-ff f-f, "dbcs D0,7.s' 9
0x56c8, 0xffff, "dbne D0,7.s' 9
0x57c8, 0 X f f f f , "dbeq D0,7.s' 9
0x58c8, 0xffff, "dbvc D0,7.s' 9
0x59c8, 0xf -f-ff, "dbvs D0,7.s' 9
0x5ac8, 0Xffff, "dbpl D0,7.s",
0x5bc8, 0xf-f-f-f, "dbmi D0,7.s",
0x5cc8, 0Xffff, "dbge D0,7.s' 9
0x5dc8, 0xf-fff, "dblt D0,7.s",
0x5ec8, 0Xffff, "dbgt D0,7.s",
0x5fc8, 0xfff-f, "dble D0,7.s' 9
0x50c9, 0Xffff, "dbt Dl,7.s' 9
0x51c9, 0xf-fff, "dbf Dl,7.s' 9
0x52c9, 0xf f-ff, "dbhi Dl,7.s' 9
0x53c9, 0xffff, "dbls Dl,7.s' 9
0x54c9, 0 X f f f f , "dbcc Dljy.s1 9
0x55c9, 0 X f f f f , "dbcs Dl,7.s' 9
0x56c9, 0Xffff, "dbne Dl,7.s» 9
0x57c9, 0Xffff, "dbeq Dl,7.s" 9
0x58c9, 0Xffff, "dbvc Dl,7.s" 9
0x59c9, 0xffff, "dbvs Dl,7.s" 9
0x5ac9, 0Xffff, "dbpl Dl,y.s" 9
0x5bc9, 0Xf f f f , "dbmi Dl,7.s" 9
0x5cc9, 0Xffff, "dbge Dl,7.s" 9
0x5dc9, 0xffff, "dblt Dl,7.s" 9
0x5ec9, 0Xffff, "dbgt Dl,7.s" 9
0x5fc9, 0xffff, "dble Dl,7.s" 9
0x 50c a, 0xffff, "dbt D2,7.s" 9
0x51ca, 0xffff, "dbf D2,7.s" 9
0x52ca, 0xffff, "dbhi D2,7.s" 9
0x53ca, 0Xf f f f , "dbls D2,7.s" 9
0x54ca, 0Xffff, "dbcc D2,7.s" 9
0x55ca, 0Xffff, "dbcs D2,7.s" 9
0x56ca, 0Xffff, "dbne D2,7.s" 9
0x57ca, 0xffff, "dbeq D2,7.s" 9
0x58ca, 0Xffff, "dbvc D2,y.s" 9
0x59ca, 0xffff, "dbvs D2,7.s" 9

292

A

/% B: 0xle40 */ DBRNCH, 0, 0x5aca, 0xffff, "dbpl D2,7.s" 9
łt B: 0x1e80 */ DBRNCH, 0, 0x5bca, 0xffff, "dbmi D2,7.s" 9
/% B: 0xlec0 */ DBRNCH, 0, 0x5cca, 0xffff, "dbge D2,y.s" 9
/* B: 0xl-f00 */ DBRNCH, 0, 0x5dca, 0xff i i, "dblt D2,7.s" 9
/* B: 0xlf40 */ DBRNCH, 0, 0x5eca, 0xffff, "dbgt D2,7.s" 9
/* B: 0xlf80 */ DBRNCH, 0, 0x5-f ca, 0xffff, "dble D2,7.s" 9
/* B: 0xl-fc0 */ DBRNCH, 0, 0x50cb, 0xfff-f, "dbt D3,7.s" 9
/* B: 0x 2000 */ DBRNCH, 0, 0x51cb, 0xf-f-ff, "dbf D3,7.s" 9
/* B: 0x2040 */ DBRNCH, 0, 0x52cb, 0Xffif, "dbhi D3,7.s" 9
/* B: 0x2080 */ DBRNCH, 0, 0x53cb, 0x-ffff, "dbls D3,7.s" 9
/• B: 0x20c0 */ DBRNCH, 0, 0x54cb, 0x-f-ff i, "dbcc D3,7.s" 9
/* B: 0x2100 */ DBRNCH, 0, 0x55cb, 0xff-f-f, "dbcs D3,7.s" 9
/* B: 0x2140 */ DBRNCH, 0, 0x56cb, 0xffff, "dbne D3,7.s" 9
/* B: 0x2180 */ DBRNCH, 0, 0x57cb, 0xff-f-f, "dbeq D3,7.s" 9
/* B 0x21c0 */ DBRNCH, 0, 0x58cb, 0xffi i, "dbvc D3,7.s" 9
/* B 0x 2200 */ DBRNCH, 0, 0x59cb, 0xff-f-f, "dbvs D3,7.s" 9
/* B 0x 2240 */ DBRNCH, 0, 0x5acb, 0xf-ff f, "dbpl D3,7.s" 9
/* B 0x2280 */ DBRNCH, 0, 0x5bcb, 0xf ff-f, "dbmi D3,7.s" 9
/* B : 0x22c0 */ DBRNCH, 0, 0x5ccb, 0x-ff f f, "dbge D3,7.s" 9
/ * B : 0x 2300 */ DBRNCH, 0, 0x5dcb, 0xfffi, "dblt D3,7.s" 9
/* B : 0x2340 */ DBRNCH, 0, 0x5ecb, 0xffff, "dbgt D3,7.s" 9
/* B : 0x2380 */ DBRNCH, 0, 0x5fcb, 0xf fi -f, "dble D3,7.s" 9
/* B : 0x23c0 */ DBRNCH, 0, 0x50cc, 0xfi i i, "dbt D4,7.s" 9
/* B : 0x2400 */ DBRNCH, 0, 0x51cc, 0xf -f-ff, "dbf D4,7.s" 9
/* B : 0x2440 */ DBRNCH, 0, 0x52cc, 0Xiiii, "dbhi D4,7.s" 9
/* B : 0x2480 */ DBRNCH, 0, 0x53cc, 0x-f-ff-F, "dbls D4,7.s" 9
/* B s 0x24c0 */ DBRNCH, 0, 0x54cc, 0x-ff-ff, "dbcc D4,7.s' 9
/* B : 0x 2500 */ DBRNCH, 0, 0x55cc, 0x-ffff, "dbcs D4,7.s* 9
/* B : 0x2540 */ DBRNCH, 0, 0x56cc, 0Xffff, "dbne D4,7.s* 9
/* B : 0x2580 */ DBRNCH, 0, 0x57cc, 0xff-ff, "dbeq D4,7.s' 9
/* B : 0x25c0 */ DBRNCH, 0, 0x58cc, 0x-f-ff-F, "dbvc D4,7.s« «

/ * B : 0x 2600 */ DBRNCH, 0, 0x59cc, 0xfi i i, " d b v s D4, 7.S '
/* B s 0x2640 */ DBRNCH, 0, 0x5acc, 0xfi ii, "dbpl D4,7.s' 9
/* B s 0x2680 */ DBRNCH, 0, 0x5bcc, 0x-ff-f-f, "dbmi D4,7.s' 9
/* B : 0x26c0 */ DBRNCH, 0, 0x5ccc, 0xf-ff f, "dbge D4,7.s' 9
/* B: 0x 2700 */ DBRNCH, 0, 0x5dcc, 0xf f-f-f, "dblt D4,7.s' 9
/* B : 0x2740 */ DBRNCH, 0, 0x5ecc, 0xfi ii, "dbgt D4,7.s' 9
/* B : 0x2780 */ DBRNCH, 0, 0x5fcc, 0xffff, "dble D4,7.s' 9
/* B : 0x27c0 */ DBRNCH, 0, 0x50cd, 0xfi ii, "dbt D5,7.s",
/* B : 0x2800 */ DBRNCH, 0, 0x51cd, 0Xffff, "dbf D5,7.s' 9
/* B : 0x2840 */ DBRNCH, 0, 0x52cd, 0x-ff ii , "dbhi D5,7.s' 9
/* B : 0x2880 */ DBRNCH, 0, 0x53cd, 0xf-f-ff, "dbls D5,7.s' 9
/* B : 0x28c0 «/ DBRNCH, 0, 0x54cd, 0x-ff ff , "dbcc D5,7.s' 9
/* B : 0x 2900 */ DBRNCH, 0, 0x55cd, 0xf-ff-f, "dbcs D5,7.s' 9
/* B : 0x2940 */ DBRNCH, 0, 0x56cd, Qxiiii, "dbne D5,7.s' 9
/* B s 0x2980 */ DBRNCH, 0, 0x57cd, Qxiiii, "dbeq D5,7.s' 9
/* B s 0x29c0 */ DBRNCH, 0, 0x58cd, 0xffff, "dbvc D5,7.s' 1

9
/* B : 0x 2 a 0 0 t/ DBRNCH, 0, 0x59cd, 0x* -ff -f, "dbvs D5,7.s' 9
/* B s 0x 2a40 t/ DBRNCH, 0, 0x5acd, 0xffff, "dbpl D5,7.s' 9
/* B : 0x2a80 t/ DBRNCH, 0, 0x5bcd, 0xf f-f-f, "dbmi D5,7.s' 9
/* B s 0x2ac0 t/ DBRNCH, 0, 0x5ccd, 0xf-ff i, "dbge D5,7.s' 9
/* Bs 0x2b00 t/ DBRNCH, 0, 0x5dcd, 0xfff-f, "dblt D5,7.s' 9
/* B: 0x2b40 t/ DBRNCH, 0, 0x5ecd, 0xf f-ff, "dbgt D5,7.s",
/» B: 0x2b80 t/ DBRNCH, 0, 0x5fcd, 0Xffff, "dble D5,7-s' 9
/« B: 0x2bc0 t/ DBRNCH, 0, 0x50ce, 0xffff, "dbt D6,7.s",
/* Bs 0x2c00 t/ DBRNCH, 0, 0x51ce, 0xffff, "dbf D6,7.s",
/* B: 0x2c40 t/ DBRNCH, 0, 0x52ce, 0 X f f f f , "dbhi D6,7.s",
/* B: 0x2c80 t/ DBRNCH, 0, 0x53ce, 0 X f f f f , "dbls D6,7.s",
/« B: 0x2cc0 t/ DBRNCH, 0, 0x54ce, 0Xffff, "dbcc D6,7.s",
/* B: 0x2d00 t/ DBRNCH, 0, 0x55ce, 0Xffff, "dbcs D6,7.s 9
/* B: 0x2d40 t/ DBRNCH, 0, 0x56ce, 0Xffff, "dbne D6,7.s 9
/* Bs 0x2d80 t/ DBRNCH, 0, 0x57ce, 0xffff, "dbeq D6,7.s 9
/* B: 0x2dc0 t/ DBRNCH, 0, 0x58ce, 0Xffff, "dbvc D6,7.s",
ft B: 0x2e00 t/ DBRNCH, 0, 0x59ce, 0xffff, "dbvs D6,7.s' 9
/* B: 0x2e40 t/ DBRNCH, 0, 0x5ace, 0Xf f f f , "dbpl D6,7.s",
/t Bs 0x2e80 t/ DBRNCH, 0, 0x5bce, 0xffff, "dbmi D6,7.s 9

293

CHAPTER 10

/ * B: 0x2ec0 * / DBRNCH,
/ * B: 0x2*00 * / DBRNCH,
/ * B: 0x2*40 * / DBRNCH,
/ * B: 0x2*80 * / DBRNCH,
/ * B: 0x2fc0 */ DBRNCH,
/KB: 0x3000 * / DBRNCH,
/ * B: 0x3040 * / DBRNCH,
/ * B: 0x3080 * / DBRNCH,
/ * Bs 0x30c0 * / DBRNCH,
/« B: 0x3100 */ DBRNCH,
/ * B: 0x3140 * / DBRNCH,
/ * B: 0x3180 * / DBRNCH,
/ * B: 0x31c0 * / DBRNCH,
/ * Bs 0x3200 * / DBRNCH,
/ * B: 0x3240 * / DBRNCH,
/ * B: 0x3280 * / DBRNCH,
/ * B: 0x32c0 * / DBRNCH,
/ * B: 0x3300 * / DBRNCH,
/ * B: 0x3340 * / DBRNCH,
/ * B: 0x3380 * / DBRNCH,
/ * B: 0x33c0 * / BCDREG,
/ * B: 0x3400 * / BCDREG,
/ * B: 0x3440 * / BCDREG,
ft B: 0x3480 * / BCDREG,
/ * Bs 0x34c0 * / BCDREG,
/ * B: 0x3500 * / BCDREG,
/ * B: 0x3540 * / BCDREG,
/ * Bs 0x3580 * / BCDREG,
/ * Bs 0x35c0 * / BCDREG,
/ * B: 0x3600 * / BCDREG,
/ * Bs 0x3640 * / BCDREG,
/ * B: 0x3680 */ BCDREG,
/» Bs 0x36c0 * / BCDREG,
/ * Bs 0x3700 * / BCDREG,
/ * Bs 0x3740 «/ BCDREG,
/ * Bs 0x3780 * / BCDREG,
/ * Bs 0x37c0 * / BCDREG,
/ * Bs 0x3800 */ BCDREG,
/ * Bs 0x3840 * / BCDREG,
/ * B: 0x3880 * / BCDREG,
/ * Bs 0x38c0 »/ BCDREG,
/ * B: 0x3900 * / BCDREG,
/ * Bs 0x3940 «/ BCDREG,
/ * Bs 0x3980 * / BCDREG,
/ * B: 0x39c0 * / BCDREG,
/ * B: 0x3a00 * / BCDREG,
/ * Bs 0x3a40 * / BCDREG,
/ * B: 0x3a80 «/ BCDREG,
/ * Bs 0x3ac0 */ BCDREG,
/ * B: 0x3b00 */ BCDREG,
/ * Bs 0x3b40 «/ BCDREG,
/ * Bs 0x3b80 * / BCDREG,
/ * Bs 0x3bc0 * / CMPREG,
/ * Bs 0x3c00 * / CMPREG,
/ * Bs 0x3c40 * / CMPREG,
/ * Bs 0x3c80 * / CMPREG,
/ * Bs 0x3cc0 * / CMPREG,
/« Bs 0x3d00 * / CMPREG,
/ * Bs 0x3d40 * / CMPREG,
/ * Bs 0x3d80 * / CMPREG,
/» Bs 0x3dc0 * / CMPREG,
/ * Bs 0x3e00 */ CMPREG,
/ t Bs 0x3e40 * / CMPREG,
/ * Bs 0x3e80 * / CMPREG,
/ * Bs 0x3ec0 * / CMPREG,
/ * Bs 0x3*00 * / CMPREG,
/ * Bs 0x3*40 * / CMPREG,

09 0x5cce, 0x****
09 0x5dce, 0x****
09 0x5ece, 0x****
09 0x5*ce, 0x****
0, 0x50c*, 0x****
09 0x51c*, 0x****
09 0x52c*, 0x****
09 0x53c*, 0x****
09 0x54c*-, 0x****
09 0x55c*, 0x****
09 0x56c*, 0x****
09 0x57c*, 0x****
09 0x58c*, 0x****
09 0x59c*, 0x****
09 0x5ac*, 0x****
09 0x5bc*, 0x****
09 0x5cc*, 0x****
09 0x5dc*, 0x****
09 0x5ec*, 0x****
09 0x5*c*, 0x****
09 0x8100, 0x***0
09 0x8300, 0x***0
09 0x8500, 0x***0
09 0x8700, 0x***0
09 0x8900, 0x***0
09 0x8b00, 0X***0
09 0x8d00, 0X***0
09 0x8*00, 0X***0
09 0x9100, 0X***0
09 0x9300, 0X***0
09 0x9500, 0X***0
09 0x9700, 0X***0
09 0x9900, 0X***0
09 0x9b00, 0X***0
09 0x9d00, 0X***0
09 0x9*00, 0X***0,
09 0x9140, 0X***0,
09 0x9340, 0X***0,
09 0x9540, 0X***0,
09 0x9740, 0X***0,
09 0x9940, 0X***0,
09 0x9b40, 0X***0,
09 0x9d40, 0X***0,
09 0x9*40, 0X***0,
09 0x9180, 0X***0,
09 0x9380, 0X***0,
09 0x9580, 0X***0,
09 0x9780, 0X***0,
09 0x9980, 0X***0,
09 0x9b80, 0X***0,
09 0x9d80, 0X***0,
09 0x9*80, 0X***0,
09 0xbl08, 0x***8,
09 0xb308, 0x***8,
09 0xb508, 0x***8,
09 0xb708, 0x***8,
09 0xb908, 0x***8,
09 0xbb08, 0x***8,
09 0xbd08, 0x***8,
09 0xb*08, 0x***8,
09 0xbl48, 0x***8,
09 0xb348, 0x***8,
09 0xb548, 0x***8,
09 0xb748, 0x***8,
09 0xb948, 0x***8,
09 0xbb48, 0x***8,
09 0xbd48, 0x***8,

"dbge D6,7.s i

9
"dblt D6,'/.s 9
"dbgt D6,7.s 9
"dble D6,y.s 9
"dbt D7,Xs 9
"db* D7,7.s 9
"dbhi D7,y.s I

9 "dbls D7,7.s 9
"dbcc D7,Xs 9
"dbcs D7,7.s 9
"dbne D7,7.s",
"dbeq D7,7.s 9
"dbvc D7,7.s',
"dbvs D7,"/.s 9
"dbpl D7,Xs 9
"dbmi D7,7.s 9
"dbge D7,7.s",
"dblt D7,7.s' 9
"dbgt D7,y.s' 9
"dble D7,y.s' 9
"sbcd y.s",
"sbcd y.s",
" sbcd y.s»,
"sbcd y.s",
"sbcd y.s",
"sbcd y.s",
"sbcd y.s",
"sbcd y.s",
"subx. b y.s",
"subx, b y.s",
"subx. b y.s",
"subx. b y.s",
"subx.b y.s",
"subx. b y.s",
"subx. b y.s",
"subx. b y.s",
"subx. w y.s",
"subx. w y.s-,
"subx. w y.s",
"subx-w y.s",
"subx. w y.s",
"subx. w y.s",
"subx. w y.s",
"subx. w y.s",
"subx. 1 y.s",
"subx. 1 y.s",
"subx. 1 y.s»,
"subx. 1 y.s",
"subx. 1 y.s",
"subx. 1 y.s-,
"subx. 1 y.s",
"subx. 1 y.s",
"cmpm. b A0,y.s" 9
"cmpm. b Ai,y.s" 9
"cmpm. b A2,y.s" 9
"cmpm. b A3,"/.s" 9
"cmpm. b A4,"/.s" 9
"cmpm. b A5,"/.s" 9
"cmpm. b FP,'/.S" 9
"cmpm. b SP,-/.S" 9
"cmpm. w A0,y.s" 9
"cmpm. w AI,-/.S" 9
"cmpm. w A2,y.s" 9
"cmpm. w A3, y.s" 9
"cmpm. w A4,"/.s" 9
"cmpm. w A5,y.s" 9
"cmpm. w FP,"/.S" 9

