INTERNALS

The authoritative insider’'s gwdn

A Data Becker book published by

13331344444

T

AIARIANET
INTERNALS

The authoritative insider’s guide

By K. Gerits, L. Englisch, R. Bruckmann

A Data Becker Book
Published by

Abacus [iitiid Software

Third Edition, January 1988
Printed in U.S.A.
Copyright © 1985,1986,1987, 1988 Data Becker GmbH
Merowingerstrafie 30
4000 Diisseldorf, West Germany
Copyright © 1985,1986,1987, 1988 Abacus Software, Inc.
5370 52nd Street, S.E.
Grand Rapids, MI 49508

This book is copyrighted. No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of Abacus Software or Data Becker, GmbH.

Every effort has been made to ensure complete and accurate information
concerning the material presented in this book. However, Abacus Software
can neither guarantee nor be held legally responsible for any mistakes in
printing or faulty instructions contained in this book. The authors will
always appreciate receiving notice of subsequent mistakes.

ATARI, 520ST, ST, TOS, ST BASIC and ST LOGO are trademarks or
registered trademarks of Atari Corp.

GEM, GEM Draw and GEM Write are trademarks or registered trademarks
of Digital Research Inc.

IBM is a registered trademark of International Business Machines.

ISBN 0-916439-46-1

N = N — W R — W N =

h—lt-—‘b—lh—li—ﬂb—dr—‘b—i)—ﬂi-—‘b—‘b—‘bﬂr—‘b—ib—dt—li—d»—lH
DO

NpoebhhbarrbbbbboD S
— BN —

XL NP W= -

PWWWW DD
p—

W B

Table of Contents

The Integrated Circuits

The 68000 Processor

The 68000 Registers

Exceptions on the 68000

The 68000 Connections

The Custom Chips

The WD 1772 Floppy Disk Controller
1772 Pins

1772 Registers

Programming the FDC

The MFP 68901

68901 Connections

The MFP Registers

The 6850 ACIAs

The Pins of the 6850

The Registers of the 6850

The YM-2149 Sound Generator
Sound Chip Pins

The 2149 Registers and their Functions
I/O Register Layout of the ST

The Interfaces

The Keyboard

The Mouse

Keyboard commands
The Video Connection
The Centronics Interface
The RS-232 Interface
The MIDI Connections
The Cartridge Slot
ROM Cartridges

The Floppy Disk Interface
The DMA Interface

The ST Operating System
The GEMDOS

Memory, files and processes
The BIOS Functions

The XBIOS

N =

VoAb rs
[\ W [S

ARE VUWLWWWWWWLW

The Graphics

An overview of the line-A variables
Examples for using the line-A opcodes
The Exception Vectors

The line-F emulator

The interrupt structure of theST
The ST VT52 Emulator

The ST System Variables

The 68000 Instruction Set
Addressing modes

The instructions

The BIOS Listing

Appendix

The System Fonts

Alphabetical listing of GEMDOS functions
The blitter chip

The blitter registers

The Mega ST realtime clock

Blitter chip demonstration programs

Index

i

206
227
230
235
238
240
245
250
258
259
263
271

463
465
467
469
471
478
479
491

AT R AR A N AR R R R AR AR B AR N N
—_— D =

Q) DD it DD it et it b et DN et DD e

WWhphhoIaMRWWNNR~,—~RRONNOLAWNDNDNDND=
— i

PPRWOWERRNNNDONNNDRNR RN = e 2 i e

[}
fan—y

List of Figures

68000 Registers

GLUE

MMU

SHIFTER

DMA

FDC 1772

MFP 68901

ACIA 6850

Sound Chip YM-2149
Envelopes of the PSG

I/O Assignments

Memory Map

Block Diagram of the Atari ST
6850 Interface to 68000
Block Diagram of Keyboard Circuit
The Mouse

Mouse control port

Atari ST Key Assignments
Diagram of Video Interface
Monitor Connector

Printer Port Pins
Centronics Connection
RS-232 Connection

MIDI System Connection
The Cartridge Slot

Disk Connection

DMA Port

DMA Connections
Lo-Res-Mode
Medium-Res-Mode
Hi-Res-Mode

BLITTER
BLITTER BLOCK DIAGRAM

i

Chapter One

The Integrated Circuits

The 68000 Processor

The 68000 Registers

Exceptions on the 68000

The 68000 Connections

The Custom Chips

The WD 1772 Floppy Disk Controller
1772 Pins

1772 Registers

Programming the FDC

The MFP 68901

68901 Connections

The MFP Registers

The 6850 ACIAs

The Pins of the 6850

The Registers of the 6850

The YM-2149 Sound Generator
Sound Chip Pins

The 2149 Registers and their Functions
I/O Register Layout of the ST

Abacus Software Atari ST Internals

The Integrated Circuits

1.1 The 68000 Processor

The 68000 microprocessor is the heart of the entire Atari ST system. This
16-bit chip is in a class by itself; programmers and hardware designers alike
find the chip very easy to handle. From its initial development by Motorola
in 1977 to its appearance on the market in 1979, the chip was to be a
competitor to the INTEL 8086/8088 (the processor used in the IBM-PC and
its many clones). Before the Atari ST's arrival on the marketplace, there
were no affordable 68000 machines available to the home user. Now,

though, with 16-bit computers becoming more affordable to the common

man, the 8-bit machines won't be around much longer.

What does the 68000 have that's so special? Here's a very incomplete list
of features:

16 data bits

24 address bits (16-megabyte address range!!)
all signals directly accessible without multiplexer
hassle-free operation of "old" 8-bit peripherals
powerful machine language commands
easy-to-learn assembler syntax

14 different types of addressing

17 registers each having 32-bit widths

These specifications (and many yet to be mentioned here) make the 68000
an incredibly good microprocessor for home and personal computers. In
fact, as the price of memory drops, you'll soon be seeing 68000-based 64K
machines for the same price as present-day 8-bit computers with the same
amount of memory.

Abacus Software Atari ST Internals

1.1.1 The 68000 Registers

Let's take a look at 68000 design. Figure 1.1-1 shows the 17 onboard
32-bit registers, the program counter and the status register.

The eight data registers can store and perform calculations, as well as the
normal addressing tasks. Eight-bit systems use the accumulators for this,
which limits the programmer to a total of 8 accumulators. Our 68000 data
registers are quite flexible; data can be handled in 1-, 8-, 16- and 32- bit
sizes. Even four-bit operations are possible (within the limits of Binary
Coded Decimal counting). When working with 32-bit data, all 32 bits can
be handled with a single operation. With 8- and 16-bit data, only the 8th or
16th bit of the data register can be accessed.

The address registers aren't as flexible for data access as are the data
registers. These registers are for addressing, not calculation. Processing
data is possible only with word (16-bit) and longword (32-bit) operations.
The address registers must be looked at as two distinct groups, the most
versatile being the registers AO-A6. Registers A7 and A7 fulfill a special
need. These registers are used as the stack pointer by the processor. Two
stack pointers are needed to allow the 68000 to run in USER MODE and
SUPERVISOR MODE. Register A7 declares whether the system is in
USER or SUPERVISOR mode. Note that the two registers work "under"
A7, but the register contents are only available to the respective operating
mode. We'll discuss these operating modes later.

The program counter is also considered a 32-bit register. It is theoretically
possible to handle an address range of over 4 gigabytes. But the address
bits A24-A31 aren't used, which "limits" us to 16 megabytes.

The 68000 status register comprises 16 bits, of which only 10 bits are used.
This status register is divided into two halves: The lower eight bits (bits O
to 4 proper) is the "user byte". These bits, which act as flags most of the
time, show the results of arithmetical and comparative operations, and can
be used for program branches hinging on those results. We'll look at the
user byte in more detail later; for now, here is a brief list:

BIT 0 = Carry flag BIT 1 = Overflow flag
BIT 2 = Zero flag BIT 3 = Negative flag
BIT 4 = eXtend flag

Abacus Software

Atari ST Internals

Figure 1.1-1 68000 Registers
31 16 15 8 7 0
D 0—
D1
P2 | para
D3 REGISTERS
D4
D5
D 6
p7 1
31 0
| & 0—
Al
A2 |ADDRESS
A3 |REGISTERS
A4
AS
A6 —
31 0
System Stack Pointer SSP
User Stack Pointer USP A7 STACK POINTER
31 24 23 0
PC PROGRAM
s 5 7 5 COUNTER
Sys Byte User Byte SR STATUS
REGISTER

Abacus Software Atari ST Internals

Bits 8-10, 13 and 15 make up the status register's system byte. The
remaining bits are unused. Bit 15 works as a trace bit, which lets you do a
software controlled single-step execution of any program. Bit 13 is the
supervisor bit. When this bit is set, the 68000 is in supervisor mode. This
is the normal operating mode; all commands are executed in this mode. In
user mode, in which programs normally run, privileged instructions are
inoperative. A special hardware design allows access into the other memory
range while in user mode (e.g., important system variables, I/O registers).
The system byte of the status register can only be manipulated in supervisor
mode; but there's a simple method of switching between modes.

Bits 8 and 10 show the interrupt mask, and run in connection with pins
IPLO-IPL2.

The 68000 has great potential for handling interrupts. Seven different
interrupt priorities exist, the highest being the "non-maskable interrupt";
NMI. This interrupt recognizes when all three IPL pins simultaneously read
low (0). If, however, all three IPL pins read high, there is no interrupt, and
the system operates normally. The other six priorities can be masked by
appropriate setting of the system byte of the status register. For example, if
bit I2 of the interrupt mask is set, while 10 and I1 are off, only levels 7, 6
and 5 (000, 001 and 010) are recognized. All other combinations from
IPLO-IPL2 are ignored by the processor.

Abacus Software Atari ST Internals

1.1.2 Exceptions on the 68000

We've spoken of interrupts as if the 68000 behaves like other
microprocessors. Interrupts, according to Motorola nomenclature, are an
external form of an exception (the machine can interrupt what it's doing,
do something else, and return to the interrupted task if needed). The 68000
distinguishes between normal operation and exception handling, rather than
between user and supervisor mode. One such set of exceptions are the
interrupts. Other things which cause exceptions are undefined opcodes, and
word or longword access to a prohibited address.

To make exception handling quicker and easier, the 68000 reserves the first
1K of memory (1024 bytes, $000000-$0003FF). The exception table is
located here. Exceptions are all coded as one of four bytes of a longword.
Encountering an exception triggers the 68000, and the address of the
corresponding table entry is output.

A special exception occurs on reset, which requires 8 bytes (two
longwords); the first longword contains the standard initial value of the
supervisor stack pointer, while the second longword contains the address of
the reset routine itself. See Chapter 3.3 for the design and layout of the
exception table.

1.1.3 The 68000 Connections

The connections on the 68000 are divided into eight groups (see Figure
1.1-3 on page 11).

The first group combines data and address busses. The data bus consists of
pins DO-D15, and the address bus A1-A23. Address bit A0 is not available
to the 68000. Memory can be communicated with words rather than bytes
(1 word=2 bytes=16 bits, as opposed to 1 byte=8 bits). Also, the 68000
can access data located on odd addresses as well as even addresses. The
signals will be dealt with later.

It's important to remember in connection with this, that by word access to
memory, the byte of the odd address is treated as the low byte, and the even

7

Abacus Software Atari ST Internals

address is the high byte. Word access shouldn't stray from even addresses.
That means that opcodes (whether all words or a single word) must always
be located at even addresses.

When the data and address bus are in "tri-state” condition, a third condition
(in addition to high and low) exists, in which the pins offer high resistance,
and thus are inactive on the bus. This is important in connection with Direct
Memory Access (DMA).

The second group of connections comprise the signals for asynchronous
bus control. This group has five signals, which we'll now look at
individually:

1) R'W (READ/WRITE)
The R/W signal is a familiar one to all microprocessors. This
indicates to memory and peripherals whether the processor is writing
to or reading data from the address on the bus.

2) AS (ADDRESS STROBE)
Every processor has a signal which it sends along the data lines
signaling whether the address is ready to be used. On the 68000, this
is known as the ADDRESS STROBE (low active).

3) UDS (UPPER DATA 3TROBE)
4) LDS (LOWER DATA STROBE)

If the 68000 could only process an entire memory word (two bytes)
simultaneously, this signal wouldn't be necessary. However, for
individual access to the low-byte and high-byte of a word, the
processor must be able to distinguish between the two bytes. This is
the task performed by UDS and LDS. When a word is accessed,
both strobes are activated simultaneously (active=low). Accessing
the data at an odd address activates the Lower Data Strobe only, while
accessing data at an even address activates the Upper Data Strobe.

Bit AQ from the address bus is used in this case. After every access
when the system must distinguish between three conditions (word,
even byte, odd byte), AO determines how to complete the access.

LDS and UDS are tri-state outputs.

Abacus Software Atari ST Internals

5) DTACK

The above signals (with the exception of UDS and LDS) are needed
by an 8-bit processor. DTACK takes a different path; DTACK must
be low for any write or read access to take place. If the signal is not
low within a bus cycle, the address and data lines "freeze up" until
DTACK turns low. This can also occur in a WAIT loop. This way,
the processor can slow down memory and peripheral chips while
performing other tasks. If no wait cycles are used on the ST, the
processor moves "at full tilt".

The third group of connections, the signals VMA, VPA and E are for
synchronous bus control. A computer is more than memory and a
microprocessor; interfaces to keyboard, screen, printer, etc. must be
available for communication. In most cases, interfacing is handled by
special ICs, but the 68000 has a huge selection of interface chips onboard.
For hardware designers we'll take a little time explaining these synchronous
bus signals.

The signal E (also known as @2 or phi 2) represents the reference count for
peripherals. Users of 6800 and 6502 machines know this signal as the
system counter. Whereas most peripheral chips have a maximum frequency
of only 1 or 2 mHz, the 68000 has a working speed of 8 mHz, which can
increased to 10 by the E signal. The frequency of E in the ST is 800 kHz.
The E output is always active; it is not capable of a TRI- STATE condition.

The signal VPA (Valid Peripheral Address) sends data over the
synchronous bus, and delegates this transfer to specific sections of the chip.
Without this signal, data transfer is performed by the asynchronous bus.
VPA also plays a role in generating interrupts, as we'll soon see.

VMA (Valid Memory Address) works in conjunction with the VPA to
produce the CHIP-select signal for the synchronous bus.

The fourth group of 68000 signals allows simple DMA operation in the
68000 system. DMA (Direct Memory Access) directly accesses the DMA
controllers, which control computer memory, and which is the fastest
method of data transfer within a computer system.

To execute the DMA, the processor must be in an inactive state. But for the
processor to be signaled, it must be in a "sleep” state; the low BR signal

9

Abacus Software Atari ST Internals

(Bus Request) accomplishes this. On recognizing the BR signal, the
68000's read/write cycle ends, and the BG signal (Bus Grant) is activated.
Now the DMA-requested chip waits until the signals AS, DTACK and
(when possible) BGACK are rendered inactive. As soon as this occurs, the
BGACK (Bus Grant Acknowledge) is activated by the requested chip , and
takes over the bus. All essential signals on the processor are made high; in
particular, the data, address and control busses are no longer influenced by
the processor. The DMA controller can then place the desired address on
the bus, and read or write data. When the DMA chip is finished with its
task, the BGACK signal returns to its inactive state, and the processor again
takes over the bus.

The fifth group of signals on the 68000 control interrupt generation. The
68000's "user's choice" interrupt concept is one of its most extraordinary
performing qualities; you have 199 (!) interrupt vectors from which to
choose. These interrupt vectors are divided into 7 non-auto-vectors and 192
auto-vectors, plus 7 different priority lines.

Interrupts are triggered by signals from the three lines IPLO to IPL2; these
three lines give you eight possible combinations. The combination
determines the priority of the interrupt. That is, if IPLO, IPL1 and IPL2 are
all set high, then the lowest priority is set (""no interrupt"). However, if all
three lines are low, then highest priority takes over, to execute a
non-maskable interrupt. All the combinations in between affect special bits
in the 68000's status register; these, in turn, affect program control,
regardless of whether or not a chosen interrupt is allowable.

Wait -- what are auto-vectors and non-auto-vectors? What do these terms
mean?

If requesting an interrupt on IPLO-IPL2 while VPA is active (low), the
desired code is directly converted from the IPL pins into a vector number.
All seven interrupt codes on the IPL pins have their own vectors, though.
The auto-vector concept automatically gives the vector number of the IPL
interrupt code needed.

When DTACK, instead of VPA, is active on an interrupt request, the
interrupt is handled as a non-auto-vector. In this case, the vector number
from the triggered chip is produced by DTACK on the 8 lowest bits of the
data bus. Usually (though not important here), the vector number is placed
into the user-vector range ($40--$FF).

10

Abacus Software Atari ST Internals

The sixth set of connections are the three "function code” outputs FCO to
FC2. These lines handle the status display of the processor. With the help
of these lines, the 68000 can expand to four times 16 megabytes (64
megabytes). This extension requires the MMU (Memory Management
Unit). This MMU does more than handle memory expansion on the ST; it
also recognizes whether access is made to memory in user or supervisor
mode. This information is conveyed to a memory range only accessible in
supervisor mode. Also, the interrupt verification uses this information on
the FC line. The figure below shows the possible combinations of
functions.

Figure 1.1-3

FC2 FC1 FCO Status

0 0 0 unused

0 0 1 User-mode data access
0 1 0 User-mode program

0 1 1 unused

1 0 0 unused

1 0 1 Supervisor data access
1 1 0 Supervisor program

1 1 1 Interrupt verification

The seventh group contains system control signals. This group applies to
the input CLK and BERR, as well as the bidirectional lines RESET and
HALT.

The input CLK will generate the working frequency of the processor. The
68000 can operate at different speeds; but the operating frequency must be
specified (4, 6, 8, 10, or even 12.5 mHz). The ST has 8 mHz built in,
while the minimum operating frequency is 2 mHz. The ST's 8 mHz was
chosen as a "middle of the road" frequency to avoid losing data at higher
frequencies.

The RESET line is necessary to check for system power-up. The 63000's
gata page distinguishes between two different reset conditions. On
power-up, RESET and HALT are switched low for at least 100
milliseconds, to set up a proper initialization. Every other initialization
requires a low impulse of at least 4 "beats" on the 68K.

Here is what RESET does in detail. The system byte of the status register is
loaded with the value $27. Once the processor is brought into supervisor

11

Abacus Software Atari ST Internals

status, the Trace flag in the status register is cleared, and the interrupt level
is set to 7 (lowest priority, all lines allowable). Additionally, the supervisor
stack pointer and program counter are loaded with the contents of the first 8
bytes of memory, whereby the value of the program counter is set to the
beginning of the reset routine.

However, since the RESET line is bi-directional, the processor can also
have RESET under program control during the time the line is low. The
RESET instruction serves this purpose, when the connection is low for 124
"beats". It's possible to re-initialize the peripheral ICs at any time, without
resetting the computer itself. RESET time puts the 68000 into a NOP state
-- areset is unstoppable once it occurs.

The HALT pin is important to the RESET line's existence (as we mentioned
above), in order to initialize things properly. This pin has still more
functions: when the pin is low while RESET is high, the processor goes
into a halt state. This state causes the DMA pin to set the processor into the
tri-state condition. The HALT condition ends when HALT is high again.
This signal can be used in the design of single-step control.

HALT is also bi-directional. When the processor signals this line to become
low, it means that a major error has occurred (e.g., doubled bus and
address errors).

A low state on the BERR pin will call up exception handling, which runs
basically like an external interrupt. In an orderly system, every access to the
asynchronous bus quits with the DTACK signal. When DTACK is
outputting, however, the hardware can produce a BERR, which informs the
processor of any errors found. A further use for BERR is in connection
with the MMU, to test for proper memory access of a specific range; this
access is signaled by the FC pins. If protected memory is tried for in user
mode, a BERR will turn up.

When both BERR and HALT are low, the processor will "re-execute" the
instruction at which it stopped. If it doesn't run properly on the second
"go-round"”, then it's called a doubled bus error, and the processor halts.

The eighth group of connections are for voltage and ground.

12

Abacus Software Atari ST Internals

1.2 The Custom Chips

The Atari ST has four specially developed ICs. These chips (GLUE,
MMU, DMA and SHIFTER) play a major role in the low price of the ST,
since each chip performs several hundred overlapping functions. The first
prototype of the ST was 5 X 50 X 30 cm. in size, mostly to handle all those
TTL ICs. Once multiple functions could be crammed into four ICs, the ST
became a saleable item. Then again, the present ST hasn't quite reached the
ultimate goal -- it still has eight TTLs.

Naturally, since these chips were specifically designed by Atari for the ST,
they haven't been publishing any spec sheets. Even without any data specs,
“we can give you quite a bit of information on the workings of the ICs.

An interesting fact about these ICs is that they're designed to work in
concert with one another. For example, the DMA chip can't operate alone.
It hasn't an address counter, and is incapable of addressing memory on its
own (functions which are taken care of by the MMU). It's the same with
SHIFTER -- it controls video screen and color, but it can't address video
RAM. Again, MMU handles the addressing.

The system programmer can easily figure out which IC has which register.
It is only essential to be able to recognize the address of the register, and
how to control it. We're going to spend some time in this chapter exploring
the pins of the individual ICs.

The most important IC of the "foursome" is GLUE. Its title speaks for the
function -- a glue or paste. This IC, with its 68 pins, literally holds the
entire system together, including decoding the address range and working
the peripheral ICs.

Furthermore, the DMA handshake signals BR, BG and BGACK are
produced/output by GLUE. The time point for DMA request is dictated by
GLUE by the signal from the DMA controller. GLUE also has a BG (Bus
Grant) input, as well as a BGO (Bus Grant Out).

The interrupt signal is produced by GLUE; in the ST, only IPL1 and IPL2

are used for this. Without other hardware, you can't use NMI (interrupt
Jevel 7). The pins MFPINT and IACK are used for interrupt control.

13

Abacus Software

Atari ST Internals

BGI* 217
RDY 28
VPA* 29
BERR* 30
DTACK* 31
IPL 1x 32
IPL 2% 33
8MHZ in 34
GND 35
BLANK* 36
HSYNC 37
VSYNC 38
DE 39
BR* 40
BGACK* 41
6850CSs* 42
500HZ out 43

Figure 1.2-1 GLUE

«

HFOrmNMw
a;k«g X OwmN

SERTR x MN

UﬂggﬁooooogooomNN
MOQXK Y S
‘DIﬂ#MNHOO\GbWIﬂQMNHO
NNNNNNNe el

&
)
(¢]
N X
§:=

~
N

MFPINT*

BGO*

LDS*
MEFPPCS*

UDS*
DO
D1
IACK*
GND
SNDCS*
Al
A2
A3
A4
AS

D 9 a21
D 8 220
D 7 A19
D 6 A18
D 5 A17
D) 4 Alé
D 3 a1s
D 2 a14
» 1l Vee
D 68 Al13
D 67 A12
D 66 All
D 65 A10
D 64 a9
D 63 18
% 62 A7

61 16

Abacus Software Atari ST Internals

The function code pins are guided by GLUE, where memory access tasks
are performed (range testing and access authorization). Needless to say, the
BERR signal is also handled by this chip. VPA is particularly important to
the peripheral ICs and the appropriate select signals.

GLUE generates a timing frequency of 8 mHz. Frequencies between 2
mHz (sound chip's operating frequency) and 500 kHz (timing for keyboard
and MIDI interface) can be produced.

HSYNC, VSYNC, BLANK and DE (Display Enable) are generated by
GLUE for monitor operation. The synchronous timing can be switched on
and off, and external sync-signals sent to the monitor. This will allow you
to synchronize the ST's screen with a video camera.

The MMU also has a total of 68 pins. This IC performs three vital tasks.
The most important task is coupling the multiplexed address bus of dynamic
RAM with the processor's bus (handled by address lines Al to A21). This
gives us an address range totaling 4 megabytes. Dynamic RAM is
controlled by RASO, RAS1, CASOL, CASOH, CASIL and CASI1H, as
well as the multiplexed address bus on the MMU. DTACK, R/W, AS,LDS
and UDS are also controlled by MMU.

We've already mentioned another important function of the MMU: it works
with the SHIFTER to produce the video signal (the screen information is
addressed in RAM, and SHIFTER conveys the information). Counters are
incorporated in the MMU for this; a starting value is loaded, and within 500
nanoseconds, a word is addressed in memory and the information is sent
over DCYC. The starting value of the video counter (and the screen
memory position) can be shifted in 256-byte increments.

Another integrated counter in MMU, as mentioned earlier, is for addressing
memory using the DMA. This counter begins with every DMA access (disk
or hard disk), loading the address of the data being transferred. Every
transfer automatically increments the counter.

The SHIFTER converts the information in video RAM into impulses

readable on a monitor. Whether the ST is in 640 X 200 or 320 X 200
resolution, SHIFTER is involved.

15

Abacus Software Atari ST Internals

Figure 1.2-2 MMU

ol JEUNT]
0o3g
X HJ 00
x B o -
Ngdx TUNNNUHOODONO U
QQ§§24§§§QNNﬂaHﬁU
ol J¥a) oUw‘ Hdd S D>
VINIMNHE APV INTMNHO
NNNNNNQeHAN Ao
NNAANNNNNANNNNNANNN
enpr 27 G D 9 LATCH
cMpes 28 Q D 8 RASO
pcycx 29 C D 7 CASOLOW
roaT* 30 D) 6 CASOHIGH
DEV* 31 C D) 5 16éMHZ 1IN
AS 32 g D 4 D7
raM* 33 Q » 3 D6
R %G MMU B
a1is 35 9 1 D4
a4 35 G 68 D3
a1z 37 G €7 D2
a12 38 G €6 D1
a11 39 ¢ 65 DO
A10 40 @ 64 MAD 9
A9 41 C 63 MAD 8
A8 428 62 MAD 7
a7 43 61 GND
TNORDOO (NP NONDAO
PIVIILIID [V OV
U KNTMANHOV
[s1] Z U
gwmvmwﬁgmgaanoaao
PP VPP PEEEEEEE

16

Abacus Software

Atari ST Internals

Figure 1.2-3 SHIFTER

XTL O

XTL 1 32MHZ in
DO

D1

D2

D3

D 4

D5

D 6

D7

LOAD*

g U
© o

D10
D11
D12
D13
D14
D15

GND

AN

Pt atalatatlalalalalalalalYalVaVaValaVa!

JHLATHS

)cs

17

)Vcc

) 16MHZ out

%*

)A 1
)A 2
)A 3
)A 4
)A 5
)R/W*
)MONO
)R 0
)R 1
)R 2
e o
)G 1
)G 2
)B 0
)B 1
)B 2

Abacus Software Atari ST Internals

The information from RAM is transferred to SHIFTER on the signal
LOAD. A resolution of 640 X 400 points sends the video signal over the
MONO connector. Since color is impossible in that mode, the RGB
connection is rendered inactive. The other two resolutions set MONO
output to inactive, since all screen information is being sent out the RGB
connection in those cases.

The third color connection works together with external equipment as a
digital/analog converter. Individual colors are sent out over different pins,
to give us color on our monitor. Pins R1- R5 on the address bus make up
the "palette registers”. These registers contain the color values, which are
placed in individual bit patterns. The 16 palette registers hold a total of 16
colors for 320 X 200 mode. Note, however, that since these are based on
the "primary" colors red, green and blue, these colors can be adjusted in 8
steps of brightness, bringing the color total to 512.

The DMA controller is like SHIFTER, only in a 40-pin housing; it is used
to oversee the floppy disk controller, the hard disk, and any other
peripherals that are likely to appear.

The speed of data transfer using the floppy disk drive offers no problems to
the processor. It's different with hard disks; data moves at such high speed
that the 68000 has to send a "pause" over the 8 mHz frequency. This pace
is made possible by the DMA.

The DMA is joined to the processor's data bus to help transfer data. Two
registers within the machine act as a bi-directional buffer for data through
the DMA port; we'll discuss these registers later. One interesting point:
The processor's 16-bit data bus is reduced to 8 bits for floppy/hard disk
work. Data transfer automatically transfers two bytes per word.

The signals CA1, CA2, CR/W, FDCS and FDRQ manage the floppy disk
controller. CA1l and CA2 are signals which the floppy disk controller
(FDC) uses to select registers. CR/W determine the direction of data
transfer from/to the FDC, and other peripherals connected to the DMA port.

The RDY signal communicated with GLUE (DMA-request) and MMU
(address counter). This signal tells the DMA to transfer a word.

As you can see, these ICs work in close harmony with one another, and
each would be almost useless on its own.

18

Abacus Software Atari ST Internals

Figure 1.2-4 DMA

rR/w* (I) vee
A1l C)CLK
FCS* c)RDY
DO c)ACK*
D1 C)cno
D 2 c)cnl
D 3 c)cnz
D 4 C)cn3
D5 E ») gcn4
D6 g CD5
D7 C)cne
ps ») cp7
D9 C)GND
p10 (])caz
D11 C)cle
D12 C)CR/W*
D13 C)ans*
D14 C)HDRQ
D15 C)FDCS*
GND c FDRQ

19

Abacus Software Atari ST Internals

1.3 The WD 1772 Floppy Disk Controller

Although the 1772 from Western Digital has only 28 pins, this chip contains
a complete floppy disk controller (FDC) with capabilities matching 40-pin
controllers. This IC is software-compatible with the 1790/2790 series.
Here are some of the 1772's features:

Simple 5-volt current

Built-in data separator

Built-in copy compensation logic
Single and double density
Built-in motor controls

Although the user has his/her choice of disk format, e.g. sector length,
number of sectors per track and number of tracks per diskette, the "normal"
format is the optimum one for data transfer. So, Apple or Commodore
diskettes can't be used.

Before going on to details of the FDC, let's take a moment to look at the 28
pins of this IC.

1.3.1 1772 Pins

These pins can be placed in three categories. The first group consists of the
power connections.

Vee:

+5 volts current.
GND:

Ground connection.
MR:

Master reset. FDC reinitializes when this is low.

The second set are processor interface pins. These pins carry data between
the processor and the FDC.

20

Abacus Software Atari ST Internals

Figure 1.3-1 FDC 1772

Cs* C D INTR
R/W* E % DRQ
A0 DD *
a1 N we
DAL 0 E r~ g INDEX
1 r~ TRKO
P - - D
DAL 2 E % WD
DAL 3 WG
DAL 4 C U D MO
DAL 5 C [ell D RD *
DAL 6 C :) CLK
DAL 7 C :) DIRC
MR * C :) STEP
GND C :) Vee

21

Abacus Software Atari ST Internals

D0-D7:

CS:

R/W:

A0,A1:

DRQ:

CLK:

Eight-bit bi-directional bus; data, commands and status
information go between FDC and system.

FDC can only access registers when this line is low.

Read/Write. This pin states data direction. HIGH= read by FDC,
LOW=write from FDC.

These bits determine which register is accessed (in conjunction
with R/W). The 1772 has a total of five registers which can both
read and write to some degree. Other registers can only read OR
write. Here is a table to show how the manufacturer designed
them:

Al AQ R/W=1 R/W=0

0 0 Status Reg. Command Reg.
0 1 Track Reg. Track Reg.

1 0 Sector Reg. Sector Reg.
1 1 Data Reg. Data Reg.

Data Request. When this output is high, either the data register is
full (from reading), and must be "dumped", or the data register is
empty (writing), and can be refilled. This connection aids the
DMA operation of the FDC.

Clock. The clock signal counts only to the processor bus. An
input frequency of 8 mHz must be on, for the FDC's internal
timing to work.

The third group of signals make up the floppy interface.

STEP:

DIRC:

Sends an impulse for every step of the head motor.

Direction. This connection decides the direction of the head; high
moves the head towards center of the diskette.

22

Abacus Software Atari ST Internals

RD:

MO:

WG:

WD:

TROO:

1P:

WPRT:

DDEN:

Read Data. Reads data from the diskette. This information
contains both timing and data impulses -- it is sent to the internal
data separator for division.

Motor On. Controls the disk drive motor, which is automatically
started during read/write/whatever operations.

Write Gate. WG will be low before writing to diskette. Write
logic would be impossible without this line.

Write Data. Sends serial data flow as data and timing impulses.

Track 00. This moves read/write head to track 00. TR0OO would
be low in this case.

Index Pulse. The index pulses mark the physical beginnings of
every track on a diskette. When formatting a disk, the FDC
marks the start of each track before formatting the disk.

Write Protect. If the diskette is write-protected, this input will
react.

Double Density Enable. This signal is confined to floppy disk
control; it allows you to switch between single-density and
double-density formats.

23

Abacus Software Atari ST Internals

1.3.2 1772 Registers

CR (Command Register):
Commands are written in this 8-bit register. Commands should
only be written in CR when no other command is under
execution. Although the FDC only understands 11 commands,
we actually have a large number of possibilities for these
commands (we'll talk about those later).

STR (Status Register):
Gives different conditions of the FDC, coded into individual bits.
Command writing depends on the meaning of each bit. The
status register can only be read.

TR (Track Register):
Contains the current position of the read/write head. Every
movement of the head raises or lowers the value of TR
appropriately. Some commands will read the contents of TR,
along with information read from the disk. The result affects the
Status Register. TR can be read/written.

SR (Sector Register):
SR contains the number of sectors desired from read/write
operations. Like TR, it can be used for either operation.

DR (Data Register):
DR is used for writing data to/ reading data from diskette.

24

Abacus Software Atari ST Internals

1.3.3 Programming the FDC

Programming this chip is no big deal for a system programmer. Direct (and
in most cases, unnecessary) programming is made somewhat harder AND
drastically simpler by the DMA chip. The 11 FDC commands are divided
into four types.

Type Function
1 Restore, look for track 00
Seek, look for a track
Step, a track in previous direction
Step In, move head one track in (toward disk hub)
Step Out, move head one track out (toward edge of disk)
Read Sector
Write Sector
Read Address, read ID
Read Track, read entire track
Write Track, write entire track (format)
Force Interrupt

PLWWWRIN == =

Type 1 Commands

These commands position the read/write head. The bit patterns of these five
commands look like this:

BIT
7 6 5 4 3 2 1 0
Restore 0 0 0 0 H V Rl RO
Seek 0 0 0 1 H VvV Rl RO
Step 0 0 1 U H V R1lRO
Step In 0 1 0 U H V Rl RO
Step Out 0 1 1 U H V Rl RO

25

Abacus Software Atari ST Internals

All five commands have several variable bits; bits RO and R1 give the time
between two step impulses. The possible combinations are:

RO STEP RATE

0 2 milliseconds
1 3 milliseconds
0 5 milliseconds
1 6 milliseconds

These bits must be set by the command bytes to the disk drive. The V-bit is
the so-called "verify flag". When set, the drive performs an automatic
verify after every head movement. The H-bit contains the spin-up
sequence. The system delays disk access until the disk motor has reached
300 rpm. If the H-bit is cleared, the FDC checks for activation of the
motor-on pins. When the motor is off, this pin will be set high (motor on),
and the FDC waits for 6 index impulses before executing the command. If
the motor is already running, then there will be no waiting time.

The three different step commands have bit 4 designated a U- bit. Every
step and change of the head appears here.
Tvype 2 Commands

These commands deal with reading and writing sectors. They also have
individual bits with special meanings.

BIT 7 6 5 4 3 2 1 0
Read Sector 1 0 0 M H E 0 0
Write Sector 1 0 1 M H E P A0

The H-bit is the previously described start-up bit. When the E-bit is set, the
FDC waits 30 milliseconds before starting the command. This delay is
important for some disk drives, since it takes time for the head to change
tracks. When the E-bit reads null, the command will run immediately.

The M-bit determines whether one or several sectors are read one after
another. On a null reading, only one sector will be read from/written to.
Multi-sector reading sets the bit, and the FDC increments the counter at each
new sector read.

Bits 0 and 1 must be cleared for sector reading. Writing has its own special
meaning: the AO bit conveys to bit 0 whether a cleared or normal data

26

Abacus Software Atari ST Internals

address mark is to be written. Most operating systems don't use this option
(a normal data address mark is written).

The P-bit (bit 1) dictates whether pre-compensation for writing data is
turned on or off. Pre-compensation is normally set on; it supplies a higher
degree of protection to the inner tracks of a diskette.

Type 3 Commands

Read Address gives program information about the next ID field on the
diskette. This ID field describes track, sector, disk side and sector length.
Read Track gives all bytes written to a formatted diskette, and the data
"between sectors”. Write Track formats a track for data storage. Here are
the bit patterns for these commands:

BIT 76543210
Read Address 11 00HEODO
Read Track 111 0HETUODO
Write Track 11 11HEPO

The H- and E-bits also belong to the Type 2 command set (spin-up and
head-settle time). The P-bit has the same function as in writing sectors.

Type 4 Commands

There's only one command in this set: Force Interrupt. This command can
work with individual bits during another FDC command. When this

command comes into play, whatever command was currently running is
ended.

BIT 7 6 5 4 3 2 1 0
Force Interrupt 1 1 0 1 I3 I2 I1 IO

Bits I0-I3 present the conditions under which the interrupt is pressed. 10
and I1 have no meaning to the 1772, and remain low. If I2 is set, an
interrupt will be produced with every index impulse. This allows for
software controlled disk rotation. If I3 is set, an interrupt is forced
immediately, and the currently-running command ends. When all bits are
null, the command ends without interruption.

27

Abacus Software Atari ST Internals

1.4 The MFP 68901

MFP is the abbreviation for Multi-Function Peripheral. This name is no
exaggeration; wait until you see what it can do! Here's a brief list of the
most noteworthy features:

8-bit parallel port

Data direction of every port bit is individually programmable
Port bits usable as interrupt input

16 possible interrupt sources

Four universal timers

Built-in serial interface

1.4.1 The 68901 Connections

The 48 pins of the MFP are set apart in function groups. The first function
group is the power connection set:

GND, Vce, CLK:
Vce and GND carry voltage to and from the MFP. CLK is the
clock input; this clock signal must not interfere with the system
timer of the processor. The ST's MFP operates at a frequency of
4 mHz.

Communication with the data bus of the processor is maintained with
DO0-D7, DTACK, RS1-RS5 and RESET.

D0-D7:
These bi-directional pins normally work with the 8 lowest data
bits of the 68000. It is also possible to connect with D8 through
D15, but it's impossible to produce non-auto interrupts. Thus,
interrupt vectors travel along the low order 8 data bits.

28

Abacus Software Atari ST Internals

Figure 1.4-1 MFP 68901
/wr @ D) cs-
A1l Ds*
A2 E % DTACK*
A3 C D IACK*
A4 C D D 7
ASs C D D 6
T C C :) D 5
so - [) o 4
sz C D D 3
R C D 2
NC. C o) D P O
TA O C m D Vss
TB 0 C O D CLK
Tc 0 C D IEI*
™ 0 C D IEO*
XTALIC :) INTR™*
XTALZC D RR *
ta 1 (] D TR *
TB I 7
RESETE % Ie6
IO C D IS
I1 C :) I 4
2 C D I3

29

Abacus Software Atari ST Internals

CS (Chip Select):

This line is necessary to communication with the MFP. CS is
active when low.

DS (Data Strobe):
This pin works with either LDS or UDS on the processor.
Depending on the signal, MFP will operate either the lower or
upper half of the data bus.

DTACK (Data Transfer ACKnoledge):

This signal shows the status of the bus cycle of the processor
(read or write).

RS1-RS5 (Register Select):
These pins normally connect with to the bottom five address lines

of the processor, and serve to choose from the 24 internal
registers.

RESET:

If this pin is low for at least 2 microseconds, the MFP initializes.
This occurs on power-up and a system reset.

The next group of signals cover interrupt connections (IRQ, IACK, IEI and
IEO).

IRQ (Interrupt ReQuest):

IRQ will be low when an interrupt is triggered in the MFP. This
informs the processor of interrupts.

TACK (Interrupt ACKnowledge):
On an interrupt (IRQ and IEI), the MFP sends a low signal over
IACK and DS on the data lines. Since 16 different interrupt
sources are available, this makes handling interrupts much
simpler.

IEL, IEO (Interrupt Enable In/ Out):
These two lines permit daisy-chaining of several MFPs, and
determine MFP priority by their positioning in this chain. IEI
would work through the MFP with the highest priority. IEO of
the second MFP would remain unswitched. On an interrupt, a
signal is sent over IACK, and the first MFP in the chain will
acknowledge with a high IEO.

30

Abacus Software Atari ST Internals

Next, we'll look at the eight I/O lines.

100-7 (Input/Output):
These pins use one or all normal I/O lines. The data direction of
each port bit is set up in a data direction register of its own. In
addition, though, every port bit can be programmed to be an
interrupt input.

The timer pins make up yet another group of connections:

XTAL1,2 (Timer Clock Crystal):
A quartz crystal can be connected to these lines to deliver a
working frequency for the four timers.

TALTBI (Timer Input):
Timers A and B can not only be used as real counters differently
from timers C and D with the frequency from XTAL1 and 2, but
can also be set up for event counting and impulse width
measurement. In both these cases, an external signal (Timer
Input) must be used.

TAO,TBO,TCO,TDO (Timer Output):
Every timer can send out its status on each peg (from 01 to 00).
Each impulse is equal to O1.

The second-to-last set of signals are the connections to the universal serial
interface. The built-in full duplex of the MFP can be run synchronously or
asynchronously, and in different sending and receiving baud rates.

SI (Serial Input):
An incoming bit current will go up the SI input.

SO (Serial Output):
Outgoing bit voltage (reverse of SI).

RC (Receiver Clock):
Transfer speed of incoming data is determined by the frequency
of this input; the source of this signal can, for example, be one of
the four timers.

TC (Transmitter Clock):

Similar to RC, but for adjusting the baud-rate of data being
transmitted.

31

Abacus Software Atari ST Internals

The final group of signals aren't used in the Atari ST. They are necessary
when the serial interface is operated by the DMA.

RR (Receiver Ready):
This pin gives the status of the receiving data registers. If a
character is completely received, this pin sends current.

TR (Transmitter Ready):
This line performs a similar function for the sender section of the
serial interface. Low tells the DMA controller that a new
character in the MFP must be sent.

1.4.2 The MFP Registers

As we've already mentioned, the 68901 has a total of 24 different registers.
This large number, together with the logical arrangement, makes
programming the MFP much easier.

Reg 1 GPIP, General Purpose I/O Interrupt Port
This is the data register for the 8-bit ports, where data from the
port bits is sent and read.

Reg 2 AER, Active Edge Register
When port bits are used for input, this register dictates whether
the interrupt will be a low-high- or high-low conversion. Zero is
used in the high-low change, one for low-high.

Reg 3 DDR, Data Direction Register
We've already said that the data direction of individual port bits
can be fixed by the user. When a DDR bit equals O, the
corresponding pin becomes an input, and 1 makes it an output.
Port bit positions are influenced by AER and DDR bits.

32

Abacus Software Atari ST Internals

Reg 4,5 IERA,IERB, Interrupt Enable Register

Every interrupt source of the MFP can be separately switched on
and off. With a total of 16 sources, two 8-bit registers are
needed to control them. If a 1 has been written to IERA or
IERB, the corresponding channel is enabled (turned on).
Conversely, a zero disables the channel. If it comes upon a
closed channel caused by an interrupt, the MFP will completely
ignore it. The following table shows which bit is coordinated
with which interrupt occurrence:

JERA

Bit 7: I/0 port bit 7 (highest priority)
Bit 6: I/O port bit 6

Bit 5: Timer A

Bit 4: Receive buffer full

Bit 3: Receive error

Bit 2: Sender buffer empty

Bit 1: Sender error

Bit O0: Timer B

TERB

Bit 7: I/0 port bit 5

Bit 6: I/O port bit 4

Bit 5: Timer C

Bit 4: Timer D

Bit 3: I/0 port bit 3

Bit 2: I/O port bit 2

Bit 1: I/O port bit 1

Bit 0: I/0 port bit 0, lowest priority

This arrangement applies to the IP-, IM- and IS-registers
discussed below.

Reg 6,7 IPRA,IPRB, Interrupt Pending Register
When an interrupt occurs on an open channel, the appropriate bit
in the Interrupt Pending Register is set to 1. When working with
a system that allows vector creation, this bit will be cleared when
the MFP puts the vector number on the data bus. If this isn't
possible, the IPR must be cleared using software. To clear a bit,
a byte in the MFP will show the location of the specific bit.

The bit arrangement of the IPR bit arrangement is shown in the
table for registers 4 and 5 (see above).

33

Abacus Software Atari ST Internals

Reg 8,9 ISRA,ISRB,Interrupt In-Service Register

The function of these registers is somewhat complicated, and
depends upon bit 3 of register 12. This bit is an S-bit, which
determines whether the 68901 is working in "Software End-of-
Interrupt’ mode (SEI) or in "Automatic End-of-Interrupt” mode
(AEI). AEI mode clears the IPR (Interrupt Pending Bit), when
the processor gets the vector number from the MFP during an
IACK cycle. The appropriate In-Service bit is cleared at the same
time. Now a new interrupt can occur, even when the previous
interrupt hasn't finished its work.

SEI mode sets the corresponding ISR-bit when the vector
number of the interrupt is requested by the processor. At the
interrupt routine's end, the bit designated within the MFP must
be cleared. As long as the Interrupt In-Service bit is set, all
interrupts of lower priority are masked out by the MFP. Once the
Pending-bit of the active channel is cleared, the same sort of
interrupt can occur a second time, and interrupts of lesser priority
can occur as well.

Reg 10,11 IMRA,IMRB Interrupt Mask Register
Individual interrupt sources switched on by IER can be masked
with the help of this register. That means that the interrupt is
recognized from within and is signaled in the IPR, even if the
IRQ line remains high.

Reg 12 VR Vector Register

In the cases of interrupts, the 68901 can generate a vector number
corresponding to the interrupt source requested by the processor
during an Interrupt Acknowledge Cycle. All 16 interrupt
channels have their own vectors, with their priorities coded into
the bottom four bits of the vector number (the upper four bits of
the vector are copied from the vector register). These bits must
be set into VR, therefore.

Bit 3 of VR is the previously mentioned S-bit. If this bit is set
(like in the ST), then the MFP operates in "Software End-of-
Interrupt” mode; a cleared bit puts the system into "Automatic
End-of-Interrupt” mode.

34

Abacus Software Atari ST Internals

Reg 13,14 TACR,TBCR Timer A/B Control Register

Before proceeding with these registers, we should talk for a
moment about the timer. Timers A and B are both identical.
Every timer consists of a data register, a programmable feature
and an 8-bit count-down counter. Contents of the counters will
decrease by one every impulse. When the counter stands at 01,
the next impulse changes the corresponding timer to the output of
its pins. At the same time, the value of the timer data register is
loaded into the timer. If this channel is set by the IER bit, the
interrupt will be requested. The source of the timer beats will
usually be those quartz frequencies from XTAL1 and 2. This
operating mode is called delay mode, and is available to timers C
and D.

Timers A and B can also be fed external impulses using timer
inputs TAI and TBI (in event count mode). The maximum
frequency on timer inputs should not surpass 1/4 of the MFP's
operating frequency (that is, 1 mHz).

Another peculiarity of this operating mode is the fact that the
timer inputs for the interrupts are I/O pins 13 and 14. By
programming the corresponding bits in the AER, a pin-jump can
be used by the timer inputs to request an interrupt. TAI is joined
with pin 13, TBI by pin 14. Pins 13 and 14 can also be used as
I/O lines without interrupt capability.

Timers A and B have yet a third operating mode (pulse-length
measurement). This is similar to Delay Mode, with the difference
that the timer can be turned on and off with TAI and TBI. Also,
when pins 13 and 14 are used, the AER-bits can determine
whether the timer inputs are high or low. If, say, AER-bit 4 is
set, the counter works when TAI is high. When TAI changes to
low, an interrupt is created.

Now we come to TACR and TBCR. Both registers only use the

fifth through eighth bits. Bits O to 3 determine the operating
mode of each timer:

35

Abacus Software

Atari ST Internals

BIT 3

B R R PR RHRPHROOOOOOOOO

N

PR PP OOOORREFPRPEOOOOO

-

o

Function

Timer
Delay
Delay
Delay
Delay
Delay
Delay
Delay

mode,
mode,
mode,
mode,
mode,
mode,
mode,

subdivider
subdivider
subdivider
subdivider
subdivider
subdivider
subdivider
subdivider

divides
divides
divides
divides
divides
divides
divides
divides

stop, no function executed

by
by
by
by
by
by
by

4
10
16
16
50
64
100
200

Delay
Event
Pulse
Pulse
Pulse
Pulse
Pulse
Pulse
Pulse

FRPOORPFPOORPOORRKFHOO
RPORORORPRORPRORFROREORO

mode,
Count Mode
extension
extension
extension
extension
extension
extension
extension

mode, subdivider
mode, subdivider
mode, subdivider
mode, subdivider
mode, subdivider
mode, subdivider
mode, subdivider

by

divides
divides
divides
divides
divides
divides
divides

by
by
by
by
by
by
by

4
10
16
50
64
100
200

Bit 4 of the Timer Control Register has a particular function.
This bit can produce a low reading for the timer being used with
it at any time. However, it will immediately go high when the

timer runs.

Reg 15 TCDCR Timers C and D Control Register
Timers C and D are available only in delay mode; thus, one byte
controls both timers. The control information is programmed
into the lower three bits of the nibbles (four- bit halves). Bits 0
and 2 arrange Timer D, Timer C is influenced by bits 4 and 6.
Bits 3 and 7 in this register have no function.

Bit
Bit

el el ol N @ N @ NN N\

PR OORRFPROOUE
PORPRORPRORKROEO

Stop

Mode,
Mode,
Mode,
Mode,
Mode,
Mode,
Mode,

36

Function - Timer D
Function - Timer C
Timer
Delay
Delay
Delay
Delay
Delay
Delay
Delay

division
division
division
division
division
division
division

10
16
50
64
100
200

Abacus Software Atari ST Internals

Reg 16-19 TADR,TBDR,TCDR,TDDR Timer Data Registers
The four Timer Data Registers are loaded with a value from the
counter. When a condition of 01 is reached, an impulse occurs.
A continuous countdown will stem from this value.

Reg 20 SCR Synchronous Character Register
A value will be written to this register by synchronous data
transfer, so that the receiver of the data will be alerted. When
synchronous mode is chosen, all characters received will be
stored in the SCR, after first being put into the receive buffer.

Reg 21 UCR,USART Control Register
USART is short for Universal Synchronous/Asynchronous
Receiver/Transmitter. The UCR allows you to set all the
operating parameters for the interfaces. Parameters can also be
coded in with the timers.

Bit O : unused
Bit 1 : 0=0dd parity
1=Even parity

Bit 2 : 0=No parity (bit 1 is ignored)
1=Parity according to bit 1

Bits 3,4 : These bis control the number of
start- and stopbits and the
format desired.
Start Stop Format

0 0 Synchronous

1 1 Asynchronous

1 1,5 Asynchronous

1 2 Asynchronous

Bit

= OO
RPORPROW

Bits 5,6 : These bits give the
"wordlength” of the data bits
to be transferred.

Word length

8 bits

7 bits

6 bits

5 bits

Bits

B O OWu

37

Abacus Software Atari ST Internals

Bit 7

O=Frequency from TC and RC
directly used as transfer
frequency (used only for
synchronous transfer)
l1=Frequency in TC and RC
internally divided by 16.

Reg 22 RSR Receiver Status Register

The RSR gives information concerning the conditions of all
receivers. Again, the different conditions are coded into
individual bits.

Bit 0 Receiver Enable Bit
When this bit is cleared, receipt is immediately turned off.
All flags in RSR are automatically cleared. A set bit means
that the receiver is behaving normally.

Bit 1 Synchronous Strip Enable
This bit allows synchronous data transfer to determine
whether or not a character in the SCR is identical to a
character in the receive buffer.

Bit 2 Match/Character in Progress
When in synchronous transfer format, this bit signals that a
character identical with the SCR byte would be received.
In asynchronous mode, this bit is set as soon as the startbit
is recognized. A stopbit automatically clears this bit.

Bit 3 Found - Search/Break Detected

This bit is set in synchronous transfer format, when a
character received coincides with one stored in the SCR.
This condition can be treated as an interrupt over the
receiver's error channel. Asynchronous mode will cause
the bit to set when a BREAK is received. The break
condition is fulfilled when only zeroes are received
following a startbit. To distinguish between a BREAK
from a "real" null, this line should be low.

Bit 4 Frame Error

A frame error occurs when a byte received is not a null, but
the stopbit of the byte IS a null.

38

Abacus Software Atari ST Internals

Bit 5 Parity Error
The condition of this bit gives information as to whether
parity on the last received character was correct. If the
parity test is off, the PE bit is untouched.

Bit 6 Overrun Error
This bit will be set when a complete character is in the
receiver floating range but not read into the receive buffer.
This error can be operated as an interrupt.

Bit 7 Buffer Full
This bit is set when a character is transferred from the
floating register to the receive buffer. As soon as the
processor reads the byte, the bit is cleared.

Reg 23 TSR Transmitter Status Register
Whereas the RSR sends receiver information, the TSR handles
transmission information.

Bit 0 Transmitter Enable
The sending section is completely shut off when this bit is
cleared. At the same time the End-bit is cleared and the UE-
bit is set (see below). The output to the receiver is set in
the corresponding H- and L-bits.

Bits 1,2 High- and Low-bit

These bits let the programmer decide which mode of output
the switched-off transmitter will take on. If both bits are
cleared,the output is high. High-bit only will create high
output; low-bit, low output. Both bits on will switch on
loop-back-mode. This state loops the output from the
transmitter with receiver input. The output itself is on the
high-pin.

Bit 3 Break
The break-bit has no function in synchronous data transfer.
In asynchronous mode, though, a break condition is sent
when the bit is set.

39

Abacus Software Atari ST Internals

Bit 4 End of Transmission
If the sender is switched off during running transmission,
the end-bit will be set as soon as the current character has
been sent in its entirety. When no character is sent, the bit
is immediately set.

Bit 5 Auto Turnaround
When this bit is set, the receiver is automatically switched
on when the transmitter is off, and a character will
eventually be sent.

Bit 6 Underrun Error
This bit is switched on when a character in the sender
floating register will be sent, before a new character is
written into the send buffer.

Bit 7 Buffer Empty
This bit will be set when a character from the send buffer
will be transferred to the floating register. The bit is
cleared when new data is written to the send buffer.

Reg 24 UDR, USART Data Register
Send/receive data is sent over this register. Writing sends data in

the send buffer, reading gives you the contents of the receive
buffer.

40

Abacus Software Atari ST Internals

1.5 The 6850 ACIAs

ACIA is short for "Asynchronous Communications Interface Adapter".
This 24-pin IC has all the components necessary for operating a serial
interface, as well as error-recognizing and data-formatting capabilities.
Originally for 6800-based computers, this chip can be easily tailored for
6502 and 68000 systems. The ST has two of these chips. One of them
communicates with the keyboard, mouse, joystick ports, and runs the
clock. Keyboard data travels over a serial interface to the 68000 chip. The
second ACIA is used for operating the MIDI interface.

Parameter changes in the keyboard ACIA are not recommended: The
connection between keyboard and ST can be easily disrupted. The MIDI
interface is another story, though -- we can create all sorts of practical
applications. Incidentally, nowhere else has it been mentioned that the
MIDI connections can be used for other purposes. One idea would be to
use the MIDI interfaces of several STs to link them together (for schools or
offices, for example).

1.5.1 The Pins of the 6850

For those of you readers who aren't very well-acquainted with the
principles of serial data transfer, we've included some fairly detailed
descriptions in the pin layout which follows.

Vss
This connection is the "ground wire" of the IC.

RX DATA Receive Data

This pin receives data; a start-bit must precede the least significant
data-bit before receipt.

41

Abacus Software Atari ST Internals

Figure 1.5-1 ACIA 6850

Vss E g CTS*
RX DATA o DCD*1
RX CLK C LN D D 0
TX CLK C 00 D D 1
RTS * C O :) D 2
TX DATA E g D 3
IRQ* D 4
cs 0 4 D 5
cs 2+ E H % D 6
cs 1 C U D D 7
RS C 4 D E
Vee C D R/W*

42

Abacus Software Atari ST Internals

RX CLK Receive Clock
This pin signal determines baud-rate (speed at which the data is
received), and is synchronize to the incoming data. The
frequency of RX CLK is patterned after the desired transfer
speed and after the internally programmed division rate.

TX CLK Transmitter Clock
Like RX CLK, only used for transmission speed.

RTS Request To Send
This output signals the processor whether the 6850 is low or
high; mostly used for controlling data transfer. A low output
will, for example, signal a modem that the computer is ready to
transmit.

TX DATA Transmitter Data
This pin sends data bit-wise (serially) from the computer.

IRQ Interrupt Request
Different circumstances set this pin low, signaling the 68000
processor. Possible conditions include completed transmission
or receipt of a character.

CS 0,1,2 Chip Select
These three lines are needed for ACIA selection. The relatively
high number of CS signals help minimize the amount of
hardware needed for address decoding, particularly in smaller
computer systems.

RS Register Select
This signal communicates with internal registers, and works
closely with the R/W signal. We shall talk about these registers
later.

Vce Voltage
This pin is required of all ICs -- this pin gets an operating voltage
of 5V.

R/W Read/Write
This tells the processor the "direction” of data traveling through
the ACIA. A high signal tells the processor to read data, and low
writes data in the 6850.

43

Abacus Software Atari ST Internals

E Enable

The E-signal determines the time of reading/writing. All
read/write processes with this signal must be synchronous.

DO - D7 Data

These data lines are connected to those of the 68000. Until the
ACIA is accessed, these bidirectional lines are all high.

DCD Data Carrier Detect

A modem control signal, which detects incoming data. When
DCD is high, serial data cannot be received.

CTS Clear To Send

CTS answers the computer on the signal RTS. Data transmission
is possible only when this pin is low.

1.5.2 The Registers of the 6850

The 6850 has four different registers. Two of these are read only. Two of

them are write only. These registers are distinguished by R/W and RS,
after the table below:

R/W RS Register Access
0 0 Control Register write
0 1 Sender Register write
1 0 Status Register read
1 1 Receive Register read

The sender/receiver registers (also known as the RX- and TX- buffers) are
for data transfer. When receiving is possible, the incoming bits are putin a
shift register. Once the specified number of bits has arrived, the contents of
the shift register are transferred to the TX buffer. The sender works in

much the same way, only in the reverse direction (RX buffer to sender shift
register).

Abacus Software

Atari ST Internals

Th n i

The eight-bit control register determines internal operations. To solve the
problem of controlling diverse functions with one byte, single bits are set up

as below:

CR 0,1

These bits determine by which factor the transmitter and receiver
clock will be divided. These bits also are joined with a master
reset function. The 6850 has no separate reset line, so it must be

accomplished through software.

CR1 CRO
0 0 RXCLK/TXCLK without division
0 1 RXCLK/TXCLK by 16 (for MIDI)
1 0 RXCLK/TXCLK by 64 (for keyboard)
1 1 Master RESET
CR 2,34

These so-called Word Select bits tell whether 7 or 8 data-bits are
involved; whether 1 or 2 stop-bits are transferred; and the type of

parity.
C

w
@]

HOP—‘OHO}—‘OE)

NS
Q

PP, OORrRrRPRLROOW

databits,
databits,
databits,
databits,
databits,
databits,
databits,
databits,

PP PP OOOCOWX
® o © ® ~ =~ =

CR 6,5

These Transmitter Control bits set the RTS output pin, and allow
or prevent an interrupt through the ACIA when the send register
is emptied. Also, BREAK signals can be sent over the serial
output by this line. A BREAK signal is nothing more than a long

sequence of null bits.

45

[I = I N M)

stopbits,
stopbits,

stopbit,
stopbit,
stopbit,
stopbit,
stopbit,
stopbit,

even
odd
even
odd
no
no
even
odd

parity
parity
parity
parity
parity
parity
parity
parity

Abacus Software Atari ST Internals

RTS low, transmitter IRQ disabled

RTS low, transmitter IRQ enabled

RTS high, transmitter IRQ disabled

RTS low, transmitter IRQ disabled, BREAK
sent

PR, OOwW
PO oW

CR 7
The Receiver Interrupt Enable bit determines whether the receiver
interrupt will be on. An interrupt can be caused by the DCD line
changing from low to high, or by the receiver data buffer filling.
Besides that, an interrupt can occur from an OVERRUN (a
received character isn't properly read from the processor).

CR7
0 Interrupt disabled
1 Interrupt enabled

The Status Register
The Status Register gives information about the status of the chip. It also
has its information coded into individual bytes.

SRO
When this bit is high, the RX data register is full. The byte must
be read before a new character can be received (otherwise an
OVERRUN happens).

SR1
This bit reflects the status of the TX data buffer. An empty
register sets the bit.

SR2

A low-high change on pin DCD sets SR2. If the receiver
interrupt is allowable, the IRQ will be cancelled. The bit is
cleared when the status register and the receiver register are read.
This also cancels the IRQ. SR2 register remains high if the
signal on the DCD pin is still high; SR2 registers low if DCD
becomes low.

46

Abacus Software Atari ST Internals

SR3
This line shows the status of CTS. This signal cannot be altered
by a master reset, or by ACIA programming,

SR4
Shows "Frame errors". Frame errors are when no stop-bit is
recognized in receiver switching. It can be set with every new
character.

SRS
This bit displays the previously mentioned OVERRUN
condition. SRS is reset when the RX buffer is read.

SR6
This bit recognizes whether the parity of a received character is
correct. The bit is set on an error.

SR 7
This signals the state of the IRQ pins; this bit makes it possible to
switch several IRQ lines on one interrupt input. In cases where
an interrupt is program-generated, SR7 can tell which IC cut off
the interrupt.

The ACIAs in the ST

The ACIAs have lots of extras unnecessary to the ST. In fact, CTS, DCD
and RTS are not connected.

The keyboard ACIA lies at the addresses $FFFC00 and $FFFC02. Built-in

parameters are: 8-bit word, 1 stopbit, no parity, 7812.5 baud (500
kHz/64).

The parameters are the same for the MIDI chip, EXCEPT for the baud rate,
which runs at 31250 baud (500 kHz/16).

47

Abacus Software Atari ST Internals

1.6 The YM-2149 Sound Generator

The Yamaha YM-2149, a PSG (programmable sound generator) in the same
family as the General Instruments AY-3-8190, is a first-class sound
synthesis chip. It was developed to produce sound for arcade games. The
PSG also has remarkable capabilities for generating/altering sounds.
Additionally, the PSG can be easily controlled by joysticks, the computer
keyboard, or external keyboard switching. The PSG has two bidirectional
8-bit parallel ports. Here's some general data on the YM-2149:

» three independently programmable tone generators
+ a programmable noise generator

+ complete software-controlled analog output

e programmable mixer for tone/noise

¢ 15 logarithmically raised volume levels

* programmable envelopes (ASDR)

* two bidirectional 8-bit data ports

* TTL-compatible

* simple 5-volt power

The YM-2149 has a total of 16 registers. All sound capabilities are
controlled by these registers.

The PSG has several "functional blocks" each with its own job. The tone
generator block produces a square-wave sound by means of a time signal.
The noise generator block produces a frequency-modulated square-wave
signal, whose pulse-width simulates a noise generator. The mixer couples
the three tone generators' output with the noise signal. The channels may
be coupled by programming.

The amplitude control block controls the output volume of the three
channels with the volume registers; or creates envelopes (Attack, Decay,
Sustain, Release, or ADSR), which controls the volume and alters the
sound quality.

The D/A converter translates the volume and envelope information into

digital form, for external use. Finally one function block controls the two
I/O ports.

48

Abacus Software Atari ST Internals

Figure 1.6-1 Sound chip YM-2149

Vss E)Vcc
NC. C)'rzs'r 1

ANALOG BC)ANALOG c

ANALOG A C) DA O

NC. C)DA 1
2
)nn 3

6VTIC-NA

IOA3C)RESET*
IOAZC)CLOCK
IOAl c IOAO

49

Abacus Software Atari ST Internals

1.6.1 Sound Chip Pins

Vss:
This is the PSG ground connection.
NC.:
Not used.
ANALOG B:
This is the channel B output. Maximum output voltage is 1 vss.
ANALOG A:
Works like pin 3, but for channel A.
NC.:
Not used.
I0B7 - 0:
The IOB connections make up one of the two 8-bit ports on the
chip. These pins can be used for either input or output. Mixed
operation (input and output combined) is impossible within one
port, however both ports are independent of one another.
IOA7 - 0:
Like IOB, but for port A.
CLOCK:

All tone frequencies are divided by this signal. This signal
operates at a frequency between 1 and 2 mHz.

RESET:
A low signal from this pin resets all internal registers. Without a
reset, random numbers exist in all registers, the result being a
rather unmusical "racket”.

A9:

This pin acts as a chip select-signal. When it is low, the PSG
registers are ready for communication.

50

Abacus Software Atari ST Internals

AS8:
Similar to A9, only it is active when high.

TEST2:

Test2 is used for testing in the factory, and is unused in normal
operation.

BDIR & BC1,2:

The BDIR (Bus DIRection), BC1 and BC2 (Bus Control) pins
control the PSG's register access.

BDIR BC2 BC1l PSG function
0 Inactive
Latch address
Inactive
Read from PSG
Latch address
Inactive
Write to PSG
Latch address

RPRPEPRPOOOO
PP OORRPRO
PORPORPORO

Only four of these combinations are of any use to us; those with a
5+ voltage running over BC2. So, here's what we have left:

BDIR BC1l Function

Inactive, PSG data bus high
Read PSG registers

Write PSG registers

Latch, write register number (s)

=P OO
R ORr O

DAO - 7:
These pins connect the sound chip to the processor, through the
data bus. The identifier DA means that both data and (register)
addresses can be sent over these lines.

ANALOG C:
Works with channel C (see ANALOG B, above).

TEST1:
See TEST2.

Vee:
+5 volt pin.

51

Abacus Software Atari ST Internals

1.6.2 The 2149 Registers and their Functions

Now let's look at the functions of the individual registers. One point of
interest: the contents of the address register remain unaltered until
reprogrammed. You can use the same data over and over, without having
to send that data again.

Reg 0,1:
These register determine the period length, and the pitch of
ANALOG A. Not all 16 bits are used here; the eight bits of
register O (set frequency) and the four lowest bits of register 1
(control step size). The lower the 12-bit value in the register, the
higher the tone.

Reg 2,3:
Same as registers 0 and 1, only for channel B.

Reg 4,5:
Same as registers O and 1, only for channel C.

Reg 6:
The five lowest bits of this register control the noise generator.
Again, the smaller the value, the higher the noise "pitch".

Reg 7:
Bit 0:Channel A tone on/off O=on /l=off
Bit 1l:Channel B tone on/off O=on /l=off
Bit 2:Channel C tone on/off O=on /l=off
Bit 3:Channel A noise on/off O=on /l=off
Bit 4:Channel B noise on/off O=on /l=off
Bit 5:Channel C noise on/off O=on /l=off
Bit 6:Port A in/output 0=in /l=out
Bit 7:Port B in/output 0=in /1l=out

52

Abacus Software Atari ST Internals

Figure 1.6-2 Envelopes of the PSG

REG 15
B3 B2 Bl BO

ook

| [y zmmans

o FHQZHHZOO
(o) |N0>'HH’

S
A
W
W
AN

53

Abacus Software Atari ST Internals

Reg 8: .
Bits 0-3 of this register control the signal volume of channel A.
When bit 4 is set, the envelope register is being used and the
contents of bits 0-3 are ignored.

Reg 9:

Same as register 8, but for channel B.

Reg 10:
Same as register 8, but for channel C.

Reg 11,12:
The contents of register 11 are the low-byte and the contents of
register 12 are the high-byte of the sustain.

Reg 13:
Bits 0-3 determine the waveform of the envelope generator. The
possible envelopes are pictured in Figure 1.6-2.

Reg 14,15:
These registers comprise the two 8-bit ports. Register 14 is
connected to Port A and register 15 is connected to Port B. If
these ports are programmed as output (bits 7 and 8 of register 7)
then values may be sent through these registers.

54

Abacus Software Atari ST Internals

1.7 /O Register Layout in the ST

The entire /O range (all peripheral ICs and other registers) is controlled by a
32K address register -- $FF8000 - $FFFFFF. Below is a complete table of
the different registers. CAUTION: The I/O section can be accessed only in
supervisor mode. Any access in user mode results in a bus-error.

SFF8000 Memory configuration
SFF8200 Video display register
SFF8400 Reserved

SFF8600 DMA/disk controller

SFF8800 Sound chip

SFFFAQO MFP 68901

SFFFCOO0 ACIAs for MIDI and keyboard

The addresses given refer only to the start of each register, and supply no
hint as to the size of each. More detailed information follows.

$FF8000 Memory Configuration

There is a single 8-bit register at $FF8001 in which the memory
configuration is set up (four lowest bits). The MMU-IC is designed for
maximum versatility within the ST. It lets you use three different types of
memory expansion chips: 64K, 256K, and the 1M chips. Since all of these
ICs are bit-oriented instead of byte-oriented, 16 memory chips of each type
are required for memory expansion. The identifier for 16 such chips
(regardless of memory capacity) is BANK. So, expansion is possible to
128 Kbyte, 512 Kbyte or even 2 Megabytes.

MMU can control two banks at once, using the RAS- and CAS- signals.
The table on the next page shows the possible combinations:

55

Abacus Software Atari ST Internals

FE 1 i m
3-0 Bank O Bank 1
0000 128K 128K
0001 128K 512K
0010 128K 2 M
0011 reserved
0100 512K 128K
0101 512K 512K
0100 512K 2 M,normally reserved
0100 reserved
1000 2M 128K
1001 2M 512K
1010 2M 2M
1011 reserved
11XX reserved

The memory configuration can be read from or written to.

$FF8200 _ Video Display Regist

This register is the storage area that determines the resolution and the color
palette of the video display.

SFF8201 8-bit Screen memory position (high-byte)
SFF8203 8-bit Screen memory position (low-byte)

These two read/write registers are located at the beginning of the 32K video
RAM.

In order to relocate video RAM, another register is used. This register is
three bytes long and is located at $FF8205. Video RAM can be relocated in
256-byte increments. Normally the starting address of video RAM is
$78000.

SFF8205 8-bit Video address pointer (high-byte)
SFF8207 8-bit Video address pointer (mid-byte)
SFF8209 8-bit Video address pointer (low-byte)

These three registers are read only. Every three microseconds, the contents
of these registers are incremented by 2.

56

Abacus Software Atari ST Internals

SFF820A BIT Synchronization mode
10
: :—— O=internal, l=external synchronization

:———- 0=60 Hz, 1=50Hz screen frequency

The bottom two bits of this register control synchronization mode; the
remaining bits are unused. If bit O is set, the HSync and VSync impulses
are shut off, which allows for screen synchronization from external sources
(monitor jack). This offers new realm of possibilities in video,
synchronization of your ST and a video camera, for example.

Bit 1 of the sync-mode register handles the screen frequency. This bit is
useful only in the two "lowest" resolutions. High-res operation puts the ST
at a 70 Hz screen frequency.

Sync mode can be read/written.

SFF8240 16-bit Color palette register O
SFF8242 16-bit Color palette register 1

Color palette registers 2-13

SFF825C 16-bit Color palette register 14
SFF825E 16-bit Color palette register 15

Although the ST has a total of 512 colors, only 16 different colors can be
displayed on the screen at one time. The reason for this is that the user has
16 color pens on screen, and each can be one of 512 colors. The color
palette registers represent these pens. All 16 registers contain 9 bits which
affect the color:

FEDCBA9876543210
..... XXX . XXX . XXX

The bits marked X control the registers. Bits 0-2 adjust the shade of blue
desired; 4-6, green hue; and 8-A, red. The higher the value in these three
bits, the more intense the resulting color.

Middle resolution (640 X 200 points) offers four different colors; colors 4
through 15 are ignored by the palette registers.

When you want the maximum of 16 colors, it's best to zero-out the contents
of the palette registers.

57

Abacus Software Atari ST Internals

High-res (640 X 400 points) gives you a choice on only one "color"; bit 0
of palette register 0 is set to the background color. If the bit is cleared, then
the text is black on a light background. A set bit reverses the screen (light
characters, black background). The color register is a read/write register.

SFF8260 Bit Resolution
10
0 0O 320 X 200 points, four focal planes
0 1 640 X 200 points, two focal planes
1 0 640 X 400 points, one focal planes

This register sets up the appropriate hardware for the graphic resolution
desired.

FF D Di]

SFF8600 reserved

SFF8602 reserved

SFF8604 16-bit FDC access/sector count

The lowest 8 bits access the FDC registers. The upper 8 bits contain no
information, and consistently read 1. Which register of the FDC is used
depends upon the information in the DMA mode control register at
$FF8606. The FDC can also be accessed indirectly.

The sector count-register under $FF8604 can be accessed when the
appropriate bit in the DMA control register is set. The contents of these
addresses are both read/write.

SFF8606 16-bit DMA mode/status

When this register is read, the DMA status is found in the lower three bits of
the register.

Bit 0 O=no error, 1=DMA error
Bit 1 O=sector count = null, l=sector count<>null
Bit 2 Condition of FDC DATA REQUEST signal

Write access to this address controls the DMA mode register.

58

Abacus Software Atari ST Internals

Bit O unused
Bit 1 O=pin A0 is low
l1=pin AO is high
Bit 2 O=pin Al is low
1=pin Al is high
Bit 3 O0=FDC access
1=HDC access
Bit 4 O=access to FDC register
l=access to sector count register
Bit 5 0, reserved
Bit 6 0=DMA on
1=no DMA
Bit 7 O=hard disk controller access (HDC)
1=FDC access
Bit 8 O=read FDC/HDC registers
l=write to FDC/HDC registers
SFF8609 8-bit DMA basis and counter high-byte
SFF860RB 8-bit DMA basis and counter mid-byte
SFF860D 8-bit DMA basis and counter low-byte

DMA transfer will tell the hardware at which address the data is to be
moved. The initialization of the three registers must begin with the low-byte
of the address, then mid-byte, then high-byte.

$FF8800 Sound Chip

The YM-2149 has 16 internal registers which can't be directly addressed.
Instead, the number for the desired register is loaded into the select register.
The chosen registers can be read/write, until a new register number is
written to the PSG.

SFF8800 8-bit Read data/Register select

Reading this address gives you the last register used (normally port A), by
which disk drive is selected. This can be accomplished with write-protect
signals, although these protected contents can be accessed by another
register. Port A is used for multiple control functions, while port B is the
printer data port.

59

Abacus Software Atari ST Internals

PORT A

Bit O Page-choice signal for double-sided
floppy drive

Bit 1 Drive select signal -- floppy drive O
Bit 2 Drive select signal -- floppy drive 1
Bit 3 RS-232 RTS-output
Bit 4 RS-232 DTR output
Bit 5 Centronics strobe
Bit 6 Freely usable output (monitor jack)
Bit 7 reserved

When $FF8800 is written to, the select register of the PSG is alerted. The
information in the bottom four bits are then considered as register numbers.
The necessary four-bit number serves for writing to the PSG.

SFF8802 8-bit Write data

Attempting to read this address after writing to it will give you $FF only,
while BDIR and BC1 are nulls.

Writing register numbers and data can be performed with a single MOVE
instruction.

$FFFAQ0 MFP 68901

The MFP's 24 registers are found at odd addresses from
$FFFAOQ1-$FFFA2F:

SFFFAOQ1 8-bit Parallel port

SFFFAQ3 8-bit Active Edge register
SFFFAQS 8-bit Data direction

SFFFAQ7 8-bit Interrupt enable A
SFFFAQ9 8-bit Interrupt enable B
SFFFAOB 8-bit Interrupt pending A
SFFFAOD 8-bit Interrupt pending B
SFFFAQF 8-bit Interrupt in-service A
SFFFAll 8-bit Interrupt in-service B
SFFFA13 8-bit Interrupt mask A
SFFFA1S 8-bit Interrupt mask B
SFFFA1l7 8-bit Vector register
SFFFA19 8-bit Timer A control
SFFFA1B 8-bit Timer B control

60

Abacus Software Atari ST Internals

SFFFA1D 8-bit Timer C & D control
SFFFALF 8-bit Timer A data
SFFFA21 8-bit Timer B data
SFFFA23 8-bit Timer C data
SFFFA25 8-bit Timer D data
SFFFA27 8-bit Sync character
SFFFA29 8-bit USART control
SFEFFA2B 8-bit Receiver status
SFFFA2D 8-bit Transmitter status
SFFFA2F 8-bit USART data

See the chapter on the MFP for details on the individual registers.

I/0 Port

Bit O Centronics busy

Bit 1 RS-232 data carrier detect - input
Bit 2 RS-232 clear to send - input

Bit 3 reserved

Bit 4 keyboard and MIDI interrupt

Bit 5 FDC and HDC interrupt

Bit 6 RS-232 ring indicator

Bit 7 Monochrome monitor detect

Timers A and B each have an input which can be used by external timer
control, or send a time impulse from an external source. Timer A is unused
in the ST, which means that the input is always available, but it isn't
connected to the user port, so the Centronics busy pin is connected instead.
You can use it for your own purposes.

Timer B is used for counting screen lines in conjunction with DE (Display
Enable).

The timer outputs in A-C are unused. Timer D, on the other hand, sends
the timing signal for the MFP's built-in serial interface.

61

Abacus Software Atari ST Internals

FFF K r D

The communications between the ST, the keyboard, and musical
instruments are handled by two registers in the ACIAs.

SFFFCOO0 8-bit Keyboard ACIA control
SFFFCO02 8-bit Keyboard ACIA data
SFFFCO04 8-bit MIDI ACIA control
SFFFCO06 8-bit MIDI ACIA data

Figure 1.7-1 I/O Assignments

SFFECO0 2 ACIA’ s 6580
MFP 68901
$FFFA00
SOUND AY-3-8910

$FF8300

DMA /WD 1770
$FF8600

RESERVED
$FF8400
VIDEO CONTROLLER
$FF8200
DATA CONFIGURATION

$FF8000

62

Abacus Software

Atari ST Internals

Figure 1.7-2 Memory Map of the ATARI ST

$FF FCOO

SFF
S$FF

FAOO

8800
8600
8400
8200

$FF 8000

SFE FFFF

$FC 0000

$FA 0000

$07 FFFF

$00 0000

1/0 - Area

192 K
System ROM

128 K ROM
Expansion Cartridge

512 K RAM

63

16776192

16775680

16746496
16745984
16745412
16744960
16744448

16711679

16515072

16384000

524281

Atari ST Internals

Abacus Software

BLOCK DIAGRAM of the ATARI ST

128K
Exp. ROM

V| 6850
512K 192K
RAM System ROM Mw
Single Chip
Processor
v
pMAa | | CRT mmnm_m.a MEP 68901 |WD 1770|| 6850

ﬁw

I T
| ==l @

[Dideo][Centronics][RS 232] [Floppy |

4

[

S

keyboard
Mouse

Joysticks

Chapter Two

The Interfaces

2.1
2.1.1
2.1.2
2.2
2.3
24
2.5
2.6
2.6.1
2.7
2.8

The Keyboard

The Mouse

Keyboard commands
The Video Connection
The Centronics Interface
The RS-232 Interface
The MIDI Connections
The Cartridge Slot
ROM Cartridges

The Floppy Disk Interface
The DMA Interface

Abacus Software Atari ST Internals

The Interfaces

2.1 The Keyboard

Do you think it's really necessary to give a detailed report on something as
trivial as the keyboard, since keyboards all function the same way? Actually
the title should read "Keyboard Systems" or something similar. The
keyboard is controlled by its own processor. You will soon see how this
affects the assembly language programmer.

The keyboard processor is single-chip computer (controller) from the 6800
family, the 6301. Single chip means that everything needed for operation is
found on a single IC. In actuality, there are some passive components in the
keyboard circuit along with the 6301.

The 6301 has ROM, RAM, some I/O lines, and even a serial interface on
the chip. The serial interface handles the traffic to and from the main board.

The advantage of this design is easy to see. The main computer is not
burdened by having to continually poll the keyboard. Instead it can dedicate
itself completely to processing your programs. The keyboard processor
notifies the system if an event occurs that the operating system should be
aware of.

The 6301 is not only responsible for the relatively boring task of reading the
keyboard, however. It also takes care of the rather complicated tasks
required in connection with the mouse. The main processor is then fed
simply the new X and Y coordinates when the mouse is moved. Naturally,
anything to do with the joysticks is also taken care of by the keyboard
controller.

In addition, this controller contains a real-time clock which counts in
one-second increments.

67

Atari ST Internals

Abacus Software

Figure 2.1-1 6850 Interface to 68000

9T

VI

PITA
ST

LASHE -

0689
¥YIOY

ZHI00S

g 6T1-8a
M-/3

13 4

cY

500589

68

Abacus Software Atari ST Internals

In Figure 2.1-1 is an overview of the interface to the 68000. As you see, the
main processors is burdened as little as possible. The ACIA 6850 ensures
that it is disturbed only when a byte has actuaily been completely received
from the keyboard. The ACIA, by the way, can be accessed at addresses
$FFFCO00 (control register) and $FFFCO2 (data register). The individual
connection to the keyboard takes place over lines K14 and K15. K indicates
the plug connection by which the keyboard is connected to the main board.

The signal that the ACIA has received a byte is first sent over line 14 to the
MFP 68901 which then generates an interrupt to the 68000. The clock
frequency of S00KHz comes from GLUE. From this results the "odd"
transfer rate of 7812.5 baud.

In case you were surprised that data can also be sent to the keyboard
processor, you will find the solution to the puzzle in Chapter 2.1.2.

The block diagram of the keyboard circuit is found in Figure 2.1-2. The
function is as simple as the figure is easy to read. The processor has 4K of
ROM available. The 128 bytes of RAM is comparatively small, but it is
used only as a buffer and for storing pointers and counters.

The lines designated with K are again the plug connections assigned to the
main board. With few exceptions, the connections for the joystick and
mouse are also put through. K16 is the reset line from the 68000. K15
carries the send data from the 6850, K14 the send data from the 6301.

The I/O ports 1(0-7), 3(1-7), and 4(0-7) are responsible for reading the
keyboard matrix. One line from ports 3 and 4 is pulled low in a cycle. The
state of port 1 is the checked. If a key is pressed, the low signal comes
through on port 1.

Each key can be identified from the combination of value placed on ports 3
and 4 and the value read from port 1.

If none of the lines of Port 3 and 4 are placed low and a bit of port 1 still
equals zero, a joystick is active on the outer connector 1. The data from
outer connector 0, to which a mouse or a joystick can be connected, does
not come through by chance since it must first be switched through the
NAND gate with port 2 (bit 0). The buttons on the mouse or the joystick
then arrive at port 2 (1 and 2).

69

Abacus Software Atari ST Internals

Figure 2.1-2 Block Diagram of Keyboard Circuit

N

L
Lr
N

—"M

15
14

o o0 oohmvmm
-

16
11
17
12

70

Abacus Software Atari ST Internals

The assignments of the K lines to the signal names on the outer connector
are found in the next section.

The 6301 processor is completely independent, but it can also be configured
so that it works with an external ROM. Some of the port lines are then
reconfigured to act as address lines. The configuration the processor
assumes (one of eight possibilities) depends on the logical signal placed on
port 2 (bits 0-2) during the reset cycle. All three lines high puts the
processor in mode 7, the right one for the task intended here. But bits 1 and
2 depend on the buttons on the mouse. If you leave the mouse alone while
powering-up, everything will be in order. If you hold the two buttons
down, however, the processor enters mode 1 and makes a magnificent
belly-flop, since the hardware for this operating mode is not provided. You
notice this by the fact that the mouse cursor does not move on the screen if
you move the mouse. Only the reset button will restore the processor.

2.1.1 The Mouse

The construction of this little device is quite simple, but effective.
Essentially, it consists of four light barriers, two encoder wheels, and a
drive mechanism.

The task of the mouse is to give the computer information about its
movements. This information consists of the components: direction on the
X-axis, direction on the Y-axis, and the path traveled on each axis.

In order to do this, the rubber-covered ball visible from the outside drives
two encoder wheels whose drive axes are at angle of 90 degrees to each
other. The one or the other axis rotates more or less, forwards or
backwards, depending on the direction the mouse is moved.

It is no problem to determine the absolute movement on each axis. The
encoder wheels alternately interrupt the light barriers. One need only count
the pulses from each wheel to be informed about the path traveled on each
axis.

71

Abacus Software Atari ST Internals

XA

Figure 2.1.1-1 The Mouse

YB

YA

2 1 3 4 7 8 6 9

72

Abacus Software Atari ST Internals

It is more difficult when the direction of movement is also required. The
designers of the mouse used a convenient trick for this. There are not one,
but two light barriers on each encoder wheel. They are arranged such that
they are not shielded by the wheel at precisely the same time, but one
shortly after the other. This arrangement may not be so clear in Figure
2.1.1-1, so we'll explain it in more detail The direction can be determined
by noticing which of the two light barriers is interrupted first. This is why
the pulses from both light barriers are sent out, making a total of four.
Corresponding to their significance they carry the names XA, XB, YA, YB.

The two contacts which you see on the picture represent the two buttons.

The large box on the picture is a quad operational amplifier which converts
the rather rough light-barrier pulses into square wave signals.

In Figure 2.1.1-2 is the layout of the control port on the computer, as you
see it when you look at it from the outside. The designation behind the slash
applies when a joystick is connected and the number in parentheses is the
pin number of the keyboard connector.

Port 0

1 XB/UP (K12)
2 XA/DOWN (K10)
3 YA/LEFT (K9)
4 YB/RIGHT (K8)
6 LEFT BUTTON/FIRE (K11)
7 +5V (K13)
8 GND (K1)
9 RIGHT BUTTON (K6)
Port 1

1 UP (K7)
2 DOWN (K5)
3 LEFT (K4)
4 RIGHT (K3)
5 Port 0 enable (K17)
6 FIRE (K6)
7 +5V (K13)
8 GND (K1)

73

Abacus Software Atari ST Internals

Figure 2.1.1-2 Mouse control port

.o/

6 9

2.1.2 Keyboard commands

The keyboard processor "understands" some commands pertaining to such
things as how the mouse is to be handled, etc. You can set the clock time,
read the internal memory, and so on. You can find an application example in
the assembly language listing on page 80 (after command $21).

The "normal" action of the processor consists of keeping an eye on the
keyboard and announcing each keypress. This is done by outputting the
number of the key when the key is pressed. When the key is released the
number is set again, but with bit 7 set. The result of this is that no key
numbers greater than 127 are possible. You can find the assignment of the
key numbers to the keys at the end of this section in figure 2.1.2-1. In
reality these numbers only go up to 117 because values from $F6 up are
reserved for other purposes. There must be a way to pass more information
than just key numbers to the main processor, information such as the clock
time or the current position of the mouse. This cannot be handled in a single
byte but only in something called a package, so the bytes at $F6 signal the
start of a package. Which header comes before which package is explained
along with the individual commands.

A command to the keyboard processor consists of the command code (a
byte) and any parameters required. The following description is sorted
according to command bytes.

$07

Returns the result of pressing one of the two mouse buttons. A parameter
byte with the following format is required:

74

Abacus Software Atari ST Internals

Bit 0 =1: The absolute position is returned when a
mouse button is pressed. Bit 2 must =0.
Rit 1 =1: The absolute position is returned when a
mouse button is released. Bit 2 must =0.
Bit 2 =1: The mouse buttons are treated like

normal keys. The left button is key
number $74, the right is $75.
Bits 3-7 must always be zero.

$08

Returns the relative mouse position from now on. This command tells the
keyboard processor to automatically return the relative position (the distance
from the previous position) whenever the mouse is moved. A movement is
given when the number of encoder wheel pulses has reached a given
threshold. See also $0B. A relative mouse package looks like this:

1 byte Header in range $SF8-S$FB. The two lowest
bits of the header indicate the condition
of the two mouse buttons.

1 byte Relative X-position (signed!)

1 byte Relative Y-position (signed!)

If the relative position changes substantially between two packages so that
the distance can no longer be expressed in one byte, another package is
automatically created which makes up for the remainder.

$09

Returns the absolute mouse position from now on. This command also sets
the coordinate maximums. The internal coordinate pointers are at the same
time set to zero. The following parameters are required:

1 word Maximum X-coordinate
1 word Maximum Y-coordinate

Mouse movements under the zero point or over the maximums are not
returned.

$0A

With this command it is possible to get the key numbers of the cursor keys
instead of the coordinates. A mouse movement then appears to the operating
system as if the corresponding cursor keys had been pressed. These
parameters are necessary:

75

Abacus Software Atari ST Internals

1 byte Number of pulses (X) after which the key
number for cursor left (or right) will be
sent.

1 byte Number of pulses (Y) after which the key
number for cursor up (or down) will be sent.