294

A Disassembler

ft B: 0x3*80 */ CMPREG, 0, 0xb-f48, 0x̂ *8, "cmpm. w SP,7.s",
ft B: 0x3fc0 */ CMPREG, 0, 0xbl88, 0xfff8, "cmpm. 1 A0,y.s",
ft Bi 0x4000 */ CMPREG, 0, 0xb388, 0x-ff f8, "cmpm. 1 Al,7.s",
ft B: 0x4040 */ CMPREG, 0, 0xb588, 0x-f-ff8, "cmpm. 1 A2,%s",
ft B: 0x4080 */ CMPREG, 0, 0xb788, 0xf-f*8, "cmpm. 1 A3,7.s",
ft B: 0x40c0 */ CMPREG, 0, 0xb988, 0x-f-f-f8, "cmpm. 1 A4,y.s",
ft B: 0x4100 */ CMPREG, 0, 0xbb88, 0xf ffB, "cmpm. 1 A5,7.s",
ft B: 0x4140 */ CMPREG, 0, 0xbd88, 0xf+"f8, "cmpm. 1 FP,"/.s",
ft B: 0x4180 */ CMPREG, 0, 0xbf88, 0x-fff8, "cmpm. 1 SP,7.s",
ft B: 0x41c0 */ EXDREG, 0, 0xcl40, 0xfffB, "exg.1 D0,7.s",
ft B: 0x4200 */ EXDREG, 0, 0xc340, 0xfff8, "exg.1 Dl,7.s",
ft B: 0x4240 */ EXDREG, 0, 0xc540, 0xfffB, "exg.1 D2,7.s",
ft B: 0x4280 tf EXDREG, 0, 0xc740, 0xff-fS, "exg.1 D3,y.e",
ft B: 0x42c0 */ EXDREG, 0, 0xc940, 0xfffB, "exg.1 D4,'/.s",
ft B: 0x4300 */ EXDREG, 0, 0xcb40, 0xf-f«f8, "exg.1 D5,"/.s",
ft B: 0x4340 */ EXDREG, 0, 0xcd40, 0xfff8, "exg.1 D6,"/.s",
ft B: 0x4380 */ EXDREG, 0, 0xc-f 40, 0xf-f-f8, "exg.1 D7,"/.s",
ft B: 0x43c0 */ EXAREG, 0, 0xcl48, 0xfff8, "exg.1 A0,y.s",
ft B: 0x4400 */ EXAREG, 0, 0xc348, 0x-f-ff8, "exg.1 Ai,y.s",
ft B- 0x4440 */ EXAREG, 0, 0xc548, 0xfff8, "exg.1 A2,y.s",
ft B: 0x4480 tf EXAREG, 0, 0xc748, 0xfff8, " ex g. 1 A3,y.s",
ft B 0x44c0 tf EXAREG, 0, 0xc948, 0xfff8, " ex g. 1 A4,y.s",
ft B: 0x 4500 tf EXAREG, 0, 0xcb48, 0xfff8, "exg.1 AS, y.s",
ft B 0x4540 tf EXAREG, 0, 0xcd48, 0xfff8, "exg.1 F P , " / . S " ,
ft B 0x4580 tf EXAREG, 0, 0xcf48, 0xf f fB, "exg.1 sp,y.su,
ft B 0x45c0 tf EXAREG, 0, 0xcl88, 0xfff 8, " ex g. 1 D0,y.s",
ft B 0x4600 tf EXAREG, 0, 0xc388, 0xfff8, "exg.1 D I , " / . S " ,
ft B 0x4640 tf EXAREG, 0, 0xc588, 0xfffB, "exg.1 D2,"/.s",
ft B 0x4680 tf EXAREG, 0, 0xc788, 0xfff8, "exg.1 D3,y.s",
ft B 0x46c0 tf EXAREG, 0, 0xc988, 0xfff8, "exg.1 D4,y.B»,
ft B 0x4700 tf EXAREG, 0, 0xcb88, 0xfffB, " ex g. 1 D5,y.s",
ft B 0x4740 tf EXAREG, 0, 0xcd88, 0xfffB9 "exg.1 D6,%m",
ft B 0x4780 tf EXAREG, 0, 0xcf88, 0xfffB, "ex g.1 D7,7.s",
ft B . 0x47c0 tf BCDREG, 0, 0 X C 1 0 0 , 0xfff0, "abed y.s",
ft B 0x4800 tf BCDREG, 0, 0xc300, 0xfff0, "abed 7.5",
ft B : 0x4840 tf BCDREG, 0, 0xc500, 0xfff0, "abed 7.s",
ft B 0x4880 tf BCDREG, 0, 0xc700, 0xfff0, " abed 7.s",
ft B : 0>:48c0 tf BCDREG, 0, 0xc900, 0xfff0, "abed y.s",
ft B : 0x4900 tf BCDREG, 0, 0xcb00, 0xfff0, "abed 7.s",
ft B : 0x4940 tf BCDREG, 0, 0xcd00, 0xfff0, "abed 7.s",
ft B ! 0x4980 tf BCDREG, 0, 0xcf00, 0xfff0, "abed 7.s",
ft B : 0x49c0 tf BCDREG, 0, 0xdl00, 0xfff0, "addx. b 7.s",
ft B : 0x4a00 tf BCDREG, 0, 0xd300, 0xfff0, "addx. b 7-s",
ft B : 0x4a40 tf BCDREG, 0, 0xd500, 0xfff0, "addx. b 7.5",
ft B: 0x4a80 tf BCDREG, 0, 0xd700, 0xfff0, "addx. b 7.s»,
ft B : 0x4ac0 tf BCDREG, 0, 0xd900, 0xfff0, "addx. b 7.5",
ft B : 0x4b00 tf BCDREG, 0, 0xdb00, 0xfff0, "addx. b 7.5",
ft B : 0x4b40 tf BCDREG, 0, 0xdd00, 0xfff0, "addx. b 7.5",
ft B : 0x4b80 tf BCDREG, 0, 0xdf00, 0xfff0, "addx. b 7.5",
ft B : 0x4bc0 tf BCDREG, 0, 0xdl40, 0xfff0, "addx. w y-s",
ft B : 0x4c00 tf BCDREG, 0, 0xd340, 0xfff0, "addx. w 7.5",
ft B : 0x4c40 tf BCDREG, 0, 0xd540, 0xfff0, "addx. w 7.5",
ft B : 0x4c80 tf BCDREG, 0, 0xd740, 0xfff0, "addx. w 7.5",
ft B : 0x4cc0 tf BCDREG, 0, 0xd940, 0xfff0, "addx. w 7.s",
ft B : 0x4d00 tf BCDREG, 0, 0xdb40, 0xfff0, "addx. w 7.5",
ft B : 0x4d40 tf BCDREG, 0, 0xdd40, 0xfff0, "addx. w 7.s",
ft B : 0x4d80 tf BCDREG, 0, 0xd-f40, 0xfff0, "addx. vt 7-s",
ft B : 0x4dc0 tf BCDREG, 0, 0xdl80, 0xfff0, "addx. 1 7.5",
ft B : 0x4e00 tf BCDREG, 0, 0xd380, 0xfff0, "addx. 1 7.5",
ft B : 0x4e40 tf BCDREG, 0, 0xd580, 0Xfff0, "addx. 1 7-s",
ft B: 0x4e80 tf BCDREG, 0, 0xd780, 0xfff0, "addx. 1 7.5",
ft B : 0x4ec0 tf BCDREG, 0, 0xd980, 0xfff0, "addx. 1 7.5",
ft B: 0x4f00 tf BCDREG, 0, 0xdb80, 0xfff0, "addx. 1 7-s",
ft B: 0x4f40 tf BCDREG, 0, 0xdd80, 0xfff0, "addx. 1 7.5»,
ft B: 0x4f80 tf BCDREG, 0, 0xdf80, 0xfff0, "addx. 1 7.5",
ft B: 0x4fc0 tf MOVE_P, 0, 0 X 0 1 0 0 , 0xfff4, "movp. w 7.s,D0",

295

CHAPTER 10

/* B : 0x 5000 */ MOVE P, 0, 0x0140, 0xfff4, "movp. 1 7.s, D0' 9
/* B : 0x5040 */ MOVE P, 0, 0x0180, 0x-ff f4, "movp. w D0, 7.s' 9
/* B : 0x 5080 */ MOVE_P, 0, 0 X 0 1 C 0 , . 0xf-ff4, "movp. 1 D0, 7.s' 9
/* B : 0x50c0 */ MOVE P, 0, 0x0300, 0xfff4, "movp. w y.s, Dl* 9
/* B : 0x5100 */ MOVE_P, 0, 0x0340, 0xf-ff4, "movp. 1 7.S, Dl' 9
/ * B : 0x5140 */ MOVE P, 0, 0x0380, 0xfff4, "movp. w Dl, 7.s' 9
/* B . 0x5180 */ MOVE_P, 0, 0x03c0, 0xf f f 4, "movp. 1 Dl, 7.s' 9
/ * B : 0x51c0 */ MOVE P, 0, 0x0500, 0xff-f4, "movp. w 7.s, D2' 9
/* B 0x5200 */ MOVE P, 0, 0x0540, 0xfff 4, "movp. 1 7.s, D2" 9
/ * B 0x5240 */ MOVE_P, 0, 0x0580, 0xf-f*4, "movp. w D2, 7.s' 9
/* B 0x5280 */ MOVE_P, 0, 0x05c0, 0xfff4, "movp. 1 D2, 7.s" 9
/* B 0x52c0 */ MOVE P, 0, 0x0700, 0xff-f4, "movp. w 7.s, D3" 9
/* B 0x 5300 */ MOVE P, 0, 0x0740, 0xfff4, "movp. 1 7.s, D3" 9
/* B 0x5340 */ MOVE_P, 0, 0x0780, 0xfi*4, "movp. w D3, 7.s" 9
/* B 0x5380 «/ MOVE_P, 0, 0x07c0, 0xfff4, "movp. 1 D3, 7.s" 9
/* B 0x53c0 */ MOVE_P, 0, 0x0900, 0xfff4, "movp. w 7.s, D4" 9
/* B 0x5400 */ MOVE_P, 0, 0x0940, 0xf-f-f4, "movp. 1 7.s, D4" 9
/* B 0x5440 */ MOVE P, 0, 0x0980, 0xf-ff4, "movp. w D4, 7.s" 9
/* B 0x5480 */ MOVE_P, 0, 0x09c0, 0x-ff *4, "movp. 1 D4, 7.s" 9
/ * B 0x54c0 */ MOVE_P, 0, 0 X 0 D 0 0 , 0xff*4, "movp. w 7.s, D5" 9
/* B 0x5500 */ MOVE_P, 0, 0x0b40, 0x-Fff4, "movp. 1 7.s, D5" 9
/ * B 0x5540 «/ MOVE P, 0, 0x0b80, 0xff-f4, "movp. w D5, 7.s" 9
/* B 0x5580 */ MOVE_P, 0, 0x0bc0, 0xf i *4, "movp. 1 D5, 7.s" 9
/* B 0x55c0 */ MOVE P, 0, 0x0d00, 0xfff4, "movp. w 7.s, D6" 9
/* B. 0x5600 */ MOVE_P, 0, 0x0d40, 0xf-ff4, "movp. 1 7.s, D6" 9
/* B 0x5640 */ MOVE_P, 0, 0x0d80, 0xfff4, "movp. w D6, 7.s" 9
/% B: 0x5680 */ MOVE_P, 0, 0x0dc0, 0xff*4, "movp. 1 D6, 7.s" 9
/ * B 0x56c0 «/ MOVE P, 0, 0X0f00, 0xfff4, "movp. w 7.s, D7" 9
/* B: 0x 5700 */ MOVE_P, 0, 0x0* 40, 0x-F-f-f4, "movp. 1 7.s, D7" 9
/* B: 0x5740 */ MOVE P, 0, 0x0*80, 0xff* 4, "movp. VS» D7, 7.s" 9
/» B: 0x5780 «/ MOVE_P, 0, 0 X 0 + C 0 , 0xf-ff4, "movp. 1 D7, 7.s" 9
/* B: 0x57c0 «/ IMMCCR, 0, 0x023c, 0xff, "andi. b 7.5, CCR t
/* B: 0x5800 */ IMMSR, 0, 0x027c, 0xf-ff-f, "and.w 7.s, SR" 9
/* B: 0x5840 */ IMMCCR, 0, 0x0a3c, 0xfff-f, "eori. b 7.s, CCR f
/* B: 0x5880 */ IMMSR, 0, 0x0a7c, 0xffff, "eor i. 7.5, SR" 9
/* B: 0x0600 */ ONEREG, 0, 0x4afc, 0xffff, "illegal ii 9 0,

> ;
0, 0, 0, 0

The linkacc.bat and linkacc.arg files
The linkacc.bat and linkacc.arg files (Programs 10-10 and 10-11) are used t
link the accessory. They are similar to the versions in the previous chapter,
cept they contain the new functions.

Program 10-10. linkacc.bat
c: \bin\l i nk68 Cunde-f i ned, symbol s, command [linkacc.arg]]
cs\bin\relmod a
c:\bin\rm a.68k
c:\bi n\wait

Program 10-11. linkacc.arg
a.68k=c:accstart.o,main.o,

CONFIGAC.O,BT.0,DONEWWND.0,1SMATCH.0,GETBASE.0,DECSTAT.0,GETNAME.0,
SHOWWND. 0, GETSYMS. O, TRACE. O, OPENDATA. O, ERRORS. O, SETTOP. O, GETLONG. 0,
BOMBINFO.O,GETREAL.0,GETARGS.0,

GIVEHELP.0,GOTKEY.0,DOIT.0,GETTRACE.0,

296

file:///bin/l
file:///bin/relmod
file://c:/bin/rm

CHARTER SUBSCRIPTION FORM

• Y E S !
Sign me up for six
issues (a full year's
subscription) at the
special introductory
price of just $59.95 .
I save more than $17
off the newsstand
price.

• Payment enclosed • Charge my VISA/MasterCard

Credit Card #_ . Exp. Date_

Signature-

Name-

Address.

City. _State_ -Zip-
Outside U.S.A., please add $6 (U.S.) per year for postage.

Herefc your chance to cash in with big
savings on COMPUTE!** Atari ST Disk &
Magazine—the exciting new publication
devoted exclusively to the special needs
and interests of Atari ST users like you.

Every other month, COMPUTEVs
Atari ST Disk & Magazine brings you ex­
citing new action-packed programs
already on disk! Just load and you're
ready to run.

You can depend on getting at least
five new programs in each issue—high-
quality applications, educational, home fi­
nance, utility, and game programs you
and the entire family will use, enjoy, and
profit from all year long.

And here's even more good news.
Subscribe now to COMPUTERS Atari ST
Disk & Magazine and take advantage of
big Charter Subscription savings. Get a
full year's subscription for just $59.95.
You save over $17 off the newsstand
price.

No other publication gives you more
for your Atari ST than COMPUTERS Atari
ST Disk & Magazine. So sign up now by
using the coupon above—or call 1-800-
2 4 7 - 5 4 7 0 (in Iowa 1-800-532-1272).

the user
en dis-I get

ral func-
"ive set of
le sub-
of error

ropriate
n that
ght

om as-
AL, or
ess of the
fore the

nil re-
-inted,
tally. The
isassem-
LOt reflect
r, and

/*
/*
/*
/*
/*
/ *
/ *
/ *
/ *
/ *
/*
/*
/ *
/ *
/*
/ *
/*
/ *
/ *
/ *
/*
/ *
/*
/ *
/ *
/ *
/*
/ *
/*
/ *
/*
/ *
/*
/ *
/*
/ *

TI
Th
lin:
cef

Pr
c: \
c: \
c:\
c: \

Pr«

a.6

CON
SHO
BOM

GIV

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 7551 DES MOINES, IA

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

COMPUTE!'s Atari ST
Disk & Magazine
RO. Box 10775
Des Moines, IA 50347-0775

1.1.1.II Il„l..ll...lll...l...ll...l.l,l„.l.ll

NEW FOR ATARI ST USERS

COMPUTERS ATARI ST
D I S K & M A G A Z I N E

Only COMPUTE!* Atari ST Disk &
Magazine gives you a l l th is and more
in each b ig issue:

TOP QUALITY PROGRAMS: Applica­
tion programs for home and business.
Utilities. Games. Educational programs for
the youngsters. All are already on an
enclosed disk and ready to run. For exam­
ple: a typical disk might contain an elabo­
rate adventure game written in BASIC, a
programming utility written in machine
language, a dazzling graphics
demo in compiled Pascal, and a
useful home or business ap­
plication written in Forth or C.

N E O C H R O M E O F THE
MONTH: What are computer
artists doing with the Atari ST?
Each issue contains a Neo-
chrome picture file—ready to
load and admire.

REGULAR C O L U M N S : If
you're a programmer—or would
like to be—you'll love our col­

umns on ST programming techniques and
the C language. Or check out our column
on the latest events and happenings
throughout the ST community. Or send
your questions and helpful hints to our
Reader's Feedback column.
REVIEWS: Honest evaluations of the
latest, best software and hardware for the
Atari ST.

NEWS & PRODUCTS: A comprehen­
sive listing of all the new software and

peripherals for your ST.
AND MORE: Interviews with
ST newsmakers, reports on the
latest industry trade shows, and
overviews of significant new
product introductions.
Don't miss a single big issue. Sub­
scribe to COMPUTER* Atari ST
Disk & Magazine now through
this special money-saving offer.
Return coupon above or call
1 - 8 0 0 - 2 4 7 - 5 4 7 0 (in Iowa
1-800-532-1272).
COMPUTE! Publications, Inc.
Part of ABC Consumer Magazines. Inc
One of the ABC Publishing Companies

RETURN COUPON ABOVE TO ENJOY
CHARTER SUBSCRIPTION PRIVILEGES

A Disassembler

DISASSEM.O,SETUPDIS.O,IMMEDIAT.0,GETDIS.0,PCABSIMM.•,MATCHB.0,
TABLES.0,EFFADD.0,ADDRMQDE.0,

accsup. o, env. a, vdibind, vdidata. o, geml ib, aesbind, osbind, 1 i b-f

The test Program
Finally, there is a simple program that tests the accessory by allowing the user
to deliberately crash a program in any of the seven ways that have been dis­
cussed in these two chapters. This is a separate program, and does not get
linked in with the desk accessory.

The test program arranges for a nice stack trace by nesting several func­
tion calls before getting down to business. Each function has a distinctive set of
arguments, to show how the stack trace works. The bomb routine is the sub­
routine that prints a menu and asks for a number to select which type of error
the user would like to cause. When the user selects a number, the appropriate
routine is called, and it prints out the address just before the instruction that
will cause the crash, to confirm that the debugging aid is getting the right
information.

Some of the routines that cause the crashes need special help from as­
sembly language, since there is no way to cause TRAPV, CHK, ILLEGAL, or
RESET instructions from C. In addition, the trick used to find the address of the
errant instruction involves using an asm function to put a label just before the
instruction, which C can reference and print.

Since TOS ignores division by zero errors, the zerodiv routine will re­
turn, unlike any of the others. The message "Oops! didn't die!!!!!" is printed,
and the program waits for a key to be pressed before terminating normally. The
debugging aid will still have caught the exception, and the trace and disassem­
bly listings will reflect the division error. The bombinfo printout will not reflect
the divide error, since it relies on information TOS saves after the error, and
TOS ignored it.

Program 10-12. test.c
mai n (ac, av)
int ac;
char **av;i

int main_arg • 0;

foo(main_arg,1,2,3,4,5);

too<main_arg,a,b,c,d,e)
int main_arg, a, b, c, d, e;i

int <*-func_ptr) () ;
int bar ();

297

CHAPTER 10

func_ptr = bar;
(*func_ptr)(6,7,8);
>

bar(x , y, z)
int x, y, z;C

i nt a 12;

foozle(9,10,11,a);
>

foozle(x, y, z, a)
int x, y, z, a;i

int f - 'f»|

bomb('a','b','c',*d','e',f);
>

bomb(a,b,c,d,e,f)
int a, b, c, d, e, f | C

int x;

for <) < 25; x++
printf <"\n");

printf("Enter 1 for bus error\nM);
printf("Enter 2 -for address error\n");

•for illegal instructions") ;
•for zero divide\n");
for CHK instruction\n");
for TRAPV instructions") ;
for Privilege violation\n");

bus_error();
addr_error() ;
illegal();
zerodiv() ;
chk_instr() ;
trapv_instr <);
priv_error <) ;

break;
break;
break;
break;
break;
break;
break;

printf("No error generated\n"); break;

!\n");

printf("Enter
pri ntf("Enter
printf("Enter
printf("Enter
printf("Enter
switch(bios(2,2)) <.

case *1':
case *2':
case »3':
case *4*:
case '5':
case '6*:
case '7*:
default:
>

printf("Oops! didn't di
bios(2,2);
>

bus_error () <.

extern dieloclO;
char *ptr = 0x0L;
printf ("About to bus error near location 7.X\n" , di el oc 1) ;

asm("_dielocl:");
*ptr = 0;
>

addr_error()I

extern dieloc2();
int *ptr = 0xlL;
printf("About to address error near location %X\n",dieloc2);

asm("_d i eloc2:");
*ptr = 0;
>

illegal (X

extern dieloc3();

printf("About to bomb near location %X\n",dieloc3);

298

A Disassembler

asm<"_dieloc3:")j
asm("i1 legal");

>
zerodiv()i

extern dieloc4<);
int x, y;

x = 5;
y = 0;
print-f < "About to divide by zero near location 7.X\n", dieloc4);

asm <"_d i eloc4:");
return(x / y);
>

chk_instr <)<

extern dieloc5();

print-f < "About to bomb near location 7.X\n", dieloc5);
asm("_dieloc5:");
asm("move.1 #4,R0");
asmC'chk.w #3,R0") ;

>
trapv_instr <)<

extern dieloc6<);

print-f < "About to bomb near location 7.X\n" , dieloc6);
asm("_di eloc6:");
asm<"move.w #2,ccr");
asm("trapv");

>
priv_error <)i

extern dieloc7();

pr int-f < "About to bomb near location 7.X\n" , dieloc7);
asm("_d i eloc7:");
asm<"reset") ;

>

The linktst.bat File

To link the test program, use the linktst.bat file, Program 10-13.

Program 10-13. linktst.bat
c:\bin\link68 Cu,sD a.68k=c:gemstart.o,TEST.0,vdibind,gemlib,aesbind,osbind
c:\bin\relmod a
c:\bin\rm a.68k
c:\bin\wai t

299

file:///bin/l
file://c:/bin/relmod
file:///bin/rm
file:///bin/wai

A p p e n d i x

World Map Data
This appendix includes the data for World Map (world.c), discussed
in Chapter 3. The Program listed in this appendix must be used with

• • • • • the discussion and program described in Chapter 3.
If you decide to type the data in instead of purchasing the disk with the

data, you may want to draw only certain coastlines to save time (and finger fa­
tigue, not to mention boredom). You can type in any part of the data you wish;
just be sure you type in an entire segment. Each segment begins with a — 1 and
continues up to, but not including, the next — 1. Type in as many segments as
you wish. As you look through the data segments you'll notice that they have
been printed in order of size, starting with the largest coastlines. Remember,
though, that the more segments you type in, the more of the world will appear
on the screen.

301

Program A - l . world.c
/*
** Hap coordinates
*/
long in t worldC] - <

- 1 , 1 2 8 1 7 7 , 1 2 8 8 1 7 , 1 2 9 4 5 6 , 1 3 0 7 3 7 , 1 3 1 3 7 6 , 1 3 2 0 1 5 , 1 3 2 6 5 6 , 1 3 3 9 3 7 ,

are stored as row * FUDGEX + col

134578
142269
149314
158912
167869
172348
176827
181307
183871
180037
172362
168524
164695
160860
155111
148720
142970
133377
130162
128231
123104
120532
119244
117953
117949
119219
115371
112803

135220
142910
150594
159552
168510
171709
176186
181947
184513
179399
172363
167885
164697
160861
154473
148721
141050
132736
130160
128870
123103
120531
119243
118593
117948
119858
114732
111523

136500
142912
151234
160831
168511
171068
177466
181946
183874
178759
171084
167888
163418
160862
153833
148723
140410
132734
129520
128868
122461
119250
118602
119872
117947
119856
114091
110884

137142
143553
152514
162110
169151
172347
178105
182586
183234
178120
170444
167889
162139
160224
152553
148725
139132
132092
129519
127589
123099
119249
118600
119232
118585
120495
114089
109604

138422
144195
153793
162750
169790
172987
178745
182588
182595
176842
169805
166609
161498
159584
151913
147447
137854
131451
128877
126951
122458
118608
118599
118593
119225
119854
114088
108965

139704
145475
154433
164029
171070
173627
180026
183229
182597
175563
169804
165329
160857
158946
151274
146168
137215
130809
128236
126311
122457
118609
118598
117952
119864
119213
114086
108323

140985
146755
155713
164669
171710
174905
179387
183870
182598
175561
169806
165331
160216
157667
149996
145529
136576
130168
128235
126310
121815
118608
117958
117313
121143
118571
114084
108322

141626
147395
156352
165949
172349
174907
180027
183871
181957
174280
169807
165332
159576
157029
149357
144249
135297
130806
129513
123747
121175
118607
117956
117312
120502
117931
114083
108960

1 1 0 2 3 9 , 1 1 1 5 1 6 , 1 1 0 8 7 5 , 1 1 1 5 1 4 , 1 1 1 5 1 3 , 1 1 1 5 1 2 , 1 1 1 5 1 1 , 1 1 0 8 6 9 , 1 1 0 2 2 8
1 0 9 5 8 7 , 1 0 8 9 4 7 , 1 0 7 0 2 6 , 1 0 6 3 8 6 , 1 0 5 1 0 6 , 1 0 4 4 6 7 , 1 0 3 1 8 7 , 1 0 2 5 4 7 , 1 0 1 9 0 8
1 0 1 2 7 0 , 1 0 0 6 3 1 , 1 0 0 6 3 3 , 9 9 9 9 4 , 1 0 0 6 3 6 , 1 0 0 6 3 7 , 1 0 1 2 7 8 , 1 0 1 2 7 9 , 1 0 0 6 4 1 ,
1 0 0 0 0 0 , 9 9 3 6 1 , 1 0 0 0 0 3 , 1 0 0 0 0 4 , 9 9 3 6 6 , 1 0 0 0 0 8 , 1 0 0 6 4 9 , 1 0 0 0 1 0 , 1 0 1 2 9 2 ,
1 0 2 5 7 3 , 1 0 3 2 1 3 , 1 0 3 8 5 4 , 1 0 4 4 9 5 , 1 0 5 1 3 6 , 1 0 4 4 9 7 , 1 0 1 2 9 6 , 1 0 0 0 1 5 , 9 9 3 7 5 ,
9 8 0 9 6 , 9 7 4 5 7 , 9 6 8 1 9 , 9 6 1 8 0 , 9 5 5 4 2 , 9 5 5 4 3 , 9 4 2 6 4 , 9 4 2 6 3 , 9 3 6 2 5 ,
9 2 9 8 5 , 9 2 3 4 4 , 9 1 7 0 3 , 9 0 4 2 3 , 8 9 7 8 5 , 9 0 4 2 4 , 9 1 7 0 5 , 9 1 7 0 6 , 9 0 4 2 6 ,
9 0 4 2 6 , 8 9 7 8 8 , 8 7 8 7 0 , 8 7 8 7 2 , 8 7 2 3 3 , 8 7 2 3 4 , 8 7 2 3 5 , 8 6 5 9 4 , 8 5 9 5 4 ,
8 5 3 1 5 , 8 4 6 7 7 , 8 4 6 7 8 , 8 4 0 3 9 , 8 3 4 0 0 , 8 3 4 0 2 , 8 3 4 0 3 , 8 2 7 6 4 , 8 2 7 6 5 ,
8 3 4 0 4 , 8 4 0 4 2 , 8 5 3 2 2 , 8 4 6 8 4 , 8 4 0 4 6 , 8 4 0 4 8 , 8 3 4 0 9 , 8 3 4 1 1 , 8 2 7 7 2 ,
8 2 1 3 3 , 8 2 1 3 2 , 8 0 8 5 2 , 8 1 4 9 1 , 8 2 7 7 0 , 8 2 7 6 8 , 8 2 7 6 7 , 8 2 1 2 6 , 8 2 1 2 5 ,
8 1 4 8 4 , 8 0 8 4 4 , 8 0 2 0 3 , 7 9 5 6 2 , 7 9 5 6 4 , 7 8 9 2 5 , 7 8 2 8 5 , 7 8 2 8 4 , 7 8 2 8 2 ,
7 8 2 8 1 , 7 8 2 8 0 , 7 8 9 1 9 , 7 8 9 1 8 , 7 9 5 5 6 , 8 0 8 3 5 , 8 0 8 3 3 , 8 0 1 9 4 , 7 9 5 5 6 ,
7 8 2 7 8 , 7 7 6 3 9 , 7 7 6 4 0 , 7 7 0 0 1 , 7 6 3 6 2 , 7 6 3 6 3 , 7 6 3 6 5 , 7 6 3 6 6 , 7 6 3 6 7 ,
7 6 3 6 8 , 7 6 3 6 9 , 7 7 0 1 1 , 7 7 0 1 3 , 7 5 7 3 5 , 7 5 0 9 7 , 7 5 0 9 9 , 7 4 4 6 0 , 7 3 1 8 0 ,
7 1 8 9 9 , 7 1 8 9 8 , 7 0 6 1 6 , 7 0 6 1 7 , 6 9 9 7 5 , 6 9 3 3 2 , 6 8 6 9 2 , 6 8 0 5 1 , 6 6 7 7 0 ,
6 5 4 9 0 , 6 4 8 4 9 , 6 3 5 6 8 , 6 2 9 2 7 , 6 1 6 4 6 , 6 1 0 0 5 , 6 1 0 0 4 , 6 2 2 8 4 , 6 2 9 2 3 ,
6 2 9 2 2 , 6 4 1 9 9 , 6 2 9 1 8 , 6 2 9 1 7 , 6 2 2 7 6 , 6 0 9 9 6 , 5 9 7 1 6 , 5 9 0 7 6 , 5 9 0 7 5 ,
5 9 0 7 3 , 5 8 4 3 2 , 5 7 1 5 1 , 5 6 5 1 0 , 5 5 8 6 9 , 5 6 5 0 7 , 5 6 5 0 5 , 5 5 8 6 4 , 5 5 8 6 2 ,
5 6 5 0 1 , 5 7 1 4 1 , 5 7 7 8 2 , 5 8 4 2 1 , 5 9 7 0 1 , 6 0 9 8 2 , 6 1 6 2 2 , 6 2 2 6 1 , 6 2 2 6 0 ,
6 3 5 4 1 , 6 4 1 8 2 , 6 4 8 2 2 , 6 6 1 0 3 , 6 6 7 4 3 , 6 8 0 2 3 , 6 8 6 6 2 , 6 9 3 0 1 , 6 9 9 4 0 ,
6 9 9 3 8 , 7 1 2 1 9 , 7 2 4 9 9 , 7 3 1 3 9 , 7 3 7 8 0 , 7 4 4 1 9 , 7 5 0 5 8 , 7 5 0 5 7 , 7 3 7 7 5 ,
7 2 4 9 3 , 7 1 8 5 4 , 7 0 5 7 3 , 6 9 2 9 4 , 6 9 2 9 2 , 6 9 2 9 0 , 6 9 2 8 9 , 6 8 6 4 7 , 6 8 0 0 5 ,
6 8 0 0 4 , 6 7 3 6 3 , 6 6 7 2 2 , 6 6 0 8 0 , 6 6 0 7 8 , 6 6 0 7 7 , 6 6 0 7 6 , 6 4 7 9 5 , 6 4 1 5 5 ,
6 3 5 1 4 , 6 2 8 7 3 , 6 3 5 1 2 , 6 2 2 3 1 , 6 1 5 9 1 , 6 0 3 1 1 , 5 9 6 7 2 , 5 9 0 3 2 , 5 7 7 5 3 ,
5 7 1 1 4 , 5 6 4 7 5 , 5 5 1 9 5 , 5 5 1 9 7 , 5 4 5 5 9 , 5 3 9 1 9 , 5 2 6 4 0 , 5 2 6 4 2 , 5 1 3 6 4 ,
5 0 0 8 5 , 4 8 8 0 5 , 4 6 8 8 7 , 4 6 2 4 5 , 4 5 6 0 8 , 4 6 8 9 1 , 4 5 6 1 3 , 4 4 9 7 5 , 4 3 0 5 5 ,
4 2 4 1 3 , 4 1 1 3 3 , 3 9 8 5 5 , 3 7 9 3 5 , 3 7 9 3 3 , 3 6 6 5 2 , 3 6 0 1 0 , 3 6 0 0 8 , 3 7 9 2 8 ,
3 9 8 4 8 , 4 1 1 2 8 , 4 2 4 0 6 , 4 3 6 8 6 , 4 3 6 8 5 , 4 2 4 0 3 , 4 1 1 2 3 , 3 9 8 4 3 , 3 7 9 2 2 ,
3 9 8 4 0 , 3 8 5 5 9 , 3 7 2 7 7 , 3 6 6 3 5 , 3 4 7 1 7 , 3 3 4 3 6 , 3 2 1 5 5 , 3 0 8 7 3 , 2 8 9 5 2 ,
2 7 6 7 3 , 2 6 3 9 3 , 2 5 7 5 4 , 2 5 7 5 6 , 2 4 4 7 7 , 2 2 5 5 9 , 2 0 6 3 8 , 1 9 9 9 4 , 2 1 2 7 0 ,
2 2 5 5 0 , 2 4 4 7 0 , 2 6 3 9 1 , 2 7 6 7 1 , 2 9 5 9 1 , 3 0 2 2 9 , 3 2 1 4 9 , 3 4 0 6 8 , 3 5 9 9 0 ,
3 7 2 7 3 , 3 8 5 5 1 , 4 0 4 7 2 , 4 1 7 5 0 , 4 3 0 2 9 , 4 2 3 8 8 , 4 0 4 6 7 , 3 9 8 3 0 , 3 7 9 0 8 ,
3 5 9 8 6 , 3 7 9 0 4 , 3 8 5 4 3 , 3 9 8 2 6 , 4 1 1 0 4 , 4 3 0 2 4 , 4 3 0 2 2 , 4 2 3 7 9 , 4 1 7 3 7 ,