$0B
This command sets the trigger threshold, above which movements will be
announced. A certain number of encoder pulses elapse before a package is

sent. This functions only in the relative operating mode. The following are
the parameters:

1 byte Threshold in X-direction
1 byte Threshold in Y-direction
$0C

Scale mouse. Here is determined how many encoder pulses will go by
before the coordinate counter is changed by 1. This command is valid only
in the absolute. The following parameters are required:

1 byte X scaling
1 byte Y scaling
$0D

Read absolute mouse position. No parameters are required, but a package of
the following form is sent:

1 byte Header = $F7
1 byte Button status
Bit 0 = 1: Right button was pressed since the
last read
Bit 1 = 1: Right button was not pressed
Bit 2 = 1: Left button was pressed since the
last read
Bit 3 = 1: Left button was not pressed

From this strange arrangement you can determine that the state of a button
has changed since the last read if the two bits pertaining to it are zero.

1 word Absolute X-coordinate
1 word Absolute Y-coordinate

76

Abacus Software Atari ST Internals

$0E

Set the internal coordinate counter. The following parameters are required:
1 byte =0 as fill byte

1 word X-coordinate

1 word Y-coordinate

$OF

Set the origin for the Y-axis is down (next to the user).

$10

Set the origin for the Y-axis is up.

$11

The data transfer to the main processor is permitted again (see $13).
Any command other than $13 will also restart the transfer.

$12
Turn mouse off. Any mouse-mode command ($08, $09, $OA) turns the
mouse back on. If the mouse is in mode $0A, this command has no effect.

$13

Stop data transfer to main processor.

NOTE: Mouse movements and key presses will be stored as long as the
small buffer of the 6301 allows. Actions beyond the capacity of the buffer
will be lost.

$14

Every joystick movement is automatically returned. The packages sent have
the following format:

1 byte Header = SFE or $FF for joystick 0/1
1 byte Bits 0-3 for the position (a bit for each
direction), bit 7 for the button

$15
End the automatic-return mode for the joystick. When needed, a package
must be requested with $16.

$16

Read joystick. After this command the keyboard sends a package as
described above.

77

‘Abacus Software Atari ST Internals

$17
Joystick duration message. One parameter is required.

1 byte Time between two messages in 1/100 sec.

From this point on, packages of the following form are sent continuously
(as long as no other mode is selected):

1 byte Bit 0 for the button on joystick 1, bit 1
for that of joystick 0
1 byte Bits 0-3 for the position of joystick 1,

bits 4-7 for the position of joystick O

NOTE: The read interval should not be shorter than the transfer channel
needs to send the two bytes of the package.

$18

Fire button duration message. The condition of the button in joystick 1 (1) is
continually tested and the result packed into a byte. This means that a
message byte contains 8 such tests, whereby bit 7 is the most recent. The
keyboard controller determines the time between byte fetches by the main
processor. This time is divided into eight equal intervals in which the button
is polled. The polling then takes place as regularly as possible. This mode
remains active until another command is received.

$19

Cursor key simulation mode for joystick 0 (!). The current position of the
joystick is sent to the main processor as if the corresponding cursor keys
had been pressed (as often as necessary). To avoid having to explain the
same things for the following parameters, here are the most important: All
times are assumed to be in tenths of seconds. R indicates the time, when
reached, cursor clicks will be sent in intervals of T. After this the interval 18
V. If R=0, only V is responsible for the interval. Naturally, this mechanism
comes into play only when the joystick is held in the same position for
longer than T or R.

1 byte RX
1 byte RY
1 byte TX
1 byte TY
1 byte VX
1 byte VY

78

Abacus Software Atari ST Internals

$1A
Turn off joysticks. Any other joystick command turns them on again.

$1B

Set clock time. This command sets the internal real-time clock in the
keyboard processor. The values are passed in packed BCD, meaning a digit
0-9 for each half byte, yielding a two-digit decimal number per byte. The
following parameters are necessary:

1 byte Year, two digit (85, 86, etc.)
1 byte Month, two digit (12, 01, etc.)
1 byte Day, two digit (31,01,02, etc.)
1 byte Hours, two digit

1 byte Minutes, two digit

1 byte Seconds, two digit

Any half byte which does not contain a valid BCD digit (such as F) is
ignored. This makes it possible to change just part of the date or clock time.

$1C

Read clock time. After receiving this command the keyboard processor
returns a package having the same format as the one described above. A
header is added to the package, however, having the value $FC.

$20

Load memory. The internal memory of the keyboard processor (naturally
only the RAM in the range $80 to $FF makes sense) can be written with this
command. It is not clear to us of what use this is since according to our
investigations (we have disassembled the operating system of the 6301), no
RAM is available to be used as desired. Perhaps certain parameters can be
changed in this manner which are not accessible through "legal" means.
Here are the parameters:

1 word Start address
1 byte Number of bytes (max. 128)
Data bytes (corresponding to the number)

The interval at which the data bytes will be sent must be less than 20 msec.

79

Abacus Software Atari ST Internals

$21
Read memory. This command is the opposite of $20. These parameters are
required:

1 word Address at which to read

A package having the following format is returned:

1 byte Header 1 =S$F6. This is the status header
which precedes all packages containing any
operating conditions of the keyboard
processor. We will come to the general
status messages shortly.

1 byte Header 2 =$20 as indicator that this
package carries the memory contents.

6 bytes Memory contents starting with the address
given in the command.

Here is a small program which we used to read the ROM in the 6301 and
output it to a printer. Here you also see how the status packages arrive from
the keyboard. These are normally thrown away by the 68000 operating
system. Section 3.1 contains information about the GEMDOS and XBIOS
calls used.

prt equ 0
chout equ 3
gemdos equ 1
bios equ 13
xbios equ 14
stvec equ 12
rdm equ $21
wrkbd equ 25
kbdvec equ 34
term equ 0

start:
move.w #kbdvec,~-(a7)
trap #xbios
addg.l #2,a7
move.l doO, a0
lea keyin, al
move.l dO0,savea
move.l stvec(a0), save

80

Abacus Software Atari ST Internals

move.l al,stvec(al)

move.w #$f000,d4 Starting address
loop:
move.w d4,tbuf+l Current address
bsr keyout
walt:
cmpi.b rbuf
beq wait
moveq.w #5,d6
bsr bufout
addg.w #6,d4 Ending address?
bmi loop
bra exit
bufout:
lea rbuf+2, ad
bytout:
move.b (ad)+,d0
bsr hexout
dbra dé6,bytout
rts
hexout:
movea.w d0,al
lsr.b #4,d0
andi.w #15,d0
lea table, a3
move.b 0(a3,d0),d2
lsl.w #8,d2
move.w al,dol
andi.w #15,d0
move.b 0(a3,d0),d2
move.w d2,d0
move.w d2,-{(a7)
lsr.w #8,d0
bsr chrout
move.w (a7)+,d0
bsr chrout
move.b #" ",d0
chrout:
move.w do0,-(a7)
move.w #prt,-{(a7)
move.w #chout,-(a7)
trap #bios
addq.l #6,a7
rts
exit:

movea savea, a0
move.l save,stvec(al) ‘

81

Abacus Software

Atari ST Internals

keyout:

keyin:

repin:

table:

move.w

trap

move.b
pea

move .w
move.w

trap
addg.l
rts

moveqg
lea

move.b
dbra
rts

dc.b

rbuf:
save
savea
dummy
tbuf
ds.b
.end

#term, - (a7)
#gemdos

rbuf

tbuf -
#2,-(a7)
#wrkbd, - (a7)
#xbios
#8,a7

#7,d0
rbuf, al

(a0)+, (al) +

d0, repin
"0123456789ABCDEF"
ds.b 8

ds.l 1

ds.l 1

ds.b 1

dc.b rdm

2

82

Abacus Software Atari ST Internals

$22

Execute routine. With this command you can execute a subroutine in the
6301. Naturally, you must know exactly what it does and where it is
located, so long as you have not transferred it yourself to RAM with $20
(assuming you found some free space). The only required parameters are:

1 word Start address

Status messages

You can at any time read the operating parameters of the keyboard by
simply adding $80 to the command byte with which you would to set the
operating mode (whose parameters you want to know). You then get a
status package back (header=$F6), whose format corresponds exactly to
those which would be necessary for setting the operating mode.

An example makes it clearer: you want to know how the mouse is scaled.
So you send as the command the value $8C (since $0C sets the scaling).
You get the following back:

1 byte Status header =$F6
1 byte X-scaling
1 byte Y-scaling

This is the same format which would be necessary for the command $0C.
For commands which do not require parameters, you get the evoked
command back as such. For example, say you want to know what operating
mode the joystick is in ($14 or $15). You send the value $94 (or $95, it
makes no difference). As status package you receive, in addition to the
header, either $14 or $15 depending on the operating mode of the joystick
handler.

Allowed status checks are: $87, $88, $89, $8A, $8B, $8C, $8F, $90, $92,
$94, $99, and $9A.

In conclusion we have a tip for those for whom the functions of the
keyboard are too meager and who want to give it more "intelligence". The
processor 6301 is also available in "piggy-back" version, the 63P01
(Hitachi). This model does not have ROM built in, but has a socket on the
top for an EPROM of type 2732 or 2764 (8K!). You can then realize your
own ideas and, for example, use the two joystick connections as universal
4-bit /O ports, for which you can also extend the command set in order to
access the new functions from the XBIOS as well.

83

Abacus Software Atari ST Internals

Figure 2.1.2-1 ATARI ST Key Assignments

N (-] o
» = ~ ™
o w
w
w (3 o
® =3 [N
[© w
L] a
N o
(2] [w
- - w
~ o
N o
o - -
N N w
=3 1]
N o
L o (L]
N w w
M 1
N -]
n [o0
N [-
N =)
W -}
© H ~
w » w >
w0 W G
w o
H M ®©
N L3 -
- (8]
W o
N N ©
N ~ -
n w
et ©
W [»
N >
a -
W (]
- - w
N ©
~
w (-
1] = [2]
N >
®
W o
> -]
w
w
L N
= ©
Q
©
]
N L]
w w
- wn
w N [
N
n >
=3 ®
> N b
-] ~
x
;
4} o0 Y o ;
-~] » ~ w ;
o4 ;
)
o] o o [E
] w o - ;
~) [o o i
L L] 3] © L] 3
-~ - -~ o0
N L] > o

84

Abacus Software Atari ST Internals

2.2 The Video Connection

Without this, nothing would be displayed. You would be typing blind.
You'll notice the many pins on the connection. Naturally more lines are
required for hooking up an RGB monitor than for a monochrome screen,
but seven would be enough. There is also something special about the
remaining lines. In Figure 2.2-1 you find a block diagram in which you can
see how the video connection is tied to the system. The numbering of the
pins is given on the figure on the next page, as you can sce, when you look
at the connector from the outside. Here is the pin layout:

1 AUDIO OUT. This connection comes from the amplifier
connected to the output of the sound chip. A high-impedance
earphone can be attached here if you do not use the original
monitor.

2 COMPOSITE VIDEO is the connection from 9-12. This is not
available on the early 520ST or 1040 ST.

3 GPO, General Purpose Output. This connection is available for
your use. The line has TTL levels and comes from I/O port A bit 6
of the sound chip.

4 MONOCHROME DETECT. If this line, which leads to the I7
input of the MFP 68901, is low, the computer enters the
high-resolution monochrome mode. If the state of the line changes
during operation, a cold start is generated.

5 AUDIO IN leads to the input of the amplifier described in 1 and is
there mixed with the output of the sound chip.

6 GREEN is the analog green output of the video shifter.
7 RED. Red output.

8 +12 control voltage for color televisions with video connectors. |
Atari 520ST = GROUND. :

9 HORIZONTAL SYNC is responsible for the horizontal beam
return of the monitor.

85

Abacus Software Atari ST Internals

Figure 2.2-1 Diagram of Video Interface

16MHZ

+5V

-DCYC

-CMPCS

R/-W
sprFr [

Al-5 Ay

~

~
DR R {>— L

P

32MHz

11

YV{¥
-BLANK —o—
GPO 3
AUDIO ouT 1
HSYNC 9
VSYNC 12
4
5
4 AUDIO IN
-MONOMON
86

Abacus Software Atari ST Internals

10 BLUE is the analog blue output of the video shifter.

11 MONOCHROME provides a monochrome monitor with the
intensity signal.

12 VERTICAL SYNC takes care of the beam return at the end of the
screen.

13 GROUND.

A tip for the hardware hobbyist:

A plug to fit this connector is not available. If you want to make a plug for
connecting other monitors, simply use a piece of perf board in which you
have soldered pins, since the pins are fortunately organized in a 1/10" array.

Pin 13 is out of order, but it is not needed since pin 8 is also available for
ground.

Figure 2.2-2 Monitor Connector

87

‘Abacus Software Atari ST Internals

2.3 The Centronics Interface

A standard Centronics parallel printer can be connected to this interface,
provided that you have the proper cable. As you can see in Figure 2.3-2, the
connection to the system is somewhat unusual. The data lines and the strobe
of the universal port of the sound chip are used. So you find these too on
the picture, in which the other lines, which will not be described in the
section, will not disturb you. They belong to the disk drive and RS-232
interface and are handled there.

Here is the pin description:

1 -STROBE indicates the validity of the byte on the data lines
to the connected device by a low pulse.

2-9 DATA

11 BUSY is always placed high by the printer when it is not
able to receive additional data. This can have various causes.
Usually the buffer is full or the device is off line.

18-25 GROUND.
All other pins are unused.

A tip for making a cable. Get flat-cable solderless connectors. You need a
type D25-subminiature, a Cinch 36-pin (3M,AMP) and the appropriate
length of 25-conductor flat ribbon cable. You squeeze the connectors on the
cable so that pins 1 match up on both sides (they are connected together).
The other connections then match automatically. Note that there will
naturally be some pins free on the printer side.

Figure 2.3-1 Printer Port Pins

13 1
H N B B B B N NN E N NN
H H N N N N N N N EEBN

25 14

88

Abacus Software Atari ST Internals

Figure 2.3-2 Centronics Connection

R/-W —_ 5
3
4
-SNDCS ‘{ 5
6
Al — T
SOUND ;
2MHz 9
~-RESET 1
11
—— I0/TAl
—— GPO
—— DRIVEO
——— DRIVE1l
— SIDEO
——— RTS
——— DTR
IR
AUDIO OUT

AUDIO 1IN

89

Abacus Software Atari ST Internals

2.4 The RS-232 Interface

This interface usually serves for communication with other computers and
modems. You can also connect a printer here. Note the description of pin 5!

Figure 2.4-1 shows the connection to the system. Normally you don't have
to do any special programming to use this interface. It is taken care of by the
operating system. Here the control of the interface is not controlled by a
special IC (UART) as is usually the case, but the lines are serviced more or
less "by hand." The shift register in the MFP is used for this purpose. The
handshake lines however come from a wide variety of sources. Note this in
the following pin description:

1 CHASSIS GROUND (shield)
This is seldom used.

2 TxD
Send data
3 RxD

Receive data

4 RTS
Ready to send comes from 1/O port A bit 3 of the sound
chip and is always high when the computer is ready to
receive a byte. On the Atari, this signal is first placed low
after receiving a byte and is kept low until the byte has
been processed.

5 CTS

Clear to send of a connected device is read at interrupt
input I2 of the MFP. At the present time this signal is
handled improperly by the operating system. Therefore it
is possible to connect only devices which "rattle" the line
after every received byte (like the 520ST with RTS). The
signal goes to input I2 of the MFP, but unfortunately is
tested only for the signal edge. You will not have any luck
connecting a printer because they usually hold the CTS
signal high as long as the buffer is not full. There is no
signal edge after each byte, which means that only the
first byte of a text is transmitted, and then nothing.

90

Abacus Software Atari ST Internals
7 GND

Signal ground.
8 DCD

Carrier signal detected. This line, which goes to interrupt
input I1 of the MFP, is normally serviced by a modem,
which tells the computer that connection has been made
with the other party.

20 DIR
Device ready. This line signals to a device that the
computer is turned on and the interface will be serviced as
required. It comes from I/O port A bit 4 of the sound
chip.

22 RI
Ring indicator is a rather important interrupt on 16 of the ‘
MFP and is used by a modem to tell the computer that |
another party wishes connection, that is, someone called.

91

Abacus Software Atari ST Internals

Figure 2.4-1 RS-232 Connection

S0 ———> 2
I/0A4 _.__>c 20
I/0A3 __> 4

s:———o< 3

16————o< 22

12 ———< > i

11__o< 8

1 13
e EEEEEENENN®N.
E N E EEEERNENENENN
14 25

92

Abacus Software Atari ST Internals

2.5 The MIDI Connections

The term MIDI is probably unknown to many of you. It is an abbreviation
and stands for Musical Instrument Digital Interface, an interface for musical
instruments.

It is certainly clear that we can't simply hook up a flute to this port. So first
a little history. Music professionals (more precisely: keyboardists,
musicians who play the synthesizer) demanded agreement between the
various manufacturers to interface computers to musical instruments. They
found it absurd to connect complicated set-ups with masses of wire. The
idea was to service several synthesizers from one keyboard.

The tone created was basically analog (and still is, to a degree), so that the
manufacturers agreed that a control voltage difference of 1V corresponded
to a difference in tone of 1 octave. This way one could play several devices
under "remote control,” but not service them.

This changed substantially when the change was made to digital tone
creation. Here one didn't have to turn a bunch of knobs, there were buttons
to press, whereby the basis for digital control was created.

Some manufacturers got together and designed a digital interface, the basic
commands of which would be the same throughout, but which would still
support the additional features of a given device.

The device is based on the teletype, the current-loop principle, which is not
very susceptible to noise, but significantly faster. The transfer rate is 31250
baud (bits per second). The data format is set at one start bit, eight data bits,
and one stop bit.

An IC can therefore be used for control which would otherwise be used for
RS-232 purposes. You see the connection to the system in figure 2.5-1.

Logically, MIDI is multi-channel system, meaning that 16 devices can be
serviced by one master, or a device with 16 voices. These devices are all
connected to the same line (bus principle). To identify which device or
which voice is intended, each data packet is preceded by the channel
number. The device which recognizes this number as its own then executes
the desired action.

93

Abacus Software Atari ST Internals

You may wonder what such an interface is doing in a computer. A computer
can provide an entire arsenal of synthesizers with settings or complete
melodies (sequencer) because of its high speed and memory capacity. It can
also be used to record and store input from a synthesizer keyboard.

For this purpose the ST has the interfaces MIDI-IN and MIDI-OUT. The
interfaces are even supported by the XBIOS so you don't have to worry
about their actual operation.

The current loop travels on pins 4 and 5, out through pin 4 (+) of
MIDI-OUT and in at 5, when a device is connected.

For MIDI-IN the situation is reversed because the current flows in through
pin 4 and back out through pin 5. It goes though something called an
optocoupler which electrically isolates the computer from the sender.

The received data are looped back to MIDI-OUT (pins 1 and 3), which

implements the MIDI-THRU function, although not entirely according to
the standard.

94

Abacus Software Atari ST Internals

Figure 2.5-1 MIDI System Connection

4
E \ 5
6850CS -
A2 \ 3
Al [ACIA - ,
1
5
500KHzZ 14 |
(o o)t
O O
4 0%/3
2

95

Abacus Software Atari ST Internals

2.6 The Cartridge Slot

The cartridge slot can be used exclusively for inserting ROM cartridges. Up
to 128K in the address space $SFA0000 to $FBFFFF can be addressed. The
reason we stressed the exclusivity of the read access is the following. We
thought it would be practical to outfit a cartridge with RAM and then load
programs into it after the system start which would still remain after a reset.
In order to try this we brought the R/-W signal to the outside. The
experience taught us, however, that a write access to these addresses creates
a bus error. The GLUE takes care of this. As you see, nothing is left to
chance in the Atari.

Figure 2.6-1 The Cartridge Slot

1 = +5VDC 21 = Address 8

2 = +5VDC 2 2 = Address 14

3 = Data 14 2 3 = Address 7

4 = Data 15 24 = Address 9

5 = Data 12 25 = Address 6

6 = Data 13 2 6 = Address 10

7 = Data 10 27 = Address 5

8 = Data 11 2 8 = Address 12

9 = Data 8 2 9 = Address 11

10= Data 9 30 = Address 4

11= Data 6 31 = ROM Select 3

l12= Data 7 32 = Address 3

13= Data 4 33 = ROM Select 4

l14= Data S 34 = Address 2

15= Data 2 35 = Upper Data Strobe
1 6= Data 3 36 = Address 1

17= Data O 37 = Lower Data Strobe
1 8= Data 1 38 = GND

1l 9= Address 13 39 = GND

2 0= Address 15 40 = GND

Position:

1 E EE EENEEENENESNNENENEENENNRN 39

2 m EE NN NENEEEENENENENENNER 40

96

Abacus Software Atari ST Internals

2.6.1 ROM Cartridges

We want to spend this section telling you how a program is put into ROM,
as well as how the operating system recognizes and loads such a program.

These cartridges are technically feasible, since many manufacturers are now
making ROM cartridge boards and programming devices for the ST
computers.

The most important aspect is the first longword in ROM, which must
contain an index number, or "magic number". This is read when the system
start occurs—it checks to see whether there is a program cartridge or a
diagnostic cartridge plugged into the cartridge port. The former must
contain the index number SABCDEF42, the latter the index number
$FAS52255F.

We wouldn't want to go any farther with the diagnostic cartridge. It should
be enough that the operating system jumps to immediately test the address
$FA0004 without initializing GEMDOS. You won't get any system
processes anyway from this cartridge.

The program cartridges are what interest us. We can call up several
programs from a ROM module of this type. Every program must have an
introductory section, or application header, to be started by the operating
system. The first must begin right after the magic number (from $FA0004),
and must be made up of the following:

1 longword:
Address of the next header, when multiple programs reside in one cartridge.
The header of the last (or only) program must contain $00000000.

1 longword:

Initialization code. This is where GEMDOS gets information, first about the
handling of the program. In particular, this longword is made up of an
address which points to the initialization routine (when needed). The most
significant byte in this longword states at which point in time this routine
should jump.

97

Abacus Software Atari ST Internals

This is arranged as follows:

BIT

0 The routine will be executed before the interrupt vectors,
video RAM, etc., is installed.

1 The routine will be executed before GEMDOS is initialized.

3 The routine will be executed before GEMDOS is loaded.
NOTE: This function is not accessible to computers which
have GEMDOS in ROM!

5 Character which indicates that the program should be handled
as an accessory.

6 Character which identifies the program as a .TOS type, and
not requiring the GEM system.

7 Character which identifies the program as a .TTP type, and
requiring starting parameters.

1 longword:

Starting address of the program, i.e. where it would start if you
double-clicked it.

1 word:
Time in DOS format; has no meaning during runtime.

1 word:
Date in DOS format, see the previous entry.

1 longword:
Program length in bytes; has no meaning during runtime.

String:

Program name in explanatory text. The program name is inserted according
to normal conventions, i.e., up to 8 characters, a period (.), and three
characters after the period. NOTE: The string absolutely must be concluded
by $00.

So, that's it. As for the rest: We've neglected to give you any information
on clicking. Some program cartridges have their own icons, similar to a
disk drive icon. Click this icon. It will show the programs contained in the
cartridge; you may then start the desired program.

98

Abacus Software Atari ST Internals

2.7 The Floppy Disk Interface

The interface for floppy disk drives is conspicuous because of the unusual
connector, a 14-pin DIN connector. All of the signals required for the
operation of two disk drives are available on it.

You know most of the signals from the description of the disk controller
1772, since nine of the available connections are connected to the controller
either directly or through a buffer. Only the drive select 1 and drive select 2
signals and the side O select are not derived from the disk controller. These
signals come from port A of the sound chip.

Pinout of the disk connector:

1 READ DATA 8 MOTOR ON

2 SIDE 0 SELECT 9 DIRECTION IN
3 GND 10 STEP

4 INDEX 11 WRITE DATA

5 DRIVE O SELECT 12 WRITE GATE

6 DRIVE 1 SELECT 13 TRACK 00

7 GND 14 WRITE PROTECT

99

Abacus Software

Atari ST Internals

CDO-7

CAZ2

Ccal

CR/-W

~FDCS

—RESET

8MHZ

I/0Aa2

I/0Aa1

I/0A0

Figure 2.7-1 Disk Connection

r

FDC

14
13

12

11

10

VYL

N U1 o B b

FDRQ
INTR

100

Abacus Software Atari ST Internals

2.8 The DMA Interface

This 19-pin jack can handle up to 8 DMA-compatible devices. These include
hard disks, networks, and even coprocessors. The communications
between the external devices and the ST run at a speed of up to 1 million
bytes per second.

1-8 DO0-D7

9

10

11
12

13

15
16

17

19

Bidirectional data lines

CS

Chip Select, low-active. This line is activeated from the computer
when either commands are sent to the device, or status bytes are read
from there. If DMA transfer is in process, the signal is in a wait state.
IRQ

Interrupt Request, low=active. This signal is produced by the device,
and tells the computer that an action is done (e.g., DMA transfer).
GND

RST

Reset, low=active.

GND

ACK

Acknowledge, low-active. This signal only has meaning during DMA
transfer. This indicates the device to the computer's DMA controller,
depending on the data direction, whether a byte is received from the
device or whether a legal data byte lies on the bus.

GND

Al

Address 1. This signal tells the device's DMA controller whether the
device address is set on bus with all commands (Al=low) or whether
parameter bytes are handled (usually 5 parameter bytes; Al=high).
GND

R/W

Read/Write. This line also controls the controller, and is valid only
when initializing. Write(=low): Command bytes snet; Read (=high):
Waiting for a status byte.

DRQ

Data Request, low=active. This signal is produced from the device
only during DMA transfer, depending upon data direction, when it can
receive a byte from the controller; or otherwise, set a byte on the bus.

101

Abacus Software Atari ST Internals

There are two different methods of transfer. One is a computer controlled
data transfer using the A1, CS and R/W lines. The other transfer of data,
controlled from the device itself (the DMA transfer), runs without the
computer with the help of the DRQ and ACK lines.

A connection can be seen between the chip description of the DMA
controller, and the reset routine in the operating system, which checks for
all eight possible DMA devices.

Figure 2.8-1 DMA Port
1

N .%:. FEIrIirrT

19 11

Figure 2.8-2 DMA Connections

-F¥DCS
-
PO-15 CA2
-FCS5 _— ca1l
CR/-W
RDV 19
DMA
8MHz S 1s
16
Al 14
FDRQ —_— 9
m 8
1
—-RESET 12
10

IS5
INTR

(J A
I

102

W W
D =
[y

W L L
Q\Sllu.!.ll,p..p-hw
DD i

Chapter 3

(The ST Operating System J

The GEMDOS

Memory, files and processes

The BIOS Functions

The XBIOS

The Graphics

An overview of the line-A variables
Examples for using the line-A opcodes
The Exception Vectors

The line-F emulator

The interrupt structure of the ST
The ST VTS52 Emulator

The ST System Variables

The 68000 Instruction Set
Addressing modes

The instructions

The BIOS listing

Abacus Software Atari ST Internals

The ST Operating System

GEMDOS--what is it? Is it in the ST? The operating system is supposed to
be TOS, though. Or is it CP/M 68K? Or what?

These questions can be answered with few words. The operating system in
the ST is named TOS--Tramiel Operating System--after the head of Atari.
This TOS, in contrast to earlier information has nothing to do with CP/M
68K from Digital Research. At the start of development of the ST, CP/M
68K was implemented on it, but this was later changed because CP/M 68K
is not exactly a model of speed and efficiency. A 68000 running at MHz
and provided with DMA would be slowed considerably by the operating
system.

At the beginning of 1985, Digital Research began developing a new
operating system for 68000 computers, which would include a user-level
interface. This operating system was named GEMDOS. It is exactly this
GEMDOS which makes up the hardware-independent part of TOS. Like
CP/M, TOS consists of a hardware-dependent and a hardware-independent
part. The hardware-dependent part is the BIOS and the XBIOS, while the
hardware-independent part is called GEMDOS. A large number of functions
are built into GEMDOS, through which the programmer can control the
actual input/output functions of the computer. Functions for keyboard input,
text output on the screen or printer, and the operation of the various other
interfaces are all present. Another quite important group contains the
functions for file handling and for logical file and disk management.

105

Abacus Software Atari ST Internals

3.1 The GEMDOS

When you look at the functions available under GEMDOS, you will
eventually come to the conclusion that the whole thing is not really new. All
the functions in GEMDOS are very similar to the functions of the MS-DOS
operating system. Even the functions numbers used correspond to those of
MS-DOS. But not all MS-DOS functions are implemented in GEMDOS.
Especially in the area of file management, only the UNIX compatible
functions are implemented in GEMDOS. The "old" block-oriented
functions which are included in MS-DOS to maintain compatibility with
CP/M are missing from GEMDOS. Also, special functions relating to the
hardware of MS-DOS computers (8088 processor) are missing.

Another essential difference between MS-DOS and GEMDOS is that for
GEMDOS calls as well as for the BIOS and XBIOS, the function number,
the number of the desired GEMDOS routine, and the required parameters
are placed on the stack and are not passed in the registers. The 68000 is
particularly suited to this type of parameters passing. GEMDOS is called
with trap #1 and the function is executed according to the contents of
the parameter list. After the call, the programmer must put the stack back in
order himself, by clearing the parameters from memory.

The basic call of GEMDOS functions differs from the BIOS and XBIOS
calls only in the trap number.

In regard to all GEMDOS calls, it must be noted that registers DO and A0
are changed in all cases. If a value is returned, it is returned in DO, or DO
may contain an error number, and after the call AQ (usually) points to the
stack address of the function number. Any parameters required in DO or AQ
must be placed there before GEMDOS is called.

The remainder of this section describes the individual GEMDOS functions.

106

Abacus Software Atari ST Internals

$00 TERM

C: void PtermO ()

Calling GEMDOS with function number 0 ends the running program and
returns to the program from which it was started. For applications
(programs started from the desktop), control is returned to the desktop. If
the program was called from a different program, control is passed back to
the calling program. This point is important for chaining program segments.

clr.w - (sp)
trap
$01 CONIN

C: long Cconin()

CONIN gets a single character from the keyboard. The routine waits until a
character is available. The character read from the keyboard is returned in
the DO register. The ASCII code of the pressed key is returned in the low
byte of the low word, while the low byte of the high word of the register
contains the scan code from the keyboard. This is important for reading
keys which have no ASCII code, such as the 10 function keys or the editing
keys. These keys return the ASCII value zero when pressed.

The scan code can be used to determine if the keypad or the main keys were
pressed. These keys have identical ASCII codes, but different scan codes.

In addition, Shift status can be determined from the upper eight bits (bits 24
to 31) by calling Cconin. In this case, bits 24-31 correspond to bits 0 to 7 in
BIOS function 11 ("kbshift"). The information can only be sent on a Cconin
call when bit 3 of the memory location "conterm” (address $484) is set. If
this bit is unset, then the shift bits after Cconin are deleted.

Cconin does not recognize <Control><C>.

move.w #1,-{sp) Function number on the stack
trap #1 Call GEMDOS
addg.l #2,sp Correct stack

107

Abacus Software Atari ST Internals

$02 CONOUT

C: void Cconout (c)
int c;

CONOUT, also known as Cconout, represents the simplest and most
primitive character output of GEMDOS. With this function only one
character is printed on the screen. The character to be displayed is placed on
the stack as the first word. The ASCII value of the character to be printed
must be in the low byte of the word and the high byte should be zero.

The character printed by CONOUT is sent to device number 2, the normal
console output. Control characters and €scape sequences are interpreted
normally.

move.w #65,-(sp) Output an A
move.w #2,-(sp) CONOUT

trap #1 Call GEMDOS
addqg.l #4,sp Correct stack

$03 AUXILIARY INPUT

C: int Cauxin()

The RS-232 interface of the ST goes under the designation "auxiliary port".
A character can be read from the interface with the Cauxin function. The
function returns when a character has been completely received. The
character is returned in the lower eight bits of register DO.

move.w #3,- (sp) Cauxin
trap #1 Call GEMDOS, output character

addg.l #2,sp Correct stack
. Character in DO

108

Abacus Software Atari ST Internals

$04 AUXILIARY OUTPUT

C: void Cauxout (c)
int c¢;

A character can be transmitted over the serial interface, similar to the input
of characters. With this function the programmer should clear the upper
eight bits of the word and pass the character to be sent in the lower eight
bits.

move.w #3541,-(sp) An A should be output

move.w #4,-(sp) Cauxout

trap #1 Call GEMDOS, output character
addqg.l #4,sp Correct stack

$05 PRINTER OUTPUT

C: void Cprnout {(c)
int c;

PRINTER OUTPUT is the simplest method of operating a printer connected
to the Centronics interface. One character is printed with each call.

An important part of PRINTER OUTPUT is the return value in DO. If the
character was sent to the printer, the value -1 ($FFFFFFFF) is returned in
DO. If, after 30 seconds, the printer was unable to accept the character (not
turned on, OFF LINE, no paper, etc.), GEMDOS returns a time out to the
program. DO then contains a zero.

move.w #65,~(sp) OQutput an A

move.w #5,-(sp) Function number

trap #1 Call GEMDOS, output character
addqg.l #4,sp Correct stack

tst.w DO Affect flags

beq printererror

109

Abacus Software Atari ST Internals

$06 RAWCONIO

C: long Crawio (c)
int c¢;

RAWCONIO is a somewhat unusual mixture of keyboard input and screen
output; it also receives a parameter on the stack.

The keyboard is tested with a function value of $EF. If a character is
present, the ASCII code and scan code are passed to DO as described for
CONIN. If no key value is present, the value zero is passed as both the
ASCII code and the scan code in DO. The call to RAWCONIO with
parameter $FF is comparable to the BASIC INKEYS$ function.

If a value other than $FF is passed to the function, the value is interpreted as
a character to be printed and it is output at the current cursor position. This
output also interprets the control characters and escape sequences properly.

START:

move.w #$ff,-(sp) Function value test keyboard
move.w #6,—(sp) Function number

trap #1 Call GEMDOS, test keyboard
addg.l #4,sp Correct stack

tst.w DO Character arrived?

beq START Not yet

cmp.b #3,D0 *C selected as the end marker
begq END

move DO, - (sp) Character for output on the stack
move #6,-(sp) Function number

trap #1 Call GEMDOS, test keyboard
addg.l #4,sp Correct stack

bra START Get new character

$07 DIRECT CONIN WITHOUT ECHO

C: long Crawcin ()
The function $07 differs from $01 only in that the character received from

the keyboard is not displayed on the screen. It waits for a key just as does
CONIN.

110

Abacus Software Atari ST Internals

move.w #8,—-(sp) Cauxin
trap #1 Call GEMDOS, output character

addg.l #2,sp Adjust stack
. Character in DO

$08 CONIN WITHOUT ECHO
C: long Cnecin{()

Both function $08 and function $07 have exactly the same effect. The
reason for this seemingly nonsensical behavior lies in the abovementioned
compatibility to MS-DOS. Under MS-DOS these two functions are different
in that with $08, certain keys not present on the ATARI are evaluated
correctly, while this evaluation does not take place with function $07.

move.w #8,-(sp) Cauxin
trap #1 Call GEMDOQS, output characterx

addqg.l #2,sp Adjust stack
. Character in DO

$09 PRINT LINE

C: void Cconws(c)
int c:

You are already familiar with functions that output individual characters on
the screen (see CONOUT and RAWCONIO). PRINT LINE offers you an
easy way to output text. An entire string can be printed at the current cursor
position with this function. To do this, the address of the string is placed on
the stack as a parameter. The string itself is concluded with a zero byte.
Escape sequences and control characters can also be displayed with this
function.

After the call, DO contains the number of characters which were printed.
The length of the string is not limited.

111

Abacus Software Atari ST Internals
move.l #text,~(sp) Address of the string on the stack
move #%09,-(sp) Function number PRT LINE

trap #1 Call GEMDOS

addg.l #6,sp Clear the stack

text .dc.b 'This is the string to be printed', $0D, $0A, 0

$0A READLINE

C; void Cconrs (buf)
char *buf;

READLINE is a very easy-to-use function for reading characters from the
keyboard. In contrast to the "simpler” character-oriented input functions, an
entire input line can be taken from the keyboard with READLINE. The
characters entered are displayed on the screen at the same time.

The address of an input buffer is passed to the function as the parameter.
The value of the first byte of the input buffer determines the maximum
length of the input line and must be initialized before the call. At the end of
the routine, the second byte of the buffer contains the number of characters
entered. The characters themselves start with the third byte.

The routine used by READLINE for keyboard input is quite different from
the character-oriented console inputs. Escape sequences are not interpreted
during the output. Only control characters like <Control><H> (backspace)
and <Control><I> (TAB) are recognized and handled appropriately. The
following control characters are possible:

*C Ends input and program (!)

“H Backspace one position

~I TAB

~J Linefeed, end input

"M CR, end input

"R Entered line is printed in new line
U Don't count line, start new line

"X Clear line, cursor at start of line

A function like "H (deleting a character entered) is useful, but for large
programs you should write your own input routine because ~C is very

112

Abacus Software Atari ST Internals

"dangerous." Unlike CP/M, the program will be ended even if the cursor is
not at the very start of the input line.

If more characters are entered than were indicated in the first byte of the
buffer at the initialization, the input is automatically terminated. If the input
is terminated by ENTER, J, or M, the terminating character will not be
put in the buffer.

After the input, DO contains the number of characters entered, excluding
ENTER, which can be found at buffer+1.

pea buffer Address of the input buffer

move #3504, ~(sp) Function number

trap #1

addq.l #6, (sp) Make room on stack

buffer dc.b 20 We want a maximum of 20 characters
dc.b O Number of given characters
ds.b 20 of the input buffer

$0B CONSTAT

C: int CConis{()

All key presses are first stored in a buffer in the operating system. This
buffer is 64 bytes in length. The key values stored there are taken from the
buffer when a call to a GEMDOS output routine is made.

CONSTAT can be used to check if characters are stored in the keyboard
buffer. After the call, DO contains the value zero or $FFFF. A zero in DO
indicates that no characters are available.

testloop:

move #50B, - (sp) Function number
trap #1

addg.l #2, (sp) Make room on stack
tst.w DO Character available?
beqg testloop NO, then look again

113

Abacus Software Atari ST Internals

$0E SETDRYV

C: long Dsetdrv(drv)
int drv;

The current drive can be determined with the function SETDRV. A 16-bit

parameter containing the drive specification is passed to the routine. Drive A
is addressed with the number O and drive B with the number 1.

After the call, DO contains the number of the drive active before the call.

move #32,-(sp) Drive C, e.g. RAMdisk
move #S0E, - (sp) Function number
trap #1

addg.l #4, (sp) Make room on stack
. Previous current drive in DO

$10 CONOUT STAT
C: int Cconos ()

CONOUT STAT returns the console status in DO. If the value $FFEF is
returned, a character can be displayed on the screen. If the returned value is
zero, no character output is possible on the screen at that time. Incidentally,
all attempts failed at creating a not-ready status at the console. The only
imaginable possibility for the not-ready status would be if the output of the
individual bit pattern of a character was interrupted and the interrupt routine
itself tried to output a character. This case could not, however, be created.

move #510, - (sp) Function number
trap #1

addg.l #2, (sp) Make room on stack
. Always SFFFF in DO

114

Abacus Software Atari ST Internals

$11 PRTOUT STAT

C: int Cprnos{()

This function returns the status, the condition of the Centronics interface. If
no printer is connected (or turned off, or off line), DO contains the value
zero after the call to indicate "printer not available." If, however, the printer
is ready to receive, DO contains the value $FFFF.

move #3511, - (sp) How's the printer doing?
trap #1

addg.l #2, (sp) Make room on the stack
tst do

beq printererror Go here if not ready

$12 AUXIN STAT
C: int Cauxis(c)

AUXIN STAT shows whether a character is available from the serial
interface receiver ($FFFF) or not ($0000). The value is returned in DO.

waitloop:

move #512, - (sp) We wait for a character
trap #1 from the serial interface
addg.l #2, (sp) Make room on the stack

tst do Is there a character there?
bne waitloop No, not yet

$13 AUXOUT STAT

C: int Cauxos()

AUXOUT STAT gives information about the state of the serial bus. A value
of $FFFF indicates that the serial interface can send a character, while zero
indicates that no characters can be sent at this time.

115

Abacus Software Atari ST Internals
waitloop:

move #513, - (sp) Wait for a character

trap #1 from the serial interface

addg.l #2, (sp) Make room on the stack

tst do Received one yet?

bne waitloop No, not yet

$19 CURRENT DISK

C: int Dgetdrv()

For many applications it is necessary to know which drive is currently
active. The current drive can be determined by the function $19. After the
call, DO contains the number of the drive. The significance of the drive
numbers is the same as for $0E, SET DRIVE (0=A, 1=B).

move #519, - (sp) Which drive is active?
trap #1 It will be sent over
the serial interface
addg.l #2, (sp) Make room on the stack
ADD DO, 'A" There will now be a character in

D0 between 'A' and 'P’

$1A SET DISK TRANSFER ADDRESS

C: void Fsetdta (buf)
char #*buf;

The disk transfer address is the address of a 44-byte buffer required for
various disk operations (especially directory operations). Along with the
GEMDOS functions SEARCH FIRST and SEARCH NEXT are examples
for using the DTA.

move.l #DTADDRESS,-(sp) Address of the 44-byte DTA buffer

move.w #S$la,-(sp) Function number SET DTA
trap #1 Set DTA
addg.l #6,sp Clean up the stack

116

I

Abacus Software Atari ST Internals

$20 SUPER

This function is especially interesting for programmers who want to access
the peripherals or system variables available only in the supervisor mode
while running a program in the user mode. After calling this function from
user mode, the 68000 is placed in the supervisor mode. In contrast to the
XBIOS routine for enabling the supervisor mode, additional GEMDOS,
BIOS, and XBIOS calls can be made after a successful SUPER call.

Calling the SUPER function with a value of -1L ($FFFFFFFF) tells us the
processor's current operating mode. If the result in DO after the call is 0,
the processor is in user mode. A value of $0001 signifies that the processor
is in supervisor mode. Switching modes is not carried out yet.

A program in user mode can call the SUPER function with a zero on the
stack. In this case, the supervisor mode will be turned on. The supervisor
stack pointer points to the current value of the user stack, and the original
value of the supervisor stack is in DO. This value must be stored in the
program to later return to the user mode. If the change to user mode is not
made before the end of the program, the odds of a system crash are good.

If a value other than zero is passed to the SUPER function the first time it is
called, this value is interpreted as the desired value of the supervisor stack
pointer. In this case as well, DO contains the original value of the supervisor
stack pointer, which the program should save.

As mentioned above, the user mode should be reenabled before the end of
the program. This change of modes requires setting the address used by the
supervisor stack pointer back to its original value.

The SUPER function differs from all other GEMDOS functions in one very
important respect. Under certain circumstances, this call can also change the
contents of Al and D1. If you store important values in these registers, you
must save the values somewhere before calling the SUPER function.

The 68000 is in the user mode

clr.l -(sp) User stack becomes supervisor stack
move.w #3$20,-(sp) Call SUPER

trap #1 Supervisor mode is active after TRAP
add.l $6,sp D0 = old supervisor stack

move.l d0, SAVE SSP Save value

Here processing can be done in the supervisor mode

117

Abacus Software Atari ST Internals

move.l SAVE SSP,-(sp) O0ld supervisor stack pointer
move.w #3$20,~ (sp) Call SUPER

trap #1 Now we are back in the user mode
add.l #6,sp

$2A GET DATE

C: int Tgetdate ()

You have no doubt experimented with the status field at one time or another.
Among other functions, the status field contains a clock with time and date.
It can be useful for some applications to have that data available. The date
can be easily determined by GET DATE. This call requires no parameters
and puts the date in the low word of register DO. It is thoroughly encoded,
though, so the result in DO must be prepared to get the correct date.

The day in the range 1 to 31 is coded in the lower five bits. Bits 5 to 8
contain the month in the range 1 to 12, and the year is contained in bits 9 to
15. The range of these "year bits" goes from 0 to 119. The value of these
bits must be added to the value 1980 to get the actual year. The date
12/12/1992, for example, would be %0001100.1100.01100 in binary, or
$198C in DO. The lengths of the three fields are marked with periods.

move #52a,- (sp) We want to get some data
trap #1
addg.l #2, (sp)
move do,dl Store result in D1 for now
and #%11111,D0 Mask the day bits and
move d0,DAY store them
LSR #5,d1 Shift the 5 day bits
move dl,do
and #%1111,d0 and mask the month bits
move DO, MONTH Store the month number
LSR #4,d1 Shift the month bits
move dl, YEAR Year is in D1
DAY ds.w 1
MONTH ds.w 1
YEAR ds.w 1
118

B T Sy

Abacus Software Atari ST Internals

$2B SET DATE

C: int Tsetdate (date)
int date;

The clock time and date can also be set from application programs. This is
particularly interesting for programs which use the date and/or clock time.
An example of this would be invoice processing in which the current date is
inserted in the invoice. Such programs can then ask the user to enter the
date. This avoids the problems that occur if the user forgets to set the date
and clock time on the status field beforehand.

The date must be passed to the function SET DATE in the same format as it
is received from GET DATE, bits 0-4 = day, bits 5-8 = month, bits 9-15 =
year-1980.

move.w #%101101011001,-(sp) Set date to 10/25/1985

move.w #$2b, - (sp) Function number of SET DATE
trap #1 Set date
addg.l #4,sp Repair stack

$2C GET TIME
C: int Tgettime ()

The function GET TIME returns the current (read: set) time from the
GEMDOS clock. Similar to the date, the clock time is coded in a special
pattern in individual bits of the register DO after the call. The seconds are
represented in bits 0-4. But since only values from O to 31 can be
represented in 5 bits, the internal clock runs in two second increments. In
order to get the correct seconds-result the contents of these five bits must be
multiplied by two. The number of minutes is contained in bits 5 to 10, while
the remaining bits 11-15 give information about the hour in 24-hour format.

waitloop:

move #52c, - (sp) Is it noon yet?

trap #1 Get the time from GEMDOS
addg.l #2,sp

move d0,dl Store result in D1

119

Abacus Software Atari ST Internals

and #$1111,D0 Store seconds in steps
move D0, SEC of two

LSR #4,D1 Shift 4 second bits
bne waitloop No, not yet

$2D SET TIME

C: int Tsettime (time)
int time;

It is also possible to set the clock time under GEMDOS. The function SET
TIME expects a 16-bit value (word) on the stack, in which the time is coded
in the same form as that in which GET TIME returns the clock time.

When GEMDOS has the given time, DO returns the value 0; otherwise the
value returned is $FFFFFFFF. GEMDOS handles time much as it does the
date. Time changes through GEMDOS cannot be conveyed through the
XBIOS. Select either XBIOS or GEMDOS. If you cross the two, you will
end up with some very unpleasant complications.

move.w #%1000101010111101,-(sp) Clock time 17:21:58
move.w #$2D, - (sp) Function # of GET TIME
trap #1 Set date

addg.l #4,sp Repair stack

$2F GET DTA

C: long Fgetdta()

The function $2F is the counterpart of SET DTA ($1A). A call to GET DTA
returns the current disk transfer buffer address in DO. A description of this
buffer is found with the functions SEARCH FIRST and SEARCH NEXT.

move #52f,- (sp) Function number Fgetdta
trap #1 Get DTA

addg.l #2,sp

move.l d0,DTAPOINTER and mark for later

120

Abacus Software Atari ST Internals

$30 GET VERSION NUMBER

C: int Sversion()

Calling this function returns in DO the version number of GEMDOS. In the
version of GEMDOS currently in release, this question is always answered
with $0D00, corresponding to version 13.00. Official Atari documentation
claims that a value of $0100 should be returned for this version, though
perhaps the value should indicate that the present GEMDOS version is the
$D = diskette version.

move #30,~(sp) Look to see which

trap #1 version we have

addg.l #2,sp

cmp #51300,d0 The recognized version?
bne not_tos It can't be given

$31 KEEP PROCESS

C: void Ptermres (keepcnt, retcode)
long keepcnt;
int retcode;

This function is comparable to the GEMDOS function TERM $00. The
program is also ended after a call to this function. $31 does differ from $00
in several important points.

After processing TRAP#1, like TERM, control is passed back to the
program which started the program just ended. In contrast to TERM, a
termination condition can be communicated to the caller. While TERM
returns the termination value zero (no error), zero or one may be selected as
the termination value for $31. A value other than zero means that an error
occurred during program processing.

Another essential point lies in the memory management of GEMDOS. When
a program is started, the entire available memory space is made available to
it. If the program is ended with TERM, the memory space is released and
made available to GEMDOS. The entire area of memory released is also
cleared, filled with zeros. The program actually physically disappears from
the memory. With function $31, however, an area of memory can be

121

Abacus Software Atari ST Internals

protected at the start address of the program. This memory area is not
released when the program is ended and it is also not cleared. The program
could be restarted without having to load it in again.

Practical applications for Ptermres() are spoolers, RAM disks and other
utilities which are installed once and remain in memory for storage or
processing. At the same time, such programs must be ended correctly after
installation to allow other programs to be loaded and started.

KEEP PROCESS is called with two parameters. The example program
shows the parameter passing. It is also important that memory additionally
reserved for programs be Malloc not be freed up. If files are opened by
Ptermres() at that time, these will be closed by GEMDOS.

move.w #0,-(sp) Error code no error, else 1

move.l #$1000,-(sp) Protect $1000 bytes at program start
move.w #3531,-(sp) Function number, end program

trap #1 ...NOowW.

This time, don't clear the stack!

$36 GET DISK FREE SPACE

C: void Dfree (buffer,drive)
long *buffer
int drive

It can be very important for disk-oriented programs to determine the amount
of free space on the diskette, then warn the user to change disks. "Disk
full" messages or even data loss can then be avoided.

Function $36, Dfree(), returns this information. The number of the desired
disk drive and the address of a 16-byte buffer must be passed to the
function. If the value O is passed as the drive number, the information is
fetched from the active drive, a 1 takes the information from drive A,and a
2 from drive B.

The information passed in the buffer is divided into four longwords. The
first longword contains the number of free allocation units. Each file, even
if it is only eight bytes long, requires at least one such allocation unit.

122

Abacus Software Atari ST Internals

The second longword gives information about the number of allocation
units present on the disk, regardless of whether they are already used or are
still free. For the "small" single-sided diskettes this value is $15C or 351,
while the double-sided disks have $2C7 = 711 allocation units.

The third longword contains the size of a disk sector in bytes. For the Atari
this is always 512 bytes ($200 bytes).

The last longword is the number of physical sectors belonging to an
allocation unit. This is normally 2. Two sectors form one allocation unit.

The amount of free disk space can be easily calculated from this data.

move.w #0,-(sp) Information from the active drive
pea BUFFER Address of the l6-byte buffer
move #536,—(sp) Function number

trap #1

addqg.l #6,sp Clean up stack

BUFFER:

freal: .ds.l 1 Free allocation units

total: .ds.l 1 Total allocation units

bps: .ds.1 1 Bytes/physical sector

pspal: .ds.l1l 1 Phys. sectors/alloc. unit
$39 MKDIR

C: int Dcreate (path)
char *path;

A subdirectory can be created from the desktop with the menu option "NEW
FOLDER". Such a subdirectory can also be created from an application
program with a call to $39.

In order to create a new folder, the function $39 is given the address of the
folder name, also called the pathname. This name may consist of 8
characters and a three-character extension. The same limitations apply to
pathnames as do to filenames. The pathname must be terminated with a zero
byte when calling MKDIR.

123

Abacus Software Atari ST Internals

After the call, DO indicates whether the operation was performed
successfully. If DO contains a zero, the call was successful. Errors are
indicated through a negative number in DO. At the end of this chapter you
will find an overview of all of the error messages occurring in connection
with GEMDOS functions.

move.l pathname Address of the pathname
move #3539, - (sp) Function number

trap #1

addg.l #6,sp Repair stack

tst.w doO Error occurred?

bne error Apparently

pathname:

.dc.b 'private.dat',0

$3A RMDIR

C: int Ddelete(path)
char *path;

A subdirectory created with MKDIR can be removed with $3A. As before,
the pathname, terminated with a zero, is passed to RMDIR. The error
messages also correspond to those for MKDIR, with zero for success or a
negative value for errors. An important error message should be mentioned
at this point. It is the message -36 (SFFFFFFCA). This is the error message
you get when the subdirectory you are trying to remove contains files.

Only empty subdirectories can be removed with RMDIR. If you get an
error, erase directory files with UNLINK ($41), then call RMDIR again.

pea pathname Address of the pathname
move.w #$3A,-(sp) Function #

trap #1

addq.l #6,sp Repair stack

tst.w DO Is there an error?
bne era sub_dir It appears that way
pathname:

.dc.b ‘'tmpfiles.a z',0

124

Abacus Software Atari ST Internals

$3B CHDIR

C: int Dsetpath (path)
char *path;

The system of subdirectories available under GEMDOS is exactly the same
form available under UNIX. This system is now running on systems with
diskette drives, but its advantages become noticeable first when a large mass
storage device such as a hard disk with several megabytes of storage
capacity is connected to the system. After a while, most of the time would
probably be spent looking for files in the directory.

To better organize the data, subdirectories can be placed within
subdirectories. It can therefore become necessary to specify several
subdirectories until one has the directory in which the desired file is stored.
An example might be:

\hugos.dat\cfiles.s\csorts.s\cgsort.s

Translated this would mean: load the file cqsort . s from the subdirectory
csorts.s. This subdirectory csorts.s is found in the subdirectory
cfiles.s, which in turn is a subdirectory of hugos.dat. If the whole
expression is given as a filename, the desired file will actually be loaded
(assuming that the file and all of the subdirectories are present). If you want
to access another file via the same path (do you understand the term
pathname?), the entire path must be entered again. But you can also make
the subdirectory specified in the path into the current directory, by calling
CHDIR with the specification of the desired path. After this, all of the files
in the selected subdirectory can be accessed just by the filenames. The path
is set by the function.

move.l path,-(sp) Address of the path
move.w #$3b, - (sp) Function number
trap #1
addg.l #6,sp Repair stack
tst.w do Error occurred?
bne error Apparently
path:
.dc.b ' \hugos.dat\cfiles.s\csorts.s\cgsort.s',0

125

Abacus Software Atari ST Internals

$3C CREATE

C: int Fcreate (fname,attr)
char *fname;
int attr;

In all operating systems, the files are accessed through the sequence of
opening the file, accessing the data (reading or writing), and then closing
the file. This "trinity" also exists under GEMDOS, although there is an
exception. Under CP/M, for example, a non-existent file can also be
opened. When a file which does not exist is opened, it is created. Under
GEMDOS, the file must first be created. The call $3C, CREATE, is used
for this purpose. Two parameters are passed to this GEMDOS function: the
address of the desired filename, and an attribute word.

If a zero is passed as the attribute word, a normal file is created, a file which
can be written to as well as read from. If the value 1 is passed as the
attribute the file will only be able to be read after it is closed. This is a type
of software write-protect (which naturally cannot prevent the file from
disappearing if the disk is formatted).

Other possible attributes are $02, $04, and $08. Attribute $02 creates a
"hidden" file and attribute $04 a "hidden" system file. Attribute $08 creates
a file with a "volume label." The volume label is the (optional) name which
a disk can be given when it is formatted. The disk name is then created from
the maximum of 11 characters in the name and the extension. Files with one
of the last three attributes are excluded from the normal directory search in
the Desktop. On the ST, however, they appear in the directory, e.g. as
COMMAND.PRG.

When the function CREATE is ended, a file descriptor, also called a file
handle, is returned in DO. All additional accesses to the file take place over
this file handle (a numerical value between 6 and 45). The handle must be
given when reading, writing, or closing files. A total of $28 = 40 files can
be opened at the same time.

If CREATE is called and a file with this name already exists, it is cut off at
zero length. This is equivalent to the sequence delete the old file and create a
new file with the same name, but it goes much faster.

If after calling CREATE you get a handle number back in DO, the file need
not be opened again with $3D OPEN.

126

Abacus Software Atari ST Internals

move.w #$0,-(sp) File should have R/W status

pea filename Address of the filename on stack
move.w #$3c,-(sp) Fcreate function number

trap #1 Call GEMDOS

addg.l #8,sp Clean up stack

tst do Error occurred?

bmi error It appears so

move d0,handle Save file handle for later access
filename: Don't forget the zero byte

.dc.b 'myfile.dat',0

handle:
.ds.w 1

$3D OPEN

C: int Fopen (fname,mode)
char *fname;
int mode;

You can only create new files with CREATE, or shorten existing files to
zero length. But you must be able to process existing files further as well.
To do this, such files must be opened with the OPEN function.

The first parameter of the OPEN function is the mode word. With a zero in
the mode word, the opened file can only be read, with one it can only be
written. With a value of 2, the file can be read as well as written. The
filename, ended with a zero byte, is passed as the second parameter.

The OPEN function returns the handle number in DO as the result if the file
is present and the desired access mode is possible. Otherwise DO contains
an error number. See the end of the chapter for a list of the error numbers.

Up until now, when we've discussed file functions, we have referred only
to files. This is only half the story; devices can be opened and closed as well
as files. These devices are the console (keyboard) and monitor, the serial
port and the printer connection. See Chapter 3.1.1 for more information on
GEMDOS and the file/device concept. We want to show you for now how a
device is opened, and what handle to give it. This information is important
insofar as device handles are different from file handles.

127

Abacus Software Atari ST Internals

To open a device, the device name is given as a filename. The device names
are: "CON:" for the console, "AUX:" for the serial interface and "PRN:" for
the printer interface. After opening with the appropriate name, you'll get a
word-negative handle. $FFFF(-1) is returned for CON:, $FFFE(-2) is
returned for AUX: and $FFFD(-3) is the handle for the printer port.

move.w #$2,-(sp) File read and write
pea filename Address of the filename on the stack
move.w #$3d,- (sp) Function number
trap #1 Call GEMDOS
addg.l #8,sp Clean up the stack
tst.1 doO Error occurred?
bmi error Apparently
move d0, fhandle Save file handle for later accesses
filename: Don't forget zero byte!
.dec.b '‘myfile.dat’,0
handle:
.ds.w 1
$3E CLOSE

C: int PFclose (handle)
int handle;

Every opened file should be closed when it is no longer needed within a
program, or when the program itself is ended. Especially when writing,
files must absolutely be closed before the program ends or data may be lost.

Files are closed by the call CLOSE, to which the handle number is passed
as a parameter. The return value will be zero if the file was closed correctly.

move.w handle, - (sp) Handle number
move.w #53e,-(sp) Function number
trap #1 Call GEMDOS
addg.l #4,sp Error occurred?
bmi error Apparently
handle:

.ds.w 1

128

Abacus Software Atari ST Internals

$3F READ

C: long Fread(handle, count, buff)
int handle;
long count;
char *buff;

Opening and closing files is naturally only half of the matter. Data must be
stored and the retrieved later. Reading such files can be done in a very
elegant manner with the function READ. READ expects three parameters:
first the address of a buffer in which the data is to be read, then the number
of bytes to be read from the file, and finally the handle number of the file.
This number you have (hopefully) saved from the previous OPEN.

As return value, DO contains either an error number (hopefully not) or the
number of bytes read without error. No message regarding the end of the
file is returned. This is not necessary, however, since the size of the file is
contained in the directory entry (see SEARCH FIRST/SEARCH NEXT). If
the file is read past the logical end, no message is given. The reading will be
interrupted at the end of the last occupied allocation unit of the file. The
number of bytes read in this case is always divisible by $400.

pea buffer Address of the data buffer
move.l #$100,-(sp) Read 256 bytes
move.w handle,-(sp) Space for the handle number
move.w #$3f, - (sp) Function number
trap #1
add.l #12,sp
tst.1 do Did an error occur
bmi error Apparently
cmp.l #$100,d0 256 bytes read?
bne end of file Not enough data in file
handle:

.ds.w 1 Space for the handle number
buffer:

.ds.b $100 Suffices in our example

129

Abacus Software Atari ST Internals

$40 WRITE

C: long Fwrite(handle, count, buff)
int handle;
long count;
char *buff:;

Writing to a file is just as simple as reading from it. The parameters required
are also the same as those required for reading. The file descriptors from
OPEN and CREATE calls can be used as the handle, but the device
numbers listed for READ can also be used. The output of a program can be
sent to the screen, the printer, or in a file just by changing the handle
number.

pea buffer Address of the data buffer
move.l #5100, - (sp) Read 256 bytes

move.w handle,-(sp) Space for the handle number
move.w #3$40,-(sp) WRITE request
trap #1
add.l #12,sp
tst.1l do Did an error occur?
bmi error Apparently
handle:

.ds.w 1 Space for the handle number
buffer:

.ds.b $100 Suffices in our example
$41 UNLINK

C: int PFdelete (fname)
char *fname;

Files which are no longer needed can be deleted with UNLINK. To do this,
the address of the filename or, if necessary, the complete pathname must be
passed to the function. If the DO register contains a zero after the call, the
file has been deleted. Otherwise DO will contain an error number.

130

AN

Abacus Software Atari ST Internals

pea fname Name of the file to be scratched
move.w #$41,-(sp) Function number Fdelete ()

trap #1

add.l #6,sp

tst.1 do Did an error occur?

brmi error Apparently

fname:

.dec.b ‘b:\hugos.dat\cfiles\csorts\cgsort.s',0

$42 LSEEK

C: long Fseek(offset, handle, seekmode)
long offset;
int handle;
int seekmode;

Up to now we have become acquainted only with sequential data accesses.
We can read through any file from the beginning until we come the desired
information. An internal file pointer which points to the next byte to be read
goes along with each read. We can only move this pointer continuously in
the direction of the end of file by reading. A few bytes forward or
backward, setting the pointer as desired, is not something we can do. This
is required for many applications, however.

LSEEK offers an extraordinarily easy-to-use method of setting the file
pointer to any desired byte within the file and to read or write at this
point.This UNIX-compatible option of GEMDOS is much easier to use than
the relative file management methods available under CP/M, for instance.

A total of three parameters are passed to the LSEEK function. The first
parameter specifies the number of bytes by which the pointer should be
moved. An additional parameter is the handle number of the file. The last
parameter is 2 mode word which describes how the file is to be moved. A
zero as the mode moves the pointer to the start of the file and from there the
given number of bytes toward the end of the file. Only positive values may
be used as the number. With a mode value of 1, the pointer is moved the
desired positive or negative amount from the current position, and a 2 as the
mode value means the distance specified is from the end of the file. Only
negative values are allowed in this mode.

131

Abacus Software Atari ST Internals

After the call, DO contains the absolute position of the pointer from the start
of the file, or an error message.

move.w #1,-(sp) Relative from the current file ptr
move.w handle,-(sp) File handle
move.l #$-20,-(sp) 32 bytes back

move.w #$42,- (sp) Function number
trap #1
add.l #10,sp
tst.w do Did an error occur?
bmi error Apparently
handle:
.ds.w 1 Space for the handle number

$43 CHANGE MODE (CHMOD)

C: int Fattrib(fname, flag, attrib)
char *fname;
int flag;
int attrib;

With the CREATE function a file can be assigned a specific attribute. This
attribute can be determined and subsequently changed only with the function
CHANGE MODE. The name of the file must be known because the address
of the name or the complete pathname must be passed to CHMOD. Another
parameter word specifies whether the file attribute is to be read or set.
Moreover, a word must be passed which contains the new attribute. When
reading the attribute of a file this word is not necessary, but should be
passed to the routine as a dummy value. We indicated the possible file
attributes in our discussion of the function CREATE, but here they are again
in a table:

300 = normal file status, read/write possible

501 = File is READ ONLY

$02 = "hidden" file

$04 = system file

$08 = file is a volume label, contains disk name
$10 = file is a subdirectory

$20 = file is written and closed correctly

132

Abacus Software

Atari ST Internals

Attributes $10 and $20 cannot be specified when the file is created. Attribute
$20 is given by the operating system, while the GEMDOS function MKDIR
is used to create a subdirectory. The MKDIR function not only creates the
directory entry with the appropriate attribute, it also physically arranges the
subdirectory on the disk.

After the call, DO will contain the current attribute value, which will be the

new value after setting the attribute, or a negative error number.

First example:

move.w
move.w
pea
move.w
trap
add.l
tst.w
bmi

#1,-(sp)
#1, - (sp)
pathname
#$43,-(sp)
#1

#10, sp

do

error

pathname:
.dc.b 'killme.not',O0

Give file READ ONLY attribute
Set attribute identifier

We also need the pathname
Function number

Did an error occur?
Apparently

Don't forget zero byte at end!

Second example:

move.w #0,-(sp)
move.w #0,-(sp)
pea pathname
move.w #$43,-(sp)
trap #1

add.l #10,sp
tst.w doO

bmi error
pathname:

Dummy value, not actually required
Read attribute

and the pathname

Function number

Did an error occur?
Apparently

Don't forget zero byte at the end!

.dc.b 'what-am.i',O0

133

Abacus Software Atari ST Internals

$45 DUP

C: int Fdup (handle)
int handle;

As mentioned in connection with the functions READ and WRITE, the
devices console, line printer and RS-232 are available to the programmer.
This permits input and output to be redirected to these devices. One of the
devices can be assigned a file handle number with the DUP function. After
the call the next free handle number is returned.

move.w STDH,-(sp) Parameter is standard handle number (0-5)
move.w #345,-(sp) Execute DUP

trap #1

addg.l #4,sp

tst.1 do -35,-37 or 0 are possible

bmi DUPERR

move d0, NSTDH Result is non standard handle
number (6-45)

$46 FORCE

C: int Fforce(stdh,nonstdh)
int stdh;
int nonstdh;

The FORCE function allows further manipulation of handle numbers. If in a
program the console input and output are used exclusively via the READ
and WRITE functions with the handle numbers 0 and 1, input or output can
be redirected with a call to this function. Screen outputs are written to a file,
inputs are not taken from the keyboard, but from a previously-opened file.

move.w NSTDi, - (sp) Parameter is non-standard handle
move.w STDH, - (sp) Standard handle (0-5)

move.w #3546, - (sp) Execute FORCE

trap #1

addg.l #6,sp

tst.1l do -37 or 0 are possible

bne FORCE_ERR

134

Abacus Software Atari ST Internals

$47 GETDIR

C: void Dgetpath(buf, drive)
char *buf;
int drive;

A given subdirectory can be made into the current directory with the
function $37. All file accesses with a pathname then run only in the set
subdirectory. Under certain presumptions it can be possible to determine the
pathname to the current subdirectory. This is accomplished by the function
call GETDIR, $47. This call requires the designation of the desired disk
drive (O=current drive, 1=drive A, 2=drive B, etc.) and a pointer to a
64-byte buffer. The complete pathname to the current directory will be
placed in this buffer. The pathname will be terminated by a zero byte. If the
function is called when the main directory is active, no pathname will be
returned. In this case, the first byte in the buffer will contain zero. After the
call, DO must contain the value zero. If the value is negative, an error
occurred, for example if an incorrect drive number was passed.

move.w #0,- (sp) Get pathname of the current drive
pea buffer Address of the 64-byte buffer
move.w #547,-(sp) Function number

trap #1

addg.l #8,sp

buffer:
.ds.b 128 Better to play it safe

$48 MALLOC

C: long Malloc (number)
long number;

The MALLOC function and the two that follow it, MFREE and
SETBLOCK, are concerned with the memory organization of GEMDOS.
As already mentioned in conjunction with function $31, KEEP PROCESS,
a program is assigned all of the entire memory space available after it is
loaded. This is uncritical in many cases, because only a single program is
running.

135

Abacus Software Atari ST Internals

There are applications under GEM in which at least a part of memory is free
from the start of the program, to allow memory to be called for different
GEM functions with MALLOC. One good example is the item selector box,
which will not appear when no more memory is available.

Other applications are programs which work with overlays, for example. To
load an overlay from the diskette, GEMDOS must have memory available.
For this reason, every program must only have enough memory reserved
for program and data code. The unused memory can then be returned to
GEMDOS by the SETBLOCK command.

If the program needs some of the memory it released, it can request memory
from GEMDOS via the function MALLOC (memory allocate). The number
of bytes required is passed to MALLOC. After the call, DO contains the
starting address of the memory area reserved by the call or an error message
if an attempt is made to reserve more memory than is actually available.

If -1L is passed as the number of bytes to be allocated, the number of bytes
available is returned in DO.

Example 1:
move.l #-1,-(sp) Determine number of free bytes
move.w #548,-(sp) Function number
trap #1
addg.l #6,sp Number of free bytes in DO
Example 2:
move.l #$1000,-(sp) Get hex 1000 bytes for the program
move.w #548,-(sp) Function number
trap #1
addg.l #6,sp
tst.1l do Error or address of memory?
bmi error Negative long word = error!
move.l d0,mstart Else start addr of the reserved area
mstart:
.ds.1 1

136

Abacus Software Atari ST Internals

$49 MFREE

C: long Mfree (addr)
long addr;

An area of memory reserved with MALLOC can be released at any time
with MFREE. To do this, GEMDOS is passed the address of the memory
to be released. The value will usually be the address returned by MALLOC.

If a value of zero is returned in DO, the memory was released by GEMDOS
without error. Negative values indicates errors.

move.l mstart, - (sp) Addr of a previously allocated area
move.w #$49,-(sp) Function number
trap #1
addg.l #6,sp Number of free bytes in DO
tst.1 do Error?
bne error D0<>0 is error!
mstart:
.ds.1 1

$4A SETBLOCK

C: int Mshrink(dummy, block, newsize)
word durmmy = 0;
long block:
long newsize;

In contrast to the MALLOC function, a specific area of memory can be
reserved with the function SETBLOCK. The memory beginning at the
specified address is returned to GEMDOS, even if it was reserved before.
This function can be used to reserve the actual memory requirements of a
program and release the remaining memory.

The parameters the function requires are the starting address and the length
of the area to be reserved. The area specified with these parameters is then
reserved by GEMDOS and is not released again until the end of the program
or after calling the MFREE function.

137

Abacus Software

Atari ST Internals

Usually programs will begin with the following command sequence or
something similar. After the call, DO must contain zero, otherwise an error

occurs.
move.l a7,ab Save stack pointer in A5
move.l #ustck,a’? Set up stack for the program
move.l 4(a5),ab A5 now points to the base-page start
exactly $100 bytes below the prg start
move.l $c(ab),d0 $C(A5) contains length of the prg area
add.l $14(a5),do $14 (A5) containing the length of the
initialized data area
add.l $1C(ab),do S1C(A5) contains length of the
uninitialized data area
add.l #8100,d0 Reserve $100 bytes base page
move.l d0,-(sp) DO contains the length of the area
to be reserved
move.l ab5,-(sp) A5 contains the start of the area
to be reserved
move.w #0,-(sp) Meaningless word, but still necessary!
move.w #$4a,-(sp) Function number
trap #1
add.l #12,sp Clean up the stack as usual
tst.1l do Did an error occur?
bne error Stop
Here the program continues...
$4B EXEC
C: long Pexec(mode, ptrl, ptr2, ptr3)
int mode;
char *ptrl;
char *ptr2;
char *ptr3;

The Pexec() function permits loading and chaining programs. If desired, the
program loaded can be automatically started. In addition to the function
number, the addresses of three strings and a mode word are expected on the

stack.

Let's talk a bit about the mode word. This word has a value of 0, 3, 4 or 5.

138

Abacus Software Atari ST Internals

Mode=0 represents the LOAD'N'GO option: In this case, the file is loaded
from diskette and the filename and pathname are received in PTR1. PTR2
contains the option of the command tail, comparable to choosing .TTP in a
dialog box. PTR2 stands for the environment string, which apparently has
no function under GEMDOS. If the command tail and the environment
string aren't used, then there is a null-byte at this point.

After loading the program, the system automatically starts the program. The
called program, started by the Pexec() call, remains in memory. Eventually
opened files will pass on the most recently started program. This new
program will be classified as a "child process." Once the child process is
done, control returns to the original program, or "parent process.”

If the mode word is a three, the parameters PTR1 to PTR3 are handled in
the same form as when mode = 0, except that the program will not be
executed once it is loaded into memory. After calling Pexec() with mode =
3, the address of the basepage of the loaded program is found in DO.

At first glance this may not make sense, but this function is the minimum
that any good debugger should have. When you want to search a program
for errors with a debugger, you would want control to go to the debugger,
instead of the program loading and immediately executing. If the program
ran without the debugger, and it had errors, it would crash. The LOAD
option of Pexec() offers help.

If the mode word = 4, the program found in memory will be started. PTR1
waits for the address of the necessary basepage. PTR2 and PTR3 are
unused. This way you can start a program previously loaded with Pexec(),
mode = 3.

The last option is a mode word of 5. This option sets up the basepage in
memory, as well as allocating the largest free block of memory. Naturally,
no more data can go into the basepage after this call, especially text, data
and BSS ranges. These must be provided for by the programmer.

pea env Environment

pea com Command line

pea fil Filename

move.w #0,-(sp) Load and start, please

move.w #$4b, - (sp) Function number

trap #1

add.l #16,sp Here we come to the end of the

chained program or loaded module

139

Abacus Software Atari ST Internals

fil: Load sort routine
.dc.b 'gsort.prg’,0

com: Sort the file in ascending order
.dc.b 'up data.asc',0

env: No environment
.de.w 0

$4C TERM

C: void Pterm(retcode)
int retcode;

TERM $4C represents the third method, after PtermO(), function number
$00, and Ptermres(), function number $31, of ending a program. Pterm()
automatically makes the memory used by the program available to
GEMDOS again. Unlike TERM $00, however, a programmer-defined value
other than zero can be returned to the caller. This allows a short mess age to
be passed back to the calling program.

All files opened in this process will be automatically closed from PTERM.

move.w #37,-(sp) Any 2-byte value
move.w #34c,- (sp) End program
trap #1 ...NOW

We never get here

$ 4E SFIRST

C: int Fsfirst (fnam,attr)
char *fnam;
int attr;

The SFIRST function can be used to check to see if a file with the given
name is present in the directory. If a file with the same name is found, the
filename, the file attribute, data and time of creation, and the size of the file
in bytes is returned. This information is placed in the DTA buffer, whose
address is set with the SETDTA function, by GEMDOS.

140

Abacus Software Atari ST Internals

One feature of this function is that the filename need not be specified in its
entirety. Individual characters in the filename can be exchanged for a
question mark "?", and entire groups of letters can also be replaced by a
"' Tn the extreme form a filename would be reduced to the string "*.*". In
this case the first file in the directory would satisfy the conditions and the
filename would appear in the DTA buffer along with the other information.

In addition to the filename, the SFIRST function must also be given a
search attribute. The possible parameters of the search attribute correspond
to the attributes which can be specified in CHMOD function:

$00 = Normal access, read/write possible

$01 = Normal access, write protected

$02 = Hidden entry (ignored by the ST desktop)
$04 = Hidden system file (ignored like $02)
$08 = Volume label, diskette name

$10 = Subdirectory

$20 = File will be written and closed

The following rules apply when searching for files:

. If the attribute word is zero, only normal files are recognized.
System files or subdirectories are not recognized.
. System files, hidden files, and subdirectories are found when

the corresponding attribute bits are set. Volume labels are not
recognized, however.

. In order to get the volume label, this option must be expressly
set in the attribute word. All other files are then ignored.
. After the call, DO contains zero if the desired file has been

found. The 44-byte DTA buffer is then constructed as follows:

Bytes 0-20 Reserved for GEMDOS

Byte 21 File attribute

Bytes 22-23 Clock time of file creation
Bytes 24-25 Date of file creation

Bytes 26-29 File size in bytes (long)
Bytes 30-43 Name and extension of the file

If, however, no file is found which corresponds to the specified search
string, the error message -33, file not found, is returned.

pea dta Set up DTA buffer
move.w ¥la,-(sp) Function number SETDTA

141

Abacus Software Atari ST Internals

trap #1
addg.l #6,SP
move.w #attrib,-(sp) Attribute value
move.l #filnam,-(sp) Name of file to search for
move.w #$4e,-(sp) Function number
trap #1
addg.l #8,sp
tst do File found?
bne notfound Apparently not
attrib:

.dc.b 0 Search for normal files only
filnam:

-dc.b '"*.x', 0 Search for the 1lst possible file
dta:

.ds.b 44 Space for the DTA buffer
$4F SNEXT

C: int Fsnext ()

The SNEXT function (Search next) can be used to see if there are other files
on the disk which match the filename given. To do this, only the function
number need be passed; SNEXT does not require any parameters. All of the
parameters are set from the SFIRST call.

If the search string is very global, as in the previous example, all of the files
on a diskette can be determined and displayed one after the other with
SFIRST and SNEXT. This makes it rather easy to display a directory
within a program. The SNEXT function is called repeatedly and the
contents of DO are check afterwards. If DO contains a value other than zero,
either an error occurred, or all of the directory entries have been searched.

move.w #34f,-(sp) Search next

trap #1 Is it still there?

addg.l #2,sp

tst.1 do No more by negative values

142

Abacus Software Atari ST Internals

$56 RENAME

C: int Frename (dummy, oldname, newname)
int dummy = 0;
char*oldname;
char *newname;

Files are renamed under GEMDOS with the RENAME function, which
requires two pointers to file or pathnames. The first pointer points to the
new name, with the specification of the pathname if necessary; the second
pointer points to the previous name. A 2-byte parameter is required in
addition to the two pointers. We were unable to determine the function of
the additional word parameter. Different values had no (recognizable) effect.

As a return value, DO contains either zero, meaning that the name was
changed correctly, or an error code.

pea newnam New filename

pea oldname File to rename

move.w #0,-(sp) Durmy

move.w #$56,—(sp) Function number

trap #1

add.l #12,sp

tst.1 do Test for error

oldnam: Don't forget zero byte at end!
.dc.b 'oldfile.dat',0

newnam:

.dc.b 'newname.dat',0

$57 GSDTOF

C: void Fdatime (timeptr, handle, flag)
int handle;
char *timeptr;
int flag;

If the directory is displayed as text rather than icons on the desktop, the date
and time of file creation as well as the size of the file in bytes is shown. The
time and date can either be set or read with function $57. To do this it is
necessary that the file be already opened by OPEN or CREATE. The handle

143

Abacus Software Atari ST Internals

number obtained at the opening must be passed to the function. Additional
parameters are a word which acts as a flag as to whether the time and date
are to be set (0) or read (1), and a pointer to a 4-byte buffer which either
contains the result or will be provided with the required data before the call.

This date buffer contains the time in the first two byes and the date in the
last two bytes. The data format is identical to that of the functions for
setting/reading the time and date.

A word of warning about this section. Programmers who call this function
in C and assembler must make allowances. In the include file OSBIND.H,
the parameters 'timeprt' and 'handle' are exchanged. A C call must follow
this scheme when using the abovementioned include file. In assembler
programs, however, the normal sequence of parameters must be followed.

Example 1:

move.w #1,-(sp) Read time and date
pea buff 4 byte buffer
move.w #handle, - (sp) File must first be opened
move.w #3557,-(sp) Function number
trap #1
add.l #10,sp
handle:
.ds.b 2
buff:
.ds.b 4

Example 2:

move.w #0,-(sp) Set time and date
pea buff 4 byte buffer
move.w #handle,- (sp) File must first be opened
move.w #S$57,-(sp) Function number
trap #1
add.l #10,sp
handle:
.ds.b 2
buff:
.ds.b 4

144

Abacus Software Atari ST Internals

3.1.1 Memory, files and processes

Will it never end? You just mastered getting around the operating system of
your C-64, Atari 800 or other 8-bit machine, then suddenly you're
confronted with new things such as memory management, handles, and
even parent/child processes. Other computers don't have these knickknacks.
Is it really that important to have them? Doesn't the computer run fine
without them? And then there are these types that don't stay at the memory
address you want them to operate. It was so much simpler in the past.
Those were the days when you knew where a program loaded and ran, and
when you assembled things at the necessary addresses.

I/O conversion, Malloc, basepage, Pexec or Dup are such obscure terms.
Yes, everything was a lot simpler in the good old days.

We're here to help you overcome the "culture shock” that hits most 8-bit
owners when they get a 16-bit computer. In order to ease you into the most
effective use of the Atari ST operating system, we want to show you what
special functions like MALLOC, SETBLOCK, TERM and PEXEC are, as
well as the use and design of the basepage. We'll close with DUP and
FORCE, the input/output division.

The concept of memory processing

When the ST is first turned on, it goes through a normal boot sequence.
This sequence happens regardless of the ROMs or operating system in your
ST. The system boots, then displays the Desktop on the monitor.

Up to this time there have already been a number of procedures done within
the ST. So other memory, peripheral chips and operating system routines
are initialized, and the programs in the Auto folder executed.

The Desktop itself is an independent program, the same as an editor,
BASIC interpreter or compiler. Whether it is in ROM or on the TOS.IMG
disk, it starts like a program loaded from disk. One specific task of the
Desktop is to load other programs and give computer control to these
programs. As we said earlier, we'll take a closer look.

The function call Pexec is used by the Desktop in loading programs. When

you choose a program with the mouse, a corresponding Pexec call with the
filename and parameters given in the dialog box is exccuted. GEMDOS

145

Abacus Software Atari ST Internals

takes control from the call and looks for free memory. But what's "free
memory"? Every program has its memory range; free memory is
unoccupied memory, into which a program can be loaded. The start of free
memory (TPA) will then have a basepage added to it. This basepage is 256
bytes ($100 bytes) in size, and contains special information about the
program being loaded. The basepage's design looks like this:

Offset Ideptifier Function

0x00 p_lowtpa Pointer to start of basepage

0x04 p_hitpa Pointer to the end of free memory
0x08 p_tbase Pointer to beginning of program (text segment)
0x0c p_tlen Program size (Text segment)

0x10 p_dbase Pointer to start of data segment
0x14 p_dlen Data segment size

0x18 p_bbase Pointer to beginning of BSS segments
Oxlc p_len BSS segment size

0x20 p_dta Pointer to DTA buffer

0x24 p_parent Pointer to parent's basepage

0x28 (reserved)

Ox2c p_env Pointer to environment string

0x80 cmdlin Command line

The range between 0x30 and Ox7f is used by the operating system. You
should not use this range.

Although the basepage is sent from the system, there aren't many other
things that need to be done. First, after the program is loaded directly
behind the basepage, the data is made available and put into the appropriate
areas.

The program is relocated after loading (if needed). The programmer as a
rule has no control over the memory where the program resides, since
Pexec controls the free memory, and loads the program into that memory.
The classic 8-bit computer must load a program into a specific range of
memory, which easily allows combining multiple programs into one
memory register. These combinations should be avoided at all costs under
"proper"’ GEMDOS programming. Instead, assemble the program, putting
relevant addresses into a loader that Pexec will load first, then act upon
these addresses before loading the main program.

The program will start after this work. It is now a child of a program that it
has called. The calling program will be identified as a parent. This parent
has no gender; the general reference of parent and child solves any linguistic
problems.

146

Abacus Software Atari ST Internals

For the moment, let's concentrate on the child. This process has from the
first set up the entire free memory needed. The first action should be to
determine the amount of memory needed in any program, and hand the rest
over to GEMDOS. And how do you allocate memory? Once you know it,
it's simple to follow.

After the start of the program, you'll find the address of the basepage on the
stack. All the program data and calculations for memory requirements is in
the basepage. These data are p_tlen, p_dlen and p_blen. Add these values
together, and there you have your range needed by the program. In
addition, you have to reserve memory for the stack, which lies in protected
memory.

When you analyze the beginning of a program with a disassembler, you'll
frequently find the following or a similar sequence:

move.l a7, a5 store stack to determine basepage

move.l 4(a5),a5 base page is now in a5

move.l $c(ab),d0 text segment length stands in d0

add.l $14(a5),d0 add to that the length of the data- and

add.l $lc(ab),d0 the bss segments

add.l #5500,d0 and to that add the amount needed for the stack

move.l dO,dl

add.l a5,dl length + address of basepage

and.l #-2,dl1 be sure that the stack starts at an even address
move.l dl,a’7 now put the stack where you want it

move,l d0,-(sp) size of reserved area

move.l a5, - (sp) from where you want it reserved (base page)
clr.w -—{(sp) dummy

move.w #%4a,-(sp) setblock-function number

trap #1 call gemdos

add.l #12,sp and clear off the stack

This program section takes up all tasks which were demanded from
GEMDOS. After GEMDOS has reduced the amount of available memory
accordingly, the program can then continue.

What is released memory? This is done by GEMDOS for further Pexec
calls. The child process has no access authority. You should ideally be able
to use memory without further measurements. When you keep putting data
into this range, the data could occasionally become "overstuffed". Different
functions of GEMDQOS, the VDI and AES are reserved by Malloc, and
putting data into the received range. When you haven't protected your data,
the chances are good that you'll lose your data.

147

Abacus Software Atari ST Internals

When you have not set up available memory, then you can call Malloc from
the operating system. After the call, you get the starting address of the
reserved range. This range is "safe"—you can't put any other process into
this range. When the memory is no longer free, the best thing to do is call
Mfree. Then you can choose from another process.

When you hold to these conventions, then one can't get past. The memory
is again protected, and you can load in any other programs. Every new
loading makes up another child of the parent program. So overlaying
programs is only allowed when the available memory is protected.

If a program ends with PtermO or Pterm, then the designated memory is
released from the program. Additional memory reserved by Malloc will be
released. Also, any open files will be closed. Then control returns to the
parent, whereas it was previously held by the child.

Handles, files, devices

The basic file handling functions in GEMDOS are quite simple. Fopen or
Fcreate open a file; this file is read from with Fread, and written to with
Fwrite. Fclose closes the file. All file accesses run under a number, initially
stated in Fopen or Fcreate. This number between 6 and 45 is called a "non
standard handle." Non standard handles are used only in conjunction with
files.

It is logical to assume that there are also "standard handles.” And so there
are; these are the handles between 0 and 5. These handles can be organized
as either a file or as a "character device." Character devices in the ST consist
of the keyboard, the monitor, the printer interface and the serial interface.
Here is the normal assignment for these standard handles:

Handle Device
0 Console input (Stdin)
1 Console output (Stout)
2 Serial interface (AUX)
3 Printer interface (PRN)

The standard handles 4 and 5 aren't used in ST GEMDOS as a rule. The
"correct’ GEMDOS layout sees handle 2 as a standard error device (Stderr).
These will shift AUX and PRN over one place. Handle 5 is originally used
as a null-device. This null-device can store output in an empty space. This
setup is unfortunately not implemented in the ST.

148

Abacus Software Atari ST Internals

That's not all. There are also character handles which are assigned in
connection with the character devices. These character handles are received
only after an Fopen or Fcreate, and give the names of the desired character
devices. The names of the character devices are "CON:", "AUX:" and
"PRN:".

Standard handles serve two distinct purposes. The first is that you can use
them for Fopen or Fcreate without actually having Fopen or Fcreate. These
handles will perform any process arranged by the parent process. The
second purpose is the allowance for altering standard handles.

For example: You work on a program which waits for a quantity of data
from the keyboard; this data is processed, saved to disk, and the results sent
to a printer. Now, you could do every test run by hand, and end up with a
pile of paper, until the program runs free of error. However, you could just
as easily pass along the keyboard input and the printer output by writing all
the keyboard input into a file, and having the file data do the typing. You
could also have the printer output sent to a file instead of the printer, so you
could save yourself a waste of paper, and still see the result later.

These conversions use both standard and non standard handles, controlled
by the Force function. Here is a program fragment which contains the
necessary calls for using a file to send "keyboard" input from a file:

move.w #0,~(sp) "read only" mode

pea fil nam name of the input file
move.w #$3d,-(sp) fopen ()

trap #1 gemdos call

addqg.l #8,sp

tst.1l doO did fopen work?

bmi opn_err negative long is an error!
move.w dO0,f handle the handle we need is our
move.w d0, - (sp) our non std handle

move.w #0, - (sp) std handle console

move.w #3$46,-(sp) force()

trap #1 call gemdos

addq.l #6,sp

tst.1 do read error

bmi frc_err

input starts from
file here

After this call (and this is extremely important), every GEMDOS call for a
character from the keyboard will get it from the file. The keyboard must not

149

Abacus Software Atari ST Internals

be read with Fread(). Cconin(), Crawio(), Cconrs() and the other functions
dealing with keyboard data also look to the file data instead of the keyboard.
The use of character functions (Conin, etc.) in connection with this are
problematical. These functions have no options in working with the called
program when the file ends. This information can be had only by using the
Fread() function.