4 0 4 5 4 , 3 9 1 7 2 , 3 9 8 1 0 , 3 9 8 0 7 , 4 1 0 8 6 , 4 1 7 2 8 , 4 3 0 0 7 , 4 2 3 6 5 , 4 1 7 2 4 ,
4 2 3 6 1 , 4 2 9 9 9 , 4 2 3 5 7 , 4 2 3 5 5 , 4 1 0 7 7 , 3 9 7 9 6 , 3 9 1 5 4 , 3 8 5 1 1 , 3 7 8 6 8 ,
3 7 2 2 6 , 3 5 9 4 4 , 3 5 9 4 1 , 3 7 8 6 0 , 3 7 2 1 9 , 3 5 2 9 9 , 3 7 2 1 7 , 3 6 5 7 5 , 3 5 2 9 5 ,
3 3 3 7 2 , 3 5 2 9 1 , 3 5 9 3 0 , 3 4 6 4 9 , 3 5 2 8 7 , 3 6 5 6 4 , 3 7 2 0 3 , 3 6 5 6 1 , 3 7 1 9 9 ,
3 8 4 7 8 , 3 9 7 5 8 , 3 8 4 7 6 , 3 7 8 3 4 , 3 6 5 5 2 , 3 6 5 4 9 , 3 5 9 0 8 , 3 5 2 6 6 , 3 5 2 6 4 ,
3 5 2 6 2 , 3 4 6 2 0 , 3 4 6 1 8 , 3 3 9 7 5 , 3 3 9 7 3 , 3 3 9 7 0 , 3 2 6 8 9 , 3 2 6 8 6 , 3 0 7 6 2 ,
3 2 6 8 0 , 3 2 6 7 7 , 3 3 9 5 5 , 3 4 5 9 3 , 3 5 8 7 1 , 3 7 1 5 0 , 3 8 4 2 9 , 3 9 0 6 7 , 3 9 0 6 5 ,
4 0 9 8 4 , 4 1 6 2 6 , 4 2 9 0 8 , 4 4 1 8 9 , 4 4 8 3 1 , 4 6 1 1 2 , 4 6 7 4 9 , 4 6 1 0 9 , 4 6 1 0 7 ,
4 6 7 4 5 , 4 7 3 8 3 , 4 8 6 6 1 , 4 8 6 6 2 , 4 8 6 6 4 , 5 0 5 8 4 , 5 1 2 2 7 , 5 0 5 8 9 , 5 1 2 3 1 ,
5 0 5 9 2 , 4 9 9 5 4 , 5 1 2 3 3 , 5 2 5 1 4 , 5 3 1 5 4 , 5 3 7 9 1 , 5 4 4 3 0 , 5 3 7 8 8 , 5 4 4 2 7 ,
5 6 3 4 6 , 5 7 6 2 5 , 5 8 2 6 6 , 5 9 5 4 7 , 6 0 8 2 8 , 6 1 4 6 9 , 6 1 4 7 0 , 6 0 8 3 2 , 6 1 4 7 3 ,
6 2 7 5 3 , 6 2 7 5 4 , 6 2 7 5 6 , 6 3 3 9 7 , 6 3 3 9 9 , 6 2 7 6 0 , 6 4 0 4 0 , 6 5 3 2 0 , 6 5 9 5 8 ,
6 6 5 9 7 , 6 7 2 3 6 , 6 7 8 7 5 , 6 7 8 7 3 , 6 8 5 1 1 , 6 9 1 5 0 , 6 9 1 4 8 , 6 9 7 8 7 , 6 9 7 8 9 ,
6 9 1 5 0 , 6 9 1 5 2 , 6 8 5 1 3 , 6 8 5 1 5 , 6 7 8 7 6 , 6 7 8 7 8 , 6 7 2 3 8 , 6 6 6 0 0 , 6 5 9 6 1 ,
6 5 3 2 2 , 6 4 6 8 4 , 6 4 0 4 6 , 6 2 7 6 7 , 6 2 1 2 6 , 6 1 4 8 8 , 6 0 8 4 9 , 5 9 5 6 9 , 5 8 9 3 0 ,
5 8 2 9 2 , 5 8 2 9 3 , 5 9 5 7 1 , 6 0 2 1 1 , 6 1 4 9 0 , 6 2 1 3 0 , 6 2 1 3 1 , 6 1 4 9 3 , 6 0 8 5 4 ,
6 0 8 5 6 , 5 9 5 7 6 , 5 8 9 3 6 , 5 8 9 3 8 , 5 8 9 3 9 , 5 9 5 8 0 , 6 0 2 2 2 , 6 0 8 6 4 , 6 0 8 6 6 ,
6 0 8 6 7 , 6 0 8 6 9 , 6 1 5 1 0 , 6 0 8 7 2 , 6 2 1 5 2 , 6 2 1 5 3 , 6 2 7 9 5 , 6 3 4 3 6 , 6 4 0 7 7 ,
6 4 7 1 8 , 6 5 9 9 9 , 6 6 6 3 9 , 6 7 2 8 0 , 6 6 6 4 0 , 6 5 3 6 0 , 6 4 7 2 0 , 6 4 0 7 9 , 6 3 4 4 0 ,
6 4 0 8 0 , 6 5 3 6 1 , 6 6 0 0 1 , 6 5 3 6 2 , 6 6 0 0 3 , 6 6 0 0 2 , 6 7 2 8 1 , 6 8 5 6 3 , 6 9 2 0 4 ,
6 7 9 2 4 , 6 7 2 8 3 , 6 7 9 2 5 , 6 9 2 0 6 , 6 9 8 4 7 , 6 9 8 4 9 , 7 0 4 8 8 , 7 1 1 2 7 , 7 1 7 6 8 ,
7 2 4 0 9 , 7 3 0 5 0 , 7 3 6 9 1 , 7 4 3 3 2 , 7 4 9 7 3 , 7 5 6 1 4 , 7 6 2 5 5 , 7 6 2 5 7 , 7 6 8 9 8 ,
7 6 8 9 9 , 7 7 5 4 0 , 7 6 9 0 1 , 7 8 1 8 1 , 7 8 8 2 2 , 7 9 4 6 2 , 8 0 1 0 2 , 7 9 4 6 1 , 7 9 4 6 0 ,
7 8 8 1 8 , 7 9 4 5 8 , 8 0 7 3 9 , 8 2 0 1 9 , 8 2 0 2 1 , 8 2 0 1 9 , 8 2 6 6 0 , 8 3 9 3 9 , 8 5 2 1 9 ,
8 5 8 5 8 , 8 7 7 7 9 , 9 0 3 4 0 , 9 0 9 8 1 , 9 1 6 2 1 , 9 1 6 2 3 , 9 2 2 6 3 , 9 2 9 0 3 , 9 4 8 2 5 ,
9 5 4 6 7 , 9 5 4 6 8 , 9 6 1 0 9 , 9 6 7 5 1 , 9 7 3 9 2 , 9 8 6 7 2 , 9 9 9 5 4 , 1 0 0 5 9 4 , 1 0 1 2 3 6 ,
1 0 1 8 7 7 , 1 0 2 5 1 6 , 1 0 2 5 1 5 , 1 0 3 1 5 7 , 1 0 3 1 5 8 , 1 0 3 7 9 9 , 1 0 4 4 4 0 , 1 0 5 0 8 0 , 1 0 5 7 2 1
1 0 6 3 6 3 , 1 0 7 0 0 4 , 1 0 7 0 0 5 , 1 0 5 7 2 4 , 1 0 5 7 2 3 , 1 0 4 4 4 2 , 1 0 3 8 0 1 , 1 0 2 5 2 0 , 1 0 1 8 7 9
1 0 1 2 3 8 , 9 9 9 5 6 , 9 9 3 1 6 , 9 8 6 7 6 , 9 8 6 7 7 , 9 8 6 7 8 , 9 9 9 5 9 , 1 0 1 2 4 0 , 1 0 1 8 8 2 ,
1 0 2 5 2 3 , 1 0 3 1 6 4 , 1 0 3 8 0 5 , 1 0 5 0 8 7 , 1 0 6 3 6 9 , 1 0 7 0 1 1 , 1 0 7 6 5 2 , 1 1 0 2 1 3 , 1 1 0 8 5 4
1 1 1 4 9 6 , 1 1 1 4 9 7 , 1 1 1 4 9 8 , 1 1 2 1 3 9 , 1 1 2 1 4 0 , 1 1 2 7 8 2 , 1 1 2 7 8 4 , 1 1 3 4 2 6 , 1 1 3 4 2 7
1 1 4 0 6 8 , 1 1 4 0 6 9 , 1 1 3 4 3 0 , 1 1 3 4 3 1 , 1 1 3 4 3 3 , 1 1 4 0 7 4 , 1 1 4 7 1 6 , 1 1 5 3 5 7 , 1 1 5 3 5 9
1 1 6 0 0 0 , 1 1 6 0 0 2 , 1 1 6 0 0 4 , 1 1 7 2 8 6 , 1 1 7 9 2 7 , 1 1 8 5 6 7 , 1 1 9 2 0 8 , 1 1 9 2 0 9 , 1 1 9 8 5 0
1 2 0 4 9 1 , 1 2 0 4 9 2 , 1 2 0 4 9 3 , 1 2 1 1 3 5 , 1 2 1 7 7 6 , 1 2 1 1 3 7 , 1 2 0 4 9 8 , 1 1 9 8 5 9 , 1 2 0 5 0 0

121141,121782,123062,123702,124342,125621,125620,126260,126899,
127537,

30026,28105,28103
27447,29367,30648
29355,30634,32554,
24228,23585,22941
22930,22928,22285
22920,22918,22277

11397,10754,iw/oi
8821,10099,12019,

1 E fO f i l ä l 1 « Î D T 7 14563,15200,15837
,23502,25423
,26697,27976

31816,31173,29253
,31169,32451
f OJL I / O , i 7 ^ J O

,31169,32451
,43332,43971
,41409,40130
,27969,26689

.,31798,33078
41401,40760,39478
34344,34983,36264
38824,39463,40741,
41370,42008,42647
42642,41362,40721,
46478,47117,46476,
50950,50308,49666.
50941,49661,49021
46462,46464,47106

41990,4ł349,40067,39425,38783,38141,37498,36858,36216
36855,36213,34930,35573,34295,33653,32371,32369,34287
32367,33645,31725,32364,33643,32361,33639,34918,35555
35553,36832,37470,38750,38751,40029,38749,40028,38108
39387,40025,40666,41304,42582,41304,41306,41308,42586
43865,45144,45783,47063,48342,49621,50259,51538,52817
53456,52815,54095,54732,56011,56649,57288,58568,59848
60488,61129,62409,62410,63689,64332,64973,64335,63057
62418,63699,64980,65621,66261,67542,68823,68824,68825
67545,67547,67548,66908,65629,64989,64349,63071,62432
61792,60512,59871,59230,58590,57310,56670,54752,54113
53475,52836,51558,50917,48997,48998,48361,48362,48363
49004,50284,50283,51562,52841,54119,54758,56037,56677
57958,59237,59879,61161,61163,60524,59886,59888,59890
60531,60532,61173,61171,61810,62447,61805,61804,62442
62441,63081,64362,64363,65003,66283,66281,64999,65638
66277,67557,68837,69476,70115,70754,70753,70112,70111
70109,70748,70746,71385,70743,70103,70741,71379,71378
70737,69456,68817,68177,67539,67538,66258,65617,66255
67534,68174,68814,70095,70735,71375,72014,72012,72010
72649,73290,73929,72648,73928,74566,75205,75844,75843
77122,77121,78400,77758,77757,77756,78397,79037,79036
79035,79033,79031,79671,80313,80314,80315,80956,81596
82878,83518,84157,85437,85436,85435,85433,85432,85430
85429,85428,85427,85425,86064,86704,87344,89264,90543
91184,92464,93106,92467,93108,93750,93111,93112,93114
93115,93116,91837,91838,91200,89919,89280,88641,88003
87364,86725,86086,85448,86089,86090,86091,85453,84814
84175,84816,84817,86739,86740,88021,88024,88665,89306
89307,90588,91228,91867,91229,89949,89310,89951,88671
88670,88028,87387,87385,86744,85464,84822,84181,83541
82903,83543,83544,83546,84186,85467,85469,86110,86751
86752,87394,88674,89955,91236,91878,91240,91881,91883
91241,89319,88680,89321,88683,88684,88685,88687,89326

8 8 6 8 7 , 8 8 6 8 9 , 8 8 6 9 1 , 8 8 6 9 2 , 8 9 3 3 0 , 8 9 3 2 9 , 8 9 3 2 8 , 8 9 3 2 7 , 8 9 9 6 6 ,
8 9 9 6 7 , 9 1 2 4 7 , 9 1 8 8 7 , 9 2 5 2 8 , 9 3 1 6 9 , 9 3 8 1 1 , 9 3 8 1 4 , 9 3 1 7 5 , 9 3 8 1 6 ,
9 3 8 1 8 , 9 3 8 1 9 , 9 3 1 8 1 , 9 3 1 8 2 , 9 3 1 8 3 , 9 3 8 2 3 , 9 4 4 6 3 , 9 5 1 0 3 , 9 6 3 8 2 ,
9 7 6 6 1 , 9 8 9 4 0 , 9 8 9 3 8 , 9 9 5 7 7 , 9 8 9 3 6 , 9 8 9 3 5 , 9 8 9 3 4 , 9 8 9 3 3 , 9 9 5 7 1 ,
9 8 9 3 0 , 9 8 9 2 9 , 9 8 9 2 7 , 9 8 9 2 6 , 9 8 9 2 5 , 9 8 9 2 4 , 9 8 2 8 3 , 9 8 2 8 2 , 9 8 2 8 1 ,
9 7 6 3 9 , 9 7 6 3 8 , 9 7 6 3 7 , 9 7 6 3 6 , 9 8 2 7 5 , 9 8 9 1 5 , 9 9 5 5 5 , 1 0 0 1 9 3 , 9 9 5 5 2 ,
9 9 5 5 1 , 9 8 9 0 9 , 9 8 9 0 8 , 9 8 2 6 7 , 9 7 6 2 6 , 9 7 6 2 5 , 9 7 6 2 4 , 9 7 6 2 2 , 9 7 6 2 1 ,
9 6 9 7 9 , 9 6 3 3 8 , 9 5 6 9 8 , 9 4 4 1 9 , 9 3 7 7 8 , 9 3 1 3 9 , 9 3 1 3 8 , 9 2 4 9 6 , 9 3 1 3 5 ,
9 3 1 3 3 , 9 3 1 3 1 , 9 3 1 2 9 , 9 3 1 2 7 , 9 3 1 2 6 , 9 3 1 2 5 , 9 3 1 2 3 , 9 3 7 6 1 , 9 4 4 0 0 ,
9 4 3 9 8 , 9 5 0 3 6 , 9 4 3 9 4 , 9 5 0 3 2 , 9 4 3 9 0 , 9 4 3 8 9 , 9 5 0 2 8 , 9 6 3 0 7 , 9 6 3 0 6 ,
9 6 9 4 5 , 9 7 5 8 4 , 9 8 2 2 3 , 9 8 8 6 2 , 9 9 5 0 2 , 1 0 0 7 8 2 , 1 0 1 4 2 1 , 1 0 1 4 2 0 , 1 0 2 0 5 8 ,
1 0 2 6 9 6 , 1 0 3 3 3 6 , 1 0 3 9 7 4 , 1 0 4 6 1 4 , 1 0 5 8 9 3 , 1 0 6 5 3 2 , 1 0 7 1 7 1 , 1 0 7 8 1 0 , 1 0 9 0 8 9 ,
1 0 9 7 3 1 , 1 1 0 3 7 0 , 1 1 1 6 5 1 , 1 1 2 2 9 1 , 1 1 3 5 7 0 , 1 1 4 8 4 9 , 1 1 5 4 9 0 , 1 1 6 7 7 0 , 1 1 7 4 1 1 ,
1 1 8 6 9 3 , 1 1 9 3 3 5 , 1 1 9 9 7 6 , 1 2 0 6 1 6 , 1 2 1 2 5 7 , 1 2 1 8 9 9 , 1 2 2 5 4 1 , 1 2 3 1 8 3 , 1 2 3 8 2 5 ,
1 2 4 4 6 6 , 1 2 3 8 2 8 , 1 2 3 8 3 0 , 1 2 3 1 9 1 , 1 2 3 1 9 3 , 1 2 3 8 3 4 , 1 2 3 8 3 6 , 1 2 3 1 9 8 , 1 2 3 1 9 9 ,
1 2 3 2 0 1 , 1 2 2 5 6 3 , 1 2 2 5 6 4 , 1 2 2 5 6 5 , 1 2 2 5 6 6 , 1 2 2 5 6 8 , 1 2 4 4 9 0 , 1 2 4 4 9 2 , 1 2 3 8 5 4 ,
123855 ,125137 ,127056 ,

- 1 , 1 2 8 3 3 6 , 1 2 8 9 7 5 , 1 2 9 6 1 6 , 1 3 0 2 5 7 , 1 3 0 8 9 8 , 1 3 1 5 3 9 , 1 3 2 1 8 1 , 1 3 2 8 2 1 ,
1 3 4 1 0 2 , 1 3 5 3 8 3 , 1 3 6 0 2 3 , 1 3 6 6 6 3 , 1 3 7 3 0 4 , 1 3 9 2 2 3 , 1 3 9 8 6 2 , 1 4 1 7 8 1 , 1 4 2 4 2 0 ,
1 4 3 7 0 0 , 1 4 4 3 4 1 , 1 4 4 9 8 2 , 1 4 6 2 6 3 , 1 4 7 5 4 4 , 1 4 8 1 8 5 , 1 4 9 4 6 5 , 1 5 0 1 0 5 , 1 5 1 3 8 6 ,
1 5 2 6 6 7 , 1 5 3 3 0 7 , 1 5 4 5 8 9 , 1 5 5 2 3 0 , 1 5 6 5 1 0 , 1 5 7 1 5 1 , 1 5 9 0 7 2 , 1 6 0 3 5 2 , 1 6 0 3 5 3 ,
1 6 0 9 9 5 , 1 6 0 3 5 7 , 1 6 0 3 5 8 , 1 5 9 7 2 0 , 1 6 0 3 6 1 , 1 6 0 3 6 3 , 1 5 9 7 2 4 , 1 5 9 7 2 5 , 1 5 9 7 2 7 ,
1 5 9 0 8 8 , 1 5 9 0 8 9 , 1 5 8 4 5 1 , 1 5 7 1 7 2 , 1 5 6 5 3 3 , 1 5 5 8 9 4 , 1 5 4 6 1 5 , 1 5 4 6 1 7 , 1 5 3 3 3 8 ,
1 5 2 0 5 8 , 1 5 1 4 1 8 , 1 5 0 7 7 9 , 1 5 0 7 8 1 , 1 5 0 1 4 2 , 1 4 9 5 0 2 , 1 4 8 2 2 2 , 1 4 7 5 8 2 , 1 4 5 6 6 1 ,
1 4 5 6 6 2 , 1 4 5 0 2 4 , 1 4 3 7 4 5 , 1 4 3 7 4 7 , 1 4 3 1 0 9 , 1 4 2 4 7 0 , 1 4 1 8 3 1 , 1 4 1 1 9 2 , 1 3 9 2 7 1 ,
1 3 7 9 9 1 , 1 3 7 3 5 1 , 1 3 6 7 1 0 , 1 3 4 1 4 9 , 1 3 2 8 6 9 , 1 3 2 2 2 9 , 1 3 0 9 5 0 , 1 2 9 6 7 2 , 1 2 9 0 3 4 ,
1 2 8 3 9 5 , 1 2 7 7 5 6 , 1 2 7 1 1 7 , 1 2 6 4 7 9 , 1 2 5 8 4 1 , 1 2 5 2 0 2 , 1 2 4 5 6 3 , 1 2 3 9 2 5 , 1 2 3 2 8 6 ,
1 2 2 6 4 7 , 1 2 2 0 0 7 , 1 2 0 7 2 8 , 1 2 0 0 8 9 , 1 1 9 4 4 9 , 1 1 8 1 7 0 , 1 1 7 5 3 0 , 1 1 7 5 2 9 , 1 1 8 1 6 7 ,
1 1 8 1 6 6 , 1 1 8 1 6 5 , 1 1 8 1 6 4 , 1 1 8 8 0 3 , 1 1 8 8 0 1 , 1 1 8 7 9 9 , 1 1 8 7 9 7 , 1 1 8 1 5 6 , 1 1 6 8 7 6 ,
1 1 6 2 3 5 , 1 1 5 5 9 3 , 1 1 4 9 5 2 , 1 1 4 9 5 1 , 1 1 4 3 1 0 , 1 1 3 6 6 9 , 1 1 1 7 4 8 , 1 1 1 1 0 6 , 1 0 9 8 2 5 ,
1 0 9 1 8 6 , 1 0 7 9 0 5 , 1 0 7 9 0 4 , 1 0 7 2 6 3 , 1 0 6 6 2 3 , 1 0 5 3 4 2 , 1 0 4 7 0 1 , 1 0 3 4 2 0 , 1 0 2 7 7 9 ,
1 0 2 1 3 8 , 1 0 1 4 9 7 , 1 0 0 2 1 7 , 1 0 1 4 9 8 , 1 0 2 1 3 9 , 1 0 2 7 8 0 , 1 0 2 1 4 1 , 1 0 2 7 8 2 , 1 0 3 4 2 3 ,
1 0 4 7 0 5 , 1 0 5 3 4 6 , 1 0 5 9 8 7 , 1 0 7 2 6 8 , 1 0 7 9 0 9 , 1 0 8 5 4 9 , 1 0 9 8 3 1 , 1 1 1 1 1 2 , 1 1 1 7 5 3 ,