An exception is when you mark the input file with a special end-of-file
(EOF) indicator. One character frequently used for this purpose is
<Control><Z>, with an ASCII value of 26 or Ox1a. When you reserve this
character for an EOF character, then you can read this character in addition
to the standard arrangement of 0. For particularly elegant programming, you
can follow it with the Fdup function. Here's a short example:

move.w #0,-(sp) our std handle
move.w #3545, - (sp) dup ()
trap #1 call gemdos
addg.l #4,sp
tst.l do was there still a non std handle free?
bmi no_more evidently not
move.w d0,dup_han make a note of it!
* here the key/file transfer program can follow

Here is the program itself. Now you can only start with keyboard
input

move.w dup_han,-(sp) our non std handle from dup()

move.w #0,-(sp) there should be a std handle
move.w #546,-(sp) force()

trap #1 call gemdos

addg.l #6,sp

tst.l do read error

bmi frc_err

from this point on, the input is again
handed over to the keyboard

First, the handle from Stdin, the 0, is duplicated by the Dup function. The
keyboard is accessed by the standard handle as well as the non standard
handle. (only with Fread, naturally). The input routine then switches over to
the file, giving the effect described above. All characters that you would

150

Abacus Software Atari ST Internals

normally send over the keyboard are read from the file. When the input is
ended, then the duplicated handle is returned to keyboard input with a Force
call. The still open file should be closed by an Fclose call.

From reading the above, it should be clear to you the way that the printer
output works. Again, open a file with Fcreate(). The handle used can be
Forced from the printer. Then all data that would normally go to the printer
will be sent to a file.

A further application would be when you move output from the screen to
the printer. This can also be easily realized.

GEMDOS error codes and their meaning

The GEMDOS functions return a value giving information about whether or
not an error occurred during the execution of the function. A value of zero
means no error; negative values have the following meanings:

-32 Invalid function number

-33 File not found

-34 Pathname not found

-35 Too many files open (no more handles left)
-36 Access not possible

-37 Invalid handle number

-39 Not enough memory

-40 Invalid memory block address

-46 Invalid drive specification

~-49 No more files

In addition to these error messages, the BIOS error messages may occur.

These error messages have numbers -1 to -31 and are described in section
33

151

Abacus Software Atari ST Internals

3.2 The BIOS Functions

The software interface between GEMDOS and the hardware of the computer
is the BIOS (Basic Input Output System). The BIOS, as the name suggests,
is concerned with the fundamental input/output functions. This includes
screen output, keyboard input, printer output, RS-232 functions and, of
course, disk input and output.

The BIOS functions are also available to user programs. The TRAP
instruction of the 68000 processor is used to call them. Any data required is
passed through the stack and the result of the function is returned in the DO
register. The machine language programmer should be aware that the
contents of D0-D2 and A0-A2 are changed when calling BIOS functions;
the remaining registers remain unchanged.

BIOS function calls are even simpler if you program in C. Here you can use
simple function calls with the corresponding parameter lists. The function
calls are stored as macros in an include file. In the examples, the definition
of the function and its parameters in C will be shown. For assembly
language programmers, the use is described in an example.

TRAP#1 3 is reserved for the BIOS functions.

152

Abacus Software Atari ST Internals

0 Getmpb get memory parameter block

C: void Getmpb (pointer)
long pointer;

Assembler:

move.l pointer,-(SP)
move.w #0,—-(SP)

trap #13

addg.l #6,sp

This function fills a 12-byte block whose address is contained in pointer
with the memory parameter block. This block contains three pointers:

long md mfl Memory free list
long md mal Memory allocated list
long md_rover Roving pointer

The structures to which each pointer points are constructed as follows:

long md_link Pointer to next block
long md_start Start address of the block
long md_length Length of the block in bytes
long md_own Process descriptor

Example:

move.l #buffer,-(sp) Buffer for MPB

move.w #0,-(sp) getmpb
trap #13 Call BIOS
addg.l #6,sp Stack correction

We get the values $48E, 0, and $48E. The following data are at address
$48E (for IMB RAM):

m_link 0 No additional block

m_start $3B%00 Start address of the free memory
m_length $3C700 Length of the free memory

m_own 0 No process descriptor

153

Abacus Software

Atari ST Internals

1 Bconstat

C: int Bconstat (dev)
int dev;

Assembler:;

move.w dev, - (sp)
move.w #1,-(sp)
trap #13
addqg.l #4,sp

return input device status

This function returns the status of an input device, defined as follows:

Status 0 No characters ready
Status -1 (at least) one character ready

The parameter dev specifies the input device:

dev Input device

PRT:, Centronics interface
AUX:, RS~232 interface
CON:, Keyboard and screen
MIDI, MIDI interface

IKBD, Keyboard port

s W NP o

The following table lists the allowed accesses to these devices:

Operation PRT:
Input status no

Input yes
Output status vyes
Output yes

AUX:

yes
yes
yves
yes

CON: MIDI IKBD
yes yes no
yes yes no
yes yes yes
yes yes yes

This example waits until a character from the RS-232 interface is ready.

wait move.w #1,-(sp)
move.w #1,-(sp)

trap #13
addg.l #4,sp
tst do

beqg wait

R5-232
bconstat

character available?
no, wait

154

Abacus Software Atari ST Internals

2 Bconin read character from device

C: long Bconin (dev)
int dev;

Assembler:

move.w dev,-(sp)
move.w #2,-(sp)
trap #13
addg.1l #4,sp

This function fetches a character from an input device. The parameter dev
has the same meaning as in the previous function. The function returns
when a character is ready.

The character received is in the lowest byte of the result. If the input device

was the keyboard (con, 2), the key scan code is also returned in the lower
byte of the upper word (see the description of the keyboard processor).

Example:
move.w #2,-(sp) con
move.w #2,-(sp) bconin

trap #13
addqg.l #4,sp

3 Bconout write character to device

C: void Bconout (dev, c)
int dev, c;

Assembler:

move.

E3

c,-(sp)
move.w dev,-(sp)
move.w #3,-(sp)
trap #13

addg.l #6,sp

£ =

[et

155

Abacus Software Atari ST Internals

This function serves to output a character "c" to the output device dev
(meaning is the same as for the previous function). The function returns
when the character has been outputted.

Example:
move.w #'A',-(sp)
move.w #0,-(sp) PRT:
move.w #3,-(sp) Bconout
trap #13

addqg.l #6,sp

The example outputs the letter "A" to the printer.

4 Rwabs read and write disk sector

C: long Rwabs{rwflag, buffer, number, recno,dev)
long buffer:;
int rwflag, number, recno, dev;

Assembler:

move.w dev, - (sp)
move.w recno,-(sp)
move.w number, - (sp)
move.l buffer, -~ (sp)
move.w rwflag,-(sp)
move.w #4,-(sp)
trap #13

add.l #14,sp

This function serves to read and write sectors on the disk. The parameters
have the following meanings:

rwflag Meaning

0 Read sector

1 Write sector

2 Read sector, ignore disk change
3 Write sector, ignore disk change

156

Abacus Software Atari ST Internals

The parameter buffer is the address of a buffer into which the data will be
read from the disk or from which the data will be written to the disk. The
buffer should begin at an even address, or the transfer will run very slowly.

The parameter number specifies how many sectors should be read or written

during the call. The parameter recno specifies which logical sector the
process will start with.

The parameter dev determines which disk drive will be used:

dev Drive

0 Drive A

1 Drive B

2+ Hard disk, RAM disk, network

The function returns an error code as the result. If this value is zero, the
operation was performed without error. The returned value will be negative
if an error occurred (please see the Floprd entry of the XBIOS listing for
error codes and their meanings).

Example:
move.w #0,-(sp) Drive A
move.w #10,~(sp) Start at logical sector 10
move.w #2,-(sp) Read 2 sectors
move.l #buffer,-(sp) Buffer address
move.w #0,-(sp) Read sectors
move.w #4,-(sp) rwabs
trap #13

add.l #14,sp

buffer ds.b 2%*%512

157

Abacus Software

Atari ST Internals

5 Setexec set exception vectors

C: long Setexec (number, vector)
number;
long vector;

int

Assembler:

move.
W
W

move
move
trap

addqg.

1

1

vector, - (sp)
number, - (sp)
#5, - (sp)

#13

#8,sp

The function setexec allows one of the exception vectors of the 68000
processor to be changed. The number of the vector must be passed in
number and the address of the routine pertaining to it in vector. The
function returns the old vector as the result. If you just want to read the
vector, pass the value -1 as the new address. The 256 processor vectors as
well as 8 vectors for GEM, which numbers $100 to $107 (address $400 to
$41C) can be changed with this function.

Example:

move.
move.
move.

trap

addg.

buserror

g £+

[

#buserror, - (sp)
#2,-(sp)
#5,-(sp)

#13

#8,sp

158

Abacus Software Atari ST Internals

6 Tickcal return millisecond per tick

C: long Tickcal()

Assembler:

move.w #6,~ (sp)
trap #13
addg.l #2,sp

This function returns the number of milliseconds between two system timer
calls.

Example:

move.w #6,~-(sp)
trap #13
addg.l #2,sp

Result: 20 ms

7 Getbpb get BIOS parameter block

C: long Getbpb (dev)
int dev;

Assembler;

move.w dev, - (sp)
move.w #7,-(sp)
trap #13
addg.l #4,sp

This function returns a pointer to the BIOS Parameter Block of the drive
dev (O=drive A, 1=drive B).

The BPB (BIOS Parameter Block) is constructed as follows:

int recsiz Sector size in bytes
int clsiz Cluster size in sectors
int «c¢lsizb Cluster size in bytes

159

Abacus Software

Atari ST Internals

int
int
int
int
int
int

rdlen
fsiz
fatrec
datrec
numcl
bflags

Directory length in sectors

FAT size in sectors
Sector number of the second FAT

Sector number of the first data cluster
Number of data clusters on the disk

Misc. flags

The function returns the address $3E3E for drive A and the address $3ESE

for drive B. An address of zero indicates an error.

Example:
move.w #0,-(sp) Drive A
move.w #7,~-(sp) getbpb

trap

addqg.l #4,sp

#13

Here are the BPB data for 80 track single and double-sided disk drives:

Parameter
recsiz

clsiz

clsizb
rdlen

fsiz

fatrec
datrec
numcl

80 track SS
512
2
1024
7
5
6
18
351

80 track DS

512
2
1024
7

5

6

18
711

160

Abacus Software Atari ST Internals

8 Bcostat return output device status

C: long Bcostat (dev)
int dev;

Assembler:

move.w dev,-(sp)
move.w #8,-(sp)
trap #13
addg.l #4,sp

This function tests to see if the output device specified by dev is ready to
output the next character. dev can accept the values which are described in
function one. The result of this function is either -1 if the output device is
ready, or zero if it must wait.

Example:
move.w #0,-(sp) Printer ready?
move.w #8,-(sp) bcostat
trap #13

addg.l #4,sp

9 Mediach inquire media change

C: long Mediach (dev)
int dev;

Assembler:

move.w dev, - (sp)
move.w #9,-(sp)
trap #13
addg.l #4,sp

This function determines if the disk has been changed. The parameter dev,
the drive number (O=drive A, 1=drive B), must be passed to the routine.

161

Abacus Software Atari ST Internals

One of three values can occur as the result:

0 Diskette was definitely not changed

1 Diskette may have been changed

2 Diskette was definitely changed
Example:

move.w #1,-(sp) Drive B

move.w #9,-(sp) mediach

trap #13

addg.l #4,sp

10 Drvmap inquire drive status

C: long Drvmap()

Assembler:

move.w #10,-(sp)
trap #13
addg.l #2,sp

This function returns a bit vector which contains the connected drives. The
bit number n is set if drive n is available (0 means A, etc.). Even if only one
drive is connected, %11 is still returned, since two logical drives are
assumed.

Example:
move.w #10,-(sp) drvmap
trap #13

addg.l #2,sp

162

Abacus Software Atari ST Internals

11 Kbshift inquirelchange keyboard status

C: long Kbshift (mode)
int mode;

Assembler:

move.w mode, - (sp)
mode.w #11,-(sp)
trap #13
addg.l #4,sp

With this function you can change or determine the status of the special keys

on the keyboard. If mode is -1, you get the status, a positive value will be
accepted as the status. The status is a bit vector constructed as follows:

Bit Meaning
0 Right shift key
1 Left shift key
2 Control key
3 ALT key
4 Caps Lock on
5 Right mouse button (CLR/HOME)
6 Left mouse button (INSERT)
7 Unused
Example:
move.w #-1,-(sp) Read shift status
move.w #11,-(sp) kbshift
trap #13

addg.l #4,sp

163

Abacus Software Atari ST Internals

3.3 The XBIOS

To support the special hardware features of the Atari ST, there are extended
BIOS (XBIOS) functions, which are called by a TRAP#14 instruction.
These functions, like the normal BIOS functions, can be called from
assembly language as well as from C. When calling from C, a small TRAP

handler in machine language is again necessary, which is contained in
OSBIND and can look like this:

trapléd:
move.l (sp)+,retsave Save return address
trap #14 Call XBIOS
move.l retsave,-(sp) Restore return address
rts
.bss
retsave ds.l 1 Space for the return address

Macro functions can be used in C which allow the extended BIOS functions
(eXtended BIOS, XBIOS) to be called by name. The appropriate function
number and TRAP call will be created when the macro is expanded.

When working in assembly language, the function number of the XBIOS

routine need simply be passed on the stack. The XBIOS has 40 different
functions whose significance and use are described on the following pages.

164

Abacus Software Atari ST Internals

0 Initmous initialize mouse

C: void Initmous(type, parameter, vector)
int type;
long parameter, vector;

Assembler:
move.l vector,-(sp)
move.l parameter,-(sp)
move.w type,-—(sp)
move.w #0, (-sp)
trap #14

add.l #12,sp

This XBIOS function initializes the routines for mouse processing. The
parameter vector is the address of a routine which will be executed
following a mouse-report from the keyboard processor. The parameter type
selects from among the following alternatives:

type
0 Disable mouse
1 Enable mouse, relative mode
2 Enable mouse, absolute mode
3 unused
4 Enable mouse, keyboard mode

This allows you to select if mouse movements are to be reported and in
what manner this will occur.

The parameter parameter points to a parameter block, which is constructed
as follows:

char topmode
char buttons
char xparam
char yparam

The parameter t opmode determines the layout of the coordinate system. A 0

means that Y=0 lies in the lower corner, 1 means that Y=0 lies in the upper
corner.

165

Abacus Software Atari ST Internals

The parameter buttons is a parameter for the command "set mouse
buttons” of the keyboard processor (see description of the IKBD, intelligent
keyboard).

The parameters xparam and yparam are scaling factors for the mouse
movement. If you have selected 2 as the type, the absolute mode, the
parameter block determines four more parameters:

int =xmax
int ymax
int =xstart
int ystart

These are the X- and Y-coordinates of the maximum value which the mouse
position can assume, as well as the start value to which the mouse will be
set.

Example:
move.l #vector,-(sp) Address of the mouse position
move.l #parameter,-(sp) Address of the parameter block
move.w #1,-(sp) Enable relative mouse mode
move.w #0,-(sp) Init mouse
trap #14

add.l #12,sp
parameter dc.b

vector BN Mouse interrupt routine

166

Abacus Software Atari ST Internals

1 Ssbrk save memory space

C: long Ssbrk (number)
int number;

Assembler:

move.w number, - (sp)
move.w #1,-(sp)
trap #14

addg.l #4,sp

This function reserves memory space. The number of bytes must be passed
in number. Space is prepared at the upper end of memory. The function
returns the address of the reserved memory area as the result. This function
must be called before initializing the operating system, meaning that it must
be called from the boot ROM, before the operating system is loaded.

Example:
move.w #3$400,-(sp) Reserve 1K
move.w #1,-(sp) ssbrk
trap #14

addg.l #4,sp

167

Abacus Software Atari ST Internals

2 Physbase return screen RAM base address

C: long Physbase()

Assembler:

move #2,-(sp)
trap #14
addg.l #2,sp

This function returns the base of the physical screen RAM. The physical
screen RAM is the area of memory displayed by the video shifter. The result
is a long word.

Example:

SF8000, base address of the screen for 1 MB RAM
$78000, base address of the screen for 512 KB RAM

3 Logbase set logical screen base

C: long Logbase()

Assembler:
move #3,-(sp)
trap #14

addg.l #2,sp

The logical screen base is the address which is used for all output functions
as the screen base. If the physical and logical screen bases are different, one
screen will be displayed while another picture is being constructed in a
different area of RAM, which will be displayed later. The result of this
function call is again a longword.

Example:

$FB8000, base address of the screen for 1 MB RAM
$78000, base address of the screen for 512 KB RAM

168

Abacus Software Atari ST Internals

4 Getrez return screen resolution

C: int Getrez ()

Assembler:

move.w #4,-(sp)
trap #14
addg.l #2,sp

This function call returns the screen resolution:

0 := Low resolution, 320*200 pixels, 16 colors

1 := Medium resolution, 640*200 pixels, 4 colors

2 := High resolution, 640*400, pixels, monochrome
Example:

2, monochrome

5 Setscreen set screen parameters

C: void Setscreen(logadr, physadr, res)
long logadr, physadr;

int res:;

Assembler:
move.w res,=-(sp)
move.l physadr, - (sp)
move.l logadr,-(sp)
move.w #5,—(sp)
trap #14

add.1l #12,sp

This function changes the screen parameters which can be read with the
previous three functions. If a parameter should not be set, a negative value
must be passed. The parameters are set in the next VBL routine so that no
disturbances appear on the screen.

169

Abacus Software Atari ST Internals

Example:

move.
move.
move.
move.

trap

w #-1,-(sp) Retain resolution
1 #$70000,-(sp) Physical base
1 #$70000,-(sp) Logical base
w #5,-(sp) setscreen
#14

add.l #12,sp

Set the physical and the logical screen address to $70000, retain the
resolution.

6 Setpalette set color palette

C: void Setpalette(paletteptr)

long

paletteptr;

Assembler:

move
move
trap

.1 paletteptr,-(sp)
.w #6,-(sp)
#14

addg.l #6,sp

A new color palette can be loaded with this function. The parameter

paletteptr must be a pointer to a table with 16 colors (each a word). The
address of the table must be even. The colors will be loaded at the start of
the next VBL.

Example:

move
move
trap
addg

palette

.1 #palette, - (sp) Address of the new color palette
.W #6,-(sp) set palette

#14
.1 #6,sp

de.w $777,8%700,$070,$007,%111,%222,$333,5444
dc.w $555,$000,5001,$010,5100,5200,5020,5$002

170

Abacus Software Atari ST Internals

7 Setcolor set color

C: int Setcolor{colornum, color)
int colornum, color

Assembler:

move

trap

addqg.

W
move.
move.

w
w

1

color,-(sp)
colornum, - (sp)
#7,-(sp)

#14

#6,sp

This function allows just one color to be changed. The color number (0-15)
and the color belonging to it (0-$777) must be specified. If -1 is given as the
color, the color is not set but the previous color is returned.

Example:

move.
move.
move.

trap

addg.

=

%

-

#3777, - (sp) Color white
#1,-(sp) As color number 1
#7,-(sp)

#14

#6,sp

171

Abacus Software Atari ST Internals

8 Floprd

read diskette sector

C: int Floprd(buffer, filler, dev, sector, track, side,

count)

long buffer, filler;

int dev,

Assembler:

move.
move.
move.
move.
move.

£ £ £ 5 5

sector, track, side, count;

count, - (sp)
side, - (sp)
track, - (sp)
sector, - (sp)
dev, - (sp)

clr.l -(sp)

move.l buffer, - (sp)
move.w #8,-(sp)
trap #14

add.l #20,sp

This function reads one or more sectors in from the diskette. The parameters
have the following meaning:

count:

side:

track:

sector:

dev:

filler:

buffer:

Specifies how many sectors are to be read. Values between
one and nine (number of sectors per track) are possible.

Selects the diskette side, zero for single-sided drives and
zero or one for double-sided drives.

Determines the track number (0-79 for 80-track drives or
0-39 for 40-track drives).

The sector number of the first sector to be read (0-9).
Determine drive number, O for drive A and 1 for drive B.
Unused long word.

Buffer in which the diskette data should be written. The
buffer must begin on a word boundary and be large enough

for the data to be read (512 bytes times the number of
sectors).

172

Abacus Software

Atari ST Internals

The function returns an error code which has the following meaning:

Example:

move.
move.
move.
move.
move.
clr.1l
move.l
move.w
trap
add.l
tst
bmi

£ £ £ £ %

0 OK, no error
-1 General error
-2 Drive not ready
-3 Unknown command
-4 CRC error
-5 Bad request, invalid command
-6 Seek error, track not found
-7 Unknown media (invalid boot sector)
-8 Sector not found
-9 (No paper)
-10 Write error
-11 Read error
-12 General error
-13 Diskette write protected
-14 Diskette was changed

-15 Unknown device
-16 Bad sector (during verify)
-17 Insert diskette (for connected drive)

#1,-(sp) Read a sector
#0,-(sp) Page zero
#0,-(sp) Track zero
#1,-(sp) Sector one
#1,—~(sp) Drive B

- (sp)

#buffer,—-(sp)

#8,~(sp) floprd

#14

#20,sp

do Did error occur?
error yes

buffer ds.b 512

Buffer for a sector

173

Abacus Software Atari ST Internals

9 Flopwr write diskette sector

C: int Floprd(buffer, fillexr, dev, sector, track, side,
count)
long buffer, filler:;
int dev,sector,track,side,count;

Assembler:

move.w count, - (sp)
move.w side, - (sp)
move.w track,- (sp)
move.w sector, - (sp)
move.w dev, - (sp)
clr.l -~(sp)

move.l buffer, - (sp)
move.w #9,-(sp)
trap #14

add.l #20,sp

One or more sectors can be written to disk with this XBIOS function. The
parameters have the same meaning as for the Floprd function. The function
returns an error code which has the same meaning as for reading sectors.

Example:
move.w #3,-(sp) Write three sectors
move.w #0,-(sp) Side zero
move.w #7,-(sp) Track seven
move.w #1,-(sp) Sector one
move.w #0,-(sp) Drive A
clr.l —(sp)
move.l #buffer,-(sp) Address of the buffer
move.w #9,-(sp) flopwr
trap #14
add.l #20,sp
tst do Did an error occur?
bmi error yes
buffer ds.b 3%*512 Buffer for three sectors
174

Abacus Software

Atari ST Internals

10 Flopfmt

format diskette

C: int Flopfmt (buffer, filler, dev, spt,
interleave, magic, virgin)
filler, magic;

track, side,

long buffer,

int dev, spt, track, side, interleave, virgin;
Assembler:

move.w virgin, - (sp)

move.l magic, - (sp)

move.w interleave, - (sp)

move.w side,- (sp)

move.w track,-(sp)

move.w spt,-(sp)

move.w dev,- (sp)

clr.l -(sp)

move.l buffer, - (sp)
move.w #10,-(sp)
trap #14

add.l #26,sp

This routine serves to format a track on the diskette. The parameters have
the following meanings:

virgin: The sectors are formatted with this value. The
standard value is $ESES5. The high nibble of each byte
may not contain the value $F.

magic: The constant $87654321 must be used as magic or
formatting will be stopped.

interleave: Determines in which order the sectors on the disk will
be written, usually one.

side: Selects the disk side (0 or 1).

track: The number of the track to be formatted (0-79).

spt: Sectors per track, normally 9.

dev: The drive, O for A and 1 for B.

175

Abacus Software Atari ST Internals

filler: Unused long word.

buffer: Buffer for the track data; for 9 sectors per track the
buffer mst be at least 8K large.

The function returns an error code as its result. The value -16, bad sectors,
means that data in some sectors could not be read back correctly. In this
case the buffer contains a list of bad sectors (word data, terminated by
zero). You can format these again or mark the sectors as bad.

Example:
move.w #SESES, - (sp) Initial data
move.l #$87654321,-(sp) magic
move.w #1,-(sp) interleave
move.w #0,- (sp) side 0
move.w #79,-(sp) track 79
move.w #9,-(sp) 9 sector per track
move.w #0,-(sp) drive A
clr.1 -(sp)
move.w #buffer, - (sp)
move.w #10,-(sp) flopfmt
trap #14
add.l #26,sp
tst do
bmi error

buffer ds.b $2000 8K buffer

11 Unused

176

Abacus Software Atari ST Internals

12 Midiws write string to MIDI interface

C: void Midiws(count, ptr)
int count;
long ptr;

Assembler:

move.l ptr,-(sp)
move.w count,-(sp)
move.w #12,-(sp)
trap #14

addg.l #8,sp

With this function it is possible to output a string to the MIDI interface

(MIDI OUT). The parameter ptr must point to a string, count must contain
the number of characters to be sent minus 1.

Example:
move.l #string,-(sp) Address of the string
move.w #stringend-string-1,-(sp) Length
move.w #12,-(sp) midiws
trap #14

addg.l #8,sp

string dc.b 'MIDI data"
stringend equ *

177

Abacus Software Atari ST Internals

13 Mfpint initialize MFP format

C: void Mfpint (number, vector)
int number;
long vector;

Assembler;

move.l vector, - (sp)
move.w number, - (sp)
move.w #13,-(sp)
trap #14

addg.l #8,sp

This function initializes an interrupt routine in the MFP. The number of the
MFP interrupt is in number while vector contains the address of the
corresponding interrupt routine. The old interrupt vector is overwritten.

Example:
move.l #busy,-(sp) Busy interrupt routine
move.w #0,-(sp) Vector number 0
move.w #13,-(sp) mfpint
trap #14

addg.l #8,sp

busy:

178

Abacus Software Atari ST Internals

14 Iorec return record buffer

C: long Iorec (dev)
int dev;

Assembler:

move.w dev, - (sp)
move.w #14,-(sp)
trap #14
addqg.l #4,sp

This function fetches a pointer to a buffer data record for an input device.
The following input devices can be specified:

dev Input device
RS-232
Keyboard
MIDI

NEHE OO

The buffer record for an input device has the following layout:

long 1ibuf Pointer to an input buffer
int ibufsize Size of the input buffer
int ibufhd Head index

int ibuftl Tail index

int ibuflow Low water mark

int ibufhi High water mark

The input buffer is a circular buffer; the head index specifies the next write
position (the buffer is filled by an interrupt routine) and the tail index
specifies from where the buffer can be read. If the head and tail indices are
the same, the buffer is empty. The low and high marks are used in
connection with the communications status for the RS-232 (XON/XOFF or
RTS/CTS). If the input buffer is filled up to the high water mark, the
sender is informed via XON or CTS that the computer cannot receive any
more data. When data received by the computer can be processed again, so
that the buffer contents sink below the low water mark, the transfer is
resumed.

There is an identically-constructed buffer record for the RS-232 output
which is located directly behind the input record.

179

Abacus Software Atari ST Internals

The following table contains the data for all devices:

RS-232 input RS-232 output Keyboard MIDI

Address $9D0 ($9DE) 5942 SA00
Buffer address 56D0 $7D0 $8D0 $950
Buffer length $100 $100 $80 $80
Head index 0 0 0 0

Tail index 0 0 0 0

Low water mark $40 540 520 $20
High water mark 5CO $CO 520 520

Head and tail indices are naturally dependent on the current operating mode.
High and low water marks are set at 3/4 and 1/4 of the buffer size. They
have significance only for XON/XOFF or RTS/CTS in connection with
RS-232.

Example:
move.w #1,-(sp) Buffer record for keyboard
move.w #14,-(sp) iorec
trap #14

addg.l #4,sp

Result: $9F2

180

Abacus Software Atari ST Internals

15 Rsconf set RS-232 configuration

C: void Rsconf (baud, ctrl, ucr, rsr, tsr, scr)
int baud, ctrl, ucr, rsr, tsr, sScCr;

Assembler:

move.w scr,-(sp)
move.w tsr,-(sp)
move.w rsr,—(sp)
move.w ucr, - (sp)
move.w ctrl,-(sp)
move.w baud, - (sp)
move.w #15,-(sp)
trap #14

add.l #14,sp

This XBIOS function serves to configure the RS-232 interface. The
parameters have the following significance: '

scr: Synchronous Character Register in the MFP
tsr: Transmitter Status Register in the MFP
rsr: Receiver Status Register in the MFP

ucr: USART Control Register in the MFP

ctrl: Communications parameters

baud: Baud rate

See the section on the MFP 68901 for information on the MFP registers. If
one of the parameters is -1, the previous value is retained. The handshake
mode can be selected with the ctrl parameter:

ctrl Meaning
0 No handshake, default after power—up
1 XON/XOFF
2 RTS/CTS
3 XON/XOFF and RTS/CTS (not useful)

The baud parameter contains an indicator for the baud rate:

baud baud rate

0 15200
1 9600
2 4800

181

Abacus Software Atari ST Internals

baud baud rate

3 3600
4 2400
5 2000
6 1800
7 1200
8 600
9 300
10 200
11 150
12 134
13 110
14 75
15 50
Example:
move.w #-1,-(sp)
move.w #-1,-(sp) Don't change MFP registers
move.w #-1,-(sp)
move.w #-1,-(sp)
move.w #1,-(sp) XON/XOFF
move.w #9,-(sp) 300 baud
move.w #15,-(sp) rsconf
trap #14

add.l #14,sp

182

Abacus Software Atari ST Internals

16 Keytbl set keyboard table

C: long Keytbl (unshift, shift, capslock)
long unshift, shift, capslock;

Assembler:
move.l capslock, - (sp)
move.l shift,-(sp)
move.l unshift, - (sp)
move.w #16,—(sp)
trap #14

add.l #14,sp

With this function it is possible to create a new keyboard layout. To do this
you must pass the address of the new tables which contain the key codes for
normal keys (without shift), shifted keys, and keys with caps lock. The
function returns the address of the vector table in which the three keyboard
table pointers are located. If a table should remain unchanged, -1 must be
passed as the address. A keyboard table must be 128 bytes long. It is
addressed via the key scan code and returns the ASCII code of the given
key.

Example:
move.l #-1,-(sp) Don't change caps lock
move.l #shift,-(sp) shift table
move.l #unshift,-(sp) Table without shift
move.w #16,—(sp)
trap #14

addg.l #14,sp

shift:
unshift:

183

Abacus Software Atari ST Internals

17 Random return random number

C: long Random()

Assembler:

move.w #17,-(sp)
trap #14
addqg.l #2,sp

This function returns a 24-bit random number. Bits 24-31 are zero. With
each call you receive a different result. After turning on the computer a
different seed is created.

Example:
move.w #17,-(sp) random
trap #14

addg.l #2,sp

18 Protobt produce boot sector

C: void Protobt (buffer, serialno,disktype, execflag)
long buffer, serialno;
int disktype, execflag;

Assembler:
move.w execflag,-(sp)
move.w disktype,- (sp)
move.l serialno,-(sp)
move.l buffer, - (sp)
move.w #18,-(sp)
trap #14

add.l #14,sp

This function serves to create a boot sector. A boot sector is located on track
0, sector 1 on side O of a diskette and gives the DOS information about the
disk type. If the boot sector is executable, it can be used to load the
operating system. With this function you can create a new boot sector, for a
different disk format or to change an existing boot sector.

184

Abacus Software Atari ST Internals

The parameters:
execflag: determines if the boot sector is executable.

0 not executable
1 executable
-1 boot sector remains as it was

The disk type can assume the following values:

40 track, single sided (180 K)
40 track, double sided (360 K)
80 track, single sided (360 K)
80 track, double sided (720 K)
Disk type remains unchanged

H WNRFEO

The parameter serialno is a 24-bit serial number which is written in the
boot sector. If the serial number is greater than 24 bits ($01000000), a
random serial number is created (with the above function). A value of -1
means that the serial number will not be changed.

The parameter buffer is the address of a 512-byte buffer which contains
the boot sector or in which the boot sector will be created.

A boot sector has the following construction:
Address 40 track SS 40 track DS 80 track SS 80 track DS
0-1 Branch instruction to boot program if executable

2- 1 'Loader’
8-10 24-bit serial number

11-12 BPS 512 512 512 512
13 SPC 1 2 2 2
14-15 RES 1 1 1 1
16 FAT 2 2 2 2
17-18 DIR 64 112 112 112
19-20 SEC 360 720 720 1440
21 MEDIA 252 253 248 249
22-23 SPF 2 2 5 5

24-25 SPT 9
26-27 SIDE 1
28-29 HID 0
510-511 CHECKSUM

o N
[3 SN o]
[@ 2 \& BRVo]

185

Abacus Software Atari ST Internals

BPS: Bytes per sector. The sector size is 512 bytes for all formats

spC: Sectors per cluster. The number of sectors which are combined
into one block by the DOS, 2 sectors equals 1K

RES: Number of reserved disk sectors,including the boot sector.

FAT: The number of file allocation tables on the disk.

DIR: The maximum number of directory entries.

SEC: The total number of sectors on the disk.

MEDIA: Media descriptor byte, not used by the ST-BIOS.

SPF: Number of sectors in each FAT.,

SPT: Number of sectors per track.

SIDE: Number of sides of the diskette.

HID: Number of hidden sectors on the disk.
The boot sector is compatible with MS-DOS 2.x. This is why all 16-bit
words are stored in 8086 format (first low byte, then high byte). If the
checksum of the whole boot sector is $1234, the sector is executable. In this

case the boot program is located at address 30.

This program adapts an existing boot sector for 80 tracks, double sided.

Example:
move.w #-1,-(sp) Don't change executability
move.w #3,-(sp) 80 tracks DS
move.l #-1,-(sp) Don't change serial number
move.l #buffer, - (sp)
move.w #18,-(sp) protobt
trap #14

add.l #14,sp

buffer ds.b 512

186

Abacus Software Atari ST Internals

19 Flopver verify diskette sector

C: int Flopver (buffer,filler,dev,sector,track,side,count)
long buffer, filler;
int dev, sector, track, side, count;

Assembler:
move.w count, - (sp)
move.w side,-(sp)
move.w track,- (sp)
move.w sector,-(sp)
move.w dev,-(sp)
clr.l - (sp)

move.l buffer,-(sp)
move.w #19,-(sp)
trap #14

add.l #16,sp

This function verifies one or more sectors on the disk. The sectors are read
from the disk and compared with the buffer contents in memory. The
parameters are the same as for reading and writing sectors. If the sector and
buffer contents agree, the result will be zero. If an error occurs, an error
number will be returned in DO (see Read sector for error codes). On an
error, the buffer will contain a list of bad sectors (16-bit values) terminated
by a zero word. If Rwabs was used to write the sectors and if fverify
($444) is set, the sectors will automatically be verified after they are written.

Example:
move.w #1,-(sp) A sector
move.w #0,-(sp) Side zero
move.w #39,-(sp) Track 39
move.w #1,-(sp) Sector 1
move.w #0,-(sp) Drive A

clr.l1 =-(sp)
move.l #buffer, - (sp) Buffer address

move.w #19,-(sp) flopver
trap #14

add.l #16,sp

tst do Error?
bmi error

187

Abacus Software Atari ST Internals

20 Scrdmp output screen dump

C: void Scrdmp ()

Assembler:

move.w #20,-(sp)
trap #14
addqg.l #2,sp

This function sends a hardcopy of the screen to a connected printer. The
previously-set printer parameters ("desktop Printer setup") are used. You
can also perform this function by simultaneously pressing the ALT and
HELP keys or from the desktop through "Print Screen" from the "Options"
menu.

Example:
move.w #20,-(sp) Hardcopy
trap #14 Call XBIOS

addqg.l #2,sp

21 Cursconf set cursor configuration

C: int Cursconf (function, rate)
int function, rate;

Assembler:;

move.w rate, - (sp)
move.w function, - (sp)
move.w #21,-(sp)

trap #14

addg.l #6,sp

This XBIOS function serves to set the cursor function. The parameter
function can have a value from 0-5, which have the following meanings:

function meaning
0 Disable cursor
1 Enable cursor

188

Abacus Software Atari ST Internals

function meaning

2 Flashing cursor

3 Steady cursor

4 Set cursor flash rate
5 Get cursor flash rate

You can use this function to set whether the cursor is visible, and whether it
is flashing or steady. The XBIOS function returns a result only if you fetch
the old baud rate. The unit of the flash frequency is dependent on the screen
frequency: It is 70 Hz for a monochrome monitor or 50 Hz for a color
monitor. You can set a new flash rate with function number 5. You need
only use the parameter rate if you want to pass a new flash rate.

Example:
move.w #20,-(sp) 20/70 seconds
move.w #4,-(sp) Set flash rate
move.w #21,-(sp) cursconf
trap #14

addqg.l #6,sp

22 Settime set clock time and date

C: void Settime (time)
long time;

Assembler:

move.l time, - (sp)
move.w #22,-(sp)
trap #14

add.l #6,sp

This function is used to set the clock time and date. The time is passed in the
lower word of time and the date in the upper word. The time and date are
coded as follows:

bits 0- 4 Seconds in two-second increments
bits 5-10 Minutes

bits 11-15 Hours

bits 16-20 Day 1-31

189

Abacus Software Atari ST Internals

bits 21-24 Month 1-12
bits 25-31 Year 0-119 (minus offset 1980)

Example:

move.l #%1011001100000100000000000000,~ (sp)
move.w #22,-(sp) settime

trap #14

addg.l #6,sp

This call sets the date to the 16th of September, 1985, and the clock time to
8 o'clock.

23 Gettime return clock time and date

C: long Gettime ()

Assembler:

move.w #23,-(sp)
trap #14
addg.l #2,sp

This function returns the current date and clock time in the following format:

bits 0- 4 Seconds in two—-second increments
bits 5-10 Minutes

bits 11-15 Hours

bits 16-20 Day 1-31

bits 21-24 Month 1-12

bits 25-31 Year (minus offset 1980)

Example:
move.w #23,-(sp) gettime
trap #14
addg.l #2,sp
move.l d0,time Save time and date

190

Abacas Software Atari ST Internals

24 Bioskeys restore keyboard table

C: void Bioskeys{()

Assembler:

move.w #24,-(sp)
trap #14
addg.l #2,sp

If you have selected a new keyboard layout with the XBIOS function 16,
keyrbl, this function will restore the standard BIOS keyboard layout. You
can call this function, for example, before exiting a program of your own
which changed the keyboard layout.

Example:
move.w #24,-(sp) bioskeys
trap #14

addg.l #2,sp

25 Ikbdws intelligent keyboard send

C: void Ikbdws (number, pointer)
int number;
long pointer;

Assembler:

move.l pointer, - (sp)
move.w number,— (sp)
move.w #25,-(sp)
trap #14

addg.l #8,sp

This XBIOS function serves to transmit commands to the keyboard
processor (intelligent keyboard). The parameter pointer is the address ofa
string to be sent, number is the length of a string minus 1.

191

Abacus Software Atari ST Internals

Example:
move.l #string,-(sp) Address of the string
move.w #strend-string-1,-(sp) Length minus 1
move.w #25,-(sp) ikbdws
trap #14
addg.l #8,sp

string de.b $80,1

strend equ *

26 Jdisint disable interrupts on MFP

C: void Jdisint (number)
int number:;

Assembler:

move.w number, - (sp)
move.w #26,-(sp)

trap

#14

addg.l #4,sp

This function makes it possible to selectively disable interrupts on the MFP
68901. The parameter is the MFP interrupt number (0-15). The significance
of the individual interrupts is described in the section on interrupts.

Example:
move.w #10,-(sp) Disable RS~232 transmitter interrupt
move.w #26,-(sp) Disable interrupt
trap #14

addqg.l #4,sp

192

Abacus Software Atari ST Internals

27 Jenabint enable interrupts on MFP

C: void Jenabint (number)
int number;

Assembler:

move.w number, - (sp)
move.w #27,-(sp)
trap #14

addg.l #4,sp

This function can be used to re-enable an interrupt on the MFP. The
parameter is again the number of the interrupt, O-15.

Example:
move.w #12,-(sp) Enable RS-232 receiver interrupt
move.w #27,-(sp) Enable interrupt
trap #14

addg.l #4,sp

28 Giaccess access GI sound chip

C: char Giaccess(data, register)
char data;
int register;

Assembler:

move.w #register,-(sp)
move.w #data,-(sp)
move.w #28,-(sp)

trap #14

addg.l #6,sp

This function allows access to the GI sound chip registers. register must

contain the register number of the sound chip (0-15). The meaning of the
individual registers is given in the hardware description of the sound chip.

193

Abacus Software Atari ST Internals

Bit 7 of the register number determines whether the specified register will be
written or read:

Bit 7 0: Read
1: Write

When writing, an 8-bit value is passed in data; when reading, the function
returns the contents of the corresponding register.

Example:

move.w #380+3,-(sp) Write register 3
move.w #$50,-(sp) Value to write
move.w #28,-(sp)

trap #14

addg.l #6,sp

£ g

—

29 Offgibit reset Port A GI sound chip

C: void Offgibit (bitnumber)
int bitnumber;

Assembler:

move.w #bitnumber, - (sp)
move.w #29,~(sp)

trap #14

addg.l #4,sp

A bit of port A of the sound chip can be selectively set with this function
call. Port A is an 8-bit output port in which the individual bits have the
following function:

Bit 0: Select disk side 0/side 1

Bit 1: Select drive A

Bit 2: Select drive B

Bit 3: RS$S-232 RTS (Request To Send)

Bit 4: RS-232 DTR (Data Terminal Ready)
Bit 5: Centronics strobe

Bit 6: General Purpose Output

Bit 7: unused

194

Abacus Software Atari ST Internals
Example:

move.w #4,-(sp) DTR bit

move.w #29,-(sp) offgibit

trap #14

addg.1l #4,sp

30 Ongibit clear Port A of GI sound chip

C: void ongibit (bitnumber)
int bitnumber;

Assembler:

move.w #bitnumber,-(sp)
move.w #30,-(sp)

trap ¥14

addg.l #4,sp

This function is the counterpart of the previous function. With this it is
possible to clear a bit of port A in the sound chip.

Example:
move.w #4,-(sp) DTR bit
move.w #30,-(sp) ongibit
trap #14

addg.l #4,sp

195

Abacus Software Atari ST Internals

31 Xbtimer start MFP timer

C: void Xbtimer (timer, control, data, vector)
int timer, control, data;
long vector;

Assembler:
move.l vector,-(sp)
move.w data, -~ (sp)
move.w control, - (sp)
move.w timer, - (sp)
move.w #31,-(sp)
trap #14

add.l #12,sp

This function allows you to start a timer in the MFP 68901 and assign an
interrupt routine to it. t imer is the number of the timer in the MFP:

Timer A : 0/ Timer B : 1 / Timer ¢ : 2 / Timer D : 3

The parameters data and control are the values placed in the control and
data registers of the timer (see the hardware description of the MFP 68901).

The parameter vector is the address of the interrupt routine which will be
executed when the timer runs out. The four timers in the MFP are already
partly used by the operating system:

Timer A: Reserved for the end user

Timer B: Horizontal blank counter

Timer C: 200 Hz system timer

Timer D: RS-232 baud rate generator (interrupt vector free)

Example:

move.l #vector,-(sp) Interrupt routine
move.w data, - (sp) Data and
move.w control,-(sp) Control registers
move.w #0,-(sp) Timer A
move.w #31,-(sp) xbtimer
trap #14

add.l #12,sp

196

Abacus Software Atari ST Internals

32 Dosound set sound parameters

C: void Dosound(pointer)
long pointer;

Assembler:

move.l pointer,-(sp)
move.w #32,-(sp)
trap #14

addqg.l #6,sp

This function allows for easy sound processing. The parameter pointer
must point to a string of sound commands. The following commands can be
used:

Commands $00-$0F
These commands are interpreted as register numbers of the sound
chip. A byte following this is loaded into the corresponding register.

Command $80

An argument follows this command which will be loaded into a
temporary register.

Command $81
Three arguments must follow this command. The first argument is the
number of the sound chip register in which the contents of the
temporary register will be loaded. The second argument is a two's-
complement value which will be added to the temporary register. The
third argument contains an end criterion. The end is reached when the
content of the temporary register is equal to the end criterion.

Commands $82-$FF
One argument follows each of these commands. If this argument is
zero, the sound processing is halted. Otherwise this argument
specifies the number of timer ticks (20ms, 50Hz) until the next sound

processing.
Example:
move.l #pointer,-(sp) Pointer to sound command
move.w #32,-(sp) dosound

197

Abacus Software Atari ST Internals

trap #14
addg.l #6,sp

pointer dec.b 0,10,1,50,...

33 Setprt set printer configuration

C: void Setprt (config)
int config;

Assembler;

move.w config, - (sp)
move.w #33,-(sp)
trap #14

addg.l #4,sp

This function allows the printer configuration to be read or changed. If
config contains the value -1, the current value is returned, otherwise the

value is accepted as the new printer configuration. The printer configuration
is a bit vector with the following meaning:

Bit number 0 1
0 matrix printer daisy-wheel
1 monochrome printer color printer
2 Atari printer Epson printer
3 Test mode Quality mode
4 Centronics port RS-232 port
5 Continuous paper Single-sheet
6-14 reserved
15 always 0
Example
move.w #%000100, - (sp) Epson printer
move.w #33,-(sp) setprt
trap #14

addg.l #4,sp

198

Abacus Software Atari ST Internals

34 Kbdvbase return keyboard vector table

C: long Kbdvbase ()

Assembler:

move.w #34,-(sp)
trap #14
addg.l #2,sp

This XBIOS function returns a pointer to a vector table which contains the
address of routines which process the data from the keyboard processor.
The table is constructed as follows:

long midivec MIDI input

long vkbderr Keyboard error
long vmiderr MIDI error

long statvec IKBD status

long mousevec Mouse routines
long clockvec Clock time routine
long Jjoyvec Joystick routines
long midisys MIDI system vector
long ikbdsys IKBD system vector

The parameter midivec points to a routine which writes data received from
the MIDI input (byte in DO) to the MIDI buffer.

The parameters vkbderr and vmiderr are called when an overflow is
signaled by the keyboard or MIDI ACIA.

The routines statvec, mousevec, clockvec, and joyvec process the data
packages which come from the keyboard ACIA. A pointer to the packages
received is passed to these routines in DO. The mouse vector is used by
GEM. If you want to use your own routine, you must terminate it with RTS
and processing time may take no longer than one millisecond.

The remaining routines midisys and ikbdsys are called when there is a
character in the present ACIA. midisys holds the character and jumps to
midivec; ikbdsys gets the data package from the ACIA, and branches to
the abovementioned routines.

199

Abacus Software Atari ST Internals

Example:
move.w #34,-(sp) kbdvbase
trap #14

addg.l #2,sp
We get $DCC as the result. The vector field contains the following values:

midivec SFC2CE2/$8B70

vkbderr SFC288E/$871C (RTS)
vmiderr SFC288E/$871C (RTS)
statvec SFC230A/58198 (RTS)

mousevec $FD02C2/$16150
clockvec S$SFC1D12/$7BAO
joyvec SFC230A/$8198 (RTS)
midisys SFC284A/586D8
ikbdsys SFC285A/$86E8

35 Kbrate set keyboard repeat rate

C: int Kbrate(delay, repeat)
int delay, repeat;

Assembler:

b

move.w repeat,-(sp)
move.w delay, - (sp)
move.w #35,-(sp)
trap #14

addg.l #6,sp

The keyboard repeat can be controlled with this function. The parameter
delay specifies the delay time after a key is pressed before the key will
automatically be repeated. The parameter repeat determines the time span
after which the key will be repeated again. These values can be changed
from the desktop by means of the two slide controllers on the control panel.
The times are based on the 50 Hz system clock. If -1 is specified for one of
the parameters, the corresponding value is not set. The function returns the
previous values as the result; bits 0-7 contain the repeat value and bits
8-15 the value of delay.

200

Abacus Software Atari ST Internals

addg.l #6,sp

Example:
move.w #-1,-(sp) Read old values :
move.w #-1,-(sp)
move.w #35,-(sp) kbrate |
trap #14 1

Result: DO = $0B03 ;

36 Prtblk output block to printer

C: void Prtblk(parameter) |
long parameter;

Assembler:

move.l parameter,-(sp)
move.w #36,-(sp)

trap #14

addg.l #6,sp

This function resembles and is used by the function Scrdmp (20). The
function expects a parameter list, however, whose address is passed to it.
This list is constructed as follows:

long blkprt Address of the screen RAM

int offset

int width Screen width

int height Screen height

int left

int right

int scrres Screen resolution (0, 1, or 2)
int dstres Printer resolution (0 or 1)
long colpal Address of the color palette

int type Printer type (0-3)
int port Printer port (0=Centronics, 1=RS§-232)
long masks Pointer to half-tone mask

201

Abacus Software Atari ST Internals

Example:
move.l #parameter,- (sp) Address of the parameter block
move.w #36,—(sp) prtblk
trap #14

addg.l #6,sp

parameter dc.l

37 Vsync wait for video
C: void Vsync()

Assembler:

move.w #37,-(sp)
trap #14
addg.l #2,sp

This function waits for the next picture return. It can be used to synchronize
graphic outputs with the beam return, for example.

Example:
move.w #37,-(sp) wait for vsync
trap #14

addqg.l #2,sp

202

Abacus Software Atari ST Internals

38 Supexec set SUpervisor execution

c: void Supexec (address)
long address;

Assembler:

move.l address,—(sp)
move.w #38,-(sp)
trap #14

addg.l #6,sp

A routine can be executed in supervisor mode with Supexec.
Example:

move.l #address,—(sp)

move.w #38,-(sp)

trap #14

addg.l #6,sp

address move.l $400,00

39 Puntaes disable AES

C: void Puntaes()

Assembler:

move.w #39,-(sp)
trap #14
addg.l #2,sp

The AES can be disabled with this function, provided it is not in ROM.

Example:

move.w #39,-(sp)
trap #14
addg.l #2,sp

203

Abacus Software Atari ST Internals

64 Blitmode read and alter blitter

C: int Blitmode (flag)
int flag;

Assembler:

move.w flag,-(sp)
move.w #64,-(sp)
trap #14

addg.l #4,sp

This function lets you read and change an available blitter's configuration.
Blitmode also lets you determine whether a blitter exists in the system (bit
1) and whether it is usable (bit 0). The ST reads the current configuration
when flag has a value of -1 (Oxffff). The result is a bitmask. Each bit
represents the following:

Bit number 0 1
0 Blit—operatiqn Blit_operation
through software through hardware
1 No blitter available Blitter available
2-14 Undefined, reserved
15 Always 0

When a blitter is available, you can determine whether blit operations can be
performed by software or by the blitter. This is established by clearing or
setting bit 0.

Bit number 0 1
0 Blit-operation Blit_operation
through software through hardware
1-14 Undefined, reserved
15 Always 0
Example:
move #-1, (sp) set configuration
move #64, -(sp) blitmode
trap #14
addq.l #4,sp
btst #1,d0 is blitter on hand?
beq no_blit no
204

Abacus Software Atari ST Internals

bset #0,d0

move d0,-(sp) blit operation through hardware
move #64, - (sp) blit—-mode

trap #14

addg.l #4, sp

no_blit:

rts

The above sample program tests for an onboard blitter. If this is the case,
the system bit O displays blit operations through hardware (the blitter). The
test, once set to hardware, won't ignore onboard blitters in the system.

By setting the blit mode, this should call the configuration, and the bits 1-14
should be taken over. They are reserved for further graphic functions or
graphic chips.

205

Abacus Software Atari ST Internals

3.4 The Graphics

Next to the high processing speed and the large memory available, the
graphics capability is certainly the most fascinating aspect of the ST. With
the standard monochrome monitor and the resolution of 640x400 points, it
creates a whole new price/performance class for itself. But also in the color
resolution the ST can display 16 colors with 320x200 screen points.

In this chapter we want to explain how the graphics are organized and how
you can create fast and effective graphics without using the GEM graphics
package, which is rather complicated for beginners. The ST offers the
assembler and C programmer very useful routines which don't exactly make
graphics programming child's play, but which can take away a good deal of
the programming work. Unfortunately, some of these functions are so
comprehensive that a detailed description would exceed the scope of this
book. We have therefore had to limit ourselves to the simpler, but no less
interesting functions.

These graphics routines are called in a very elegant manner. The software
developers have made use of the fact that there are two groups of opcodes in
the 68000 which the 68000 does not "understand” and which generate a
trap, or software interrupt, when they are encountered in a program. These
are the two groups of opcodes which begin with $Axxx and $Fxxx. In the
ST, the $Axxx opcode trap is used in order to access the graphics routines.
The trap handler, the program called by the trap, checks the lowest byte of
the "command" to see what value it has. Values between zero and $F are
permissible here. This gives a total of 16 graphics routines, which should
first be presented in an overview. Later we will talk about the actual
commands in detail.

$A000 Determine address of required variable range
S$A001 Set point on the screen

$A002 Determine color of a screen point
$A003 Draw a line on the screen

$A004 Draw a horizontal line (very fast!)
$A005 Fill rectangle with color

$A006 Fill polygon line by line

$A007 Bit block transfer

$A008 Text block transfer

$A009 Enable mouse cursor

$A00A Disable mouse cursor

206

Abacus Software Atari ST Internals

SAOOB Change mouse cursor form
SAQ00C Clear sprite

$A0OD Enable sprite

SAOOE Copy raster form

$AOOF Contour fill (Flood fill)

These routines are the ground work for the hardware-dependent part of
GEM. All GEM graphic and text output is performed by the routines of the
$Axxx opcodes. The set of A-opcodes are very useful in games. In games
windows are needed only in the rarest cases. Another important point is the
speed of the line A-instructions. Using the graphic routines directly is
clearly faster than if the output is handled by GEM. Before we describe the
individual commands in detail, we will take a brief look at the construction
of graphics in the various graphic modes of the ST.

Immediately after turning the ST on, an area of 32K bytes is initialized at the
upper memory border as the video RAM. In normal operation this results in
addresses $78000 to $7FFFF or $F8000 to $FFFFF acting as the screen
RAM. This video RAM can be viewed as a window in the ST. The
following description is a simplification of the features of the 260ST with
"only" 512K.

We will start with the simplest mode, the 640x400 mode. In this case each
set of 80 bytes, or better, each set of 40 words forms one screen line. The
word with the lowest address is displayed on the left edge of the screen, the
additional words are displayed in order from left to right. Within a word,
the highest-order bit lies at the left and the lowest-order bit at the right.

With this data, any point on the screen can be easily controlled or read. For
example, to set the first screen point, the value $8000 must be written into
memory location $78000. There is one small limitation to this area. The
position of ST screen RAM can be easily moved. For this reason, it is
usually more advantageous to set the point with the "A" function $A001.
Function $A001 assumes an X-Y coordinate system with origin in the upper
left-hand corner, and determines the position of the video RAM itself in
order to set the point at the proper screen location.

In this resolution mode, each screen point is represented by a bit. If the bit
is set, the point appears dark, or bright if the inverse display mode is
selected in color palette register 0. The screen consists of only one bit plane.
Different colors cannot be represented with just one plane, however. This is
why when the resolution increases in the color modes, the number of
displayable colors decreases.

207

Abacus Software Atari ST Internals

Figure 3.4-1 LO-RES-MODE (0)
I |

Video Screen

199#

Color Number

Video-RAM

Four colors are possible in the 640x200 resolution mode. In this mode, two
contiguous memory words form a single logical entity. The color of a point
is determined by the value of the two corresponding bits in the two words.
If both bits are zero, the background color results. Therefore two sequential
words are used together for pixel representation. For the colors, however,
all odd words belong to a plane. The second plane is made up of the even
words. In this mode, there are two planes available.

Things become quite colorful in the mode with "only" 320x200 points. In
this operating mode, 4 contiguous memory words form one entity which
determines the color of the 16 pixels. To stick to the example we used
before: in order to set the point in the upper left-hand corner, the topmost
bits of words $78000, $78002, $78004, and $78006 must be manipulated.
The desired color results from the bit pattern in the words,

It naturally requires some computer time to set a point in the desired color,
independent of the mode. All of this work is handled by the $A001 routine,
however. This routine sets all of the pertaining bits for the desired color in
the current resolution. Naturally, all four planes are present in this mode.
The first plane, keeping to our example, made up of the words at address
$7F000, $7F008, $7F010, ..., and the other planes are composed of the
other addresses correspondingly.

Another point to be clarified concerns the fonts or character sets. Since the

ST does not have a text mode, only a graphics mode, the text output is
created in high-resolution graphics. There are three different fonts built into

208

Abacus Software Atari ST Internals

the ST. You can load additional fonts from disk. Each font has a header
which contains important information about the displayable characters.
Since the important data are contained in the font header, there are unusually
few limits for display. The characters can be arbitrarily high or wide. The
age of the 8x8 matrix for character output is over. It is even possible to get
cursive, bold, true proportional or other type on the screen.

The three built-in fonts are monospaced fonts, meaning they have a fixed
defined size in pixels and a defined pitch. The smallest font has a matrix of
6x6. With a resolution of 640x400 points, 66 lines of 106 characters each
can be displayed. This font is only accessible for output under GEM, not
for output under TOS, and is used in the output of the directory in the icon
form, for example. The next-largest type is composed of 8x8 points. This
type is used when a color monitor is connected to the ST, while the third
and largest font is used for the normal black-and-white mode. This font
uses a matrix of 8x16 points.

Figure 3.4-2 MEDIUM-RES-MODE (1)

012, . 0 v v v e e e 639

Video Screen

The exact layout of the font header is found under command $A008, which
represents a very versatile text output which goes far beyond what is
possible with the routine of the BIOS and GEMDOS.

Finally, we must clarify some of the terms which will come up often in the

following descriptions, whose meanings may not be so clear. These are the
terms Contrl array, Intin array, Intout array, Ptsin array and Ptsout array.

209

Abacus Software Atari ST Internals

These arrays are mainly used by GEM to pass parameters to individual
GEM functions or to store results from these functions. But line-A
functions use parts of these arrays to pass parameters also. The arrays are
defined in memory as data areas, whereby each element in the array consists
of 2 bytes.

For GEM functions, the Contrl array always contains the number desired in
the first element (Contrl(0)). This parameter is not used by the line-A
commands, however. Contrl(1) contains the number of XY coordinates
required for the function. These coordinates must be placed in the Ptsin
array before the call. The element Contrl(2) is not supplied before the call.
After the call it contains the number of XY coordinates in the Ptsout array.
Contrl(3) specifies how many parameters will be passed to the functicn in
the Intin array, while Contrl(4) contains the number of parameters in the
Intout array after the call. The additional parameters of the Contrl array are
not relevant for users of the line A.

Unfortunately, not all of the A opcode parameters can be in these arrays.
For this reason there is another memory area which used as a variable area
for (almost) all graphic outputs. The functions and uses of these over 50
variables are in a table at the end of this chapter. Important variables are also
explained in conjunction with the functions requiring them.

By the way, you should be aware that registers DO to D2 and AO to A2 are
changed by calling the functions. Important values contained in these
registers should be saved before a call.

Figure 3.4-3 HI-RES-MODE (2)
012. 63
0

Video Screen

399 \ 4

Color Number

Video-RAM

210

Abacus Software Atari ST Internals

$A000 Initialize

Initialize is really the wrong expression for this function. After the call, the
addresses of the more important data areas are returned in registers DO and
A0 to A2. This function does not require input parameters.

The program is informed of the starting address of the line-A variables in
DO and AO. After the call, Al points to a table with three addresses. These
three addresses are the starting address of the three system font headers.
Register A2 points to a table with the starting addresses of the 16 line-A
routines.

This opcode destroys (at least) the contents of registers DO to D2 and AQ to
A2. Important values should be saved before the call.

$A001 PUT PIXEL

This opcode sets a point at the coordinates specified by the coordinates in
ptsin(0) and Ptsin (1). The color is passed in Intin(0), Ptsin(0)
contains X-coordinate, Ptsin (1) the Y-coordinate.

The coordinate system used has its origin in the upper left corner. The
possible range of the X and Y coordinates is naturally set according to the
graphic mode enabled. Overflows in the X range are not handled as errors.
Instead, the Y coordinate is simply incremented by the appropriate amount.
No output is made if the Y range is exceeded.

The color in Intin (0) is dependent on the mode used. When driving the
monochrome monitor, only bit zero of the value of Intin(0) is evaluated.

$A002 GET PIXEL
The color of a pixel can be determined with this opcode. As with $A001,

the XY coordinates are passed in Ptsin (0) and Ptsin(1); the color value
is returned in the DO register.

211

Abacus Software Atari ST Internals

$A003 LINE

With the LINE opcode a line can be drawn between the points with
coordinates x1,y1 and x2,y2. The parameters for this function are not
passed via the parameter arrays, but must be transferred to the line-A
variables before the call. The variables used are:

_X1 = x1 coordinate

_Y1 = yl coordinate

_X2 = X2 coordinate

Y2 = yl coordinate

_FG BP_1 = Plane 1 (all three modes)
_FG_BP_2 = Plane 2 (640x200, 320x200)
_FG_BP_3 = Plane 3 (only 320x200)
_FG_BP_4 = Plane 4 (only 320x200)

_LN MASK = Bit pattern of the line
For example: SFFFF = filled
$CCCC = broken
_WRT _MOD = Determines the write mode
_LSTLIN = This variable should be set to -1 ($FFFF)

One point to be noted for some applications is the fact that when drawing a
line, the highest bit of the line bit pattern is always set on the left screen
edge. The line is always drawn from left to right and from top to bottom,
not from x1,y1 to x2,y2.

Range overflows are handled as for PUT PIXEL. If an attempt is made to
draw a line from 0,0 to 650,50, a line is actually drawn from, 0,0 to
639,48. The "remainder"” results in an additional line from 0,49 to 10,50.

A total of four different write modes, with values O to 3, are available for
drawing lines. With write mode zero, the original bit pattern "under" the line
is erased and the bit pattern determined by _LN_MasK is put in its place
(replace mode). In the transparent mode (_WRT_Mop=1), the background, the
old bit pattern, is ORed with the new line pattern so only additional points
are set. In the XOR mode (_wRT_MoD=2), the background and the line
pattern are exclusive-ored. The last mode (_WRT_ MoD=3) is the so-called
"inverse transparent mode." As in the transparent mode, it involves an OR
combination of the foreground and background data, in which the
foreground data, the bit pattern determined by LN Mask, are inverted
before the OR operation.

212

Abacus Software Atari ST Internals

$A004 HORIZONTAL LINE

This function draws a line from x1,y1 to x2,y1. Drawing a horizontal line is
significantly faster than when a line must be drawn diagonally. Diagonal
lines are also created with this function, in which the line is divided into
multiple horizontal lines segments. The parameters are entered directly into
the required variables.

X1 = x1 coordinate

¥l = yl coordinate

_X2 = x2 coordinate

_FG_BP_1 = Plane 1 (all three modes)

_FG _BP_2 = Plane 2 (640x200, 320x200)

_FG _BP_3 = Plane 3 (only 320x200)

_FG BP_4 = Plane 4 (only 320x200)

_WRT_MOD = Determines the write mode

_patptr = Pointer to the line pattern to use
_patmsk = "Mask" for the line pattern

The valid values in _wRT_moD also lie between 0 and 3 for this call. The
contents of the variable patptr is the address at which the desired line
pattern or fill pattern is located. The H-line function is very well-suited to
creating filled surfaces. The variable _patmsk plays an important role in
this. The number of 16-bit values at the address in _patptr is dependent
on the its value. If, for example, _patmsk contains the value 5, six 16-bit
values should be located at the address in _patptr as the line pattern. If a
horizontal line with the Y-coordinate value zero is to be drawn, the first bit
pattern is taken as the line pattern. The second word is taken as the pattern
for a line drawn at Y-coordinate 1, and so on. The pattern for a line with
Y-coordinate 6 is again determined by the first value in the bit table. In this
manner, very complex fill patterns can be created with relatively little effort.

$A005 FILLED RECTANGLE

The opcode $A005 represents an extension, or more exactly a special use,
of opcode $A004. It is used to created filled rectangles. The essential
parameters are the coordinates of the upper left and lower right corners of
the of the rectangle.

X1 = x1 coordinate, left upper
Yl = yl coordinate
X2 = x2 coordinate, right lower

213

Abacus Software Atari ST Internals

_Y2 = y2 coordinate

_FG_BP_1 = Plane 1 (all three modes)

_FG BP_2 = Plane 2 (640x200, 320x200)

_FG BP_3 = Plane 3 (only 320x200)

FG BP 3 = Plane 4 (only 320x200)

_WRT_MOD = Determines the write mode
_patptr = Pointer to the fill pattern used
_patmsk = "Mask"™ for the fill pattern

_CLIP = Clipping flag

_XMN CLIP = X minimum for clipping
_XMX CLIP = X maximum for clipping
_YMN CLIP = Y minimum for clipping
_YMX CLIP = Y maximum for clipping

We have already explained all of the variables except the "clipping"
variables. What is clipping? Clipping creates extracts or clippings of the
total picture. If the clipping flag is set to one (or any value not equal to
zero), the rectangle, drawn by $A005, is displayed only in the area defined
by the clipping-area variables. An example may explain this behavior better:
The values 100,100 and 200,200 are specified as the coordinates. The clip
flag is 1 and the clip variables contain the values 150,150 for xMN_c1.1P and
yMN_cLip as well as 300,300 for xMx_crIPp and YMX cLip. The value
$FFFF will be chosen as the fill value for all of the lines. With these values,
the rectangle will have the coordinate 150,150 as the upper left corner and
200,200 as the lower right. The "missing" area is not drawn because of the

clip specifications. Clearing the clip flag draws the rectangle in the originally
desired size.

$A006 FILLED POLYGON

$A006 is also an extension of $A004. Areas can be filled with a pattern with
this function. The entire surface is not filled with the call: just one raster line
is filled, a horizontal line with a width of one point. The result is that there
are significantly more options for influencing the fill pattern.

The necessary variables are:

Ptsin = Array with the XY coordinates
Contrl(l) Number of coordinate pairs
R4t ¥l coordinate

FG BP_1 = Plane 1 (all three modes)

_FG BP_2 Plane 2 (640x200, 320x200)

]

214

Abacus Software Atari ST Internals

FG_BP_3 Plane 3 (only 320x200)

_FG_BP_3 = Plane 4 (only 320x200)

_WRT MOD = Determines the write mode
_patptr = Pointer to the f£ill pattern used
_patmsk = "Mask"™ for the fill pattern
_CLIP = Clipping flag

_XMN_CLIP = X minimum for clipping

_XMX CLIP = X maximum for clipping

_YMN _CLIP = Y minimum for clipping

_YMX CLIP = Y maximum for clipping

Basically, all of the parameters here are to be set exactly as they might be for
a call to $A005. Only the first three coordinates are different. The XY
coordinates are stored in the Ptsin array. It is important you specify the
start coordinate again as the last coordinate as well. In order to fill a triangle,
you must, for example, enter the coordinates (320,100), (120,300),
(520,300), and (320,100). The number of effective coordinate pairs, three
in our example, must be placed in Contrl(1l), the second element of the
array. With a call to the $A006 function you must also specify the
Y-coordinate of the line to be drawn. Naturally you can fill all Y-coordinates
from 0 to 399 (0 to 199 in the color modes) in order. But it is faster to find
the largest and smallest of the XY values and call the function with only
these as the range.

$A007 BITBLT

The BITBLock Transfer function copies a square source range into a target
area. The source range can combine with a raster. Source and target range
can be combined with 16 different logical operations. You can have these at
any address. Normally it is at least the target area of video RAM; but it can
also be copied within the screen or from an unused part of memory to
another. If a blitter is onboard the ST, BITBLT uses hardware.

BITBLT is used by the line-A functions TEXTBLT and COPY RASTER
FORM, as well as the VDI functions Copy Raster Opaque (vro_cpyfm) and
Copy Raster Transparent (vrt_cpyfm). BITBLT's versatility involves the
parameters used with the function call. These parameters are source,
destination and pattern; information about the number of bitplanes (color or
b/w) used; and logical operations combining source and destination. The
data stands in a 76-byte parameter block, whose function address must be
given through register A6. The parameter block looks like this:

215

Abacus Software Atari ST Internals

Offset Length Name

NN O

8

10
14
16
18
22
24
26
28
30
32
36
38
40
42
46
48
50
52

FEEfEETrEEEEE

HESECE S SH S

s_width Pixel width of range being edited
2_heightPixel height of range being edited
planes Number of bit planes

fg-col Foreground color

bg col Background color

op_tab Logical operation

s_xmin Source upper left X-coordinate
s_ymin Source upper left Y-coordinate
s_form Source starting address

s_nxwd Byte offset of next source line
s_nxln Byte offset of next source line
s_nxpl Byte offset of next source color plane
d _xmin Destination upper left X-coordinate
d _ymin Destination upper left Y-coordinate
d form Start address through destination

d _nxwd Byte offset of next destination word
d nxln Byte offset of next destination line
d nxpl Next destination color plane

p_addr Start address of pattern

p_nxln Byte offset of next raster line
p_nxpl Byte offset of next color plane
p_mask Raster height (raster index mask)

2W filler Used internally by BITBLT

When destination and/or source ranges appear on the screen, the following
values are used:

Resolution 320*%200 640*200 640%400
Bitplanes 4 2 1

d form/s_form screen address

d nxwd/s_nxwd 8 4 2

d nxln/s_nxln 160 160 80

d nxpl/s nxpl 2 2 2

Here are the 16 logical operations used in combining source and desination:

Operation Function

0

1
2
3

D' =0 Set destination to background color
D* = 5 &D
D'= S & ~D
D' = § Replace Mode
216

Abacus Software Atari ST Internals
4 D' = ~S & D Erase Mode
5 D' =D
6 D' =8 ~D XOR Mode
7 D' =S | D
8 D' = ~ (S | D)
9 D' = ~ (S ~ D)
10 D' = ~D
11 D' =S | ~D
12 D' = ~8
13 D' = ~S | D
14 D' = ~(S & D)
15 D' =1 Set destination to foreground color

s=Source; D=Destination range before operation; D ' =Destination range
after the operation; &=logical AND; | =logical OR; ~=XOR (exclusive OR);
-=inversion.

Four such logical operations are given for BITBLT, addressed in the
equation op = 2 * fg + bg.op is the used logical operation (0-3,
relative to op_tab). £g is the foreground color and bg is the background
color.

$A008 TEXTBLT

A character from any desired text font can be printed at any graphic position
with the TEXT BLock Transfer function. In addition, the form of the
character can be changed. The character can be displayed in italics,
boldface, outlines, enlarged, or rotated. These things cannot be achieved
with the "normal" character outputs via the BIOS or GEMDOS. TXTBLT
often stands as the basic structure of all text output under VDI
(v_gtext,etc.).

For the correct use of this function, a large number of parameters must be
set and controlled. A rather complicated program must be written in order to
output text with this function. If the additional options are not absolutely
necessary, it is advisable not to use this function. But decide for yourself.

Before we produce a character on the screen, we must first concern
ourselves with the organization of the fonts. We must take an especially
close look at the font header because the font is described in detail by the
information contained in it.

217

Abacus Software Atari ST Internals

A font basically consists of four sets of data: font header, font data,
character offset table and horizontal offset table. The font header contains
general data about the font, such as its name and size, the number of
characters it contains, and various other aspects. This information takes up a
total of 88 bytes. The font data contains the bit pattern of the existing
displayable characters. These data are organized to save as much space as
possible.

In order to be able to better describe the organization, we will imagine a font
with only two characters, such as "A" and "B". These characters are to be
displayed in a 9x9 matrix. The font data are now in memory so that the bit
pattern of the top scan line of the "A" is stored starting at a word boundary.

Since our font is 9 pixels = 9 bits wide, one byte is completely used, but
only the top bit of the following byte. 7 bits must be wasted if the top scan
line of the "B" is also to begin on a word boundary. This is not so,
however, and the first scan line of the "B" starts with bit 6 of the second
byte of the font data. Only the data of the second and further scan lines
always start on a word boundary. In this manner, almost no bits are wasted
in the font. Only the start of the scan lines of the first character actually
begin on a word boundary; all other scan lines can begin at any bit position.

Because of this space-saving storage, the position of each character within
the font must be calculated. The calculation of the scan-line positions is
possible through the character offset table. This table contains one entry for
each displayable character. For our example, such a table would contain the
entries $0000, $0009, $0012. Through the direction of this table, it is
possible to create true proportional type on the screen since the width of
each character can be calculated. One subtracts the entry of the character to
be displayed from the entry of the next character. The last entry is present so
that the width of the last character can also be determined, although it is not
assigned to a character.

In addition to the character offset table there is the horizontal offset table.
This table is not used by most of the fonts, however. The fonts present in
the ST do not use all the possibilities of this table either. If this table were
present, it would contain a positive or negative offset value for each
character, in order to shift the character to the right or left during output.

At the end of the description of the font construction are the meanings of the
variables in the font header.

218

Abacus Software Atari ST Internals

Bytes 0- 1 : Font identifier. A number which describes the
font. l=system font

Bytes 2- 3 :Font size in points (point is a measure used
in typesetting).

Bytes 4-35 : The name of the font as an ASCII string.

Bytes 36-37 : Lowest ASCII value of displayable characters.

Bytes 38-39 : Highest ASCII value of displayable characters.

Bytes 40-49 : Relative distances of top, ascent, half,
descent, and bottom line from the base line.

Bytes 50-51 : Width of the broadest character in the font.

Bytes 52-53 : Width of the broadest character cell. The cell
is always at least one pixel wider than the
actual character so that two characters next
to each other are separated from each other.

Bytes 54-55 : Linker offset.

Bytes 56-57 : Right offset. The two offset values are used
for displaying the font in italics (skewing).

Bytes 58-59 : Thickening. If a character is to be displayed
in boldface, this variable is usea.

Bytes 60-61 : Underline. Contains line height in pixels.

Bytes 62-63 : Lightening mask. "Light" characters are found
on the desktop when an option on a pull-down
menu is unavailable. This light grey character
consists of masking the bits with the
lightening mask. Usually the value is $5555.

Bytes 64-65 : Skewing mask. As before, only for displaying
characters in italics.

Bytes 66-67 : Flag. Bit 0 is set if a system font is used.
Bit 1 must be set if the horizontal offset
table is present.

Bit 2 is the so-called byte-swap flag. If it
is set, the bytes in memory are in 68000
format (low byte-~high byte). A cleared swap
flag signals that the data is in INTEL format,
reversed in memory. With this bit the fonts
from the IBM version of GEM can be used on the
ST and vice versa.

Bit 3 is set if the width of all characters in
the font is equal.

Bytes 68-71 : Pointer to the hcerizontal offset table or
Zero.

Bytes 72-75 : Pointer to the character offset table.

219

Abacus Software

Atari ST Internals

Bytes
Bytes

Bytes

Bytes

76-79
80-81

82-83

84-87

: Pointer to the font data.
: Form width. This variable contains the sum of

widths of all the characters. The value
represents the length of the scan lines of all
of the characters and thereby the start of the
next line.

: Form height. This variable contains the number

of scan lines for this font.

: Contain a pointer to the next font.

After so much talk, we should now list the parameters which must be noted
or prepared for the $A008 opcode.

_WRT_MODE = Write mode

_TEXT_FG = Text foreground color

_TEXT_BG = Text background color

_FBASE = Pointer to the start of the font data
_FWIDTH = Width of the font

_SOURCEX = X-coordinate of the char in the font
_SOURCEY = Y-coordinate of the char in the font
_DESTX = X-coordinate of the char on the screen
_DESTY = Y-coordinate of the char on the screen
_DELX = Width of the character in pixels
_DELY = Height of the character in pixels
_STYLE = Bit-wise coded flag for special effects
_LITEMASK = Bit pattern used for "lightening”
__SKEWMASK = Bit pattern used for skewing

_WEIGHT = Factor for character enlargement

_R OFF = Right offset of the char for skewing
_L OFF = Left offset of the char for skewing
_SCALE = Flag for scaling

_XACC_DDA = Accumulator for scaling

_DDA INC = Scaling factor

_T SCLSTS = Scaling direction flag

_CHUP = Character rotation vector
_MONO_STATUS = Flag for monospaced type

_scrtchp = Pointer to buffer for effects

_scrpt2 = QOffset scaling buffer in _scrtchp

As you can see, an enormous number of variables are evaluated for the
output of graphic text. Here we can go into only the essential (and those we
explored) variables.

220

Abacus Software Atari ST Internals

The write mode allows the output of characters in the four known modes,
replace, OR, XOR, and inverse OR. The variable _TEXT_FG is in
connection with first four write modes. They form the foreground color
used for display. The background color _TEXT BG plays a role only with the
16 additional modes. It is clear that the additional modes are relevant only in
connection with a color screen.

The variables FBASE and _FWIDTH are set according to the desired font.
You can find the start of the font data from the header of the desired font
(bytes 76-79 in the header). FWIDTH must be loaded with the contents of
the bytes 80 and 81 of the header.

The parameter _SOURCEX determines which character you output. It should
contain the ASCII value of the desired character. The parameter _SOURCEY

is usually zero because the character is to be generated from the top to the
bottom scan line.

The parameter DELX can be calculated as the width of the character in
which the entry in the character offset table of the desired character is
subtracted from the next entry. The result is the width of the character in

pixels. DELY must be loaded with the value of byte 82-83 of the header.

The _sTYLE is something special. Here you can specify if characters should
be displayed normally or changed. The possible changes are boldface
(thicken, bit 0), shading (lighten, bit 1), italic (bit 2), and outline (bit 4).
The given change is enabled by setting the corresponding bit. Another
change is scaling. The size of a character can be changed through scaling.
Unfortunately, characters can only be enlarged on the ST.

If the scaling flag is cleared (zero), the character is displayed in its original
size. The T scLsTs flag determines if the font is to be reduced or
enlarged. A value other than zero must be placed here for enlarging.
_DDA_INC should contain the value of the enlargement or reduction. An
enlargement could be produced only with a value of $FFFF.

Another interesting variable is _cHup. With the help of this variable,
characters can be rotated on the screen. The angle must be given in the range
0 to 360 degrees in tenths of a degree. A restriction must also be made for
this function. Usable results are obtainable only with rotations by 90
degrees. The values are $0000 for normal, $0384 for 90-degree rotation,
$0708 (upside-down type), and $OA8C for 270 degrees.

221

Abacus Software Atari ST Internals

To work with the effects, scrchp must contain a pointer to a buffer in
which TEXTBLT can store temporary values. The exact size of this buffer
is not known, but we always found a buffer of 1K to be sufficient. Another
buffer must be specified for enlargement (_scrpt2). An offset is passed as
a parameter which refers to the start of the _scrtchp buffer. A value of $40
proved to be sufficient here.

$A009 SHOW MOUSE

Calling this opcode enables the display of the mouse cursor. The cursor
follows the mouse when it is moved. If the mouse cursor is disabled, the
mouse can be used in programs which abandon the user interface GEM.
This option is particularly useful for games.

The parameters required are passed in the Intin and Contrl arrays.
Contrl (1) should be cleared before the call and Contrl(3) set to one.
Intin(0) has a special significance. The routine for managing the mouse
cursor counts the number of calls to remove and enable the cursor. If the
cursor is disabled twice, two calls must be made to re-enable it before it will
actually appear on the screen. This behavior can be changed by clearing
Intin(0). With this parameter the cursor is immediately set independent of
the number of previous HIDE CURSOR calls. If the value in Intin(0) is
not equal to zero the actually required number of $A009 calls must be made
in order to make the cursor visible.

$A00A HIDE CURSOR

This functions hides the cursor. If this function is called repeatedly, the
number is recorded by the operating system and determines the number of
calls of SHOW CURSOR before the cursor actually appears.

$A00B TRANSFORM MOUSE

Is the arrow unsuited as a mouse cursor for games? Simply make your own
cursor. How would it be if a little car moved across the screen instead of an
arrow? The opcode $A00B gives your fantasy free reign, at least as far as it
concerns the mouse cursor.

The parameters must be passed in the Intin array. A total of 34 words are
necessary. The following table lists the uses and possible values:

222

Abacus Software Atari ST Internals

Intin(3) Mask color index, normally 0

Intin(4) Data color index, normally 1

Intin(5) to Intin(20) contain 16 words of the cursor mask
Intin(21) to Intin (36) contain 16 words of cursor data

The form of the cursor is determined by the cursor data. Each 1 in the data
creates a point on the screen. If a cursor is placed over a letter or pattern on
the screen, the border between the cursor and the background cannot be
determined. The mask enters at this point. Each set bit in the mask clears the
background at the given location. This draws a light border around the
cursor. Look at the normal cursor in order to see the operation of the mask.

$A00C UNDRAW SPRITE

This opcode is related to $AOOD, DRAW SPRITE. The ST actually has no
hardware sprites like the Commodore 64. ST sprites are organized purely in
software. Each sprite is 16x16 pixels large. One example of an ST sprite is
the mouse cursor. It is created with this function.

To clear a previously-drawn sprite, the address of a buffer in which the
background was saved when the sprite was drawn is passed in register A2.
The opcode simply transfers the contents of the background buffer to the
right spot on the screen. The buffer itself must be 64 bytes large for each
plane. Another 10 bytes are used, independent of the number of planes. For
monochrome display, the buffer is a total of 74 bytes long, while in the
320x200 pixel resolution (for planes), it is 4x64+10=266 bytes large.

$A00D DRAW SPRITE

This function draws the desired sprite on the screen. Parameters must be
passed in the DO, D1, AO, and A2 registers.

DO and D1 contain the X and Y-coordinates of the position of the sprite on
the screen, called the hot spot. AO is a pointer to the so-called sprite
definition block and A2 contains the address of the sprite buffer in which
the background will be saved for erasing the sprite later.

The sprite definition block must have the following construction:

Word 1 : X offset to hot spot
Word 2 : Y offset to hot spot

223

Abacus Software Atari ST Internals

Word 3 : Format flag 0=VDI format, 1=XOR format
Word 4 : Background color (bg)
Word 5 : Foreground color (fg)

Following this are 32 words which contain the sprite pattern. The pattern
must be in memory in the following order:

Word 6 : Background pattern of the top line
Word 7 : Foreground pattern of the top line
Word 8 : Background pattern of the second line
Word 9 : Foreground pattern of the second line
etc.

The information in the format flag has the following significance:

VDI Format
Result
The background appears
The color in word 4 appears
The color in word 5 appears
The color in word 5 appears

=R, OooW
= o R oW

XOR Format
Result
The background appears
The color in word 4 appears
Th fb bit XORs the pixel on the screen
The color in word 5 appears

H e OOoOW
= o+ oWn

$A00E COPY RASTER FORM

Arbitrary areas of the screen can be copied with the $AOOE opcode. Not
only areas within the screen, but also from the screen into free RAM, and
even more important, from the RAM to the screen. Even complete screen
pages can be copied very quickly with the COPY RASTER opcode. The
name RASTER FORM does express one limitation of the function,
however. Each raster form to be copied must begin on a word boundary and
must be a set of words.

The parameters are quite numerous and are passed in the Contrl, Ptsin,

and Intin arrays. In addition, two "memory form definition" blocks must
be in memory for COPY RASTER. We will start with the MFD blocks.

224

Abacus Software

Atari ST Internals

Since a copy operation must always have a source and a destination, one
block describes the source memory range and the second describes the
destination. Each block consists of 10 words. The address of the memory
described by the block is contained in the first two words. The third word
specifies the height of the form in pixels. Word 4 determines the width of
the form in words. Word 6 should be set to 1 and word 7 specifies the
number of planes of which the form is composed. The remaining words
should be set to zero because they are reserved for future extensions.

Necessary parameters for COPY RASTER:

INTIN[O]

INTIN{1]
INTIN[2]
PTSIN[O]
PTSIN[1]
PTSIN[Z2]
PTSIN[3]
PTSIN[4]
PTSIN[5]
PTSIN[6]
PTSINI[7]

-CONTRL[7+8]
CONTRL[9+10]

_patptr

__COPYTRAN

Bit

0-3

Opaque:Logical operation; Transparent:
Writing mode (see $A007, BITBLT)
Bit 4 = 0: no pattern used;

Transparent only:
Transparent only:
Upper
Upper
Lower
Lower
Upper
Upper
Lower
Lower
Address source MFDB

Address destination MFDB

= 1: pattern used

1 bit color index
0 bit color index
left source X-coordinate

left source Y-coordinate

right source X-coordinate
right source Y-coordinate

left destination X-coordinate
left destination Y-coordinate
right destination X-coordinate
right destination Y-coordinate

Pattern pointer (when used)
_multifill 0

= pattern has one plane

1 = pattern has several planes

0 = opaque

N-plane scurce and n-plane destination

1 = transparent

Source with a plane copied through

destination planes (transparent).

Memory Form Definition Block (MFDB) design:

Offset Size

0
4
6

long
word
word

Meaning

Pointer to raster image
Raster width in pixels

Raster height in pixels

225

all

Abacus Software Atari ST Internals

8 word Raster width in words
10 word Format flag
0 = device-specific
1 = number of bit planes
12 word Number of bit planes
14 word Reserved

When the COPY RASTER function is used, the raster image in
device-specific format must be laid out first. (Standard format arranges the
bitplanes one after the other, instead of nesting them by words).

A few remarks about the words "opaque" and "transparent:." Opaque

copying simply combines the corresponding color planes of source and

destination, as well as the resulting raster, though a logical operation with a

value from 0 to 15 (see also $A007, BITBLT). Here the number of color
planes in source and destination must match, or else the function stops.

Opaque copying doesn't require the values in INTIN[1] and INTIN[2].

Transparent copying copies a source range containing a single color plane to

a multicolor destination range. The source range consists of only two

different colors, represented by bits 0 and 1. You can determine which color
appears in the source range pixels. Give the corresponding color numbers in
INTIN[1] and INTIN[2].

In INTIN[O] writing mode is used instead of the logical operations:

INTIN[O] Writing mode

1 Replace mode

2 Transparent mode

3 XOR mode

4 Reverse transparent mode

These procedures serve when a source range is only two colors, and when a
monochrome as well as a color screen are used. Monochrome copying
naturally displays in black and white; color screens can use the two colors
from the available palette. The diskette icons from the Desktop are copied
using these procedures.

Copy Raster Opaque is identical in the other respects to the VDI function

109, vro_cpyfm, while Copy Raster Transparent corresponds to the VDI
function 121, vrt_cpyfm.

226

Abacus Software Atari ST Internals

$A00F CONTOUR FILL (FLOOD FILL)

The line-A opcode $AOQF is not documented by Atari at present. However,
when you look at the program with the help of a disassembler, you can see
a $A00x opcode execute. It's much more difficult to determine WHICH
function the $AO0F opcode performs. Now, this is our mystery to be
unraveled. $AOOF calls a fill routine. This fill is identical to the VDI
function 103 Contour Fill.

Contour Fill requires an XY coordinate and a mode word for parameters.
The coordinates are stored in PTSIN(0) and PTSIN(1), the mode word in
INTIN(O). The mode word means the following: If we have a positive
value, this value is established as the color value. An area is then filled with
either the border color or the given color. If the value is negative, the fill is
limited to the color of the starting point.

Some of the variables important to this command are clipping, write mode,
pattern pointer and pattern mask without multifill.

3.4.1 An overview of the "line-A" variables

After the initialization $A000, DO and AO contain the address of a variable
area which contains more than 50 line-A variatles. The essential variables
have been described along with the various calls, but not the location of the
variables within the variable block. We will present this list shortly. When
naming the variables we have remained with the names used in the official
Atari documentation.

Offset is the value which must be given to access the value register relative.
Variables supplied with a question mark could not be definitively explained.

227

Abacus Software

Atari ST Internals

Offset Name

=N o

12
16
20
24
26
28
30
32
34
36

38
40
42
44
46

50
52
54
56
58
60
62
64

66

68

v_planes
v_lin wr
Contrl
Intin
Ptsin
Intout
Ptsout
_FG BP_1
_FG_BP_2
_FG_BP_3
_FG _BP 4
_LSTLIN
_LN_MASK
_WRT_MODE

X1
Y1
X2

_Y2
_patptr

_patmsk
_multifill
_CLIp
XMN CLIP
_YMN CLIP
_XMX CLIP
_YMX CLIP
_XACC_DDA

_DDA_INC

_T_SCLSTS

Size

word
word
long
long
long
long
long
word
word
word
word
word
word
word

word
word
word
word
long

word
word
word
word
word
word
word

word

word

word

2

Function

Number of planes

Bytes per scan line

Pointer to the Contrl array

Pointer to the Intin array

Pointer to the Ptsin array

Pointer to the Intout array

Pointer to the Ptsout array

Plane 0 color value

Plane 1 color value

Plane 2 color value

Plane 3 color value

Should be -1 (SFFFF) (?)

Line pattern for $A003

Write mode (0=write mode
l=transparent
2=X0R mode
3=Inverse trans.)

Xl-coordinate

Yl-coordinate

X2-coordinate

Y2-coordinate

Fill pattern pointer

(see $SA004)

Fill pattern "mask"

(see S5A004)

0=£fill pattern for one plane

1=fill pattern for multiplane

0=no clipping (see $A005)

unequal to O=clipping

define upper left corner of

the visible clipping area and

define lower right corner of

the visible area for clipping

Should be set to $8000 before

each call to TXTBLT (?)

Enlargement/reduction factor

SFFFF for enlargement,

reduction doesn't work (?)