1 1 2 3 9 4 , 1 1 3 6 7 5 , 1 1 4 3 1 5 , 1 1 4 9 5 6 , 1 1 6 2 3 6 , 1 1 6 8 7 7
1 1 6 2 4 4 , 1 1 5 6 0 5 , 1 1 4 9 6 7 , 1 1 4 9 6 9 , 1 1 4 3 3 0 , 1 1 4 3 3 2
1 1 2 4 1 9 , 1 1 1 7 8 0 , 1 1 1 1 4 1 , 1 1 1 1 4 2 , 1 0 9 8 6 2 , 1 0 9 8 6 3
1 0 6 6 6 4 , 1 0 6 6 6 3 , 1 0 6 6 6 1 , 1 0 5 3 8 0 , 1 0 4 1 0 0 , 1 0 4 7 3 8
1 0 6 6 5 2 , 1 0 6 6 5 1 , 1 0 6 0 1 0 , 1 0 5 3 7 1 , 1 0 4 0 9 1 , 1 0 5 3 6 9
1 0 2 1 6 6 , 1 0 0 8 8 5 , 1 0 0 2 4 6 , 1 0 0 2 4 7 , 1 0 0 2 4 8 , 1 0 0 8 8 9
1 0 4 0 9 5 , 1 0 4 0 9 7 , 1 0 3 4 5 8 , 1 0 3 4 5 9 , 1 0 3 4 6 1 , 1 0 4 7 4 1
1 0 4 7 4 6 , 1 0 5 3 8 7 , 1 0 5 3 8 9 , 1 0 5 3 9 0 , 1 0 5 3 9 2 , 1 0 5 3 9 4
1 0 6 0 3 9 , 1 0 6 6 8 0 , 1 0 7 3 2 1 , 1 0 7 3 2 3 , 1 0 7 3 2 4 , 1 0 7 9 6 3
1 0 9 2 4 6 , 1 0 9 2 4 7 , 1 0 9 8 8 9 , 1 1 1 1 6 9 , 1 1 3 7 3 0 , 1 1 4 3 7 0
1 1 7 5 7 4 , 1 1 8 8 5 4 , 1 1 9 4 9 5 , 1 2 0 7 7 6 , 1 2 0 7 7 8 , 1 2 0 1 4 0
1 1 4 3 8 2 , 1 1 4 3 8 3 , 1 1 3 7 4 5 , 1 1 2 4 6 7 , 1 1 1 8 2 8 , 1 1 1 8 2 9
1 0 9 2 7 4 , 1 0 8 6 3 5 , 1 0 7 9 9 6 , 1 0 8 6 3 8 , 1 0 8 6 4 0 , 1 0 8 0 0 1
1 1 0 5 6 5 , 1 1 0 5 6 6 , 1 1 2 4 8 7 , 1 1 4 4 0 8 , 1 1 4 4 0 9 , 1 1 3 7 7 0
1 1 6 3 3 4 , 1 1 8 2 5 5 , 1 1 9 5 3 4 , 1 2 0 8 1 4 , 1 2 1 4 5 5 , 1 2 2 0 9 6
1 2 5 2 9 9 , 1 2 5 9 4 0 , 1 2 6 5 8 2 , 1 2 7 2 2 3 , 1 2 7 2 2 5 , 1 2 5 3 0 3
1 2 2 1 0 0 , 1 2 2 0 9 9 , 1 2 1 4 5 8 , 1 2 0 8 1 7 , 1 1 9 5 3 5 , 1 1 7 6 1 6
1 1 7 6 2 2 , 1 1 8 2 6 2 , 1 1 8 9 0 3 , 1 1 8 9 0 5 , 1 1 9 5 4 6 , 1 2 0 1 8 6
1 1 8 9 1 0 , 1 1 8 2 7 1 , 1 1 8 2 7 3 , 1 1 7 6 3 3 , 1 1 5 7 1 3 , 1 1 5 0 7 3
1 1 0 5 8 7 , 1 0 9 3 0 9 , 1 0 9 3 1 0 , 1 0 8 6 7 2 , 1 0 8 6 7 4 , 1 0 9 9 5 6
1 0 8 0 4 0 , 1 0 8 0 4 1 , 1 0 8 0 4 3 , 1 0 7 4 0 4 , 1 0 7 4 0 6 , 1 0 6 7 6 8
1 0 4 2 1 2 , 1 0 3 5 7 3 , 1 0 2 9 3 4 , 1 0 2 2 9 5 , 1 0 1 6 5 5 , 1 0 0 3 7 5
9 9 0 9 6 , 9 7 8 1 5 , 9 6 5 3 3 , 9 5 8 9 2 , 9 5 2 5 1 , 9 4 6 1 2 , 9 3 9 7 4
9 2 6 9 6 , 9 2 6 9 5 , 9 2 6 9 3 , 9 3 3 3 2 , 9 2 6 9 1 , 9 2 0 4 9 , 9 1 4 0 8
8 9 4 9 3 , 8 8 8 5 5 , 8 8 8 5 6 , 8 9 4 9 6 , 9 0 1 3 5 , 9 1 4 1 5 , 9 0 7 7 6
9 0 1 4 1 , 9 0 1 4 2 , 9 2 0 6 1 , 9 2 0 6 2 , 9 2 0 6 3 , 9 3 3 4 4 , 9 3 3 4 3
9 5 9 0 5 , 9 5 2 6 6 , 9 5 2 6 8 , 9 5 2 6 9 , 9 3 9 8 9 , 9 3 3 4 9 , 9 2 0 6 8
9 0 1 4 5 , 8 9 5 0 7 , 8 8 8 6 9 , 8 8 2 3 0 , 8 7 5 9 0 , 8 6 9 5 1 , 8 6 3 1 3
8 6 3 1 7 , 8 6 3 1 8 , 8 5 6 7 9 , 8 4 4 0 1 , 8 3 7 6 3 , 8 3 1 2 4 , 8 1 8 4 5
7 9 2 8 8 , 7 8 6 4 9 , 7 7 3 6 9 , 7 6 7 2 9 , 7 6 0 8 9 , 7 4 8 1 0 , 7 4 1 7 0
7 1 6 0 8 , 7 0 9 6 7 , 7 0 9 6 6 , 7 2 2 4 5 , 7 2 2 4 3 , 7 0 9 6 4 , 7 0 9 6 3
6 9 6 8 1 , 6 9 0 4 2 , 6 8 4 0 3 , 6 7 7 6 4 , 6 7 1 2 5 , 6 5 8 4 7 , 6 5 2 0 8
6 2 6 5 3 , 6 2 6 5 4 , 6 2 6 5 6 , 6 2 6 5 8 , 6 2 6 6 0 , 6 2 6 6 1 , 6 2 6 6 2
6 2 0 2 6 , 6 2 0 2 7 , 6 2 6 6 9 , 6 2 6 6 8 , 6 3 3 0 9 , 6 3 3 1 1 , 6 2 6 7 3

116879
113054
109224
105377
104728
102170
104742
105395
107962
115012
118860
110550
108002
113132
122737
124023
116977
120187
113791
109315
106129
100374

116241
113056
108585
106016
103448
102812
104743
104757
108603
116292
117581
110552
108643
113773
124018
123382
116339
120188
113150
108677
105490

116242
113058
107945
106014
102807
103454
104744
105398
109245
116933
116942
109913
109284
114413
124658
122741
116980
118909
112508
108679
104851

9 9 7 3 5 , 9 9 0 9 5 ,
9 3 3 3 5 , 9 3 3 3 7 ,
9 0 7 6 9 , 9 0 7 7 1 ,
9 0 1 3 8 , 9 0 1 4 0 ,
9 3 9 8 4 , 9 5 2 6 4 ,
9 1 4 2 7 , 9 0 7 8 5 ,
8 6 3 1 4 , 8 6 9 5 6 ,
8 1 2 0 5 , 7 9 9 2 7 ,
7 2 8 9 0 , 7 2 2 4 9 ,
7 0 9 6 1 , 7 0 3 2 0 ,
6 3 9 3 0 , 6 3 9 3 1 ,
6 2 6 6 4 , 6 2 0 2 4 ,
6 2 6 7 5 , 6 2 0 3 3 ,

61394,
58843,
56931,
65240,
72276,
72922,
66528,
61412,
60142,
56316,

60115,
60124,
57570,
65239,
73556,
72923,
65249,
60773,
60144,
56957,

60116,
59485,
58850,
65238,
74197,
71643,
65248,
60774,
59505,
55678,

58837,
58846,
60128,
66517,
74837,
70366,
64607,
61414,
58867,
53757,

58198
58208
60127,
67156
76117
70367
63968,
60776,
57588
53116

57560,
57569,
62045,
67796,
75479,
69086,
63329,
60137,
57589,
51835,

57561,
56929,
62684,
68435,
74840,
68447,
62689,
60138,
56951,
51195,

57563,
56289,
63323,
69715,
74201,
68449,
61409,
60140,
56952,
51197,

57564,
55651,
63962,
70996,
73561,
67169,
61411,
60781,
56314,
50558,

233220
220443
214698
213426
212798
211532
212195
210936
210949
207127
204579
207152
210363
211653
206548
205286
204660
204676
205973
206628
205363
207299
209875
211809
215662
223331
238694

,231303
, 219805
,214058
,212787
,213437
, 211535
,212198
,210939
, 210310
, 207768
,205221
, 207155
, 211003
, 211015
, 206550
, 205288
, 204022
, 204678
, 205975
, 205990
, 205365
, 207940
,210516
,213089
,216942
,223969
,239331

,230026
, 219168
,214059
, 2 1 2 7 8 9
, 2 1 4 0 7 8
,212177
, 212840
, 209659
, 209033
, 207129
, 205859
, 207797
, 211643
, 2 1 0 3 7 6
, 205913
, 205930
, 204664
, 204039
,205337
, 2 0 5 3 5 0
,205367
, 208580
, 209879
, 213092
,217581
, 2 2 5 8 8 8
, 241246

228749
217891
214700
214069
214720
211539
212203
209020
208394
206488
205861
207799
212925
209738
205915
205292
204666
204041
205978
204712
206009
209223
210521
213094
218859
227168
244443

, 2 2 6 8 3 2 ,
, 2 1 7 8 9 3 ,
, 2 1 4 0 6 1 ,
, 2 1 4 0 7 1 ,
, 2 1 4 0 8 2 ,
, 2 1 1 5 4 2 ,
, 2 1 2 2 0 4 ,
, 2 0 9 6 6 2 ,
, 2 0 7 7 5 6 ,
, 2 0 5 2 0 9 ,
, 2 0 6 5 0 2 ,
, 2 0 7 8 0 1 ,
, 2 1 2 2 8 7 ,
, 2 0 9 0 9 8 ,
, 2 0 5 9 1 7 ,
, 2 0 5 9 3 3 ,
, 2 0 4 6 6 8 ,
, 2 0 4 6 8 3 ,
, 2 0 5 9 8 0 ,
, 2 0 4 7 1 4 ,
, 2 0 6 0 1 1 ,
, 2 0 8 5 8 4 ,
, 2 1 1 1 6 3 ,
, 2 1 3 7 3 6 ,
, 2 1 8 8 5 6 ,
, 2 2 9 0 8 9 ,
, 2 4 8 9 2 3 ,

225553 ,
217255 ,
213422,
214074,
213444,
212185 ,
212207,
210303 ,
207758,
204571 ,
206504,
207163 ,
211645 ,
208460 ,
205919,
205294 ,
205309,
205324 ,
205343 ,
204716,
206014,
209226 ,
211165 ,
214379 ,
220136,
231009 ,
250843 ,

224277
217258
214064
212794
212806
212187
211570
210945
207761
204572
206507
208443
211008
207822
205921
205296
205311
205326
204704
204718
206656
208587
211805
215021
220775
232930

,222357
, 215979
, 215344
, 2 1 2 1 5 5
,212168
, 212190
, 211573
,210947
, 207123
, 203935
, 207149
, 209084
, 211010
, 207824
, 205283
, 205297
, 205953
, 205968
, 205346
, 204720
, 207296
, 209230
, 213086
, 214382
, 221413
, 2 3 4 8 5 0

, 2 2 1 7 2 0 ,
, 2 1 5 3 4 0 ,
, 2 1 4 7 0 6 ,
, 212157 ,
, 2 1 2 1 7 1 ,
, 2 1 2 1 9 2 ,
, 2 1 0 9 3 5 ,
, 2 1 1 5 8 8 ,
, 2 0 7 1 2 5 ,
, 2 0 4 5 7 7 ,
, 2 0 7 1 5 1 ,
, 2 0 9 7 2 5 ,
, 2 1 1 0 1 2 ,
, 2 0 6 5 4 6 ,
, 2 0 5 2 8 4 ,
, 2 0 5 2 9 8 ,
, 2 0 5 9 5 5 ,
, 2 0 5 9 7 1 ,
, 205987 ,
, 2 0 5 3 6 1 ,
, 2 0 7 2 9 7 ,
, 2 0 9 2 3 3 ,
, 2 1 2 4 4 8 ,
, 2 1 5 6 6 3 ,
, 2 2 2 0 5 3 ,
, 2 3 6 1 3 2 ,

- 1 , 1 6 0 5 2 4 , 1 6 1 1 6 5 , 1 6 1 1 6 6 , 1 6 1 1 6 8 , 1 6 1 1 6 9 , 1 6 0 5 3 1 , 1 5 9 8 9 2 , 1 5 9 8 9 4 ,
1 5 9 8 9 5 , 1 5 9 8 9 6 , 1 5 9 8 9 7 , 1 5 9 8 9 9 , 1 5 9 2 6 0 , 1 5 8 6 2 1 , 1 5 8 6 2 3 , 1 5 7 9 8 5 , 1 5 7 9 8 6 ,
1 5 7 9 8 8 , 1 5 7 3 5 0 , 1 5 7 3 5 1 , 1 5 7 3 5 3 , 1 5 7 9 9 4 , 1 5 7 9 9 5 , 1 5 7 9 9 6 , 1 5 8 6 3 8 , 1 5 9 2 7 9 ,
1 6 0 5 6 0 , 1 6 1 2 0 0 , 1 6 0 5 6 1 , 1 5 9 9 2 3 , 1 5 8 6 4 4 , 1 5 9 9 2 4 , 1 6 0 5 6 4 , 1 6 1 2 0 3 , 1 6 1 2 0 4 ,
1 6 0 5 6 5 , 1 6 1 2 0 5 , 1 6 1 8 4 5 , 1 6 1 8 4 6 , 1 6 2 4 8 7 , 1 6 3 1 2 7 , 1 6 4 4 0 8 , 1 6 4 4 1 0 , 1 6 5 0 5 1 ,
1 6 5 0 5 3 , 1 6 5 6 9 4 , 1 6 5 0 5 6 , 1 6 5 0 5 7 , 1 6 5 0 5 8 , 1 6 5 6 9 9 , 1 6 4 4 2 2 , 1 6 4 4 2 3 , 1 6 4 4 2 5 ,

1 6 3 7 8 6 , 1 6 2 5 0 6 , 1 6 1 2 2 7 , 1 6 0 5 8 8 , 1 5 9 3 0 8 , 1 5 8 6 7 0 , 1 5 8 0 3 1 , 1 5 6 7 5 1 , 1 5 6 1 1 2 ,
1 5 4 8 3 2 , 1 5 4 1 9 2 , 1 5 2 2 7 1 , 1 5 1 6 3 1 , 1 5 0 3 5 0 , 1 4 9 7 0 8 , 1 4 9 0 6 7 , 1 4 8 4 2 6 , 1 4 8 4 2 5 ,
1 4 7 7 8 4 , 1 4 5 8 6 1 , 1 4 5 2 1 9 , 1 4 3 9 3 9 , 1 4 3 2 9 8 , 1 4 1 3 7 7 , 1 4 0 7 3 6 , 1 4 0 7 3 5 , 1 3 9 4 5 4 ,
1 3 8 8 1 3 , 1 3 8 1 7 2 , 1 3 9 4 5 1 , 1 4 0 0 9 1 , 1 4 1 3 7 1 , 1 4 2 0 1 1 , 1 4 3 2 9 0 , 1 4 3 9 3 0 , 1 4 3 9 2 8 ,
1 4 3 9 2 7 , 1 4 3 2 8 6 , 1 4 3 2 8 5 , 1 4 2 6 4 3 , 1 4 2 6 4 2 , 1 4 2 0 0 1 , 1 4 1 3 6 0 , 1 4 0 7 2 1 , 1 4 0 0 8 2 ,
1 3 9 4 4 3 , 1 3 9 4 4 1 , 1 3 9 4 4 0 , 1 3 8 7 9 8 , 1 3 8 7 9 7 , 1 3 8 7 9 6 , 1 3 8 1 5 4 , 1 3 9 4 3 4 , 1 3 9 4 3 3 ,
1 3 9 4 3 2 , 1 3 9 4 3 1 , 1 4 0 0 7 1 , 1 4 0 7 1 0 , 1 4 1 3 5 0 , 1 4 1 3 4 9 , 1 4 1 9 8 7 , 1 4 0 7 0 6 , 1 4 0 7 0 5 ,
1 4 0 7 0 3 , 1 4 1 3 4 2 , 1 4 1 9 8 1 , 1 4 2 6 2 0 , 1 4 2 6 1 9 , 1 4 3 2 5 9 , 1 4 3 2 5 8 , 1 4 3 8 9 6 , 1 4 4 5 3 7 ,
1 4 5 1 7 5 , 1 4 5 8 1 4 , 1 4 5 8 1 3 , 1 4 5 8 1 2 , 1 4 5 8 1 1 , 1 4 6 4 4 9 , 1 4 6 4 4 8 , 1 4 7 0 8 6 , 1 4 7 7 2 4 ,
1 4 7 7 2 3 , 1 4 8 3 6 2 , 1 4 9 0 0 2 , 1 4 9 6 4 1 , 1 5 0 9 2 1 , 1 5 1 5 6 2 , 1 5 1 5 6 1 , 1 5 2 2 0 2 , 1 5 3 4 8 2 ,
1 5 4 7 6 3 , 1 5 5 4 0 4 , 1 5 6 6 8 4 , 1 5 7 3 2 5 , 1 5 8 6 0 5 , 1 6 0 5 2 4 ,
- 1 , 6 5 9 0 , 7 2 3 2 , 7 2 3 5 , 7 8 7 5 , 8 5 1 8 , 9 1 5 5 , 9 7 9 3 , 1 0 4 3 5 ,
1 1 0 7 7 , 1 1 7 1 6 , 1 2 9 9 8 , 1 3 6 4 1 , 1 3 0 0 4 , 1 2 3 6 7 , 1 2 3 7 0 , 1 4 2 9 3 , 1 4 2 9 6 ,
1 6 2 1 6 , 1 7 4 9 7 , 1 8 7 7 9 , 2 1 3 3 9 , 2 2 6 2 1 , 2 4 5 4 1 , 2 6 4 6 0 , 2 7 7 4 1 , 2 9 6 6 0 ,
3 0 9 4 4 , 2 9 6 6 5 , 3 1 5 8 6 , 3 2 2 2 8 , 3 4 1 4 8 , 3 2 8 6 6 , 3 2 8 6 3 , 3 4 7 8 3 , 3 6 7 0 2 ,
3 7 9 8 4 , 3 7 3 4 7 , 3 6 0 6 8 , 3 7 9 8 9 , 3 9 9 0 9 , 3 9 9 0 6 , 4 1 1 8 5 , 4 3 1 0 4 , 4 5 0 2 4 ,
4 6 3 0 4 , 4 7 5 8 4 , 4 8 8 6 6 , 5 0 1 4 7 , 5 1 4 2 7 , 5 2 7 0 8 , 5 3 3 4 8 , 5 5 2 7 0 , 5 7 1 9 2 ,
5 7 8 3 3 , 5 9 1 1 4 , 5 9 7 5 7 , 5 9 7 5 8 , 6 0 3 9 9 , 6 1 0 4 1 , 6 1 0 4 3 , 5 9 7 6 3 , 5 9 1 2 4 ,
5 7 8 4 4 , 5 6 5 6 5 , 5 5 2 8 4 , 5 4 6 4 6 , 5 3 3 6 7 , 5 2 7 2 8 , 5 1 4 4 8 , 4 9 5 2 7 , 4 9 5 2 8 ,
4 8 8 8 9 , 4 8 2 5 1 , 4 8 2 5 4 , 4 7 6 1 6 , 4 6 3 3 8 , 4 5 6 9 9 , 4 4 4 2 0 , 4 3 1 4 1 , 4 1 8 6 2 ,
4 1 2 2 4 , 4 1 2 2 6 , 4 0 5 8 8 , 3 9 9 5 1 , 3 9 3 1 3 , 3 8 6 7 5 , 3 7 3 9 6 , 3 6 7 5 8 , 3 5 4 7 9 ,
3 4 8 3 7 , 3 4 1 9 5 , 3 4 8 3 3 , 3 3 5 5 5 , 3 1 6 3 4 , 3 0 9 9 6 , 3 2 2 7 6 , 3 3 5 5 7 , 3 4 1 9 8 ,
3 4 2 0 1 , 3 2 2 8 1 , 3 1 0 0 1 , 2 9 0 7 9 , 2 7 7 9 7 , 2 7 1 5 6 , 2 7 7 9 8 , 2 8 4 4 0 , 2 7 1 6 1 ,
2 5 2 4 0 , 2 4 5 9 9 , 2 3 9 6 0 , 2 3 3 2 1 , 2 3 3 2 3 , 2 2 0 4 3 , 2 1 4 0 1 , 2 0 1 2 5 , 1 8 2 0 6 ,
1 8 2 0 4 , 1 6 2 8 5 , 1 4 3 6 5 , 1 2 4 4 4 , 1 2 4 4 1 , 1 1 1 6 1 , 9 8 8 3 , 1 0 5 2 7 , 9 8 8 7 ,
7 9 6 6 , 7 3 2 5 , 6 0 4 5 , 5 4 0 7 , 5 4 0 9 ,

- 1 , 2 9 6 0 0 , 3 0 8 8 2 , 3 2 8 0 3 , 3 4 0 8 4 , 3 5 3 6 7 , 3 5 3 7 0 , 3 6 0 1 3 , 3 5 3 7 5 ,
3 6 6 5 8 , 3 6 6 5 9 , 3 4 7 4 1 , 3 6 0 2 2 , 3 7 9 4 5 , 3 9 8 6 4 , 3 8 5 8 6 , 4 0 5 0 8 , 4 1 1 5 0 ,
4 3 0 7 0 , 4 3 7 1 1 , 4 4 9 9 0 , 4 6 2 6 9 , 4 6 9 0 7 , 4 8 1 8 9 , 4 8 8 2 7 , 4 8 8 2 5 , 4 8 8 2 2 ,
4 9 4 6 0 , 5 0 7 4 0 , 5 2 0 2 1 , 5 2 0 2 4 , 5 1 3 8 5 , 5 1 3 8 7 , 5 2 0 2 9 , 5 2 6 7 0 , 5 2 6 7 2 ,
5 3 9 5 2 , 5 4 5 9 3 , 5 5 2 3 5 , 5 5 2 3 6 , 5 6 5 1 9 , 5 6 5 2 0 , 5 7 1 6 2 , 5 5 8 8 2 , 5 5 2 4 1 ,
5 4 5 9 9 , 5 3 9 5 8 , 5 2 6 7 7 , 5 3 3 1 9 , 5 3 9 6 1 , 5 4 6 0 3 , 5 4 6 0 5 , 5 3 3 2 5 , 5 2 6 8 4 ,

5 1 4 0 4 , 5 0 1 2 3 , 4 9 4 8 1 , 4 8 2 0 0 , 4 6 2 8 0 , 4 7 5 6 3 , 4 8 8 4 4 , 5 0 1 2 6 , 4 8 8 4 7 ,
4 8 2 0 9 , 4 6 9 2 9 , 4 5 6 5 0 , 4 5 0 0 9 , 4 3 7 2 7 , 4 3 0 8 5 , 4 1 8 0 4 , 4 1 8 0 1 , 4 0 5 1 9 ,
3 8 5 9 9 , 3 8 6 0 1 , 3 6 6 7 9 , 3 5 4 0 0 , 3 4 1 1 8 , 3 2 8 3 6 , 3 0 9 1 3 , 2 9 6 3 1 , 2 9 6 2 8 ,
2 7 7 0 8 , 2 6 4 2 7 , 2 7 0 6 5 , 2 5 7 8 3 , 2 5 7 8 1 , 2 7 0 5 9 , 2 7 0 5 7 , 2 7 6 9 5 , 2 6 4 1 6 ,
2 4 4 9 5 , 2 2 5 7 5 , 2 1 9 3 2 , 2 3 2 1 0 , 2 5 1 2 8 , 2 7 0 4 7 , 2 8 3 2 7 , 2 9 6 0 8 , 2 8 3 2 6 ,
2 7 0 4 6 , 2 5 7 6 6 , 2 3 8 4 7 , 2 2 5 6 8 , 2 1 9 3 0 , 2 1 9 2 8 , 2 1 9 2 5 , 2 2 5 6 3 , 2 4 4 8 1 ,
2 5 7 6 0 , 2 7 6 8 0 , 2 9 6 0 0 ,
- 1 , 1 2 9 1 9 2 , 1 2 9 8 3 3 , 1 3 0 4 7 4 , 1 3 0 4 7 6 , 1 2 9 8 3 7 , 1 3 0 4 7 6 , 1 3 0 4 7 4 , 1 3 1 7 5 5 ,
1 3 1 1 1 7 , 1 3 1 7 5 8 , 1 3 2 4 0 0 , 1 3 2 4 0 1 , 1 3 2 4 0 2 , 1 3 2 4 0 3 , 1 3 3 0 4 5 , 1 3 5 6 0 4 , 1 3 5 6 0 5 ,
1 3 5 6 0 6 , 1 3 5 6 0 7 , 1 3 5 6 0 8 , 1 3 5 6 0 9 , 1 3 6 2 5 1 , 1 3 6 2 5 3 , 1 3 6 2 5 4 , 1 3 4 9 7 5 , 1 3 4 9 7 6 ,
1 3 4 9 7 8 , 1 3 5 6 1 9 , 1 3 6 2 6 0 , 1 3 6 9 0 1 , 1 3 7 5 4 3 , 1 3 7 5 4 4 , 1 3 7 5 4 6 , 1 3 7 5 4 7 , 1 3 6 9 0 5 ,
1 3 6 9 0 4 , 1 3 5 6 2 3 , 1 3 4 3 4 1 , 1 3 4 3 4 2 , 1 3 3 7 0 1 , 1 3 3 7 0 0 , 1 3 3 0 5 9 , 1 3 1 7 7 7 , 1 3 1 7 7 5 ,
1 3 1 1 3 3 , 1 3 1 1 3 2 , 1 3 0 4 9 1 , 1 3 0 4 8 9 , 1 3 0 4 8 7 , 1 2 9 8 4 5 , 1 2 9 8 4 3 , 1 3 0 4 8 2 , 1 3 1 1 2 1 ,
1 3 1 1 1 9 , 1 3 0 4 7 8 , 1 2 9 8 3 7 , 1 2 8 5 5 7 , 1 2 8 5 5 6 , 1 2 8 5 5 4 , 1 2 9 1 9 2 ,
- 1 , 7 7 1 0 9 , 7 6 4 7 1 , 7 7 1 1 3 , 7 6 4 7 4 , 7 6 4 7 6 , 7 5 8 3 7 , 7 6 4 7 8 , 7 6 4 8 0 ,
7 5 8 4 1 , 7 5 2 0 1 , 7 4 5 6 2 , 7 3 2 8 2 , 7 2 6 4 1 , 7 3 2 8 0 , 7 2 0 0 0 , 7 1 3 5 9 , 7 0 0 7 7 ,
6 8 7 9 7 , 6 8 1 5 5 , 6 8 1 5 4 , 6 6 8 7 5 , 6 6 2 3 6 , 6 4 9 5 6 , 6 4 9 5 5 , 6 4 9 5 3 , 6 5 5 9 2 ,
6 4 9 5 3 , 6 4 3 1 4 , 6 3 6 7 2 , 6 3 6 7 1 , 6 4 3 1 0 , 6 5 5 8 9 , 6 5 5 8 8 , 6 6 2 2 9 , 6 6 8 6 9 ,
6 7 5 1 0 , 6 8 1 5 0 , 6 8 7 8 8 , 6 8 7 8 9 , 6 8 7 9 1 , 7 0 0 7 0 , 7 0 0 7 2 , 7 0 0 7 4 , 7 0 7 1 4 ,
7 1 9 9 4 , 7 2 6 3 3 , 7 1 9 9 1 , 7 3 2 7 1 , 7 3 2 7 2 , 7 3 9 1 2 , 7 4 5 5 0 , 7 4 5 5 2 , 7 5 1 9 4 ,
7 4 5 5 5 , 7 5 1 9 3 , 7 5 1 9 2 , 7 6 4 7 1 , 7 7 1 0 9 ,

- 1 , 3 0 1 8 8 , 3 0 8 3 0 , 3 2 1 1 0 , 3 2 7 5 2 , 3 3 3 9 5 , 3 3 3 9 7 , 3 4 0 3 9 , 3 4 6 7 7 ,
3 4 6 7 4 , 3 5 3 1 2 , 3 7 2 3 3 , 3 7 8 7 5 , 3 7 8 7 8 , 3 9 7 9 9 , 3 9 8 0 1 , 3 9 8 0 4 , 3 8 5 2 7 ,
3 8 5 2 9 , 3 7 2 5 1 , 3 8 5 3 3 , 3 9 1 7 5 , 3 8 5 3 7 , 3 7 8 9 9 , 3 6 6 1 8 , 3 6 6 2 0 , 3 4 7 0 1 ,
3 4 0 5 8 , 3 3 4 1 5 , 3 2 1 3 4 , 2 9 5 7 4 , 2 7 6 5 3 , 2 6 3 7 2 , 2 4 4 5 4 , 2 3 1 7 5 , 2 1 8 9 3 ,
2 2 5 3 0 , 2 4 4 4 9 , 2 6 3 6 8 , 2 5 0 8 5 , 2 5 0 8 3 , 2 4 4 4 1 , 2 5 7 1 8 , 2 3 7 9 8 , 2 3 7 9 6 ,
2 5 0 7 4 , 2 5 7 1 2 , 2 6 3 5 0 , 2 8 2 6 8 , 30188 ,
- 1 , 8 4 2 4 2 , 8 6 1 6 4 , 8 7 4 4 6 , 8 8 7 2 7 , 8 9 3 6 9 , 8 9 3 6 7 , 9 1 2 8 6 , 9 2 5 6 6 ,
9 2 5 6 8 , 9 3 2 1 0 , 9 3 2 1 1 , 9 3 2 1 2 , 9 3 2 1 4 , 9 3 2 1 5 , 9 1 9 3 5 , 9 1 2 9 5 , 9 0 6 5 5 ,
9 0 0 1 4 , 8 9 3 7 3 , 8 8 7 3 3 , 8 8 7 3 4 , 8 8 7 3 6 , 8 8 7 3 7 , 8 7 4 5 5 , 8 7 4 5 4 , 8 8 0 9 3 ,
8 6 8 1 3 , 8 6 1 7 1 , 8 5 5 3 0 , 8 4 2 4 8 , 8 4 2 5 0 , 8 3 6 1 1 , 8 2 9 7 3 , 8 3 6 1 4 , 8 3 6 1 5 ,
8 3 6 1 6 , 8 2 3 3 5 , 8 1 6 9 5 , 8 1 0 5 3 , 8 1 0 5 1 , 8 1 0 4 8 , 8 1 6 8 7 , 8 1 6 8 6 , 8 2 3 2 5 ,
8 2 3 2 4 , 8 3 6 0 3 ,

-1,130450,131732,133013,132373,131093,130454,131094,131735,
132377,133017,133018,131737,130456,129816,129178,129179,129177,
129175,129174,128533,127894,127895,127896,127898,127900,127901,
127262,127260,127258,127257,127255,127894,127892,128532,129172,
129811,130450,
- 1 , 86768, 87409, 88051,88692, 88054, 88695, 88056,87418,
87419,87421,87422,87423,88065,88706,88708,88709, 88710,
88711,88072,87433,86153,86151,85510,84228,84226,83585,
83583,83582,84220,84219,83578,83577,82299,82298,82297,
82296,81654,82933,82932,84211,84850,85489,
-1,30491,31773,33055,33698,33701,33062,32419,30498,
28578,27298, 25379, 24101, 22182, 20264, 18986, 17067, 15790,
14513,13876,13239,12602,10682,10040,10677,11955,12592,
12588,13865,15143,15782,17058,18338,20257,22175,23456,
24734,26653,27933,28571,30491,

-1,95912,96553,95914,95915,95916,95278,95920,96559,
97200,95922,95282,95925,95286,95287,95289,94649,93369,
92730,91450,90811,90171,88890,88890,88249,90168,91447,
92086,92725,93364,93363,92723,93362,94001,94638,94637,
94636,95274,95913,
-1,123369,124009,124651,125292,125933,126575,127215,127857,
128498,129778,130419,131701,132343,132985,132986,132347,131067,
130427,130426,129144,128504,127863,127222,126580,126578,125297,
124655,124014,123373,123372,123370,123369,
-1,127233,128513,129155,130435,131076,130438,131078,131080,
131082,131723, 131725, 131086,-129167,128528, 127249, 127251, 126609,
125969,125328,124689,124050,123409,122127,122766,123404,124043,
124681,125320,125958,125957,126595,126593,
-1,48916,48918,48919,48920,49559,50837,50839,52120,
52759,52762,53404,54046,52768,52770,52131,51494,50215,
48935,48293,46373,47012,46371,47010,47648,47007,47005,
47003,48923,48921,47641,46360,46359,46997,48916,
-1,182597,182596,183235,183874,183876,184515,185155,184514,

185153,184512,183869,183228,183227,183868,184509,185150,185792,
186433,186434,187075,187078,187719,187080,186441,186443,185802,
185160 184519 183238
-1,147596,148876,149517,150799,151440,150802,150163,149524,
148884,148245,146965,146326,145686,144407,143767,141848,141849,
140568,138647,139286,141843,141841,142479,143118,144397,145678,
146318,146957,
-1,84003,83365,84644,85284,85924,86564,87206,85926,
84646,83367,83368,82730,83372,84012,84652,85294,84654,
83375,84016,84017,82737,82096,82095,82093,82092,82091,
82089,82087,82725,82724,84003,

-1,72251,73531,74171,74811,76092,76731,77372,78012,
79291,79932,81211,82491,81852,81853,81213,80572,79933,
78653,78015,78656,77375,76734,76094,75454,74813,73534,
72894,72253,71613,70972,72252,
-1,79574,80216,80217,80219,80220,80221,80860,80861,
80864,81505,80865,80226,79585,80224,78945,78944,78304,
77662,77661,77660,77019,76379,75740,74461,75099,76378,
77017,77657,78296,78936,79574,
-1,16110,16753,17395,16117,17398,18036,19319,18681,
18043,16765,17409,16771,15491,13572,12930,12287,10366,
11004,12283,12924,14845,14842,13561,12279,11637,11634,
12913,14191,16110,
-1,49920,48001,47360,46082,47362,48643,48644,48645,
48647,49927,50569,51211,51852,50573,49934,48654,48656,
46738,46096,44815,44172,44170,42889,42247,40965,40323,
39682,38400,
-1,213304,214585,215226,215867,215869,217150,217153,217155,
216517,215238,214598,213318,212677,211396,210116,209475,209473,
210753,211393,212674,213312,213310,213307,213304,
-1,166388,167030,167031,168310,168951,168312,167673,166394,
165755,164476,164475,164473,164472,163192,163191,161909,161268,
161267,161907,163189,163190,164470,165110,166388,