O=reduction (?)

l=enlargement

28

Abacus Software Atari ST Internals

70 _MONO_STATUS word 1l=no proportional font
O=proportional type or width
of character changed by bold
or italics

72 _SOURCEX word X-coordinate of char in font

74 _SOURCEY word Y-coord of char in font (0)

Note: SOURCEX is the value of the character from the
horizontal offset table (HOT) and can be calculated with
the formula SOURCEX = HOT-element (ASCII value minus
FIRST ADE). The variable FIRST ADE is contained in bytes
36,37 of the font header (see example)

76 _DESTX word X-position of char on screen
78 _DESTY word Y-position of char on screen
80 _DELX word Character width
82 _DELY word Character height

Note: DELX can be calculated with the formula DELX =
SOURCEX+1 minus SOURCEX (see $A008). DELY is the value
FORM height from bytes 82,83 of the font header.

84 _FBASE long Pointer to start of font data
88 _FWIDTH “long Width of font form
90 _STYLE word Special effects flag
(see $A008)
92 _LITEMASK word Mask for shading
94 __SKEWMASK word Mask for italic type
96 _WEIGHT word Number of bits by which the
character will be expanded
98 _R _OFF word Offset for italic type
100 _L OFF word Offset for italic type

Note: The above five variables should be loaded with the
corresponding values from the font header.

102 _SCALE word O=no scaling
l=scaling (enlarge/reduce)
104 _CHUP word Angle for character rotation

0=normal char representation
3384=rotated 90 degrees
$708=rotated 180 degrees
$A8C=rotated 270 degrees

229

Abacus Software

Atari ST Internals

106
108

112

114
116

_TEXT_FG word
_scrtchp long
_scrpt2 word
_TEXT_BG word
_COPYTRAN word

Text display foreground color
Buffer address required for
creating special text effects
Offset of the enlargement
buffer in the scrtchp buffer
Background color for text rep
(?)

3.4.2 Examples for using the line-A opcodes

To make your first experiments with the line-A opcodes easier, here are a
few examples to serve you as a starting point. In the first example, $A001
sets a point is set on the screen with $A001, $A002 sets the point's color.

% %k ok ok gk kK ok ok sk Kk ok Kk ke g ok k ok sk ok ok ke ok ok ok ok 9k %k K 3k ok ok ok 3k ok ok ok Sk ok ke ok d ok ok ok ke ke ok ok

Demo of S$SA000,$A001 and $A002 functions

% % %k k%K ek Kk Kk ok K ok kK ks gk ok e ok ok ok ok ok ok ok ok sk K %k ok ke ok ok 3k ke ok Tk ok ek ok ok e ke ok ke ok ok ok

*

Intin
Ptsin

init
setpix

getpix

start:

equ
equ

equ
equ
equ

.dc.w
move.l
move.l

move
move

move

.dc.w

move
move
.dc.w

$a000
$a001
$a002

init
Intin(a0),a3
Ptsin(a0), a4

#300, (a4)
#100, 2 (a4)

#1, (a3)

setpix

#300, (a4)
$#100,2(a4)
getpix

call $A00O
address of Intin-arrays
address of Ptsin-arrays

X coordinate
Y coordinate

color set, pixel set
0 erases pixel

set pixel
X coordinate

y coordinate
get color value

d0 now contains color value

230

Abacus Software

Atari ST Internals

A monochrome monitor requires only the color values zero and one. Other

values can be entered when working in one of the color modes, however.

The next example shows how a triangle can be drawn on the screen with the

function FILLED POLYGON.

% ok K %k Tk KKk ok ok kR ok Kk gk ok ok ok K ok ok K ok Kk gk ok ke ok ok ok ok ok ok ok ok Sk e ek ok ok ke ok ok

*

contrl
ptsin

fg bpl
fg_bp2
fg bp3
fg_bp4
wrt_mod

yl

patptr
patmsk
multifill
clip
xmn_clip
ymn_clip
xmx_clip
ymx_clip

init
polygon

a006 - filled polygon

%% % & Kk Kk ok ok Kk kT ok ok ok Kk ke sk sk ok 3k ok ok g sk ok ok ok ok Rk ok ok ok ke ke ok ke ke ke ok

equ
equ

equ
equ
equ
equ
equ

equ

equ
equ
equ
equ
equ
equ
equ
equ

equ
equ

.dc.w

move.w
clr.w
clr.w
clr.w
move .w

move.l
move.,w
clr.w
clr.w
move.l

24
26
28
30
36

40

46
50
52
54
56
58
60
62

$a000
$a006

init

#1,fg_bpl (a0)
fg_bp2(a0)
fg bp3(a0l)
fg_bp4 (a0)
#2,wrt_mod(a0)

#fil11, patptr (al)
#4,patmsk (a0)
multifill (a0)
clip(a0)
contrl(a0l), a6

231

get variable block address
from AO

set colors for
monochrome only

replace mode

pointer to the fill pattern
four fill patterns

only one plane (mcnochrome)
no clipping

Contrl array address from A6

Abacus Software

Atari ST Internals

loop

loopl

fill:

tab:

addg.1l
move.w

move.l
move.l
move .w
move . w
dbra

move .w
move.w
move.l

dc.w

move.l
addqg.w
cmp.w
bne
rts

dc.
dc.

£ £ %%

dc.

dc.
dc.
dc.
dc.

£ ¥ £ £

$2, a6
#3, (a6)

ptsin(a0l), a6
#tab, a5
#8,d3

(a5)+, (a6) +
d3, loop

#100,d3
d3,yl(a0)
a0, -{sp)

polygon

(sp)+, a0
#1,d3
#301,d3
loopl

$1100110011001100
%$0110110110110110
$0011001100110011
%$1001100110011001

320,100
120,300
520,300
320,100

232

A6 > Contrl(l)
the XY pair in Ptsin

Ptsin array address from A6
Coordinate table
receive 8 coordinates

first scanline
from Y1
store address variable block

fill scanline, destroy AO

restore AO

calculate next scanline
last scanline?

no, next scanline
subroutine all done

Abacus Software

Atari ST Internals

The next example shows how to enable the mouse and manipulate the
cursor form. The example waits for a key press before returning.

kK I KA KKK A AKKA KA KK AA IR KA KAKRKRAKRK A ARk kkkkkkkkkhhkkkkkdkkk

*

intin
init_a
show_mouse

transmouse

start:

loop:

maus:
maske:

show mouse - transform mouse
**

equ

equ
equ
equ

.dc.w

move.l

move
move

add.

lea
move

move.1l

dbra

1

. W

.dec.w

move.1l

clr.w

rts

.dc.
.dc.

.dc.
.dc.

.dc.

¥ €%

8
$a000

$a009
$a00b

init_a
Intin(a0),ab
#0,6(ab)
#1,8(ad)
#10,a5
maus, a4
#15,d0
(ad4)+, (a5) +
do, loop
transmouse
init_a

Intin (a0),al
(a0)

show_mouse

address Intin from A5

Intin (3)
Intin (4)

mask color value
data color value

f

a5 > Intin (5)
data for new cursor
32 words = 16 longs

transfer Intin array

and set form

Number Hide Cursor -ignore call
now the new cursor

subroutine all done

$0000000110000000
%$0000011111100000
$0001111111111000
$0111111111111110
$1111111111111111
%$1111001111001111
$1111001111001111

233

Abacus Software

Atari ST Internals

daten:

T ¥xzzzzcx

Tt xzzrerrLxezzs

%$1111001111001111
$0000001111000000
%$0000001111000000
$0000001111000000
$0000001111000000
%$0000001111000000
$0000001111000000
$0000000000000000

$0000000000000000
$0000000000000000
$0000000110000000
%$0000011001100000
$0110000110000110
%$0110000110000110
%$0000000110000000
$0000000110000000
%0000000110000000
%$0000000110000000
%$0000000110000000
$0000000110000000
$0000000110000000
%$0000000000000000
%$0000000000000000

234

Abacus Software Atari ST Internals

3.5 The Exception Vectors

The first 1024 bytes of the 68000 processor are reserved for the exception
vectors. Routines which use exception handling store the addresses they
require in this range of memory.

A condition which leads to an exception can come either from the processor
itself or from the peripheral components and controls units connected to it.
The interrupts, described in the next section, belong to the class of external
events. In addition, a so-called bus error can be created externally.

A bus error can be created by many circumstances. For one, certain memory
areas can be protected from unauthorized access by it. As you may already
know, the 68000 can run in one of two operating modes. The operating
system is driven at the first level, the supervisor mode. The user mode is
intended for user programs. In order that a user program not be able to
access important system variables as well as the system components in an
uncontrolled fashion, such an access in the user mode leads to a bus error.
If such an error occurs, the processor stops execution of the instruction,
saves the program counter and status register on the stack, and branches to a
routine, the address of which it fetches from the lowest 1024 bytes of
memory. In the case of the bus error, the address is at memory location 8
(one long word). What happens in this routine?

First the vector number of the interrupt is determined and placed in address
$3C4. Then the registers will get up to 16 words from the system stack and
store them. Therein is the address by which the interruption occurred, as
well as the current system status. In the case of a bus or address error,
these words contain the address at which the error occurred, as well as the
type of access (see any 68000 user's manual). As many cherry bombs
appear on the screen as the interrupt vector number. In the case of a bus
error, for example, this number is 2. Execution then returns to the GEM
Desktop.

The range in which the above information will be stored retains this
information until the ST is reset. It therefore conveys the complete status of
the processor until a crash occurs. The data lie at the following addresses:

$380 contains $12345678 when the following data is wvalid

$384 - $3A3 D0 - D7
$3A4 - S$3BF A0 - A6

235

Abacus Software Atari ST Internals

$3Co SSP
$3C4 Exception number
53C8 USP
$3CC - $3EB 16 words from SSP

The following table contains all of the exception vectors.

Vector number Address Exception vector meaning
0 5000 Stack pointer after reset
1 5004 Program counter after reset
2 5008 Bus error
3 $00C Address error
4 5010 Illegal instruction
5 5014 Division by zero
6 $018 CHK instruction
7 501cC TRAPV instruction
8 5020 Privilege violation
9 $024 Trace

10 5028 Line-A emulator

11 502¢C Line~F emulator
12-14 3030-$038 reserved

15 $03C Uninitialized interrupt
16-23 5040-305C reserved

24 5060 Spurious interrupt

25 $064 Level 1 interrupt

26 5068 Level 2 interrupt

27 s06C Level 3 interrupt

28 $070 Level 4 interrupt

29 $074 Level 5 interrupt

30 5078 Level 6 interrupt

31 $07C Level 7 interrupt

32 5080 TRAP #0 instruction

33 5084 TRAP #1 instruction

34 $088 TRAP #2 instruction

35 508C TRAP #3 instruction

36 5090 TRAP #4 instruction

37 $094 TRAP #5 instruction

38 5098 TRAP #6 instruction

39 509C TRAP #7 instruction

40 S0A0 TRAP #8 instruction

41 $0a4 TRAP #9 instruction

42 S0AS8 TRAP #10 instruction

43 SO0AC TRAP #11 instruction

236

Abacus Software Atari ST Internals
44 $0BO TRAP #12 instruction
45 $0B4 TRAP #13 instruction
46 $0B8 TRAP #14 instruction
47 $O0BC TRAP #15 instruction
48-63 $0C0~-$0FC reserved
64-255 $100-$3FC User interrupt vectors

The following vectors are used on the ST:

Line-2A emulator SFCO9CA2 / S$FB30
Line-F emulator SA30E / S3A6AE
Level 2 interrupt SFCO061E / $64AC
Level 4 interrupt SFC0634 / $64C2
TRAP #1 GEMDOS $FC4D48 / $ABD6
TRAP #2 GEM SFE340E / $29B76
TRAP #13 BIOS SFCO74E / $65DC
TRAP #14 XBIOS $FC0748 / $65D6

The first address refers to the ROM version; the second address is read
when the operating system is found in RAM. The vector for division by
zero points to rte and returns directly to the interrupted program. Vectors
64-79 are reserved for the MFP 68901 interrupts. All other vectors point to
$FCOA1A/$68 A8 which outputs the vector number and ends the program as
described for the bus error.

All of the unused vectors can be used for your own purposes, such as the
line-F emulator or the 12 unused traps.

237

Abacus Software Atari ST Internals

3.5.1 The line-F emulator

The ST operating system uses the line-F emulator to replace frequently used
command sequences with just one command. Since the better part of the
operating system is written in C, especially the AES, you'll often find a
sequence at the end of a C subroutine, generated by the compiler:

tst.1l (A7) +

movem.l (A7)+,Dx-Dy/Ax-Ay
unlk A6

rts

This sequence requires 5 words. A 16-bit mask in the movem command
decides which register will be taken from the stack. Bits 0 - 7 stand for data
registers DO - D7, and bits 8 - 15 are for the address registers (AO - A7).
This mask is ORed by the opcode $F000 to shift the second bit to the right,
and set bit 0. Thus it is possible to get the register contents of D3 - D7 and
AOQ - A5, which are used by the C compiler, from the stack. Four words
will be stored during this procedure.

If bit 0 is not set in the line-F command, the opcode will be interpreted as a
pointer in a table, from which the address of a routine will be taken. This
routine will then branch to the return address previously placed on the stack.
The opcode must be divisible by 4; e.g., $F000, $F004, etc., up to $FOCC.
The jump table resides at SFEE8BC-$FEF28B or $34B60-$3552F.

Since the line-F routine contains self-modifying code, it is copied into
RAM.

238

Abacus Software

Atari ST Internals

Kkkkkkhhkkkkhkhkhkhkhhkhkhkkhkkkxkkkkkxkx*x* [INE~-F emulator

00A30E
00A310
00A312
00A314
00A318
O0A31A
00A31C
O00OA31E
00A322
00A328
00A32C
00A32E
00A332
00A334
00A336
OOA33A
OOA33E
00A340
O00A342
O0A346
O0OA348
O0A34A

341F
205F
3218
08010000
6614
46C2
2F08
02410FFF
207COOFEE8SBC
20701000
4EDO
02410FFE
6712
E549
007C07000
41FA0008
3081
588F
4CDF2000
46C2
4E5E
4E75

move.
move.
move
btst
bne

move
move.

W
1

W

W

1

and.w

move.
move.

jmp

1
1

and.w

beg

1sl.w

or.w
lea

move.
addqg.

movem. 1l

move.
unlk
rts

Bit no.

w
1

w

Opcode

Register

(A7) +,D2
(A7) +,A0
(AQ) +,D1
#0,D1

$A32E

D2,SR
AO, - (A7)
#3$0FFF, D1
#SFEESBC, A0
0(A0Q,D1.W),A0
(AO)

Get status from stack
Return address

Get
Bit
Yes
Set status

Return addr. from stack
Delete bits 12-15

Base address of table
Get address

Execute routine

opcode
0 set?

#SOFFE, D1 Delete bits 12-15 and bit 0
SA346 $F001, then unlk/rts
#2,D1 Shift mask
#$700, SR Save IPL 7, interrupts
$A344 (PC),AQ Register mask address
D1, (AO) Copy mask in program
#4,A77 Correct stack
(A7) +,AS5 Get register again
D2,SR Set status
A6 release local variables
Return from call
FEDCBA9876543210
111IXXAXXXXXXXX1
AAAAAADDDDD
54321076543

239

Abacus Software Atari ST Internals

3.5.2 The interrupt structure of the ST

The interrupt capabilities offered by the 68000 microprocessor are put to
good use in the ST. As you may have already gathered from the hardware
description of the processor, the processor has seven interrupt levels with
different priorities. The interrupt mask in the system byte of the status
register determines which levels can generate an interrupt. An interrupt can
only be generated by a level higher than the current contents of the mask in
the status register. A interrupt of a certain priority is communicated to the
processor by the three interrupt priority level inputs. The following
assignment results:

Level IPL 2 1 0
7 (NMI) 0 0 ©
6 0 0 1
5 0 1 o
4 0 1 1
3 1 0 O
2 1 0 1
1 1 1 ¢
0 1 1 1

If all three lines are 1 (interrupt level 0), no interrupt is present. Interrupt
level 7 is the NMI (non-maskable interrupt), which is executed even if the
interrupt mask in the status register contains seven. Which interrupt is
assigned which vector (that is, the address of the routine which will process
the interrupt) depends on the peripheral component which generates the
interrupt. For auto-vectors, the processor itself derives the interrupt number
from the interrupt level. The following table is used in this process:

Level Vector number Vector address

IPL 1 25 $64
IPL 2 26 $68
IPL 3 27 $6C
IPL 4 28 $70
IPL 5 29 $74
IPL 6 30 578
IPL 7 31 $7cC

Only lines IPL 1 and IPL 2 are used on the Atari ST; Line IPL is
permanently set to a 1 level so that only levels 2, 4 and 6 are available. The
results in the following assignment:

240

Abacus Software Atari ST Internals

IPL 2 HBL, horizontal blank, line return
IPL 4 VBL, vertical blank, picture return
IPL 6 MEP 68901

The HPL interrupt is generated on each line return from the video section. It
is generated every 50 to 64 ps depending on the monitor connected
(monochrome or color). It occurs very often and is normally not permitted
by an interrupt mask of three. The standard HBL routine therefore only has
the task of setting the interrupt mask to three if it is zero and allows the HBL
interrupt so that no more HBL interrupts will occur. One use of the HBL
interrupt could be for special screen effects. With the help of this routine,
you know exactly which line of the screen has just been displayed. Of much
greater importance, however, is the VBL interrupt, which is generated on
each picture return. This occurs 50, 60, or 70 times per second depending
on the monitor.

The vertical blank interrupt (VBL) routine accomplishes a whole set of a
tasks which must be periodically executed or which concern the screen
display. When entering the routine, the frame counter _frclock ($466) is
first incremented. Next, a test is made to see if the VBL interrupt is
software-disabled. This is the case if vblsem ($452) (vertical blank
semaphore) is zero or negative. In this case the routine is exited immediately
and execution returns to the interrupted program. Otherwise, all of the
registers are saved on the stack and the counter _vbclock ($462), which
counts the executed VBL routines, is incremented. Next, a check is made to
see if a different monitor has been connected in the meantime. If a change
was made from a monochrome to color monitor, the video shifter is
reprogrammed accordingly. This is necessary because the high screen
frequency of 70 Hz of the monochrome monitor could damage a color
monitor. The routine to flash the cursor is called next. If you load a new
color palette via the appropriate BIOS functions or want to change the
screen address, this happens here in the VBL routine. Since nothing is
displayed at this time, a change can be made here without disturbing
anything else. If colorptr ($45A) is not equal to zero, it is interpreted as
a pointer to a new color palette, and this is loaded into the video shifter. The
pointer is then cleared again. If screenptr is set, this value is used as the
new base address of the screen. This takes care of the screen specific
portions.

Now the floppy VBL routine is called which, with the help of the write
protect status, determines if a diskette was changed. An additional task of
this routine is to deselect the drives after the disk controller has turned the
drive motor off.

241

Abacus Software Atari ST Internals

Now comes the most interesting part for the programmer, the processing of
the VBL queue. There is a way to tell the operating system to execute your
own routines within the VBL interrupt. The maximum number of routines
possible is in nvb1ls ($454). This value is normally initialized to 8, but it
can be increased if required. Address _vblqueue ($456) contains a
pointer to a vector array which contains the (8) addresses of the VBL
routines. Each address is tested within the VBL routine and the
corresponding routine executed if the address is not zero.

If you want to install your own VBL routine, check the 8 entries until you
find one which contains a zero. At this address you can write a pointer to
your routine which from now on will be executed in every VBL interrupt.
In all 8 entries are already occupied, you can copy the entries into a free area
of memory, append the address of your routine, and redirect _vblqueue
to point to the new vector array. Naturally, you must not forgef to increment
vbls, the number of routines, correspondingly. Your routine may change
all registers with the exception of the USP.

As soon as the VBL routine is done, the _dmpflg ($4EE) is checked. If
this memory location is zero, a hardcopy of the screen is outputted. The flag
is set in the keyboard interrupt routine if the keys ALT and HELP are
pressed at the same time. Finally, the register contents are restored,
vblsemis released and execution returns to the interrupted routine.

The MFP 68901 occupies interrupt level six in our previous table. This
component is in the position to create interrupt vectors on its own. These are
referred to non-auto vectors in contrast to the auto vectors used above,
because the processor does not generate the vector itself. In the Atari ST,
the MFP 68901 works as the interrupt controller. It manages the interrupt
requests of all peripheral components including its own.

The MFP can manage sixteen interrupts which are prioritized in reference to
each other, similar to the seven levels of the processor. All MFP interrupts
appear on level 6 to the 68000, therefore prioritized higher than HBL and
VBL interrupts. The table on the next page contains the assignments within
the MFP.

Level Assignment
15 Monochrome monitor detect
14 RS-232 ring indicator
13 System clock timer A
12 RS~232 receive buffer full
11 RS-232 receive error

242

Abacus Software Atari ST Internals

Level Assignment
RS-232 transmit buffer empty
RS-232 transmit error

[y
o o

8 Line return counter, timer B

7 Floppy controller and DMA

6 Keyboard and MIDI ACIAs

5 Timer C

4 RS~232 baud rate generator, timer D
3 unused

2 RS-232 CTS

1 RS-232 DCD

0

Centronics busy

Not all of these possible interrupt sources are enabled, however. Some
signals are processed through polling. The following is a description of the
interrupts which are used by the operating system.

Level 2, RS-232 CTS, address $FC26B2 / $8540

This interrupt is generated every time the RS-232 interface is informed via
the CTS line that a connected receiver is ready to receive additional data.
The routine then sends the next character from the RS-232 transmit buffer.

Level 5, Timer C, address $FC2F78 / $8E06

This timer runs at 200 Hz. The 200 Hz counter at $4BA is first incremented
in the interrupt routine. The next actions are performed only every fourth
call to the interrupt routine, that is, only every 20ms (50 Hz). First a routine
is called which handles the sound processing. Another task of this interrupt
is the keyboard repeat when a key is pressed and initial repeat. Finally, the
evt_timer routine of GEM is called, which is accessed via vector $400.

Level 6, Keyboard and Midi, address $FC281C / $86AA

Two peripheral components are connected to this interrupt level of the MFP,
the two ACIAs which receive data from the keyboard and the MIDI
interface. In order to decide which of the two components has requested an
interrupt, the interrupt request bits in the status registers of the ACIAs are
tested and the received byte is fetched if required. If it comes from the
keyboard, the scan code is converted to the ASCII code by means of the

243

Abacus Software Atari ST Internals

keyboard table and written into the receive buffer, which happens
immediately for MIDI data. Mouse and joystick data also come from the
keyboard ACIA and are also prepared accordingly.

Level 9, RS-232 transmit error, address $FC2718 / $85A6

If an error occurs while sending RS-232 data, this interrupt routine is
activated. Here the transmitter status register is read and the status is saved
in the RS-232 parameter block.

Level 10, RS-232 transmit buffer empty, address $FC2666 /
$84F4

Each time the MFP has completely outputted a data byte via the RS-232
interface, it generates this interrupt. It is then ready to send the next byte. If
data is still in the transmit buffer, the next byte is written into the transmit
register, which can now be shifted out according to the selected baud rate.

Level 11, RS-232 receive error, address $FC26FA / $8588

If an error occurs when receiving RS-232 data, this interrupt routine is
activated. This may involve a parity error or an overflow. The routine only
clears the receiver status register and then returns.

Level 12, RS-232 receive buffer full, address $FC2596 /
$8424

If the MFP has received a complete byte, this interrupt occurs. Here the
character can be fetched and written into the receive buffer (if there is still
room). This routine takes into account the active handshake mode (sending
XON/XOFF or RTS/CTS).

The other interrupt possibilities of the MFP are not used, but they can be
used for your own routines. For example, interrupt level 0, Centronics
strobe, can be used for buffered printer output.

244

Abacus Software Atari ST Internals

3.6 The Atari ST VT52 Emulator

There are two options for text output on the ST. You can work with the
GEMDOS functions by means of TRAP#1 or a direct BIOS call with
TRAP #1 3. The other possibility consists of using the VDI functions.

You have special options for screen control with both variants. We will first
take a look at output using the normal DOS or BIOS calls. Here a terminal
of type VT52, which offers a wide variety of control functions, is emulated
for screen output. These control characters are prefixed with a special
character, the escape code. Escape, or ESC for short, has an ASCII code of
27. Following the escape code is a letter which determines the function, as
well as additional parameters if required. The following list contains all of
the control codes and their significance.

ESC A Cursor up
This function moves the cursor up one line. If the cursor was already
on the top line, nothing happens.

ESC B Cursor down
This ESC sequence positions the cursor one line down. If the cursor
is already on the bottom line, nothing happens.

ESC C Cursor right
This sequence moves the cursor one column to the right.

ESC D Cursor left
Moves the cursor one position to the left. This function is identical to
the control code backspace (BS, ASCII code 8). If the cursor is
already in the first column, nothing happens.

ESC E Clear Home
This control sequence clears the entire screen and positions the cursor
in the upper left corner of the screen (home position).

245

Abacus Software Atari ST Internals

ESC H Cursor home
With this function you can place the cursor in the upper left corner of
the screen without erasing the contents of the screen.

ESC I Cursor up
This sequence moves the cursor one line towards the top. In contrast
to ESC A, however, if the cursor is already in the top line, a blank
line is inserted and the remainder of the screen is scrolled down a line
correspondingly. The column position of the cursor remains
unchanged.

ESC J Clear below cursor
By means of this function, the rest of the screen below the current
cursor position is cleared. The cursor position itself is not changed.

ESC K Clear remainder of line
This ESC sequence clears the rest of the line in which the cursor is
found. The cursor position itself is also cleared, but the position is
not changed.

ESC L Insert line
This makes it possible to insert a blank line at the current ..rsor
position. The remainder of the screen is shifted down; the lowest line
is then lost. The cursor is placed at the start of the new line after the
insertion.

ESC M Delete line
This function clears the line in which the cursor is found and moves
the rest of the screen up one line. The lowest screen line then
becomes free. After the deletion, the cursor is moved up to the first
column of the line that takes the place of the deleted line.

246

Abacus Software Atari ST Internals

ESC Y Position cursor

This is among the most important functions. It allows the cursor to be
positioned at any place on the screen. The function needs the cursor
line and column as parameters, which are expected in this order with
an offset of 32. If you want to set the cursor to line 7, column 40,
you must output the sequence ESC Y CHR$(32+7) CHR$(32+40).
Lines and columns are counter starting at zero; for an 80x25 screen
the lines are numbered from O to 24 and the columns from O to 79.

The remaining ESC sequences of the VT52 terminal start with a lower case
letter.

ESC b Select character color
With this function you can select the character color for further
output. With a monochrome monitor you have choice between just
O=white and 1=black. For color display you can select from 4 or 16
colors depending on the mode. Only the lowest four bits of the
parameters are evaluated (mod 16). You can use the digit "1" for the
color 1 as well as the letters "A" or "a" in addition to binary one.

ESC c¢ Select background color
This function serves to select the background color in a similar
manner. If you choose the same color for character and background,
you will, of course, not be able to see text output any more.

ESC d Clear screen to cursor position
This sequence causes the screen to be erased starting at the top and
going to the current position of the cursor, inclusive. The position of
the cursor is not changed.

ESC e Enable cursor
Through this escape sequence the cursor becomes visible. The cursor
can, for example, be enabled when waiting for input from the user.

ESC f Disable cursor
Turns the cursor off again.

247

Abacus Software Atari ST Internals

ESC j Save cursor position

ESC

If you want to save the current position of the cursor, you can use
this sequence to do so. Unfortunately, this function is also used by
other ESC sequences, so the stored value is no longer available to
you if you use some other sequences.

k Set cursor to the saved position

This is the counterpart of the above function. It sets the cursor to the
position which was previously saved with ESC j. If no cursor
position was saved, the cursor will go to the home position.

ESC 1 Clear line

Clears the line in which the cursor is located. The remaining lines
remain unaffected. After the line is cleared, the cursor is located in the
first column of the line.

ESC o Clear from start

ESC

ESC

ESC

ESC

This clears the current cursor line from the start to the cursor position,
inclusive. The position of the cursor remains unchanged.

p Reverse on

The reverse (inverted) output is enabled with this sequence. For all
further output, the character and background colors are exchanged. A
monochrome monitor will show white type on a black background.

q Reverse off
This sequence serves to re-enable the normal character display mode.

v Automatic overflow on

After executing this sequence, an attempted output beyond the end of
line will automatically start a new line.

w Automatic overflow off

This deactivates the above sequence. An attempt to write beyond the
line will result in all following characters being written in the last
column.

248

Abacus Software Atari ST Internals

Similar functions are available to you under VDI. The VDI escape functions
(opcode 5) serve this purpose. The appropriate screen function is selected
by choosing the proper function number. Note, however, that under VDI
the line and column numbering does not begin with zero but with one.

Under VDI there is also a function which outputs a string at specific screen
coordinates. If necessary, you can use the ESC functions of the VT52
emulation in addition.

The output of "unprintable" control characters

The three system fonts of the ST have also been supplied with characters for
the ASCII codes zero to 31, which are normally interpreted as control
codes. On the ST, only codes 7 (BEL), 8 (BS backspace), 9 (TAB), as well
as 10, 11, and 12 (LF linefeed, VT vertical tab, and FF form feed all
generate a linefeed) plus 13 (CR carriage return) have effect, in addition to
ESC. The remaining codes have no effect. How do we access the characters
below 327

To do this, an additional device number is provided in the BIOS function 3
"conout”. Normally number 2 "con" serves for output to the screen. If one
selects number 5, however, all the codes from, 0 to 255 are outputted as
printable characters, control codes are no longer taken into account.

You will find the three ST system fonts pictured in the Appendix.

249

Abacus Software Atari ST Internals

3.7 The ST System Variables

The ST uses a set of system variables whose significance and addresses will
not change in future versions of the operating system. If you use other
variables, such as those from the BIOS listing which are not listed here, you
should always remember that these could have a different meaning in a new
version of the operating system. The system variables are in the lower RAM
area directly above the 68000 exception vectors, at address $400 to 1024.
The address range from 0 to $7FF (2047) can be accessed only in the
supervisor mode. An access in the user mode leads to a bus error.

In the following listing we will use the original names from Atari. In
addition to the address of the given variable, typical contents and the
significance will be described. Two values are sometimes given for one
address: The first signifies the address in the ROM version of the operating
system, while the second address refers to the operating system when in
RAM, unless stated otherwise in the text.

Address length name sample contents
$400 L etv_timer $FCA62A / $104B8
This is the GEM event timer vector. It handles periodic GEM tasks.
$404 L etv_critic $FC0744 / $65D2
Critical error handler. Under GEM this pointer points to
$FE3226/$294DE. There an attempt is made to correct disk errors,
such as if a another disk is requested in a single-drive system.
$408 L etv_term $FCO5C0 / $644E
This is the GEM vector for ending a program.
$40C 5L etv_xtra
Here is space for 5 additional GEM vectors, presently not yet used.

$420 L memvalid $§752019F3

If the memory location contains the given value, the configuration of
the memory controller is valid.

250

Abacus Software Atari ST Internals

$424

$426

$42a

$42E

$432

$436

$43a

$43E

$440

w memctrl $05

This is a copy of the configuration value in the memory controller.
The value given applies for a IMB machine.

L resvalid $§31415926

A given value located here causes a jump to the reset vector ($42A).

L resvector $FC0008
See above.
L phystop $80000 / $100000

This is the physical end of the RAM memory; $80000 for a 512K
machine and $100000 for a IMB machine.

L _membot $A100 / $39FF0

The user memory begins here (TPA, transient program area).
L _memtop $F8000

This is the upper end of the user memory.
L memval2 $237698AA

This value and "memvalid" declare the memory configuration.
L flock 0

If this variable contains a value other than zero, a disk access is in
progress and the VBL disk routine is disabled.

W seekrate 3

The seek rate (the time it takes to move the read/write head to the next
track) is determined according to the following table:

Seek rate Time

0 6 ms
1 12 ms
2 2 ms
3 3 ms

251

Abacus Software Atari ST Internals

$442

$444

$446

$448

$44A

$44cC

$44E

$§452

5454

W _timer ms $14, 20 ms
The time span between two timer calls, 20 ms corresponds to 50 Hz.
w _fverify $FF

If this memory location contains a value other than zero, a verify is
performed after every disk write access.

W _bootdev 0

Contains the device number of the drive from which the operating
system was loaded.

W palmode 0

If this variable contains a value other than zero, the system is in the
PAL mode (50 Hz); if the value is zero, it means the NTSC mode.

W defshiftmod 0

If the Atari is switched from monochrome to color, it gets the new
resolution from here (O=low, 1 medium resolution).

W sshiftmd $2
Here is a copy of the register contents for the screen resolution.

0 320x200, low resolution
1 640x200, medium resolution
2 640x400, high resolution

L _v_bas_ad $F8000

This variable contains a pointer to video RAM (logical screen base).
The screen address must always begin on a 256 byte boundary.

W vblsem 1

If this variable is zero, the vertical blank routine is not executed.

w nvbls 8

Number of vertical blank routines.

252

Abacus Software Atari ST Internals

$456 L _vblqueue $4CE
Pointer to a list of nvb1s routines which will be executed during the
VBL.

$§45A L colorptr 0

If this value is not zero, it is interpreted as a pointer to a color palette
which will be loaded at the next VBL.

$45E L screenpt 0

This is a pointer to the start of the video RAM, which will be set
during the next VBL (zero if no new address is to be set).

$462 L _vbeclock $2D26A
Counter for the number of VBL interrupts.
$466 L _frclock $2D267
Number of VBL routines executed (not disabled by vblsem). |
$46A L hdv_init $FCOD60 / $6BEE
Vector for hard disk initialization.
$46E L swv_vec $FC0020 / $6120
Vector for monitor change. A branch is made through this vector
when another monitor (color/monochrome) is connected (default is
reset).
$472 L hdv_bpb $FCODE6 / $6C74
Vector to get the parameter block for a hard disk (BIOS function 7).
$476 L hdv_rw $FC10D2 / $6F60
Read/write routine vector for a hard disk (BIOS function 4).
$472 L hdv_boot $FC137C / $720A

Vector for loading a boot sector.

253

Abacus Software Atari ST Internals

$47E

$482

5484

$48E

$49E

$4A2

$4A6

$4A8

$4AC

L hdv_mediach §$FCOF96 / $6E24
Media change routine vector for hard disk (BIOS function 9).
W _cmdload 0

If the boot program sets this variable to a value other than zero, the
ST attempts to load a program called "COMMAND.PRG" once the
operating system loads (e.g. an application other than the Desktop).

B conterm 6

Attribute vector for console output:

Bit Meaning

0 Key click on/off
1 Key repeat on/off
2 Tone after CTRL G on/off
3 "kbshift™ is returned in bits 24-31 for the
BIOS function "conin"
4L themd 0

Memory descriptor, filled out by the BIOS function getmpb.

2W md 0

Space for additional memory descriptors.
L savptr $90cC

Pointer to a save area for the processor registers after a BIOS call.
W _nflops 2

Number of connected floppy disk drives (0 or 2).
L con_state $FC41BC / $A04A

Vector for screen output; set by ESC functions to the appropriate
routine, for example.

W save_row 0

Temporary storage for positioning the cursor with ESC Y.

254

Abacus Software Atari ST Internals

$4AE L sav_context 0

Pointer to a temporary areas for exception handling.

$4B2 2L _bufl $60A4, $60CC

Pointer to two buffer list headers of GEMDOS. The first header is
responsible for data sectors, the second for the FAT (file allocation
table) and the directory. Each buffer control block (BCB) is
constructed as follows:

long BCB $4F8A, pointer to next BCB

int drive -1, drive number or -1

int type 2 buffer type

int rec $41C record number in this buffer

int dirty O dirty flag (buffer changed)

long DMD $2854 pointer to drive media descriptor

long buffer $4292 pointer to the buffer itself
$4BA L _hz_200 $71280
Counter for 200 Hz system clock
$4BE 4B the_env 0
Default environment string, four zero bytes.
$4cCc2 L _drvbits 3

32-bit vector for connected drives. Bit O stands for drive A, bit 1 for
drive B, and so on.

$4c6 L _dskbufp $167A

Pointer to a 1024-byte disk buffer. The buffer is used for GSX
graphic operations and should not be used by interrupt routines.

$4CA L _autopath 0

Pointer to autoexecute path.

$4CE 8L _vbl_list $FD03C4,0,0.. / $16252,0,0..

List of the eight standard VBL routines.

255

Abacus Software Atari ST Internals

S4EE

$4F2

$4F6

$4FA

$AFE

$502

$506

$50A

$50E

L _Gumpflg S$FFFF

This flag is incremented by one when the ALT and HELP keys are
pressed simultaneously. A value of one generates a hardcopy of the
screen on the printer. A hardcopy can be interrupted by pressing ALT
HELP again.

L _sysbase $FC0000 / $6100
Pointer to start of the operating system.
L _shell p Y
Global shell information.
L end_os $A100 / $3A4A0
Pointer to the end of the operating system in RAM, start of the TPA.
L exec_os $FDBE98 / $1F600

Pointer to the start of the AES. Normally branched to after the
initialization of the BIOS.

L dump vec $FCO0C2C / $6ABA

This vector is jumped to when a hardcopy is being printed (XBIOS
function 20).

L prt_stat $FC1F34 / $7D2E

Printer status vector for hardcopy.

L prt_vec $FC1EA0 / $7D2E

Printer output vector for hardcopy.

L aux stat $FC1F6E / $7DFC

Vector for getting serial output status during hardcopy.

256

Abacus Software Atari ST Internals

$512 L aux_vec $FC1F86 / $7E14

Vector for serial output of the hardcopy function.

$51a L memval3 $5555AAAA

Contains the variable of the "magic number" memval. Keeps the
memory configuration constant after a reset (together with memvalid
and memvalid2).

$51E 8L bconstat_vec $FC0670, §FC2138, §FC2226,
$FC2044, $FC0670, $FC0670,
$§FC0670, $FC0670

Eight pointer to routines for getting input status (BIOS function 1,
beonstat). The first value applies to device number 0, the next for
device 1, etc., up to device 7. The address $FC0670 points direct to
an rts command.

$53E 8L bconin_vec $FC2104, $FC2150, $FC223C,
$FC2060, $FC0670, SFC0670,
$FC0670,$FC0670

The vector table has an equivalent function to the above. There,
however, the addresses for BIOS function 2 (bconin) are kept.

$55E 8L bcostat_vec $FC2124, $FC219A, $FC226C,
$FC21DC, $FC2004, $FC0670,
$FC0670, $FC0670

These addresses contain the output status for device numbers O to 7.
They are jumped to from BIOS function 8, bcostat.

$57E 8L bconout_vec $FC2090, $FC21B4, $FC434C,
$FC2016, SFC21EE, $FC4340,
SFC0670, $FC0670

These addresses are the ones for character output. These correspond
to the BIOS function 3, bconout.

257

Abacus Software Atari ST Internals

3.8 The 68000 Instruction Set

If you are already familiar with the machine language of some 8-bit
processor, forget everything you know. If you do, it will make it easier to
understand the following material!

The 68000 processor is fundamentally different in construction and
architecture from previous processors (including the 8086!). The essential
difference does not lie in the fact that the standard processing width is 16
and not 8 bits (which is sometimes a drawback and can lead to
programming errors), but in the fact that, with certain excentions, the
internal registers are not assigned to a specific purpose, but can be viewed
as general-purpose registers, with which almost anything is possible.

In earlier processors, the accumulator was always the destination for
arithmetic operations, but it is completely absent in the 68000. There are
cight data registers (D0-D7) with a width of 32 bits, and as a general rule, at
least one of these is involved in an operation. There are also eight address
registers (AO-A7), each with 32 bits, which are usually used for generating
complex addresses. Register A7 has a set assignment--it serves as the stack
pointer. It is also present twice, once as the user stack pointer (USP) and
once as the supervisor stack pointer (SSP). The distinction is made because
there are also two operating modes, namely the user mode and the
supervisor mode.

These two are not only different in that they use different stack pointers, but
in that certain instructions are not legal in the user mode. These are the
so-called privileged instructions (see also instruction description), with
whose help an unwary programmer can easily "crash” the system rather
spectacularly. This is why these instructions create an exception in the user
mode. An exception, by the way, is the only way to get from the user mode
to the supervisor mode.

In addition there is the status register, the upper half of which is designated
as the system byte because it contains such things as the interrupt mask,
things which do not concern the "normal” user, making access to this byte
also one of the privileged instructions. The lower byte, the user byte,
contains the flags which are set or cleared based on the result of operations,
such as the carry flag, zero flag, etc. As a general rule, the programmer
works with these flags indirectly, such as when the execution of a branch is
made conditional on the state of a flag.

258

Abacus Software Atari ST Internals

Two things should be mentioned yet: Multi-byte values (addresses or
operands) are not stored in memory as they are with 8-bit processors, in the
order low byte/high byte, but the other way around. Four-byte expressions
(long word) are stored in memory (and the registers of course) with the
highest-order byte first.

The second is that unsupported opcodes do not lead to a crash, but cause a
special exception, whose standard handling must naturally be performed by
the operating system.

3.8.1 Addressing modes

This is probably the most interesting theme of the 68000 because the
enormous capability first takes effect through the many various addressing
modes.

The effective address (the address which, sometimes composed of several
components, finally determines the operand) is fundamentally 32 bits wide,
even if one or more the components specified in the instruction is shorter.
These are always sign-extended to the full 32-bit width.

The charm of the addressing lies in the fact that almost all instructions
(naturally with exceptions), both the source and destination operands, can
be specified with one of the addressing modes. This means that even
memory operations do not necessarily have to use one of the registers;
memory-to-memory operations are possible.

In the assembler syntax, the source operand is given first, followed by the
destination operand (behind the comma).

259

Abacus Software Atari ST Internals

Register Direct

The operand is located in a register. There are two kinds of register direct
addressing: data register direct and address register direct.

In the first case, the operand may be bit, byte, word, or long word-oriented;
in the second case a word or long word is required, in case the address
register is the destination of the operation.

Example: ADD.B DO,D1 or ADDA.W DO, A2

Absolute Data Addressing

The operand is located in the address space of memory. This can also be a
peripheral component, naturally (see MOVEP). The address is specified in
absolute form.

This can have a width of a long word, whereby the entire address space can
be accessed, or it can be only one word wide. In this case is sign-extended
(the sign being the highest-order bit) to 32 bits. For example, the word
$7FFF becomes the long word $00007FFF, while $FFFF becomes
$FFFFFFFF. Only the lower 32K and the upper 32K of the address space
can be accessed with the short form. This addressing mode is often used in
the operating system of the ST because important system variables are
stored low in memory and all peripheral components are decoded at the top.

Example: MOVE.L $7FFF,$01234567

Instructions in which both operands are addressed with a long word are the
longest instructions in the set, consisting of 10 bytes.

260

Abacus Software Atari ST Internals

Program Counter Relative Addressing

This addressing mode allows even constants to be addressed in a completely
relocatable program, since the base of the address calculation is the current
state of the program counter.

The are two variations. In the first, a 16-bit signed offset is added to the
program counter, and in the second, the contents of a register
(sign-extended if only one word is specified) are also added in, though here
the offset may be only 8 bits long.

Example: MOVE.B $1234 (PC),$12(PC,DO0.W)

Register Indirect Addressing

There are several variations of this, and they will be discussed individually.
Register Indirect

Here the operand address is located in an address register.

Example: CLR.L (AO0) |

Postincrement Register Indirect

The operand is addressed as above, but the contents of the address register
are incremented by the operand length, by 1 for xxx.B or 4 for xxx.L.

Example: MOVE.B #0, (AO+), (Al)+ or CMP.L #23, (AL) +
Predecrement Register Indirect

Here the address register is decrement by the length of the operand before
the addressing.

Example: CMPI.W $0123, - (A3)
Register Indirect with Offset

A 16 bit offset will be added to the contents of the address register.
Example: EOR.L DO, $1234 (A4)

261

Abacus Software Atari ST Internals

Indexed Register Indirect with Offset

As above, but the contents of another register (address or data) are also
added in, taking the sign into account. The offset may have a width of 8 bits
here, however.

Example: MOVE.W $12 (A5,A6.L),D1

Immediate Addressing

Here the operand is contained as such in the instruction itself. Naturally, an
operand specified in this manner can serve only as a source. The immediate
operands can, as a general rule, be any of the allowed widths.

Example: ADDI.W #$1234,D5

In the variant QUICK, the constant may be only 3 bits long, therefore
having a value from 0-7. An exception is the MOVE command, where the
constant may have 8 bits, but in which only a data register is allowed as the
destination.

Example: ADDQ.L #1,A0 or MOVEQ #123,D1

Implied Register

This addressing mode is mentioned only for the sake of completeness and in
it, an operand address is already determined by the instruction itself. The
operands are either in the program counter, in the status register, or the
system stack pointer.

Example: MOVE SR,D6
Regarding the offsets, it should be noted that they are signed numbers in

two's complement. Their highest-order bit forms the sign. With an 8-bit
value, an offset of +127/-128 is possible, and about £32K with 16 bits.

262

Abacus Software Atari ST Internals

3.8.2 The instructions

In the following instruction description, the individual bit patterns are not
listed since this would lead us too far in this connection. Additional
information can be gathered from books like the M68000 16/32-Bit
Microprocessor Programmer's Reference Manual (Motorola).

The instructions are also explained only in their base form and variations are
mentioned only in name. We will briefly explain what the individual
variations can look like here.

The variations are indicated by letter after the operand. This can be one of
the following:

A indicates that the destination of the operation is an address register.
Word operations are sign-extended to 32 bits.

I indicates an immediate operand as the source of the operation. I
operands may assume all widths as a general width.

Q means quick and represents a special form of immediate addressing.
Such an operand is usually three bits wide, corresponding to a value
range of 0 to 7. This limited range has the advantage that the operand
will fit into the opcode. Since there is no special command for
incrementing a register, something like ADDQ.L #1,A0 works well in
its place. An exception is MOVEQ. Here the operand may have a value
of 0-255.

X indicates arithmetic operations which use the X flag. This flag has a
special significance. It is set equal to the carry flag for all arithmetic
operations. The carry flag, however, is also affected by transfer
operations while the X flag is not so that it remains available for further
calculations. This is especially useful for computations with higher
precision than the standard 32 bits, where temporary results must first
be saved, and where the carry flag can be changed as a result.

All instructions have a suffix after the opcode of the form .B, .W, or .L.
This suffix indicates the processing width of the operation. Although a data
register, for example, has a width of 32 bits = 4 bytes = 1 long word, the
instruction CLR.B DO clears only the lowest-order byte of the register. For
registers, .W specifies the lower word. The higher-order word is not

263

Abacus Software Atari ST Internals

explicitly addressable. If the operand is in memory, it is important to know
that .W and .L operands must begin on an even address. The same applies
for the opcode as such, which also always comprises one word.

If the destination of an operation is an address register, only operands of
type .W and .L are allowed, whereby the first is sign-extended to a long
word.

Some listings contain instructions of the form MOVE.L #27,D0. The
programmer then assumes that the assembler will produce #$0000001B
from #27.

Now to the individual instructions:

ABCD Add Decimal with Extend
There is one data format which we have not yet discussed: the BCD
format. This means nothing more than "Binary-Coded Decimal” and it
uses digits in the range 0-9. Since this information requires only 4 bits,
a byte can store a two-digit decimal number. The instruction ABCD can
then add two such numbers. The processing width is always 8 bits.

ADD Add Binary
This instruction simply adds two operands.
Variations are ADDA, ADDQ, ADDI, and ADDX.

AND Logical AND
Two operand are logically combined with each other according the
AND function.
Variation: ANDI

ASL Arithmetic Shift Left

The operand is shifted to the left byte by the number of positions given,
whereby the highest-order bit is copied into the C and X flags. A 0 is
shifted in at the right. If a data register is shifted, the processing width
can be any. The number of places to be shifted is either specified as an I
operand (3 bits) or is placed in an additional register. If a memory
location is shifted, the processing width is always one word. A counter
is then not given,; it is always =1.

ASR Arithmetic Shift Right
The operand is shifted to the right, whereby the lowest bit is copied to
C and X. The sign bit is shifted over from the left. See ASL for
information about processing width and counter.

264

Abacus Software

Atari ST Internals

Bcece Branch Conditionally
The branch destination is always a relative address which is either one
byte or one word long (signed!). Correspondingly, the branch can
jump over a range of +127/-128 bytes or +32K-1/-32K. The point of
reference is the address of the following instruction.

Whether or not this instruction is actually executed depends on the
required condition, which is verified by means of the flags. Here are the
variations and their conditions. A minus sign before a flag indicates that
it must be cleared to satisfy the condition. Logical operations are

indicated with "*" for AND and "/"" for OR.

BRA Branch Always

BCC Branch Carry Clear

BCS Branch Carry Set

BEQ Branch Equal

BGE Rranch Greater or Equal

BGT Branch Greater Than

BHI Branch Higher

BLE Branch Less or Equal

BLS Branch Lower or Same

BLT Branch Less Than

BMI Branch Minus

BNE Branch Not Equal

BPL Branch Plus

BVC Branch Overflow Clear

BVS Branch Overflow Set
BCHG Bit Test and Change

no condition
-C

C

Z

N*V/-N*-V
N*V*—-2 /-N*-V*~-Z
-C*-2
Z/N*-V/=-N*V
C/Z
N*-V/-N*V

N

-2

-N

-V

Vv

The specified bit of the operand will be inverted. The original state can
be determined from the Z flag. The operand is located either in memory
(width=.B) or in a data register (width=.L). The bit number is given
either as an I operand or is located in a data register.

BCLR Bit Test and Clear
The specified bit is cleared. Everything else is handled as per BCHG.

BSET Bit Test and Set
The specified bit is set. Boundary conditions are per BCHG.

BSR Branch to Subroutine
This is an unconditional branch to a subroutine. Branch distances as for

Bcee.

265

Abacus Software Atari ST Internals

BTST Bit Test
The bit is only tested as to its condition. Everything else as per BCHG.

CHK Check Register Against Boundaries
A data register is checked to see if its contents are less than zero or
greater than the operand. Should this be the case, the processor
executes an exception. The program is continued at the address in
memory location $18 (vector 6). Otherwise no action is taken. The
processing width is only word.

CLR Clear Operand
The specified operand is cleared (set to zero).

CMP Compare
The first operand is subtracted from the second without changing either
of the two operands. Only the flags are set, according to the result.
Variations: CMPA and CMPI
Both operands are addresses with the addressing mode (Ax)+ with the
variant CMPM.

DBcc Test Condition, Decrement and Branch
A data register (word) is decremented and the flags are checked for the
specified condition. A branch is performed if the condition is not

fulfilled and the register is not -1. Branch conditions and ranges as per
Bcc.

DIVS Divide Signed
The second operand is divided by the first operand, taking the sign into
account. Afterwards the second operand contains the integer quotient in
the lower word and the remainder in the upper word, which has the
same sign as the quotient. The data width of the first operand is set at
.W and at .L for the second.

DIVU Divide Unsigned
Operation as above, but the sign is ignored.

EOR Exclusive OR

The two operands are logically combined according to the rules of
EXOR.
Variations: EORI

EXG Exchange Registers
The two registers specified are exchanged with each other.

266

e

Abacus Software Atari ST Internals)

EXT Sign Extend
The operand is filled to the given processing width with its bit 7 (in the
case of .B) or bit 15 (W).

JMP Jump
Unconditional jump to the specified address. The difference between |
this and BRA is that here the address is not relative but absolute, that is,
the actual jump destination.

JSR Jump to Subroutine
Jump to a subroutine. The difference from BSR is as above.

LEA Load Effective Address
This often-misunderstood instruction loads an address register not with
the contents of the specified operand address as is normal for the other
instructions, but with the address as such!

LINK Link Stack
This instruction first places the given address register on the stack. The
contents of the stack pointer (A7) are then placed in this register and the
offset specified is added to the stack pointer.

With this practical instruction, data areas can be reserved for a
subroutine, without having to make room in the program itself, which
would also be impossible in programs which run in ROM. The
C-compiler makes extensive use of this capability for local variables.

LSL Logical Shift Left
Function and limitations as per ASL.

LSR Logical Shift Right
Function and limitations as per ASR, except here the sign is not shifted
in on the left, but a 0.

MOVE
The first operand is transferred to the second.
Variations: MOVEA, MOVEQ

MOVEM Move Mulitple Registers
Here an operand can consist of a list of registers. This can be used to
place all of the registers on the stack, for instance.
Example: MOVEM.L A0-A6/D0-D7,-(A7)

267

Abacus Software Atari ST Internals

MOVEP Move Peripheral Data

This specialty is made expressly for the operation of peripheral
components. As a general rule, these work only with an 8-bit data bus,
and are then connected only to the upper or lower 8 bits of the 68000's
data bus. If a word or long word is to be transferred, the bytes must be
passed over either the upper or lower byte of the data bus, depending
on whether the address is even or odd. The address is then always
incremented by two so that the transfer always continues on the same
half of the data bus on which it was begun. Corresponding to the
purpose of this instruction, one operand is always a data register, and
the other is always of type register indirect with offset.

MULS Multiply Signed
Signed multiplication of two operands.

MULU Multiply Unsigned
Multiplication of two operands, ignoring the sign.

NBCD Negate Decimal with Extend
A BCD operand is subjected to the operation 0-operand X.

NEG Negate Binary
The operand is subjected to the treatment 0-operand.
Variations: NEGX

NOP No Operation
As the name says, this instruction doesn't do anything.

NOT One's Complement
The operand is inverted.

OR Logical OR
The two operands are combined according to the rule for logical OR.

PEA Push Effective Address
The address itself, not its contents, is placed on the stack.

RESET Reset External Devices
The reset line on the 68000 is bidirectional. Not only can the processor
be externally reset, but it can also use this instruction to reset all of the
peripheral devices connected to the reset line.
This is a privileged instruction!

268

Abacus Software Atari ST Internals

ROL Rotate Left
The operand is shifted to the left, whereby the bit shifted out on the left
will be shifted back in on the right and the carry flag is affected.
Processing widths and shift counter as per ASL.

ROR Rotate Right
As above, but shift from left to right.

ROXL Rotate Left with Extend
As ROL, but the shifted bit is first placed in the X flag, the previous
value of which is shifted in on the right.

ROXR Rotate Right with Extend
As above, but reversed shift direction.

RTE Return from Exception
Return from an exception routine to the location at which the exception
occurred.

RTS Return from Subroutine
Return from a subroutine to the location at which it was called.

RTR Return and Restore
As above, but the CC register (the one with the flags) is first fetched
from the stack (on which it must have first been placed, because
otherwise execution will not return to the proper address.

SBCD Subtract Decimal with Extend
The first operand is subtracted from the second. Refer to ABCD for
information on the data format.

Sce Set Conditionally
The operand (only .B) is set to $FF if the condition is fulfilled.
Otherwise it is cleared. Refer to Bec for the possible condition codes.

STOP
The processor is stopped and can only be called back to life through an
external interrupt.
This is a privileged instruction!

SUB Subtract Binary
The first operand is subtracted from the second.

269

Abacus Software Atari ST Internals

SWAP Swap Register Halves
The two halves of a data register are exchanged with each other.

TAS Test and Set Operand
The operand (only .B) is checked for sign and O (affecting the C and N
flags). Bit 7 is then set to 1.

TRAP
The applications programmer uses this instruction when he wants to call
functions of the operating systems. This instruction generates an
exception, which consists of continuing the program at the address
determined by the given vector number. See the chapter on the BIOS
and XBIOS for the use of this instruction.

TRAPYV Trap on Overflow
If the V flag is set, an exception is generated by this instruction,

resulting in program execution continuing at the address in vector 7
($1C). '

TST Test
Action like TAS, but the operand is not changed.

UNLK Unlink
This instruction is the counterpart of LINK. The stack pointer (A7) is
loaded with the given address register and this is supplied with the last
stack entry. In this manner the area reserved with LINK is released.

Addendum to the condition codes: The conditions listed under Bcc are not
complete, because the additional conditions do not make sense at that point.
But the instructions DBcc and Scc have the additional variations T (DBT,
ST) and F (DBF, SF). T stands for true and means that the condition is
always fulfilled. F stands for false and is the opposite: the condition is never
fulfilled.

DBEF can also use the syntax DBRA.

270

Abacus Software Atari ST Internals

3.9 The BIOS Listing

The situation concerning ST software has changed radically since the Spring
of 1985. Nowadays you can find a wealth of programs which are fully
supported by GEM, and as a consequence are easy to operate. In addition,
many dealers have gone over exclusively to the ST.

One thing is certain: If available software and hardware under development
are any indicators, the Atari ST has caught on as an incredibly popular
computer.

The following is the commented BIOS listing of the Atari ST. It is patterned
after the ROM version of February 1986. The listing includes system
initialization, the complete BIOS and XBIOS, as well as the VT52 screen
driver. We don't expect any changes to this listing in the near future. Any
alterations to the ST that affect this listing will be reflected in later editions
of this book (we plan on keeping abreast of any changes, naturally).

The variables in the ROM version lie in the same range (up to $6100) as the
diskette version of TOS from February 1986.

If you want to use system routines from TOS in your own programs you
should only use the call through the corresponding TRAP. Otherwise, your
program won't run with any altered versions of TOS. This applies at the
same time to the use of variables which are not contained in the list of
system variables.

Otherwise, you can call the BIOS routines as excellent illustrations in 68000
assembly language. If your own routines are to be complex and transparent,
you can convert most of them to C compiled code. Then you can recognize
most of these routines since they start with 1ink #n,A6. A6 as a base
register will communicate with given parameters if there is a positive offset;
a negative offset will communicate with the local variables of this routine.

271

LT

**

FC0000
FC0002
FC0004
FCO008
FCooocC
FC0010
FC0014
FC0018
FCO01C
FCOO1lE
FC0020
FC0024
FC0026
FC0030
FC0032
FC0036

FC003C
FC0040
FC0044
FC0046
FC0050
FC0052
FCO05A
FCO05C
FC0060
FC0064
FC0066
FCO06A
FCO06C
FCOO6E

601E

0100
00FC0020
00FC0000
00006100
00FC0020
OCFEFFIF4
02061986
0003

0C46
46FC2700
4E70
OCBY9FA52235F00FAQ0000
660A
4DFAQ008
4EF900FA0004

4DFA0006
60000596

660A
13F900000424FFFF8001
9BCD
0CAD314159260426
6618

202D042A
4A2D042A

660E

08000000

6608

2040

4DFAFFEO

bra
dc.b
dc.l
dc.l
dc.1
de.l
dc.1l
dc.l
dc.w
dc.w
move.w
reset
cmp.l
bne
lea

jmp

lea
bra
bne
move.b
sub.1
cmp.l
bne
move., 1l
tst.b
bne
btst
bne
move, 1l
lea

$FC0020
1,0
$FC0020
$FC0000
$6100
$FC0020
SFEFFF4
502061986
3

$0C46
#52700, SR

#SFA52235F, $FA0000
$FC003C
$FCO03C(PC), A6
SFA0004

$FC0044 (PC) ,A6
$FC05D8
$FC0050

$424, SFFFF8001
A5, A5
#$31415926, 3426 (A5)
$FC0074
$42A(A5),DO
$42A (A5)
$FC0074

#0,D0

$FC0074

DO, A0
$FCO050 (PC) , A6

ATARI ST ROM-BIOS

to start of program

Version 1

Reset address

Start of the operating system
Start of free RAM

Default shell (reset)

Address for GEM magic
Creation date 2/6/1986

Flag for PAL version

Date in DOS format

Supervisor mode, IPL 7

Reset peripherals

Diagnostic cartridge inserted
no

Load return address

Jump to cartridge

Load return address

Memory configuration valid?
no

Get memctrl

Clear A5

resvalid, resvector valid ?
No

Load resvector

Test bits 24-31

Set, vector invalid

Address odd?

Yes, invalid

Load address

Load return address

o

31BM}JOS SnORQY

Sjeusdju] IS e}y

€LT

FC0072
FC0074
FCOO07A
FCOOTE
FC0084
FC0088
FCOO8E
FC0094
FC0096
FCO09A
FCOO9E
FCOOA6
FCOOAC
FCOOBO
FCO0B4
FCOO0B6
FCO0BA
FCo0C2
FCOOCA
FCo0CC
FCOO0DO
FCOOD4
FCo0D8
FCoOO0DC
FCOOEO
FCOOE2
FCOOEA
FCOOEE
FCOOQF4
FCOOF6
FCOOF8
FCOOFA

4EDO
41F9FFFF8800
10BC0O0O7
117C00C00002
10BCOOOE
117C00070002
083A0000FF8B
6710

4DFAC006
60000C48
13FCOO02FFFF820A
43F9FFFF8240
303CO00F
41FA054C

32D8

51C8FFFC
13FCOO001FFFF8201
13FCOOCOFFFF8203
9BCD

1C2D0424
2A2D042E
4DFA0006
600004FE
670000E4

4246
13FCOOOAFFFF8001
307C0008
43F900200008
4240

30C0

32C0

DO7CFA54

jmp
lea
move.
move.
move.

o o U U

move.
bt st
beqg
lea
bra
move.b
lea
move.,w
lea
move.w
dbra
move.b
move.b
sub.1
move.b
move.l
lea
bra
beqg
clr.w
move.b
move.w
lea
clr.w
move.w
move .W
add.w

(AO)
SFFFF8800, A0
#7, (AO)

#3C0,2 (A0)
#SE, (AO)
#7,2(A0)

#0, $FCO01B(PC)
SFCOOAG
$FCOO9E (PC) ,A6
$FCOCE4
#2,$FFFF820A
$FFFF8240,Al
#3$F, DO
$FCOSFE (PC) , A0
(AO) +, (A1) +
DO, $FCOOB4.
#1,$FFFF8201
#0, $FFFF8203
A5, A5

$424 (A5) ,Dé
$42E (A5) ,D5
$FCOODC (PC) , A6
$FCO5D8
$FCO1C2

D6

#$A, SFFFF8001
#8,A0
$200008,A1

DO

DO, (AO) +

DO, (Al) +
#$FA54,D0

Jump via vector

Address of the PSG

Port A and B

To cutput

Select port A

Deselect floppies

Pal version ? (must be $FCO01D)
No

Load return address

Sync mode to 50 Hz Pal

Address of the color palette

16 colors

Address of the color table

Copy color in palette

Next color

dbaseh

dbasel, video address to $10000
Clear AS

memctrl

phystop

Load return address

Memory configuration valid?

Yes

Start value for memory controller
Memory controller to 2 * 2 MB
start address for memory test
Al points to second bank

Clear bit pattern to be written
Write pattern

Write to other address range
Next bit pattern

31eM1J0S SNIBQY

sjeusdjuy IS Mey

LT

FCOOFE
FC0104
FCO106
FC010C
FCO10E
FC0112
FCO1l1l6
FCO11A
FCO1l1C
FC0120
FC0124
FC0128
FCOl1l2A
FCO12E
FC0132
FC0136
FC0138
FCO13A
FC013C
FC0142
FC0144
FCO014A
FC0150
FC0154
FCO15A
FCO15E
FCO0le64
FC0166
FCOl68
FCOle6a
FCO01l6C
FCOl6E

B1FC00000200
66F0
223C00200000
E44E
307C0208
4BFAQ006
600004AA
6720
307C0408
4BFAQ006
6000049C
6710
307C0008
4BFA0006
6000048E
6604

5846

5846
92BC00200000
67C8
13C6FFFF8001
287900000008
41FA0036
23C800000008
363CFB55
2E3C00020000
2047

2248

3400

T22A

3302

D443

cmp.l
bne
move.l
1sr.w
move.w
lea
bra
beqg
move.w
lea
bra

move.w
lea
bra
bne
addqg.w
addg.w
sub.1l
beq
move.b

[

move,
lea

move.
move .,
move.
move,
move,
move,

L

moveq.1l
move.w
add.w

#5200, A0
$FCOOF6
$$200000, D1
$2,D6

#5208, A0
$FCO11A(PC), A5
$FCO5C2
$FC013C
#5408, A0
$FC0128 (PC), A5
$FC05C2
$FCO13A

#$8,A0
$FC0136(PC) , A5
$FCO5C2
$FC013C

#4,D6

#4,D6
#$200000,D1
$FC010C

D6, $FFFF8001
$8, A4
$FC0188 (PC) ,AO
AC, $8
#$FBSS,D3
#520000,D7
D7,A0

RO, Al

DO, D2

#42,D1
D2, - (A1)

D3, D2

End address reached?
No
D1 equals second bacnk

Is bit pattern at $208 ?
Load return address
Memory test

OK, 128 K

At $408 ?

Load return address
Memory test

OK, 512 K

At s$8

Load return address
Memory test

Nothing in this bank

Configuration byte to 2 MB
Next bank

Test for first bank
Program memory controller
Save Bus Error vector
Address of new Bus-Error routine
Set

Start bit pattern

Start address is 128 K
Save current

address

43 words
Write bit pattern in RAM
Change pattern

3IBM}JOS SnOBqQY

s[eusduy IS LB}y

SLT

FC0170
FCO174
FCO0176
FCO0178
FCO17A
FC017C
FCO17E
FC0180
FC0184
FC0186

FC0188
FCO18A
FCco18C
FC0192
FC0194
FCO019A
FCO1AO0
FCO1A4
FCO1A6
FCO1A8
FCO1AA
FCO1AE
FCO01B2
FCO1BA
FCO01C2
FCO1C4
FCO1C8
FCO1CE
FCO1DO
FCO01D2
FC01D4

S51COFFFA
2248
722A
BO61
660C
4251
D043
51C9FFF6
D1C7
60DE

91C?

2A08
23CC00000008
2045
283C00000400
4CFAQO0F0450
48EOF000
B1C4

66F8

9BCD
1B460424
2B45042E
2B7C752019F30420
2B7C237698AA043A
9BCD
307CO093A
227C00010000
7000

30C0

B3C8

66FA

dbra
move.l
moveq.l
cmp.w
bne
clr.w
add.w
dbra
add.1l
bra

sub.1l
move.,
move.,
move.

e e

move.
movem, 1l
movem. 1l
cmp.l
bne
sub.1l
move.b
move.l
move.l
move.l
sub.1l
move.w
move.l
moveq.1l
move.w
cmp.l
bne

D1, $FCOl6C
A0, Al
#42,D1
-(Al),DO
$FC0188
(Al)

D3,D0

D1, SFC0178
D7,A0
$FC0166

D7,A0

A0, D5

A4, $8

D5, A0

#$400,D4
$FCO5EC (PC) ,D0-D3
D0-D3, - (A0)

D4, A0

$FCO1A0

AS, A5

D6, 5424 (A5)

D5, $42E (A5)
#5$752019F3, $420 (A5)
#$237698AA, S43A (AD)
A5, A5

#593A,A0
#510000,A1

#0,DO0

DO, (AOQ) +

AQ,Al

SFCO1DO

Write next bit pattern
Repeat address

43 words

Is bit pattern in RAM?
No, terminate test

Clear RAM

Change bit pattern

Test next word

Increment address by 128K
Continue testing

Address minus 128 K

Save

Restore old Bus-Error vector
Highest address for clear
Lower bound for clear

Clear registers DO-D3

Clear 16 bytes

Lower bound reached?

No, continue

Clear AS

memctrl

Highest RAM address as phystop
magic to memvalid

magic to memval2

Clear A5

End of the system variables
to current video address

Clear memory
End address reached?
No

aIeM}JOS SNOEBQY

sjewsdjuy LS MeIy

9LT

FCO1D6
FCO1DA
FCO1EQ
FCO1E4
FCO1lEC
FCO1F4
FCO1F8
FCO1FA
FCO1FC
FCO1FE
FC0200
FC0204
FC0208
FCO20E
FC0210
FC0214
FCo21C
FC0224
FCo022C
FC0234
FC023C
FC0244
FC024C
FC0254
FC025C
FC0264
FCO26C
FC0274
FCO027A
FC0280
FC0286
FCo28C

206D042E
91FC00008000
2B48044E
13EDO44FFFFF8201
13EDO450FFFF8203
323CO7FF

20C0

20C0

20C0

20C0

51C9FFF6
207AFEOE
0C9087654321
6704

41FAFDF6
23E80004000004FA
23E80008000004FE
2B7COOFCOD60046A
2B7CO0FC10D20476
2B7COOFCODE60472
2B7COOFCOF96047E
2BT7COOFC137C047A
2B7CO0FC1F340506
2B7COOFC1EAQ0050A
2B7CO0FClF6EQO50E
2B7COQFC1F860512
2B7CO0FC0C2C0502
2B6D044E0436
2B6D04FA0432
4FF900004DB8
3B7C00080454
50ED0444

move, 1
sub.1l
move.
move.
move.
move.
move.
move.
move.
move.
dbra
move.l
cmp. 1
beq

lea

move.
move.
move.
move.
move.
move.

e e A

move.
move.
move.
move.,
move .
move.
move.
move .
lea
move.w
st

L e e el el T T O S P

$42E (A5) , A0
#$8000,A0

A0, $44F (A5)

$44F (A5) , SFFFF8201
$450(A5) , SFFFF8203
#$7FF, D1

DO, (AO)+

DO, (AQ) +

DO, (AO) +

DO, (A0) +

D1, SFCO1F8
$FC0014 (PC) , A0
#$87654321, (AO)
$FC0214
$FC0008 (PC) , AO
4(A0) , $4FA

8(A0), $4FE
#SFCOD60, $46A (A5)
#5FC10D2, $476 (AS)
#$FCODE6, $472 (A5)
#$FCOF96, $47E (AS)
#$FC137C, $47A(AS)
#SFC1F34, 5506 (AS)
#$FC1EAOQ, $50A (A5)
#SFC1F6E, S50F (A5)
#$FC1F86,$512 (A5)
#$FCOC2C, $502 (A5)
$44E (A5) ,$436 (A5)
$4FA(A5),$432(A5)
$4DBS, A7

#8,$454 (A5)

$444 (A5)

phystop

minus 32 K
equals _v_bs ad
dbaseh

dbasel

32 K

Clear screen

Next 16 bytes
Address os_magic
magic present ?

Yes

Else use system addresses
end_os

exec_os

hdv_init

hdv_rw

hdv_bpb

hdv_mediach
hdv_boot

prt_stat

prt_vec

aux_stat

aux_vec

dump vec

_Vv_bs_ad to _memtop
end_os to membot
Initialize system stack pointer
nvbls

_fverify

31BM)JOS Sndeqy

s[fewIdu] IS LB}y

LLT

FC0290
FC0296
FCO29E
FCO2A4
FC02AC
FC02B4
FCO2BC
FC02CO
FCO02C4
FCO2CE
FC02D0
FC02D4
FCO2DA
FCO2EQ
FCO2E4
FCO2E6
FCO2EC
FCO2F0
FCO2F6
FCO2FE
FC0306
FCO30A
FC0312
FCO31A
FC0322
FC0326
FCO32E
FC0332
FC0336
FCO33A
FCO33E
FC0340

3B7C00030440
2B7C0000167A04C6
3B7CFFFFO4EE
2B7COOFCO00004F2
2B7COC00093A04A2
2B7COOFCC05C0046E
47FA0466
49FAO2FE

0CBY9FA52235F00FAQGO0

6726

43FA0748
D3FC02000000
41F900000008
303C003D

20CS
D3FC01000000
51C8FFF6
23CB00000014
2B7COOFC06340070
2B7COOFC061E0068
2B4B0088
2B7COOFCO74E00B4
2B7COO0FC074800B8
2B7COO0FC9CA20028
2B4C0400
2B7COO0FC07440404
2B4C0408
41EDO4CE
2B480456
303C0007

4298

51C8FFFC

move .
move.
move.
move.
move.,

N

move.
lea
lea
cmp. 1l
beq
lea
add.1l
lea
move.w
move.l
add.l
dbra
move.l
move.l
move.l
move.l
move.l
move.l
move, 1l
move,l
move.l
move.l
lea
move.l
move.w
clr.l
dbra

#3,5$440(A5)
#$167A,$4C6 (A5)
#-1, S4EE (AS)
#$FC0000, $4F2 (AS5)
#$93A, S4A2 (AS)
#$FC05C0, $46E (A5)
$SFC0724(PC) , A3
$FCO5CO (PC) , Ad
#SFA52235F, SFA0000
SFC02F6
$FCOA1A(PC) ,Al
#52000000,A1
$8,A0

#$3D, DO

Al, (AO)+
#51000000,A1

DO, $FCO2E4
A3,$14
#SFC0634,112 (A5)
#SFCO61E, 104 (A5)
A3, 136 (A5)
#3SFCO74E, 180 (A5)
#$FC0748,184 (A5)
#SFC9CA2, 40 (A5)
A4, $400(A5)
#$FC0744,3404 (A5)
B4, $408 (A5)

$4CE (AS5) , A0

A0, $456 (AS5)

#7,D0

(AQ) +

DO, SFCO33E

seek rate to 3 ms

_dskbufp

clear dumpflg

_sysbase to ROM start

savptr for BIOS

swv_vec'for monitor change to rts
Address rte

Address rts

Diagnostic cartridge inserted ?
Yes

Indicate address for exception
Vector number in bits 24-31 to 2
Start with Bus Error

62 vectors

Set vector

Increment vector number
Initialize next exception vector
'Division by Zero' to rte

VBL interrupt, IPL 4

HBL interrupt, IPL 2

TRAP #2 to rte

TRAP #13 vector

TRAP #14 vector

LINE A vector

etv_timer to rts

etv_critic vector

etv_term to rts

_vbl_list

as pointer to _vblqueue

8 entries

clear

Next entry

21BM}JOS SNIBQY

sjeusdjuy IS LBy

8LC

FC0344
FC0348
FC034A
FCO34E
FC0354
FC0358
FCO035¢C
FCO35E
FC0360
FC0366
FCO036C
FCO36E
FC0372
FC0376
FCO37E
FC0386
FCo38C
FC0394
FCO0396
FCO3A0
FCO3A8
FCO3BO
FCO3B2
FCO3B6
FCO3BA
FCO3BC
FC03CO
FC03C4
FCO3CA
FCO3CE
FCO3D0
FCO3D2

61001E6E bsr
7002 moveq.l
6100024A bsr
1039FFFF8260 move.b
C03C0003 and.b
B0O3C0003 cmp.b
6602 bne
7002 moveq.l
13C00000044cC move.b
1039FFFFFAQO1L move.b
6B18 bmi
4DFA0006 lea
60000970 bra
13FCOQ02FFFF8260 move.b
13FC00020000044C move.b
4EB90OOFCATC4 jsr
0C3900010000044C cmp.b
660A bne
33F9FFFF825EFFFF8246 move.w
2B7COOFC0020046E move.1l
33FC000100000452 move.w
4240 clr.w
610001E2 bsr
46FC2300 move.w
7001 moveq.l
610001D8 bsr
61004798 bsr
3F3900FCO01E move.w
3F3C002RB move.w
4E41 trap
584F addq.w
610000B8 bsr

SFC21B4
#2,D0

$FC0596
SFFFF8260, DO
#3,D0

#3,D0

$FC0360

#2,D0

DO, $44C
SFFFFFAO1, DO
$FC0386
$FC0376(PC) , A6
$SFCOCE4
#2,$FFFFR260
#2,%44cC
$FCA7C4
#1,%44cC
SFCO3A0
SFFFF825E, $FFFF8246
#$FC0020, S46E (A5)
#1,%452

DO

SFC0596
#$2300, SR
#1,D0

SFC0596
SFC4B5A
$FCOO1E, - (A7)
#$2B,- (A7)

#1

#4,A7

SFC048C

Initialize mfp

Bit 2

cartscan

Video resolution
Isolate bits 0 and 1
Invalid value?

No

Replace with 2 for high resoclution
sshiftmod

mfp gpip, monomon

No monochrome monitor?
No return address

High resolution

sshiftmod

Initialize screen output
sshiftmod

Not medium resolution ?
Copy color 15 (black) to color 3
sWv_vec to teset

vblsem

Bit ©

cartscan

IPL 3

Bit 1

cartscan

Initialize DOS

Creation date in DOS format
Set date

GEMDOS

Correct stack pointer

Boot from floppy

21BM)JOS SHOBQY

s[ewiuy IS LB}y

6LC

FCO3D6
FCO3DA
FCO3DE
FCO3E4
FCO3Ee
FCO3EA
FCO3EE
FCO3F2
FCO3F6
FCO3FA
FCO3FC
FCO3FE
FC0402
FC0406
FC040A
FCO40E
FC0410
FC0412
FC0414
FCO0416
FCo041C
FC0420
FC0422
FC0428
FCO42E
FC0432
FC0436
FC043A
FC043C
FC0440
FC0442
FCO044A

610000D0
61000944
477900000482
6718
61004194
61000728
487A0099
487A0095
487A007E
4267

605C
61000714
41FA0066
327C0840
0C100023
6602

2449

12D8

6AF4
103900000446
D03C0041
1480
487900000840
487900FC0489
487A0059
3F3C0005
3F3C004B
4E41
DEFCOOOE
2040

2179000004FEQ008

487900000840

bsr
bsr
tst.w
beg
bsr
bsr
pea
pea
pea
clr.w
bra
bsr
lea
move ,w
cmp.b
bne
move.l
move.b
bpl
move.b
add.b
move.b
pea
pea
pea
move .w
move.w
trap
add.w
move.l
move.l
pea

SFCO4A8
$FCOD20
$482
SFCO3FE
$FC457C
$FCOB14
$FC0489(PC)
$FC0489(PC)
$FC0476(PC)
—{AT)
SFCO45A
SFCOB14
$FC046A(PC) ,A0
#5840,A1
#35, (AQ)
$FC0412
Al,A2
(A0) +, (AL) +
$FCO40A
$446,D0
#541,D0

DO, (A2)
$840
$FC0489
$FC0489(PC)
#5,- (A7)
#$4B, - (A7)
#1

#SE, A7

DO, A0
$4FE, 8 (AO)
$840

Boot from DMA bus

Execute reset-resident programs
_cmdload ?

No

Turn Cursor on

autoexec, execute programs in AUTO folder
Null name

Null name

'COMMAND.PRG'

Load and start program

Load to program

autoexec, execute programs in AUTO folder
'PATH="

Address for environment

"#1', place holder for drive?

No

Save address

Copy filenames

Next byte

_bootdev

IAI

Insert drive number

environment

Null name

.Null name

Create base page

exec

GEMDOS

Correct stack pointer

Address of the base page

exec_os, start address AES and Desktop
environment

21BM}JOS SNOBQY

s[gutduy LS 1e)y

08¢

FC0450
FC0452
FC0456
FCO45A
FCO45E
FC0460
FCO464
FCO46A
FC0470
FC0476
FCO047E
FC0482
FC0489

2F08

487A0035
3F3C0004
3F3C004B

4E41

DEFCOCOE
4EF900FC0020
504154483D00
233A5C0000FF
434F4D4D414E442E
50524700
47454D2E505247
000000

move.l A0, - (A7)
pea $FC0489(PC)
move.w #4,-(A7)
move.w #$4B,- (A7)

trap #1

add.w #3SE, A7

imp $FC0020

dc.b 'PATH="',0

dc.b "#:\',0,0,S8FF
dc.b "COMMAND.PRG', 0
dc.b 'GEM.PRG'

dc.b 0,0,0

Je ok Kk kK ke ke ok ok ok ok ok kK ok ke kK ok Kk kK ok ok kK kK ok ok ok ok K ok ke ok ok kK ok ok ok ok ok ok K ok Kk ok ok

FCo48cC
FCO48E
FC0492
FC0498
FC049A
FCo049C
FCO49E
FC04A4
FCO4A6

7003
61000106
20790000047A
4E90

42740

6608
41F90000167A
4E90

4E75

moveqg.l #3,D0

bsr $FC0596
move.l $47A,A0
jsr (AOQ)
tst.w DO

bne SFCO04A6
lea $167A,A0
jsr (A0)

rts

%k sk sk ke ok sk ok ke ok kR kR Kk ok k kK R kR kX K ok sk sk ok %k ok ke sk ok ok gk %k k ke ok sk ok ok ok ok sk ok ke k ok ok ok ok

FCO4A8
FCO4AA
FCO4AC
FCO4AE
FC04B4
FC04B8
FC04BA
FC04BC

TEQQ

612A

6620
2079000004Ce
323CO0FF
7000

D058
51COFFFC

moveq.l #0,D7

bsr SFC04D6
bne SFCO4CE
move.l $4Ce6,A0
move.w #SFF,D1
moveq.l #0,DO0
add.w (AQ) +,DO
dbra D1, $FC04BA

Address of the base page
Null name

Start program

exec

GEMDOS

Correct stack pointer

it return to reset

Boot from floppy

Bit 3

cartscan

hdv_boot

Load boot sector
Executable ?

No

Address of the disk buffer
Execute boot sector

dmaboot, load boot sector from DMA bus

Begin with device 0
dmaread, load boot sector
Error, test next device
_dskbufp

$100 words

Clear sum

Generate checksum

Next word

21BM)JOS SnOBQY

s[ewayu] IS rLieyy

18¢

FC04COo
FC04C4
FCO04C6
Fco4cc
FCO4CE
FC04D2
FC04D4

B0O7C1234

6608
2079000004C6
4E90

DE3C0020

66D6
4E75

cmp.w
bne
move.l
jsr
add.b
bne
rts

#51234,D0
SFCO4CE
$4C6,AC
(A0)
#$20,D7
SFCO4AA

*-k***

FC04D6
FC04DC
FCO4E2
FCO4ES8
FCO4EE
FCO4F6
FCO4FE
FC0506
FC0508
FCO050C
FCO0510
FC0514
FC0518
FCO051C
FCO51E
FC0522
FC0524
FC0528
FC052A
FCo052C
FCO52E
FC0532
FC0534
FC0536

4DF9FFFF8606
4BFIFFFF8604
50F90000043E
2F39000004C6
13EFO003FFFF860D
13EFO0002FFFF860B
13EFCO0LFFFF8609
584F

3CBC0O098
3CBC0198
3CBC0098
3ABC0001
3CBC0088

1007

803C0008

4840

303c0088

614C

662A

7C03

41FA0036

2018

6140

661E

lea
lea

st
move.l
move.b
move.b
move.b
addg.w
move .w
move . w
move . W
move .w
move . w
move.b
or.b
swap
move .w
bsr
bne
moveq.l
lea
move.l
bsr
bne

SFFFF8606, A6
SFFFF8604, A5
$43E

$4C6, — (A7)
3(A7),$FFFF860D
2 (A7), $FFFF860B
1(A7),$FFFF8609
#4,A7

#598, (A6)
#5198, (A6)
#598, (A6)

#1, (A5)

#588, (A6)

D7,DO0

#8,D0

DO

#588,D0

$FC0576

$FC0556

#3,D6
$FC0566 (PC) , A0
(A0) +,D0
$FC0576

$FC0556

Executable sector?

No

_dskbufp

Execute boot sector
Next device number

All 8 devices?

dmaread, load boot sector from DMA bus

DMA control register
DMA data register
set flock

_dskbufp

Set DMA address

Correct stack pointer
Toggle R/W,
to allow READ

sector-count register to 1
Select DMA bus

Device number << 5

OR with read command

Output byte to DMA bus
timeout, terminate

Counter to 4

Pointer to command word table
Get command

Output on DMA bus

timeout, terminate

21eM}JOS SNIBqQY

sjewiuy LS MBIy

8¢

FC0538
FC053C
FC0542
FC0546
FC0548
FC054A
FCO54E
FC0550
FC0554
FC0556
FC0558
FC055C
FCO55E
FC0564

sk ok ke kg ke ko ok ok ok ok ok ok ke ok ke ok sk ok kK Kk %k ok ok ok ok ok sk Kk 3k ok K K ok ok kK ok ok ok %k Kk ok ok %k ok

FC0566
FC056A
FCO56E
FCO0572

hkkkhkkdkhkkddkkhkhkhkkhkkkhkhkhkkhkhkkkhkhkhkkkrkhkhkhhkhkAhkhkhkkkkhkhkkkkk**k%x

FC0576
FC0578
FCO57A
FC0580
FCco588
FCO58A
FC0590
FC0592
FC0594

51CEFFF8
2ABC0000000A
323C0190
6132

660C
3CBCO0O8A
3015
CO7COOFF
6702

70FF
3CBC0080
4A00
51F90000043E
4E75

0000008A
0000008A
0000008A
0001008A

2A80
T720A
D2B9000004BA

08390005FFFFFAOL

670A
B2B9000004BA
66EE
T2FF
4E75

dbra
move.l
move.w
bsr
bne
move .w
move.w
and.w
beqg
moveq.l
move ., w
tst.b
sf

rts

de.l
dc.1l
dc.l
dc.1l

move.l
moveq.1l
add.l
btst
beq
cmp. 1l
bne
moveq.l
rts

D6, SFC0532
#SA, (A5)
#$190,D1
$FCO57A
$FC0556
#3584, (A6)
(A5),DO0
#SFF, DO
$FC0558
#-1,D0
#$80, (A6)
DO

$43E

$0000008A
$0000008A
$0000008A
$0001008A

DO, (A5)
#10,D1
$4BA,D1

#5, SFFFFFAQL
$FC0594
$4BA,D1
$FC0580
#-1,D1

Next command
Send byte 6 (last byte)

Write byte

timeout, terminate

Select status register

Read status

Isolate bits 0-7

ok

Return code for error

DMA chip back to floppy operation
Set flags

Clear flock

Command words for DMA chip

wcbyte, output byte to DMA bus
Output byte

Wait 1/20 second

_hz_200

mfp gpip, command processed?
Yes

_hz_200, time run out?

No, keep waiting

Return code for error

3IBM}JOS SnIeqy

s[eusajuy LS LB}y

€8¢

Fk Ak ok ok ok ok Kk kR Kk K Kk ke sk %k sk ok sk ok ok ek k sk sk ok kg ok ok Rk Rk Kk Kk sk ok ok ok ke ke Kk k ke ke ok

FC0596
FCO059C
FCO5A2
FCO5A4
FCO5A8
FCO5AA
FCO5AE
FCO5B2
FCO5B4
FCO5B8
FCO5BA
FCO5BC
FCO5BE

S sk e ok ok ok gk ok ek ok ok ok Kk ok Kk %k ok ok Sk ke ki sk ke ok ok K ok K ok K ok Kk Rk ke ok kR ok ok Kk ok ok kR

FCO5CO

LER RS LRSS RS e LR T L T R R R R

FCO5C2
FCO5C4
FCO05C6
FCo5CcAa
FCO5CC
FCO5CE
FCO5D2
FCO5D4
FCO5D6

41F900FAQ000 lea
OC98ABCDEF42 cmp.l
661A bne
01280004 btst
670E beq
48ETFFFE movem. 1l
20680004 move.l
4E90 jsr
4ACDFTFFF movem. 1
4A90 tst.l
2050 move.l
66E6 bne
4E75 rts

4E75 rts

D1C1 add.1l
4240 clr.w
43E801F8 lea
B0O58 cmp.w
6608 bne
DO7CFAS54 add.w
B3C8 cmp. 1l
66F4 bne
4ED5S Jjmp

SFAC000, A0
#SABCDEF42, (AO) +
$FCO5BE

DO, 4 (AO)

$FCO5BR8
DO-D7/A0-A6, - (A7)
4 (A0) , A0

(AQ)

(A7) +,D0-D7/A0-A6
(A0)

(AO) ,AO

SFCO5A4

D1,A0

DO
$1F8(A0),Al
(AO) +,DO
SFCO05D6
#SFA54,D0
AQ,Al
$SFCO5CA
(A5)

ok ok e ke ok ok kK ok ok ok sk ke ok kK Kk Kk ke kR K ok ok sk ok ke ke ok ok Kk Kk ok Sk ok kR ok ok ok ok ok ok ok ok ok

FCO05D8
FCO5DA

9BCD sub.1l
OCAD752019F30420 cmp. 1

A5,AS
#5752019F3,$420 (A5)

cartscan, test cartridge
Address of the cartridge
User cartridge ?

No

Corresponding bit set?

No

Save registers

Get address of the routine
and execute

Save registers

Further use?

Get address

Yes, Keep testing

rts for dummy routines

Memory test

Start address

Clear bit pattern
End address

Test for bit pattern
Not equal, error
Next bit pattern

End address reached?
No

Back to call

Memory configuration valid?
Clear A5
magic in memvalid ?