- 1 , 1 7 4 0 5 5 , 1 7 4 6 9 6 , 1 7 4 6 9 7 , 1 7 5 3 3 9 , 1 7 4 7 0 1 , 1 7 4 0 6 2 , 1 7 3 4 2 3 , 1 7 2 1 4 4 ,
1 7 2 1 4 5 , 1 7 1 5 0 7 , 1 7 0 8 6 6 , 1 7 0 2 2 8 , 1 6 8 9 4 9 , 1 6 8 3 0 7 , 1 6 7 6 6 6 , 1 6 8 3 0 5 , 1 6 8 9 4 4 ,
1 7 0 2 2 3 , 1 7 0 2 2 2 , 1 7 1 5 0 0 , 1 7 1 4 9 9 , 1 7 2 1 3 8 , 1 7 3 4 1 6 , 1 7 4 0 5 5 ,
- 1 , 9 7 4 9 , 1 1 0 2 9 , 1 2 3 1 1 , 1 2 3 1 4 , 1 2 9 5 6 , 1 4 2 3 6 , 1 6 1 5 6 , 1 8 0 7 6 ,
1 8 7 2 0 , 1 9 3 6 3 , 1 9 3 6 6 , 1 9 3 6 9 , 1 8 0 9 1 , 1 8 7 3 4 , 1 8 0 9 7 , 1 6 8 1 8 , 1 5 5 3 8 ,
1 4 2 5 5 , 1 4 2 5 2 , 1 4 2 4 9 , 1 4 8 8 5 , 1 4 2 4 2 , 1 3 5 9 9 , 1 1 6 7 8 , 1 1 0 3 7 , 1 1 0 3 4 ,
9 7 5 2 , 9 7 4 9 ,
- 1 , 1 0 8 3 2 9 , 1 0 8 3 3 0 , 1 0 7 6 9 1 , 1 0 7 6 9 3 , 1 0 7 6 9 5 , 1 0 7 6 9 7 , 1 0 8 3 3 8 , 1 0 8 3 4 0 ,
1 0 8 9 8 2 , 1 1 0 2 6 4 , 1 1 0 2 6 5 , 1 0 9 6 2 7 , 1 0 9 6 2 5 , 1 0 8 9 8 4 , 1 0 8 3 4 2 , 1 0 7 7 0 0 , 1 0 7 6 9 9 ,
1 0 7 0 5 7 , 1 0 7 0 5 6 , 1 0 7 0 5 4 , 1 0 7 0 5 2 , 1 0 7 6 9 0 ,
- 1 , 5 2 8 7 , 5 2 8 8 , 5 2 8 9 , 5 9 2 7 , 6 5 6 4 , 7 2 0 7 , 7 2 0 3 , 8 4 8 3 ,
9 1 2 5 , 9 1 2 3 , 1 0 4 0 1 , 1 1 6 8 1 , 1 2 3 2 4 , 1 2 3 2 8 , 1 1 6 9 0 , 1 2 3 3 3 , 1 1 6 9 5 ,
1 2 3 3 6 , 1 1 6 9 9 , 1 0 4 2 1 , 9 1 3 9 , 7 8 6 2 , 7 2 2 1 , 7 2 2 5 , 5 9 4 6 , 5 3 0 6 ,
5 3 0 8 , 5 3 1 3 ,
- 1 , 1 3 4 2 6 7 , 1 3 4 2 6 9 , 1 3 4 9 1 0 , 1 3 4 9 1 2 , 1 3 4 9 1 4 , 1 3 5 5 5 6 , 1 3 5 5 5 7 , 1 3 5 5 5 9 ,
1 3 5 5 6 0 , 1 3 5 5 6 2 , 1 3 4 9 2 3 , 1 3 4 9 2 1 , 1 3 4 9 2 0 , 1 3 4 2 7 7 , 1 3 4 2 7 6 , 1 3 4 2 7 4 , 1 3 4 2 7 2 ,
1 3 3 6 3 1 , 1 3 3 6 3 0 , 1 3 3 6 2 8 , 1 3 4 2 6 7 ,
- 1 , 4 6 8 1 7 , 4 6 8 2 0 , 4 6 8 2 3 , 4 7 4 6 5 , 4 8 1 0 3 , 4 8 7 4 2 , 5 0 0 2 1 , 5 0 0 2 3 ,
4 8 1 0 5 , 5 0 0 2 5 , 4 8 7 4 8 , 4 8 1 0 6 , 4 8 1 0 9 , 4 6 8 3 0 , 4 6 1 8 8 , 4 6 1 8 6 , 4 5 5 4 7 ,
4 4 9 0 8 , 4 4 2 6 6 , 4 5 5 4 4 , 4 5 5 4 2 , 4 6 1 8 0 , 4 6 8 1 7 ,
- 1 , 8 6 9 6 8 , 8 7 6 0 8 , 8 8 2 4 8 , 8 7 6 1 0 , 8 6 9 6 8 , 8 6 9 7 0 , 8 6 9 7 1 , 8 6 9 7 2 ,
8 7 6 1 4 , 8 6 9 7 4 , 8 6 3 3 6 , 8 6 3 3 7 , 8 5 6 9 7 , 8 5 0 5 6 , 8 5 0 5 4 , 8 4 4 1 3 , 8 3 7 7 2 ,
8 3 7 7 1 , 8 4 4 1 1 , 8 5 0 5 1 , 8 5 6 9 0 , 8 6 3 2 9 , 8 6 9 6 8 ,
- 1 , 5 4 5 9 , 6 1 0 0 , 6 7 4 3 , 6 7 4 6 , 7 3 8 4 , 8 6 6 4 , 9 9 4 6 , 1 1 8 7 0 ,
9 9 5 0 , 8 6 7 2 , 7 3 9 3 , 6 1 1 3 , 6 1 1 5 , 6 7 5 6 , 7 3 9 8 , 8 6 7 6 , 9 3 2 0 ,
8 0 4 4 , 6 7 6 1 , 6 1 1 9 , 5 4 7 8 , 5 4 7 3 , 5 4 7 7 , 5 4 8 2 , 5 4 8 5 , 5 4 8 7 ,
- 1 , 1 1 3 8 1 2 , 1 1 5 0 9 3 , 1 1 5 0 9 4 , 1 1 6 3 7 5 , 1 1 6 3 7 6 , 1 1 5 7 3 7 , 1 1 7 0 1 9 , 1 1 7 0 2 0 ,
1 1 6 3 7 9 , 1 1 5 7 3 8 , 1 1 5 7 3 6 , 1 1 5 0 9 5 , 1 1 3 8 1 6 , 1 1 3 1 7 7 , 1 1 1 8 9 6 , 1 1 1 8 9 5 , 1 1 1 8 9 4 ,
112533 ,113173 ,
- 1 , 5 8 3 5 2 , 5 8 9 9 4 , 5 8 9 9 5 , 5 8 9 9 6 , 5 8 3 5 8 , 5 7 7 1 9 , 5 7 7 2 0 , 5 6 4 4 1 ,
5 5 8 0 3 , 5 5 8 0 4 , 5 5 1 6 6 , 5 5 1 6 4 , 5 5 1 6 3 , 5 5 1 6 1 , 5 6 4 4 0 , 5 6 4 3 9 , 5 6 4 3 7 ,
5 5 7 9 5 , 5 7 0 7 6 , 5 7 0 7 5 , 5 8 3 5 4 , 5 8 3 5 2 ,
- 1 , 7 3 9 0 1 , 7 5 1 8 2 , 7 4 5 4 4 , 7 4 5 4 5 , 7 3 9 0 7 , 7 3 9 0 8 , 7 2 6 2 9 , 7 1 9 8 9 ,

7 0 7 0 9 , 7 0 0 6 9 , 6 9 4 2 7 , 6 9 4 2 6 , 6 9 4 2 5 , 7 0 7 0 5 , 7 0 7 0 3 , 7 0 7 0 2 , 7 1 3 4 3 ,
7 2 6 2 3 , 7 3 2 6 3 , 7 3 9 0 2 , 7 3 9 0 1 ,
- 1 , 7 4 7 4 3 , 7 5 3 8 5 , 7 5 3 8 6 , 7 4 7 4 7 , 7 4 1 0 8 , 7 3 4 6 9 , 7 3 4 7 1 , 7 2 1 9 3 ,
7 1 5 5 4 , 7 0 9 1 4 , 6 9 6 3 4 , 6 8 9 9 5 , 6 8 9 9 3 , 7 0 2 7 3 , 7 1 5 5 1 , 7 2 1 9 0 , 7 2 8 2 9 ,
7 3 4 6 8 , 7 4 7 4 6 , 7 4 7 4 5 , 7 4 7 4 3 ,

- 1 , 5 3 2 8 5 , 5 3 2 8 7 , 5 3 9 2 7 , 5 3 9 2 9 , 5 3 2 9 0 , 5 2 6 5 1 , 5 2 6 5 2 , 5 2 6 5 4 ,
5 3 9 3 5 , 5 2 6 5 7 , 5 2 0 1 5 , 5 1 3 7 4 , 5 0 0 9 3 , 4 9 4 5 1 , 4 8 8 0 9 , 4 6 8 8 9 , 4 8 1 6 7 ,
4 9 4 4 6 , 5 0 7 2 6 , 5 2 0 0 6 , 5 3 2 8 5 ,
- 1 , 1 3 6 2 0 5 , 1 3 6 2 0 7 , 1 3 6 2 0 9 , 1 3 5 5 7 1 , 1 3 6 2 1 2 , 1 3 6 2 1 4 , 1 3 6 2 1 6 , 1 3 5 5 7 8 ,
1 3 5 5 7 9 , 1 3 5 5 7 8 , 1 3 5 5 7 6 , 1 3 5 5 7 4 , 1 3 5 5 7 2 , 1 3 5 5 7 1 , 1 3 5 5 7 0 , 1 3 5 5 6 8 , 1 3 5 5 6 7 ,
135565,
- 1 , 2 5 0 9 7 , 2 6 3 7 8 , 2 7 6 5 8 , 2 7 6 6 0 , 2 8 9 4 2 , 3 0 8 6 4 , 2 9 5 8 6 , 2 8 9 4 8 ,
2 7 0 2 9 , 2 5 1 0 8 , 2 4 4 6 5 , 2 2 5 4 7 , 2 0 6 2 6 , 2 1 2 6 4 , 2 1 2 6 2 , 2 1 9 0 0 , 2 3 1 7 9 ,
2 4 4 6 1 , 2 4 4 5 8 , 2 5 0 9 7 ,
- 1 , 8 1 4 3 6 , 8 0 7 9 8 , 8 1 4 4 0 , 8 0 8 0 2 , 8 0 1 6 3 , 8 1 4 4 3 , 8 0 8 0 4 , 8 1 4 4 6 ,
8 1 4 4 7 , 8 1 4 4 9 , 8 0 8 0 9 , 7 9 5 2 9 , 7 9 5 2 7 , 7 8 8 8 6 , 7 8 8 8 4 , 7 8 2 4 3 , 7 8 8 8 1 ,
8 0 1 6 0 , 8 0 1 5 9 , 8 0 7 9 7 ,
- 1 , 2 8 2 5 7 , 2 9 5 4 0 , 3 2 1 0 1 , 3 0 8 2 3 , 3 0 8 2 5 , 2 8 9 0 7 , 2 6 3 4 8 , 2 5 0 7 0 ,
2 3 7 9 3 , 2 3 1 5 5 , 2 1 8 7 2 , 1 9 9 5 1 , 1 9 9 4 7 , 1 8 6 6 4 , 1 9 9 4 2 , 2 0 5 7 9 , 2 3 1 4 0 ,
2 5 0 5 9 , 2 6 9 7 8 , 2 8 2 5 7 ,
- 1 , 1 1 1 5 4 7 , 1 1 1 5 4 8 , 1 1 1 5 5 0 , 1 1 1 5 5 1 , 1 1 2 1 9 3 , 1 1 1 5 5 5 , 1 1 1 5 5 6 , 1 1 1 5 5 8 ,
1 1 0 9 1 7 , 1 1 0 9 1 6 , 1 1 0 2 7 4 , 1 1 0 2 7 2 , 1 1 0 2 7 1 , 1 1 0 2 7 0 , 1 1 1 5 5 1 , 1 1 1 5 4 9 , 1 1 1 5 4 8 ,
- 1 , 1 2 2 1 3 6 , 1 2 1 4 9 7 , 1 2 1 4 9 9 , 1 2 1 5 0 0 , 1 2 2 7 8 0 , 1 2 2 7 8 1 , 1 2 3 4 2 2 , 1 2 2 7 8 2 ,
1 2 2 7 8 3 , 1 2 2 1 4 4 , 1 2 0 8 6 4 , 1 1 9 5 8 2 , 1 2 0 2 2 1 , 1 2 0 8 6 0 , 1 2 0 8 5 9 , 1 2 0 8 5 7 , 1 2 1 4 9 6 ,
- 1 , 1 1 0 1 3 , 1 2 2 9 4 , 1 3 5 7 5 , 1 5 4 9 7 , 1 4 8 5 9 , 1 6 7 8 1 , 1 6 7 8 5 , 1 4 8 6 6 ,
1 2 9 4 6 , 1 1 6 6 6 , 1 1 0 2 3 , 1 1 0 2 0 , 1 1 6 5 8 , 1 2 9 3 8 , 1 1 6 5 7 , 1 1 0 1 5 , 1 1 0 1 3 ,
- 1 , 1 2 2 5 9 , 1 3 5 4 1 , 1 3 5 4 3 , 1 3 5 4 5 , 1 2 2 6 7 , 1 1 6 2 8 , 1 2 2 7 1 , 1 0 9 9 3 ,
9 7 1 2 , 8 4 3 4 , 7 7 9 2 , 9 0 7 1 , 8 4 2 8 , 9 0 6 6 , 1 0 3 4 4 , 1 1 6 2 2 , 1 2 2 5 9 ,
- 1 , 5 2 5 1 , 5 2 5 5 , 5 8 9 3 , 6 5 3 5 , 6 5 3 8 , 6 5 4 0 , 7 8 2 2 , 7 1 8 4 ,
7 1 8 7 , 7 1 8 9 , 5 2 6 6 , 6 5 4 4 , 6 5 4 3 , 5 9 0 2 , 5 2 5 9 , 5 2 5 7 , 5 2 5 4 ,
5 2 5 2 , 5 2 5 1 ,
- 1 , 1 3 3 0 6 3 , 1 3 3 7 0 4 , 1 3 3 7 0 5 , 1 3 3 7 0 7 , 1 3 3 0 6 9 , 1 3 1 7 9 0 , 1 3 1 7 8 8 , 1 3 2 4 2 9 ,
1 3 3 0 6 7 , 1 3 3 0 6 6 , 1 3 3 0 6 5 , 1 3 3 0 6 4 , 1 3 3 0 6 3 ,

-i,167617,168897,170177,170818,171460,170181,169542,168903,
168261,168260,168259,167618,167617,

-1,71823,73104,74385,74387,75027,75667,76308,75029,
73747,73107,72466,71826,71185,71184,71823,
-1,82301,82942,82943,82945,83586,82946,81667,81028,
81029,81028,81026,81665,81663,81662,82301,
-1,16563,18485,18487,17849,17211,17853,17215,15937,
14015,14014,12731,14650,12726,14004,16563,
- 1 , 72460, 73100, 73102, 74381, 74383, 75024, 76304, 76306,
75664,74384,74383,73742,73103,72461,72460,
-1,83010,83651,83011,82372,81734,81736,82378,81739,
81738,81736,81734,81733,81731,83010,
- 1 , 83623, 85543,85544, 85545,85547, 84908,83629, 82988,
81708,81707,81706,82345,82984,83623,
-1,76252,76893,76894,77535,78177,78819,79460,78180,
77539,76898,76257,76255,76254,75612,
-1,87211,87852,87853,87855,87216,87217,86578,86579,
85937,86576,86575,87213,87212,
-1,181971,182612,181974,182615,181977,181336,181335,181334,
181332,181972,181971,
-1,129656,130298,130299,129659,129020,127740,127738,127737,
128376,129656,
-1,137499,136860,136222,136224,135585,135584,135582,135581,
136220,136859,
-1,120781,122701,122703,122704,122065,120784,119503,119501,
120141,120781,
-1,118936,118937,120218,119580,118940,118939,118298,118297,
117656,118296,
-1,57341,58622,59262,58624,57343,56063,55422,55421,
56062,56701,57341,
-1,91861,92503,92504,93145,93146,92506,91867,91866,
91865,91864,91862,

- 1 , 9 7 1 8 9 , 9 7 8 3 1 , 9 8 4 7 1 , 9 9 1 1 1 , 9 9 1 1 2 , 9 9 1 1 3 , 9 7 8 3 3 , 9 7 1 9 3 ,
9 6 5 5 2 , 9 6 5 5 1 , 9 7 1 8 9 ,
- 1 , 5 7 5 9 , 5 4 5 0 , 5 1 4 0 , 5 1 2 0 , 1 9 5 2 0 0 , 2 5 0 2 4 0 , 2 5 0 5 4 9 , 2 5 0 8 5 9 ,
2 5 0 8 7 9 , 5 9 5 1 9 , 5 7 5 9 ,
- 1 , 8 5 9 3 8 , 8 5 3 0 0 , 8 5 3 0 1 , 8 5 9 4 2 , 8 5 3 0 3 , 8 5 3 0 4 , 8 4 6 6 3 , 8 4 6 6 2 ,
8 4 6 5 9 , 8 5 2 9 8 ,
- 1 , 5 8 6 1 3 , 5 9 8 9 4 , 6 0 5 3 4 , 6 1 1 7 5 , 6 0 5 3 6 , 6 0 5 3 7 , 5 9 2 5 8 , 5 8 6 1 6 ,
5 7 9 7 4 , 5 8 6 1 3 ,
- 1 , 7 0 4 8 3 , 7 1 7 6 3 , 7 3 0 4 5 , 7 4 3 2 7 , 7 3 0 4 6 , 7 2 4 0 6 , 7 1 7 6 5 , 7 1 1 2 6 ,
7 1 1 2 5 , 7 0 4 8 3 ,
- 1 , 6 3 4 8 2 , 6 3 4 8 4 , 6 2 2 0 5 , 6 2 2 0 7 , 6 2 2 0 9 , 6 2 2 0 8 , 6 2 2 0 7 , 6 1 5 6 6 ,
6 2 2 0 4 , 6 3 4 8 2 ,
- 1 , 2 1 9 3 7 , 2 3 2 1 6 , 2 5 1 3 7 , 2 5 7 7 9 , 2 5 1 4 1 , 2 5 1 4 3 , 2 2 5 8 3 , 2 1 9 4 1 ,
2 1 9 3 9 , 2 1 9 3 7 ,
- 1 , 1 9 8 6 1 1 , 1 9 8 6 1 2 , 1 9 7 9 7 4 , 1 9 7 9 7 5 , 1 9 7 3 3 7 , 1 9 7 3 3 5 , 1 9 8 6 1 2 , 1 9 8 6 1 1 ,
- 1 , 1 2 0 8 4 8 , 1 2 0 8 4 9 , 1 2 0 2 1 0 , 1 1 9 5 7 1 , 1 1 8 2 9 2 , 1 1 8 9 3 1 , 1 1 9 5 7 0 , 1 2 0 2 0 8 ,
- 1 , 1 3 8 6 2 0 , 1 3 9 2 6 0 , 1 4 0 5 4 1 , 1 4 1 1 8 2 , 1 3 9 2 6 1 , 1 3 6 7 0 1 , 1 3 7 3 4 0 , 1 3 8 6 2 1 ,
- 1 , 7 5 3 6 , 6 8 9 9 , 6 9 0 3 , 6 9 0 6 , 5 6 2 6 , 5 6 2 4 , 5 6 2 1 , 5 6 1 9 ,
5 6 1 8 , 6 8 9 7 , 7 5 3 6 ,
- 1 , 6 5 9 6 5 , 6 6 6 0 6 , 6 5 9 6 7 , 6 5 3 2 9 , 6 4 6 8 8 , 6 4 0 4 9 , 6 4 0 4 7 , 6 4 6 8 6 ,
65965 ,
- 1 , 7 7 0 0 5 , 7 7 6 4 6 , 7 8 2 8 8 , 7 8 2 8 9 , 7 8 2 9 0 , 7 7 6 4 8 , 7 7 0 0 7 , 7 7 0 0 6 ,
77005 ,
- 1 , 6 7 3 3 6 , 6 6 6 9 8 , 6 6 0 5 8 , 6 5 4 1 8 , 6 4 7 7 9 , 6 4 1 3 8 , 6 4 7 7 7 , 6 6 0 5 7 ,
67336 ,
- 1 , 1 5 3 0 0 , 1 7 2 2 1 , 1 8 5 0 4 , 1 8 5 0 7 , 1 6 5 8 7 , 1 5 9 4 4 , 1 5 9 4 1 , 1 5 3 0 0 ,
- 1 , 1 8 5 2 1 2 , 1 8 5 2 1 3 , 1 8 5 8 5 4 , 1 8 6 4 9 6 , 1 8 5 2 1 5 , 1 8 5 2 1 4 , 1 8 5 2 1 2 ,
- 1 , 1 1 7 0 2 0 , 1 1 7 6 6 1 , 1 1 8 3 0 0 , 1 1 8 3 0 1 , 1 1 8 3 0 2 , 1 1 7 0 2 2 , 1 1 7 0 2 0 ,
- 1 , 1 3 1 1 0 7 , 1 3 1 1 0 8 , 1 3 1 1 0 9 , 1 3 1 1 1 1 , 1 3 0 4 6 9 , 1 3 0 4 6 8 , 1 3 0 4 6 7 ,
- 1 , 1 4 6 5 3 1 , 1 4 7 8 1 3 , 1 4 7 8 1 4 , 1 4 8 4 5 6 , 1 4 7 8 1 5 , 1 4 7 1 7 3 , 1 4 6 5 3 2 ,
- 1 , 1 1 0 5 9 2 , 1 1 1 8 7 2 , 1 1 1 8 7 4 , 1 1 1 2 3 6 , 1 1 0 5 9 6 , 1 0 9 9 5 5 , 1 1 0 5 9 3 ,
- 1 , 2 1 2 6 6 4 , 2 1 2 6 6 6 , 2 1 2 6 6 8 , 2 1 1 3 8 9 , 2 1 0 7 4 7 , 2 1 1 3 8 5 , 2 1 2 6 6 4 ,
- 1 , 1 3 0 5 0 7 , 1 3 1 1 4 8 , 1 3 1 1 4 9 , 1 3 1 7 9 0 , 1 3 1 7 9 1 , 1 3 1 1 5 0 , 1 3 1 1 4 8 ,