AIBM}JOS SNIBQY

s[eutdjuy IS Le}y

¥8¢

FCO5E2

FCO5E4 OCAD237698AA043A

FCO5EC

6608

4ED6

bne SFCOSEC
cmp.l #$237698AA, $43A(A5)
jmp (A6)

Kk Kk k kKK K Kk kK kK ok ok Kk k k ok ok ok Kk Kk ok ok ko ok %k sk ok ok ok kK kK Rk kK sk k ok ok kX

FCO5EE
FCO5F2
FCO5F6
FCO5FA

00000000
00000000
00000000
00000000

dc.l o
de.l 0
dc.1l 0
dc.1l 0

ke kkk kK KKKk kkkkkkkkkkkkkdkdkkkkkdkkkkkkkkkkkkkdkokkkkkkkkkk

FCOSFE 0777070000700770
FC0606 0007070700770555
FCO60E 0333073303730773
FC0616 0337073703770000

dc.w $777,%$700,%$070,$770
dc.w $007,%$707,%$077,$555
dc.w $333,$733,%373,5773
dc.w $337,%$737,$377,$000

hkkhkkk kA hkkk kA AR AKX R KA A KK AR KA I A XA Ak kkkkkxkhk kA Xk kk kX x k%

FCO61E
FC0620
FC0624
FC0628
FC062A
FC0630
FC0632

3F00
302F0002
C07C0700
6606
006F03000002
301F

4E73

move.w DO,-(A7)
move.w 2(A7),DO0

and.w #5700, D0
bne SFC0630
or.w #5300, 2 (A7)
move.w (A7)+,D0
rte

% % sk 3k %k gk g ok 3k %k %k kK ok Kk kK Kk %k kK K K ok ok %k 3k ok ok ok ok ok ok %k kK ok ek ok ok ok ok ok ok

FC0634
FCO63A
FC0640
FC0644
FC0648
FCO64E
FC0650

52B900000466
537900000452
6B0000ODC
48ETFFFE
52B900000462
9BCD
1039FFFF8260

addq.l #1,%466
subg.w #1,5452

bmi SFCO71E

movem.l DO-D7/A0-A6,- (A7)
addg.l #1,%462

sub.1l A5, A5

move.b $FFFF8260,D0

No
magic in memval2 ?
Back to call

Zero-bytes to clear

Standard color palette

White, red, green, yellow
blue, magenta, cyan, light gray
gray, lt. red, 1lt. green,

1t. blue, 1lt. magentsa,

HBL interrupt

Save DO

Save status from stack
Isolate IPL mask

Not IPL O ?

Else set IPL 3

D0 back again

VBL interrupt
_frclock

vblsem

VB1 routine disabled?
Save registers
_vbclock

Clear AS

Get video resolution

31BM}JOS SNOBQY

sfeusdjuy 1S Mepy

¢8¢

FCO0656
FCO65A
FCO65E
FC0660
FC0668
FCO66A
FCO66E
FCO0672
FC0676

FC0678
FC0680
FC0682
FC0686
FCO68A
FC068C
FCO68E
FC0692
FC0698
FCcoe9cC
FCO69E
FCO6A2
FCO6A4
FCO6A8
FCO6AA
FCO6AE
FCO6B4
FCO6B8
FCO6BA
FCO6BE
FCoec2
FCO6C6

C03C0003
B0O3C0002
6C18

08390007FFFFFAO]

6634
303C07D0
51C8FFFE
103C0002
6016

08390007FFFFFAO]

671C
102D044A
B0O3C0002
6D02
4200
1B40044C
13COFFFF8260
206D046E
4E90
6100401A
9BCD
4AADO45A
6718
206D045A
43F9FFFF8240
303CO000F
32D8
51C8FFFC
42AD045A
4AADO45E
671A

and.b
cmp.b
bge
btst
bne
move.w
dbra
move.b
bra

btst
beqg
move.b
cmp.b
blt
clr.b
move.b
move.b
move,.l
jsr
bsr
sub.1l
tst.l
beq
move. 1l
lea
move.w
move.,w
dbra
clr.l
tst.l
beqg

#3,D0

#2,D0
$FC0678

#7, $FFFFFAOL
SFCO69E
#$7D0, DO

DO, SFCO66E
#2,D0
$FCO68E

#7,$SFFFFFAQL
SFCO69E
$44A(A5),DO
#2,D0
SFCO68E

DO

DO, $44C(A5)
DO, $FFFF8260
$46E (A5) , A0
(A0)

SFC46BA
AS5,AS5

$45A (AD)
SFC06C2

$45A (AS5) ,AO
SFFFF8240,A1
#SF,DO
(AO) +, (Al) +
DO, $FCO6B8
$45A (AS)
$45E (A5)
SFCO6E2

Isolate bits 0 and 1

High resolution ?

Yes

Monochrome monitor connected ?
No

Counter

Delay loop

High resolution

Monochrome monitor connected ?
Yes

defshiftmod

High resolution 2

No

sshiftmod

shiftmd, select resoclution
SWv_vec

Default is reset

Flash cursor

Clear A5

colorptr

Don't load color palette?
colorptr

Address of the color register
16 colors

copy

next color

colorptr

screenpt

Don't change video address?

3Iem)jos snaeqy

s[eusoju] LS 11}y

98¢

FCO6C8
FCO6CE
FCO6D2
FCO6D4
FCO6DA
FCOe6DC
FCOBE2
FCOGEG6
FCO6EC
FCOGEE
FCO6FO0
FCO6r6
FCO6F8
FCO6FE
FC0700
FC0704
FC0706
FCO70A
FCO70E
FC0710
FC0714
FCO716
FCO71A
FCO71E
FC0724

2B6D045EOC44E
202D044E
EO88
13COFFFF8203
E048
13COFFFF8201
610012CC
3E3900000454
6720

5387
207900000456
2258
B3FC00000000
670A
48E70180
4F91
4CDF0180
51CFFFEA
9BCD
4A6D04EE
6604
61000502
4CDFTFFF
527900000452
4E73

move.l
move.l
lsr.1l
move.b
lsr.w
move.b
bsr
move.w
beg
subg.1l
move.l
move.l
cmp. 1l
beqg
movem. 1l
jsr
movem. 1l
dbra
sub.1l
tst.w
bne
bsr
movem. 1l
addg.w
rte

$45E (A5) , S44E (AS)
$44E (A5), DO
#8,D0

DO, $SFFFF8203
#8,D0

DO, SFFFF8201
$FC19BO
$454,D7
$FCO70E
#1,D7

5456, A0

(AO) +,Al
#0,A1
SFCO70A
D7/A0,- (A7)
(Al)
(A7)+,D7/A0
D7, SFCO6F6
A5,AS5

S4EE (AS)
SFCO71A
$FCOC1A

(A7) +,D0-D7/A0-A6
#1,$452

ok % % ok Kk Kk %k ok Kk ok ok kK Kk sk ok kK Kk Kk ok Kk ok ok K 3k sk 3k K %k ok ok ok ok ok ke ok ok gk ok ok ok ok ok ok k

FCO0726
FC0728
Fco72C
FC0732
FC0738

40E7
027CF8FF
203900000466
BOB900000466
67F8

move.w
and.w
move.l
cmp.l
beqg

SR, =(A7)
#SF8FF, SR
$466,D0
$466,D0
$FC0732

screenpt te v _bs_ad
v bs_ad

Bits 8-15

as dbasel

Bits 16-23

as dbaseh

flopvbl, floppy VBL routine
nvbls

VBL list empty?

dbra counter
_vblgueue

Get address of the routine
Not used?

To next routine

Save registers
Execute routine
Restore registers
Next routine

Clear A5

_dumpflg

Not set

Execute hardcopy
Restore registers
vblsem

wvbl, wait for VBL
Save status
IPL 0, enable interrupts

_frclock
_frclock not yet incremented?

No, wait

21BM1JOS SNOBQY

s[ewsdju] LS MBIV

L8C

FCO73A
FCO73C

S ok gk ok ok sk ok kK Kk ke ke ok ok ok ok Kk ko sk ok ok ke sk sk ok gk ok Sk kK kK ok sk ok ok ki ok ok ki k ok ok ok ok ok ok ok ok ok

FCO73E
FC0744
FCO746

% Kk Kk Kk Kk ok kK K Kk Kk ok & ok Kk k sk ok ok ok ok ok %k gk ok ok sk kK ok ke kK %k ok ke 3k %k ke k% ok ok ke ok ok ke ok ok ok ok ok

FC0748
FC074C

% 3k ok de k d ok ke k ke kK ok kK Kk Kk ke ok Kk k ok %k ok 3k Kk ok ok %k %k %k %k %k %k ok ok kK 3k ok ok ke 3k ok ok ok ok ok ok ok ke ok ke Kk

FCOT74E
FC0752
FC0758
FCO75A
FCO075C
FCO75E
FC0762
FCO768
FCO076C
FCO76E
FC0770
FC0772
FC0774
FCO0776
FC0778
FCO77C
FCO77E
FC0780
FC0782

46DF
4E75

2F3900000404
70FF
4E75

41FA0084
6004

41FAQ04C
2279000004A2
301F

3300

231F
48E11F1F
23C9000004A2
0800000D
6602

4E6F

301F

BO58

6C10

E548
20300000
2040

6A02

2050

9BCD

move.w (A7) +,SR
rts

move.l $404,-(A7)
moveq.l #-1,DO0
rts

lea SFCO7CE(PC) , A0
bra SFC0752

lea SFCO79C(PC) , A0
move.l $4A2,Al

move .w (A7) +,DO0
move.w DO,-(Al)
move.l (A7)+,-(Al)
movem.l D3-D7/A3-A7,-(Al)
move.l Al,S$4A2

btst #13,D0

bne SFC0770

move,l USP,A7

move.w (A7)+,D0

cmp.w (AO) +,DO

bge SFC0786

1sl.w #2,D0

move,l O0(AO0,DO.w),DO
move.l DO,AO

bpl SFC0782

move.l (AO) , A0

sub.1 AS5,A5

Restore status

Critical error handler
etv critic

Default to error
Execute routine

TRAP #14
Address of the TRAP #14 routines

TRAP #13

Address of the TRAP #13 routines
Load savptr

Status register to DO

Save 1in save area

Return address in save area
Register in save area

Update savptr

Call from supervisor mode?

Yes

Else use USP

Get function number from stack
Compare with maximum number
Too big, ignore

As long index

Get address of the routine

To A0

Direct address

Else use indirect

Clear A5

31em1jos snoeqy

sfeusajuy IS Me}y

88¢

FCO0784
FC0786
Fco78cC
FC0790
FC0792
FC0794
FCO79A

Kk Kk K K K K Kk kK ok ok Kk kK ok Rk ok sk ok ok ko sk sk kR Kk ok Kk k kK ok kR kR K K ok ok ok ke kR ok ok ok ok ok ok

FCo79C
FCO79E
FCO7A2
FCO7A6
FCOTAA
FCOT7AE
FCO7B2
FCO7B6
FCO7BA
FCO7BE
FCO7C2
FCO7C6
FCQ7Cs8

* %k Kk K K Kk ok %k Kk Kk Kk Kk kR Kk ok ok ok k ok ok ok sk ok g %k ok ok ke k ko k ok ok Kk gk ok ok K ok ok ok ok ok ok ok ok ok ok ok ok

FCOTCE
FCO7DO
FCO7D4
FCO7D8
FCO7DC
FCO7EQ
FCO7E4
FCOT7ES8

4E90
2279000004A2
4CDYF8F8
2F19

3F19
23C9000004A2
4E73

000C

00FC0910
00FC0876
00FCQ87C
00FC0888
80000476
00FC093C
00FC0954
80000472
00FC0882
8000047k
00FCO8F8
00FCO8FE

0028
00FC2DDC
00FC05CO
00FC095C
00FC0970
00FC0976
00FC0982
C0OFC09DO

jsr

move.l
movem, 1
move.l
move.w
move.l
rte

dc.w
dc.1l
dc.l
dec.l
dec.l
dc.1l
dc.l
dc.l
dc.l
dec.1l
dc.l
dc.l
dec.l

dc.w
dc.1l

(A0)

$4A2,A1

(Al) +,D3-D7/A3-A7
(Al)+, - (A7)
(Al) +, - (A7)

Al, $4A2

12
$FC0910
$FC0876
$FC087C
$FC0888
$476+$80000000
$FC093C
$FC0954
$472+$80000000
$FC0882
$47E+$80000000
$FCO8F8
$FCO8FE

40

$FC2DDC
$FCO5CO
$FCO095C
S$FC0970
$FC0976
$FC0982
$FC09D0

Execute routine

Get savptr

Restore registers
Return address on stack
Status on stack

Update savptr

Addresses of the TRAP #13 routines
Number of routines

0, getmpb

1, bconstat

2, bconin

3, bconout

4, (indirect) rwabs
5, setexec

6, tickcal

7, (indirect) getbpb
8, bcostat

9, (indirekct) mediach
10, drvmap

11, shift

Addresses of the TRAP #14 routines
Number of routines

0, ilnitmouse

1, rts

2, physbase

3, logbase

4, getrez

5, setscreen

6, setpalette

31BM}JOS Sndeqy

sjeusoyuy IS Meyy

68¢

FCOTEC
FCOT7FO
FCOTF4
FCO7F8
FCO7FC
FC0800
FC0804
FC0808
FC080C
FCo810
FC0814
FCco81s8
FC081C
FC0820
FC0824
Fcog2s
Fcos8ac
FC0830
FC0834
FC0838
FC083C
FC0840
FC0844
FCo848
Fco84c
FC0850
FC0854
FCco858
FCO085C
FC0860
FC0864
FC0868

0CFCO9D8
O0OFC159E
00FC167C
00FC1734
00FCODDC
00FC1E40
O0FC240E
00FC2732
00FC275A
OOFC2EE2
00FC132C
00FC1414
O0FC18CE
O0OFCOC1A
00FC46F2
00FC1D76
00FC1D5C
00FC2FOE
OOFC1FBE
00FC2438
00FC2472
00FC2b4cC
O00FC2DB6
00FC2DS0
OOFC2EAG6
00FC2F28
00FC2F3C
00FC2F70
OOFC2F4E
OOFC30AE
00FC0726
00FC0870

. .

O T T S S P} S S P

SFCO9D8
SFC159E
$FC167C
SFC1734
SFCODDC
SFC1E40
SFC240E
SFC2732
SFC275A
$FC2EE2
$FC132C
SFC1414
$FC18CE
SFCOC1A
SFCA46F2
$FC1D76
$FC1D5C
SFC2FOE
SFC1FBE
$FC2438
$FC2472
$FC2D4C
$SFC2DB6
SFC2D90
$SFC2EA6
$FC2F28
SFC2F3C
SFC2F70
SFC2F4E
SFC30AE
SFC0726
SFC0870

7,

8,

9,

10,
11,
12,
13,
14,
15,
16,
i7,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,

setcolor

floprd

flopwr
flopfmt
getdsb
midiws
mfpint
iorec
rsconf
keytrans
rand
protobt
flopver
dumpit
cursconf
settime
gettime
bioskeys
ikbdws
jdisint
jenabint
glaccess
offgibit
ongibit
xbtimer
dosound
setprt
ikbdvecs
kbrate
prtblk
wvbl
supexec

31BM}JOS SndBqY

s[eusdjuy IS 1B}y

06¢

FCO086C OOFCOO9FE dc.l SFCO9FE

k kK kK R kK ke k k kR Rk Kk kK K K Kk %k sk kK ke ok ok ok sk ke ok ok gk ok ok gk ok ke ok gk ke gk ok ok ok ok ke ok ok ke ok

FC0870 206F0004 move.l 4(A7),AC0
FC0874 4EDO Jmp (A0)

kkxhkkkkkhkkkkkkdhkhkkkhhkkhhkhhkhdhkhkddhhkkhkkkkkkkkkdkkkkkkkkkkx

FC0876 41FA0020 lea $FC0898(PC) ,AC
FCC87A 6010 bra $FC088C

* Kk % %k ok ok ok ok ok kK sk kK K ks sk sk ok kK %k k% ok ok sk ok ok ok ok ok ok kK ok ok ok ok ok ke ke ok ok ok g ok ok ke ok ok

FC087C 41FA0032 lea $SFCO8BO(PC) , AO
FC0880 600A bra $FC088C

Ik Kk kAKX X ATk rkkkkhkkhkkrkkrhkkhkkhkkhkkhkkhkkkkkkkhkkhkkkkkhkkkkkk

FC0882 41FA0044 lea $FCO8C8(PC) , AD
FC0886 6004 bra SFC088C

dhkkhkhkkhkhkhhkdkkkkkhkkkkhhkhhdhkkkkhhkhkkkhkkkkkkkkhkhkkhkkkkhkhkkkkkkk

FC0888 41FA0056 lea $FCOSEQ (PC) , AO
FCO88C 302F0004 move.w 4(A7),D0
FC0890 E548 l1sl.w #2,D0

FC0892 20700000 move.l 0(A0,DO.w),AO
FC0896 4EDO Smp (R0)

J % Kk kT ok ok ok ok ok kK Sk K o ok sk kK ok gk ok % s ok sk ok ok 3k g sk ke ke ok ok ok ok ok ok 3k ok ke ok ke ok ok ok ke ok ok ok

FC0898 0OFCO5CO de.l $SFCO5CO
FC089C OOFC1F48 dc.l SFC1F48
FCO8AO0 OOFC1FD2 dc.l SFC1FD2
FCO8A4 OOFC1ES54 dc.l SFC1E54
FCO8A8 O00FCO5CO de.l SFCO5CO
FCO8AC OOQFCO05CO dc.l $FCO5CO

39, puntaes

supexec
Get address
Execute routine in the supervisor mode

bconstat, get input status
Status table

bconin, input
Input table

bcostat, get output status
Status table

bconout, output

Output table

Device number

times 4

Get address of the routine
Execute routine

Input status
rts

RS 232 status
Console status
MIDI status
rts

rts

daIem}jos sndeqy

sjeusdjuy IS He)y

16T

** Input

FCO8BO 0OFC1lF14 dc.l SFC1F14 Parallel port
FC08B4 OCOFCLlFSE dc.1 SFC1F5E RS 232 input
FC08B8 OQFCLFES dec.l SFC1FES8 Console input
FCO8BC Q0FC1E70 dc.l SFC1E70 MIDI input

FC08CO 0QFCO05CO dc.l $FCO05CO rts

FC08C4 O0FCO05CO dc.l SFCO05CO rts
** output status
FC08C8 00FC1F34 dec.1l SFC1F34 Centronics status
FCO8CC OOFC1F6E dc.l SFC1F6E RS 232 status
FC08D0O 00FC2018 dc.l SFC2018 Console status
FC08D4 0OFClF92 dc.1l SFC1F92 MIDI status
FC08D8 OOFClEl4 dec.l SFC1lE14 IKBD status
FCO8DC 0OFCO05CO dc.1l SFCO05CO rts
***************************'k**************************** Output

FCO8EO OOFC1EAO dec.1l SFC1EAO Centronics output
FCO8E4 OOFC1F86 dc.1l SFC1F86 RS 232 output
FCO8E8 O0FC41AC dc.l SFC41AC Console output
FCOBEC OOFClE26 de.1l SFC1E26 MIDI output
FCO8F0 OOFC1lFA4 dc.l SFC1FA4 IKBD output
FCO08F4 OOFC41A0 dc.1l SFC41A0 ASCII output
*************************‘k****************************** drvmap, active drives
FCO8F8 202D04C2 move.l $4C2(A5),DO _drvbits

FCO8FC 4E75 rts cnljca3j
*'k**‘k*********‘k*** Shift' keyboard Status
FCO8FE 7000 moveg.l #0,DO

FC0900 102DOE1B move.b SE1B(A5),DO Shift status
FC0904 322F0004 move.w 4(A7),D1 new shift status

alem}jos snoeqy

sjeusdjuy IS LBy

6¢

FC0908 6BO4 bmi SFCO90E
FCC90A 1B410E1B move.b D1,$E1B(A5)
FCC90E 4E75 rts

% K K Kk K K Kk KK KK Kk Xk ok ok sk ok ok ok ok Kk ok ok ok Kk kK k ke k ok ok ok ok ok ok ok Sk ok ok ok sk ke ok ok ok ok ok ke

FC0910 206F0004 move.l 4(A7),AC
FC0914 43EDO48E lea $48E (AD) , Al
FC0918 2089 move.l Al, (AO)
FCO91A 42A80004 clr.l 4 (AQ)

FCO91E 21490008 move.l Al,8(A0)
FC0922 4291 clr.l (A1)

FC0924 236D04320004 move.l $432(A5),4(Al)
FC092A 202D0436 move.l $436(A5),D0
FCO092E 90AD0432 sub.l $432 (A5),DO
FC0932 23400008 move.l DO, 8(Al)
FC0936 42A9000C clr.l 12 (Al)

FCO93A 4E75 rts enlical3;

ok % ok K ok k& ok ok ok %k Kk kK ke ko sk kK ke ke kR ke ok ke ke ok ok ke ok ok ok ke ke ke kK ok ok ok ok ok ok ok ok ok ke
FC093C 302F0004 move.w 4{(A7),D0
FC0940 E548 1sl.w #2,D0

FC0942 91C8 sub.1 AC, A0

FC0944 41F00000 lea 0(A0,DO.w), A0
FC0948 2010 move.l (AOQ),DO
FC094A 222F0006 move.l 6(A7),Dl
FCO94E 6B02 bmi $FC0952
FC0950 2081 move.,l D1, (AO)
FC0952 4E75 rts

S g %k K Kk ko %k ke kT ke %k ke Kk ok ok Kk kK ok Kk ke ke ok ko ke ok ek sk ok K ok ok ke ke ok ok ok Kk ke ok ok ke ok ok ke

FC0954 4280 clr.l DO
FC0956 302D0442 move.w $442(A5),DO0
FC095A 4E75 rts

-1, not set
Use new status

getmpb, Memory Parameter Block
Address of the mpb

themd, Memory Descriptor

mp mfl = address of the MD
mp mal = zero

mp_rover = address of the MD
clear m_link

_membot as m_start

_memtop

minus membot

length m lenght

m _own = ZzZero

setexc, set exception vector
Vector number

times 4

Clear A0

Get address of the vector
0ld vector to DO

New vector

Negative, don't set

Set new vector

tickcal, timer value in milliseconds

_timer_ms

31BM)JOS SNIBQY

s[jeusdjuy IS ey

€6¢

*******************************-k************************

FC095C
FCO95E
FC0964
FC0966
FC096C
FCO96E

7000
1039FFFF8201
E148
1039FFFF8203
E188
4E75

moveq.l
move.b
1sl.w
move.b
1s1.1
rts

#0,D0
SFFFF8201,D0
#8,D0
SFFFF8203,D0
#8,D0

**

FC0970
FC0974

202D044E
4E75

move.l
rts

$44E (A5), DO

**

moveq.l #0,D0

FC0976
FC0978
FCo97cC
FC0980

7000
102D8260
C03C0003
4E75

move.b
and.b
rts

$FFFF8260 (A5), DO
#3,D0

**

FC0982
FC0986
FC0988
FCO98E
FC0992
FC099%4
FCO099cC
FCO9A4
FCO9A8
FCO9AA
FCO9BO
FCO9B4

4AAF0004

6B06
2B6F0004044E
4AAF0008

6B10
13EF0009FFFF8201
13EFOCOAFFFF8203
4A6F000C

6B24
1B6F000D044C
6100FD74
13EDO44CFFFF8260

tst.l
bmi
move.l
tst.l
bmi
move.b
move.b
tst.w
bmi
move.b
bsr
move.b

4 (A7)

$FCO98E

4 (A7) ,$44E (A5)

8 (A7)

$FCO9A4
9(A7),SFFFF8201
10 (A7) ,SFFFF8203
12 (A7)

$FCO9CE

13 (A7), 5$44C (A5)
$FC0726

$44C (A5) , $SFFFF8260

physbase, physical video address
dbaseh

dbasel
Result in DO

logbase, logical video address
_v_bs_ad

getrez, get video resolution

sshiftmd
Isolate bits 0 and 1

setscreen, set screen address
Logical address
Don't set?

_v_bs_ad

physical address
Don't set?

dbaseh

dbasel

Video resolution
don't set

sshiftmod

wvbl, wait for VBL
sshiftmod to shiftmd

21BM}JOS Sndeqy

sjeusduy LS MBIV

$6¢

FCO9BC
FCo9Co

FC09Ce6 33FC000100000452

FCO9CE

426D0452
4EBOOOFCATCA4

4E75

clr.w
jsr
move .w
rts

$452 (A5)
SFCATC4
#1,$452

J ok k% kK ok ok Kk Kk ok k ok ok kK ok sk ok dk K Kk gk sk kR Rk kR kR ok Kk Kk ok kK kR kK Kk ok ke kR K ok ok

FCO3DO
FCO9D6

2B6F0004045A
4E75

move.l
rts

4 (A7) ,545A (A5)

K Kk Kk ok sk Tk ke k kK Kk ok gk ki ok ok ok ok ok ek ks ok ko kR Kk Kk Rk Kk kK kR ke kK ok ok ok ke

FC0O9D8
FCO9DC
FCO9DE
FCO9E2
FCO9ES
FCO9EC
FCO9SFO
FCO9F4
FCOSF6
FCO9rC

322F0004
D241
C27CO001F
41F9FFFF8240
30301000
Co7C0777
4A6F0006
6B06
31AF00061000
4E75

move .w
add.w
and.w
lea
move .w
and.w
tst.w
bmi
move .w
rts

4(A7),D1

D1,D1

#S1F,D1
SFFFF8240,A0
0(A0,D1l.w),DO
#$777,D0

6 (A7)

$SFCO9FC
6(A7),0(A0,D1l.w)

Kk kK K kKKK K kR kK K kK K ok ok kK kK ok ok ok ok ok ok Kk ok kR kR kK ok ok ok ok ko ok ke ok ke ke

FCO9FE
FCOAO02
FCOAOS8
FCOAOA
FCOAlO0
FCOAl2
FCOAl4
FCOAlS8

207AF614
0C9087654321
660FE
B1F90000042E
6C06

4290
6000F60A
4E75

move.l
cmp. 1l
bne
cmp.l
bge
clr.1
bra
rts

$FC0014 (PC) ,A0
#$87654321, (AOQ)
SFCOAl8

$42E, A0
$FCOAl8

(A0)

SFC0020

vblsem, VBL disabled
Initialize screen output
vblsem, enable VBL again

setpalette, load new color palette
colorptr, execution in VBL

setcolor, set single color
Color number

times 2

Limit to valid numbers
Address of color palette
Get color

Isolate RGB bits

New color

negative ?

Set color

puntaes, clear AES and restart
Address os_magic

magic ?

No, AES already disabled
phystop, AES in ROM ?

Yes, nothing to do

clear magic

to reset

d1eM}JOS Snoeqy

sjeutdjuy IS 1B}y

g6¢T

**************‘k*******‘k********************************

FCOAl1A
FCOAlC
FCOALE
FCOA24
FCOA2C
FCOA2E
FCOA34
FCOA36
FCOA3C
FCOA3E
FCOA40
FCOA44
FCOA4E
FCOAS50
FCOAS56
FCOAS58
FCOASA
FCOA64
FCOA68
FCOAGA
FCOA6C

6102

4E71
23DF000003C4
48F9FFFF00000384
4E68
23C8000003C8
700F
41F9000003CC
224F

30D9

51C8FFFC
23FC1234567800000380
7200
1239000003C4
5341

6116
23FC0O000093A000004A2
3F3C0001

4247

4E41

6000F5B2

bsr

nop
move.l
movem, 1
move.l
move.l
moveq.l
lea
move.l
move.w
dbra
move.l
moveq,l
move.b
subg.w
bsr
move.l
move.w
clr.l
trap
bra

SFCOALE

(A7) +, 53C4
DO-D7/A0-A7,$384
USP, A0

AO, $3C8

#15,D0

$3CC, A0

A7,Al
(Al) +, (AO) +

DO, $FCOA3E
#512345678,$380
#0,D1

$3c4,D1

#1,D1

$FCOAT0

#5934, $4A2

#1,- (A7)

- (A7)

#1

$FC0020

Ak kkkkkkdkkkkkkkkkkkkkkkkkokkkkkkdkkdkkkkkkkkkkkkkkkkkkkxxx

FCOAT0
FCOAT6
FCOATA
FCOATC
FCOATE
FCOAB4
FCOAB6
FCOA8BC

1E39FFFF8260
CE7C0003
DE47

4280
1039FFFF8201
E148
1039FFFF8203
E188

move.b
and.w
add.w
clr.1l
move.b
lsl.w
move.b
1s1.1

SFFFF8260,D7
#3,D7

D7,D7

DO
$FFFF8201,D0
#8,D0
SFFFF8203,D0
#8,D0

term, end program after exception
PC on stack

Save PC including vector number
Save registers

Usp

save

16 words

Address save area

Get stack pointer

Save 16 words from stack

Next word

magic for saved registers

Vector number to D1

in dbra counter

Output appropriate number of "bombs"
Reset savptr for BIOS

Return code for error

term, end program

GEMDOS

if return, then reset

Write "bombs"™ to screen
shiftmd, get resolution
Isolate significant bits
as word pointer

dbaseh

dbasel

31BM}JOS SMOBQY

s[euwIdu] LS 1Iely

96¢

FCOABE 2040 move.l DO,A0

FCOAS0 DOFB702C add.w SFCOABE (PC,D7.w) ,AQ
FCOA94 43F900FCOCC4 lea SFCOCC4,Al

FCOA9A 3C3CO0O0F move.w #SF,D6

FCOA9E 3401 move.w D1,D2

FCOAAC 2448 move.l AO0,A2

FCOAA2 3A3B7022 move.w S$FCOAC6(PC,D7.w),D5
FCOAA6 30D1 move.w (Al), (AO)+

FCOAA8 51CDFFFC dbra D5, SFCOAAG6

FCOAAC 51CAFFF4 dbra D2, $FCOARA2

FCOABO 5449 addgq.w #2,Al

FCOAB2 D4FB701A add.w $SFCOACE (PC,D7.w) ,A2
FCOAB6 204A move.l A2,A0

FCOAB8 51CEFFE4 dbra D6, SFCOASE

FCOABC 4E75 rts

ok ok ok ke ok kK Kk K ok kR kK Rk K ok ok kK 3k Kk ok K gk kR ok sk k% K ok ke ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok

FCOABE 3E80 dc.w 100*160
FCOACO 3E80 dc.w 100*160
FCOAC2 3E80 dc.w 200*80
FCOAC4 3E80 dc.w 200*80

* %k %k Kk Kk K ok k ko Kk K Kk ok K K Kk ok Kk kR kK gk ke Kk sk ok ko ok K ok ok ke ok ok ok ok vk ok ok ok ok ok ok ke ok

FCOAC6 0003 dc.w 3
FCOAC8 0001 dc.w 1
FCOACA 0000 : dc.w 0
FCOACC 0000 dc.w 0

ok ok Kok ok kK ok Kk ke Kk kK kK K ok kK K K KK K ok Kk ok ok k kK sk ke ok ok ok sk Kk ok ok ok ok ok ke ke ok ok ok sk ke ok

FCOACE 0OCAO dc.w 160
FCOADO OO0AO dc.w 160
FCOAD2 0050 dc.w 80

yields video address

plus offset for screen center
Address of the bit pattern for bombs
16 raster lines

Save pointer to start of line
Number of words (screen planes)
Write one raster line

Next screen plane

Next bomb, same raster line

Next word of the bit pattern

Plus line length, next screen line
Start of the line

Next raster line

Offset for screen center
low resolution

medium resolution

high resolution

high resolution

Number of screen planes -1
low resolution

medium resolution

high resolution

high resolution

Line length in bytes
low resolution
medium resolution
high resolution

31BM)JOS SMIBQY

s[euaduy IS MBIy

L6T

FCOAD4 0050 dc.w 80

FCOAD6 206F0004 move.l 4(A7),A0
FCOADA 226F0008 move.l 8(A7),Al
FCOADE 303CO03F moveq.l #63,D0
FCOAE2 12D8 move.b (AQ0) +, (ALl) +
FCOAE4 12D8 move.b (A0)+, (Al)+
FCOAE6 12D8 move.b (A0) +, (Al) +
FCOAE8 12D8 move.b (AQ)+, (Al)+
FCOAEA 12D8 move.b (AO0)+, (Al)+
FCOAEC 12D8 move.b (A0)+, (Al)+
FCOAEE 12D8 move.b (AO)+, (Al)+
FCOAFO 12D8 move.b (A0)+, (Al)+
FCOAF2 51C8FFEE dbra DO, SFCOAE2
FCOAF6 4E75 rts

**

FCOAF8 2F390000046A move.l $46A,- (A7)
FCOAFE 4E75 rts

k****‘k*******

FCOBOO 5C4155544F5C dc.b *\AUTO\'

FCOBO6 2A2E50524700 dc.b '* PRG', 0
FCOBOC 12345678 dc.l $12345678
FCOB10 9ABCDEFO dc.l $9ABCDEFO0

FCOB14 41FAFFEA lea SFCOBOO (PC) , A0
FCOB18 43FAFFEC lea $FCOBO6 (PC) ,Al
FCOB1C 23DF0000033A move.l (A7)+,$93A
FCOB22 9BCD sub.1l A5,AS

high resolution

fastcopy, copy floppy sector
Source address

Destination address

(63+1)*8 = 512 bytes

Copy 8 bytes

Next 8 bytes

hdv_init, initialize drive data
hdv_init
Execute routine

autoexec, execute programs in auto folder
Address of pathname '\AUTO*.PRG'

Address of filename '*.PRG'

Save return address

Clear A5

21BM}JOS SMOBQY

sjeusdu] IS 1ely

86¢

FCOB24 2B48093E
FCOB28 2B490942
FCOB2C 202D04C2
FCOB30 323900000446
FCOB36 0300
FCOB38 6736
FCOB3A 41FAF94D
FCOB3E 2F08
FCOB40 2FO08
FCOB42 2F08
FCOB44 3F3C0005
FCOB48 3F3C004B
FCOB4C 4E41
FCOB4E DEFCO0010
FCOB52 2040

FCOB54 217CO0FCOB786008

FCOB5C 2FO0OB

FCOB5SE 2F00

FCOB60 2FOB

FCOB62 3F3C0004
FCOB66 3F3C004B
FCOB6A 4E41

FCOB6C DEFC0010
FCOB70 2F390000093A
FCOB76 4E75

move.l
move.l
move. 1l
move.w
btst
beq
lea
move.l
move.l
move.l
move . w
move.w
trap
add.w
move.l
move.1l
move.1l
move.l
move.l
move.w
move.w
trap
add.w
move.l
rts

A0, S93E(AD)
Al, 5942 (A5)
$4C2 (A5),DO
$446,D1
D1,DO0
$SFCOB70
$FC0489(PC) , A0
A0, - (A7)
A0, - (A7)
A0, - (A7)
#5,- (A7)
#$4B, - (A7)
#1

#510,A7

DO, AQ
#SFCOB78, 8 (A0)
A3,- (A7)
DO, - (A7)
A3,- (A7)
#4,- (A7)
#54B, - (A7)
#1

#510,A7
$93A,- (A7)

Akkk Kk khkhk kA Ak Rk kkkkhkkkkhkhkkhkhhkkkkkhkkhkdhkxkkkhkkhkkkkkkkk

FCOB78 42A7
FCOB7A 3F3C0020
FCOBTE 4E41
FCOB80 5C4F
FCOB82 2840

clr.1l
move.w
trap
addg.w
move, 1

- (A7)
#3$20,- (A7)
#1

#6,A7

DO, A4

pathname

filename

_drvbits

_bootdev

Drive active ?

No, done

Pointer to null name
Environment

Command tail

Filler

Create base page

exec

GEMDOS

Correct stack pointer
Address of the base page
Start address

Null string

Base page

Null string

Start program

exec

GEMDOS

Correct stack pointer
Repeat return address
Back to call

Call autocexec program

super
GEMDOS

Correct stack pointer
Saved stack pointer

3Iem}JoS snoeqy

s[eutdu] LS 1)y

66C

FCOB84
FCOB88
FCOB8C
FCOB92
FCOB94
FCOB96
FCOBSA
FCOBOC
FCOBSE
FCOBAO
FCOBA2
FCOBAG6
FCOBAC
FCOBBO
FCOBB2
FCOBB8
FCOBBC
FCOBBE
FCOBCO
FCOBC2
FCOBC4
FCOBC6
FCOBCS
FCOBCE
FCOBD4
FCOBDA
FCOBDC
FCOBDE
FCOBEO
FCOBE®6
FCOBES
FCOBEA

2A6F0004 move.l
4FED0100 lea
2F3C00000100 move.l
2F0D move.l
4267 clr.w
3F3CO04A move . W
4E41 trap
5C4F addg.w
4740 tst.w
666A bne
3F3C0007 move.w
2F390000093E move.l
3F3CO04E move.wW
TEO8 moveq.l
487900000946 pea
3F3CO01A move .W
4E41 trap
5C4F addg.w
4F41 trap
DEC7 add.w
4740 tst.w
6644 bne
20790000093E move.l
247900000942 move.l
43F900000972 lea
12D8 move.b
B5C8 cmp.l
66FA bne
41F900000964 lea
12D8 move .b
66FC bne
487AF89D pea

4 (A7) ,A5
$100 (AS5) , A7
#5100, - (A7)
AS, - (A7)

- (A7)
#$4A, - (A7)
#1

#6,A7

DO

$FCoCoC
$7,- (A7)
$93E, - (A7)
#3$4E, - (AT)
#8,D7

$946
#$1A, - (A7)
#1

#6,A7

#1

D7,AT7

DO

$FCOCOC
$93E,A0
$942,A2
$972,A1
(AO) +, (A1) +
AO,A2
$FCOBDA
$964,A0
(B0) +, (A1) +
$FCOBE®6
$FC0489(PC)

Base page address

Stack pointer to end of base page
$100 bytes for base page

Address of the program

setblock, release memory
GEMDOS

Correct stack pointer

ok ?

No, terminate

R/0, hidden and system files
Filename

Search first

Bytes for stack correction
DMA address for DOS
Setdta

GEMDOS

Correct stack pointer
GEMDOS

Correct stack pointer
Matching file found?

No

pathname

filename

autoname

copy path

End of path segment?

No, keep copying

Name from DMA buffer
Append to pathname

End of the name?

Null name

3IEM}JOS SNIBQY

sjeuau] LS MEV

00¢

FCOBEE 487AF899
FCOBF2 487900000972
FCOBF8 4267

FCOBFA 3F3C004B
FCOBFE 4E41

FCOCO00 DEFC0010
FCOC04 7E02

FCOC06 3F3CO04F
FCOCOA 6046

FCOCOC 4FF900004DBS8
FCO0C12 2F390000093A
FCOC18 4E75

pea SFC0489(PC)
pea $972

clr.w - (A7)
move.w #$4B,- (A7)
trap #1

add.w #$10,A7
moveq.l #2,D7
move.w #$4F,- (A7)

bra $SFCOBB2
lea $S4DB8, A7
move.l $93A,-(A7)
rts

**

FCOC1A 207900000502
FC0C20 4ES0

FC0C22 33FCFFFFO00004EE

FCOC2A 4E75

move.l $502,A0

jsr (A0Q)
move.w #-1,S4EE
rts

**

FCOC2C 9BCD

FCOC2E 2B6D044E0992
FCOC34 426D0996
FCOC38 4240

FCOC3A 102D044cC
FCOC3E 3B4009A0
FCO0C42 D040

FCO0C44 41FA006A
FC0C48 3B7000000998
FCOC4E 3B700006099A
FCOC54 426D0C99C
FCOC58 426D099E

sub,1 AS5,AS

move.l $44E(A5),$992(A5)
clr.w $996 (A5)

clr.w DO

move.b $44C(A5),DO

move.w DO, S$9A0(A5)

add.w DO, DO

lea SFCOCBO(PC) , A0
move.w O0(AO,DO.w),$998(A5)
move.w 6(A0,DO.w),S99A(AS5)
clr.w $99C (A5)

clr.w $99E (A5)

Null name

Filename

Load and start program
exec

GEMDOS

Correct stack

Bytes for stack correction
Search next

Next program

Stack pointer to start value
Return address

scrdmp, screen hardcopy
dump_vec

Execute routine

clear dumpflg

scrdmp

Clear AS

_V_bs ad
Offset to zero

sshiftmod

save

times 2

Table for screen resolution
Get screen width

Get screen height

Left

and right to zero

d1BM]JOS SnIBqQY

sjeutdu] IS 1B}y

10€

FCOCSC
FCOC64
FCOC68
Fcocec
FCOC6E
FCOC72
FCOC76
FCOCT7A
Fcocic
FCOCTE
FCO0C82
FCOC86
FCOC8A
FCOCS8E
FCO0C94
FCOC98
FCOCAO
FCOCA4
FCOCAC
FCOCAE

Kk k ok kK okokk kK kkkkkkkkkkk

FCOCBO
FCOCB2

2B7COOFF824009A4
426D0O9JAC
322DOE4A

E649

€27C0001
3B4109A2
322DOE4A

3001

E848

C07C0001
3B400%AA
c27C0007
103B1030
33C0000009A8
486D0992
33FC0001000004EE
6100240C
33FCFFFFO00004EE
584F

4E75

014002800280
00C800C80190

move.l
clr.w
move .w
lsr.w
and.w
move .w
move.w
move.w
lsr.w
and.w
move.w
and.w
move.b
move.w
pea
move .wW
bsr
move.w
addg.w
rts

dc.w
dc.w

#SFF8240, $9A4 (A5)
$9AC (AS5)
SE4A(A5),D1
#3,D1

#1,D1

D1, $9A2 (AD)

$E4A (AS),D1
D1,DO

#4,D0

$#1,D0

DO, $9ARA (A5)

#7,D1
$FCOCBC(PC,D1.w) ,DO
DO, $9A8

$992 (AS)

#1,$4EE

$FC30AE

#-1,$4EE

#4, A7

320,640,640
200,200,400

**

FCOCBC
FCOCBD
FCOCCE
FCOCCF
FCOCCO
FCOCCl

00
02
01
FE
03
FF

dc.b
dc.
dc.
dc.
dc.
dc.

oo o oo

Address of color palette
Clear mask pointer

Get printer configuration
Draft/quality mode
Isolate bit

and save

Printer configuration

Parallel/serial
Isolate bit
and save
Isolate printer type
Get assignment from table
and save for hardcopy
Address of the parameter block
_dumpflg to one
Execute hardcopy
dumpflg copy

Correct stack pointer

Parameter table for hardcopy
Screen widths
Screen heights

Printer types (-1 = not implemented)
ATARI B/W dot-matrix

ATARI B/W daisy wheel

ATARI color dot-matrix

(ATARI color daisy wheel)

Epson B/W dot-matrix

(Epson B/W daisy wheel)

21BM}JOS SNIBQY

sjeumdu] LS 1ely

0¢

FCOCC2 FF dc.b -1
FCOCC3 FF dc.b -1

FCOCC4 0600 dc.b %0000011000000000
FCOCC6 2900 dc.b %0010100100000000
FCOCC8 0080 dc.b %0000000010000000
FCOCCA 48490 dc.b %$0100100001000000
FCOCCC 11F0 dc.b %0001000111110000
FCOCCE 01F0 dc.b $0000000111110000
FCOCDO 07FC dc.b $0000011111111100
FCOCD2 OFFE dc.b $0000111111111110
FCOCD4 OFFE dc.b $0000111111111110
FCOCD6 1FFF dc.b $0001111111111111
FCOCD8 1FEF dc.b %0001111111101111
FCOCDA OFEE dc.b %0000111111101110
FCOCDC OFDE dc.b $0000111111011110
FCOCDE 07FC dc.b %0000011111111100
FCOCEO O3F8 dc.b $0000011111111000
FCOCE2 0O0EO dc.b %$0000000011100000

% %Kk % ok sk d ok kK K e kK Kk Kk sk kb ok ke sk %k ke ok ok S ok ok Kk Kk ok K %k ok ok ok kR R k% ok ok ke Kk ok

FCOCE4 41F9FFFFFA21 lea $SFFFFFA21, A0
FCOCEA 43F9FFFFFA1B lea SFFFFFAL1B, Al
FCOCFO 12BC0010 move.b #$10, (Al)
FCOCF4 7801 moveq.l #1,D4

FCOCF6 12BC0000 move.b #0, (Al)
FCOCFA 10BCOOFO move.b #SFO0, (A0)
FCOCFE 13FCOOQOO8FFFFFA1B move.b #8,S$FFFFFALB
FCODO6 1010 move.b (A0Q),DO
FCOD08 BO0O4 cmp.b D4,DO0

FCODOA 66FA bne SFCODO6

(Epscen color dot-matrix)
(Epson ceclor daisy wheel)

"Bomb" bit pattern

mfp, Timer B data
mfp, Timer B control
Timer B output low

Stop timer B

Load timer B counter with 240
Timer B control, delay mode, /50
Load counter value

Same last value?

No

dIeM}JOS SmoeqQy

s[ewsayuy IS 1B}y

€0¢

FCODOC
FCODOE
FCOD12
FCOD14
FCOD16
FCOD1A
FCOD1E

% Kk Kk k Kk Kk Kk k

FCOD20
FCOD26
FCOD2ZA
FCOD30
FCOD32
FCoD38
FCOD3A
FCOD3E
FCOD40
FCOD42
FCOD44
FCOD48
FCOD4A
FCOD4E
FCOD52
FCOD54
FCOD56
FCODSA
FCODSC
FCODSE

% %k k Kk Kk Kk

FCOD60

1810
363C0267
B810O
66F 6
51CBFFFA
12BC0O010
4ED6

20790000042E
90FC0200
B1FC00000400
672C
0C9012123456
66EC
B1E80004
66E6

4240

2248
323COQFF
D059
51COFFFC
BO7C5678
66D2

2F08
4EA80008
205F

60C8

4E75

**

4E56FFFO

move.b
move .wW
cmp.b
bne
dbra
move.b

Jmp

move.l
sub.w
cmp. 1l
beqg
cmp.l
bne
cmp. 1
bne
clr.w
move.l
move.w
add.w
dbra
cmp.w
bne
move.l
jsr
move.l
bra
rts

link

(AO) , D4
#$267,D3
(AO) ,D4
$FCODOC
D3,S$FCOD12
#$10, (Al)
(A6)

**

$42E, A0
#5200, A0
#5400, A0
$SFCODSE
#$12123456, (A0)
$FCOD26

4 (70) ,A0
$FCOD26

DO

AC,Al
#$FF,D1
(A1) +,DO
D1, $FCOD48
#55678,D0
$FCOD26
AO, - (A7)

8 (A0)

(A7) +,A0
SFCOD26

A6, #-16

Counter value

Loop counter to 616
Counter value equal?
No, read new value
Next pass

Timer B output low
Back to call

Execute reset resident programs

phystop

minus $200
Exception vectors reached?
Yes, done

magic ?

No

Address ?

No

Clear sum

Save address

256 words

sum

Next word

magic ?

No, keep looking
Save address
Execute routine
Restore address
Keep searching

hdv_init, initialize drives

21BM}JOS SNOBQY

sjeuadjuy LS 11e1y

P0€

FCOD64
FCOD6E
FCOD70
FCOD76
FCoD7C
FCOD80
FCOD82
FCOD88
FcoDpsc
FCODSE
FCODA0
FCOD92
FCOD94
FCOD96
FCOD9A
FCOD9C
FCODOE
FCODA4
FCODAA
FCODAC
FCODBO
FCODB2
FCODBS8
FCODBA
FCODBC
FCODC2
FCODCC
FCODDO
FCODD6
FCODD8
FCODDA

23FC0000012C000029B4 move.l

4240 clr.w
33C0000004A6 move.w
33C000005622 move.w
3D40FFFE move .w
604E bra
207C00004DB8 move.l
326EFFFE move.,w
D1C9 add.l
4210 clr.b
4257 clr.w
4267 clr.w
4267 clr.w
3F2EFFFE move.w
4277 clr.l
4277 clr.l
4EBY900FC1556 jsr
DFFCO00Q000E add.l
3F00 move.w
306EFFFE move . w
D1cCs8 add.l
D1FC000058C0O add.l
309F move.w
6610 bne
5279000004A¢6 addg.w
00B900000003000004C2 or.1
526EFFFE addq.w
O0C6EOQOO2FFFE cmp.w
6DAA blt
4ES5E unlk
4E75 rts

#300,329B4
DO

DO, $4A6
D0, $5622
DO, -2 (A6)
$FCODDO
#$4DB8, A0
-2 (A6) ,Al
Al, A0

(A0)

(A7)

- (A7)

- (A7)

-2 (A6) ,- (A7)
- (A7)

- (A7)
$FC1556
#SE, A7
DO, - (A7)
-2 (A6) ,AQ
AO, AO
#$58C0,A0
(A7) +, (A0)
$FCODCC
#1,$4A6
#3,%4C2
#1,-2(A6)
#2,-2(A6)
SFCOD82
A6

maxacctim to 300%*20 ms

clear nflops

curflop, current drive

Start with drive A

To loocp end

Address of the DSB (Device Status Block)
Drive number

as index

Clear DSB

Drive number

flopini

Correct stack pointer
Save error code

Drive number

times 2

Error code

Drive not present?
Increment nflops
_drvbits, drive A and B
Increment drive number
2 drives tested?

No

31eM]JOS Sndeqy

s[ewsduy IS Meyy

c0e

**

FCODDC
FCODEO
FCODE2
FCODE4

FCODE®6
FCODEA
FCODEE
FCODF4
FCODF6
FCODF8

FCODFC
FCOEOO
FCOEOQ2
FCOEO4
FCOEO6
FCOEOC
FCOEOE
FCOE12
FCOE14
FCOE16
FCOE1A
FCOELE
FCOE20
FCOE26
FCOE2C
FCOE32
FCOE36
FCOE3A

4ESGFFFC
4280
4E5E
4E75

4E56FFF4
48E7070C
0C6E00020008
6D06

4280
60000192

302E0008
EB40

48C0O

2A40
DBFCO0004DCE
284D
3EBC0001
4267

4267
3F3C0001
3F2E0008
4247
2F3C0000167A
4EBY0OFC159E
DFFC00000010
2D40FFF4
4AAEFFF4
6Cle

link
clr.l
unlk
rts

link
movem. 1l
cmp.w
blt
clr.l
bra

move.w
asl.w
ext.l
move.l
add.l
move.l
move . W
clr.w
clr.w
move . W
move.w
clr.1l
move.l
jsr
add.l
move.l
tst.l
bge

A6, #-4
DO
A6

A6, #-12

D5-D7/A4-A5,— (A7)

#2,8(A6)
$FCODFC
Do
SFCOF8C

8 (A6) ,DO
#5,D0

Do

DO, A5
#$4DCE,AS5
A5, A4

¥1, (A7)

- (A7)

~ (A7)

#1,- (A7)

8 (A6) , - (A7)
(A7)
#1678, - (A7)
$FC159E
#510,A7

DO, ~12 (A6)
-12(A6)
$FCOE52

% %k K kK K Kok kok ok ok ok ok kK

% % K Kk kK K Kk Kk ek ok Kk ok ok ko

getdsb

Zero

getbpb, Get BIOS parameter block

Save registers
Drive number

< 2, OK

else zero

Drive number
times 32

plus base address
save

count, read a sector
Side O

Track 0

Sector 1

Drive number

Filler

Address of disk buffer
Read sector

Correct stack pointer
Error code

test

OK ?

31BM}JOS SNIBqV

sjeutdjuy LS 1By

90¢

FCOE3C
FCOE40
FCOE44
FCOE46
FCOEA4C
FCOE4E
FCOE5S2
FCOES56
FCOESC
FCOESE
FCOE62
FCOE64
FCOE66

FCOE6A
FCOE70
FCOE74
FCOE76
FCOE78
FCOETE
FCOES80
FCOE84
FCOE86
FCOESS8

FCOES8C
FCOESE
FCOE92
FCOE98
FCOESC
FCOEAQ
FCOEA4

3EAE0008
202EFFF4
3F00
4EB90CQOFCO73E
548F
2D40FFF4
202EFFF4
BOBC00010000
67B0
4AAEFFF4
6C06

4280
60000124

2EBC00001685
610006BE
3E00

6FOE
1C3900001687
4886
CCTCOOFF
6E06

4280
60000102

3887
39460002
2EBC00001690
61000696
39400008
302C0008
5240

move.w

—

move.
move.w
jsr
addq.1l
move.
move.l
cmp.l
beq
tst.l
bge
clr.l
bra

[a

move.l
bsr
move.w
ble
move.b
ext.w
and.w
bagt
clr.l
bra

move.w
move.w
move.1l
bsr

move.w
move.w
addqg.w

8(A6), (A7)
-12 (A6),DO
DO, ~ (A7)
SFCO73E
#2,A7

DO, -12 (A6)
-12 (A6),DO0
#5$10000,D0
SFCOEQE
~12 (A6)
SFCOE6A

DO

SFCOF8C

#51685, (A7)
$FC1530

DO, D7
$PCOE86
$1687,D6
D6

$#$FF,D6
$FCOES8C

DO

SFCOF8C

D7, (A4)
D6, 2 (A4)
#51690, (A7)
SFC1530
DO, 8 (A4)
8(A4),D0
#1,D0

Drive number

Error code

as parameter

critical error handler
Correct stack pointer
Save error code

test

Retry ?

Yes, try again

Test error code

OK ?

Buffer+1l, bytes per sectgor

u2i, 8086 to 68000 format
Save bytes per sector
< =0, error

Buffer+13, sectors per cluster

> 0, OK
0 as result
Error

recsize in bpb

clsiz in bpb

Buffer+22, sectors per FAT
u2i, 8086 to 68000 format
fsiz in bpb

fsiz

plus 1

aIBM1JOS SNdEqY

Sjeuadyuy IS ue}y

LOE

FCOEA®
FCOEAA
FCOEAC
FCOEBO
FCOEB4
FCOEBA
FCOEBE
FCOECO
FCOEC2
FCOEC4
FCOECS8
FCOECC
FCOEDO
FCOED4
FCOED8
FCOEDE
FCOEE2
FCOEE®6
FCOEES
FCOEEC
FCOEFO
FCOEF®6
FCOEFA
FCOEFE
FCOF04
FCOF08
FCOFOC
FCOF10
FCOF14
FCOF18
FCOF1E
FCOF22

3940000A
3014
C1lEC0002
39400004
2EBC0000168B
61000674
EB40

48C0

81D4
39400006
302C000A
D06C0006
D06C0O008
3940000C
2EBC0000168D
61000650
906C000C
48C0O
81EC0002
3940000E
2EBC00001694
61000638
3B400014
2EBC00001692
6100062A
3B400018
302D0014
ClEDOO18
3B400016
2EBC00001696
61000610
3B40001A

move .
move.
muls.
move.

— % 5 £ =

move.
bsr
asl.w
ext.l
divs.w
move . w
move . w
add.w
add.w
move.w
move.l
bsr
sub.w
ext.l
divs.w
move.
move.l
bsr

=

move.

L

move.
bsr

move.
move.
muls.
move.
move.
bsr

-~ £ % £ =

move.

B

DO, 10 (A4)
(A4) ,DO
2(n4),D0
DO, 4 (A4)
#$168B, (A7)
$FC1530
#5,D0

DO

(A4) ,DO
DO, 6 (A4)
10(a4),D0
6(A4),DO0
8(A4),DO
DO, 12 (A4)
$#5168D, (A7)
$FC1530
12(A4),D0
Do
2(Aa4),D0
DO, 14 (A4)
#1694, (A7)
$FC1530
DO, 20 (A5)
#51692, (A7)
$FC1530
DO, 24 (A5)
20 (A5),DO
24 (A5),DO
DO, 22 (A5)
#51696, (A7)
$FC1530
DO, 26 (A5)

as fatrec in bpb

recsize

times clsiz

as clsizb in bpb

Buffer+17, number of director entries
u2i, 8086 to 68000 format

times 32

by recsiz

as rdlen in bpb

fatrec

plus rdlen

plus fsiz

as datrec in bpb

Buffer+19, number of sectors
u2i, 8086 format to 68000 format
minus datrec

by clsiz

as numcl in bpb

Buffer+26, number of sides
u2i, 8086 to 68000 format

as dnsides in bpb

Buffer+24, sectors per track
u2i, 8086 to 68000 format

as dspt in bpb

dnsides

times dspt

as dspc in bpb

Buffer+28, number of hidden sectors
u2i, 8086 in 68000 format

as dhidden in bpb

21BM}JOS STIRQY

s[euldyuy LS MBIV

80€

FCOF26
FCOF2C
FCOF30
FCOF32
FCOF36
FCOF3A
FCOF3C
FCOF3E
FCOF40
FCOF42
FCOF44
FCOF46
FCOF4C
FCOF52
FCOF54
FCOF58
FCOF5A
FCOF60
FCOF64
FCOF66
FCOF6C
FCOF70
FCOF72
FCOF74
FCOF76
FCOF78
FCOF7A
FCOFIC
FCOF82
FCOF86
FCOF88
FCOF8A

2EBC0000168D move.l
61000602 bsr
48C0 ext.l
81EDOOle divs.w
3B400012 move . w
4247 clr.w
6016 bra
204D move.l
3247 move.w
D1C9S add.1
3247 move.w
D3FC0000167A add. 1
11690008001C move.b
5247 addg.w
BE7C0003 cmp.w
6DE4 blt
207C000009B4 move.l
326E0008 move.w
D1C9 add.l
227C000009B2 move, 1l
346E0008 move.w
D3CA add.1
1091 move.b
6704 beq
7001 moveq.l
6002 bra
4240 clr.w
227C00004DB8 move.l
346E0008 move.w
D3CA add.l
1280 move.b
200D move.,1l

#5168D, (A7)
$FC1530
DO
22(A5),D0
DO, 18 (A5)
D7
SFCOF54
A5, A0
D7,Al
Al,A0
D7,Al
#$167A,A1
8(Al),28(A0)
#1,D7
#3,D7
$FCOF3E
#$9B4, A0
8 (A6) ,Al
Al,A0
#59B2,A1
8 (A6) ,A2
A2,Al
{Al), (AO)
$FCOF7A
#1,D0
$FCOF7C
DO
#$4DB8, Al
8 (A6) , A2
A2,Al

DO, (A1)
A5, DO

Buffer+19, number of sectors on disk
u2i, 8086 to 68000 format

by dspc

as dntracks in bpb
Counter to zero

Jump to loop end
Buffer pointer

Counter

plus buffer address
Counter

Address of disk buffer
Copy byte of serial number
Increment counter
already 3 ?

No

cdev

Drive

wpstatus
Drive

Diskette status uncertain
Status certain
Drive

Save status
Address of bpb as result

31BM)JOS Snoeqy

s[euIdu] IS Leyy

60¢

FCOF8C
FCOF8E
FCOF92
FCOF94

**

FCOF96
FCOF9A
FCOF9E
FCOFA4
FCOFAG6
FCOFAS8
FCOFAA
FCOFAE
FCOFBO
FCOFB6
FCOFBA
FCOFBC
FCOFBE
FCOFCO
FCOFC®6
FCOFCA
FCOFCC
FCOFDO
FCOFD6
FCOFD8
FCOFDA
FCOFDC
FCOFE2
FCOFEA4
FCOFE®6
FCOFEC

4A0F
4CDF30C0
4ES5E
4E75

4E560000
48E70304
0C6E00020008
6D04

70F1

604C
3E2E0008
3A47
DBFC00004DB8
0C150002
6604

7002

6036
207C000009B4
47307000
6704
1ABCO001
2039000004BA
3247

D3C9

D3C9
D3FCO000C9B6
2211

9081
BOB9000029B4
6C04

tst.l
movem. 1
unlk
rts

link
movem. 1l
cmp.w
blt
moveq.l
bra
move.w
move.w
add.l
cmp.b
bne
moveq.l
bra
move.l
tst.b
beqg
move.b
move, 1l
move .w
add.1l
add.l
add. 1l
move.l
sub.1l
cmp.l
bge

(A7) +

(A7) +,D6-D7/A4-A5

A6

A6, #0
D6-D7/A5, - (A7)
#2,8(A6)
SFCOFAA
#-15,D0
SFCOFF6
8(a6),D7
D7,AS5
#54DB8, A5
#2, {(A5)
$FCOFCO
#2,D0
SFCOFF6
#$9B4, A0
0(A0,D7.w)
$FCOFDO
#1, (AS)
$4BA, DO
D7,Al
Al,Al
Al,Al
#59B6, Al
(A1) ,D1
D1,DO
$29B4,D0
SFCOFF2

Restore registers

mediach, disk changed?

Save registers
Drive number < 2 ?
Yes

'unknown device'
Error exit

Drive number

plus address of bpb

media changed, disk was changed
Error exit

wplatch

Test for drive

OK *?

Status uncertain

_hz_200

maxacctim

aIem}josS snoeqy

s[eutdu] IS 1By

0r¢

FCOFEE
FCOFFO
FCOFF2
FCOFF4
FCOFF6
FCOFF8
FCOFFC
FCOFFE

4240
6004
1015
4880
4AQF
4CDF2080
4ESE
4E75

clr.w
bra
move.b
ext.w
tst.l
movem. 1
unlk
rts

DO
SFCOFF6
(A5),DO

DO

(A7) +

(A7) +,D7/A5
A6

% Sk sk gk ok ok ke ke k Rk ok ok ok ok ok Kk ke ks ok sk ok K ok ok ok K Kk Sk kK %k Kk %k ek R ok ke ok sk ok ok kK ok kK

FC1000
FC1004
FC1008
FC1l00cC
FC1l00E
FC1010
FC1012
FC1014
FC101A
FCl01C
FC1020
FC1022
FC1026
FC1028
FC102A
FC102E

FC1032
FC1036
FC103A
FC103E
FC1040

4E560000
48ET0F04
3C2E0008
3006
EB40
48C0
2740
DBFCO0004DCE
3E86
6100FF78
3E00
BE7C0002
660A
3007
6000009C
60000096

BE7C0001
6600008E
3EBC0001
4267
4267

link
movem. 1
move .w
move ., w
asl.w
ext.1
move.l
add.1
move .w
bsr
move .w
cmp.w
bne
move.,w
bra
bra

cmp.w
bne
move.w
clr.w
clr.w

A6, #0
D4-D7/A5, - (A7)
8 (A6),D6
D6,D0O
#5,D0

DO

DO, A5
#$4DCE, A5
D6, (A7)
SFCOF96
DO, D7
#2,D7
$FC1032
b7,D0
$Fclocs
$FC10C6

#1,D7
SFC10C6
#1, (A7)
= (A7)
- (A7)

ok, disk wasn't changed

Get result

Restore registers

Test for disk change

Save registers
Drive number

times 32

plus address bpb

test media change

Changed ?
No

Diskette changed?

No

Read sector (boot sector)
Side 0

Track O

31BM]JOS SnIBqY

seudajuy IS LB}y

11¢

FC1042
FC1046
FC1048
FC104A
FC1050
FC1056
FC105C
FC105E
FC1060
FC1062
FC1064
FC1066
FCl068
FC106E
FC1070
FC1072
FC1078
FC107A
FC107C
FC107E
FC1080
FC1082
FC1084

FC1086
FC108C
FC1090
FC1092
FC1096
FC1098
FC109A
Fc109C

3F3C0001
3F06

42A7
2F3C0000167A
4EBY90OFC159E
DFFC00000010
2A00

4A85

6C10

3E86

2005

3F00
4EBY900FCO73E
548F

2A00
BABC00010000
67CO

4A85

6C04

2005

6046

4247

601C

207CC000167A
10307008
4880
1235701C
4881

B041

6704

7002

move.w
move . W
clr.l
move.l
jsr
add.l
move.l
tst.l
bge

£

move.,

=

move.
move.w
jsr
addqg.
move.
cmp.l
beq
tst.l
bge
move.l
bra

e

clr.w
bra

move.l

move.b

ext.w

move.b

ext.w
cnp.w
beqg

#1,- (A7)
D6, - (A7)
- (A7)

#$167A,- (A7)

SFC159E
#3510, A7
DO0,D5
D5
$FC1072
D6, (A7)
D5, D0
DO, - (AT)
$FCO73E
#2,A7
DO, D5
#$10000,D5
SFC103A
D5
$FC1082
D5, DO
$FC10C8
D7
$FC10A2

#$167A,A0

8 (A0,D7.w),DO

DO

28 (A5,D7.w),D1

D1
D1,DO
$SFC10A0

moveq.l #2,D0

Sector 1

Drive number

Filler

Address of disk buffer
floprd

Correct stack pointer
Save error number

OK ?

Yes

Error number

Pass to critical error handler
Correct stack pointer

Error number

Retry ?

Yes, try again

Error code

OK ?

Else error number

Error exit

clear media change status

Address of disk buffer
Serial number

compare with cld value
Match ?

Yes
Media changed

31BM1JOS SNOBQY

s[euau] LS MEIV

(485

FC109E

FC10A0
FC10A2
FC10A6
FC10AS8
FC10AA
FC10BO
FC10B2
FC10B8
FC10BA
FC10BC
FC1O0BE
FC10C4
FC10Ce6
FC10C8
FC10CA
FC10CE
FC10DO

Khkhkkkkkhk ko k ok ko ko kkk Ak kkkk Ak ALk k kR Ak kK kkk ok kok %k k% ok ok k&

FC10D2
FC10D6
FC10DA
FC10DE
FC10EOQ
FC10E4
FC10E®6
FC10ES8

FC10EC
FC10F2

6028 bra
5247 addg.w
BE7C0003 cmp.w
6DDE blt
3046 move.w
D1FC000009B4 add. 1l
3246 move.w
D3FC000009B2 add.l
1091 move.b
660A bne
3046 move.w
D1FC00004DB8 add. 1l
4210 clr.b
4240 clr.w
4A9F tst.1l
4CDF20EOQ movem. 1
4ESE unlk
4E75 rts

4E560000 link
48E70700 movem, 1
3E2E0012 move . w
3007 move.w
B0O7C0002 cmp.w
6D06 blt
70F1 moveq. 1l
60000068 bra
4A79000004A6 tst.w
6604 bne

SFC10C8

#1,D7
#3,D7
$FC1086
D6, A0
#$9B4, A0
D6,Al
#59B2,A1
(Al), (AO)
$FC10Ce6
D6,A0
#$4DB8, A0
(AO0)

DO

(A7) +

(A7) +,D5-D7/A5

A6

A6, #0
D5-D7, - (A7)
18 (A6),D7
D7,D0
#2,D0
SFC10EC
#-15,D0
SFC1152

$4A6
SFC10F8

Error exit

next byte of serial number
All three bytes tested?

No

Drive number

wplatch

Drive number

wpstatus

accept

OK

Restore registers

rwabs, read/write sector(s)

Save registers
Drive number

Less than 2 ?
ves

'unknown device!
Error exit

_nflops, floppies connected?
Yes

3IBM)JOS SNOBQY

sjeusdjuy IS LB}V

ele

FC10F4 70FE moveg.l #-2,DO0 'Drive not ready'

FC10F6 605A bra SFC1152 Error exit

FC10F8 4AAEOQOOA tst.l 10 (A6) buffer

FC10FC 6616 bne SFC1114 Address specified?
FC10FE 302EQOOQOE move.w 14 (A6),DO count, number of sectors
FC1102 227C00004DB8 move.l #S$4DB8,Al Base address

FC1108 346E0012 move.w 18 (A6),A2 Drive number

FC110C D3CA add.l A2,Al add

FC110E 1280 move.b DO, (Al) Sector counter

FC1110 4280 clr.1 DO OK

FC1112 603E bra SFC1152 Done

FC1114 OC6E00020008 cmp.w #2,8(A6) rwflag, ignore media change ?
FC111lA 6&ClC bge $FC1138 Yes

FC111C 3E87 move.w D7, (A7) Drive number

FC111lE 6100FEEO bsr SFC1000 was disk changed?

FC1l122 48CO ext.l DO

FCl124 2C00 move.l DO,D6 Save error code

FCli2o 4A86 tst.l D6

FC1128 670FE beg $FC1138 Not changed, OK

FC112A BCBC0O0000002 cmp.l #2,D6 Definitely changed?
FC1130 6602 bne SFC1134 Yes

FC1132 7CF2 moveq.l #-14,D6 'Diskette was changed'
FC1134 2006 move.l D¢,D0

FC1136 601A bra SFC1152 Error exit

FC1138 3EAEOQOOCE move.w 14 (A6), (A7) count, number of sectors
FC113C 3F07 move.w D7,-(A7) Drive number

FC113E 3F2E0010 move.w 16 (A6),- (A7) recno, first sector number
FC1142 2F2EOO00A move.l 10(A6),- (A7) buffer

FC1146 3F2E0008 move.w 8(A6),-(A7) rwflag, read/write

21BM]J0S SNdBQY

s[ewIu] LS LBV

1489

FCl14A
FCl14cC
FC1152
FC1154
FC1158
FC115A

KA KK I kAR KA KA AR KKK A AT XA I KA KK Ak kkk ok kkkk ok Kk k& ok &k ok Kk kk &k k% %%k

FC115C
FC1160
FC1164
FClle8
FC11l6A
FClleC
FC116E
FC1174
FC117A
FC1l17C
FC117E
FC1180
FC1182
FC1186
FC118A
FCl18C
FC118E
FC1192
FC1196

FC119A
FC119E
FC11A0
FCl1lAe6

6110
DFFC0000000A
4A9F
4CDFOO0OCO
4ESE

4E75

4E56FFFA
48E73F04
302E0010
EB40

48C0

2A40
DBFCO0004DCE
082E0000000D
6604

4240

6002

7001
3D40FFFE
4A6D0016
660A

7009
3B400016
3B400018
60000180

4A6EFFFE
6708
203C0000167A
6004

bsr $FC1l15C
add.l #3SA, A7
tst.l (A7) +
movem.l (A7)+,D6-D7
unlk A6

rts

link A6, #-6
movem.l D2-D7/A5, - (A7)
move.w 16(A6),D0
asl.w #5,D0

ext.l DO

move.l DO,AS

add. 1 #$4DCE, AS
btst #0,13(A6)

bne SFC1180
clr.w DO
bra SFC1182

moveq.l #1,DO0
move.w DO,-2(A6)
tst.w 22 (A5)
bne SFC1196
moveq.l #9,DO0
move.w DO0,22(AS5)
move.w DO,24 (Ab5)
bra $FC1318

tst.w -2 (A6)

beg $FC11A8
move.l #$167A,D0
bra SFC11AC

floprw
Correct stack pointer

Restore registers

floprw, read/write sector(s)

Restore registers
Drive number
times 32

plus base address bpb
Buffer address odd?
Yes

Clear odd flag

Set odd flag
And save
dspc set ?
Yes

Else use 9
as dspt

and dspc

to loop end

Odd flag set?
No
Address of disk buffer

3IBM)JOS SnoeqQY

s[eutdjuy LS He)y

Sle

FC11A8 202E0C00A move.l 10(A6),DO Get buffer address

FC11AC 2D4OFFFA move.l DO,-6(A6) and save

FC11BC 3C2ECQ0E move.w 14 (A6),D6 recno, loglcal sector number
FC11B4 48Ce ext.l D6

FC11B6 8DEDOC16 divs.w 22(A5),D6 divided by dspc yields track number
FC11BA 382EOQ00FE move.w 14 (A6),D4 recno, logical sector number
FC11BE 48C4 ext.l D4

FC11CO 89EDOOL6 divs.w 22(A5),D4 divided by dspc, sectors per track
FC11C4 4844 swap D4 Remainder of division as sector number
FC11Ce B86D0018 cmp. W 24 (A5) ,D4 Compare with dspt

FC11CA 6C04 bge SFC11DO Greater than cor equal?

FCl1CC 4245 clr.w D5 Side 0

FC11CE 6006 bra SFC11D6

FC11DO 7A01 moveq.l #1,D5 Side 1

FC11D2 986D0018 sub.w 24 (AS5),D4 Subtract dspt

FC11D6é6 4A6EFFFE tst.w -2 (Ab6) Odd-flag set?

FC11DA 6704 beq $FC11EQ No

FC11DC 7601 moveq.l #1,D3 Set counter to one

FC11DE 6018 bra SFC11F8

FC11EQ 302D0018 move.w 24 (A5),DO dspt

FC11E4 9044 sub.w D4,D0 minus sector number

FC11lE6 BO6E0O012 cnp.w 18 (A6),DO Compare with number of sectors
FC11EA 6C08 bge SFC11F4 Greater or equal?

FC11EC 362D0018 move.w 24 (A5),D3 dspt

FC11F0 9644 sub.w D4,D3 minus sector gumber equals counter
FC11F2 6004 bra SFC11F8

FC11F4 362E0012 move.w 18(A6),D3 Number of sectors as counter
FC11F8 5244 addq.w #1,D4 Increment sector number (first sector # = 1)
FC11FA 082E00000009 bt st #0, 9 (A6) Test rwflag

FC1200 67000080 beq $FC1282 Read ?

FC1204 202EFFFA move.l -6(A®6),DO Buffer pointer

FC1208 BOAECOOA cmp. 1l 10 (A6),DO Equals specified buffer address?

31BM}JOS SNIBQY

s[euwIdu] IS 1B}y

9I¢

FCl20C
FC120E
FCi212
FC1216
FCl21C
FC121E
FC1220
FC1l222
FC1224
FC1226
FC122A
FCci122cC
FC1230
FC1236
FCl23C
FC123E
FC1240
FC1242
FC1248
FCl1l24A
FC1l24C
FC124E
FC1250
FC1252
FC1256
FC1258
FC125E
FCl264
FC126A
FCl26C

6710
2EAEFFFA
2F2EQO00A
4EB90OFCOADG
588F

3E83

3F05

3F06

3F04
3F2E0010
42A7
2F2EFFFA
4EB90OFC167C
DFFC00000010
2E00

4A87

663E
427900000444
6736

3E83

3F05

3F06

3F04
3F2E0010
4277
2F3C0000167A
4EBOOOFC18CE
DFFC00000010
2E00

4A87

move.l
tst.1l
bne
tst.w
beg

SFC121E

-6 (A6), (AT)
10 (A6) , - (A7)
$FCOAD6

#4, A7

D3, (A7)
D5, - (A7)
D6, - (A7)
D4, - (A7)

16 (A6) ,~ (A7)
- (A7)
~6(A6),- (A7)
$FC167C
#$10,A7

DO, D7

D7

$FC1280

$444

$FC1280

D3, (A7)
D5, - (A7)
D6, - (A7)
D4, - (A7)

16 (A6) ,— (A7)
-(A7)
#5167A, - (A7)
SFC18CE
#510,A7

Do, D7

D7

Yes

Source address
Destination address
Fastcopy, copy sector
Correct stack pointer
Number of sectors

Side

Track

Sector

Drive

Filler

Buffer

flopwr, write sector(s)
Correct stack pointer
Error code

OK ?

No

_fverify, verify ?

No

Number of sectors

Side

Track

Sector

Drive

Filler

Address of disk buffer
flopver, verify sectors
Correct stack pointer
Error code

OK ?

aIeMl]jog smeqy

sjeusdu] IS HUeyy

L1g

FC126E
FC1270
FC1l276
FC127A
FC127C
FC127E
FC1280
FC1282
FC1284
FC1286
FC1288
FC128A
FC128E
FC1290
FC1294
FC129A
FC12A0
FC12A2
FC12A6
FC12AA
FC12AC
FC12BO
FC12B4
FC12BA
FC12BC
FC12BE
FC12C0
FC12C4
FC12C6
FCl2cC8
FC12CE
FC12D0

6610
2EBCO0000167A
610002B8
4A40

6702

7EFO

603A

3E83

3F05

3F06

3F04
3F2E0010
42477
2F2EFFFA
4EBY0OFC159E
DFFC00000010
2EQ00
202EFFFA
BOAEOOOA
6710
2EAECQOOA
2F2EFFFA
4EB90OFCOADSG
588F

4A87

6C32
3EAE0010
2007

3F00
4EB9QOFCO73E
548F

2EQO

bne
move.l
bsr
tst.w
beq
moveq.l
bra
move.
move.
move.
move.
move.,
clr.1l
move, 1l
jsr
add.l
move.l
move.l
cmp.l
beq
move.l
move.l
jsr
addqg.l
tst.1l
bge
move.w

¥ £ £ 5 =

move.1l
move.w
jsr

addg.1l
move.1l

$FC1280
#$167A, (A7)
$FC1530

DO

$FC1280
#-16,D7
SFC12BC

D3, (A7)
D5, - (A7)
D6, - (A7)
D4, - (A7)

16 (A6) ,~ (A7)
~ (A7)

-6 (A6),-(AT)
SFC159E
#$10,A7

DO, D7

-6 (A6) ,DO0
10(A6),DO
$FC12BC

10 (A6), (A7)
-6 (A6) ,~ (A7)
$FCOAD6
#4,A7

D7

SFC12F2

16 (A6), (A7)
D7,DO0
DO, - (A7)
SFCO73E
#2,A7

DO, D7

No

Address of the disk buffer

u2i, convert 8086 integer to 68000 format
Bad sector list

No errors during verify?

'Bad sectors'

Number of sectors
Side

Track

Sector

Drive

Filler

Buffer

floprd, read sector(s)
Correct stack pointer
Error code

Buffer used

Equals desired buffer?
Yes

Source address
Destination address
Fastcopy, copy sector
Correct stack pointer
No error?

OK

Drive number

Error code

critical error handler
Correct stack pointer
Save error code

31BM}JOS SNOBQY

s[ewidu] IS HEyy

81¢

FC12D2
FC1l2D8
FCL2DA
FC12EQ
FC12E2
FC12E6
FC12EA
FC12EE
FC12F0
FC12F2
FC12F8
FC12FC
FC12FE
FC1300
FC1302
FC1304
FC1306
FC1308
FC130A
FC130C
FC1310
FC1314
FC1318
FC131C
FC1320
FC1322
FC1324
FC1328
FC132A

0C6E00020008
6C18
BEBC00010000
6610
3EAEQ010
6100FD18
B07C0002
6602

TEF2
BEBC00010000
6700FF00
4A87

6C04

2007

601E

3003

48C0

7209

E3AQ0
D1AEQOOOA
D76EQOOCE
976E0012
4A6E0012
6600FE7C
4280

4A9F
4CDF20F8
4ESE

4E75

cmp.wW
bge
cmp.l
bne
move.w
bsr
cmp.wW
bne
moveq.l
cmp. 1
beqg
tst.l
bge
move.l
bra
move .w
ext.l
moveq.l
asl.l
add.l
add.w
sub;w
tst.w
bne
clr.1
tst.1l
movem. 1
unlk
rts

#2,8 (A6)
SFC12F2
#$10000,D7
$FC12F2
16(A6), (A7)
$FC1000
#2,D0
$FC12F2
#-14,D7
#$10000,D7
$FC11FA

D7

SFC1304
D7,D0
$FC1322
D3,D0

Do

#9,D1
D1,DO
DO, 10 (A6)
D3,14 (A6)
D3,18(A6)
18 (A6)
$FC119A
DO

(A7) +

(A7) +,D3-D7/A5
A6

K% g Kk Kk %Kk ok kT Kk Kk Kk R Kk K kR ok ok e ok Kk ok ok ok Kk ok R ok kR ok ok e ke ok ok ok ok e ok Sk ek ke ok ok ok ok ok

FC132C

4E56FFFC

link

A6, #-4

rwflag, ignore media change ?

Yes

Retry ?

No

Drive number
Diskette change ?
Definitely changed?
No

'media changed!'
Retry ?

Yes, try again
Error code

OK ?

Error ccde

To error exit
Sector counter

times 512
Increment buffer address

Logical sector number plus sector counter
Decrement number of sectors to process

Still sectors to process?
Yes
OK

Restore registers

random, generate random numbers

31BM}JOS Sndeqy

sjeusduy LS 18}y

61¢

FC1330
FC1336
FC1338
FC133E
FC1340
FC1342
FC1348
FC134E
FC1354
FC135A
FC1360
FC1362
FC1364
FC136A
FC1370
FC1372
FC1378
FC137A

s % ok kK Kk Kk gk keok gk ok ok ok 3k sk sk ok sk ok ok ok ok ok ke ok 3k gk Sk sk ok ok sk ke ok ok ok o ok ok ok ke ok ok ke ok ke ke ok ek ke ke ok

FC137C
FC1380
FC1384
FC138A
FC1390
FC1392
FC1394
FC1396
FC1398
FC139A
FC13A0
FC13A2

4AB9000029B8
6616
2039000004BA
7210
E3A0
80B9000004BA
23C0000029B8
2F3CBB40E62D
2F39000029B8
4EBSOOFC4BE4
508F
5280
23C0000029B8
2039000029B8
E080
COBCOOFFFFFF
4ESE
4E75

4E560000
48E70300
4EBS00OFCOAF8
4A79000004A6
6704

7001

6002

7002

3E00
4A79000004A6
6744
0C79000200000446

tst.l
bne
move.l
moveq.l
asl.1
or.l
move.l

—

move.

—

move.
jsr

addqg.
addqg.
move.
move.
asr.l
and. 1l
unlk
rts

e el

link
movem. 1
jsr
tst.w
beg
moveq. 1l
bra
moveq.l
move.,w
tst.w
beg
cmp.w

$29B8
$FC134E

$4BA,DO

#16,D1

D1,DO

$4BA, DO

DO, $29B8
#3141592621, (A7)
$29B8, - (A7)
SFC4BE4

#8,A7

#1,D0

DO, $29B8
$29B8,D0

#8, DO
#$FFFFFF, DO

A6

A6, #0
D6-D7,- (A7)
SFCOAFS8
$4A6
SFC1396
#1,D0
$FC1398
#2,D0
DO, D7
$4A6
SFC13E6
#2,5446

Last random number
Not zero?
_hz 200

<< 16
_hz 200
Use as start value

Last random value
Long multiplication
Correct stack pointer
plus

as new start value
Result

>> 8

Clear bits 24-31

hdv_boot, load boot sector

Save registers

hdv_init, initialize drive
_nflops

No drive connected?
‘couldn't load’

'no drive'
Save error
_nflops

No drive?

_bootdev

31BM}JOS SNOBQY

s[eusduy IS 1I€}Y

0ce

FC13AA
FC13AC
FC13BO
FC13B2
FC13B4
FC13B8
FC13BE
FC13C0O
FC13Ce6
FC13CC
FC13D2
FC13D4
FC13D6
FC13D8
FC13DA
FC13EO
FC13E2
FC13E4
FC13E6
FC13ES8
FC13EA
FC13EC
FC13EE
FC13F2
FC13F8
FC13FC
FC13FE
FC1402
FC1404
FC1406
FC1408
FC140A

6C3A
3EBC0001
4267

4267
3F3C0001
3F3900000446
42477
2F3C0000167A
4EB90OFCL59E
DFFC00000010
4A80

6604

4247

600C
4A39000009B2
6604

7003

6024

4A47

6704

3007

601C
3EBC0100
2F3C0000167A
61000106
588F
B07C1234
6604

4240

6002

7004

4A9F

bge
move .w
clr.w
clr.w
move . w
move.w
clr.1l
move.l
jsr
add.l
tst.l
bne
clr.w
bra
tst.b
bne
moveq.l
bra
tst.w
beq
move.,w
bra
move ., w
move.l
bsr
addqg.l
cmp.w
bne
clr.w
bra

$FC13E6
#1, (A7)

- (A7)

- (A7)

#1,- (A7)
$446,- (A7)
-{A7)
#$167A,- (A7)
SFC159E
#510,A7

DO
$FC13DA
D7
$SFC13E6
$9B2
$FC13E6
#3,D0
SFC140A
D7

SFC13EE
D7,D0
SFC140A
#5100, (A7)
#$167A,- (A7)
$FC1500
#4,A7
#$1234,D0
$FC1408
DO
$FC140A

moveq.l #4,D0

tst.l

(A7) +

No diskette?

One sector

Side O

Track 0

Sector 1

_bootdev

Filler

Address of disk buffer
floprd, read sector
Correct stack pointer
Error ?

Yes

Clear error code

wpstatus
'unreadable’

Error ?
No
Get error code

$100 words

Address of disk buffer
Calculate checksum
Correct stack pointer
magic for boot sector?
No

OK

'not valid boot sector!

21eM}JOS SnIBqQY

sfewIdjuy IS HEY

1c¢

FC140C 4CDF0080
FC1410 4ESE
FC1412 4E75

Kk Kk %k %k %k %k ok ok ok k ok ok ke sk Kk sk ko k sk K %k Sk sk sk ok ke 3k 3k sk ok %k ok ok ok ok 3k %k ke ke 3k Rk %k ok kR kR ok ok ko ok ok

FC1414 4E56FFFA
FC1418 48E70704
FC141C 4A6E0012
FC1420 6C1lE
FC1422 3EBC0100
FC1426 2F2E0008
FC142A 610000D4
FC1l42E 588F
FC1430 B07C1234
FC1434 6704
FC1436 4240
FC1438 6002
FC143A 7001
FC143C 3D400012
FC1440 4AAEOQ0OC
FC1444 6D3E
FC1446 202E000C
FC144A BOBCOOFFFFFF
FC1450 6F08
FC1452 6100FEDS8
FC1456 2D40000C
FC145A 4247
FC145C 6020
FC145E 202E000C
FCl1462 COBCOOOOOOQFF
FC1468 3247
FC146A D3EE000S8

movem. 1
unlk
rts

link
movem. 1l
tst.w
bge
move . w
move.l
bsr
addqg.1l
cmp.w
beq
clr.w
bra
moveq.l
move ,w
tst.l
blt
move.l
cmp.l
ble
bsr
move.l
clr.w
bra
move,l
and. 1
move . w
add.1l

(A7) +,D7
A6

A6,#-6
D5-D7/AS5, - (A7)
18 (A6)
SFrC1440
#5100, (A7)
8 (A6), - (A7)
$FC1500
#4,A7
#$1234,D0
SFC143A

DO

$FC143C
#1,D0
DO, 18 (A6)
12 (A6)
SFC1484

12 (A6),DO
#SFFFFFF, DO
$FC145A
S$FCl32C
DO, 12 (A6)
D7

SFCl47E

12 (A6) ,DO
#SFF, DO
D7,Al

8 (A6),Al

Restore registers

proto_bt, generate boot sector

Restore registers

Test execflg

Preserve executability

$100 words

Address of the sector buffer
Calculate checksum

Correct stack pointer

magic for boot sector?

Yes

Not executable

Executable

execflg

Serial number

Negative, don't change
Serial number

> SFFFFFF ?

No

rand, create random number
as serial number

Clear counter

Serial number

Bits 0-7

Pointer to next byte in buffer
plus buffer address

Jremijos snoeqy

s[eusajuy LS ey

(445

FC146E
FC1472
FCl476
FC1478
FC147C
FC147E
FC1482
FC1484
FC1488
FC148A
FC148E
FC1492
FC1494
FC1496
FC1498
FC1l49C
FC149E
FC14A4
FC14A8
FC1l4AA
FC14AC
FC14B0
FC14B2
FC14B6
FC14BC
FC14BE
FC14C2
FCl4C4
FC14C8
FCl4cCcC
FC14DO0
FC14D6

13400008
202E000C
E080
2D40000C
5247
BE7C0003
6DDA
4A6EQ0010
6D28
3C2E0010
CDFC0013
4247
6016
3047
D1EEQOO8
3246
D3FCOOFD1B60
1151000B
5246
5247
BE7C0013
6DEA4
426EFFFA
2D6EOOOSFFFC
600E
206EFFFC
3010
D16EFFFA
54AEFFFC
202E0008
DOBCOOGOOLFE
BOAEFFFC

move .b
move.l
asr.l
move.l
addqg.w
cmp ., w
blt
tst.w
blt
move . w
muls.,w
clr.w
bra
move .w
add.1l
move.w
add.1l
move.b
addg.w
addg.w
cmp.w
blt
clr.w
move.l
bra
move.l
move.w
add.w
addg.l
move,1l
add.l
cmp.l

DO, 8 (A1)
12 (A6),DO
#8,D0
DO, 12 (A6)
#1,D7
#3,D7
$FC145E
16 (A6)
$FC14B2
16 (A6) ,D6
#$13,D6
D7
$FC14AC
D7,A0
8(A6) ,A0
D6,Al
#SFD1B60,Al
(A1), 11 (A0)
#1,D6
#1,D7
#$13,D7
$FC1496
-6 (A6)
8(A6) , -4 (A6)
$Fcl4cce
-4 (A6) ,AC
(A0), DO
DO, -6 (A6)
#2,-4 (A6)
8 (A6) , DO
#S$1FE, DO
-4 (A6),DO

Byte of the serial number in buffer
Serial number
>> 8

Increment counter

already 3 ?

No

Disk size

Negative, don't change

Disk size

times 19 equals pointer to prototype bpb
Clear counter

Counter

plus buffer address

Disk size

plus address of the prototype bpb
Copy bpb

Increment counter
already 19 ?
No

Buffer address

Buffer address

Get word from buffer
Add to checksum

Next word

Buffer address

plus $1FE

Last word?

31eM}JOS SNORQY

sjeusdju] IS LB}y

€Ce

FC14DA
FC14DC
FC14EC
FC14E4
FC14E8
FC14EA
FCLl4EE
FC14F0
FC1l4F4
FC14F6
FC14F8
FC1l4FC
FC14FE

62E2
303C1234
906EFFFA
226EFFFC
3280
4A6E0012
6606
206EFFFC
5250
4A9F
4CDF20CO
4ES5E
4E75

bhi
move.w
sub.w
move.l
move ., w
tst.w
bne
move.l
addg.w
tst.l
movem. 1
unlk
rts

$FC14BE
#51234,D0
-6(A6),D0
-4 (A6) ,Al
DO, (Al)
18 (A6)
SFC14F6
-4 (A6) ,A0
#1, (AO)
(A7) +
(A7) +,D6-D7/A5
A6

Kokkkkkkkdkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk kXXX X*kk kX kkkkkxkx

FC1500
FC1504
FC1508
FC150A
FC150C
FC1510
FC1512
FC1514
FC1518
FC151C
FC1520
FC1522
FCl1524
FC1526
FC1528
FC152C
FC152E

4E560000
48E70300
4247
600C
206E0008
3010
DE40
54AE0008
302E000C
536E000C
4740
66E8
3007
4A9F
4CDFO0080
4ES5E
4E75

link
movem. 1l
clr.w
bra
move.1l
move ,w
add.w
addqg.l
move .w
subg.w
tst.w
bne
move.,w
tst.l
movem. 1l
unlk
rts

A6, #0
D6-D7, - (A7)
D7
$FC1518

8 (A6), A0
(A0) , DO
Do, D7
#2,8(R6)
12 (A6),DO
#1,12(A6)
DO
$FC150C
D7,DO0
(A7) +
(A7) +,D7
A6

No
Checksum for boot sector

subtract from previous value

Checksum in buffer
execflg
Boot sector executable?

Increment checksum, not executable

Restore registers

Calculate checksum

Restore registers
Clear sum

To loop end

Address of the buffer
Get word

sum

Increment buffer address
Number of words

minus 1

All words added?

No

Result to DO

Restore registers

31BM}JOS SIOBQY

sjewIdjuy LS LBV

1 (49

Jk Sk ok ok ok Kok kK Sk ok sk sk %k ok ok ok ok ok ok e sk ok ok %k sk sk ok kK ok Kk k ok ok ok ok ok kK kR ke kR ok ok R ok R R kR

FC1530
FC1534
FC1538
FC153C
FC153E
FC1542
FC1544
FC1548
FC154A
FC154C
FC1550
FC1552
FC1554

% o e ok gk ke ok kK Kk kK Kk ok %k ke ok Sk ok ok ok 3k ok sk %k ok ok ok ok ok vk ok ok ok ok ok ok ok ok ke ok ok ke ok Rk ok ok ok ok

FC1556
FC155C
FC1560
FC1562
FC1l568
FC1570
FC1572
FC1576
FC157A
FC157E
FC1584
FC1588
FC158A
FC158C
FC1590
FC1592

4ES56FFFC
206E0008
10280001
4880
CO7COOFF
E140
226E0008
1211
4881
C27CO0FF
8041
4ES5E
4E75

43F900000A06
4A6F000C
6706
43F300000A0A
3379000004400002
T0FF
42690000
610004BC
61000698
337CFF000000
6100061A
670C

TEQA
610005A0
6608
6100060C

link
move.l
move.b
ext.w
and.w
asl.w
move.l
move.b
ext.w
and.w
or.w
unlk
rts

lea
tst.w
beq

lea
move,w
moveq. 1l
clr.w
bsr

bsr
move.w
bsr

beq
moveq.1l
bsr

bne

bsr

A6, #-4

8 (A6), A0
1(A0), DO
DO

#$FF, DO
#8,D0

8 (A6),Al
(Al),D1
D1
#SFF,D1
D1,DO

A6

$A06,A1

12 (A7)
$FC1568
$AOA, Al
$440,2 (Al)
#-1,D0
(A1)
SFC1A34
SFC1C14
#SFF00, (A1)
SFC1BAO
$FC1596
#10,D7
SFC1B2E
$FC159A
$FC1BAO

u2i, 8086 integer to 68000 format

Address of the number
Hi byte

Isclate bits 0-7
Shift to bits 8-15
Address of the number
Gte lo-byte

Isolate bits 0-7
Combine with high byte

flopini, initialize drive
Address of dsb0

Drive A ?

Yes

Else address of dsbl

Seek rate in dsb

Default error number

Track number to zero
floplock, set parameters
select, select drive and side
Track number negative, invalid
restore, track zero

OK, flopok

Track 10

hseek, find track

Error, flopfail

restore

31BM1JOS Snoeqy

s[ewsdjuy LS 1ie}y

Y4Y

FC1596
FC159A

67000542
60000530

beq
bra

SFC1ADA
SFC1ACC

***********************‘k****************‘k***************

FC159E
FC15A2
FC15A4
FC15A8
FC15AC
FC15B0
FC15B4
FC15BC
FC15C0
FC15C4
FC15C8
FC15D0
FC15D4
FC15D8
FC15DC
FC15E2
FC15E6
FC15EE
FC15F0
FC15F2
FC15F4
FC15FC
FC1604
FC160C
FC1610
FCl1612
FC1616
FCl618

6100071E

T0F5

6100048E
6100066A
610005CC
66000090
33FCFFFFOQ0009EQ
3CBC0O090
3CBC0190
3CBC0090
33EDOOCAFFFF8604
3CBC0O080
3E3C0090
610006B6
2E3C00040000
246D09DO
08390005FFFFFAQOL
6734

5387

6724
1B79FFFF860909DB
1B79FFFF860B09DC
1B79FFFF860D09DD
B5EDO9DA

6ED4

610005E6

600C
3B7CFFFEOSEQ

bsr
moveq.l
bsr
bsr
bsr
bne
move.w
move.w
move.w
move.w
move.w
move.w
move.w
bsr
move.l
move.l
btst
beq
subg.1l
beq
move.b
move.b
move.b
cmp. 1l
bgt
bsr
bra
move.,w

$FC1CBE

#-11,D0

SFC1A34

$FC1C14

SFC1B7A

$FC1642

#-1,%9E0

#3590, (A6)

#5190, (A6)

#3590, (A6)

$9CA (A5) , SFFFF8604
$#$80, (A6)

#5$90,D7

$FC1C90

#540000,D7

$9D0 (A5) ,A2

#5, SFFFFFAOL
S$FC1624

#1,D7

$FC1618
$FFFF8609, $9DB (A5)
$FFFF860B, $9DC (A5)
SFFFF860D, $9DD (A5)
$9DA (A5) , A2
$FC15E6

$FC1BFA

$FC1624

#-2,59E0 (A5)

0K, flopok
flopfail

floprd, read sector(s) from disk
change, test for disk change
Read error as error number
floplock, set parameters

select, select drive and side
go2track, find track

Try again if error

General error

Clear DMA status, select read

ccount, sector counter
Select 1772

Read multiple sectors
wdiskctl, pass D7 to 1772
Timeout counter

edma, end address for DMA
mfp gpip, 1772 done ?

Yes

Decrement counter

Timeout ?

DMA address
End address reached?
No

reset, end transfer

Drive not ready

d1EM}jOg SNIBQY

sjewsdu] LS HENY

9te

FClelE
FCl622
FCl624
FCl628
FC1l62A
FC162E
FC1630
FC1634
FC1638
FCl63C
FC1640
FCle642
FCl648
FCl64A
FC164E
FC1652
FC1656

e Kk Kk e Kk ok ok ok ke ok ok ek ke ok ok ok ok gk sk ok ok Sk ok %k ok sk %k K ok ok Kk k ok ok ok sk ok ok sk ok kK ok ek ok ok ke ok

FC165A
FC165C
FC1660
FC1662
FCl664
FCl668
FCl66A
FClée6C
FC1670
FCl672
FCl6é76
FCl67A

610005DA
601E
3CBC0090
3016
08000000
6712
3CBC0O080
6100066E
c03co0018
6700049C
6118
0C6D000109BO
6604
610004FA
536D09BO
6A00FF54
60000474

72F3
08000006
6614
72F8
08000004
660C
72FC
08000003
6704
322D0O9DE
3B4109E0
4E75

bsr
bra
move . w
move . w
btst
beqg
move.w
bsr
and.b
beq
bsr
cmp.w
bne
bsr
subg.w
bpl
bra

moveq.l
btst
bne
moveq.l
btst
bne
moveq.l
btst
beq
move.w
move.w
rts

SFC1BFA
SFC1642
#$90, (A6)
(A6) ,DO

#0, D0
$FC1642
#$80, (A6)
SFC1CA4
#$18,D0
SFC1ADA
$FC165A
#1,39B0 (A5)
SFC164E
SFC1B46
#1,5$9B0(A5)
SFC15A8
SFC1ACC

$#-13,D1
#6,D0
$FC1676
#-8,D1
#4,D0
$FC1676
#-4,D1
#3,D0
$FCl676
$9DE (A5) ,D1
D1, $9EO (A5)

reset, end transfer

Select DMA status register
Read status

DMA error ?

Yes, try again

Select 1772

rdiskctl, read status register
Isclate RNF, CRC and Lost Data
No error, flopok

errbits, determine error number
retrycnt to second attempt?

No

ressek, home and seek
Decrement retrycnt

Another attempt?

No, flopfail

errbits, create floppy error number
Diskette write-protected
Write protect ?

Yes

Sector not found

Sector not found ?

Yes

CRC Error

CRC Error ?

No

Default error

3JBM}JOS SNIBqY

S[euajuy IS 1iepy

LTE

ok % K Kk ek k Kk K Kk kK Kk K ok ok K %k ok ok ok kK kR ok ok e ok ok K ok 3k kK ok gk ke ok ok ok ok ok ok ok ok ok ok ok 3k

FC1l67C
FC1680
FC1682
FC1686
FC168A
FC168C
FC1690
FC1694
FC1696
FC1698
FCl69C
FC16A0
FC16A4
FC16A8
FC16AE
FC16B2
FC16B6
FC16BA
FC1l6BE
FCl6C2
FC1l6C6
FC1l6CA
FC16CE
FCl6D4
FC16éDC
FC16DE
FC16EQ
FC16E2
FC16E6
FC16ES8

61000640
TOF6
610003B0O
302D09C6
5340
806D09C4
806D09C8
6606
7002
6100065C
61000576
610004D8
6600007E
3B7CFFFFO09EQ
3CBC0190
3CBC0090
3CBCO0190
3E3C0001
610005D0
3CBCO180
3E3CO00AQ
610005C4
2E3C00040000

08390005FFFFFAOL

670A
5387
66F2
61000516
6034
3CBC0180

bsr

moveq.l

bsr

move,
subqg.

or.vw
or.w
bne

moveq.1l

bsr
bsr
bsr
bne

move.
move.
move.
move.
move.

bsr

move.
move.

bsr

move.,

btst
beqg

subqg.

bne
bsr
bra

move.

W
w

£ % % = =

)

SFC1CBE
#-10,D0
S$FC1A34
$9C6 (A5) , DO
#1,D0

$9C4 (A5) ,DO
$9C8 (A5),DO
$FC169C
#2,D0
$FC1CF6
$FC1C14
SFC1B7A
SFC1724
#-1,S$9E0 (AS5)
#5190, (A6)
#$90, (A6)
#5190, (A6)
#1,D7
$FC1C90
#5180, (A6)
#SA0,D7
$FC1C90
#$40000,D7
#5, SFFFFFAOL
SFC16E8
#1,D7
SFC16D4
SFC1BFA
SFC171C
#5180, (A6)

flopwr, write sector(s) to disk
change, test for disk change
Write error as default error
floplock, set parameters

csect, sector number 1 ?

ctrack, track number 0

cside, side 0 ?

No, not boot sector

media change

Set to 'unsure'

select, select track and side
go2track, find track

Error, try again

currerr to default

Clear DMA status, to write

Sector count register
wdiskctl, D7 to 1772
Select 1772

Write sector

wdiskctl, D7 to 1772
Timeout counter

mfp gpip, 1772 done ?

Yes

Decrement timeout counter
Timeout?

reset, terminate transfer
Next try

Select 1772

31BM)JOS SNIBqQY

sjewuy IS He)y

e

FCl6EC
FCle6FO0
FClér4
FCléers
FCleéFC
FC1700
FC1702
FC1706
FC170E
FC1712
FC1716
FC171A
FC171C
FCl722
FCl1724
FC1l728
FCil72C
FC1730

% Kk KKk kK kK K Kk Kk ok %k %k kK ok sk ok ok %k ok ke %k ke %k %k ok ke gk %k %k ok %k ok ke ok ok ok ok ok ok ok kK ok ok ok ke kK kK

#5$87654321,22 (A7)

FC1734
FC173C
FC1740
FC1744
rCl746
FC174A
FC174E
FC1754
FC175A
FC1760
FCl762
FC1766

610005B6
6100FF68
08000006
660003D2
C03C005¢C
661A

526D09C6

06AD0000020009CC

536D09CA
670003C6
61000524
608C
0C6D000109B0O
6604
61000420
536D09BO
6A00FF6E
6000039A

OCAF876543210016

6600038E
6100057C
70FF
610002EC
610004C8
3B6FOQ0OEQO9D4
3B6F001409D6
3B6F001A09D8
7002
61000592
610003C0

bsr
bsr
btst
bne
and.b
bne
addg.w
add. 1l
subg.w
beq
bsr
bra
cmp.w
bne
bsr
subg.w
bpl
bra

cmp. 1l
bne

bsr
moveq. 1l
bsr

bsr
move.w
move.w
move.w
moveq.l
bsr
bsr

SFC1CA4
$FC165A
#6,D0
$FC1ACC
#35C, DO
SFC171C
#1,59C6 (A5)
#512, $9CC (A5)
#1, $9CA(A5)
$SFC1ADA
$FC1C3C
$FC16A8

#1, $9BO (A5)
$FC1728
$FC1B46

#1, $9BO(A5)
$FC169C
$FC1ACC

$FC1ACC
SFC1CBE
#-1,D0

SFC1A34
$FCicl4

14 (A7) ,59D4 (A5)
20 (A7) ,$9D6 (A5)
26 (A7) ,$9D8 (AS)

#2,D0
$SFC1CF6
$FC1B28

rdiskctl, read status register
errbits, calculate error number

write protect ?

flopfail, no further attempt

write protect, RNF, CRC and Lost Data
Error, try again

csect, increment sector number

cdma, DMA address to next sector
ccount, decrement number of sectors
All sectors, done, flopok

selectl, sector number and DMA pointer
Write next sector without seek
retrycnt, second try?

No

reseek, home and seek

retrycnt, decrement try counter
Another try?

No, flopfail

flopfmt, format track

Magic number ?

No, flopfail

change, test for disk change
Default Error Nummer
floplock, set parameters
select, select drive and side
spt, sectors per track
interlv, interleave factor
virgin, sector data for formatting
'changed'

Diskette changed

hseek, search for track

aIeM)JOS SnOBQY

s[ewsduy IS LBy

6C¢

FC176A
FC176E
FC1774
FC177A
FC177C
FC1780
FC1786
FC178C
FC1790
FC1794
FC1796
FC179A
FC17A0

Adkkkkkkkkkkkhkkkkkhkkkkkkkkkkdkkkkkkx

FC17A4
FC17AA
FC1l7AE
FC17B2
FC17B6
FC17BA
FC17BE
FC17CO
FC17C4
FC17Cé6
FC17CA
FC17CE
FC17D2
FC17D6
FC17DA
FC17EQ
FC17E6

66000360
336D09C40000
3B7CFFFFO9EOQ
6128
6600034E
3B6D09D403CA
3B7C0001093C6
6100015C
246D09CC
4752
67000342
3B7CFFFO09EO
6000032A

3B7CFFF609DE
363C0001
246D0SCC
323C003B
103C004E
6100010A
3803
323C000B
4200
610000FE
323C0002
103CO0FS5
610000F2
14FCOOFE
14F9000009C5
14F9000009C9
14C4

bne
move . W
move .w
bsr
bne
move . W
move . w
bsr
move .l
tst.w
beqg
move.w
bra

move . w
move.w
move.l
move.w
move.b
bsr
move .w
move . w
clr.b
bsr
move.w
move.b
bsr
move.b
move.b
move.b
move.b

$SFC1ACC

$9C4 (AS), (Al)
#-1, $9EO0 (AS)
SFC17A4
$FC1ACC

$9D4 (A5) , $9CA(AD)
#1, $9C6(A5)
$FC18EA

$9CC (A5) ,A2
(A2)

$FC1ADA

$-16, $9EO (A5)
SFC1ACC

* % %k Kk Kk ke k Kk ok Kok K ok ok ok ok k

#-10, $9DE (A5)
#1,D3

$9CC (A5) ,A2
#53B,D1
#$4E,DO
$FC18C6

D3, D4
#$B,D1

DO

$FC18C6
#2,D1
#$F5,D0
$FC18C6
#SFE, (A2) +
$9C5, (A2) +
$9C9, (A2) +
D4, (A2)+

Not found, flopfail

ctrack, write current track in DSB
General error

Format track

flopfail, error

spt sectors per track as ccount counter
csect, start with sector 1

verify, verify sector

cdma, list with bad sectors

Bad sector?

No, flopok

Bad sectors

flopfail, error

fmtrack, format track
Write error

Start with sector 1
cdma, buffer for track data
60 times

$4E, track header
wmult, write in buffer
Save sector number

12 times

0

wmult, write in buffer
3 times

$FS

wmult, write in buffer
SFE, address mark
Track

Side

Sector

21BM}JOS SMIBQY

sjeuwtaju] IS 11y

0€e

FC17E8
FC1l7EC
FC17FO
FC17F4
FC17F8
FC17FC
FC1800
FC1802
FC1806
FC180A
FC180E
FCl812
FC1816
FC181A
FC181E
FC1822
FC1826
FC182A
FC182E
FC1832
FC1836
FC183A
FC183E
FC1840
FC1842
FC1846
FC184A
FC184E
FC1852
FC1854
FC185C
FC1864

14FCQ002
14FCOOF7
323C0015
103CO004E
610000CC
323C000B
4200
610000C2
323C0002
103CO0F5
610000B6
14FCOOFB
323COOQFF
14EDO9DS8
14EDOSD9
51C9FFF6
14FCOOF7
323C0027
103C004E
61000092
D86D09D6
B86D09D4
6F80
5243
B66D09D6
6FO00FF76
323C0578
103CO004E
6172
13EDO9CFFFFF860D
13EDOSCEFFFF860B
13EDO9CDFFFF8609

move .
move.
move .
move .
bsr

meve.
clr.b
bsr

move.
move.
bsr

move.
move
move.
move.
dbra
mnove
move.
move.
bsr

add.w
cmp.w
ble

addq.
cmp.w
ble

move.w

move.
bsr

move.
move,
move,

o £ o U

w

w
b

b

W

b
b

.b

w
b

w

b

b
b
b

#2, (A2) +
#SF7, (A2) +
#515,D1
#$4E,DO
SFC18C6
#$B,D1

DO

SFC18C6
#2,D1
#SF5,D0
SFC18C6
#$FB, (A2) +
#$FF, D1
SOD8 (A5), (A2)+
$9D9(AS5), (A2)+
D1,$FC181A
#SF7, (A2) +
#$27,D1
#S4E,DO
SFC18Cé6
$9D6 (AS5) ,D4
$9D4 (A5) , D4
SFC17C0
#1,D3

$9D6 (A5),D3
SFC17BE
#$578,D1
#S4E,DO
SFC18C6

$9CF (A5) , SFFFF860D
$9CE (A5) , SFFFF860B
$9CD(AS5) , SFFFF8609

Sector size 512
Write checksum
22 times

$4E

wmult, write in
12 times

0

wmult, write in
3 times

$F5

wmult, write in
SFB, data block
256 times
virgin, initial

Next word

Write checksum
40 times

$4E

wmult, write in

bytes

buffer

buffer

data in buffer

buffer

Add interlv, next sector
spt, largest sector number

No, next sector

Start sector plus one

interlv
Next sector

1401 times (until track end)

$4E

wmult, write in buffer

dmalow
dmamid
dmahigh

21BM)JOS SNIBqQY

sfeusaju] LS Le)y

| 5%

FC186C
FC1870
FC1874
FC1878
FC187C
FC1880
FC1884
FC1888
FC188C
FC1892
FC189A
FC189C
FC189E
FC18A0
FC18A4
FC18A6

FC18A8
FC18AC
FC18AE
FC18B2
FC18B4
FC18B8
FC18BC
FC18CO
FC18C4

FC18C6
FC18C8
FC18CC

R L R R R R R Rk

3CBC0190
3CBC00S%0
3CBCO190
3E3CO01F
61000412
3CBC0180
3E3CO0FO0
61000406
2E3C00040000

08390005FFFFFAQL

670C
5387
66F2
61000358
7ECL
4E75

3CBC0190
3016
08000000
67F0
3CBC0180
610003EA
6100FDOC
C03C0044
4E75

14CO
51COFFFC
4E75

move.
move .
move.

£ % £

move.
bsr

£

move.
move . W
bsr
move.l
btst
beq
subg.l
bne

bsr
moveq.l
rts

move.w
move.w
btst
beg
move.w
bsr
bsr
and.b
rts

move.b
dbra
rts

#5190, (A6)
$#590, (A6)
#5190, (A6)
#31F,D7
$FC1C90
#3180, (A6)
#$F0,D7
$FC1C90
#$40000,D7
#5, SFFFFFACL
SFC18A8
#1,D7
$FC1892
$FC1BFA
#1,D7

#5190, (A6)
(A6),DO
#0, DO
$FC18A4
#5180, (A6)
SFC1CA4
SFC165A
#544,D0

DO, (A2)+
D1, $FC18C6

xkk kKK Kk kkkkkhkkkkkkkkkkkhx

Clear DMA status, write

Sector counter to 31
wdiskctl, send D7 to 1772
Select 1772

Format Track command
wdiskectl, send D7 to 1772
Timeout counter

mfp gpip, 1772 done ?

Yes

Decrement timeout counter
Run out?

Reset, terminate

Clear Z-bit, error

Select DMA status

Read status

DMA error ?

Yes, error

Select 1772 status register
rdiskctl, read register

errbits, calculate error number
Test write protect and lost data

Write byte in buffer
Next byte

flopver, verify sector(s)

21em]JoS SnIBqy

sjeuadyuf LS ey

(453

FC18CE
FC18D2
FC18D4
FCis8D8
FC1l8bC
FC18E0
FC18E4
FC18Es6

610003EE
T0F5

6100015E
61000334
6100029C
660001EA
6104

600001F2

bsr
moveq.l
bsr
bsr
bsr
bne
bsr
bra

SFC1CBE
#-11,D0
SFC1A34
SFCiC14
SFC1B7A
SFC1ACC
SFC18EA
SFC1ADA

ok ok ok ok kK ok ok ok kK ok k kK k ok K Kk Kk kK Rk ok ok kR ok kK k ok Rk kK Kk R K K K ok ok ok o

FC18EA
FC18F0
FC18F4
FC18FC
FC1902
FC1906
FC190A
FC190E
FC191le6
FC191E
FC1926
FC192A
FC192E
FC1932
FC1936
FC193A
FC193E
FC1942
FC1946
FCl94C
FC1954
FC1956

3B7CFFF509DE
246D09CC
06AD0000020009CC
3B7C000209B0
3CBC0084
3E2D09SC6
61000384
13EDOSCFFFFF860D
13EDOSCEFFFF860B
13EDOSCDFFFF8609
3CBC0090
3CBC0O190
3CBC0090
3E3C0001
61000358
3CBC0080
3E3C0080
6100034cC
2E3C00040000
0833C005FFFFFAQL
670A

5387

move .w
move.l
add.l
move.w
move.w
move.w
bsr
move.b
move.b
move.b
move .w
move .w
move.w
move.w
bsr
move.w
move.w
bsr
move, 1l
btst
beg
subg.1l

#-11, $9DE (A5)

$9CC (A5) ,A2

#512, $9CC (A5)

#2, $9BO (AS5)

#584, (A6)

$9C6 (A5), D7
$FC1C90

$9CF (A5) , SFFFF860D
$9CE (A5) , SFFFF860B
$9CD (AS) , $FFFF8609
#590, (A6)

#5190, (A6)

#590, (A6)

#1,D7

$FC1C90

#580, (A6)

#$80,D7

$FC1C90

#540000,D7

#5, SFFFFFAO1
$FC1960

#1,D7

change, test for disk change
Read error as default errcr
fleoplock, set parameter
select

go2track, find track
flopfail, error

verifyl, verify sectors
flopok, done

verifyl
Read error

cdma, DMA buffer for bad-sector list

cmda to next sector
retrycnt, 2 tries
Select sector register
csect, sector number
wdiskctl, D7 to 1772

Set DMA address

Clar DMA status, read

Sector counter to 1
wdiskctl, D7 to 1772

Select 1772 command register
Read Sector command
wdiskctl, D7 to 1772

Timeout counter

mfp gpip, 1772 done?

Yes

Decrement timeout counter

31BM}JOS SNIBQY

sfewIdu] IS 1B}y

€ee

FC1958
FC195A
FC195E
FC1960
FC1964
FC1966
FC196A
FC196C
FC1970
FC1974
FC1978
FC197C
FC197E
FC1982
FC1986
FC198A
FC1992
FC1994
FC1996
FC199C
FC199E
FC19A2
FC19A6
FC19AA
FC19AE

kK ok Kk Kk Kk kKoK ok ok ok

FC19BO
FC19B2
FC19B8
FC19BC
FC19CO

66F2
6100029E
6036
3CBC0090
3016
08000000
672A
3CBC0080
61000332
6100FCE4
c03co01cC
6618
526D09C6
536D09CA
6600FF74
04AD0000020009CC
4252
4E75
0C6D000109BO
6604
610001A6
536D09BO
6AQ0FF66
34ED0O9C6
60CE

9BCD
4DFI9FFFF8606
50EDO9BE
4A6D043E
6670

bne
bsr
bra
move.w
move .w
btst
beq
move.w
bsr
bsr
and.b
bne
addg.w
subg.w
bne
sub.1l
clr.w
rts
cmp.w
bne
bsr
subg.w
bpl
move . W
bra

sub.1l
lea
st
tst.w
bne

$FC194C
$FC1BFA
$FC1996
#3590, (A6)
(A6),DO0
#0,D0
$FC1996
#3580, (A6)
$FC1CA4
$FC165A

#$1C, DO
$FC1996
#1,$9C6 (A5)
#1, $9CA (AS)
$FC18FC

#512, $9CC (A5)
(A2)

¢nljca3g

#1, $9BO (A5)
$FC19A2
SFC1B46

#1, $9BO (A5)
$FC190E

$9C6 (A5), (A2) +
SFC197E

**

AS5,A5
SFFFF8606,A6
$9BE (AD)
$43E (AS)
SFC1A32

Run out?

Reset 1772, terminate transfer
Next try

Select DMA status register

Read status

DMA error ?

Yes, try again

Select 1772 status register
rdiskctl, read status

errbits, calculate error number
Test RNF, CRC and Lost Data
Error next try

csect, next sector

ccount, decrement sector counter
Another sector?

cdma, reset DMA pointer
Terminate bad sector list with zero

retryecnt,2nd try?

No

reseek, home and seek

Decrement retrycnt

Another try?

csect, sector number in bad sector list
Next sector

flopvbl, Floppy Vertical Blank Handler
Clear AS

Address of the floppy register

Set motor on flag

flock, flopples active ?

Yes, do nothing

31eM}JOS SNdBqQY

seuwIdiu] LS Hery

pee

FC19C2
FC19Cs
FC19CA
FC19CE
FC19D0
FC19D4
FC19D6
FC19DA
FC19DE
FC19E0
FC19E6
FC19ES8
FC19EA
FC19EC
FC19EE
FC19F2
FC19F6
FC19FC
FC1A00
FC1A02
FC1A04
FC1A08
FC1lA0C
FC1A10
FC1Al14
FC1Ale6
FC1AlA
FC1lAlE
FC1A20
FC1A24
FC1A28
FC1A2E

203900000466
1200
C23C0007
6638
3CBCO08O
E608
C07C0001
41EDOSB2
DOCO
B079000004A6
6602

4240

5200

E308
0A000007
6100026C
3039FFFF8604
08000006
56D0

1002
6100025A
302D09B2
816D09B4
4A6D09CO
6618
6100028C
08000007
6612
103C0007
6100023A
3B7C000109C0O
426D09BE

meve.l
move .b
and.b
bne
move . w
lsr.b
and.w
lea
add.w
cmp . W
bne
clr,w
addg.b
1s1.b
eor.b
bsr
move.w
btst
sne
move.b
bsr
move.w
or.w
tst.w
bne
bsr
btst
bne
move.b
bsr
move.w
clr.w

$466,D0
DO, D1

#7,D1
SFC1A08
#$80, (A6)
#3,D0

#1,D0

$9B2 (AS5) , AO
DO, AO
$426,D0
SFC19EA

Do

#1,D0

#1,D0

#7,D0
$FC1C60
$SFFFF8604,D0
#6,D0

(AO)

D2, D0
$FC1C60
$9B2 (A5),DO
DO, $9B4 (A5)
$9C0 (A5)
$FC1A2E
SFC1CA14
#7,D0
SFC1A32
#7,D0
$FC1C60
#1,$9C0(A5)
$9BE (A5)

_freclock

Calculate mod 8

8th interrupt ?

Select 1772 status register
Bit 4 as drive number

wpstatus

_nflops

Drive select bit

Write in position

Invert for active low
Select drive

dskctl, read 1772 status
Test write protect bit
and save

Restore previous status

wpstatus

Write in wplatch

deslflg, floppies already deselected?
Yes

Read 1772 status register
Motor-on bit set?

Yes, don't deselect

Both drives

Deselect

Set deslflg

Clear motoron flag

31BM)JOS SMOBQY

Sjeusau] IS 1B}y

gee

FC1lA32

4E75

rts

****‘k****************‘k*********************’k********‘k***

FC1A34
FC1lA3C
FC1A3E
FC1A44
FC1A4A
FC1A4E
FC1A52
FC1A58
FC1AS5E
FClA64
FC1lA6A
FC1A70
FClA76
FC1A7C
FC1A82
FC1A86
FC1A8A
FC1A8C
FC1AS90
FC1A92
FC1A96
FC1A98
FC1A9A
FC1ASE
FC1AAOQ
FC1AA4
FC1AAS8
FC1AAA
FC1AAE

48F978F8000003E2
9BCD
4DF9FFFF8606
50F39000009BE
3B4009DE
3B400%EO
3B7C0001043E
2B6F000809CC
3B6F001009C2
3B6F001209C6
3B6F001409C4
3B6F001609C8
3B6F001809CA
3B7C000209B0O
43EDOAOS
4A6D09C2
6704
43EDOAOA
7E00
3E2DOSCA
E14F

E34F
206D09CC
D1C7
2B4809D0
4A690000
6A20
61000168
42690000

movem.l D3-D7/A3-A6,$9E2
sub.1l A5, AL

lea SFFFF8606, A6

st $9BE

move.w DO, $9DE(A5)
move.w DO, S$3EO(AS5)
move.w #1,3$43E(A5)
move.l 8(A7),$9CC(AS)
move.w 16 (A7),$9C2(A5)
move.w 18(A7),$9C6(AD)
move.w 20(A7),$9C4 (A5)
move.w 22 (A7),39C8(AS5)
move.w 24 {A7),$9CA(A5)
move.w #2,$9B0(A5)

lea $A06 (A5) ,Al
tst.w $9C2 (A5)
beq SFC1A90
lea SAQOA (A5) ,Al

moveq.l #0,D7
move.w $9CA(A5),D7
1sl.w #8,D7

1sl.w #1,D7
move.l $9CC(A5),A0
add.l D7,A0
move.l A0,$9DO(AS)
tst.w (Al)

bpl $FC1ACA
bsr SFC1C14
clr.w (A1)

flopleck

Save registers

Clear A5

Bddress of the floppy register
Set motoron flag

deferror

currerr

flock, disable floppy VBL routine
cdma, buffer address

cdev, drive

csect, sector

ctrack, track

cside, side

ccount, number of sectors
retryent, 2 tries

Address dsb0

cdev, drive A?

Yes

else address dsbl

ccount, number of sectors

times 512

cdma, start DMA address

plus sector length

edma, ylelds end DMA address
dcurtack, current track

Valid ?

select, select drive and side
Track number to zero

31BM}JOS SndEqV

sfeuIduy LS ey

9¢¢

FC1AB2
FC1AB6
FC1ABS
FC1ABA
FC1ABC
FC1ABE
FC1AC2
FC1AC4
FC1ACA

LRSS SRR E SR SRR R R R R R R S R R R T T

FC1ACC
FC1ACE
FC1AD2
FC1AD6
FC1ADS

% %k K ok kK ok ok ok ok Kk ok Sk ok %k ok Kk ok Kk sk K ok ok K dk ek ok ok sk ok ok K %k 3k o ok ok ok ok ok ok ke ok ok ok Kk ke k k%

FC1ADA
FC1ADC
FC1ADE
FC1lAE2
FC1AE®6
FC1AEA
FC1AEE
FClAF2
FC1AF8
FC1AFA
FC1BO0O
FC1BO6
FC1BOE
FC1B10O

610000EC
6712

7ECA

6172

6606
610000E0
6706
337CFF000000
4E75

7001
61000226
302D0O9EO
48C0O
6002

4280

2F00
3CBC0O086
3E290000
610001A8
3C3C0010
610000C6
3039000009C2
E548
41F9000009B6
21AD04BA000O
0C790001000004A6
6606
216D04BA0004

bsr
beqg
moveq. 1
bsr
bne
bsr
beg
move.w
rts

moveq. 1l
bsr
move .w
ext.,l
bra

clr.l
move.l
move .w
move.w
bsr
move.w
bsr
move.w
lsl.w
lea
move.l
cmp.w
bne
move. 1l

$FC1BAO
SFC1ACA
#10,D7
SFC1B2E
SFC1AC4
$SFC1BAO
SFC1ACA
#SFFOOC, (A1)

#1,D0
SFC1CF6
$9E0 (AS5) , DO
DO

$FC1ADC

DO
DO, - (A7)

#5$86, (A6)

(Al),D7

$FC1C90

#$10,D6

$FC1BB6

$9C2,D0

#2,D0

$9B6, AO
$4BA(A5),0(AC,DO.w)
#1, $4A6

SFC1B16
$4BA (A5) , 4 (AQ)

restore, find track zero
OK ?

Track 10

hseek, find track

Error ?

restore, find track 0

OK ?

Track number invalid

flopfail, error in disk routine
media change to unsure

set

currerr, error number

flopok, error-free disk routine
Clear error number
Save error number
Select 1772

Get track number
wdiskctl, D7 to 1772
Seek command
flopcmds

cdev, drive number
times 4

acctim

~_hz_200 as last access time

_nflops
Only one drive?
_hz 200 as last access time

31BM)JOS SMOBQY

s[eusdaiu] IS 1B}y

LEE

FC1B16 201F

FC1B18 4CF978F8000009E2
FC1B20 42790000043E
FC1B26 4E75

move.l (A7) +,D0

movem.l $9E2,D3-D7/A3-A6
clr.w $43E

rts

‘k***

FC1B28 3E39000009C4
FC1B2E 33FCFFFAOQCO0009EO
FC1B36 3CBCO086

FC1B3A 61000154

FC1B3E 3C3C0010

FC1B42 60000072

move.w $9C4,D7
move.w #-6,S39E0
move.w #586, (A6)

bsr SFC1C90
move.w #510,D6
bra SFC1BB6

**

FC1B46 33FCFFFAQ00009EO
FC1B4E 6150

FC1B50 664C

FC1B52 42690000
FC1B56 3CBC0082
FC1B5A 4247

FC1B5C 61000132
FC1B60 3CBC0086
FC1B64 3E3C0005
FC1B68 61000126
FC1B6C 3C3C0010
FC1B70 6144

FC1B72 662A

FC1B74 337C00050000

move.w #-6,59E0
bsr SFC1BAO
bne $FC1B9E
clr.w (A1)
move.w #$82, (A6)
clr.w D7

bsr SFC1C90
move.w #586, (A6)
move.w #5,D7

bsr $FC1CY0
move.w #510,D6
bsr SFC1BB6
bne SFC1BOE

move.w #5, (Al)

**

FC1B7A 33FCFFFA000009EOQ
FC1B82 3CBCO0086

move.w #-6,39E0
move.w #3586, (A6)

Error number
Restore registers

flock, release floppy VBL routine

hseek, find track

ctrack, track number

Seek error, track not found
Select 1772

wdiskctl, D7 to 1772

Seek command

flopcmds

reseek, home and seek
Seek error, track not found
Restore

Error ?

Track number to zero
Select track register
Track zero

wdiskectl, D7 to 1772
Select data register
Track 5

wdiskectl, D7 to 1772
Seek command

flopcmds

Error ?

Track number to 5

go2track, find track
Seek error, track not found
Select data register

31BM1JOS SNIBQY

s[euIdiuj LS eIy

8E€

FC1B86
FC1B8A
FC1BBE
FC1B90
FC1B92
FC1B94
FC1BOA
FC1IBOE

3E2D09C4
61000104
7Cl4

6124

660A
336D09C40000
CE3C0018
4E75

move.w
bsr
moveq.l
bsr

bne
move.w
and.b
rts

$9C4 (A5),D7
$FC1C90
#$14,D6
SFC1BB6
SFC1BY9E

$9C4 (AS), (Al)
#$18,D7

kok ok ok gk ok ok koK ok ok ok k ok ok kKR AR K K &k ok K Kk ok ok ok ok ok ke ok ok ke k% ke k% ke ke ke ok ok ok ok ke ok ok ok ok ok ok

FC1BAO
FC1BA2
FC1BA4
FC1BA6
FC1BAA
FC1BAE
FC1BBO
FC1BB4

4246
6112
660E
08070002
0A3C0004
6604
42690000
4E75

clr.w
bsr
bne
btst
eor.b
bne
clr.w
rts

D6
SFC1BB6
SFC1BB4
#2,D7
#4,SR
SFC1BB4
(Al)

ek %k vk Kk ok sk ke Kk sk gk sk ok Kk k3 sk sk Sk ok Tk sk ok ok e ok ok ok sk ok ke ke K ok ok K ok ok ok kK vk ok ok ok ok ok ok ok ok ke

FC1BB6
FC1BBA
FC1BBE
FC1BCO
FC1BC6
FC1BCA
FC1BCE
FC1BD2
FC1BD4
FC1BDA
FC1BDE
FC1BEO

30290002
C03C0003
8C00
2E3C00040000
3CBC0080
610000D8
08000007
6606
2E3C00060000
610000AA
5387

6712

move.w
and.b
or.b
move.l
move.w
bsr
btst
bne
move.l
bsr
subg.l
beq

2(Al),DO
#3,D0
DO,D6
#540000,D7
#$80, (A6)
SFC1CA4
#7,D0
SFC1BDA
#$60000,D7
SFC1C86
#1,D7
SFC1BF4

Track number

wdiskctl, D7 to 1772
Seek with verify command
flopcmds

Error ?

Save track number

Test RNF, CRC, Lost Data

restore, find track zero
Restore command

flopcmds

Error ?

Test track-zero bit
Invert Z-flag

Not track zero?

Track number to zero

flopcmds

Seek rate

Bits 0 and 1

OR with command word
Timeout counter
Select 1772

rdiskctl

Motor on ?

Yes

Else longer timeout

wdiskctl6, write command in D6

Decrement timeout counter
Run out?

3IBM}JOS SNOBQY

s[ewsajuy IS LB}y

6£€

FC1BE2
FC1BEA
FC1BEC
FC1BFO
FC1BF2

FC1BF4
FC1BF6
FC1BF8

0839000SFFFFFAQL
66F2

610000AC

4246

4E75

6104
7C01
4E75

btst #5, SFFFFFAQL
bne SFC1BDE

bsr SFC1CSA
clr.w D6

rts

bsr SFC1BFA
moveqg.l #1,D6

rts enlical;

**

FC1BFA
FC1BFE
FC1C02
FC1CO06
FC1COA
FC1COE
FClCi2

3CBC0080
3E3C00DO
6100008C
3E3CO000F
S51CFFFFE
6100008A
4E75

move.w #5$80, (A6) -
move.,w #$DO,D7
bsr SFC1C90
move.w #$F,D7
dbra D7, $FC1COA
bsr SFC1C9A
rts

**

FC1C1l4
FClC18
FC1cC1lC
FC1C1lE
FC1C20
FC1C24
FC1C28
Fcilc2ac
FC1C2E
FC1C32
FClC36
FC1lC38

426D09CO
302D09C2
5200
E308
806D09CS8
0A000007
C03C0007
6132
3CBC0082
3E290000
6158
422D09DA

clr.w $9CO (AD)
move.w $9C2(A5),D0
addg.b #1,D0

1sl.b #1,D0

or.w $9C8 (A5),DO
eor.b #7,D0

and.b #7,D0

bsr SFC1C60
move.w #5$82, (A6)
move.w (Al),D7

bsr SFC1C90
clr.b $9DA (AD)

mfp gplip, disk done?
No, wait

rdiskctl?, read status
OK

Reset 1772
Error

Reset 1772, Reset Floppy Controller
Select command register

Reset command

wdiskctl, D7 to 1772

Delay counter

Time run out?

rdiskctl, read status

select, select drive and side
Clear deslflg
cdev, drive number

Calculate bit number
csid, side in bit O
Invert bits for active low

setporta, set bits
Select track register
Get track number
wdiskectl, D7 to 1772
tmpdma, clear bits 24-31

21BM)JOS SNIBQY

sfeusdjuy IS MBIy

ove

FC1C3C 3CBC0O084 move.w #3584, (A6)

FC1C40 3E2D0O9SCS6 move.w $9C6(A5),D7

FC1C44 614A bsr SFC1C90

FC1C46 13EDOSCFFFFF860D move.b $9CF (A5), SFFFF860D
FC1C4E 13EDO9CEFFFF860B move.b $9CE (A5), SFFFF860B
FC1C56 13EDOY9CDFFFF8609 move.b $9CD(AS), SFFFF8609
FC1CSE 4E75 rts

R R R R R R R R R 2 L LA R]

rCiCe0 40E7 move.w SR, -(A7)

FC1C62 007C0700 or.w #$700, SR
FC1C66 13FCOOOEFFFF8800 move.b #SE,SFFFF8800
FC1C6E 1239FFFF8800 move.b $FFFF8800,D1
FC1C74 1401 move.b D1,D2

FC1C76 C23COOF8 and.b #5F8,D1
FC1C7A 8200 or.b DO, D1

FC1C7C 13C1FFFF8802 move.b D1, S$FFFF8802
FC1C82 46DF move.w (A7)+,SR
FC1C84 4E75 rts

EAKI KA kkhk ok ok kk ok kA kkkkd ok kX XA KRk kkk Kk kk Kk &k k ks ok ok ok &k k ok & ok dk ok

FC1C86 6124 bsr $FCI1CAC
FC1C88 33C6FFFF8604 move.w D6,$FFFF8604
FC1CB8E 601C bra SFC1CAC

LR R R R R R R R S 2 2 R R R R,

FC1C90 611A bsr SFC1CAC
FC1C92 33CT7FFFF8604 move.w D7,$FFFF8604
FC1C98 6012 bra SFC1CAC

Select sector register
csect, get sector number
wdisketl, D7 to 1772

Set DMA address

setporta, select drive and side
Save status

IPL 7, no interrupts

Select port A

Read data from port

and save

Clear bits 0-2

Set new bits

Write result in port A

Reset status

wdiskcté6

Delay loop for disk controller
D6 to disk controller

Delay loop for disk controller

wdiskctl

Delay loop for disk controller
D7 to disk controller

Delay loop for disk controller

21BM)JOS SndBqy

s[ewsoju] LS ey

e

‘k***

FC1C9A 6110 bsr SFC1CAC
FC1C9C 3E39FFFF8604 move.w S$FFFF8604,D7
FC1CA2 6008 bra SFC1CAC

**

FC1CA4 6106 bsr SFC1CAC
FC1CAc 3039FFFF8604 move.w SFFFF8604,D0
FC1ICAC 40E7 move.w SR, =-(A7)
rC1CAE 3F07 move.w D7,-(A7)
FC1CBO 3E3C0020 move.w #520,D7
FC1CB4 51CFFFFE dbra D7, $FC1CB4
FC1CB8 3E1F move.w (A7)+,D7
FC1CBA 46DF move.w (A7)+,SR
FC1CBC 4E75 rts

**

FC1CBE 0C790001000004A6 cmp.w #1,$4A6
FC1CC6 662C bne SFC1CF4
FC1CC8 302F0010 move.w 16(A7),D0
FC1CCC B07900005622 cmp.wW $5622,D0
FC1CD2 671C begq $FC1CFO
FC1CD4 3F00 move.w DO,- (A7)
FC1CD6 3F3CFFEF move.w #-17,- (A7)
FC1CDA 6100EA62 bsr SFCO73E
FC1CDE 584F addq.w #4,A7
FC1CEO 33FCFFFF000009B4 move.w #-1,59B4
FC1CE8 33EF001000005622 move.w 16(A7),$5622
FC1CFO0 426F0010 clr.w 16 (A7)
FC1CF4 4E75 rts

rdiskect?

Delay loop for disk controller
Disk controller status to D7
Delay loop for disk controller

rdiskctl

Delay loop for disk controller
Disk controller status to DO
Save status

Save D7

Counter

Delay loop

D7 back

Status back

change, test for disk change
_nflops

0 or 2 drives, done
Drive number

Same disk number?

Yes

Drive number

"Insert Disk'

Critical error handler
Correct stack pointer
wplatch, status unsure
Save disk number

Drive number to zero

31BM}JOS SNOEBQY

sjewuy IS ey

e

**

FC1CFeé
FCICFC
FC1CFE
FC1DO02
FC1DO6

41F900004DB8
1F00
302D09c2
119F0000
4E75

lea
move.b
move .w
move.b
rts

$4DB8, AO
DO, - (A7)

$9C2 (A5) ,DO

(A7) +,0(A0,D0.w)

**

FC1D08
FC1D09
FC1DOA
FC1DOB
FC1DOC
FC1DOD
FC1DOE
FC1DOF
FC1D10
FC1D11

AE
D6
8C
17
FB
80
6A
2B
A6
00

dc.b
dec.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b

$AE
$D6
$8C
$17
SFB
$80
$6A
$2B
$A6
$00

**

FC1D12
FC1lD18
FClD1C
FC1D20
FC1D24
FC1D26
FC1D28
FC1lD2C
FC1D2E

4BF900000000
41EDOEOQ1
610000DE
04000050
1400

ES82
610000D2
D400

EB82

lea
lea
bsr
sub.b
move.b
asl.l
bsr
add.b
asl.l

$0,A5
SEO01(AS), A0
SFC1DFC
#80,D0

Do, D2

#4,D2
SFC1DFC

DO, D2

#5,D2

setdmode, set Drive Change Mode
Address of the bpb

Save mode

cdev, get drive number

Set drive mode

dskf, disk flags

Jdostime, IKBD format to DOS format
Clear A5

Pointer to clock-time buffer

bcdbin

Subtract offset of 80

Year

Write in position

bedbin

Add month

Write in position

31em]JOg snoeqy

s[ewsauy IS e}y

eve

FC1D30
FC1D34
FC1D36
FC1D38
FC1D3C
FC1D3E
FC1D40
FC1D44
FC1D46
FC1D48
FC1Db4cC
FC1D4E
FC1D50
FC1lD54
FC1D5A

610000CA
D400
EB82
610000C2
D400
ED82
610000BA
D400
EB82
610000B2
E208
D400
2B420EOA
1B7C00000E4C
4E75

bsr
add.b
asl.1
bsr
add.b
asl.1
bsr
add.b
asl.1l
bsr
1sr.b
add.b
move.l
move.b
rts

$FC1DFC

DO, D2

#5,D2
$FC1DFC

DO, D2

#6,D2
$FC1DFC

DO, D2

#5,D2
SFC1DFC
#1,D0
DO,D2

D2, $EOA(A5)
#0, $E4C(A5)

Ak kkkkkkkkkkkkddkkkkkkkkkkkkkkkkdkkkkkkkkkkkxkkkkhkhkhkkkkkkk

FC1D5C
FC1D62
FC1D66
FC1D6A
FC1D6E
FC1D70
FC1D74

1B7CFFFFOEA4C
123C001C
61000240
4A2DOEA4C
66FA
202DOEOA
4E75

move.b
move.b
bsr
tst.b
bne
move.l
rts

#-1, SE4C(AD)
#51C,D1
SFC1FAS8
$E4C(A5)
SFC1D6A
SEOA (A5),DO

& % %k KK K kK K oKk Kk Kk Kk ok ok ko K Kk kK T ok ok Kk sk Kk R ok ok ok ok Kk ok ok ok e ok ok ke ok ok kX

FC1D76

2B6F00040EQE

move.l

4 (A7) ,SEOE (AS)

Sk % ok ok Kk K ok ok k% ok ko ok ok sk sk kK % %k Kk kK ok ok ok Kk ok Kk ok 3k 3k ok ok ok ok o ok ok gk sk ok ok ok ok k ok ok

FC1D7C

41F900000E18

lea

SE18,A0

bedbin

Add day

Write in position
bedbin

Add hour

Write in position
bedbin

Add minute

Write in position
bedbin

2-second resolution
Add seconds

Save new time

Clear handshake flag

gettime, get current time and date
Set handshake flag

Get time of day command

Send to IKBD

New time arrived?

No, wait

Put time in DO

settime, set time and data
Pass time

ikbdtime
Pointer to end of time buffer

31BM}JOS SNOEQY

sjeudjuy LS eIV

1443

FC1D82
FC1D86
FC1D88
FC1iD8C
FC1D8E
FC1D90
FC1D92
FC1D94
FC1D98
FC1D9A
FC1D9oC
FC1DOE
FC1DA2
FC1DA4
FC1DA6
FC1DAS8
FC1DAC
FC1DAE
FC1DBO
FC1DB2
FC1DB6
FC1DB8
FC1DBA
FC1DBC
FC1DCO
FC1DC2
FC1DC6
FC1DCA

242DOEOE
1002
0200001F
E300
6154
EA8A
1002
0200003F
614A
EC8A
1002
0200001F
6140
EA8A
1002
0200001F
6136
EA8A
1002
0200000F
612C
E88A
1002
0200007F
6122
06100080
123C001B
610001DC

move.l
move.b
and.b
asl.b
bsr
1sr.1
move.b
and.b
bsr
lsr.1l
move.b
and.b
bsr
1sr.1
move.b
and.b
bsr
1sr.1
move.b
and.b
bsr
lsr.1
move.b
and.b
bsr
add.b
move.b
bsr

SEOE (A5) , D2
D2,D0
#$1F, DO
#1,D0
$FC1DE4
#5,D2
D2,DO
#$3F, DO
$FC1DE4
#6,D2
D2,DO0
#$1F, DO
$FC1DE4
#5,D2
D2,D0
#3$1F, DO
$FC1DE4
#5,D2
D2,D0
#$F,DO
$FC1DE4
#4,D2
D2,D0
#$7F, DO
$FC1DE4
#$80, (A0)
#$1B,D1
SFC1FA8

Get time to convert
in DO

Bits 0-4, seconds
2-second resolution
convert

Minutes

Bits 0-5
convert
Hours

Bits 0-4
convert
Day

Bits 0-4
convert
Month

Bits 0-3
convert
Year

Bits 0-6
convert
Add offset

Set time of day command

Send to IKBD

21BM)JOS SNIBQY

s[ewsau] IS Meyy

1943

FC1DCE
FC1DDO
FC1DD6
FC1DDA
FC1DDE
FC1DE2

7605
45F900000E12
610001F0
123C001C
610001C8
4E75

moveqg.l #5,D3

lea SE12,A2
bsr SFC1FC8
move.b #$1C,D1
bsr SFC1FA8
rts

**

FC1DE4
FC1DE®6
FC1DES8
FC1DEA
FC1DEC
FC1DEE
FC1DFO
FC1DF4
FC1DF6
FC1DF8
FC1DFA

7200
T60A
9003
6B04
5201
60F8
0600000A
E901
D001
1100
4E75

moveq.l #0,D1
moveq.l #10,D3
sub.b D3,D0

bmi SFC1DFO
addg.b #1,D1
bra SFC1DES8

add.b #10,D0
asl.b #4,D1
add.b D1,DO
move.b DO,-(A0)
rts

****************************'k***************************

FC1DFC
FC1DFE
FC1EO0O
FC1E02
FC1lEC4
FC1lEO®6
FCLlEO8
FC1EOA

7000
1010
E808
E308
1200
E500
D001
1218

moveq.l #0,DO0
move.b (A0),DO
lsr.b #4,D0
1sl.b #1,D0
move.b DO,D1
asl.b #2,D0
add.b D1,DO0O
move.b (AO) +,D1

Number of bytes minus 1
Address of the string
ikbdws, send string

Get time of day command
Send to IKBD

binbcd, convert byte to BCD
Ten's counter

Subtract 10

Increment ten's counter
Generate one's place

Tens in upper nibble

plus ones

Write in buffer

bedbin, convert BCD to binary
BCD byte

Tens place

times 2

times 4

One's place

21BM}JOS SNIBQY

sjewIdyu] LS 11y

ove

FC1EOC 0241000F and.w #SF,D1
FC1E10 D041 add.w D1,DO
FC1E12 4E75 rts

Kk kK k Kk Kk kK Kk kR Rk Kk ok 3k ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok ok ok ok Sk ok K K Kk kK kK K kK ok

FC1E14 70FF moveq.l #-1,DO0
FC1lEl16 1439FFFFFC04 move.b SFFFFFC04,D2
FC1E1C 08020001 btst #1,D2

FC1lE20 6602 bne SFC1E24
FC1E22 7000 moveq.l #0,D0

FC1lE24 4E75 rts

F3k Kk Kk Kk K K K ok K K kK kK ke ke ok ok kR kb sk ok ok ok Kk ok ok ok ok ok ok ko sk ok ok ok Kok ok ok Kk ok k

FClE26 322F0006 move.w 6(A7),D1
FClE2A 43F9FFFFFCO04 lea SFFFFFC04, Al
FC1E30 14290000 move.b (Al),D2
FC1E34 08020001 btst #1,D2

FClE38 67F6 beq $FC1E30
FC1E3A 13410002 move.b D1,2(Al)
FC1E3E 4E75 rts

%k ok 3k de 3k sk ok kg kK ok %k ok ok ok kR Sk ok ok ok Kk ke ok e kK ok R R ok Kk 3k %k ok ok ok K ok ok ok ok ok ko ok

FC1E40 7600 moveqg.l #0,D3

FC1lE42 362F0004 move.w 4(A7),D3
FClE46 246F0006 move.l 6(A7),A2
FClE4A 121A move.b (A2)+,D1
FC1E4C 61DC bsr SFC1E2A
FC1lE4E 51CBFFFA dbra D3, $FC1E4A

FC1lES52 4E75 rts

isolate
and add

midiost, MIDI output status
Default to OK

Read MIDI ACIA status

and test

OK

Not OK, ACIA 1s sending

midiwec, output character to MIDI
Get character

MIDI ACIA control

Get MIDI status

OK 2

No, wait

Output byte

midiws, send string to MIDI
(unnecessary!)

Length of the string - 1
Address of the string

Get byte

and send

Next byte

31BM)JOS STIBQY

s[ew1ajuy IS LB}y

LyE

AAA KAk I A A Kk A A kR A Ak hkhkhk XA AAAA AKX LRI KKK KAk kkdkkkhkkohkhkkkkkkkkih

FC1ES54
FC1ES8
FC1lES5E
FC1E60
FC1lE64
FClE68
FClE6A
FC1lE6C
FC1E6GE

41EDODBE
43F9FFFFFCO4
T0FF
45E80006
47E80008
B54B

6602

7000

4E75

lea SDBE (A5) , A0
lea SFFFFFCG04,Al
moveq.l #-1,D0

lea 6 (A0) ,A2

lea 8 (A0) ,A3
cmpm.w (A3)+, (A2) +
bne SFC1lEGE
moveq.l #0,DO0O

rts

s % % 3k ok Kk Kok ke kK ok ok ok k ok Kk Kk sk ok ok ok ke ok ke o e ok ok sk ok ok ok ok vk ok ke ok 3k K ok ke ke ok ke ok o ok ok ok ok ok ok ke ke

FC1E70
FC1E72
FC1E74
FC1E76
FC1lE78
FC1E7C
FC1ES80
FC1E84
FC1E86
FC1E88
FC1E8C
FC1EBE
FC1ESO
FC1E9%4
FC1ESS
FC1EOC
FC1E9E

61E2
4RA40
67FA
40E7
007C0700
32280006
B2680008
6716
5241
B2680004
6502
7200
22680000
10311000
31410006
46DF
4E75

bsr SFC1ES54
tst.w DO
beq SFC1E70

move.w SR, -(A7)
or.w #5700, SR
move.w 6{(A0),D1
cmp.wW 8(A0),D1
beq SFC1E9C
addg.w #1,D1
cmp.w 4 (A0Q),D1
bcs S$FC1E90
moveqg.l #0,D1
move.l (A0),Al
move.b 0(Al,Dl.w),DO
move.w D1,6(A0)
move.w (A7)+,SR
rts

midstat, MIDI receiver status
iorec for MIDI

MIDI ACIA control

Default to OK

Head index

Tail index

Characters in buffer?

Yes

Character ready

midin, get character from MIDI
midstat, character ready?

No, wait

Save status

IPL 7, disable interrupts
Head index

Compare with tail index
Buffer empﬁy

Increment head index
Larger buffer size?

No

Start again beginning of buffer
Buffer address

Get character from buffer
Save new head index

Get status

31BM}JOS Snoeqy

s[ewIdiu] LS 11y

8ve

% %k e K ok K ok Kk Kk Kk sk Kk kK ok kK Kk K K ok ok %k ko ok kR ko Kk ok ok ok ke ok ek ke ok ke ok Sk k Kk ok ok kb

FC1lEAQ
FC1EA®6
FC1EAA
FC1EAE
FC1EB2
FPC1EBS
FC1EBA
FC1EBE
FC1ECO
FC1lEC2
FC1lEC4
FC1ECS8
FC1lECA
FC1EDO
FC1lED2
FC1lED4
FC1EDA

Ak k kA Akk kA Kk khkhkkkkkkdkdkkdkdkkkkkkhkkdhkhkhkkkkkhkkkdkkkkkhkkkkkx

FC1EDC
FC1EDE
FC1EE2
FC1EE4
FC1EES8
FC1EEC
FC1EEE
FC1EF2
FC1EF4
FC1lEF8

082D00040E4A
660000DE
242D04BA
94ADOE3E
0C82000003E8
6518
242D04BA
6174

4R40

6618
262D04BA
9682
0C8300001770
6DEC

7000
2B6DO4BAOE3E
4E75

40C3
007C0700
7207
61000E6E
00000080
7287
61000E64
46C3
302F0006
728F

btst #4,SE4A(A5)
bne SFC1F86
move.l $4BA(A5),D2
sub.l SE3E (A5),D2
cmp.l #1000,D2

bcs $SFC1ED2
move.l $4BA(AS5),D2
bsr SFC1F34
tst.w DO

bne $FC1lEDC

move.l $4BA(A5),D3

sub.1 D2,D3

cmp. 1l #6000,D3

blt SFC1EBE

moveq.l #0,DO

move.l $4BA(A5),S$E3E(A5)
rts

move.w SR, D3
or.w #5700, SR
moveq.l #7,D1
bsr SFC2D54
or.b #$80,D0
moveq.l #$87,D1
bsr $FC2D54
move.w D3,SR
move.w 6(A7),DO0
moveq.l #$8F,D1

lstout, printer output
RS 232 printer?

Yes, output to RS 232
_hz_200, 200 Hz counter
minus last time

Less than 10 seconds

Yes

hz 200

lstostat, printer ready?

Yes, output character
_hz 200, 200 Hz counter
minus last time

More than 30 seconds?
No, wait

Character not sent

Save _hz 200 as new time

Output character to parallel port
Save status

IPL 7, no interrupts
Register 7

select

Port B

Write register 7
Port B to output
Save status
Character to output
Write port B

31BM}JOS SNOBQY

sjeudu] IS ME}Y

>
FC1EFA 61000ES8 bsr SFC2D54 Output character g;
FC1lEFE 610E bsr SFC1FOE Strobe low g
FC1F00 610C bsr SFC1FOE Strobe low @
FC1F02 6104 bsr $FC1FO8 Strobe high L
=,
FC1F04 70FF moveq.l #-1,D0 OK 2
FC1F06 4E75 rts ﬁ
®
ok K Kk K Kk ok ok kK Kk ko ok %k sk ko gk ok kK kR R K Kk ok ok sk ok ke sk R ok ke ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke Strobe high
FC1F08 7420 moveq.l #$20,D2 Bit 5
FC1FOA 600C0E8A bra SFC2D9%6 set in port A
% de % Tk ok k ok Kk kK K Kk R K Kk ok sk ke ok Kk kK ok ke k% gk ok %k sk kR k% ke ok ok sk ok ok ok ko ok ok Rk ok ok ok ok Strobe low
FC1FOE 74DF moveq.l #$DF,D2 Bit 5
FC1F10 60000EAA bra $FC2DBC clear in port A
% Kk Kk ok Tk k K Kk k ok ko ok %k ke sk ok ok ok sk 3k ke k% ok Sk ke ke ok ok ke ok ok kK ok 3k ok ok b 3k ok ok %k ok %k ek ke lstin, get Character from parallel port
w
N FC1F14 7207 moveqg.l #7,D1 Mixer
o FC1F16 61000E3C bsr $FC2D54 Select register in PSG
FC1F1A 0200007F and.b #$7F,D0 Port B to input
FC1F1E 7287 moveq.l #587,D1 Write register 7
FC1F20 61000E32 bsr $SFC2D54 giacces
FC1F24 61E2 bsr SFC1FO08 Strobe high = receiver ready
FC1F26 610C bsr SFC1F34 lstostat, character arrived?
FC1F28 4A40 tst.w DO
FC1lF2A 66FA bne SFC1F26 No, wait >
FClF2C 61E0 bsr SFC1FOE Strobe low = receiver busy =
=
w2
-3
|are
=
=
o
-
=
o
23

0S¢

FC1F2E 720F
FC1F30 60000E22

moveq.l #15,D1
bra SFC2D54

%k Kk Kk %k ok kK Kk kK kK ok %k Kk ke k k k k% 3k ok ek Rk %k ke gk ke ok ok ok ok Sk ok ok gk ke ke %k ok %k ok ke ek ok ok ok k ke ke

FC1F34 41F9FFFFFAOQL
FC1F3A 70FF
FC1F3C 082800000000
FC1F42 6702
FC1F44 7000
FClF46 4E7T5

lea SFFFFFAOL, AQ
moveq.l #-1,D0
btst #0, (AO)

beg $FC1F46
moveq.l #0,DO
rts

% %k % ok %k Tk Kk sk ok Kk ok Kk k% %k sk ok ok ok ok ok Kk ke sk ok ok sk ke ke ke ke ok ok ki ok ok ok ok ke sk ke ke ok ke ok ok ok

FC1F48 41EDODSE
FC1F4C T0FF
FC1F4E 45E80006
FC1F52 47E80008
FC1F56 B54B
FC1F58 6602
FC1F5A 7000
FC1F5C 4E75

lea $D8E (A5) , A0
moveqg.l #-1,DO0

lea 6 (AO) ,A2
lea 8 (AO) , A3
cmpm,w (A3)+, (A2) +
bne SFC1F5C
moveq.l #0,DO

rts

* % % % K kK Kk %k Kk Kk gk ok ok ok ok kK Kk Kk kK %k ok sk ok ok k% ok ke sk ok vk ke ok ok Kk ok ok ok ki ok ok ok ke ok ok ok ok ok ok ok ok

FC1F5E 61E8
FC1F60 4A40
FC1F62 67FA
FC1F64 610005D6

bsr $FC1F48
tst.w DO

beq SFC1F5E
bsr SFC253C

Select port B
Read byte from port

lstostat, printer output status
mfp gpip

Default to ok

Busy to low ?

Yes

Printer not ready

auxistat, RS 232 input status
iorec for rs232

Default to OK

Head index

Tail index

Buffer empty?

No

No characters ready

auxin, RS 232 input
auxistat, character ready?

No, wait
rs232get, get character

31BM}JOS SNIEQY

s[eujul LS ey

IS¢

FC1F68 024000FF and.w #SFF,DO
FC1Fe6C 4E75 rts

ok % Kk Kk %k gk ok %k ok ok Kk Kk ok Kk gk ok gk %k sk ok sk %k ok g g ok ok gk Kk kK % ok ok ok ok ok ok ok ke ok ke ok ok ok ok ok ok ke ke ke

FC1F6E 41EDODSE lea $D8E (A5) , AO
FC1F72 70FF moveq.,l #-1,DO0
FC1F74 34280016 move.w 22(A0),D2
FC1F78 61000896 bsr SFC2810
FC1F7C B4680014 cmp.w 20 (AO) ,D2
FC1F80 6602 bne SFC1F84

FC1F82 7000 moveg.l #0,D0
FC1F84 4E75 rts

Kk ok k kK Kk Kk ok kK Kk kK Kk Kk sk ok 3k Kk ok kK ok Kk %k sk kK %k %k ok ok gk 3k ok Sk ok ok ok ok ok ok ok ok ok ok ke ok ok ok ke ok

FC1lF86 322F0006 move.w 6(A7),D1
FC1FB8A 61000554 bsr SFC24E0
FC1F8E 65F6 bcs SFC1F86
FC1F90 4E75 rts

% ok d %k &k ok ok kK Kk ok ok %k ok ok kg ok %k d %k k ok ok ok ok ok %k Sk 3k %k ok %k %k %k ok ok 3k kK ok ok ok ok ok ok ok ok ok o ok ek

FC1F92 70FF moveq.l #-1,D0
FC1F94 1439FFFFFCO00 move.b S$FFFFFC00,D2
FC1F9A 08020001 btst #1,D2

FC1F39E 6602 bne SFC1FA2
FC1FAQ0 7000 moveq.l #0,D0

FC1FA2 4E75 rts

IA I A KK I AR AR KA A A Ak kKA ko k ko kk kA kkkkkkkkdkkdk ok hokkkkkkkk

FC1FA4 322F0006 move.w 6(A7),D1
FC1FA8 43F9FFFFFCO0 lea SFFFFFC00,Al
FC1FAE 14290000 move.b (Al),D2
FC1FB2 08020001 btst #1,D2

Isolate bits 0-7

auxostat, RS 232 output status
iorec for RS 232

Default to OK

Tail index

Test for wrap around

Compare with head index

OK

No space in buffer

auxout, RS 232 output

Get byte

rs232put, write in buffer
Not sent, try again

ikbdost, IKBD output status
Default to ok

Keyboard ACIA status

ACIA ready ?

Yes

Not used

ikbdwec, send byte to IKBD
Get byte

Keyboard ACIA control

Get ACIA status

Ready?

31BM)JOS SNIBQY

s[eusdjuy LS 1e}y

(439

FC1FB6 67F6 beq SFC1FAE
FC1FB8 13410002 move.b D1,2(Al)
FC1FBC 4E75 rts

% %k ek Kk K K Kk Kk Kk Kk Kk k ok ok sk sk Kk Rk kK Kk kR Kk ok %k kR kR kK kK ok ok ok ok ok k ok ok ok ok ke ok

FC1FBE 7600 moveq.l #0,D3
FC1FCG 362F0004 move.w 4(A7),D3
FC1FC4 246F0006 move.l 6(A7),A2
FC1FC8 121A move.b (A2)+,Dl
FC1FCA 61DC bsr SFC1FA8
FC1FCC S51CBFFFA dbra D3, $FCL1FC8
FC1FDO 4E75 rts

Xk % gk ok Kk ok kK ok Kk ok K ok kK K ok kR ok Rk kR ok ok sk ok ok ok ok ok ok ok ok ke Tk ke ok gk ok ok ok ok kb ok ke ok

FC1FD2 41EDODBO lea SDBO (A5) ,A0
FC1FD6 70FF moveqg.l #-1,DO
FC1FD8 45E80006 lea 6(A0) ,A2
FC1FDC 47E80008 lea 8 (A0O) ,A3
FC1FEO B54B cmpm.w (A3)+, (A2) +
FC1FE2 6602 bne SFCLFE®6
FC1FE4 7000 moveq.l #0,DO
FC1FE6 4E75 rts

ok %k Kk % Kk kK kK Kk ok ok Kk ok Kk ok K ok ok ok ok ok sk ke ok ek sk K ok K kR Sk ke ok K ok ok ok ok ke ko ke ok ko ke ke

FC1FE8 61ES8 bsr $SFC1FD2
FC1FEA 4A40 tst.w DO
FC1FEC 67FA beq SFC1FES8
FC1FEE 40E7 move.w SR, -—(A7)
FC1FFQ 007C0700 or.w #$700,SR
FC1FF4 32280006 move.w 6(AO),D1
FC1FF8 B2680008 cmp.w 8 (A0),D1
FC1FFC 6716 beg $FC2014

No, wait
Send byte

ikbdws, send string to keyboard
unnecessary!

Number of characters minus 1
Address of the string

Get byte

Send to keybcard

Next byte

constat, keybaord input status
iorec for keyboard

Default for OK

Head index

Tail index

Buffer empty?

No, OK

No characters there

conin, get character from keyboard
constat, key pressed?

No, wait

Save status

IPL 7, disable interrupts
Head index

Compare with tail index
Buffer empty?

318M}JOS SnOBqY

s[eusajuy LS 1B}y

€s¢

FC1FFE
FC2000
FC2004
FC2006
FC2008
FC200C
FC2010
FC2014
FC2016

5841
B2680004
6502
7200
22680000
20311000
31410006
46DF
4E75

addqg.w
cmp.w
bcs
moveq. 1l
move.
move.
move.

£ £ P

move ,
rts

Increment head index
Greater or equal to buffer size?

Buffer point back to start

#4,D1

4(A0),D1

$FC2008 No

#0,D1

(A0) ,Al Buffer address
0(Al1,Dl.w),DO Get character

D1, 6 (AQ) Save new head index
(A7) +, SR Get status

Sk gk Kk kK ke Kk gk kg Kk kK gk gk k Kk K ok %k kK ok %k sk ok ke ok 3k ok ok ok ok ok ok ok ok gk ok ke ok ok ok ok ok

FC2018
FC201A

70FF
4E75

moveq.l
rts

#-1,D0

%k ok kK K kK K ok gk Kk K ek Kk Tk Sk Kk ok ok ok ok ke ok ke %k ok ok K ok Kk ok K ok Rk ke ok ke ok ok ke ok ok ke ok ke ok ek

Fc201C
FC2022
FC2024
FC202C
FC2032

082D00020484
670E
2B7COOFC30760E44
1B7C00000E48
4E75

btst
beg
move.l
move.b
rts

#2,5484 (A5)
$FC2032
#$FC3076, SE44 (A5)
$#0, $E48 (A5)

kA Kk I K A A IRk kR kA kA Ak khkkkkkkkkkhkhkkkkkkhkkhkkkkkkkx

FC2034
FC203C
FC2044
FC204C
FC2054
FC205C
FC2064
FC206C
FC2074
FC207C

001B313233343536
373839309E270809
71776572747A7569
6F70812B0OD006173
646667686A6B6CY94
8423007E79786376
626E6D2C2E2D0000
00620000000000000
0000000000000000
00002D0000002B0OO

dc.
dc.
dc.

o

Q.
Q
oo oo oo ovU

conoutst, console output status
Status always OK

ringbel, tone after CTRL G
conterm, sound enabled ?

No

Pointer to sound table for ell
Start sound timer

Keyboard table, unshifted

$00,€SC,'1','2','3','4','5','6'
'7'1'8'1.9ll'0'1‘ﬁ'r"',bs, tab

gt twl, tet, e, e, tzt, Ty, Tt
lol'lpI'IAl’l+I,cr' $00,'a','s’
g1, TET, gt thY, Y41, Tk, T, e
TN, TET,800, '~ Ty, 'k, e, !
Tht, tnt, tmt, Y, TLY, 1=1,500,500
$00," ',$00,500,500,%00,500,500
$00,%00,%00,500,$00,%00,500,$00
$00,3%00,'-',500,$00,%00, *+',$00

31BM1J0S SNOBqQY

sjewIdu] LS ey

123>

FC2084 0000007F00C00000 dc.b $00,5%00,500,del, $00,500,500,$00
FC208C 0000000000000000 de.b $00,5$00,$00,500,%00,%00,500,500
FC2094 3C000028292F2A37 dc.b T<1,800,800, " (v,)T, v/, vk, v
FC209C 3839343536313233 dc.b 8r,Tgr, T4, T5 tet v, 120, 130
FC20A4 302E0D000000C000 dc.b or','. ", cr, $00,%00,%00,5%00,%00
FC20AC 0000000000C00000 dc.b $00,$00,$00,$00,$00,500,500, %00
Ak kkhk Ak kA kX IRk I AKX KR AT KAk kkhkkkkkkhkkhkhkkhkkhkhkkhkkkhkkhkkhkkkkkhkxk Keyboard
FC20B4 001B2122DD242526 dc.b $00,esc, "1, TNty rgr Tyt T
FC20BC 2F28293D3F600809 dc.b v, =, 12, v, bs, tab
FC20C4 51574552545A5549 dc.b QU "W, 'E', 'RY, T, T2, YUY, NI
FC20CC 4F509A2A0D004153 dc.b o', P, 0T, Y, cr, $00,'A','S?
FC20D4 444647484A4B4CO9 dc.b DY, 'FT, G, THY, T, 'K, 'L, O
FC20DC 8ES5E007C59584356 dc.b v, 1T, 500, Y, TYY, XY, Y, TV
FC20E4 424E4D3B3A5F0000 dc.b 'BY,UNY, MY, v, 1, 500,$00
FC20EC 0020000000000000 dc.b $00,' ',%$00,%00,500,%00,%00,500
FC20F4 0000000000000037 dc.b $00,500,$00,500,%00,%$00,$00,'7"
FC20FC 38002D3400362B00 dc.b '8Y,800,'-",%4"',800,'6','+',500
FC2104 3200307F00000000 dc.b '2',%$00,'0',del, $00,$00,%500,500
FC210C 0000000000000000 dc.b $00,$00,$00,$00,%00,500,500,500
FC2114 3E000028292F2A37 dc.b '>1,$00,800, " (T, "), T/, TR 1
FC211C 3839343536313233 dc.b 81,191,141 15 Tt T, 120,130
FC2124 302E0D000O0C000000 dec.b o', '.", cr, $00,%00,%00,%00,%00
FC212C 0000000000000000 dc.b $00,$00,$00,500,500,500,500,500
KA A KKK KK A A KA AKRKI AN ANk kA Rk kA Ak Ak kk ko khkhkkkkkhkkkkhkhkdhkhkkkkkx Keyboard
FC2134 001B313233343536 dc.b $00,esc, "1",'2",%37,147,'57, 16!
FC213C 373839309E270809 dc.b vy, T8, ror, 0, 'at, 'Y, bs, tab
FC2144 51574552545A5549 dc.b 'Y, "W, 'EY, R AT, T2, 00, T
FC214C 4F509A2B0D004153 dc.b o', 'PY, 0T, "+, cr, $00,'A','S!
FC2154 444647484A4B4C99 dc.b DY, 'FY, G, THY, NPT, 'K, LY, TS
FC215C 8E23007E59584356 dc.b tér, v§r,500, T~ Y, NXY, IC, TV
FC2164 424E4D2C2E2D0000 dc.b TBY,'N', YMY, Y, T, T=1,500,500
FC216C 0020000000000000 dc.b $00,' ',$00,%00,500,500,500,500

table,

table,

shifted

Caps lock

21BM}JOS SnIeqy

sfewsdjuy LS 1ey

ge¢e

FC2174
FC217C
FC2184
FCc218C
FC2194
FC219C
FC21A4
FC21AC

**

FC21B4
FC21BA
FC21BC
FC21CO
FC21C4
FC21C8
FC21CE
FC21D4
FC21DA
FC21DC
FC21DE
FC21E2
FC21E6
FC21EC
FC21EE
FC21F2
FC21F4
FC21F6
FC21F8
FC21FC
FC2202
FC2206

0000000000000000
00002D000C0002B00O
0000007F00000000
0000000000000000
3C000028292F2A37
3839343536313233
302E0DO0QC0OC0000
0000000000000000

41F9FFFFFAQL
7000
01C80000
01C80008
01C80010
117C00480016
3B7C11110E42
3B7C00140442
7002

7250
343C00C0
61000182
45F900FC2F78
7005
6100022C
7003

7201

7402
6100016C
203C00980101
01C80026
61000B84

dc.

Q
¢}
loJE 2NN o IR o BN o JER o BN O B 0

o Q
a0

lea

moveq.l
movep.l
movep.l
movep.1l
move.b
move . w
move.Ww
moveq.1l
moveq. 1l
move.w
bsr

lea

moveq.1l
bsr

moveq.l
moveq. 1l
moveq.l
bsr

move.l
movep.l
bsr

$00, $00,$00,%00,$00,5$00, 800,500
$00,%$00, "', $00,$00,%$00, '+',$00
$00, $00,$00,del, $00,500, 500,300
$00,$00,$00,5$00,$00,500,500,$00
l<l,$oo,$oo,l(l,l)l,l/l,l*l,"]l

'8','9‘,'4','5',

|6l’|1|,12|,|3|

191, 1,,$00,%00,%$00,500,500,500
$00, $00, 500, $00, 500,300,500, $00

SFFFFFAOL, AO
#0,D0
DO, 0 (AQ)
DO, 8 (AQ)
DO, 16 (AO)
#$48,22(A0)

#3$1111,85E42 (AS)

#$14,%$442 (A5)
#2,D0
#80,D1
#3C0, D2
$FC2366
$FC2F78,A2
#5,D0
SFC241C
#3,D0

#1,D1

#2,D2
$FC2366
#5980101,D0
DO, $26 (AO)
$FC2D8C

initmfp, initialize MFP 68901
Address of mfp

Initialize register with zero
gplp to iera

ierb to isra

isrb to vr

MFP non-autovector number to $40, set S-bit

Timer C bit map to every 4th IRQ
_timer ms to 20 ms

Select timer C

/64 for 200 Hz

192

Initialize timer and interrupt vector
Timer C interrupt routine

Timer C interrupt number

initint, initialize interrupt

Select timer D

/4 for 9600 baud

9600 baud

Initialize timer and interrupt vector
$00, $98, $01, $01

to scr, ucr, rsr, tsr

DTR on

3IEM]JOS SMIBQY

s[ewdiu] LS LIey

9¢¢

FCcz220A
FC220E
FC2212
Fc2218
FC221A
FC221E
FC2222
FCc2228
FC222A
FC222E
FC2234
FC2238
FC223C
FC2244
FC224C
FC2254
FC225C
FC2264
FC226A
FC2272
FC2278
Fc227icC
FC2280
FC2284
FC2286
FC228A
FC228E
FC2292
FC2296
FC229A
FC22A0
FC22A6

61000B78
41EDCDSE
43F900FC2334
7021

610000F0
41EDODBE
43F900FC2326
700D

610000E0
203CO0FC288E
2B400DDO
2B400DD4
2B7CO0FC2CE20DCC
2B7COOFC284A0DES
2B7CO0FC285A0DEC
13FCOOQ3FFFFFC04
13FCO095FFFFFCO04
1B7C00070484
2B7CO0FC1D120DEC
203CO00FC230A
2B400DD8
2B400DDC
2B400DE4

7000

2B400E44
1B400E48
1B400E49
2B400E3E
6100FC70
1B7COO0OFOE3C
1B7C00020E3D
41EDODBO

bsr
lea
lea

moveqg. 1l

bsr
lea
lea

moveq.l

bsr

move.
move.
move.
move.
move.
move.
move.
move.
move.
move.

move.

move,
move,

move.
moveq., 1l
move.

move.

move.
move,

bsr

move.

move.,
lea

e B Rl o i« i o S SV S SV

= O O+

o

$FC2D84

$D8E (A5) , A0
SFC2334,A1

#33,D0

S$FC230C

SDBE (A5) , A0
$FC2326,A1

#13,D0

$FC230C
#$FC288E, DO

DO, $DDO (A5)

DO, $DD4 (A5)
#$FC2CE2, $DCC (A5)
#$FC284A, SDE8 (A5)
#$FC285A, SDEC (A5)
#3, SFFFFFCO04
#$95, SFFFFFCO04
$#7,5484 (AS)
#$FC1D12, SDEO (AS5)
#$FC230A,D0

DO, $DD8(A5)

DO, $DDC (A5)

DO, $DE4 (A5)

#0,DO0

DO, $E44 (A5)

DO, $E48(A5)

DO, $E49(A5)

DO, SE3E(A5)
$FC1F08

#$F, SE3C (AS)
#2,SE3D(A5)

$DBO (A5) , A0

RTS on

Pointer to iorec for RS 232
Start data for ilorec

34 bytes

Copy to RAM

Pointer to iorec for MIDI

Start data for iorec

14 bytes

Copy to RAM

Keyboard and MIDI error vector
Pointer to keyboard error routine
Pointer to MIDI error routine
sysmidi vector

midisys vector

ikbdsys vector

MIDI ACIA control, master reset
/16, 8 Bit, 1 stop bit, no parity
conterm, keyclick, repeat und bell enable
Jdostime, time vector

Pointer to rts

statvec, IKBD status package
mousevec, mouse action

joyvec, joystick action

Clear sound variables

Sound pointer

Delay timer

Temp value

Printer timeout

Strobe to high

Keyboard delay 1

Keyboard delay 2

Pointer to iorec keyboard

31EM)JOS SnORqQY

S[eudajuy IS ULy

LSE

FC22AA
FC22BO
FC22B2
FC22B4
FC22B8
FC22C0
FC22C8
FC22CE
FC22D0
FC22D2
FC22D4
FC22D8
FC22DA
FC22DE
FC22E2
FC22E6
FC22EC
FC22EE
FC22F2
FC22F8
FC22FA
FC22FE
FC2304
FC2306
FC230A

FC230C
FC230E
FC2312

%k % K ok % Kk K Kk K K kK k K gk K %k ok k kK K kR ok kK ok ok ok ok kK ok ke kK ok ok ke ok ok ok ok ok ok ok sk ok ke ok ok ok ok

$80, 501,512, S1A

FC2314

43F900FC2318
700D

6158
61000C58

13FCO003FFFFFCOO0
13FCO096FFFFFCO0

267CO0FC2356
7203

2401

2001
06000009
E582
24732000
6100013C
51C9FFEC
45F900FC281C
7006
6100012C
45F900FC26B2
7002
61000120
247CO0FC2314
7603
6100FCCO
4E75

10D9

51C8BFFFC
4E75

8001121A

lea
moveq.l
bsr

bsr
move.b
move.b
move.1l
moveq. 1
move.l
move.l
add.b
asl.l
move.l
bsr
dbra
lea
moveq.1l
bsr

lea
moveq.l
bsr
move.l
moveq.l
bsr

rts

move.b

dbra
rts

dc.b

$FC2318,Al
#13,D0
$SFC230C
SFC2FOE

#3, SFFFFFCO0

#596, SFFFFFCO0

#$FC2356,A3
#3,D1

D1,D2

D1, DO

#9, DO

#2,D2
0(A3,D2.w),A2
$FC241C

D1, $FC22DO
$FC281C, A2
#6,D0
$FC241C
$FC26B2,A2
#2,D0
SFC241C
#8FC2314,A2
#3,D3
$FC1FC8

(Al) +, (AO) +
DO, $FC230C

Start data for iorec

14 bytes

Copy to RAM

Pointer to BIOS keyboard table
Keyboard ACIA control, master reset
/64, 8 BRit, 1 stop bit, no parity
Pointer to MFP interrupt vectors
Initialize 4 vectors

Interrupt number
plus offset

Get vector from table
initint, install interrupt
Next vector

MIDI and keyboard vector
Vector number 6

initint, install interrupt
CTS interrupt routine
Vector number 2

initint, install interrupt
Pointer to init data for IKBD
4 bytes

Send string to IKBD

Block move
Next byte

Reset Keybcard, disable mouse + joystick

31BM}JOS SNIBQY

sjeusdjuy LS 1B}y

8S¢E

Kk K ke ok ok kK ok sk kK Kk sk ok sk sk A Sk ok ok sk gk ok ok ok ok ok ok sk ok Rk ok k kK e sk ok Kk sk ok ok ko Rk ok X ke ok

FC2318
FC231cC
FC231E
FC2320
FC2322
FC2322

00C0C0COE
0100
0000
0000
0040
00CO

dc.l
dc
dc.
dc.
dc.
dc.