,43062,44343,43705,43066,41787,41144,43062.
,7798,8438,8441,7804,7164,7162,7160,7798,
,111540,112182,111543,112184,111543,111541,
,53135,53776,54418,53780,53778,53137,53135,
,106773,108053,106775,105496,105494,106133.
,60182,60823,60824,60826,60185,60183,60182.
,97194,97835,97197,96558,95917,96556,96555.
,168508,170427,170429,169789,169149,168508,
,115543,116183,116825,116187,116185,115543.
,81485,82127,82128,81489,81488,81487,81486.
,95097,95738,95099,94461,94460,95098,95097.
,68819,69459,69460,69461,68822,68180,68819,
,127265,127906,128547,127908,127267,126627,
,177722,179002,179003,178364,178363,177722.
,6518,6521,6522,6525,5886,5883,5879,6518,
,23609,24251,24894,23614,21692,22330,23609.
,234215,234218,232941,232938,231655,234215.
,5272,5274,6556,6561,5923,5285,5287,5284,
,95081,95083,95085,95086,75084,94443,94441.
,88654,89274,90576,89937,89297,88016,88654,
,16788,17430,18073,16153,14872,14870,16788.
,91877,93158,93159,93160,92520,91879,91877.
,84420,84421,83782,83144,83782,84420,
,88508,88509,88510,88512,88510,80508,
,40086,39448,38169,36887,38166,40086,
,67377,67378,68017,68018,67379,67377,
,56491,56492,55214,55213,55212,56491,
,228533,229176,227898,227256,228533,
,143356,143358,143359,142718,143356,
,139532,140174,140175,140174,139532,
,250275,247075,243234,240673,240668,
,129786,130428,131069,129788,129786,
,111560,111562,111563,111561,111560,

.,133491,134132,135414,134774,132211,

1,201805
1,138790

805,
790,
373,

, 1 2 8 5 5 1 , 1 2 8 5 5 2 , 1 2 8 5 5 1 ,
, 1 0 8 8 4 1 , 1 0 8 8 4 3 , 1 0 8 8 4 1 ,
, 1 2 8 5 6 0 , 1 2 9 2 0 1 , 1 2 8 5 6 0 ,
, 146977 ,146978 ,146977 ,

1 T/L O AA 1 T A O A 7

1 0 2 0 5 0 , 1 0 1 4 1 1 , 1 0 2 0 5 0 ,
170886 ,170887 ,170886 ,
1 4 4 6 3 4 , 1 4 4 6 3 6 , 1 4 3 9 9 5 ,
1 3 1 0 7 1 , 1 3 0 4 3 2 , 1 3 0 4 3 1 ,
102054 ,101415 ,102054 ,
108198 ,108840 ,108198 ,

Index
Specific routines are listed under the program in which they appear.
. 143
absolute addressing modes 272
accstart 41, 164
ACCSTART.S 7
accsup.o 164
address errors 2 2 3 - 2 4
address mode field 267
address of handle 22
address register direct mode 271
AES viii
Alcyon C 5, 45
annotated disassembler 263
archiver program 45
arguments 236
arrow icons 33
asm 227
Atari ST Software Developer's Kit vii, 5, 19, 45, 49,

127, 219
batch file 5
BIOS viii, 183
blitter chip 185
bomb information 2 5 1 - 5 2
bombs 2 2 3 - 2 4
boxes 96
braces 4
break 4
brk function 41
bugs 52
building a menu tree 9 6 - 1 0 1 , 117
building an interactive sound control panel

186-203
build_tree. See specific program entry
bus errors 223
C compilers viii
central processing unit (CPU) 223
CHK instruction error 224
clearing work area 39
clock 212
column 160
command interpreter 127
"Command Shell" 127-71

build_tree 167 -69
built-in 142-44
calc_dir 160-62
calLsys 136-41
configac.c 129
configap.c 167 -68
dir_list 146 -49

do_copy 150-52
do_dir_ window 157-60
doit 162
doit.c 129 -30
do_main_menu 169-70
do_menu 169-70
do_move 152-54
do_rm 154
do_title 155-56
findcmd.c 141-42
get_head 149
give_help 135-36
got_key 130-35
isprg 136-38
justdraw.c 129 -30
linkacc.arg 164
linkacc.bat 165
link.arg 170
linkit.bat 171
new__window 162
pad 162
print_dir 163-64
prntfile.c 155-56
redo_dir 163
save_last 144-46
set_screen 136-38

compiler modifications 6 -8
config.c. See specific program entry
connecting routines 11
control statements 3
copying files 150-52
C routine, calling 234
cursor, text 15
dagger 180
data files 21
data register direct mode 271
data transfer address 146
"Bombsite!" 224 -61

bomb_info 2 5 1 - 5 4
bt 2 4 8 - 5 0
configac.c 2 2 5 - 2 6
debug.h 2 5 7 - 5 8
decode_status 2 5 4 - 5 5
doit 239-41
do_new_window 2 5 4 - 5 6
errors.c 2 2 7 - 2 9
get_args 2 3 6 - 3 7
get—base 2 4 6 - 4 7

322

getbyte 2 3 8 - 3 9
getlong 2 3 8 - 3 9
get_name 250-51
get_real 2 3 3 - 3 6
getshort 2 3 8 - 3 9
get_syms 2 4 4 - 4 6
get_trace 229-31
give_help 2 4 2 - 4 3
got_key 2 4 1 - 4 2
ismatch 2 4 7 - 4 8
just_draw 239
linkone.arg 259
linkone.bat 258
open_data 2 2 6 - 2 7
set_top 227
showwnd 2 5 6 - 5 7
trace 2 4 3 - 4 4

debugging 2 2 3 - 5 9
deleting files 154
desk accessory programs 15, 127
desk menu 92
dialog box 116, 200
dir_char 147, 150
disassembler 239, 258, 263, 264
disassembler portion of "Bombsite!" 2 6 3 - 9 9

addrmode 2 6 7 - 7 0
disassem 274
effadd 2 7 1 - 7 2
get_dis 2 6 5 - 6 6
hash_tab structure 275
immediate 2 7 3 - 7 4
linktst.bat 299
matchB 2 6 6 - 6 7
pcabsimm 2 7 2 - 7 3
setup_dis 2 7 4 - 7 5
tables.c 2 7 5 - 9 8

disassembly listing 274
do_menu. See specific program entry
doit. See specific program entry
drawing a bar chart 78-81
drawing a line chart 7 0 - 7 2
drawing pie charts 8 1 - 8 4
drawing the screen 38
drawing the Mandelbrot set 1 0 1 - 5
dummy exit function 41
editable text fields 117
envelope 11
envelope control bit 209
envelope generator 209
envelope library v, vii, viii, 11
envelope library routines 12 -46

addit.c 42
archive.bat 46
bldtree.c 43, 50
clip_work 3 9 - 4 0
clocktic.c 43
close-all 40 -41
close_window 40 -41
clr_display 3 9 - 4 0

config.c 12 -14 , 50
do_arrows 3 3 - 3 5
doclean 44, 50
do_display 38
doit 38, 50
do__menu 31, 50
do_redraw 3 2 - 3 3
gotkey.c 44, 50
hide_mouse 37
h_touched 36
just_clear 39
just_draw 3 2 - 3 3 , 50
main.c 1 4 - 1 6
mousehit.c 44, 50
multi 2 2 - 2 6
new wind 42, 44
nfparts.h 45
open_data 2 1 - 2 2 , 50
open_vwork 17 -18
open_window 20 - 21
pad.c 44
pos_slide 3 6 - 3 7
setup_screen 1 6 - 1 7
setup—window 1 9 - 2 0
show_form 26
show_mouse 37
slide_pos 3 5 - 3 6
slidsize.c 45
vdidata.c program 42
v_touched 3 6 - 3 7
was_msg 27 -31
window.h 45

error-handling routines 227
everything 143
exception handling 223
exception number 251
exceptions 223, 225
exclamation points 131
exit a program 40
file header 244
file menu 93
filename 160, 244
fractals 87
frame pointer 228, 229, 232
function addresses 246
functions 3
GEM v, vii, viii
GEMDOS viii
gemstart 41, 164, 167, 170
GEMSTART.S 6
Giaccess 204, 205, 208
global variables 4
got_key. See specific program entry
goto statement 4
graphics accelerator chip 185
handle 14, 158

address 22
virtual workstation 17, 38
window 21, 38

323

hard disk 57
hashing 265
hatching pattern 76
header file 124, 187
help menu 94
illegal instructions 224
immediate modes 272
indentation 3
index 266
indexing errors 224
indirect recursion 157
input 22
input devices 13
instruction 224, 236
instruction lengths 234
instruments 212
interface variables 12
interprocess communication 23
interrupt priority level 254
Kernighan and Ritchie standard 5
keyboard 177
libraries 5
library names 5
Line A graphics interface 87, 102
linear search 266
linker 45, 50
load address 233, 243
long integers 52
low memory 183
malloc () subroutine 7
Mandelbrot Program's Menu and Submenus figure

89
Mandelbrot set 87
"MandelZoom!" 8 7 - 1 2 4

addit 97, 100
back_to_first 124
build_tree 88, 9 6 - 1 0 1
colors 108 -10
config. c 8 8 - 8 9
coordinates 116-20
dialog 88, 115 -16
copy_first 121
do_cleanup 110
doit 88, 101-5
do_main_menu 9 1 - 9 5
do_menu 88, 8 9 - 9 0
get_val 120
give_help 9 5 - 9 6
got_key 88, 113 -15
just_draw 88, 121 -23
link.arg 124
linkit.bat 124
mouse_hit 88, 111-13
rest_colors 109-10
save_colors 109-10
save_screen 121
set_val 120
time_it 105 -7
time_print 105 -7

mandlzum. See "MandelZoom"
masking 266
memory management unit 223

menu activation 89
menus 168
messages 26
modulars 3
mouse 15, 37, 38
mouse_hit. See specific program entry
MOVE instruction 267
move multiple instruction 227
"Noise!" 175 -219

add_slider 192-93
alLsliders 193-94
bellblock 2 1 6 - 1 9
bld__sliders 189-91
build_tree 187 -89
clock_ticks 2 1 5 - 1 6
config.c 175 -76
do_black 182
do_cleanup 183
do_effects 2 1 3 - 1 5
doit 1 7 6 - 7 7
do_main__menu 196-99
do_menu 195 -96
do_rhythm 2 1 3 - 1 5
do_slider 199
do_white 180-82
drums.h 2 1 2 - 1 3
filLbox 180
get_clicks 183
got_key 185-86
just_draw 177
keys.h 179-80
link.arg 219
linkit.bat 219
mode_bit 2 0 9 - 1 0
no_clicks 183
noise 210-11
noise_enable 2 0 5 - 6
open_data 183-84
percussion 2 1 6 - 1 8
period 210-11
play_note 204
print_vals 212
put_clicks 183
rad_button 2 0 5 - 7
rest_state 203
save_state 203
select_on 2 0 4 - 5
set_slider 195
shape 2 1 0 - 1 2
show_keys 177-79
sliders 199-200
sliders.h 187
slid_val 2 0 7 - 8
sl_set 2 0 0 - 2 0 2
toggles 2 0 4 - 5
tone 2 0 8 - 9
tone_enable 2 0 5 - 6
volume 2 0 9 - 1 0
which_one 202

null string 63
object 96
object code 45

324

open—data. See specific program entry
options menu 9 3 - 9 4
overflow error 224
overflow table 265
packing 51
pathname 141, 149
phystop variable 227
piano keys 179
pitches 216
"Plots and Charts" 6 1 - 8 4

bar_chart 78-81
config.c 61, 6 2 - 6 3
doit.c 61
draw_bar 80-81
drawbox.c 77
extract 6 7 - 6 8
getmode.c 77
grid 7 3 - 7 8
label.c 75
line_chart 70 -72
link.arg 84
linkit.bat 84
open_data 6 3 - 6 4
open_data.c 61
pie_chart 8 1 - 8 4
range 72 -73
read_data 6 5 - 6 7
scale.c 78
select_file 6 4 - 6 5
strip_comment 67
strval.c 75

pointers 226
post processor 5
Print Values menu selection 212
printing the directory 162
privilege violations error 224
program addresses 247
program code 231
program counter 224, 228, 252
program counter relative modes 272
programming 5
question mark 248, 250, 268
quit a program 40
radio button 186, 206
RCS 50, 62
renaming files 152-54
resolution 108, 121
resolution modes 49
resource construction set. See RCS
return address 229
re-usability 4
rhythms, generating with the clock 2 1 2 - 1 9
screen 16
screen memory location 137
script file 5
scrolling, screen 33
setexc 225, 226
shape register 204
slider 189, 192, 256
slider box 33, 35, 35, 195, 207

slider index 202
sound chip 175
sound chip registers 197, 2 0 3 - 1 2
sound register values 193-95
stack 229, 2 3 1 - 3 3
stack space 6
stack trace 248
Stack Trace Structure, The (figure) 232
startup routines 6, 41
status register 254
subroutine addresses 246
sub windows 32
supervisor mode 183, 223, 224, 227
SUPEXEC 183
switch statement 3
symbol table 233, 243, 244, 250
system reset 225
TAB character 180
TEDINFO structure 117
template string 117
text editor 45
text string 117
time intervals 13
toggle switches 94
tone 208
TOS-Takes-Parameters 21
transient program area (TPA) 251
TRAPV instruction error 224
tree 96
tree index 202
.TTP extension 21
user mode 224
user stack pointer (USP) 251
validation string 117
values 120
VDI viii, 61
VDI routines 42
virtual device interface. See VDI
virtual workstation 14, 17

handle 14, 38
input parameters 17

voice register 204
volume 206, 209
while 4
wildcards 146
window 12, 13, 19, 20, 28, 40, 157, 162, 254
window handle 21, 38
window management routines 27
"World Map" 5 0 - 5 8

config.c 50
doit 51
link.arg 57
linkit.bat 57
map 5 2 - 5 3

"World Map" data 3 0 3 - 2 3
writing a program 3, 4
writing mode 76
zero divide error 224

325

To order your copy of COMPUTEI's ST Applications Guide:
Programming in C Disk, call our toll-free US order line: 1-800-
346-6767 (in NY 212-887-8525) or send your prepaid order to:

COMPUTEI's ST Applications Guide Disk
COMPUTE! Publications
P.O. Box 5038
F.D.R. Station
New York, NY 10150

All orders must be prepaid (check, charge, or money order). NC
residents add 5% sales tax. NY residents add 8.25% sales tax.

Send copies of COMPUTEI's ST Applications Guide Disk at
$16.95 per copy.

Please note: The COMPUTEI's ST Applications Guide: Programming
in C Disk is a 3VWnch, double-sided disk.

Subtotal $

Shipping and Handling: $2.00/disk $

Sales tax (if applicable) $

Total payment enclosed $

• Payment enclosed
• Charge • Visa • MasterCard • American Express

Acct. No. Exp. Date
(Required)

Name

Address

City _ — State Zip
Please allow 4-5 weeks for delivery.

3 2 7

Programming the Atari ST
GEM on the Atari ST is a rich environment, with hundreds of routines enabling you
to create sophisticated, powerful applications. GEM's features include pull-down
menus, icons, sliders to scroll screen data, mouse-activated screen selections, the
ability to move and rearrange windows, and so on.

Written for the C programmer, COMPUTERS ST Applications Guide: Program­
ming in C contains a set of high-level routines that make working with GEM easier.
By using these routines and making them part of your programs, you'll be able to
access GEM quickly and effortlessly. Each routine is fully explained in easy-to-under-
stand language.

Also included are a series of six application programs that illustrate how to
use the routines to access GEM. These applications show and explain how to use
slider boxes, pull-down menus, windows, and much more. The applications in­
cluded are:

• Plot routines that create pie, bar, and line graphs
• A very fast Mandelbrot set
• A line-drawing routine that creates a world map
• Command Shell desk accessory which allows desktop commands to be used

while an application is running
• Sound board simulation using the sound chip
• Debugger utility

COMPUTE'.'s ST Applications Guide: Programming in C is for intermediate to
advanced C programmers. Written in the clear and concise style that has b e c o m e
the hallmark of all COMPUTE! publications, COMPUTE'.'s ST Applications Guide:
Programming in C includes all the programs to help you access GEM from your C
programs. This is a book all Atari ST C programmers will want to add to their refer­
ence libraries.

All the programs in this book are ready to type in and use. If you prefer not to type in
the programs, however, a companion doubie-sided disk is available. See the coupon in
the back of the book for details.

0-87455-078-5 $19.95