Tz =z %

SCOE
$100
0

o
$40
$CO

%ok Kk kK kK K K kKK Kk ok Kk Rk Kk kK Kk Kk kR ok ok kK sk ok ok k ki ok ok ok ok ke ke Kk ok ko kR ok ok ok ok ok R X

FC2326
FC232A
Fc232cC
FC232E
FC2330
FC2332

000C0DCE
0080
00600
0000
0020
0060

de.1l
dc.w
dc.w
dc.w
dc.w
dc.w

$DOE
$80
0

0
$20
$60

Fhkkkhkhkkhkdkdkhdhkhkkkhkhkhkhkkdkhkdkkkhkhkhkkhkkhdkhkdkkkhkhkhkhdhkkhkhkkkkkkkkx

FC2334
FC2338
FC233A
FC233C
FC233E
FC2340

0COOOAQE
0100
0000
0000
0040
00CO

dc.1
dc.w
dc.w
dc.w
dc.w
dc.w

$SAQE
$100
0

0
$40
$CO

% %k Kk d kK Kk ok Kk ke ok Y sk Kk Kk ke ok sk ok %k ok ok %k kK Rk ok ok ok sk ok ok ok sk vk ke kol ok ok sk ok ok ok ok ok ok ok ke

FC2342
FC2346
FCc2348
FC234A
FC234C
FC234E
FC2350

00000BOE
0100
0000
0000
0040
00CO

00

dc.1l
dc.w
dc.w
dc
dc.
dc.
dc.

oz % =

SBOE
5100
0

0
$40
5C0

iorec for keyboard
Buffer address
Buffer size

Head index

Tail index
Low-water mark
High-water mark

iorec for MIDI
Buffer address
Buffer size
Head index

Tail index
Low-water mark
High-water mark

iorec for RS 232 input
Buffer address

Buffer size

Head index

Tail index

Low-water mark
High-water mark

iorec for RS 232 cutput
Buffer address

Buffer size

Head index

Tail index

Low-water mark
High-water mark

rsrbyte, receiver status

JIeM)JoS snoeqy

s[eusduy LS He)y

FC2351 00 dc.b 0 tsrbyte, transmitter status %

FC2352 00 dc.b 0 rxoff 8

FC2353 00 dc.b 0 txoff w

FC2354 01 dc.b 1 rsmode, XON/XOFF mode L

FC2355 00 de.b 0 filler i'?
E

%k %k ok k kK ok Kk Kk Kk sk Kk sk kR sk Rk kK R KR K ok kR Rk Sk sk ok 3k e ke ok K ok ko ok ok ok sk ok ok Interrupt vectors for MFP (4]

FC2356 O0FC2718 dec.1l SFC2718 #9, transmitter error

FC235A 00FC2666 dec.1l SFC2666 #10, transmitter interrupt

FC235E OOFC26FA dc.1 SFC26FA #11, receiver error |

FC2362 00FC2596 dc.1 SFC2596 #12, receiver interrupt

% % % 3 ok ok ok K K K K K %k Kk k& kK Kk k ok K % Kk %k %k %k ok sk ok ok ok 3 ok d k ok %k Kk % ok ok %k ok ok ok ok Kk Kk ok ok setimer, initialize timer in MFP

FC2366 48ETF8FO0 movem.l D0O-D4/A0-A3,- (A7) Save registers

FC236A 207CFFFFFAOL move.l #SFFFFFAOl,AQ Address of MFP

w FC2370 267COQ0FC23FA move.l #S$SFC23FA,A3 Timer interrupt mask bit
% FC2376 247COQFC23FE move.l #$FC23FE,A2

FC237C 615A bsr $FC23D8 mskreg

FC237E 267COOFC23EE move.l #SFC23EE,A3 Timer interrupt enable bit

FC2384 247CO0FC23FE move.l #S$SFC23FE,A2

FC238A 614C bsr SFC23D8 mskreg

FC238C 267CO0FC23F2 move.l #$FC23F2,A3 Timer interrupt pending bit

FC2392 247COOQFC23FE move.l #$SFC23FE,A2

FC2398 613E bsr $FC23D8 mskreg

FC239A 267COOFC23F6 move.l #$FC23F6,A3 Timer interrupt in-service bit

FC23A0 247COOFC23FE move.l #$FC23FE,A2 g;

FC23A6 6130 bsr SFC23D8 mskreg =

FC23A8 267CO0FC2402 move.l #$FC2402,A3 Timer control bit w2

FC23AE 247CO0QFC2406 move.l #$FC2406,A2 :3

FC23B4 6122 bsr SFC23D8 mskreg =4

FC23B6 C749 exg A3,Al Save A3 3

FC23B8 47F900FC240A lea SFC240A,A3 Address of timer data register gi
&

09¢

FC23BE
FC23C0
FC23C4
FC23C8
FC23CC
FC23CE
FC23D0
FC23D2
FC23D6

7600
16330000
11823000
B4303000
66F6
C749
8313
4CDFOF1F
4E75

moveq.l #0,D3

move.b
move.b
cmp.b
bne
exyg
or.b

movem. 1

rts

0(A3,D0.w),D3
D2,0(A0,D3.w)
0(AQ0,D3.w),D2
SFC23C4

A3,Al

D1, (A3)
(A7) +,D0-D4/A0~-A3

ok ke ok Kk kK ke kK Kk kK K K sk ke kR Kk ke ke ok ok ok ok ok ok ok kK k ke k ke ok ke ke ki ok ke ke sk sk ki ke ke ke ke ok ok ok

FC23D8
FC23DA
FC23DC
FC23DE

6106
1612
C713
4E75

bsr
move.b
and.b
rts

SFC23E0
(A2),D3
D3, (A3)

KKK KKK I A KK KA KA AR A AR A KA A A AR A KA A dkkkkkkkkkkkkkkkkkkkkk

moveq.l #0,D3

FC23EQ
FC23E2
FC23E4
FC23E6
FC23E8
FC23EA
FC23EC

7600
D6CO
1613
D688
2643
D4CoO
4E75

add.w
move.b
add.l
move.l
add.w
rts

DO, A3
(A3),D3
AO,D3
D3,A3
DO, A2

R R SR ESESE SR SRS EEEREEEEREES RS SERERRRSERERERSE SRS RS RS

FC23EE

FC23F2 OAOAQCOC

FC23F6

06060808

OEOE1010

FC23FA 12121414

dc.b
dc.b
dc.b
dc.b

6,6,8,8
10,10,12,12
14,14,16,16
18,18,20,20

Get register number

Write data in MFP

and read

until match

Restore A3

Mask timer control register
Restore registers

mskreg

getmask

Load mask

and clear bit(s)

getmask

Base plus register number
yields address offset in MFP
plus address of MFP

to A3

Pointer to the mask

MFP register numbers

iera, lera, ierb, ierb
ipra, ipra, iprb, iprb
isra, isra, isrb, isrb
imra, imra, imrb, imrb

31BM)JOS SndeqQy

s[ewsaju] IS 1B}y

19¢

**

FC23FE DFFEDFEF dc.b $DF, $FE, $DF, SEF

FC2402 181AlC1C dc.b $18, $1A,$1C, $1C
FC2406 OOCOSFF8 dc.b 0,0,$8F, 5F8
FC240A 1E202224 dc.b $1E, $20,%$22, 824

FC240E 302F0004 move.w 4(A7),DO
FC2412 246F0006 move.l 6(A7),A2
FC2416 02800000000F and.l #15,D0

**

FC241C 48ETEOED movem.l DO-D2/A0-A2,- (A7)

FC2420 6120 bsr $SFC2442

FC2422 2400 move.l DO,D2

FC2424 E542 asl.w $#2,D2

FC2426 068200000100 add.l #$100,D2

FC242C 2242 move.l D2,Al

FC242E 228A move.l A2, (Al)

FC2430 614A bsr $FCc247C

FC2432 4CDF0707 movem.l (A?7)+,D0-D2/A0-A2
FC2436 4E75 rts

**

FC2438 302F0004 move.w 4(A7),D0O

FC243C 02800000000F and.1l $#15,D0

FC2442 48E7C0CO movem.l DO-D1/A0-Al,-(A7)
FC2446 41F9FFFFFAQL lea SFFFFFAOL1,AO
FC244C 43E80012 lea 18(A0) ,Al

FC2450 614A bsr $FC249C

FC2452 0391 beclr D1, (Al)

FC2454 43E80006 lea 6(A0) ,Al

Masks for MFP registers

Clear bits 5, 0, 5, 0

set bits 3+4, bits 1,3+4, bits 2-4, bits 2-4
none, none, clear bits 5-7, bits 0-2

Set bits 2-4, bits 5, bits 145, bits 2+5

mfpint, set MFP interrupt vector
Interrupt number

Interrupt vector

Number 0-15, long word

initint, set MFP interrupt vector
Save registers

Disable interrupts

Vector number

As index for long word

Plus base address of the MFP vectors
Vector address

Set new vector

Enable interrupts

Restore registers

disint, disable MFP interrupt
Get interrupt number

as long word index

Save registers

Address of mfp

Address of imra

Calculate bit number to clear
And clear bit

Address of iera

31BM}JOS SNIBQY

s[gusdjuj LS LBy

9¢

FC2458
FC245A
FC245C
FC2460
FC2462
FC2464
FC2468
FC246A
FC246C
FC2470

6142
0391
43E8000A
613A
0391
43E8B0COE
6132
0391
4CDF0303
4E75

bsr SFC249C
bclr D1, (Al)
lea 10(A0) ,Al
bsr $FC249C
beclr D1, (Al)
lea 14 (AO) ,Al
bsr $FC249C

beclr D1, (A1)
movem.1l (A7)+,D0-D1/A0-Al
rts

%ok Kk %k ok kR ok ke k kK Kk kg ke ok ok ok gk ok ok ok Kk ok sk ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok %k ok ok ok ok ok ke ok ok

FC2472
FC2476
FC247cC
FC2480
FC2486
FC248A
Fc248cC
FC248E
FC2492
FC2494
FC2496
FC249A

302F0004
02800000000F
48E7C0CO
41FOFFFFFAQOL
43E80006
6110

03D1
43E80012
6108

03D1
4CDF0303
4E75

move.w 4(A7),DO
and.l #15,D0
movem.l DO-D1/A0-Al,-(A7)

lea SFFFFFAO1,AQ
lea 6(A0) ,Al

bsr $FC249C

bset D1, (Al)

lea 18 (AO) ,Al
bsr $FC249C

bset D1, (Al)

movem.l (A7)+,D0-D1/A0-A1
rts

% %k Kk F ok %k ok ok kK ok ok kb ok %k %k ok ok gk sk ok %k ok gk d ke ke ok ok ke ok ok ke ok ke ok %k ok ok e gk ok sk ok ok ke ok ok ok ok

FC249C
FC249E
FC24A2
FC24A4
FC24A6
FC24AA

1200
0co00008
6D02
5141
0C000008
6C02

move.b DO,D1
cmp.b #8,DO0
blt SFC24A6
subg.w #8,D1
cmp.b #8,D0
bge SFC24AE

Calculate bit number to clear
And clear bit

Address of ipra

Calculate bit number to clear
And clear bit

Address of isra

Calculate bit number to clear
and clear bit

Restore registers

jenabint, enable MFP interrupt
Vector number

as long word index

Save registers

Address of the MFP

Address of iera

Calculate bit number to set
and set bit

Address of imra

Calculate bit number to set
and set bit

Restire registers

bselect, determine bit and register number
Save interrupt number

Greater than 8 ?

No

Else subtract offset

Greater than 8 ?

Yes

3IvM)JOS SnIBqQy

sjeutauy IS 11eyy

€9¢

FC24AC 5449 addqg.w #2,Al
FC24AE 4E75 rts

**

FC24B0 41F900000D8E lea $D8E, AQ
FC24B6 43F9FFFFFAQL lea SFFFFFAOL,Al
FC24BC 4E75 rts

*****************************‘k**************************

FC24BE 34280008 move.w 8(A0),D2
FC24C2 36280006 move.w 6{(A0),D3
FC24C6 B443 cmp.w D3,D2
FC24C8 6204 bhi SFC24CE
FC24CA D4680004 add.w 4 (A0),D2
FC24CE 9443 sub.w D3,D2
FC24D0 4E75 rts

**

FC24D2 082800010020 btst #1,32(A0)
FC24D8 6704 beq SFC24DE
FC24DA 610008A8 bsr $FC2D84
FC24DE 4E75 rts

************************‘k*******************************

FC24EQ0 40E7 move.w SR, —(A7)
FC24E2 007C0700 or.w #$700,SR
FC24E6 61C8 bsr SFC24B0
FC24E8 082800000020 btst #0,32(A0)
FC24EE 6706 beq SFC24F6
FC24F0 4A28001F tst.b 31 (AO0)
FC24F4 6618 bne SFC250E
FC24F6 08290007002C btst #7,44 (Al)

Pointer from A to B register

rs232ptr
Pointer to RS 232 iorec
Address of the MFP

rs232ibuf, determine buffer contents
Tail index

Head index

Head > tail ?

No

Add buffer size

Determine buffer contents

rtschk

RTS/CTS mode ?
No

rtson

rs232put, RS 232 output

Save status

IPL 7, disable interrupts

rs232ptr, get RS 232 buffer pointer
XON/XOFF mode?

No

XON active ?

Yes

Is MFP still sending ?

31EM]JOS SNIBQY

s[ewrdyu] LS ey

1253

FC24FC
FC24FE
FC2502
FC2506
FC2508
FC250C
FC250E
FC2512
FC2516
FC251A
FC251C
FC2520
FC2524
FCc2528
FC252A
FC252C
FC2530

FC2532
FC2534
FC2536
FC253A

KhkhkA KTk hkkhkkhkkkhhkkhkhkhkkhkkkhkdhhkhkrhkdhkhkhkkkhkhkkhkhkkkhkkkkkkkkk

FC253C
FC253E
FC2542
FC2546
FC254A
FC254E
FC2550
FC2554

6710
34280014
B4680016
6606
1341002E
601A
34280016
610002FC
B4680014
6716
2268000E
13812000
31420016
61A8
46DF
023COOFE
4E75

619E
46DF
003Co0001
4E75

40E7

007C0700
6100FF6C
32280006
B2680008
671A

610002B2
22680000

beqg
move . w
cmp . w
bne
move.b
bra
move .w
bsr
cmp.w
beq
move.l
move.b
move.w
bsr
move.w
and.b
rts

bsr
move .w
or.b
rts

move.w
or.w
bsr
move .w
cmp.w
beqg
bsr
move.l

$SFC250E
20 (A0),D2

22 (A0),D2
$FC250E
D1, 46 (Al)
$FC2528

22 (A0),D2
$FC2810

20 (A0),D2
$FC2532

14 (A0) ,Al
D1,0(Al,D2.w)
D2, 22 (A0)
$FC24D2
(A7) +, SR
#SFE, SR

SFC24D2
(A7) +,SR
#1,SR

SR, -(AT7)
#$700, SR
SFC24B0O
6(A0),D1
8 (A0),D1
SFC256A
$FC2804
(A0) ,Al

Yes

Head index

Compare with tail index

Characters still in buffer

Byte into MFP transmitter register

Tail index

Test for wrap arround
Compare with head index
Buffer full?

Pointer to send buffer
Write byte in buffer
Save new tail index
rtschk, set RTS ?
Restore status

OK, clear carry flag

rtschk, set RTS?
Restore status
No output, set carry flag

rs232get, RS 232 input

Save status

IPL 7, disable interrupts
rs232ptr, get RS 232 pointer
Head index

Compare with tail index
Receiver buffer empty?

Test for wrap arround

Get buffer address

21BM)JOS SNIBQY

sjeusayuy IS e}y

¢o¢

FC2558
FC255A
FC255E
FC2562
FC2564
Fc2568
FC256A
FC256C
FC2570
FC2576
FC2578
FC257C
FC257E
FC2582
FC2586
FC2588
FC258C
FC2590
FC259%4

7000
10311000
31410006
46DF
023CO0FE
6006
46DF
003C0001
082800000020
671C
4A28001E
6716
6100FF3E
B468000A
660C
123C0011
6100FF52
4228001E
4E75

moveq.l #0,D0

move.b 0(Al,Dl.w),DO
move.w D1,6(A0)

move ,w (A7) +,SR
and.b #SFE, SR

bra SFC2570
move.w (A7)+,SR
or.b #1,SR
btst #0, 32 (AO)
beq $FC2594
tst.b 30 (A0)
beq $FC2594
bsr SFC24BE
cmp.wW 10(A0) ,D2
bne $FC2594
move.b #3$11,D1
bsr SFC24EQ
clr.b 30 (A0)
rts

**

FC2596
FC259%A
FC259E
FC25A4
FC25AA
FC25AE
FC25B4
FC25B6
FC25BA
FC25BE
FC25C4

48ETFOEOQ
6100FF14
1169002A001C
08280007001C
670000AE
082800010020
6704
610007C8
1029002E
082800010020
6640

movem.l DO-D3/A0-A2,-(A7)

bsr $SFC24B0
move.b 42 (Al),28(A0)
bt st #7,28(A0)
beq SFC265A

bt st #1,32(A0)
beq SFC25BA

bsr $SFC2D80

move.b 46(Al),DO
btst #1,32 (A0)
bne $FC2606

Get character from buffer

Save new head index

Restore status

Character there, clear carry flag

Restore status

No character, set carry flag
XON/XOFF mode?

No

XON active ?

No

Get input buffer length
Equals low-water mark?
No

XON

Send

Clear XON flag

revint, RS 232 recelver interrupt
Save registers

rs232ptr, get RS 232 pointer

Save receiver status register
Interrupt through receiver buffer full ?
No, ignore interrupt

RTS/CTS mode?

No

rtsoff

Read received byte

RTS/CTS mode?

Yes

91BM}JOS SNIRQY

sjeusdjuy LS 1B}V

99¢

FC25C6
Fc25cc
FC25CE
FC25D2
FC25D4
FC25DA
FC25DE
FC25E2
FC25E4
FC25E8
FC25EC
FC25F2
FC25F6
FC25F8
FC25FC
FC25FE
FC2604
FC2606
FC260A
FC260E
FC2612
FC2614
FC2618
FC261C
FC2620
FC2624
FC2628
FC262A
FC2630
FC2632
FC2638
FC263A

082800000020 btst
6738 beqg
0C000011 cmp.b
6624 bne
117CC0000001F move.b
34280014 move . w
B4680016 cmp.w
6776 beg
61000222 bsr
2468000E move.l
13722000002E move.b
31420014 move.w
6062 bra
0C000013 cmp.b
6608 bne
117COOFFO01F move.b
6054 bra
32280008 move.w
610001F8 bsr
B2680006 cmp.w
6746 beqg
24680000 move.1l
15801000 move.b
31410008 move.w
6100FESC bsr
B468000C cmp.w
6624 bne
082800010020 btst
6628 bne
082800000020 btst
6714 beq
4A28001E tst.b

#0,32 (A0)
$FC2606
#17,D0
$SFC25F8
#0, 31 (AO)
20(A0) ,D2
22(A0},D2
SFC265A
$FC2810

14 (A0) ,A2
0(A2,D2.w),46(Al)
D2,20(A0)
SFC265A
#19,D0
$FC2606
#S$FF, 31(A0)
$FC265A

8 (A0),D1
SFC2804
6(A0),D1
$FC265A
(A0) , A2

DO, 0(A2,D1.w)
D1, 8 (A0)
$FC24BE
12(A0),D2
SFC264E
#1,32(A0)
$FC265A
#0,32(A0)
SFC264E

30 (A0)

XON/XOFF mode?

No

XON received?

No

Clear XOFF flag

Head index sender

Compare with tail index sender
Send buffer empty?

Test for wrap around

Pointer to send buffer

Byte in MFP transmitter register
Save new head index

XOFF received ?
No
Set XOFF flag

Tail index

Test for wrap arround
Receiver buffer full?

Yes, ignore characters
Pointer to input buffer
Received charcter in buffer
Save new tail index

Get input buffer length used
Same as high-water mark?

No
RTS/CTS mode?
No
XON/XOFF mode?
No

XOFF already sent?

aIeM]JOS Snoeqy

sfeusduy IS MBIy

L9E

FC263E
FC2640
FC2646
FC264A
FC264E
FC2654
FC2656
FC265A
FC2660
FC2664

660E
117COOFFOO1E
123C0013
6100FE94
082800010020
6704
6100072C
08A90004000E
4CDFO70F
4E73

bne SFC264E
move.b #SFF,30(A0)
move.b #3$13,D1

bsr SFC24EQ
bt st #1,32 (AO)
beq SFC265A
bsr SFC2D84

bclr #4,14 (A1)
movem.l (A7)+,D0-D3/A0-A2
rte

*********‘k**

FC2666
FC266A
FC266E
FC2674
FC2676
FC267C
FC267E
FC2682
FC2684
FC268A
FC268E
FC2692
FC2694
FC2698
FC269C
FC26A2
FC26A6
FC26AC
FC26B0

48E720EQ
6100FE44
082800010020
6630
082800000020
6706
4A28001F
6622
1169002C001D
34280014
B4680016
6712
6100017A
2468000E
13722000002E
31420014
08A90002000E
4CDF0704
4E73

movem.l D2/A0-A2,- (A7)

bsr SFC24BR0
btst #1,32 (A0)
bne SFC26A6
btst #0,32 (A0)
beq $FC2684
tst.b 31 (AO)
bne SFC26A6

move.b 44(Al),29(A0)
move.w 20 (A0),D2
Ccmp.w 22 (A0),D2

beg SFC26A6

bsr $FC2810

move.l 14(A0Q),A2
move.b O0(A2,D2.w),46(Al)
move.w D2,20(A0)

bclr #2,14 (A1)
movem.l (A7)+,D2/A0-A2
rte

Yes

Flag for setting XOFF

XOFF

send

RTS/CTS mode?

No

rtson

Clear interrupt service bit
Restore registers

txrint, transmitter buffer empty
Save registers

rs232ptr, get RS 232 pointer
RTS/CTS mode?

Yes, then use this interrupt
XON/XOFF mode?

No

XOFF active ?

Yes, do nothing

Save transmitter status register
Head index

Compare with tail index

Send buffer empty?

Test for wrap around

Pointer to send buffer

Byte in MFP transmitter register
Save new head index

Clear interrupt service bit

Restore registers

31BM}JOS SNOBQY

sjeusdjuy LS ey

89¢

****t*‘k***

FC26B2
FC26B6
FC26BA
FC26CO
FC2e6C2
FC26C8
FC26CE
FC26D0
FC26D4
FC26D8
FC26DA
FC26DE
FC26E2
FC26ES8
FC26EC
FC26F2
FC26F6

FC26F8

48E720E0
6100FDF8
082800010020
672A
1169002C001D
08280007001D
67F8
34280014
B4680016
671E
61000134
2468000E
13722000002E
31420014
08A900020010
4CDF0704
4E73

60F2

movem.l D2/A0-A2,~ (A7)

bsr SFC24B0
btst #1,32(A0)
beq SFC26EC

move.b 44 (Al),29(A0)
btst #7,29(A0)

beq $FC26C8

move.w 20 (AQ0),D2
cmp.w 22 (A0) ,D2

beq SFC26F8

bsr S$FC2810

move.l 14(A0),A2
move.b 0(A2,D2.w),46(Al)
move.w D2,20(A0)

beclr #2,16(A1)
movem.l (A7)+,D2/A0-A2
rte

bra $FC26EC

Khhkkkkkhk ok khkkkkhkkk kR kA Xk k Ak kkkkkkkok ok ok ok k ke k k% &k koK & % Kk & % %

FC26FA
FC26FE
FC2702
FC2708
FC270C
FC2712
FC271e6

48E780C0O
6100FDBO
1169002A001C
1029002E
08AS0003000E
4CDF0301
4E73

movem.1l DO/AO-Al, - (A7)
bsr $FC24B0
move.b 42(Al),28(A0)
move.b 46(Al),DO

bclr #3,14 (A1)
movem.l (A7)+,D0/A0-Al
rte

F ok sk ok ok gk Kk ok ok ke ok ke ok kK Kk K Kk kK k Sk sk kK kK %k K ok ok sk ok ok kK ok ok ok ok K ok kK K Kk ok Rk

FC2718
FCc271cC

48E700C0O
6100FD92

movem.l AO-Al,~- (A7)
bsr $SFC24B0

ctsint, CTS interrupt routine
Save registers

rs232ptr, get RS 232 pointer
RTS/CTS mode?

No, ignore interrupt

Save transmitter status
Transmitter buffer empty ?

No, wailt (must jump to S$FC26C2!)
Head index

Compare with tail index

Send buffer empty

Test for wrap around

Pointer to send buffer

Byte in MFP transmitter register
Save new head index

Clear interrupt service bit
Restore registers

Send buffer empty

rxerror, RS 232 receiver error
Save registers

rs232ptr, get RS 232 pointer
Save receiver status

Read data register (clear status)
Clear interrupt service bit
Restore registers

txerror, RS 232 send error
Save registers
rs232ptr, get RS 232 pointer

AIBM}JOS SnoBqQy

s[eusdju] LS LB}y

69¢

FC2720 1169002C001D move.b
FC2726 08A90001000FE bclr
FC272C 4CDF0300 movem. 1l
FC2730 4E73 rte

44 (A1) ,29(A0)
#1,14 (Al)
(A7) +/A0-A1

kKA kk kA kA KA KKK AR Ik Ak A A Ak kA Kk kR k kK Xk kkkdkk ok ok kkkkdkdkdkkxkkxkkx

FC2732 17200 moveq.l
FC2734 322F0004 move.w
FC2738 40E7 move.w
FC273A 007C0700 or.w
FC273E 45F900FC274E lea
FC2744 E581 asl.1
FC2746 20321800 move.l
FC274A 46DF move.w
FC274C 4E75 rts

#0,D1
4(A7),D1

SR, -(AT)
#5700, SR
SFC274E,A2
#2,D1
0(A2,D1.1),D0
(A7) +, SR

%k %k Rk K ok kK Kk Tk k ok ok Kk k ok kR sk ok ke k ok kK Tk ok ko ok ok k kR ok Sk ok ok e ek ok ok ok kok ok

FC274E 000O0ODSE dc.l
FC2752 00000DBO dec.1l
FC2756 00000DBE dec.1l

SD8E
$DBO
$DBE

Ak Ak kKKK KA KR KA KA A KA I KA A KA RI KK KAKR Kk KAk kAKX KK h*okk ok kkxkk

FC275A 007C0700 or.w
FC275E 6100FD50 bsr
FC2762 0F490028 movep.l
FC2766 4A6F0006 tst.w
FC276A 6BOA bmi
FC276C 116F00070020 move.b
FC2772 7000 moveq.1l
FC2774 7400 moveq.l
FC2776 4A6F0004 tst.w
FC277A 6B34 bmi

#5700, SR
$FC24B0

$28 (A1) ,D7
6 (A7)
$FC2776
7(A7),32(A0)
#0,DO0

#0,D2

4 (A7)
$FC27B0

Save transmitter status
Clear interrupt service bit
Restore registers

get lorec

Device number

Save status

IPL 7, disable interrupts
Address of the table

Long access

Get pointer to iorec
Restore status

iorec table
RS 232

IKBD

MIDI

rsconf, configure RS 232

IPL 7, disable interrupts
rs232ptr, get RS 232 pointer
Save ucr, rsr, tsr and scr
Mode

Negative, don't reset

Reset rsmode

Baud rate
Negative, don't change

21BM1JOS SNIEQY

sjeusdu] LS 11y

0LE

Fc277c¢
FC277E
FCc2782
FC2786
FC278A
FC2790
FC2794
FC279A
FC279E
FC27A0
FC27A2
FC27A6
FC27A8
FC27AC
FC27BO
FC27B4
FC27B6
FC27BC
FC27C0
FCc27C2
FC27C8
FCc27ccC
FC27CE
FC27D4
FC27D8
FC27DA
FC27EQ
FC27E2

7000
1340002A
1340002C
322F0004
45F900FC27E4
10321000
45F900FC27F4
14321000
2200

7003
6100FBC2
7001
1340002A
1340002C
4A6F0008
6B06
136F00090028
4A6F000A
6B06
136F000B0O02A
4A6F000C
6B06
136F000D002C
4A6F000E
6B06
136F000F0026
2007

4E75

moveq. 1l
move.b
move.b
move ,w
lea
move.b
lea
move .b
move, 1l
moveq.l
bsr
moveq. 1l
move.b
move.b
tst.w
bmi
move.b
tst.w
bmi
move.b
tst.w
bmi
move.b
tst.w
bmi
move.b
move.l
rts

#0,DO0
DO, 42 (A1)
DO, 44 (A1)
4(n7),D1
$FC27E4,A2
0(A2,D1.w),DO
SFC27F4,A2
0(A2,Dl.w),D2
DO, D1

#3,D0

SFC2366
#1,D0
DO, 42 (Al)
DO, 44 (Al)

8 (A7)

SFC27BC
9(A7),40(Al)
10 (A7)
$FC27C8
11(A7),42 (A1)
12 (A7)
$FC27DA4
13(A7),44 (A1)
14 (A7)
SFC27E0
15(A7),38(Al)
D7,DO0

% d k% Kk sk &k k kK ok %k k k ok ok K ok ke de ek ok sk kK ok ok R ok Kk ok sk ok K %k ok ok ko ok kK ok ok ok ok ok kb ke ke

FC27E4 0101010101010101
FC27EC 0101010101010202

dc.b
dc.b

1,1,1,1,1,1,1,1
1,1,1,1,1,1,2,2

Disable receiver
Disable sender

Get new baud rate
Table of timer values,
Get value

Table of timer values,
Get value

Pointer to timer D

control registers

data registers

Set timer D for new baud rate

Enable receiver
Enable sender
Set uer ?

No

New ucr value
Set rsr ?

No

New rsr value
Set tsr?

No

New tsr value
Set scr?

No

Set scr

old value for control register

Timer values for RS 232 baud rate

Control register
1=/4, 2 = /10

J1BM}JOS SndBqY

sjewsou] LS MBIV

ILE

FC27F4

FC27FC 204060808FAFF4060

01020405080A0B10

dc.b 1,2,4,5,8,10,11,16

Data register

dc.b 32,64,96,128,143,175,64,96

*‘k‘k**********‘k‘k‘k**

FC2804
FC2806
FC280A
FC280C
FC280E

5241
B2680004
6502
7200
4E75

addg.w #1,D1
cmp. W 4 (A0),D1

bes SFC280E
moveq.l #0,D1
rts

AR K KK I KA KK KA A KR A A A kA A K AR AR I KA A AR KRRk *kkkkk kkokkkkkdokk

FC2810
FCc2812
FC2816
FC2818
FC281A

5242
B4680012
6502
7400
4E75

addg.w #1,D2
cmp.wW 18 (AO0) ,D2

bcs SFC281A
moveqg.l #0,D2
rts

Kk Ak kK h I KK KK IAA KA Ak Ak AR KAk kkkkhkkk A Xk kkxkkkkkhkhkhkkkkkxxx

FC281C
FC2820
FC2826
FC282A
FC282C
FC2830
FC2832
FC283A
FC283C
FC2844
FC2848

48E7FOF4
4BF900000000
246DODES

4E92

246DODEC

4E92
08390004FFFFFAQL
67EA
08B30006FFFFFALL
4CDF2FOF

4E73

movem.l DO-D3/A0-A3/A5,- (A7)

lea $0,AS5

move.l S$SDE8(A5),A2
jsr (A2)

move.l S$SDEC(AS),A2
jsr (A2)

bt st #4, SFFFFFAOL
beq SFC2826

beclr #6, SFFFFFALL

movem.l (A7)+,D0-D3/A0-A3/AS
rte

kkkkkkkA ARk A A KA A Ak A kT hhkhkkkkkkkkhkkkhkkkkkkhkkkkkkdxdkkkkkkx

FC284A

41EDODBE

lea S$DBE (A5) ,AO

wrapin, test for wrap around
Head index + 1

Equals buffer size?

No

Else begin with zero

wrapout, test for wrap around
Tail index + 1

Equals buffer size?

No

Else begin with zero

midikey, keyboard and MIDI interrupt
Save registers

Clear A5

mbufrec, MIDI

Interrupt from MIDI ACIA ?

kbufrec, keyboard

Interrupt from keyboard ACIA ?

mfp gpip, still an interrupt there?
Yes, proces

Clear interrupt service bit

Restore reglsters

midisys, MIDI interrupt
iorec for MIDI

J1BM}JOS SnIBQY

sjeutdjuy LS 1B}V

Le

FC284E 43F9FFFFFCO04 lea SFFFFFC04, Al
FC2854 246DODD4 move.l $DD4 (A5),A2
FC2858 600E bra SFC2868

KhAhkhkdk Ak ko kA kR Ik Ak hkhkhkhkhkkk Ak kkhkhkkhkkkkkkkkkkkkkkkkkkkkkkk

FC285A 41EDODBO lea $SDBO (A5) , A0
FC285E 43F9FFFFFCO0 lea SFFFFFCO0O0, Al
FC2864 246D0ODDO move.l S$DDO(AS),A2
FC2868 14290000 move.b (Al),D2
FC286C 08020007 btst #7,D2

FC2870 671C beqg SFC288E
FC2872 08020000 btst #0,D2

FC2876 670A beq $FCc2882
FC2878 48E720E0 movem.,l D2/A0-A2,- (A7)
FC287C 6112 bsr SFC2890
FC287E 4CDF0704 movem.,l (A7)+,D2/A0-A2
FC2882 02020020 and.b #$20,D2
FC2886 6706 beq SFC288E
FC2888 10290002 move.b 2(Al),DO
FC288C 4ED2 jmp (A2)

FC288E 4E75 rts

Je & e ke de K e Kk g ok K gk ok kK Kk ok kK ok kK ke Kk ok ok ok % ok ok ok sk ke ok ok ok ok ke ok %k ok ok ko ok ke ok ok ok ok

FC2890 10290002 move.b 2(Al),DO
FC2894 B1FCO000O0ODBO cmp.l #SDBO, AQ
FC289A 66000440 bne $FC2cDe
FC289E 4A2DODFO tst.b SDFO (AS)
FC28A2 6660 bne SFC2904
FC28A4 0COOOOFS6 cmp.b #$F6,D0
FC28A8 65000100 bcs SFC29AA
FC28AC 040000F6 sub.b #$F6,D0

FC28B0 0280000000FF and.1l #SFF, DO

MIDI ACIA control
MIDI error routine

ikbdsys, keyboard interrupt
iorec for keyboard
Keyboard ACIA control
Keyboard error routine

Get ACIA status

Interrupt request ?

No

Receiver buffer full?

No

Save registers

arcvint, get byte

Restore registers

Clear tested bit

No error

Read data again, clear status
Execute error routine

arcvint, get byte from ACIA
get data from ACIA

Keyboard ACIA ?

No, MIDI

Keyboard state

Keypress ?
yes
Subtract offset

JIeMm}jos snoeqy

s[eusaju] IS Meyy

€LE

FC28B6
FC28BC
FC28C2
FC28C8
FC28CE
FC28D2
FC28D6
FC28D8
FCc28bC
FC28DE
FC28E2
FC28E4
FC28ES8
FC28EA
FC28EE

47F900FC28F0 lea
1B7300000DFQ move.b
47F900FC28FA lea
1B7300000DF1 move.b
064000F6 add.w
0C0000F8 cmp.b
6D0C blt
0CO000FB cmp.b
6E06 bgt
1B400DFE move.b
4E75 rts
0CO000FD cmp.b
6D04 blt
1B400EQO7 move.b
4E75 rts

$SFC28F0, A3
0(A3,D0.w), SDFO (A5)
SFC28FA, A3
0(A3,D0.w), $DF1 (A5)
#$F6,D0

#$F8,D0

SFC28E4

#SFB, DO

SFC28E4

DO, $DFE (A5)

#SFD, DO
SFC28EE
DO, SEO07 (A5)

kKKK AT AK KKK I KA A KA ARk kkhkhkkhkkkkkhkkkxkkkkkkkkkkkkkkkdkxk

FC28F0
FC28FA

* ok % Kk ok Kk ok k kK kK kK ok ok ok ko ke ok ok ok Kk ke ok gk ok 3k sk k ok ok ok ok ok ok kR ok ok ok ok ke ok ok kK ok ok ok

FC2904
FC290A
FC290E
FC2914
FC2916
FC291A
FC291C
FC231E
FC2922
FC2924
FC2926

01020303030304050607 dc.b
07050202020206020101 dc.b

0C2D00060DFO cmp.b
64000084 bcc
45F900FC2954 lea
7400 moveq.1l
142DODFO move.b
5302 subg.b
E342 asl.w
D42DODFO add.b
5302 subg.b
E542 asl.w
20722000 move.l

1,2,3,3,3,3,4,5,6,7
1,5,2,2,2,2,6,2,1,1

#6, SDFO (AS)
SFC2990
SFC2954,A2
#0,D2

S$DFO (AS5) ,D2
#1,D2

#1,D2

SDFOQ (A5),D2

#1,D2

#2,D2
0(A2,D2.w),A0

Pointer to IKBD code table
Save IKBD

Pointer to IKBD length table
IKBD index

Add offset again

Mouse position record ?

No

Mouse position record ?

No

Save mouse position

Joystick record ?
No
Save joystick data

IKBD parameters
Status code for $F6-$FF
Length-1 for $F6-S$FF

Joystick record ?
Yes
Pointer to IKBD parameter table

Kstate
1-5 => 0-4
times 2
plus once

IKBD record pointer

31BM}JOS SNIBQY

s[ewrdiu] IS 1y

pLE

FC292A
FC292E
FC2932
FC2934
FC2936
FC293A
FC293C
FC293E
FC2942
FC2946
FC2948
FC294A
FC294cC
FC294E
FC2952

e e gk kg ke ke ke e s ke ok ok ok ke gk ke ok gk ok ok ok sk ke Kk ok ek ke ke ok ok ok ok ke ok ok ok ok %k ok s ok % Rk k%

FC2954
FC2958
FC295C
FC2960
FC2964
FC2968
FC296C
FC2970
FC2974
FC2978
FCc297C
FC2980
FC2984
FCc2988
FC298C

22722004
24722008
2452
7400
142DODF1
93C2
1280
532DODF1
4A2DODF1
660A
2F08
4E92
584F
422DODFO
4E75

00000DF2
00000DFS
00000DD8
00000DF9
00000DFE
00000DDC
0000O0DFE
00000EO1
00000DDC
00000EQO1
00000EQ7
00000DEO
00000EO7
00000E09
00000DE4

move.l
move.l
move.l
moveq.l
move.b
sub.1l
move.b
subg.b
tst.b
bne
move.1l
jsr
addg.w
clr.b
rts

dc.l
dec.l
de.l
dc.1
de.l
de.l
dc.l
de.1
dc.1l
dc.1l
dc.1l
dc.1l
de.l
dc.1l
dc.1

4(A2,D2.w) ,Al
8(A2,D2.w),A2
(A2),A2

#0,D2

SDF1 (AS) ,D2
D2,Al

DO, (Al)

#1, SDF1(A5)
SDF1 (A5)
SFC2952
A0, - (A7)

(A2)

#4,A7

SDFO (A5)

$DF2
$DF9
$DD8
$DF9
$DFE
$DDC
SDFE
$EO1
$DDC
SEO01
SE07
$SDEO
$EO07
$E09
$DE4

IKBD index base
IKBD interrupt routine
Get interrupt vector

Get IKBD index
minus base

IKBD index minus 1
Test index

Pass record pointer
Execute interrupt routine
Correct stack pointer
Clear IKBD state

AN
Parameter table for IKBD

3IBM)JOS STOBQY

s[eusduy IS ey

CLE

‘k*********************‘k*******************

FC2990
FC2996
FC299A
FC299C
FC299E
FC29A0
FC29A4
FC29A8

**

FC29AA
FC29AE
FC29B2
FC29B4
FC29B8
FC29BA
FC29BE
FC29C0
FC29C4
FC29C6
FC29CA
FC298CC
FC29D0
FC29D2
FC29D6
FC29D8
FC29DC
FC29DE
FC29E2
FC29E4
FC29E8

223CCO000EDS
D22DODFO
5D01

2441

1480
246D0ODE4
41EDOEQ7
609E

122DOE1B
0C00002A
6606
08C10001
6074
0COO00OAA
6606
08810001
6068
0C000036
6606
08C10000
605C
0C0000B6
6606
08810000
6050
0C00001D
6606
08C10002
6044

move. 1l
add.b
subqg.
move.
move.

— O = T

move.
lea
bra

move.b
cmp.b
bne
bset
bra
cmp.b
bne
beclr
bra
cmp.b
bne
bset
bra
cmp.b
bne
bclr
bra
cmp.b
bne
bset
bra

#S$E08,D1
$DFO (A5),D1
#6,D1

D1,A2

DO, (A2)
$DEA4 (A5) ,A2
SEO7 (A5) ,AO
$FC2948

$E1B(A5),D1
#$2A,D0
SFC29BA
#1,D1
$FC2A2E
#$AA, DO
$FC29C6
#1,D1
$SFC2A2E
#$36,D0
$FC29D2
$0,D1
$FC2A2E
#$B6,D0
$FC29DE
#0,D1
SFC2A2E
#$1D, DO
SFC29EA
#2,D1
$FC2A2E

Joystick 0 and 1

Joystick interrupt routine
Address of joystick data

Process keypress

shift status

Left shift key pressed?

No

Set bit for left shift key

Left shift key released?
No
Clear bit for left shift key

Right shift key pressed?
No
set bit for right shift key

Right shift key released?
No
Clear bit for right shift key

CTRL key pressed?
No
Set bit for CTRL key

31BM}JOS SNOEQY

sfewsdiuy IS LBV

OLE

FC29EA
FC29ER
FC29F0
FC29F4
FC29F6
FC29FA
FC29FC
FC2A00
FC2A02
FC2A06
FC2A08
FC2A0C
FC2AOE
FC2A12
FC2A14
FC2A1A
FC2A1C
FC2A24
FC2A2A
FC2A2E
FC2A32

FC2A34
FC2A38
FC2A3A
FC2A3E
FC2A40
FC2A44
FC2A4C
FC2A54

0C00003%D
6606
08810002
6038
0C000038
6606
08C10003
602C
0C0000BR8
6606
08810003
6020
0CO0003A
6620
082D00000484
670E
2B7CO0FC30940E44
1B7C00000E48
08410004
1B410CE1B
4E75

08000007

662A

4A2DOE39

6616

1B400E39
1B7900000E3COE3A
1B7900000E3DOE3B
603A

cmp.b
bne
bclr
bra
cmp.b
bne
bset
bra
cmp.b
bne
bclr
bra
cmp.b
bne
btst
beq
move.l
move.b
bchg
move.b
rts

btst
bne
tst.b
bne
move.b
move.b
move.b
bra

#59D, D0
$FC29F6
#2,D1
SFC2A2E
#$38,D0
$FC2A02
#3,D1
$FC2A2E
#$B8, DO
SFC2A0E
#3,D1
SFC2A2E
#3$3A,D0
SFC2A34

#0, $484 (AD)
SFC2A2A
#$FC3094, $SE44 (AS5)
#0, SE48(A5)
#4,D1
D1,$E1B(A5)

#7,D0

$FC2A64

$E39 (A5)
SFC2A56

DO, SE39(A5)
SE3C, $E3A(A5)
$E3D, SE3B(A5)
SFC2A90

CTRL key released?
No
Clear bit for CTRL key

ALT key pressed?
No
Set bit for ALT key

ALT key released?
No
Clear bit for ALT key

CAPS LOCK pressed ?

No

conterm, key click ?

No

Addres of key click sound table
Start sound

Invert CAPS LOCK status

Save new shift status

Was key released?

Yes

Repeat ?

Yes

Save key code for repeat
Delay 1

Delay 2

2JBM}JOS Snoeqy

s[eussyu] IS M€}y

LLE

FC2A56
FC2A5C
FC2A62
FC2A64
FC2A68
FC2A6A
FC2A6C
FC2A70
FC2A74
FC2A78
FC2ATC
FC2ATE
FC2A82
FC2A86
FC2A8C
FC2A90
FC2A96
FC2A98
FC2AA0
FC2AA6
FC2AA8
FC2AAA
FC2AAC
FC2ABO
FC2AB4
FC2ABA
FC2ABC
FC2ACO
FC2AC6
FC2ACS
FC2ACE
FC2ADO

1B7COO0CO00E3A
1B7C0O0000E3B
602C
4A2DOE39
670E

7200
1B410E39
1B410E3A
1B410E3B
0C0000C7
6708
0C0000D2
66000256
082D00030E1B
6700024C
082D00000484
670E

2B7COOFC30940E44

1B7C00000E48
2F08

7200

1200
206DOELC
0240007F
082D00040E1B
6704
206DOE24
082D0O000OELB
6608
082D00010E1B
671A
0C00003B

move.b
move.b
bra
tst.b
beg
moveq.l
move.b
move.b
move.b
cmp.b
beq
cmp.b
bne
btst
beg
btst
beq
move.l
move.b
move.l
moveq.l
move.b
move.l
and.w
btst
beqg
move.l
btst
bne
btst
beg
cmp.b

#0, SE3A(AS)
#0, SE3B(A5)
$FC2A90
$E39(A5)
SFC2A78
#0,D1

D1, $E39(A5)
D1, S$E3A(A5)
D1, SE3B(A5)
#$C7,D0
SFC2A86
#$D2, DO
$FC2CDA
#3,S$E1B(A5)
$FC2CDA

#0, 5484 (A5)
$FC2RA6
#$FC3094, SE44 (AS)
#0, $E48 (AD)
A0, - (A7)
#0,D1

Do, D1
$E1C(A5) , A0
#$7F,DO
#4,$E1B(A5)
SFC2ACO
$E24 (A5) ,AQ
#0,$E1B(AS)
$FC2ADO
#1,SE1B(A5)
$FC2AEA
#$3B, DO

Clear counter for delay 1
Clear counter for delay 2

Key for repeat?
No

Clear key code for repeat
Clear delay 1

Clear delay 2

HOME key released?

Yes

INSERT key released?

No

ALT key still pressed?

No

conterm, key click ?

No

Address of sound table for key click
Start sound

save iorec for keyboard

Scancode to D1

Address of the standard keyboard table
Clear bit for released

CAPS LOCK active ?

No

Address of CAPS LOCK keyboard table
Right shift key pressed?

Yes

Left shift key pressed?

No

Function key ? (F1)

a1EM}J0§ SNIBqY

sfewIuy IS 18y

8LE

FC2AD4
FC2AD6
FC2ADA
FC2ADC
FC2AEQ
FC2AE2
FC2AE®6
FC2AEA
FC2AEE
FC2AF4
FC2AF6
FC2AFA
FC2AFC
FC2AFE
FC2B0O
FC2B04
FC2B06
FC2BOA
FC2BOE
FC2B12
FC2B14
FC2B16
FC2B18
FC2B1C
FC2B20
FC2B22
FC2B24
FC2B26
FC2B2A
FC2B2E
FC2B30
FC2B32

6510
0C000044
620A
06410019
7000
600001B2
206D0E20
10300000
082D00020E1B
6760
0C00000D
6604
T00A
672A
0C010047
6608
06410030
6000018A
0C01004B
6608
7273
7000
6000017C
0C01004D
6608
7274
7000
6000016E
0C000032
6606
7000
60000162

bcs
cmp.b
bhi
add.w
moveq.l
bra
move, 1l
move.b
btst
beg
cmp.b
bne
moveq.l
beqg
cmp.b
bne
add.w
bra
cmp.b
bne
moveq.1l
noveq.1l
bra
cmp.b
bne
moveq.l
moveq.1l
bra
cmp.b
bne
moveq.l
bra

SFC2AE6
#544,D0
SFC2AE6
$#$19,D1
#0,D0
$FC2C96
$E20{A5) , A0
0(A0,DO.w),DO
#2,3E1B(A5)
$FC2B56
#13,D0
$FC2B0O0O
#10,D0
S$FC2B2A
#$47,D1
$FC2BOE
#$30,D1
SFC2C96
#$4B,D1
$FC2B1C
#$73,D1
#0,D0
$FC2C96
#$4D,D1
SFC2B2A
#374,D1
#0,D0
SFC2C96
#$32,D0
$FC2B36
#0,DO
$FC2C96

No

Function key ? (F10)

No

Add offset to GSX standard
ASCII code equals zero

Address of the shift keyboard table
Get ASCII code from table

CTRL key table?

No

Carriage return?

No

Convert to linefeed

CTRL HOME?
No
Add offset to GSX standard

CTRL cursor left?
No

GSX standard
ASCII code zero

CTRL cursor right ?
No

GSX standard

ASCII code zero

CTRL M ?

ASCII code zero

21BM]JOS SNOBQY

S|y IS Heyy

6LE

FC2B36
FC2B3A
FC2B3C
FC2B3E
FC2B42
FC2B46
FC2B48
FC2B4A
FC2B4E
FC2B52
FC2B56
FC2B5C
FC2B60
FC2B64
FC2B66
FC2B6A
FC2B6E
FC2B72
FC2B76
FC2B7A
FC2B7E
FC2B82
FC2B84
FC2B88
FC2B8C
FC2B90
FC2B94
FC2B98
FC2B9C
FC2BAO
FC2BA2
FC2BA6

0C000036
6606
701E
60000156
0C00002D
6606
701F
6000014A
0240001F
60000142
082D0O0O030E1B
67000138
0CO1001A
6618
103C0040
142DOE1B
02020003
67000122
103C005C
6000011A
0C010027
6618
103C005B
142DOE1B
02020003
67000104
103C007B
600000FC
0C010028
6618
103C005D
142DOE1B

cmp.b
bne
moveq. 1l
bra
cmp.b
bne
moveq. 1l
bra
and.w
bra
btst
beqg
cmp.b
bne
move.b
move.b
and.b
beq
move.b
bra
cmp.b
bne
move.b
move.b
and.b
beqg
move.b
bra
cmp.b
bne
move.b
move.b

#$36,D0
$FC2B42
#3$1E, DO
SFC2C96
#$2D,DO
SFC2B4E
#$1F, DO
SFC2C96
#$1F,DO
SFC2C96

#3, SE1B(AS)
$FC2C96
#26,D1
SFC2B7E
#$40,D0
$E1B(A5),D2
#3,D2
$FC2C96
#$5C, DO
SFC2C96
#39,D1
SFC2B9C
#$5B, D0
$E1B(A5),D2
#3,D2
$FC2C96
#$7B,D0
SFC2C96
#40,D1
SFC2BBA
#$5D, DO
SE1B(A5),D2

CTRL Shift ?

ASCI code RS

CTRL C 72

ASCII code US

Convert code to CTRL code

ALT key pressed?

No

Key '0' ?

No

l@l

Shift status

One of the shift keys pressed?
No

l\l

Key '0' 2

![l

Shift status

One of the shift keys pressed?
No

I{l

Key ‘'A' ?

No

l]l

Shift status

31eM}jog snaeqy

s[ruIduy IS Leyy

08¢

FC2BAA
FC2BAE
FC2BB2
FC2BB6
FC2BBA
FC2BBE
FC2BCO
FC2BC4
FC2BC6

FC2BCA
FC2BDO
FC2BD2
FC2BD6
FC2BDA
FC2BDE
FC2BE2
FC2BE4
FC2BES
FC2BEC
FC2BFO
FC2BF4
FC2BF8
FC2BFC
FC2C00
FC2C04
FC2C06
FC2COA
FC2COE
FC2C12
FC2Cl6
FC2C1lA

02020003
670000E6
103C007D
600000DE
0C010062
660A

526D04EE
205F

60000112

45F900FC2D48
7403
B2322000
6700012C
51CAFFF6
0C010048
661C
123C0000
143CFFF8
102DOE1B
02000003
6700012C
143CFFFF
60000124
0C01004B
661C
143C0000
123CFFF8
102DOE1B
02000003
6700010A
123CFFFF

and.b
beqg
move.b
bra
cmp.b
bne
addg.w
move,l
bra

lea
moveq.l
cmp.b
beq
dbra
cmp.b
bne
move.b
move.b
move.b
and.b
beq
move.b
bra
cmp.b
bne
move.b
move.b
move.b
and.b
begq
move.b

#3,D2
SFC2C96
#$7D, DO
SFC2C96
#98,D1
SFC2BCA
#1,34EE (A5)
(A7) +, A0
$FC2CDA

$FC2D48,A2
#3,D2

0(A2,D2.w),D1

$FC2D04

D2, $FC2BD2
#548,D1
$FC2C00
#0,D1
#-8,D2
SE1B(A5),DO
#3,D0
$FC2D22
#-1,D2
$FC2D22
#$4B,D1
$FC2C22
#0,D2
#-8,D1
$E1B(A5),DO
#3,D0
$FC2D22
#-1,D1

One of the shift keys pressed?
No
I)l

ALT HELP ?

No

_dumpflg for hardcopy
Restore keyboard iorec

Pointer to mouse scancode table
Test four values

Value found?

Yes

Next value

Cursor up?

No

X-offset for cursor up
Y-offset for cursor up

Get shift status

One of the shift keys pressed?
No

Y-offset, only one pixel high

Cursor left 2

No

Y-offset for cursor left
X-offset for cursor left

Get shift status

One of the shift keys pressed?
No

X-offset, only one pixel left

21BM}JOS SNIBQY

sjrugduy LS eV

I8¢

FC2ClE
FCc2C22
FC2C26
FCc2c2s
Fcacac
FC2C30
FC2C34
FC2C38
FC2C3C
FC2C40
FC2C44
FC2C48
FC2C4A
FC2C4E
FC2C52
FC2C56
FC2C5A
FC2C5E
FC2Ce62
FC2C66
FC2C6A
Fca2cec
FC2C70
FC2C72
FC2C76
FC2C78
Fcacic
FC2CTE
FCc2cC82
FC2C84
FCc2cC86
Fcacsas

60000102
0C01004D
661C

123C0008
143C0000
102DOELB
02000003
670000E8
123C0001
600000E0C
0C010050
661C

123C0000
143C0008
102DOE1B
02000003
670000C6
143C0001
60C000BE
0C010002
650C

0C01000D
6206

06010076
600C

0C000041
650A

0CO0005A
6204

7000

600E

0C000061

bra
cmp.b
bne
move.b
move.b
move.b
and.b
beq
move.b
bra
cmp.b
bne
move.b
move.b
move.b
and.b
beqg
move.b
bra
cmp.b
bcs
cmpe.b
bhi
add.b
bra
cmp.b
bcs
cmp.b
bhi
moveq.l
bra
cmp.b

$FC2D22
#$4D,D1
$FC2C44
#8,D1
#0,D2
$E1B(A5),DO
#3,D0
SFC2D22
#1,D1
$FC2D22
#$50,D1
$FC2C66
#0,D1
#8,D2
$E1B(AS5) ,DO
#3,D0
$FC2D22
#1,D2
$FC2D22
$#2,D1
$FC2CT8
#13,D1
$FC2C78
#118,D1
$FC2C84
#65,D0
$FC2C88
#90,D0
$FC2C88
#0,D0
$FC2C96
#97,D0

Cursor right 2

No

X-offset for cursor right
Y-offset for cursor right

Get shift status

One of the shift keys pressed?
No

X-offset, only one pixel right

Cursor down ?

No

X-offset for cursor down
Y-offset for cursor down

Shift status

One of the shift keys pressed?
No

Y-offset, only one pixel down

Ill

J1BM1J0S SNOBQY

s|pruIu] LS ey

8¢

FC2C8C 6508 bcs
FC2C8E OCCO0007A cmp.b
FC2C92 6202 bhi
FC2C94 60EE bra
FC2C96 E141 asl.w
FC2C98 D041 add.w
FC2C9A 205F move.l
FC2C9C 32280008 move .w
FC2CAQ 5841 addg.w
FC2CA2 BR2680004 cmp.w
FC2CA6 6502 bes
FC2CA8 7200 moveq.l
FC2CAA B2680006 cmp.w
FC2CAE 672A beq
FC2CBO 24680000 move.l
FC2CB4 4840 swap
FC2CB6 303C0000 move .w
FC2CBA 102DOE1B move.b
FC2CBE 4840 swap
FC2CCO E188 1sl.1
FC2CC2 E048 lsr.w
FC2CC4 082D00030484 btst
FC2CCA 6606 bne
FC2CCC 028000FFFFFF and.l
FC2CD2 25801000 move.l
FC2CD6 31410008 move.w
FC2CDA 4E75 rts

**

FC2CDC 246D0ODCC move.l
FC2CEQ 4ED2 jmp

SFC2C96
#122,D0
$FC2C96
$FC2C84
#8,D1

p1,DO

(A7) +,A0
8(A0),D1
#4,D1
4(a0),D1
$FC2CAA
#0,D1

6(A0) ,D1
$FC2CDA
(AO) ,A2

DO

#0,D0
$E1B(A5),DO
DO

#8,D0

#8,D0
#3,%$484 (A5)
$FC2CD2
#$00FFFFFF, DO
DO, 0(A2,D1.w)
D1, 8 (A0)

$DCC (AS) ,A2
(A2)

IZI

Scancode to bits 8-15
plus ASCII code

iorec pointer to keyboard
Tail index

plus 4
End of buffer reached?
No

Start over again

Buffer full?

Yes, lgnore data

Address of the buffer
ASCII code to bits 16-23

Sshift status

in upper word

in bits 24-31

ASCII code to bits 0-7
conterm, accept shift status?
Yes

Clear shift status

Write data in keyboard buffer
Update buffer pointer

midibyte
Pointer to MIDI interrupt handler
Execute routine

3IBM}JOS SndBqQY

S[rulauy IS ey

€8¢

ok k ke ok ok Kk kK sk ok ok kR Kk sk Kk ok kR Kk ok ok kR kK Kk ok ok k kK kK kR ok ok gk ok ke k ke ke ok ok kK

FC2CE2
FC2CE®6
FC2CES8
FC2CEC
FC2CEE
FC2CFO
FC2Cr4
FC2CF6
FC2CFA
FC2CFE
FC2D02

32280008
5241
B2680004
6502
7200
B26800C6
670C
24680000
15801000
31410008
4E75

move.w 8(A0),D1
addg.w #1,D1
cmp.w 4 (A0),D1
bcs SFC2CFO
moveq.l #0,D1
cmp.w 6(A0),D1
beqg SFC2D02
move.l (AOQ),A2
move.b DO,0(A2,Dl.w)
move.w D1, 8(A0)
rts

kAT AR A KA KK A AR I IR KR AR IRk Ik ko kkkhkkkhkkkkkkAkhkkkkkkkkkkkxxk

FC2D04
FC2D06
FC2DOA
FC2D0C
FC2DOE
FC2D12
FC2D14
FC2D18
FC2D1A
FC2D1E
FC2D20

7605
08010004
6702
7606
08010007
6706
07ADOE1B
6004
C7EDOE1B
7200
7400

moveq.l #5,D3
btst #4,D1
begq SFC2DOE
moveqg.l #6,D3
btst #7,D1

beg SFC2D1A
bclr D3, SE1B(AS)
bra SFC2D1E

bset D3, $E1B(A5)
moveq.l #0,D1
moveq.l #0,D2

% %k %k ok %k k kK Kk ek k ok kK kR kK %k Kk ok Kk ok ok %k ko %k ok ok sk 3k %k ok ok ok ok ok ok ok ek ok ok ok ok ek ko ok

FC2D22
FC2D26

41EDOE18
246D0DDC

FC2D2A 4280
Fc2D2C
FC2D30

102DOE1B
EAOS8

lea $SE18 (A5), A0
move.l $DDC(AS5),A2
clr.l DO

move.b S$E1B(AS5),DO
lsr.b #5,D0

sysmidi

Tail index

Increment

End of buffer reached?
No

Buffer pointer back to buffer start
Head equals tail ?
Yes, buffer full
Buffer address

Write byte in buffer
New tall index

keymausl
Accept right button

is right button ($47/5C7)
Left button

Pressed or released?
pressed

Clear bit for button

Set bit for button
X to O
Y to O

keymouse
Pointer to mouse emulator buffer
Mouse interrupt vector

Get status of the "mouse™ buttons
Bit for right/left to bits 0/1

3IeM)jog Sndeqy

sjruwIuy IS MRy

12:3%

FC2D32 060000F8
FC2D36 11400000
FC2D3A 11410001
FC2D3E 11420002
FC2D42 4E92
FC2D44 205F
FC2D46 4E75

**

FC2D48 47C752D2

FC2D4C 302F0004
FC2D50 322F0006
FC2D54 40E7

FC2D56 007C0700
FC2D5A 48E76080

FC2D5E 41F9FFFF8800

FC2D64 1401
FC2D66 0201000F
FC2D6A 1081
FC2D6C E302
FC2D6E 6404
FC2D70 11400002
FC2D74 7000
FC2D76 1010
FC2D78 4CDF0106
FC2D7C 46DF
FC2D7E 4E75

add.b
mcve.b
move .b
move.b
jsr

move.l
rts

dc.b

move .w
move .w
move . w
or .W
movem. 1
lea
move.b
and.b
move.b
asl.b
bcc
move.b
moveq.l
move.b
movem. 1
move .w
rts

#$F8,D0

DO, (AO)

D1, 1 (A0}
D2, 2 (AQ)
(A2)

(A7) +,A0

$47,8C7,552,8D2

4(A7),D0
6(A7),D1

SR, -{(AT7)
#5700, SR
D1-D2/A0, - (A7)
SFFFF8800, A0
D1,D2

$#$F,D1

D1, (AQ)

#1,D2

SFC2D74
DO, 2 (AO)

#0, D0

(A0), DO

(A7) +,D1-D2/R0
(A7) +,SR

plus relative mouse header
in buffer

Store X-value

Store Y-value

Call mouse interrupt routine
iorec for keyboard back

mousekeyl
Scancode for pseudc mouse

giaccess,read write sound chip
Data

Register number plus read/write
Save status

IPL 7, disable interrupts

Save reglsters

Address of the sound chip

Get register number

Registers 0-15

Select register

Test read/write bit

Read

Write data byte in sound chip register

Read byte from sound chip
Restore registers
Restore status

31eM1JOS SNIRQY

s|rwIduf LS 1B}y

g8¢

vk ke kK Kk ko Kk %k ok ok ok kK ke k% ok k ok ko Sk ok ok K sk Kk sk Kk sk ok ok ke ke gk %k ok kK ok ok e e ko ok ok ek ke ke

FC2D80 7408 moveq.l #8,D2
FC2D82 6012 bra $FC2D9%6

AhkhkhkkkkkhkAhA kA A hkkkkhhkr kX kkkkk Ak khhhkhhkkkhkhkkkkkdxkkdkkk

rcan84 74F7 moveq.l #$F7,D2
FC2D86 6034 bra $SFC2DBC

% %k ok ok k kK Kk ok ok ok ko ok ok k ke ok ok ok ok ke ok k kK sk ok ok ok ke sk ok o sk ok ok gk ok ok ok ke ke ke ke ok K ok ok ok ok ok

FC2D88 7410 moveq.l #$10,D2
FC2D8A 600A bra $FC2D96

% %k %k ke k k k Kk Kk ok gk ok ke sk ok ok gk ok ok 3k kg sk ok ok ok kb ok %k ke sk ok ke ok ok ok ke ke ok ok ke ke ok kk Kk ok ke ke ok

FC2D8C 74EF moveq.l #$EF,D2
FC2D8E 602C bra SFC2DBC

Kk ok Kk Kk ke k gk ok sk ok ok ok ok ok kK ok ok ok ok ke ok ok ok ke ok ke ke kK sk sk ok Tk ok ok ok Sk ok ok ke ok ke ok ok ok ok ok ok ok ok ok ok

FC2D%0 7400
FC2D92 342F0004
FC2D96 48E7E000
FC2D%A 40E7

moveq.l #0,D2
move.w 4(A7),D2
movem.l DO-D2,- (A7)
move.w SR, -(A7)

FC2D9C 007C0700 or .w #$700,SR
FC2DA0 720E moveq.l #$E,D1
FC2DA2 2F02 move.l D2,-(A7)
FC2DA4 61AE bsr $FC2D54
FC2DA6 241F move.,l (A7)+,D2
FC2DA8 8002 or.b D2,DO0
FC2DAA 728E moveqg.l #$8E,D1
FC2DAC 61A6 bsr $FC2D54

move.,w (A7)+,SR
movem.l (A7)+,D0-D2

FC2DAE 46DF
FC2DBO 4CDF0007

FC2DB4 4E75 rts

rtsoff, turn RTS off
Bit 3
Set in port A

rtson, turn RTS on
Bit 3
Clear in port A

dtroff, turn DTR off
Bit 4
Set in port A

dtron, turn DTR on
Bit 4
Clear in port A

ongibit, set bit(s) in sound chip port A

Get bit pattern

Save registers

Save status

IPL 7, disable interrupts
Read port A

Save bit pattern
Read port A

Restore bit pattern
OR bits to old value
Write port A

Write new value
Restore status
Restore registers

21BM}JOS SNIBQY

sjrugajuy LS He)y

98¢

Kk ek ok kR ok Kk kK Kk ok Kk Kk k kR Kk R Kk Kk kR kK Kk ok K ok ok kA K ok ek ok ki ok Kok ok kk ok

FC2DB6
FC2DB8
FC2DBC
FC2DCO
FC2DC2
FC2DC6
FC2DC8
FC2DCA
Fca2Dpcec
FC2DCE
FC2DDO
FC2DD2
FC2DD4
FC2DD6
FC2DDA

7400
342F0004
48E7E000
40E7
007C0700
720E
2F02
6188
241F
C002
728E
6180
46DF
4CDF0007
4E75

moveq.l #0,D2
move.w 4(A7),D2
movem.l D0O-D2,-(A7)
move.w SR, —-(A7)
or.w #5700, 5R
moveq.l #SE,D1
move.l D2,-(A7)
bsr $FC2D54
move.l (A7)+,D2
and.b D2,DO0
moveq.l #$8E,D1
bsr $FC2D54
move.w (A7)+,SR
movem.l (A7)+,D0-D2
rts

Ak kI A KA A Kk kI kkkkkkkk kXX kX Kk kkkkkdkkkkkkkkkokkkdkdkkkxkkkkkxkkx

FC2DDC
FC2DEO
FC2DE2
FC2DES8
FC2DEC
FC2DF2
FC2DF4
FC2DFA
FC2DFC
FC2E02
FC2EQ4
FC2EO®6

4A6F0004
6726
2B6F000AODDC
266F0006
0C6F00010004
6724

0C6F 00020004
6736
0CerQ00040004
6770

7000

4E75

tst.w 4 (A7)

beq SFC2E08

move.l 10(A7),$DDC(AS)
move.l 6(A7),A3

cmp.w #1,4 (A7)

beq SFC2E18
cmp.w #2,4 (A7)
beqg SFC2E32
cmp.w #4,4 (A7)
beq $FC2E74
moveq.l #0,DO0
rts

offgibit, clear bits in sound chip port A

Bit pattern

Save reglsters

Save status

IPL 7, disable interrupts
Read port A

Save bit pattern
Read port A

Restore bit pattern
Clear bits

Write to port A
Write new value
Restore status
Restore registers

initmouse

Turn mouse off?

Yes, disable mouse
Mouse interrpt vector
Address of the parameter block
Relative mouse °?

Yes

Absolute mouse ?

Yes

Keycode mouse ?

Yes

Error, invalid

J1BM}JOS SnIBqQY

Ssjvugajuy LS Lejy

L8E

Jek kK K K Kk K K Kk ok ok Kk ke ok Rk K Kk kR kK gk ok ok ok kK gk % ok ok ke ok sk ok o ok ok ok ok k ok ok Sk ke ok Sk Sk ok ke ok

FC2E08 7212 moveq.l #$12,D1

FC2EOA 6100F19C bsr SFC1FAS8
FC2EQE 2B7COOFC2EDCODDC move.l #$FC2EDC, $DDC(A5)
FC2El6 6070 bra SFC2E8S8

%k ok sk kK ke kK Kk k Kk ok Kk Kk k ok K Kk ok Kk ok sk ok ok sk ok K ok ok Kk ok Rk %k K Kk ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok

FC2E18 45EDOE28 lea SE28(A5) ,A2
FC2E1C 14FC0008 move.b #8, (A2)+
FC2E20 14FCO0OB move.b #$B, (A2) +

FC2E24 6166 bsr SFC2E8C
FC2E26 7606 moveg.l #6,D3
FC2E28 45EDOE28 lea $SE28(A5),A2
FC2E2C 6100F19A bsr SFC1FC8
FC2E30 6056 bra SFC2ES88

% ok & %k Kk ok k% Kk K ok ok sk ok ok sk sk kK 3k %k ok ok ok 3k ok k% Kk ok %k %k kK ok ok o kR R ok ok ok ok ok ok ok ok ok ke ok ke ok

FC2E32 45EDOE28 lea $SE28 (AS5) ,A2
FC2E36 14FC0009 move.b #9, (A2)+
FC2E3A 14EB0004 move.b 4(A3), (A2)+
FC2E3E 14EBOO0OQS move.b 5(A3), (A2)+
FC2E42 14EBO0OO0O6 move.b 6(A3), (A2)+
FC2E46 14EB0O0O7 move.b 7(A3), (A2)+
FC2E4A 14FC000C move.b #$C, (A2) +
FC2E4E 613C bsr SFC2ES8C
FC2E50 14FCOQOE move.b #S$E, (A2)+
FC2E54 14FC0000 move.b #0, (A2)+
FC2E58 14EB00OS8 move.b 8(A3), (A2)+
FC2ESC 14EB0O0O9 move.b 9(A3), (A2)+
FC2E60 14EB0O0OA move.b 10(A3), (A2)+
FC2E64 14EBOOOB move.b 11(A3), (A2)+
FC2E68 7610 moveqg.l #16,D3

disable mouse

Disable mouse command

Send to IKBD

Mouse interrpt vector to rts

relative mouse

Transfer buffer pointer
Relative mouse

Relative mouse threshold x, y
Set mouse parameters

Length of string - 1

Transfer buffer pointer

Send string to IKBD

absolute mouse

Transfer buffer pointer
Absclute mouse

xmax msb

xmax lsb

ymax msb

ymax lsb

Absolute mouse scale
Set mouse parameters
Initial absolute mouse position
Fill byte

Start position x msb
Start position x 1lsb
Start position y msb
Start position y lsb
String length - 1

21BM}JOS SNOBQY

sprugIuy IS 1eyy

88¢€

FC2E6A
FC2EGE
FC2E72

45EDOE28
6100F158
6014

lea SE28(AS5) ,A2
bsr SFC1FC8
bra SFC2E88

KA KA KKK KKAK AKX A hhhkkk kA A KRR A Ak kkhk Rk Kk hkkkkkdkkkkkkkkkokkxkkk

FC2E74
FC2E78
FC2E7C
FC2ETE
FC2E80
FC2E84
FC2E88
FC2E8A

45EDOE28
14FCOOO0A
610E
7605
45EDQCE28
6100F142
70FF
4E75

lea SE28 (A5) ,A2
move.b #S$A, (A2)+
bsr $FC2ES8C
moveqg.l #5,D3

lea SE28 (A5) ,A2
bsr SFC1FC8
moveq.l #-1,D0

rts

sk ke ok Kk sk ke ok Kk kg kK Kk ok %k ok ok ok kK ke ko sk gk ok sk ok ok ke ke ok ok ok ok vk ok kK ok ok ok ke ok ok ok ok ok ok ok ok ok

FC2E8C
FC2E90
FC2E94
FC2E96
FC2E9A
FC2E9C
FC2EAOQ
FC2EA4

14EB0O0Q2
14EBOOO3
7210
922B0000
14cC1
14FC0007
14EBOOO1
4E75

move.b 2(A3), (A2)+
move.b 3(A3), (A2)+
moveq.l #16,D1
sub.b (A3),D1
move.b D1, (A2)+
move.b #7, (A2)+
move.b 1(A3), (A2)+
rts

ek Kk ke de ok k ke k kK Kk k kK kK Kk ok %k ok sk ke sk ok sk ok ok ok e ke R %k ok kK K %k ok ok ok ok ok ok e ok e gk ok ok ke ke ke ke ok

FC2EA®6
FC2EAS8
FC2EAA
FC2EAC
FC2EBO
FC2EB4
FC2EBS8

7000
7200
7400
302F0004
322F0006
342F0008
6100F4AC

moveq.l #0,DO0
moveq.l #0,D1
moveq.l #0,D2
move.w 4(A7),DO0
move.w 6(A7),D1l
move.w 8(A7),D2
bsr $FC2366

Transfer buffer pointer
Send string to IKBD

Keycode mouse

Transfer buffer pointer
Mouse keycode mode

Set mouse parameters
Length of string - 1
Transfer buffer pointer
Send string to IKBD
Flag for OK

setmouse, set mouse parameters

X threshold, scale, delta
y threshold, scale, delta
top/bottom ?

xbtimer, initialize timer
Clear registers

Timer number (0-3 => A-D)
Value for control register
Value for date register
Set timer values

J1BM}JOS SIOBQY

s[ewsdu] LS Mepy

68¢

FC2EBC 4AAFO000A
FC2ECO 6BI1A

FC2EC2 246F000A
FC2EC6 7200

FC2EC8 43F900FC2EDE
FC2ECE 0280000000FF
FC2ED4 10310000
FC2ED8 6100F542
FC2EDC 4E75

%ok dok Kk koK ok ok ok ok ok ok ok ok ok ok kK

FC2EDE 0D080504

* % K ok KKK K K Kk Kk Kk kK ok ok ke ok

FC2EE2 4AAF0004
FC2EE6 6B06

FC2EE8 2B6F00040E1C
FC2EEE 4AAF0008
FC2EF2 6B06

FC2EF4 2B6F00080E20
FC2EFA 4AAF00CC
FC2EFE 6B06

FC2F00 2B6FO0CCOE24
FC2F06 203CO00COEILC
FC2FOC 4E75

**

FC2FOE 2B7CO0FC20340E1C
FC2F16 2B7COOFC20B40E20
FC2F1E 2B7COOFC21340E24

FC2F26 4E75

tst.l
bmi
move.l
moveq.l
lea
and.1l
move.b
bsr

rts

dc.b

tst.l
bmi
move.l
tst.l
bmi
move.l
tst.l
bmi
move,l
move. 1l
rts

move.l
move.l
move.l
rts

10 (A7)
$FC2EDC

10 (A7) ,A2
#0,D1
$FC2EDE, Al
#SFF,DO
0(Al,D0.w),DO
sFc241C

13,8,5,4

4 (A7)

SFC2EEE

4 (A7), $EL1C(AS5)
8 (A7)

$FC2EFA

8 (A7), $E20 (A3)
12 (A7)

$FC2F06

12 (A7) ,$E24 (AD)
#$E1C,DO

#$FC2034, SELC(AD)
#SFC20B4, SE20 (A5)
#$FC2134,$E24 (A5)

Corresponding interrupt vector
not used?
Get vector

Table for determining interrupt number

Get interrupt number
initint, install interrupt

Interrupt numbers of the MFP timer

keytrans, set keyboard tables
Change standard table?

No

Address of the standard table
Change shift table?

No

Address of the shift table
Change Caps Lock table

No

Address of the Caps Lock table
Pointer to addresses of the tables

bioskeys, standard keyboard table
Standard table

shift table

Caps Lock table

21BM}JOS SNIBQY

sjewtul LS 1Iely

06¢

Kk ke ke ke gk Kk kK Kk kK Kk Kk sk kR kR ok kK K sk ok sk ok ke ke vk ok sk ok ek gk ok ke ok ok Kk ok ok ok ek ok kR ok ok ke

FC2F28 202D0E44
FC2F2C 222F0004
FC2F30 6B0O8
FC2F32 2B410E44
FC2F36 422DOEA4S8
FC2F3A 4E75

move.l
move.l
bmi
move.l
clr.b
rts

$E44 (A5),DO
4(A7),D1
SFC2F3A
D1, $E44(A5)
SE48 (A5)

Ik hkhkhk kA KI KA R KRKA A A IR I kA ARk A Ak khk Ak kkhkkkkhkkkhkhkkkkkkkkkkx k%

FC2F3C 302DOE4A
FC2F40 4A6F0004
FC2F44 6B06

FC2F46 3B6FO00C40E4A
FC2F4C 4E75

move.w
tst.w
bmi
move.w
rts

SE4A (A5),DO

4 (A7)

SFC2F4C

4 (A7), SE4A (A5)

% Kk Kk ok ok ok ke ke KoKk ke gk ok ok ok ok ok ok ke ok ok %k ok ok Sk ok ok ks ok ok ke ok ke sk ke ok ok ok ok ok ke ok sk ke ke ok ok ok ke ke ok ok

FC2F4E 302DOE3C
FC2F52 4A6F0004
FC2F56 6Bl6

FC2F58 322F0004
FC2F5C 1B410E3C
FC2F60 4A6F0006
FC2F64 6B0O8

FC2F66 322F0006
FC2F6A 1B410E3D
FC2F6E 4E75

move .w
tst.w
bmi
move . w
move.b
tst.w
bmi
move .w
move.b
rts

$E3C(A5),D0O
4 (A7)
SFC2F6E
4(A7),D1
D1, $E3C(A5)
6(A7)
SFC2F6E
6(A7),D1
D1, $SE3D(A5)

J ok K ok ok Kk ke ke ke ke ok ok gk Kk ke ke ke gk ke sk ok ok kK ke Sk %k ok ok ke ok ok %k ok ok k% k% ok ok %k Sk ok ke ok ke k ke ke ok

FC2F70 203C00000DCC
FC2F76 4E75

move.l
rts

#$DCC, DO

dosound, start sound

Get sound status

Address of the sound table
Don't set

New sound table

Start sound timer

setprt, set/get printer configuration
0ld printer configuration

New value negative?

Yes, don't set

Set new value

kbrate, set/get keyboard repeat
Delay before key repeat

new value negative?

Yes, don't set

Get new value

and save

Repeat rate

Negative, don't set

Get new value

and save

ikbdvecs, pointer to IKBD + MIDI vectors
Address of the vector table

J1BM)JOS Snoeqy

sjeusdjuy IS e}y

T6¢

***************‘k****‘k***********************************

FC2F78
FC2FTE
FC2F84
FCc2Fr86
FC2F8A
FC2F90
FC2F92
FC2F98
FC2F9A
FC2F9E
FC2FAOQ
FC2FA4
FC2FA®6
FC2FAA
FC2FAC
FC2FBO
FC2FB2
FC2FB8
FC2FBC
FC2FCO
FC2FC4
FC2FC8
FC2FCC
FC2FCE
FC2FDO
FC2FD4
FC2FDC

*****‘k**

FC2FDE
FC2FE2

52B390C0004BA
E7F900000E42
6A4E
48ETFFFE
4BF900000000
614C
082D00010484
67127
4A2DOE39
6724
4A2DOE3A
6706
532DOE3A
6618
532DOE3B
6612
1B6DOE3DOE3B
102DOE39
41EDODBO
6100FACE
3F2D0442
206D0400
4E90

544F
4CDFTFFF
08B9000SFFFFFALll
4E73

48E7C080
202DOE44

addg.1l
rol.w
bpl
movem. 1
lea
bsr
btst
beqg
tst.b
beg
tst.b
beqg
subg.b
bne
subg.b
bne
move.b
move.b
lea
bsr
move.w
move.l
jsr
addg.w
movem. 1l
bclr
rte

movem. 1
move.l

#1, $4BA

$E42

$FC2FD4
DO-D7/A0-A6, - (A7)
$0,A5

$FC2FDE
#1,5484(A5)
$SFC2FC4

$E39(A5)

$FC2FC4

SE3A (AS5)

$FC2FAC

#1, SE3A(A5)
$FC2FC4

#1, SE3B(A5)
SFC2FC4

$E3D (A5) , SE3B(A5)
$E39(A5),D0

$DBO (A5) ,AQ
$FC2A90
$442 (B5) ,— (A7)
$400 (A5) , A0

(AO)

#2,A7

(A7) +,D0-D7/A0-A6
#5, SFFFFFALl

DO-D1/A0, - (A7)
$E44 (A5),DO

timercint, timer C interrupt

_hz 200, increment 200 Hz counter

Rotate bit map

Not fourth interrupt, then done
Save registers

Clear A5

Process sound

conterm, key repeat enabled ?
No

Key pressed ?

No

Counter for start delay

Not active

decrement counter

Not run out?

Decrement counter for repeat rate
Not run out?

Reload counter

Key to repeat

Pointer to iorec keyboard
Key code in keyboard buffer
_timer_ms

etv_timer

Execute routine

Correct stack pointer
Restore register

Clear interrupt service bit

sndirq, sound interrupt routine
Save registers
Pointer to sound table

21EBM}JOS SNdBQY

sfeusduy IS Hely

6¢

FC2FE®6
FC2FEA
FC2FEC
FC2FFO
FC2FF2
FC2FF4
FC2FF8
FC2FFA
FC2FFC
FC2FFE
FC3004
FC3008
FC300A
FC300C
FC3010
FC3016
FC301A
FC301C
FC3022
FC3024
FC302A
FCc302C
FC302E
FC3030
FC3034
FC3036
FC303A
FC303C
FC3040
FC3042
FC3048
FC304A

67000088
2040
102D0E48
6708

5300
1B400E48
6076

1018

6B2E
13COFFFF8800
0C000007
661A

1218
0201003F
1039FFFF8800
020000C0
8001
13COFFFF8802
60D6
13D8FFFF8802
60CE

5200

6A32
0C000081
6606
1B580E49
60BE
0C000082
6620
13D8FFFF8800
1018
D12DO0OE49

beq
move.l
move.b
beqg
subg.b
move.b
bra
move.b
bmi
move.b
cmp.b
bne
move.b
and.b
move.b
and.b
or.b
move.b
bra
move.b
bra
addq.b
bpl
cmp.b
bne
move.b
bra
cmp.b
bne
move.b
move.b
add.b

SFC3070
DO, A0

$E48 (A5),DO
SFC2FFA
#1,D0

DO, SE48 (A5)
$FC3070
(A0) +, DO
SFC302C

DO, SFFFF8800
#7,D0
SFC3024

(AO) +,D1
#$3F,D1
SFFFF8800,D0
#$C0, DO
D1,DO

DO, SFFFF8802
SFC2FFA

(AO) +, SFFFF8802
SFC2FFA
#1,D0
SFC3062
#$81, DO
SFC303C

(AO) +, SE49 (A5)
$FC2FFA
#$82,D0
$FC3062

(AO) +, SFFFF8800
(AO) +, DO

DO, SE49 (A5)

No sound active?

Pointer to AO

Load timer value

New sound started?

Else decrement timer

and store again

Done

Get sound command

Bit 7 set, special command
Select register in sound chip
Mixer ?

No

Data for mixer

Isolate bits 0-5

Read mixer

Isolate bits 6-7

OR with sound data

and write in register

Next sound command

Write byte directly in sound chip

Next sound command
Was command $FF ?
Yes

Was command $80 ?
No

Save byte for later
Next sound command
Was command $81 ?
No

Select register
Increment value
Add

31BM}JOS Sndeqy

s[eusdjuy IS 1e)y

FC304F 1018 move.b (AO0) +, DO End value 2':

FC3050 13EDOE49FFFF8802 move.b SE49(A5),S$FFFF8802 Write temp value in sound chip g

FC3058 BO2DOE49 cmp.b $SE49 (A5),DO End value reached? @

FC305C 670E : beq $FC306C Yes L

FC305E 5948 subg.w #4,A0 Sound back to same command if

FC3060 600A bra SFC306C 2

FC3062 1B580E48 move.b (A0)+,SE48(AS) Next value as delay timer ®

FC3066 6604 bne SFC306C

FC3068 307C0000 move.w #0,A0 Clear sound pointer

FC306C 2B480E44 move.l AO0,S$E44(A5) Save current sound pointer

FC3070 4CDF0103 movem.l (A7)+,D0-D1/A0 Restore registers

FC3074 4E75 rts

****************‘k*************************************** bellsnd, sound for CTRL G

FC3076 0034 dc.b 0,$34

FC3078 0100 dc.b 1,0

tg FC307A 0200 dc.b 2,0
w FC307C 0300 de.b 3,0

FC307E 0400 dc.b 4,0

FC3080 0500 dc.b 5,0

FC3082 0600 dc.b 6,0

FC3084 O7FE dc.b 7,$FE

FC3086 0810 dc.b 8,10

FC3088 0900 dc.b 9,0

FC308A OAO0O dc.b 10,0 >

FC308C OBOO dc.b 11,0 s

FC308E 0C10 dc.b 12,16 =3

FC3090 0DO9 dc.b 13,9 E

FC3092 FFO00 dc.b S$FF,0 —
=
Iy
5
&

1419

LR R R R EEREEEEERE S EE SR R R R I R I I S I I g T I O R U (R e

FC3094
FC3096
FC3098
FC309A
FC309C
FC309E
FC30A0
FC30A2
FC30A4
FC30A6
FC30A8
FC30AA
FC30AC

003B
0100
0200
0300
0400
0500
0600
O7FE
0810
0DO03
0B80O
0Co1
FFOO

dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b

0,$3B

3k Kk gk ok ke ok ok ke ok kK kR ke sk ok ok ke ok ok ke ke ke ok ok ok ok ke ok ok ke ok ke Sk ok Kk ek sk kb ek ok R %k ko ok ok

FC30AE
FC30B2
FC30B6
FC30BA
FC30C0
FC30C2
FC30C4
FC30C6
FC30C8
FC30CA
Fc30cCC
FC30D4
FC30D6
FC30DE
FC30EQ

4E560000
48E7070C
2A6E0008
287C000029BE
TE1E

6004

18DD

5347

4A47

6EF8
0C790001000029D6
630E
33FCFFFFO00004EE
T0FF

60000F6C

link
movem. 1
move.,l
move.l
moveq. 1l
bra
move.b
subg.w
tst.w
bgt
cmp.w
bls
move ., w
moveq.l
bra

A6, #0
D5-D7/RA4-A5, - (A7)
8 (A6) , A5
#$29BE, Ad
#30,D7
SFC30C8
(A5) +, (A4) +
#1,D7

D7

$FC30C4
#1,529D6
$FC30E4
#-1,S4EE
#-1,D0
$FC404E

keyclick, sound on key click

prtblk, hardcopy

Save registers

Address of the parameter block
Address of the working memory
30 bytes

Copy parameters in working memory

Next byte
p_port

Oor 1?2

Clear _dumpflg
Flag for error
Terminate

31BM)JOS SNIBQY

sljewiduy IS 1By

g6¢

FC30E4
FC30EA
FC30EC
FC30EE
FC30F0
FC30F2
FC30F8
FC30FE
FC3100

FC3102
FC310A
FC310C
FC3112
FC3114
FC3116
FC3118
FC311C
FC3122
FC3124
FC3126
FC312E
FC3130

FC3134
FC3136
FC313C
FC3142
FC3144
FC3146
FC314E
FC3150

477900002906
6704
4240
6002
7001
13C0000029BC
4779000029C6
6654
6032

0C79000100C0004EE
663A
2079000029BE
1010

4880

3E8C

61000F3E
52B9000029BE
4240

670E
33FCFFFFO00004EE
70FF

60000F1C

4240
3039000029C4
5379000029C4
4A40

66BC
33FCFFFFO00004EE
4240

60000EFC

tst.w
begq
clr.w
bra
moveq. 1
move.b
tst.w
bne

bra

cnp.w
bne
move.l
move.b
ext.w
move.w
bsr
addg. 1l
tst.w
beq
move.w
moveq.l
bra

clr.w
move.w
subg.w
tst.w
bne
move.w
clr.w
bra

$29D6
$FC30F0
DO
$FC30F2
#1,D0
DO, $29BC
$29C6
$FC3154
$FC3134

#1, S4EE
$FC3146
$29BE, AO
(AO), DO
DO

DO, (A7)
$FC4058
#1,$29BE
DO
$FC3134
#-1,34EE
#-1,D0
SFC404E

DO
$29C4,DO
#1,%29C4
DO
$FC3102
#-1,S4EE
DO
$FC404E

p_port
Centronics ?
0 = RS 232

1 = Centronics

Save printer port

p_height

Not zero?

Else just dump p width bytes

_dumpflg to one?
Terminate hardcopy?
p_blkptr, screen address
Get byte

on the stack
Output character
Increment p_blkptr
Output CK ?

Yes

Clear dumpflg
Flag for error
Terminate

p_width

Decrement p_width

Not zero yet?

Output next character
Clear dumpflg

OK

Terminate

31BM}JOS SNOBQY

SRUIdUY LS HB)Y

96¢

FC3154
FC315¢C
FC315E
FC31l66
FC3168

FC31eC
FC3174
FC3176
FC317E
FC3180

FC3184
FC318C
FC318E
FC3196
FC3198

FC319C
FC31A4
FC31A6
FC31AE
FC31B0O

FC31B4
FC31BA
FC31BC
FC31BE
FC31CO
FC31C2
FC31C8
FC31DO

0C790003000029D4
630E
33FCFFFFO00004EE
T0FF

60000EE4

0C790001000029CE
630E
33FCFFFFO00004EE
T0FF

60000ECC

0C790002000029CC
630E
33FCFFFFO00004EE
70FF

60000EB4

0C790007000029C2
630E
33FCFFFFO00C04EE
70FF

60000ESC

4A79000029cCC
6704

4240

6002

7001
13C00000609A
0C790001000029CC
6704

cmp.w
bls
move.w
moveq. 1l
bra

cmp.w
bls
move.w
moveq.l
bra

cmp.w
bls
move . w
moveq.l
bra

cmp.w
bls
move.w
moveq.l
bra

tst.w
beq
clr.w
bra
moveq.l
move.b
cmp.w
beq

#3,529D4
S$FC316C
#-1, $4EE
#-1,DO0

SFC404E

#1,$29CE
S$FC3184
#-1, $4EE
#-1,D0

SFC404E

#2,$29CC
SFC319C
#-1, $4EE
#-1,D0

SFC404E

#7,529C2
$FC31B4
#-1, S4EE
#-1,DO0

SFC404E

$29ccC
$FC31CO
DO
SFC31C2
#1,D0
DO, S609A
#1,$29CC
$FC31D6

p_type

OK ?

Clear dumpflg
Flag for error
Terminate

p_destres, printer resolution
OK ?

Clear dumpflg

Flag for error

Terminate

p_srcres, screen resolution
OK ?

Clear dumpflg

Flag for error

Terminate

p_offset

OK ?

Clear dumpflg
Flag for error
Terminate

p_srcres, screen resolution
Low resolution ?

Flag for low resolution
p_srcres, screen resolution
Medium resolution ?

31BM)JOS SNOBQY

Sjeulduy IS 1B}y

L6E

FC31D2
FC31D4
FC31D6
FC31D8
FC31DE
FC31E6
FC31E8
FC31EA
FC31EC
FC31lEE
FC31Fr4
FC31FA
FC31FC
FC31FE
FC3200
FC3202
FC3208
FC3210
FC3212
FC3214
FC3216
FCc3218
FC321E
FC3226
FC3228
FC322A
Fc322C
FC322E
FC3234
FC323C
FC323E
FC3240

4240

6002

7001
13CO00005FE4
0C79%0002000029CC
6704

4240

6002

7001
13C000005FES6
4A79000029CE
6704

4240

6002

7001
13CO0000SFFE
0C790001000029D4
6704

4240

6002

7001
13C00000575E
0C790002000029D4
6704

4240

6002

7001
13C00000608C
0C790003000029D4
6704

4240

6002

clr.w
bra
moveq.l
move.b
cmp.w
beq
clr.w
bra
moveq.l
move.b
tst.w
beqg
clr.w
bra
moveq.l
move.b
cmp.W
beqg
clr.w
bra
moveq.l
move.b
cmp.W
beq
clr.w
bra
moveq.l
move.b
cmp.w
beqgq
clr.w
bra

DO
$FC31D8
#1,D0
DO, $5FE4
#2,%29CC
$FC31EC
DO
$FC31EE
#1,D0
D0, $5FE6
$29CE
$FC3200
DO
$FC3202
#1,D0
DO, $5FFE
#1,%29D4
$FC3216
DO
$FC3218
#1,DO0
DO, $575E
#2,529D4
$FC322C
DO
$FC322E
#1,D0
DO, $609C
#3,529D4
$FC3242
DO
$FC3244

Flag for medium resolution
p_srcres, screen resolution
High resolution ?

Flag for high resolution

p destres, printer resolution
Test mode?

Quality mode

Flag for mode
p_type, ATARI coler dot-matrix printer?
Yes

Flag for ATARI color dot-matrix printer
p_type, ATARI daisy-wheel printer?

Flag for ATARI daisy-wheel printer
p_type, Epson B/W dot-matrix printer?
Yes

Else ATARI B/W matrix printer

d1BM}JOS SNIEqY

sjeusduy LS MBIy

86¢

FC3242
FC3244
FC324A
FC3250
FC3252
FC325A
FC325C

FC3260
FC3266
FC3268
FC326E
FC3270
FC3272
FC3274
FC327A
FC327C
FC3282
FC3288
FC328A
FC3292
FC3294
FC3296
FC329C
FC32A0
FC32A6
FC32AE
FC32B0
FC32B8
FC32BA
FC32BC
FC32C2

7001
13C000005780
4A390000609C
670E
33FCFFFFO00004EE
T0FF

60000DF0

4A3900005780
670C
4A3900005FFE
6604

7001

6008
103900005FFE
4880
13CO0000SFFE
4A390000609A
6726
0C7390140000029C4
631C

4240
3039000029C4
DO7CFECO
D179000029CA
33FC0140000029C4
6024
0C790280000029C4
631A

4240
30390000293C4
DO7CFD80O

moveq. 1l
move.b
tst.b
beq
move . w
moveq.1l
bra

tst.b
beq
tst.b
bne
moveq.l
bra
move.b
ext.w
move.b
tst.b
beq
cmp.w
bls
clr.w
move.w
add.w
add.w
move.w
bra
cmp.w
bls
clr.w
move.w
add.w

#1,D0
DO, $5780
$609C
$FC3260
#-1, $4EE
#-1,D0
$FC404E

$5780
$FC3274
$5FFE
$FC3274
#1,D0
$FC327C
$S5FFE, DO
DO

DO, $5FFE
$609A
$FC32B0
#320,529C4
SFC32B0

DO
$29C4,D0
#-320,D0
DO, $29CA
#320, $29C4
$FC32D4
#640,$29C4
$FC32D4

DO
$29C4, D0
#-640,D0

Flag for Epson B/W dot matrix printer
ATARI daisy wheel?

No

Clear _dumpflg

Flag for error

Terminate

Epson B/W dot-matrix?
No

Quality mode?

No

Quality mode

Quality mode

Low resolution ?

No

p_width

p_width

p_right
p_width

p_width

p_width

JIeM]JOS SnIBqy

s[eutdjuy IS e}y

FC32C6 D179000029CA add.w D0, $29CA p_right %
FC32CC 33FC0280000029C4 move.w #640,$29C4 p_width g
FC32D4 4ABS000029D8 tst.l $29D8 p_masks, half-tone mask @
FC32DA 6614 bne $FC32F0 ' 4
FC32DC 23FCOOFD1BACO0C029D8 move.l #SFD1BAC,$29D8 Use default mask if
FC32E6 13FC000100004DBA move.b #1,$4DBA E‘
FC32EE 6006 bra $FC32F6 e
FC32F0 423900004DBA clr.b $4DBA
FC32F6 4A3900005FE6 tst.b $SFE6 High resolution ?
FC32FC 6718 beg SFC3316 No
FC32FE 2079000029D0 move.l $29D0,A0 p_colpal
FC3304 4240 clr.w DO
FC3306 3010 move.w (AO),DO Get color
FC3308 C07C0001 and.w #1,D0
FC330C 33C00000608C move.w DO,$608C

w FC3312 60000290 bra SFC35A4

O FC3316 4247 clr.w D7 Clear counter for running color

© FC3318 60000282 bra $FC359C To loop end
FC331C 2079000029D0 move.l $29D0,A0 colpal, address of color palette
FC3322 4240 clr.w DO
FC3324 3010 move.w (AO),DO Get color
FC3326 CO7C0777 and.w #$777,D0 Mask irrelevant bits
FC332A 33C00000574A move.w DO,$574A Mask color
FC3330 54B9%000029D0 addg.l #2,%29D0 Polner to next color
FC3336 0C7907770000574A cmp.w #$777,8574A Color equals white? g;
FC333E 67000230 beq $FC3570 Yes =.
FC3342 30390000574A move.w $574A,D0 Load color 7p
FC3348 CO7C0007 and.w #7,D0 Isoclate blue level :j
FC334C 33C000004150 move.w DO,$4150 And save =4
FC3352 30390000574A move.w $574A,D0 Load color Q
FC3358 E840 asr.vw #4,D0 Ei

w

ooy

FC335A
FC335E
FC3364
FC336A
FC336C
FC3370
FC3376
FC337C
FC3380
FC3382
FC3384
FC338A
FC3390
FC3392
FC3394
FC339A
FC339E
FC33A4
FC33A6
FC33AC
FC33AE
FC33BO
FC33B2
FC33B8
FC33BC
FC33BE
FC33CO
FC33Ce6
FC33C8
FC33CA
FC33CC
FC33D2

Cc07C0007
33C000005FES8
30390000574A
EC40
C07C0007
33C000005624
4A390000575E
670001A0
3047

D1cC8
D1FC00005760
30B900005624
3047

D1cCs8
227C00005760
30309800
BO7900005FES8
6C08
303900005FE8
600FE

3047

D1C8
227C00005760
30309800
3247

D3C9
D3FC00005760
3280

3047

D1C8
227C00005760
30309800

and.w
move.w
move .w
asr.w
and.w
move.w
tst.b
beq
move ,w
add.l
add.1l
move.w
move .w
add. 1
move, 1
move .w
cmp.w
bge
move.w
bra
move .w
add.1
move.l
move.w
move.w
add. 1l
add.l
move.w
move . w
add.l
move, 1
move .w

#7,D0

DO, $5FE8
$574A,D0
#8,D0
#7,D0

D0, $5624
$575E
$FC351E
D7,A0

A0, A0
#$5760, A0
$5624, (A0)
D7, A0

AO, AO
#$5760,A1
0{(AO,Al1.1),DO
$5FES8, DO
$FC33AE
$5FE8, DO
SFC33BC
D7,A0

A0, AO
#55760,A1
0(A0,A1.1),D0
D7,Al
Al,Al
#$5760,A1
DO, (A1)
D7,A0

A0, A0
#$5760,A1
0(A0,Al1.1),DO

Isclate green level
and save
Lead color

Isolate red level
and save

ATARI cclor dot-matrix printer?
No

Red level

Green level

Green level

31BM1JOS Snoeqy

s[euJajuy LS 11eyy

10¥

FC33D6
FC33DC
FC33DE
FC33E4
FC33E6
FC33ES8
FC33EA
FC33F0
FC33F4
FC33re6
FC33F8
FC33FE
FC3400
FC3402
FC3404
FC340A
FC340C
FC340E
FC3410
FC3416
FC341C
FC341E
FC3420
FC3426
FC342A
FC3430
FC3432
FC3438
FC343A
FC343C
FC343E
FC3444

B07900004150
6C08
303900004150
600E

3047

D1C8
227C00005760
30309800
3247

D3C9
D3FC00005760
3280

3047

D1C8
D1FC00005760
5250

3047

D1C8
D1FC00006002
30B900005624
3047

D1C8
227C00006002
30309800
BO7900005FES8
6F08
303900005FE8
600E

3047

D1C8
227C00006002
30309800

cmp . W
bge
move.w
bra
move.w
add.l
move.l
move.w
move .w
add.l
add.l
move .w
move ., w
add.1
add.l
addg.w
move.w
add.l
add.1l
move.w
move.w
add.l
move.l
move.w
cmp.w
ble
move.w
bra
move.w
add.1l
move.l
move.w

$4150, D0 Blue level
SFC33E6

$4150,D0 Blue level
SFC33F4

D7,A0

A0, AQ

#$5760,A1

0(AO0,A1.1),DO

D7,Al

Al,Al

#$5760,A1

DO, (Al)

D7,A0

A0, A0

#35760,A0

#1, (AO)

D7,AQ

AO,AOQ

#56002,A0

$5624, (AO) Red level
D7,A0

A0, A0

#$6002,A1

0(AO,Al.1),DO

$5FE8, DO Green level
SFC343A

$5FE8,DO Green level
SFC3448

D7,A0

A0, A0

#5$6002,A1

0(AO,Al1l.1),DO

2IBM1J0S SNIBQY

sfeusdiuy LS eIV

(4417

FC3448
FC344A
FC344C
FC3452
FC3454
FC3456
FC3458
FC345E
FC3462
FC3468
FC346A
FC3470
FC3472
FC3474
FC3476
FC347C
FC3480
FC3482
FC3484
FC348A
FC348C
FC3492
FC3494
FC3496
FC349C
FC349E
FC34A0
FC34A2
FC34A4
FC34A6
FC34A8
FC34AA

3247

D3C9
D3FC00006002
3280

3047

D1C8
227C00006002
30309800
B07900004150
6F08
303900004150
600E

3047

D1cCs8
227C00006002
30309800
3247

D3C9
D3FC00006002
3280
303900005624
3247

D3C9
D3FC00006002
3211

5241

9041

6E04

4240

6002

7001
33C000005624

move.w D7,Al

add.l Al,Al

add. 1l #56002,A1
move.w DO, (Al)
move.w D7,A0

add.l AOQ,AQ

move.l #36002,A1
move.w O(A0,Al.1),DO
cmp.w $4150,D0

ble SFC3472
move.w $4150,D0
bra SFC3480

move.w D7,A0
add.1 A0, A0
move.l #$6002,A1
move.w O(AO,Al.1),DO
move.w D7,Al
add.1l Al,Al
add.l #$6002,A1
move.w DO, (Al)
move.w $5624,D0
move.w D7,Al
add.l Al,Al
add.l #$6002,A1
move.w (Al),Dl1
addg.w #1,D1
sub.w D1,DO

bgt $FC34A8
clr.w DO
bra SFC34AA

moveq.l #1,D0
move.w DO0,$5624

Green level

Green level

Red level

Red level

91BM]JOS SNOBqQy

sjewauy IS 1B}y

15014

FC34BO
FC34B6
FC34B8
FC34BA
FC34C0
FC34C2
FC34C4
FC34C6
FC34C8
FC34CA
FC34CC
FC34CE
FC34D4
FC34DA
FC34DC
FC34DE
FC34E4
FC34E6
FC34ES8
FC34EA
FC34EC
FC34EE
FC34F0
FC34F2
FC34Fr8
FC34FE
FC3500
FC3506
FC3508
FC350A
FC3510
FC3512

303900005FES8
3247
D3C9
D3FC00006002
3211
5241
9041
6E04
4240
6002
7001
33CO00005FES
303900004150
3247
D3C9
D3FC00006002
3211
5241
9041
6E04
4240
6002
7001
33C000004150
303900005624
E540
323900005FES8
E341
D041
D07900004150
3247
D3C9

move .W
move .w
add. 1l
add.l
move .w
addqg.w
sub.w
bgt
clr.w
bra
moveq.l
move.w
move.w
move.w
add.l
add.1
move.w
addg.w
sub.w
bgt
clr.w
bra
moveq.l
move.w
move.w
asl.w
move.w
asl.w
add.w
add.w
move .w
add.l

$5FES8, DO
D7,Al
Al,Al
#$6002,A1
(Al),D1
#1,D1
D1,DO
$FC34ccC
DO
$FC34CE
#1,D0
DO, $5FE8
$4150,D0
D7,Al
Al,Al
#$6002,A1
(Al1),D1
#1,D1
D1,DO
$FC34F0
DO
$FC34F2
#1,D0
DO, $4150
$5624,D0
#2,D0
$5FE8,D1
#1,D1
D1,DO
$4150,D0
D7,Al
Al,Al

Green level

Green level
Blue level

Blue level

Red level

times 4

Green level
times 2

Add to red level
Add blue level

J1BM}JOS SnIBqY

sjeusdjuy LS MeIy

1207

FC3514
FC351A
FC351C
FC351E
FC3524
FC3528
FC352E
FC3532
FC3534
FC353A
FC353E
FC3540
FC3542
FC3546
FC3548
FC354A
FC3550
FC3552
FC3554
FC3556
FC355C
FC3560
FC3562
FC3564
FC356A
FC356E
FC3570
FC3572
FC3574
FC357A
FC357E
FC3580

D3FC00005628
3280

6050
303900005624
C1FCOO1E
323900005FE8
C3FC003B
D041
323900004150
C3FCO00B
D041

48C0
81FC0064
3247

D3C9
D3FC00006002
3280

3047

D1C8
D1FC00005628
30BC0007
3047

D1C8
D1FC00005760
30BC0008
602A

3047

D1C8
D1FC00006002
30BC0008
3047

D1c8

add.l
move.w
bra

move.
muls.
move .

£ % 5 3

muls.
add.w
move .w
muls.w
add.w
ext.1l
divs.w
move.w
add.1
add., 1l
move.w
move.w
add. 1
add,. 1
move.w
move.w
add. 1
add. 1
move.w
bra
move.w
add.1l
add, 1l
move.w
move.w
add.l

#55628,A1
DO, (Al)
$FC356E
$5624,D0
#S1E,DO
$5FE8, D1
#$3B,D1
D1, DO
$4150,D1
#sB,D1
D1,DO

DO
#$64,D0
D7,Al
Al,Al
#$6002,A1
DO, (Al)
D7,A0

AQ, A0
#35628,A0
#7, (A0)
D7,A0

A0, A0
#$5760,A0
#8, (A0)
$FC359A
D7,A0

AO, A0
#$6002,A0
#8, (AO)
D7,A0
AO,AQ

Red level
times 30, weighting 30 %
Green level

times 59, weighting 59 %

Blue level
times 11, weighting 11 %

divided by 100, scaling

31BM)JOS SnIBqY

s[eusdju] LS LB}V

SOy

FC3582
FC3588
FC358C
FC358E
FC3590
FC359¢
FC359A
FC359C
FC35A0
FC35A4
FC35AA
FC35AC
FC35AE
FC35B4
FC35BA
FC35C0
FC35C2
FC35C8
FC35CA
FC35CC
FC35D2
FC35D8
FC35E0
FC35E2
FC35EA
FC35F2
FC35FA
FC3600
FC3602
FC3606
FC3608
FC360C

D1FC00005628
30BCO007

3047

D1C8
D1FC00005760
30BCO0OCS

5247

BE7C0010
6DOOFD7A
4A390000609A
6716

7004
33C000006022
33C000005FF8
33C0000056F8
6038
4A3900005FE4
6718

7002
33C000006022
33C0000056F8
33FC000400005FF8
6018
33FC0001000056F8
33FC000800005FF8
33FC000200006022
423900005780
6706

3F3C0002

6004

3F3C0001
303900006022

add.1l
move.w
move.w
add.1l
add. 1
move.w
addg.w
cmp.wW
blt
tst.b
beq
moveq.l
move.w
move.w
move.w
bra
tst.b
beqg
moveq.l
move.w
move.w
move.w
bra
move.w
move.w
move.w
tst.b
beqg
move.w
bra
move.w
move.w

#55628,A0
#7, (AO)
D7, A0
A0, AO
#$5760,A0
#8, (AO)
#1,D7
#$10,D7
$FC331C
$609A
$FC35C2
#4,D0
DO, $6022
DO, $5FF8
DO, $56F8
SFC35FA
$5FE4
SFC35E2
#2,D0
DO, $6022
DO, $56F8
#4, $5FF8
$FC35FA
#1,$56F8
#8, $5FF8
#2,56022
$5780
$FC3608
#2,-(A7)
SFC360C
#1,- (A7)
$6022,D0

Next color

16 colors?

No, next color

Low resolution ?

No

Four points per screen point

Medium resolution 2
No
2 points per screen point

Epson B/W dot matrix printer?
No

J1eM}J0S SNOBQY

s[ewduf LS 1ey

90v

FC3612
FC3614
FC3616
FC361C
FC361E
FC3624
FC362A
FC3630
FC3636
FC3638
FC363E
FC3644
FC364A
FC3650
FC3656
FC365C
FC3662
FC3668
FC366E
FC3670
FC3672
FC3678
FC367A
FC367C
FC3682
FC3684
FC368A
FC3692
FC3698
FC369C
FC36A4
FC36A8

48C0

81DF
33C000006022
4240
3039000029C8
D079000029C4
D079000029CA
COF9000056F8
E848
33C000005626
303900005626
C1F900005FF8
33C000004E10
2039000029BE
COBCFFFFFFFE
23C000005648
2039000029BE
BOB900005648
660A

4240
3039000029C2
600A

4240
3039000029C2
5040
33C00000574C
13FC0001000060A0
4279000016A8
60000976
0C790001000004EE
6600097C
4A3900004DBA

ext.1l
divs.w
move.w
clr.w
move .w
add.w
add.w
mulu.w
lsr.w
move.
move.
muls.
move.
move.
and.1l
move, 1
move.l
cmp. 1
bne
clr.w

= % % % %

move.w
bra
clr.w
move.w
addqg.w
move.w
move.b
clr.w
bra
cmp.w
bne
tst.b

DO
(A7) +, DO
DO, $6022
DO
$29C8, D0
$29C4,DO0
$29CA, DO
$56F8, D0
#4,D0
D0, $5626
$5626,D0
$5FF8, D0
DO, $4E10
$29BE, DO
#SFFFFFFFE, DO
D0, $5648
$29BE, DO
$5648,D0
SFC367A
DO
$29C2,DO0
$FC3684
DO
$29C2,D0
#8,D0
DO, $574C
#1,560A0
$16A8
$FC4010
#1,$4EE
$FCA4022
$4DBA

p_left
p_width
p_right

divided by 16

p_blkptr, screen address
Even address

save

p_blkptr

p_offset

p_offset

_dumpflg at one?

31BM}JOS SndBqQY

S[eurdjuy IS LB}V

FC36AE 6700018E beq $SFC383E %?
FC36B2 13FC0001000041B6 move.b #1,%$41B6 e
FC36BA 4240 clr.w DO @
FC36BC 3039000029C4 move.w $29C4,D0 p_width g
FC36C2 COF9000056F8 mulu.w $56F8,D0 if
FC36C8 EB48 lsr.w #4,D0 =
FC36CA 9079000056F8 sub.w $56F8,DO0 ®
FC36D0 E348 lsl.w #1,DO0
FC36D2 4840 swap DO
FC36D4 4240 clr.w DO
FC36D6 4840 swap DO
FC36D8 DOBY00005648 add.l $5648,D0
FC36DE 23CO00005FEA move.l DO, S$SS5FEA
FC36E4 700F moveq.l #15,D0
FC36E6 4241 clr.w D1

N FC36E8 3239000029C4 move.w $29C4,D1 p_width

53 FC36EE C27CO00F and.w #S5F,D1
FC36F2 9041 sub.w D1,D0
FC36F4 33C000006028 move.w DO,$6028
FC36FA 33F9000029C400004DBC move.w $29C4, $4DBC p_width
FC3704 6000012C bra $FC3832
FC3708 4240 clr.w DO
FC370A 3039000029C6 move.w $29C6,D0 p_height
FC3710 9079000016A8 sub.w $16A8,DO .
FC3716 4840 swap DO s
FC3718 4240 clr.w DO =3
FC371A 4840 swap DO 23
FC371C 80F900005FF8 divu.w $5FF8,D0 —
FC3722 6708 beq $FC372C %
FC3724 303900005FF8 move.w S$5FF8,DO 3
FC372A 600E bra $FC373A %

80v

FCc372C
FC372E
FC3734
FC373A
FC3740
FC374A
FC374C
FC3750
FC3756
FC375E
FC3768
FC376A
FC376C
FC3772
FC3774
FC3776
FC377C
FC377E
FC3782
FC3788
FC378E
FC3794
FC379A
FC379C
FC37A2
FC37A4
FC37AA
FC37AC
FC37B2
FC37B8
FC37BA
FC37BC

4240

3039000029C6
9079000016A8
33CO000005FED

23F900005FEAQ00058EC

4247
600000A6
427900006030

33FC000100006024
23F9000058ECC000574E

4246

6030
20790000574E
3010

720F
927900006028
E260
C07C0001
C1lF900006024
D17900006030
54B90000574E
E1F900006024
5246
BC79000056F8
6DC8
4A3900005FE6
671A
303900006030
32390000608C
B340

6608
4239000041B6

clr.w
move.w
sub.w
move . w
move., 1l
clr.w
bra
clr.w
move.,w
move.l
clr.w
bra
move.l
move.w
moveq.l
sub.w
asr.w
and.w
muls.w
add.w
addq.1l
asl.w
addqg.w
cmp.w
blt
tst.b
beg
move,w
move.w
eor.w
bne
clr.b

DO
$29C6, DO
$16A8,D0
DO, $5FEO
$5FEA, $58EC
D7
$FC37F4
$6030
#1,5$6024
$58EC, $574E
D6
$FC379C
$574E, A0
(A0), DO
#15,D1
$6028,D1
D1,DO
#1,D0
$6024,D0
D0, $6030
#2,$574E
$6024
#1,D6
$56F8,D6
SFC376C
SSFE6
SFC37C6
$6030,D0
$608C,D1
D1,DO
$FC37C4
$41B6

p_height

High resolution ?
No

3IeM)JOS Snoeqy

s[euIaju] LS Hepy

60v

FC37C2
FC37C4
FC37C6
FC37CC
FC37CE
FC37D4
FC37D8
FC37DA
FC37E0
FC37E2
FC37E8
FC37EA
FC37EC
FC37F2
FC37F4
FC37FA
FC37FE
FC3804
FC3806
FC380C
FCc3812
FC3814
FC381A
FC381C
FC381E
FC3824
FC382C
FC3832
FC3838
FC383C
FC383E
FC3848

603A bra
601C bra
307900006030 move . w
DicC8 add. 1l
D1FC00006002 add. 1l
0C500008 cmp.w
6708 beqg
4239000041B6 clr.b
601C bra
303900005626 move.w
E340 asl.w
48C0 ext.1l
D1B9000058EC add.l
5247 addg.w
BE7900005FEQ cmp.w
6DOOFF54 blt
4A39000041B6 tst.b
6736 beqg
537900006028 subg.w
477900006028 tst.w
6C18 bge
3039000056F8 move ,w
E340 asl.w
48CO0 ext.,l
91B90000OSFEA sub.1l
33FCO00F00006028 move.w
537900004DBC subg.w
4A7900004DBC tst.w
6EOOFECE bgt
600A bra
33F9000029C400004DBC move.w
3E3900004DBC move.w

$FC37FE
$FC37E2
$6030,A0
AO, AO
#$6002,A0
#8, (A0)
$FC37E2
$41B6
$FC37FE
$5626,D0
#1,D0

DO

DO, $58EC
#1,D7
$5FEO, D7
$FC3750
$41B6
$FC383C
#1,%$6028
$6028
$FC382C
$56F8,DO0
#1,D0

DO

DO, $5FEA
#$F, $6028
#1,$4DBC
$4DBC
$FC3708
$FC3848
$29C4, $4DBC p_width
$4DBC, D7

21BM1JOS SNORQY

s[ewdu] LS eIy

o1y

FC384E
FC3854
FC385A
FC385C
FC385E
FC3860
FC3864
FC3866
FC3868
FC386A
FC386C
FC386E
FC3872
FC3874
FC387A
FC387C
FC387E
FC3882
FC3888
FC388E
Fc3892
FC3898
FC389C
FC38A2
FC38A6
FC38AC
FC38B0
FC38B6
FC38B8
FC38BE
FC38C2

CFF300006022
4A3900005780
670A

3007

48C0
81FC0002
6002

4240

DE40

3007

48C0
81FC0100
4840
13C000C04El6
3007

48C0
81FC0100
13C000004E18
427900005782
60000656
4279000060A2
600005F0
4A390000575E
67000076
4A3900005FE6
6600006C
4A79000060A2
661E
2EBCOOFD1BBE
610007E4
4A40

muls.w
tst.b
beq
move . w
ext.l
divs.w
bra
clr.w
add.w
move.w
ext.1l
divs.w
swap
move.b
move.w
ext.l
divs.w
move .b
clr.w
bra
clr.w
bra
tst.b
beq
tst.b
bne
tst.w
bne
move.l
bsr
tst.w

$6022,D7
$5780
SFC3866
D7,D0

DO

#2,D0
$FC3868
po

DO, D7
D7,DO0

DO
#$100,D0
DO

DC, $4El6
D7,D0

DO
#$100,D0
DO, $4E18
$5782
SFC3EE6
$60A2
SFC3E8A
$575E
$FC391A
$5FE6
SFC391A
S60A2
$FC38D6
#SFD1BBE, (A7)
SFC40A4
DO

Epson B/W dot-matrix printer?
No

Number of points

divided by 256

remainder

Number of points, low byte
Number of points

divided by 256
Number of points, high byte

ATARI color dot-matrix printer?
No

High resolution ?

Yes

ESC X', 6
Send string to printer
Output OK?

3leMljo§ snoeqy

S[ewtdu] IS LB}V

11y

FC38C4
FC38C6
FC38CE
FC38D0

FC38D4

FC38D6
FC38DE
FC38E0
FC38E6
FC38EA
FC38EC
FC38EE
FC38F6
FC38F8

FC38FC

FC38FE
FC3904
FC3908
FC390A
FC390C
FC3914
FC3916

FC391A
FC3920
FC3922
FC3928

670E
33FCFFFFOO00C4EE
TOFF

6000077C

6044

0C7%0001000060A2
661E
2EBCOOFD1BC3
610007BC

4A40

670E
33FCFFFFOO0004EE
T0FF

60000754

601C

2EBCOOFD1BCS
6100079E

4A40

670E
33FCFFFFO0Q004EE
70FF

60000736

4A3900005780
6708
2EBCOOFD1BCD
6006

beq
move . w
moveq. 1l
bra

bra

cmp.w
bne
move.l
bsr
tst.w
beqg
move . w
moveq.l
bra

bra

move.l
bsr
tst.w
beg
move . w
moveq.l
bra

tst.b
beqg
move.l
bra

$FC38D4
#-1, S4EE
#-1,D0
SFC404E

SFC391A

#1,560A2
SFC38FE
#$FD1BC3, (A7)
SFC40A4

DO

SFC38FC

#-1, $4EE
#-1,D0
SFC404E

$FC391A

#SFD1BC8, (A7)
SFC40A4

bo

$SFC391A
#-1,34EE
#~1,D0
SFC404E

$5780
$SFC392A
#SFD1BCD, (A7)
$FC3930

Yes

Clear dumpflg
Flag for error
Terminate

ESC 'X', 5

Send string to printer
Output OK?

Yes

Clear _dumpflg

Flag for error
Terminate

ESC X', 3

Send string to printer
Output OK?

Yes

Clear _dumpflg

Flag for error
Terminate

Epson B/W dot-matrix printer?
No
ESC 'L', bit image 960 dots/line

31eM1J0S SMIBQqQY

s[eutdjuy IS Hepy

[44%

FC392A
FC3930
FC3934
FC3936
FC3938
FC3940
FC3942

FC3946
FC394C
FC394E
FC3950
FC3954
FC3956
FC3958
FC3960
FC3962

FC3966
FC396C
FC396E
FC3970
FC3974
FC3976
FC3978
FC3980
FC3982

FC3986
FC398E
FC3998

2EBCOOFD1BD1 move.l
61000772 bsr
4A40 tst.w
670E beq
33FCFFFFOO0C004EE move .w
70FF moveq.l
6000070A bra
103900004E16 move.b
4880 ext.w
3E80 move .w
61000706 bsr
4740 tst.w
670E beqg
33FCFFFFO00004EE move.w
70FF moveq.l
600006EA bra
103900004E18 move.b
4880 ext.w
3E80 move.w
610006E6 bsr
4740 tst.w
670E beqg
33FCFFFFOO00004EE move.w
70FF moveq.l
600006CA bra
13FC000100006000 move.b

23F90000564800005FEA move.l
33F90000574C00006028 move.w

#SFD1BD1, (A7)
$FC40A4

DO

SFC3946

#-1, S4EE
#-1,D0
SFC404E

$4E16,DO0
DO

DO, (A7)
$FC4058
DO
SFC3966
#-1, S4EE
#-1,D0
SFC404E

$4E18,DO
DO

DO, (A7)
$FC4058
DO
$FC3986
#-1, $4EE
#-1,D0
SFC404E

#1,56000
$5648, S5FEA
$574C, $6028

ESC 'Y', bit image 1280 dots/line
Send string to printer

Output OK?

Yes

Clear dumpflg

Flag for error

Terminate

Number of points, low-byte

Output character
Output OK?

Yes

Clear _dumpflg
Flag for error
Terminate

Number of points, high-byte

Output character
Output OK?

Yes

Clear dumpflg
Flag for error
Terminate

21BM1JOS SNORQY

s[eudul LS 1e)y

ey

FC39A2
FC39A8

FC39AC
FC39AE

FC39B0O
FC39B2
FC39B8
FC39BA
FC39BC
FC39C0
FC39C2
FC39C4

FC39Cé6
FC39C8
FC39CA
FC39D0
FC39D4
FC39D6
FC39D8
FC39DE
FC3%E2
FC39E4
FC39E8
FC39EA
FC39EC
FC39F2
FC39F8
FC39FA
FC39FC

4279000016A6
600004B0

4247
600C

3047
D1FC00005784
4210

5247
BE7C0008
6DEE

4247

601E

3047

D1C8
D1FCOOQO04E1A
30BC0O007
3047

D1C8
D1FCOOOO5FEE
30BC0O008
5247
BE7C0004
6DDC

4240
3039000029C6
9079000016A8
4840

4240

4840

clr.w
bra

clr.w
bra

move.w
add.1l
clr.b
addqg.w
cmp.W
blt
clr.w
bra

move.w
add. 1l
add. 1l
move.w
move.w
add.l
add.1l
move.w
addg.w
cmp.w
blt
clr.w
move.w
sub.w
swap
clr.w

swap

$16A6
SFC3E5A

D7
SFC39BC

D7,A0
#$5784,A0
(A0)
#1,D7
#8,D7
SFC39B0O
D7
SFC39E4

D7,A0

A0, A0
#$4E1A,AC
#7, (AO)
D7,A0

AQ, A0
#$SFEE, AO
#8, (A0)
#1,D7
#4,D7
SFC39C6
DO
$29C6,D0 p_height
$16A8,D0
DO

DO

DO

31BM}JOS Snoeqy

sjeusuy LS LB}y

17454

FC39FE
FC3A04
FC3A06
FC3A0C

FC3A0E
FC3Al10
FC3Al6
FC3AlC
FC3A22
FC3A24
FC3A2A
FC3A30
FC3A32
FC3A34
FC3A36
FC3A3C
FC3A3E
FC3A48

FC3A4A
FC3A4C
FC3A52
FC3A58
FC3AS5E
FC3A64
FC3A6E
FC3A70

FC3A74
FC3A7A
FC3A82

80F300005FF8
6708
303900005FF8
600E

4240
3039000029Cé
907300001 6A8
33CO000005FEOC
4240
3039000029C6
9079000016A8
4840
4240
4840
80F900005FF8
670C

33F900005FF800005FEQ

601A

4240

3039000029C6
9079000016A8
33CO000005FED
4239000060A0

23F900005FEAQO0O58EC

4247
6000011C

427900006030

33FC000100006024

divu.w
beq
move.w
bra

clr.w
move .w
sub.w
move .w
clr.w
move .w
sub.w
swap
clr.w
swap
divu.w
beg
move.w
bra

clr.w
move.w
sub.w
move .w
clr.b
move.l
clr.w
bra

clr.w

move.w

23F9000058EC0000574E move.l

$5FF8, DO
$FC3A0E
$5FF8,DO0
$FC3A1LC

DO
$29C6,DO0
$16A8,DO0
DO, $5FE0
Do
$29C6, DO
$16A8,D0
DO

DO

DO
$5FF8,DO0
SFC3A4A
$5FF8, $SFEO
SFC3A64

DO

$29C6,DO0
$16A8,D0
DO, $5FEQ
$60A0
$5FEA, $58EC
D7

$FC3B8E

$6030
#1,56024
$58EC, $574E

p_height

p_height

p_height

d1eM}JOS Sndeqy

sjeusdju] LS MBIV

Siv

FC3A8C
FC3ABE

FC3A%0
FC3A96
FC3A98
FC3A%A
FC3AAO
FC3AA2
FC3AA6
FC3AAC
FC3AB2
FC3AB8
FC3ABE
FC3ACO
FC3AC6
FC3AC8
FC3ACE
FC3ADO
FC3AD6
FC3ADC
FC3ADE
FC3AEO
FC3AE6
FC3AES8
FC3AEA

FC3AEC
FC3AEE
FC3AFO
FC3AF6
FC3AF8

4246
6030

20790000574E
3010

720F
927900006028
E260
C07C0001
C1F900006024
D17900006030
54B90000574E
E1F900006024
5246
BC79000056F8
6DC8
4A3900005FE6
672C
303900006030
32390000608C
B340

660C
2079000029D8
1010

4880

6002

4240

3247
D3FC00005784
1280
60000082

clr.w
bra

move.l
move . W
moveq.l
sub.w
asr.w
and.w
muls.w
add.w
addg.l
asl.w
addg.w
cmp.w
blt
tst.b
beg
move.w
move.w
eor.w
bne
move.l
move.b
ext.w
bra

clr.w

move . w
add.l

move.b
bra

D6
SFC3ACO

$574E, A0
(AO) ,DO
#15,D1
$6028,D1
D1,DO
#1,D0
$6024,D0
DO, $6030
#2,$574E
$6024
#1,D6
$56F8,D6
SFC3A90
$5FE6
SFC3AFC
$6030,D0
$608C, D1
D1,DO
$FC3AEC
$29D8,A0
(A0) ,DO
DO
SFC3AEE

DO

D7,Al
#$5784,A1
DO, (A1)
$FC3B7C

High resolution ?
No

p_masks, address of half-tone mask

31eM}JOS SNIBqQY

s[euIau] LS HEpy

91y

FC3ArC
FC3AFE
FC3B0OO
FC3B06
FC3ROC
FC3BOE
FC3B14
FC3Bl6
FC3B18
FC3B1lE
FC3B20
FC3B22
FC3B24
FC3B2A
FC3B30
FC3B32
FC3B38
FC3B3A
FC3B3C
FC3B42
FC3B48
FC3B4A
FC3B4C
FC3B52
FC3B58
FC3B5A
FC3B6Q
FC3B62
FC3B64
FC3B66
FC3B6C
FC3B72

3047
pocs
D1FC00005784
327900006030
D3C%
D3FCC0006002
3251
D2C9
D3F9000029D8
1091
3047
DOC8
D1FC00005784
327900006030
D3C9
D3FC00006002
3251
D2C9
D3F9000029D8
116900010001
3047
D1C8
D1FCOO004E1A
327900006030
D3C9
D3FC00005628
3091
3047
Di1C8
D1FCOOOOSFEE
327900006030
D3C9

move.w
add.w
add.l
move . W
add. 1
add.1l
move . W
add.w
add.1l
move.b
move . W
add.w
add.l
move.w
add.l
add.1l
move.wW
add.w
add.l
move.b
move . W
add.l
add.1l
move . W
add.1l
add.l
move . W
move.w
add.1l
add.1l
move.wW
add.1l

D7,A0

A0, A0
#35784,A0
$6030,A1
Al,Al
$#56002,A1
(A1) ,Al
Al,Al
$29D8, Al
(A1), (AO)
D7, A0

A0, AC
$#55784, A0
$6030,Al
Al,Al
#$6002,A1
(A1) ,Al
Al,Al
$29D8, Al
1(Al),1(a0)
D7,A0

A0, AO
#S4E1A,AC
$6030,A1
Al,Al
#55628,A1
(A1), (AD)
D7,A0

A0, AC
#S$5FEE, AO
$6030,Al
Al,Al

plus p_masks

plus p masks

91BM}JOS SNIBqQY

sjewIau] LS Heyy

FC3B74 D3FC00005760 add.1 #$5760,Al g?
FC3B7A 3091 move.w (Al), (AO) g
FC3B7C 303900005626 move.w $5626,D0 v
FC3B82 E340 asl.w #1,DO L
FC3B84 48CO ext.l DO if
FC3B86 D1B90C00S8EC add.l DO, $58EC 8
FC3B8C 5247 addg.w #1,D7 i
FC3B8E BE7900005FEQ cmp.w $5FEO0,D7
FC3B94 6DOOFEDE blt SFC3A74
FC3B98 4A390000575E tst.b $575E ATARI color dot-matrix printer?
FC3BY9E 670001RE beq S$FC3D5E No
FC3BA2 4A3900005FE6 tst.b S5FE6 High resolution ?
FC3BA8 660001R4 bne $SFC3D5E Yes
FC3BAC 4247 clr.w D7
FC3BAE 600001A4 bra $FC3D54

F

p— FC3BB2 423900005FF6 clr.b $5FF6

~ FC3BB8 4A79000060A2 tst.w S$60A2
FC3BBE 6626 bne $FC3RE6
FC3BCO 3047 move.w D7,A0
FC3BC2 D1cC8 add.1 A0,A0Q
FC3BC4 227CO0004E1A move.l #$4E1A,Al
FC3BCA 30309800 move.w O(AO,Al.1),DO
FC3BCE 48C0 ext.l DO
FC3BDO 81FC0002 divs.w #2,D0 >
FC3BD4 4840 swap DO s
FC3BD6 4A40 tst.w DO =X
FC3BD8 6708 beq SFC3BE2 g
FC3BDA 13FC000100005FF6 move.b #1,$5FF6 —_
FC3BE2 600000F0 bra $FC3CD4 5

S

FC3BE6 0C790001000060A2 cmp.w #1,$60A2 é}

187

FC3BEE
FC3BF2
FC3BF4
FC3BF6
FC3BFC
FC3C00
FC3C02
FC3C04
FC3CO06
FC3COoC
FC3C10
FC3C12
FC3C14
FC3C16
FC3C1cC
FC3C20
FC3C22
FC3C24
FC3C2A
FC3C30

FC3C32
FC3C34
FC3C36
FC3C3C
FC3C40
FC3C42
FC3C44
FC3C46
FC3C4C
FC3C50
FC3C52

6600008C
3047

D1cCs8
D1FCOQ004E1A
0C500006
6630

3047

D1C8
D1FCOOO0OQSFEE
0C500008
6C20

3047

DOC8
D1FC00005784
02100001
3047

DoC8
D1FC00005784
022800040001
6048

3047

D1C8
D1FCOOOO4ELA
0C500002
6730

3047

p1cCs8
D1FCO0004E1A
0C500003
6720

3047

bne
move .. W
add. 1l
add.l
cmp.w
bne
move.w
add. 1l
add. 1l
cmp.w
bge
move.w
add.w
add.1l
and.b
move.w
add.w
add.1l
and.b
bra

move . W
add.l
add.1l
cmp. W
beqg
move.w
add.1l
add.l
cnp.w
beq
move.w

SFC3CTC
D7,A0
AO,AQ
#34E18, A0
#6, (AO)
$FC3C32
D7, A0

A0, A0
#$5FEE, AO
#8, (AO)
$FC3C32
D7, A0

AO, A0
$#$5784,A0
#1, (AO)
D7,A0

AC, A0
#$5784,A0
#4,1(A0)
SFC3C7A

D7,A0

A0, A0
#$4E1A,A0
#2, (AO)
SFC3C72
D7,AQ0

A0, A0
#$4E1A,AQ
#3, (AO)
$FC3C72
D7,A0

31BM}JOS Sndeqy

s[eutdjuy LS 11ejy

61v

FC3C54
FC3C56
FC3CSC
FC3C60
FC3C62
FC3C64
FC3C66
FC3CeC
FC3C70
FC3C72
FC3CTA

FC3C7C
FC3CTE
FC3C80
FC3C86
FC3C8A
FCc3csc
FC3C8E
FC3C90
FC3C96
FC3C9A
Fc3coc
FC3COE
FC3CAQ
FC3CA6
FC3CAA
FC3CAC
FC3CAE
FC3CB4
FC3CBA

D1C8
D1FCOO0004E1A
0C500006
6710

3047

D1C8
D1FCOOOO04ELIA
0C500007
6608
13FCO00100005FF6
6058

3047

D1C8
D1FCO0004E1A
0C500006
6630

3047

Dics8
D1FCOOOQOSFEE
0C500008
6C20

3047

DOC8
D1FC00005784
02100004
3047

DOC8
D1FC00005784
022800010001
6018

add. 1l
add. 1
cmp.w
beq
move . W
add.l
add.1l
cmp.wW
bne
move.b
bra

move.w
add.l
add.1l
cmp.w
bne
move.w
add.1
add.1
cmp.w
bge
move.w
add.w
add., 1
and.b
move.w
add.w
add.l
and.b
bra

AO, AC
#$4E1A,AQ
#6, (AO)
SFC3C72
D7,A0

A0, AQ
#S$4E1A,A0
#7, (AO)
SFC3CTA
#1, $5FF6
$FC3CD4

D7, A0

A0, AO
#S4E1A,A0
#6, (A0)
$SFC3CBC
D7,A0
AO,AO
#$5FEE, A0
#8, (AO)
$FC3CBC
D7, A0
AO,AQO
#$5784,A0
#4, (AO)
D7, A0

A0, AOQ
#$5784,A0
#1,1(A0)
$FC3CD4

31BM}JOS SNIBQY

s|euwsdu] IS Meyy

ocy

FC3CBC
FC3CBE
FC3CCOo
FC3CC6
FC3CCA
FCc3ccce
FC3CD4
FC3CDA
FC3CDC
FC3CDE
FC3CEQ
FC3CE6
FC3CES8
FC3CEA
FC3CEC
FC3CF2
FC3CF6
FC3CFC
FC3CFE
FC3DO0O0
FC3D06
FC3D08
FC3DOA
FC3DOE
FC3D10
FC3D12
FC3D14
FC3D16
FC3D1C
FC3D1E
FC3D20
FC3D22

3047 move .w
D1C8 add. 1
D1IFCOOO04ELA add.l
0C500003 Ccmp. W
6FC8 ble
13FCO00100005FF6 move.b
4A3900005FF6 tst.b
671A beq
3047 move . w
Docs add.w
D1FC00005784 add. 1l
4210 clr.b
3047 move.w
DOC8 add.w
D1FC00005784 add.l
42280001 clr.b
2079000029D8 move.l
3247 move.w
D3C9 add.1
D3FCOO005FEE add.1
3251 move . w
D2C9 add.w
10309000 move.b
4880 ext.w
3F00 move.w
3047 move.w
DOCB8 add.w
D1FC00005784 add.l
1010 move.b
805F or . W
1080 move.b
2079000029D8 move,l

D7,A0
AQ,AQ
#$4E1A,AQ
#3, (A0)
SFC3CD4
#1,$5FF6
$S5FF6
SFC3CF6
D7,A0
AQ,AQ
#55784,A0
(A0)
D7,A0

AO, A0
#$5784,A0
1(A0)
$29D8, A0 p_masks
D7,Al
Al,Al
#S$5FEE, Al
(Al),Al
Al,Al
0(A0,Al.w),DO
DO
DO, - (A7)
D7,A0

A0, AQ
#55784,A0
(AO) ,DO
(A7) +,D0
DO, (A0)
$29D8, A0 p_masks

31BM}JOS SNOBQY

s[eusduy LS 1e}y

|¥4%

FC3D28
FC3D2A
Fc3D2C
FC3D32
FC3D34
FC3D36
FC3D3A
FC3D3C
FC3D3E
FC3D40
FC3D42
rc3p4s
FC3D4C
FC3D4E
FC3D52
FC3D54
FC3D5A
FC3D5E
FC3D60

FC3D64
FC3D6A
FC3D72
FC3D74

FC3D76
FC3D7C
FC3D80
FC3D82
FC3D84
FC3D86
FC3D88

3247

D3C9
D3FCOO0O0SFEE
3251

D2C9
10309001
4880

3F00

3047

DOC8
D1FC00005784
10280001
805F
11400001
5247
BE7900005FEO0
6DOOFES6
7E04
6000008E

42390000414C

33FC008000006026

4246
603E

207C00005784
10306000
4880

7207

9247

E260
C07C0001

move.w
add. 1l
add.1
move.w
add.w
move.b
ext.w
move.w
move.w
add.w
add. 1l
move.b
or.w
move.b
addqg.w
cmp. W
blt
moveq.l
bra

clr.b
move.w
clr.w
bra

move.l
move.b
ext.w

moveq.l

sub.w
asr.w
and.w

D7,Al
Al,Al
#S5FEE,Al
(Al),Al
Al,Al
1(A0,Al.w),DO
DO
DO, - (A7)
D7, A0

A0, A0
#$5784,A0
1(A0),DO
(A7) +,D0
DO, 1 (A0)
#1,D7
$5FEO, D7
SFC3BB2
#4,D7
SFC3DF0

$414cC
#580,$6026
D6

$FC3DB4

#$5784,A0
0(AC,D6.w) ,DO
DO

#7,D1

D7,D1

p1,DO0

#1,D0

31BM}JOS SNIBQY

sjeudjuy LS MBIy

(4474

FC3D8C
FC3D92
FC3D98
FC3D9A
FC3DAO
FC3DA6
FC3DAS8
FC3DAC
FC3DB2
FC3DB4
FC3DB8
FC3DBA
FC3DCO
FC3DC2
FC3DC4
FC3DC8
FC3DCA
FC3DCC
FC3DD4
FC3DD6

FC3DDA
FC3DEO
FC3DE2
FC3DE4

FC3DE6
FC3DES
FC3DEE
FC3DFO
FC3DF6
FC3DF8

C1F900006026
12390000414C
D200
13C10000414C
303900006026
48C0
81FCO0002
33C000006026
5246
BC7C0008
6DBC
10390000414C
4880

3E80
61000292
4A40

670E

33FCFFFFOO0004EE

70FF
60000276

473900006000
6704
4240
6002

7001
13C000006000
5247
303900006022
5840
BE40

muls.w
move.b
add.b
move.b
move ., W
ext.1l
divs.w
move.w
addqg.w
cmp.w
blt
move.b
ext.w
move . w
bsr
tst.w
beq
move .w
moveq.l
bra

tst.b
beq
clr.w
bra

moveq.l
move.b
addg.w
move.w
addg.w
cmp . W

$6026,D0
$414C, D1
DO, D1
D1,$414C
$6026,D0
Do

#2,D0
D0, $6026
#1,D6
#8,D6
SFC3D76
$414C,DO
DO

DO, (A7)
$FC4058
Do
SFC3DDA
#-1, $4EE
#-1,D0
SFC404E

$6000
SFC3DE6
DO
SFC3DES8

#1,D0
D0, $6000
#1,D7
$6022,D0
#4,D0
DO, D7

Output character
Output OK?

Yes

Clear _dumpflg
Flag for error
Terminate

3IeM)JOS SnoBqy

sirwRuy LS ey

FC3DFA 6DOCFF68 blt SFC3D64 g
FC3DFE 4A3900005780 tst.b $5780 Epson B/W dot-matrix printer? 5
FC3EQ4 6728 beq SFC3EZ2E No w
FC3E06 4A3900006000 tst.b $6000 g’
FC3EOC 6720 beq SFC3E2E -
FC3EOE 10390000414C move.b $414C,DO §
FC3E14 4880 ext.w DO ®©
FC3El6 3E80 move.w DO, (A7)
FC3E18 6100023E bsr $FC4058 Output character
FC3E1C 4A40 tst.w DO Output OK?
FC3E1E 670CE beq SFC3E2E Yes
FC3E20 33FCFFFFOO0COO4EE move.w #-1,$4EE Clear _dumpflg
FC3E28 70FF moveq.l #-1,DO Flag for error
FC3E2A 60000222 bra SFC404E Terminate

N FC3E2E 527900006028 addg.w #1,56028

& FC3E34 0C79000F00006028 cmp . W #15,%$6028
FC3E3C 6F1l6 ble SFC3E54
FC3E3E 3039000056F8 move.w 5$56F8,D0
FC3E44 E340 asl.w #1,D0
FC3E46 48CO ext.l DO
FC3E48 D1B90OOOSFEA add.l DO, S5FEA
FC3E4E 427900006028 clr.w $6028
FC3E54 5279000016A6 addg.w #1,$16A6
FC3E5A 3039000016A6 move.w $16A6,D0
FC3E60 B07900004DBC cmp . w $4DRC, DO E
FC3E66 6D00FB44 blt SFC39AC =,
FC3E6A 3EBCO00D move.w #$D, (A7) Carriage Return 7]
FC3E6E 610001E8 bsr SFC4058 Output character j
FC3E72 4A40 tst.w DO Output OK? =
FC3E74 670E beq $FC3E84 Yes 3
FC3E76 33FCFFFFO00004EE move.w #-1,$4EE Clear _dumpflg Ei

7]

14%

FC3ETE
FC3E80

FC3E84
FC3E8A
FC3E90
FC3E92
FC3E98
FC3ESA
FC3ESC

FC3EQE
FC3EAQ
FC3EAG6
FC3EAA
FC3EBO
FC3EB4
FC3EB6
FC3EBS8
FC3ECO
FC3EC2

FC3EC6
FC3ECA
FC3ECE
FC3EDO
FC3ED2
FC3EDA
FC3EDC

FC3EEQ
FC3EE®6

70FF
600001CC

5279000060A2
4A390000575E
670C
4A3900005FE6
6604
7003
6002

7001
B0O79000060A2
6EOOF9F4
2EBCOOFDI1BDS
610001F2

4A40

670E
33FCFFFFO000Q04EE
TO0FF

6000018A

3EBCO00A
6100018C

4A40

670E
33FCFFFFO00CO04EE
T0FF

60000170

527900005782
4A3900005FFE

moveq.l
bra

addg.w
tst.b
beq
tst.b
bne
moveq.l
bra

moveq.l
cmp.w
bgt
move.l
bsr
tst.w
beq
move,w
moveq.l
bra

move.w
bsr
tst.w
beg
move.w
moveq. 1
bra

addg.w
tst.b

#-1,D0
SFC404E

#1, $60A2
$575E
S$FC3ESE
$5FE6
S$FC3E9E
#3,D0
SFC3EAQ

#1,D0
$60A2,D0
SFC389C
#$SFD1BD5, (A7)
SFC40A4

Do

$SFC3EC6
#-1,S4EE
#-1,D0
SFC404E

#$A, (A7)
SFC4058
DO
SFC3EEQD
#-1, S4EE
#-1,D0
SFC404E

#1,$5782
$5FFE

Flag for error
Terminate

ATARI color dot-matrix printer?
No

High resolution ?

Yes

ESC '3', 1, 1/216" line spacing
Send string to printer

Output OK?

Yes

Clear _dumpflg

Flag for error

Terminate

Linefeed

Output character
Output OK?

Yes

Clear _dumpflg
Flag for error
Terminate

Quality mode?

3.1BM}JOS SNIBqY

sjeutduy IS 1B}y

Y44

FC3EEC
FC3EEE
FC3EFO0

FC3EF2
FC3EF4
FC3EFA
FC3EFE
FC3F04
FC3F06
FC3Fr08

FC3FOA
FC3F10
FC3F14
FC3F16
FC3F18
FC3F20
FC3F22

FC3F26
FC3F2A
FC3F2E
FC3F30
FC3F32
FC3F3A
FC3F3C

FC3F40
FC3F42
FC3F48

6704
7001
6002

7002
B07900005782
6EO0QF 996
4A3900005FFE
674E

4247

6038

2EBCOOFD1BDA
61000192
4A40

670E

33FCFFFFOO00004EE

T0FF
6000012A

3EBCOOOA
6100012C
4A40
670E

33FCFFFFO00004EE

TOFF
60000110

5247
4A3900005780
6704

beqg
moveq.l
bra

moveq.l
cmp.w
bgt
tst.b
beg
clr.w
bra

move.l
bsr
tst.w
beqg
move.w
moveq.l
bra

move.w
bsr
tst.w
beg
move.wW
moveq.1l
bra

addg.w
tst.b
beg

SFC3EF2
#1,D0
SFC3EF4

#2,D0
$5782,D0
SFC3892
$5FFE
$FC3F54
D7
SFC3F42

#SFD1BDA, (A7)
$FC40A4

Do

$FC3F26
#-1,$%4EE
#-1,D0
SFC404E

#35A, (A7)
$FC4058
DO
$FC3F40
#-1, $4EE
$#-1,D0
$FC404E

#1,D7
$5780
SFC3F4E

Yes

Quality mode?
Yes

EsCc '3', 1, 1/21e" line spacing
Send string to printer

Output OK?

Yes

Clear _dumpflg

Flag for error

Terminate

Linefeed

Output character
Output OK?

Yes

Clear _dumpflg
Flag for error
Terminate

Epson B/W dot-matrix printer?
No

31BM}J0S SMIBQY

sjewadiu] LS 1aely

9ty

FC3F4A
FC3F4C

FC3F4E
FC3F50
FC3F52
FC3F54
FC3F5A
FC3F5C
FC3F62
FC3F66
FC3Fo68
FC3F6A
FC3F72
FC3F74

FC3F78
FC3F7C
FC3F80
FC3F82
FC3F84
FC3F8C
FC3F8E

FC3F92

FC3F94
FC3F96

FC3F98
FC3F9E

7002
6002

7001

BE40

6DB6
4A39000060A0
6738
2EBCOQFD1BDF
61000140
4A40

670E

33FCFFFFO00004EE

T0FF
600000D8

3EBCO00A
610000DA
4A40
670E

33FCFFFFOO0004EE

70FF
600000BE

6060

4247
6038

2EBCOOFD1BE3
61000104

moveqg.l #2,D0
bra SFC3F50

moveg.l #1,D0
cmp.w Do, D7

blt SFC3FOA
tst.b $60A0

beq SFC3F94
move.l #S$SFD1RBDF, (A7)
bsr SFC40A4
tst.w DO

beq SFC3F78

move.w #-1,S4EE
moveq.l #-1,DO0
bra SFC404E

move.w #S$A, (A7)

bsr $SFC4058
tst.w DO
beg $FC3F92

move.w #-1,S$4EE
moveq.l #-1,DO

bra SFC404E
bra SFC3FF4
clr.w D7

bra SFC3FDO

move.l #$FD1BE3, (A7)
bsr SFC40A4

ESC '1', 7/72"™ line spacing
Send string to printer
Output OK?

Yes

Clear _dumpflg

Flag for error

Terminate

Linefeed

Output character
Output OK?

Yes

Clear _dumpflg
Flag for error
Terminate

ESC *3', 1, 1/216" line spacing
Send string to printer

21BM)JOS SNIBQY

sjeuduy LS ey

Ley

FC3FA2
FC3FA4
FC3FA6
FC3FAE
FC3FBO

FC3FB4
FC3FB8
FC3FBC
FC3FBE
FC3FCO
FC3FC8
FC3FCA

FC3FCE
FC3FDOC
FC3FD6
FC3FD8
FC3FDE
FC3FE2
FC3FE4

FC3FE6
FC3FEC
FC3FEE
FC3FFO
FC3FF2
FC3FF4
FC3FFA
FC3FFC
FC3FFE
FC4004

4740

670E
33FCFFFFO000004EE
T0FF

6000008C

3EBC0O00A
6100009E

4A40

670E
33FCFFFFO00004EE
70FF

60000082

5247
4A3900005780
670E
303900005FE0
C1FC0006
5740

600A

303900005FEO
E540
5540
BE40
6DA4
303900004E10
E340
48C0O
D1B900005648
303900005FF8

tst.w
beqgq
move.w
moveq.l
bra

move . W
bsr
tst.w
beg
move .w
moveq.l
bra

addg.w
tst.b
beg
move.w
muls.w
subg.w
bra

move.w
asl.w
subg.w
cmp.w
blt
move.,w
asl.w
ext.l
add.l
move.w

DO
$FC3FB4
#-1, $4EE
#-1,D0
$FC404E

#SA, (AT)
SFC4058
DO
$FC3FCE
#-1,$4EE
#-1,D0
SFC404E

#1,D7
$5780
$FC3FE6
$5FE0, DO
4#6,D0
#3,D0
SFC3FFO

$5FE0, DO
#2,D0
#2,D0
D0, D7
SFC3F98
$4E10,DO
#1,D0

DO

DO, $5648
$5FF8, D0

Output OK?

Yes

Clear _dumpflg
Flag for error
Terminate

Linefeed

Output character
Output OK?

Yes

Clear _dumpflg
Flag for error
Terminate

Epson B/W dot-matrix printer?
No

3IEM}JOS SNIBQY

sjewsdu] LS MBIV

144

FC400A
FC4010
FC4012
FC4018
FC401E
FC4022
FC4028
FC402C
FC4032
FC4034
FC403A
FC403C
FC4042
FC4044
FC404C
FC404E
FC4050
FC4054
FC4056

Ak ok kA I KK A AR I AR I I I AR KA A ARk Akhkkkkkkk Ak Ak kkdkkkkkk Ak kkkkkx

FC4058
FC405C
FC4062
FC4064
FC4068
FC406A
FC406C
FC4070
FC4072
FC4074
FC407A

D17900001¢A8
4240
3039000029C6
B07900001€A8
6200F67C
2EBCOOFD1BES
6100007A
4A390000575E
6710
4A3900005FE6
6608
2EBCOOFD1BEC
6160

33FCFFFFOO0Q004EE

4240
4A9F
4CDF30C0
4ESE
4E75

4ES56FFFC
4A39000029BC
6722
102E0009
4880

3E80
102E0009
4880

3F00
4EBY0OFC40E4
548F

add.w
clr.w
move .w
cmp.w
bhi
move.l
bsr
tst.b
beqg
tst.b
bne
move.l
bsr
move.w
clr.w
tst.l

movem. 1

unlk
rts

link

tst.b
beg

move.b
ext.w
move . w
move.b
ext.w
move.w
jsr

addqg.1l

DO, $16A8

DO

$29C6,DO0
$16A8,D0
$FC369C
#SFD1BES, (A7)
$FC40RA4

$575E

SFC4044

S5FE6

$FC4044
#SFD1BEC, (A7)
$FC40RA4

#-1, $4EE

DO

(A7) +

(A7) +,D6-D7/A4-A5

A6

A6, #-4
$29BC
$FC4086
9(A6),DO0
DO

DO, (A7)
9(A6),DO
DO
DO, - (A7)
$FC40E4
#2,A7

p_height

ESC '2', 1/6" line spacing
Send string to printer

ATARI color dot-matrix printer?
No

High resolution ?

Yes

ESC 'X', O

Send string to printer

Clear _dumpflg

OK

Restore registers

Output character to printer
Printer port

RS 232 7

Get character

on the stack

(again ?)
Output character to printer

31BM)JOS SnIBqY

s[ewIaju] IS Meyy

6Ty

FC407C
FC407E
FC4080
FC4082

FC4084
FC4086
FC408A
FC408C
FC408E
FC4092
FC4094
FC4096
FC409C
FC409E
FC40AQ
FC40A2

4A40
6604
T0FF
601C

6018
102E0009
4880
3E80
102E0CQS
4880
3F00
4EBY0OFC4112
548F
4240
4ES5E
4E75

tst.w
bne
moveq.l
bra

bra
move.b
ext.w
move.w
move.b
ext.w
move.w
jsr
addqg.1l
clr.w
unlk
rts

DO
$FC4084
#-1,D0
$FC40A0

SFC409E
9(A6),D0
DO

DO, (A7)
9(a6),D0
DO
DO, - (A7)
SFC4112
#2,A7

Do

A6

‘k*

FC40Rn4
FC40A8

FC40AA
FC40AE
FC40BO
FC40B2
FC40B4
FC40B6
FC40BA
FC40BC
FC40BE
FC40CO

4ES56FFFC
6018

206E0008
1010
4880
3E80
61A2
52AE0008
4R40
6704
TOFF
600C

link
bra

move.l
move.b
ext.w
move.w
bsr
addg.1l

‘tst.w
beqg
moveq.l
bra

A6, #-4
$FC40C2

8 (A6) ,AQ
(A0),DO
DO

DO, (A7)
$FC4058
#1,8(A6)
DO
SFC40C2
$#-1,D0
SFC40CE

OK 2

Yes

Flag for error
Terminate

OK
Get character

on stack

(again ?)
RS 232 output

OK

Send string to printer

String address
Character of the string

on stack

Output character

Pointer to next character
Output OK?

Yes

Flag for error

31BM}JOS SNIBQY

sjepwIdiu] LS LBy

1% 7%

FCc40C2
FC40C6
FCc40CA
FC40cCcC
FC40CE
FC40DO

206E0008
OCl1000FF
66DE
4240
4ESE
4E75

move.l 8(A6),A0
cmp.b #SFF, (AO)

bne SFCA40AA
clr.w DO

unlk A6

rts

%k %k k kK K ke ke ke ok ok ok ok kK ke ks %k sk Sk S %k ok ok ok Rk ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok gk ok ok ok ok ok ok ke ke

FC40D2
FC40D6
FC40D8
FC40DC
FC40DE
FC40E2

48ET1F1E
9BCD
206D0506
4E90
4CDF78F8
4E75

movem.l D3-D7/A3-A6,- (A7)
sub.1l A5, A5

move.l $506(AS),A0

jsr (AO)

movem.l (A7)+,D3-D7/A3-A6
rts

% %k % ok ok K kK ok % ok Kk K Kk kK ok ok %k Kk K sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke ok ok ok kok

FC40E4
FC40ES8
FC40EC
FC40EE
FC40F0
FC40F2
FC40F6
FC40F8
FC40FA
FC40FE

302F0006
48ET1F1E
3F00
3F00
9BCD
206D0O50A
4E90
584F
4CDF78F8
4E75

move.w 6(A7),DO0

movem.l D3-D7/A3-A6,-(A7)
move.w DO,- (A7)

move.w DO,- (A7)

sub.l A5,AS

move.l S$50A(A5),A0

jsr (AO)

addg.w #4,A7

movem.l (A7)+,D3-D7/A3-A6
rts

%k %k de Kk %k k kK Kk gk e ko ok Kk ok kK K %k ke ok sk ok ok Kk ok 3k ok %k ok ok ok ok ok ok kK ok ok ok ok ok ke ke ok ok ok ok kb

FC4100
FC4104
FC4106
FC410A

48E71F1E
9BCD
206DOS50E
4E90

movem.l D3-D7/A3-A6,— (A7)
sub.l A5, A5

move.l $50E(A5),A0

jsr (AO)

String address

End criterium reached?
No

OK

Get printer status
Save registers
Clear A5

prt_stat

Jump via vector
Restore registers

Printer output
Character to output
Save registers
Character on stack
(again ?)

Clear A5

prt_vec

Jump via vector
Correct stack pointer
Restore registers

RS 232 output status
Save regisers

Clear A5

aux_stat

Jump via vector

31BM}JOS SNIBQY

sjeusduy IS 1y

Iey

FC410C 4CDF78F8 movem.l (A7)+,D3-D7/A3-A6
FC4110 4E75 rts

**

FC4112 302F0006 move.w 6(A7),D0

FC4116 48E71F1E movem.l D3-D7/A3-A6,- (A7)
FC411A 3F00 move.w DO,- (A7)

FC411C 3F00 move.w DO,- (A7)

FC411E 9BCD sub.1l A5,AS5

FC4120 206D0512 move.l $512(A5),A0

FCc4124 4E90 jsr (AQ)
FC4126 584F addg.w #4,A7
FC4128 4CDF78F8 movem.l (A7)+,D3-D7/A3-RA6

FCc412C 4E75 rts

**

FC412E 20790000293E move.l $293E,A0Q

FC4134 3028000A move.w 10(A0),DO

FC4138 B07C0013 cmp. W #$13,D0

FC413C 6236 bhi SFC4174

FC413E E340 asl.w #1,D0

FC4140 307BO0OA move.w S$FC414C(PC,DO0.w),A0
FC4144 D1FCO0FC4348 add.l #$SFC4348,A0

FC414A 4EDO jmp (AO)

**

FC414C 0000 dc.w SFC4348-5FC4348
FC414E FFD8 dc.w S$FC4320-$FC4348
FC4150 0012 dc.w SFC435A-$FC4348
FC4152 000C dc.w $FC4354-$FC4348
FC4154 001A dc.w $FC4362~-5FC4348
FC4156 002E dc.w SFC4376~-$FC4348

Restore registers

RS 232 output
Character to output
Save registers
Character on stack
{again ?)

Clear A5

aux_vec

Jump via vector
Correct stack pointer
Restore registers

VDI ESCAPE functions
Address of the CONTRL array
Function number

Greater than 19 ?

Yes

Get relative address from the table
Add base address
Execute routine

Address of the VDI escape functions

0, rts

1, Inquire addressable alpha character cells
2, Exit alpha mode

3, Enter alpha mode

4, Alpha cursor up

5, Alpha cursor down

31BM)JOS SNIBQY

sjewsdyuy LS eIy

FC4158 0048 dec.w SFC4390-$FC4348 6, Alpha cursor right
FC415A 0062 dc.w SFC43AA-S$FC4348 7, Alpha cursor left
FC415C 0076 dc.w SFC436E~-SFC4348 8, Home alpha cursor
FC415E 007E dc.w SFC43C6-3FC4348 9, Erase tc end of alpha screen
FC4160 O00AA dc.w SFC43F2~-$FC4348 10, Erase to end of alpha text line
FC4162 0114 dc.w SFC445C-$FC4348 11, Direct alpha cursor address
FC4l64 0128 dec.w SFC4470-$FC4348 12, Output cursor addressable alpha text
FC4166 014E dc.w SFC4496-SFC4348 13, Reverse video on
FC4168 0158 dc.w SFC44A0-SFC4348 14, Reverse video off
FC416A 0162 dc.w SFC44AA-SFC4348 15, Inguire current alpha cursor address
FC416C 018C dc.w SFC44D4-SFC4348 16, Inquire tablet status
FC416E 0002 dc.w $FC434A-5FC4348 17, Hardcopy
FC4170 01A4 dc.w SFC44EC-SFC4348 18, Place graphic cursor at location
FC4172 01B4 de.w $FC44FC-SFC4348 19, Remove last graphic cursor
**

é: FC4174 BO7C065 cmp.w #$65,D0 VDI ESC 101 ?

& FC4178 670A beq SFC4178 Yes
FC417A BO7C0066 cmp.w #$66,D0 VDI ESC 102 ?
FC417E 6700096A beqg SFC4AEA Yes, select font
FC4182 4ETS rts
***********‘k*************‘k****************************** VDI ESC 101, Character offset from screen Start
FC4184 6100043C bsr SFC45C2 Cursor off
FC4188 207900002942 move.l $2942,A0 Address of INTIN array
FC418E 3010 move.w (AO),DO INTIN[O), offset in raster lines
FC4190 COF90000293C mulu.w $293C,DO times bytes per screen line
FC4196 33C00000291C move.w DO,$291C equals offset in bytes
FC419C 60000412 bra SFC45B0 Turn cursor on again
vk K Kk ok ok ok Kk K Kk ok ke ok ok k ok kK ke ok ok Kk Rk ok ok gk ok K ko ok 3k kR Kk ok Sk ko ok ke ok ok A ok ok ok kX ascout
FC41A0 322F0006 move.w 6(A7),Dl Get character from stack

aIeM}JOS SmIBqQY

sjewduy IS 1BV

%% %

FC41A4 024100FF and.w
FC41A8 600005D2 bra

#S$FF,D1

$FC477C

**

FC41AC 322F0006 move.w
FC41BO 024100FF and.w
FC41B4 2079000004A8 move.l
FC41BA 4EDO jmp

6(A7),D1
#SFF,D1
$4A8,A0
(AO)

**

FC41BC B27C0020 cmp.wW
FC41CO0 6COQO05BA bge
FC41C4 B23COO1B cmp.b
FC41C8 660C bne
FC41CA 23FCO0FC4218000004A8 move.l
FC41D4 4E75 rts

#$20,D1
$FC477C
#$1B,D1
$FC41D6
#5FC4218,$4A8

**

FC41D6 5F41 subg.w
FC41D8 6B22 bmi
FC41DA B27C0006 cmp.w
FC41DE 6E1C bgt
FC41EQ E349 lsl.w
FC41E2 307B100A move.w
FC41E6 D1FCOOFC41FE add.l
FC41EC 4EDO jmp

#7,D1

$FC41FC

#6,D1

SFC41FC

#1,D1
$FC41EE(PC,D1.w), A0
#SFC41FE, A0

(A0)

**

FC41EE 0000 dc.w
FC41F0 01AC dc.w
FC41F2 0004 dc.w
FC41F4 049E dc.w

$FC41FE-$FC41FE
SFC43AA-SFCA1FE
$FC4202-$FC41FE
SFC469C-$FC41FE

Bits 0-7
Output character

conout

Character from stack
Bits 0-7

con_state vector
Execute routine

Standard conout

Control code ?

No, output character

ESC 2

No, different control codes
con_state to ESC processing

Process CTRL codes

Less than 7 ?

ignore

Greater than 13 ?

ignore

as word index

Get relative address from table
Add base address

Execute routine

Jump table for CTRL codes
7, BEL

8, BS

9, TAB

10, LF

21BM}JOS SnIBqQY

sjpuduy LS 1B}y

1494

FC41F6 049E dc.w SFC469C-SFC41FE
FC41F8 049E dc.w $FC469C~SFCA1FE
FC41FA 0492 dc.w S$FC4690-SFCA1FE

* %k kK Kk ok Kk ok Xk Kk ko k ok Kk Kk ok ok S sk ok ok ok ok ke k k ok ke ke ok sk ok ke ke ok ok ke kK ok ke ok ke ok gk sk ok ok ok ok

FC41FC 4E75 rts

J d sk Je Kk ke k ok ok ok kK ki ok ok kK kK Kk Kk K kK kK ok k% ek s sk ok ok %k gk ke gk ok ok ke sk ok %k ok e ok ok ok ok ok ok

FC41FE 6000DELC bra S$FC201cC

% %k sk kK ke k k %k Kk Kk ok ok ok Kk K %k ok ok ke ok Rk sk sk ok ok ke ok ok ke e ke ke d ke ok ok ok ok ke ke ok ok kb ok ok ke ok ok ok

FC4202 303920000291E move.w $291E,DO
FC4208 0240FFF8 and.w #SFFF8,D0
FC420C 5040 addg.w #8,D0
FC420E 323900002920 move.w $2920,D1
FC4214 60000764 bra SFC497A

%%k Kk %k %k ke kK ok ke ok ok ok ok % ok k% ok gk ke %k %k ok ke ok Kk ke ok ok ok ok ok e ke ok ke ok ok ok ok ok ke ok ok ok ok ok ke ok ok ok kR

FC4218 23FCOOFC41BCOO0004A8 move.l #$FC41BC,$4A8

FC4222 927C0041 sub.w #541,D1
FC4226 6BD4 bmi SFC41FC
FC4228 B27C000C cnp.w #5C,D1

FC422C 6F50 ble SFC427E
FC422E B27C0018 crMp.w #518,D1
FC4232 663C bne SFC4270
FC4234 23FCOOFC4240000004A8 move.l #$FC4240,$4A8
FC423E 4E75 rts

* %k K Kk K Kk dk kK k ok ke k kK gk Kk %k ok sk %k sk ke gk ok Tk %k gk R %k gk ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK ko ki ke ok

FC4240 927C0020 sub.w #520,D1
FC4244 33C1000004AC move.w D1,$4AC

11, VT
12, FF
13, CR

rts for dummy routine

BEL
Output sound

TAB

Current cursor column

Convert to number divisable by 8
plus 8

Current cursor line

Reposition cursor

Process character as ESC
con_state back to standard

minus 'A!
less, ignore
IMI

To escape table for uppercase letters
'Y' for set cursor?

No, test for lowercase letters
con_state for ESC Y

Process line under ESC Y
Subtract offset
save_row, save line

JIBM}JOS SndBqy

sjeuwdu] IS He)y

1394

FC424n 23FCOOFCA4256000004A8 move.l #$FC4256,$4A8
FC4254 4E75 rts

**

FC4256 927C0020 sub.w #$20,D1
FC425A 3001 move.w D1,DO

FC425C 3239000004AC move.w $4AC,D1
FC4262 23FCOOFCA41BCOO0C04A8 move.l #SFC41BC,S$4A8
FC426C 6000070C bra SFC497A

**

FC4270 927C0021 sub.w #$21,D1
FC4274 6B86 bmi SFC41FC
FC4276 B27C0015 cmp . W #5$15,D1
FC427A 6F10 ble $FC428C
FC427C 4E7S rts

**

FC427E E349 lsl.w #1,D1

FC4280 307B1058 move.w S$FC42DA(PC,Dl.w),A0
FC4284 D1FCOOFC41FC add.1l #SFC41FC, AO

FC428A 4EDO Jmp (A0)

**

FC428C E349 1sl.w #1,D1

FC428E 307B1064 move.w SFC42F4(PC,D1l.w),AQ
FC4292 D1FCOQFC41FC add.1 #SFC41FC,AQ

FC4298 4EDO jmp (A0)

ok e ok ok ok ok ok ok ok ok ok ok ok koK ok kK Rk ke kR K ok kR kK kR Sk Rk sk Kk K kK Xk Kk kK
FC429A 23FCOOFC42A600C004A8 move.l #SFC42A6, $4A8
FC42A4 4E75 rts

con_state to column process

Process column under ESC Y
Subtract offset

Column

save_row, line

con_state to standard

Set cursor

Test for ESC lowercase letters
Subtract offset

less than 'b' ignore

le

less than or equal, process sequence

ESC uppercase letters

Word access

Get relative address from table
Add base address

Execute routine

ESC lowercase letters

Word access

Get relative address from table
Add base address

Execute routine

ESC b, set type color
Set con_state

31BM]JOS SNIBQY

sfeusdyu] LS e}y

1197

KKK KKK KK I I A KA A A hkkok kX kk Ak ATk kA Ak kdhkkkkkkkkkkkdkkkkkkkxkkkxk

FC42A6 23FCOOFC41BCO00004A8 move.l

FC42B0C 927C0020 sub.w
FC42B4 3001 move.w
FC42B6 60000290 bra

#SFC41BC, $4A8
#520,D1

D1,DO

$FCA4548

* %k Kk Kk K Kk Kk ke kK ok k kK ok kK %k Kk %k ok Kk Kk Kk sk %k ok sk sk %k k ok ok ko Tk kK R kK ok ke ok ke ok ok ok ok ok

FC42BA 23FCOOFC42C6000004A8 move.l
FC42C4 4ET5S rts

¥SFC42C6,$4A8

%k %k k K Kk %k K K Kk ok ok Kk Kk kK kK ok Kk ok kK Kk ok gk sk ok ok ok ok kK ok kR ok ok kR ok kR ke kR ok ok ke ok ok

FC42C6 23FCOOFC41BCOO0004A8 move.l

FC42D0 927C0020 sub.w
FC42D4 3001 move . w
FC42D6 6000027C bra

#SFC41BC, $4A8
#$20,D1

D1,D0

SFC4554

% Kk Kk Kk Kk ok kK Kk Kk Kk ok k kK ok k% ke ok ke ok ke ke ko ke kK %k ok skook ok ke ke kg ok R ok ok ok ok ok ok ok %k ok ke ok

FC42DA 0166 dc.w
FC42DC 017A dc.w
FC42DE 0194 dc.w
FC42EQ0 OlAE dc.w
FC42E2 0162 dc.w
FC42E4 0000 dc.w
FC42E6 0000 dc.w
FC42E8 01C2 dc.w
FC42EA 0306 dc.w
FC42EC 01CA dc.w
FC42EE 01F6 dc.w
FC42F0 0320 dc.w
FC42F2 033C dc.w

$FC4362-$FC41FC
$FC4376-$FC41FC
$FC4390-SFC41FC
SFC43AA-SFC41FC
SFC435E-SFCA1FC
$FC41FC-$FC41FC
$FC41FC-$FC41FC
SFC436E-SFC41FC
$FC4502-$FC41FC
SFC43C6~-SFC41FC
SFC43F2-3$FC41FC
$FC451C-$FC41FC
$FC4538-3FC41FC

Set type color
con_state to standard
Subtract offset

Set type color

ESC ¢, set background color
Set con_state

Set background color
con_state to standard
Subtract offset

Set background color

Address table for ESC uppercase
ESC A

ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC

fos}

, rts

TR gHDO=E OO0

31eMm}JOS Snoeqy

sjeudayuy IS LB}y

Ley

‘k*

FC42F4
FC42F6
FC42F8
FC42FA
FC42FC
FC42FE
FC4300
FC4302
FC4304
FC4306
FC4308
FC430A
FC430C
FC430E
FC4310
FC4312
FC4314
FC4316
FC4318
FC431A
FC431C
FC431E

**

FC4320
FC4326
FCc432C
FC4332
FC4338
FC433A
FC433E

0C9E
00BE
0364
0380
03C6
0000
0000
0000
03E6
0402
041C
0000
0000
043A
029A
02A4
0000
0000
0000
0000
0480
048A

20790000293E
317C00020008
20790000294A
30390000290E
5240
31400002
303900002910

dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w

w

W

lea

move.w
move.l
move.w
addg.w
move.w
move.w

$FC429A-$FC41FC
$FC42BA-SFC41FC
$FC4560-SFC41FC
$FC457C-$FC41FC
$FC45C2-$FC41FC
$FC41FC-$FC41FC
$FC41FC-SFC41FC
$FC41FC-$FC41FC
SFC45E2-SFC41FC
$FC45FE-SFC41FC
$FC4618-SFC41FC
$FC41FC~$SFC41FC
$FC41FC-SFC41FC
$FC4636-$SFC41FC
SFC4496-SFC41FC
SFC44A0~$FC41FC
$FC41FC-SFC41FC
$FC41FC-$FCA41FC
$FC41FC-$FC41FC
$FC41FC~$FCA41FC
$FC467C-SFC41FC
SFC4686-$SFC41FC

$293E,A0
#2,8(A0)
$294A,A0
$290E, DO
#1,D0

DO, 2 (AD)
$2910,D0

Address table for ESC lowercase
ESC b

ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC r, rts
ESC s, rts
ESC t, rts
ESC u, rts
ESC v

ESC w

rts

~

rts
rts

~

= & w8 0 QO

rts
rts

QT o B B
~ 0~

VDI ESC 1, get screen size
Address of CONTRL array

2 result values

Address of INTOUT array
Maximum cursor column

plus 1 equals number of columns
as INTOUT[1]

Maximum cursor line

218M}JOS SNIBQY

sfeusdiuf IS Hely

3% %

FC4344 5240 addg.w #1,DO0
FC4346 3080 move.w DO, (AO)
FC4348 4E75 rts

Kk k kA kkkkkhkkkhkhkhhkhkkkkkkk XAk kkkkkkkkkkhkk ko kkkxkkkxkk*x

FC434A 3F3C0014 move.w #514,- (A7)
FC434E 4E4E trap #14
FC4350 548F addg.l #2,A7
FC4352 4E75 rts

K%k Kk ke kk kK K Kk Kk ok kK Kk Kk ok ok kR ok kR ok ok Kk ok ke k kK Kk k ok ok ok ok ok ok sk ok ok ok ok ok ke ok

FC4354 6108 bsr SFC435E
FC4356 60000224 bra $FC457C

Kk k kAR kkkkk Ak kkkkkkkk kA kA Ik k kA I XA XXX ARk XXX dkkkkk k%

FC435A 61000266 bsr $FC45C2

ok ok kK ko ko kK K K ok ke kK ok ok Kk k ok k ok ok Kk Rk ok ok ok ok sk sk ko ok ke ke ke ok ok ke ko ke k

FC435E 615E bsr $FC43BE
FC4360 6064 bra $FC43C6

ook %k ok % ok ok ok ok ok ok %k ok ko ok ke ok 3k ok ok ok gk ok ok ok ok ok ok ok ok ok ok ok ok ok Sk K ok ok ok ok ok 3k ok ke ok ok kR ok ok

FC4362 323900002920 move.w $2920,D1
FC4368 67DE beq SFC4348
FC436A 5341 subg.w #1,D1
FC436C 30390000291E move.w $291E,DO
FC4372 60000606 bra SFC497A

Kk Kk & %k kK ok Kk K K K Kk ok ek kK Kk kK kK ok ok K ok ok Kk ok ok k ok ok ok ok ok ok ok ok k ok ok ok ok ok ok

FC4376 323900002920 move.w $2920,D1
FC437C B27900002910 cmp.wW $2910,D1
FC4382 67C4 beqgq SFC4348

plus 1 equals number of lines
as INTOUTI[O]

VDI ESC 17, hardcopy
Hardcopy

XBIOS
Correct stack pointer

VDI
ESC
ESC

VDI
ESC

ESC
ESC
ESC

ESC

ESC 3, Enter alpha mode

E,
e,

Clear home, clear screen
Cursor on

ESC 2, Exit alpha mode

£,
E,
H,
J,

A,

Cursor off
Clear home
Cursor home

Clear rest of screen

VDI ESC 4, Cursor up

Current cursor line

Zero,
Subtract one
Current cursor column

done

Set cursor

ESC B,

VDI ESC 5, Cursor down

Current cursor line
Maximum cursor line
Already in lowest line?

31eM)JOS Sndeqy

sjewsdyuy LS LB}y

6¢Y

FC4384 5241 addg.w #1,D1
FC4386 30390000291E move.w $291E,DO
FC438C 600005EC bra SFC497A

‘k*********

FC439%0 30390000291E move.w $291E,DO
FC4396 B0790000290E cmp.w $290E, DO
FC439C 67AA beg $FC4348
FC439E 5240 addqg.w #1,DO0

FC43A0 323900002920 move.w $2920,D1
FC43A6 600005D2 bra SFC497A

‘k*

FC43AA 30390000291E move.w $291E,DO
FC43B0O 6796 beq SFC4348
FC43B2 5340 subg.w #1,D0

FC43B4 323900002920 move.w $2920,D1
FC43BA 600005BE bra SFC497A

******************'k*************************************

FC43BE 7000 moveq.l #0,D0
FC43C0O 3200 move.w DO,D1
FC43C2 600005B6 bra $FC497A

**

FC43C6 612A bsr SFC43F2
FC43C8 323900002920 move.w $2920,D1
FC43CE B27900002910 cmp.w $2910,D1
FC43D4 6700FF72 beq SFC4348
FC43D8 5241 addq.w #1,D1
FC43DA 4841 swap D1
FC43DC 323C0000 move.w #0,D1

Increment by one
Current cursor column
Set cursor

ESC C, VDI ESC 6, Cursor right
Current cursor column

Maximum cursor column

Already in last column?
Increment by one

Current cursor line

Set cursor

ESC D, BS, VDI ESC 7, Cursor left

Current cursor column

Cursor already in first column?
Subtract one

Current cursor line

Set cursor

ESC H, VDI ESC 8, Cursor home
Column O

Line O

Set cursor

ESC J, VDI ESC 9, Clear rest of screen

ESC K, Clear rest of line
Current cursor line
Maximum cursor line

J1eM1JOS SNIBQY

s[eusdu] LS LB}y

ovy

FC43EQC
FC43E6
FC43E8
FC43EE

08B9000300002934

FC43F2
FC43FA
TC43FC
FC4400
FC4404
FC440A
FC440E
FC4410
FC4416
FC4418
Fc441cC
FC4420
FC4426
FC4428
FC442E
FC4430
FC4432
FC4434
FC443A
FC443E
FC4440
FC4442
FC444A
FC444E
FC4452
FC4456

343900002910
4842
34390000290E
60000436

40E7
610001C4
610001EO
32390000291E
08010000
6716
B2790000290E
673A
323C0020
6100035E
32390000291E
4841
323900002920
3401

4841

4842
34390000290FE
610003EA
44DF

6708

08F9000300002934

610001B2
60000160
323C0020
61000324

move . w
swap
move . W
bra

bclr
move . W
bsr
bsr
move .w
btst
beqg
cmp.w
beqg
move.w
bsr
move .w
swap
move .w
move . W
swap
swap
move . w
bsr
move.w
beq
bset
bsr
bra
move . W
bsr

$2910,D2
D2
$290E,D2
SFC4826

#3,52934
SR, - (A7)
$FC45C2
$FC45E2
$291E,D1
#0,D1
$FC4426
$290E,D1
$FC4452
#$20,D1
$FC477C
$291E, D1
D1
$2920,D1
D1,D2

Dl

D2
$290E,D2
$FC4826
(A7) +,CCR
SFC444A
#3,52934
$FC45FE
$FC45B0
#$20,D1
$FCA477C

Maximum cursor line

Maximum cursor column
Clear screen area

ESC K, VDI ESC 10, Clear rest of line
Ccursorflag, clear wrap

save old value

ESC f, Cursor off

ESC j, Store cursor position

Current cursor column

Maximum cursor column

Blank
Output
current cursor column

current cursor line

Maximum cursor column

Clear screen area

Restore flag

Not set?

Cursorflag, set wrap

ESC k, Restore cursor position
Turn cursor back on

Blank

output

31eM]1JOS SMIeqy

sfeutayuy LS e}y

[824%

FC445A 60E2 bra SFC443E

***********************‘k***‘k****************************

FC445C 207900002942 move.l $2942,A0
FC4462 3210 move.w (A0),Dl
FC4464 5341 subg.w #1,D1
FC4466 30280002 move.w 2(A0),DO
FC446A 5340 subg.w #1,D0
FC446C 6000050C bra SFC497A

**

FC4470 20790000293E move.l $293E,AQ
FC4476 30280006 move.w 6(A0),DO
FC447A 207900002942 move.l $2942,A0
FC4480 60O0E bra SFC4490
FC4482 3218 move.w (AO)+,D1
FC4484 48E78080 movem.l DO/AO,-(AT)
FC4488 6100FD26 bsr SFC41BO
FC448C 4CDF0101 movem.l (A7)+,D0/AO0
FC4490 51C8FFFO dbra DO, $FC4482
FC4494 4E75 rts

**

FC4496 08F%000400002934 bset #4,52934
FC449E 4E75 rts

‘k*******

FC44A0 08B9000400002934 bclr $#4,52934
FC44A8 4ET5 rts

**

FC44AA 20790000293E move.l $293E,Al

VDI ESC 11, Set cursor
Address of the INTIN array
Get line

Subtract offset

Get column

Subtract offset

Set cursor

vDI ESC 12, Text output
Address of the CONTRL array
Number of characters
Address of the INTIN array
To end of loop

Get characters in D1

Save reglsters

Output character in D1
Restore registers

Output next character

ESC p, VDI ESC 13, Reverse on
Cursor flag, set reverse

ESC g, VDI ESC 14, Reverse off
Cursor flag, clear reverse

VDI ESC 15, Get cursor position
Address of the CONTRL array

31EM}JOS STOBQY

sjeusdjuy LS MBIV

(4747

FC44B0O 317C00020008 move.w #2,8(A0)
FC44B6 20790000294A move.l $294A,A0
FC44BC 303900002920 move.w $2920,D0
FCc44c2 5240 addg.w #1,DO0
FC44C4 3080 move.w DO, (AOQ)
FC44C6 30390000291E move.w $291E,DO
FC44CC 5240 addg.w #1,DO
FC44CE 31400002 move.w DO, 2 (AQ)
FC44D2 4E75 rts

ok Kk kK kK kK K e Rk K ko k kK K ok R Kk k k k Kk k ok Kk ok ok ok ok ok Kk ok ok kR ok ok ok ok ki ko ok ok ok ok ke
FC44D4 207390000293E move.l $293E,A0
FC44DA 317C00010008 move.w #1,8(A0)
FC44E0 20790000294A move.l $294A,A0
FC44E6 30BC0O001 move.w #1, (AO)
FC44EA 4E75 rts

Kk kK ok ok Kk ok Kk K Kk ok Kk ok Kk ok ok Kk kX Rk ok ok ok ok kK K ok kK ok ok ok ke ok ok ok ok ok ok ok ko ek ok ok

FC44EC 207900002942 move.,l $2942,A0
FC44F2 30BCO000 move.w #0, (AO)
FC44F6 4EFS00FCAFCA jmp SFCAFCA

X% %k Kk ok Kk K Kk ke k Kk Kk kK ok Kk kK Kk ok ok ok ok ok ko ok ok ko ok ok ke ok ke ok ke sk sk ok ok ok ok ok ok ok ok

FC44FC 4EF900FCAFF2 jmp $FCAFF2

Ak kkkkkkhkkkkk kA KA KA A KKK AR K AR IR A KR KAk Rk ko k ok kkkokkhkkkkx

FC4502 323900002920 move.w $2920,D1
FC4508 6600FE60 bne SFC436A
FC450C 3F390000291E move.w $291E,-(A7)
FC4512 6108 bsr $FC451C
FC4514 301F move.w (A7)+,D0
FC4516 7200 moveq.l #0,D1
FC4518 60000460 bra $FC497A

2 result values
Address of the INTOUT array
Current cursor line

plus offset
as INTOUT[O]
Current cursor column
plus offset
as INTOUT[1]

VDI ESC 16, Inquire tablet status
Address of CONTRL array

One result value

Address of the INTOUT array
Tablet available

VDI ESC 18, Set graphic cursor
Address of the INTIN array

No result value

Turn mouse cursor off

VDI ESC 19, Clear graphic cursor
Turn mouse cursor off

ESC I, Cursor up, scroll if necessary
Current cursor line

Not in line 0, cursor up

Save current cursor column

ESC L, insert line

Restore cursor column

Line 0

Set cursor

31eM1J0S Sndeqy

sjeusduy LS ey

1347

***********************************k********************

ESC L, Insert line
ESC f, Cursor off

Current cursor
Scroll rest of

line
screen down

FC451C 610000A4 bsr SFC45C2
FC4520 323900002920 move.w $2920,D1
FC4526 6100058A bsr $SFC4AB2
FC452A 4240 clr.w DO

FC452C 323900002920 move.w $2920,D1
FC4532 61000446 bsr SFC497A
FC4536 6078 bra SFC45B0

‘k***

FC4538 61000088
FC453C 323900002920
FC4542 61000526
FC4546 60E2

bsr $SFC45C2
move.w $2920,D1
bsr SFC4A6A
bra SFC452A

**********************‘k********************************‘k

FC4548 CO7COQOF
FC454C 33C000002916
FC4552 4E75

and.w #SF,DO
move.w DO,$52916
rts

**

FC4554 CO7COQQF
FC4558 33C000002914
FC455E 4E75

and.w #$F,DO
move.w DO,$2914
rts

**

FC4560 610000D4
FC4564 343900002920
FC456A 67F2

FC456C 5342

FC456E 4842

bsr $rC4636
move.w $2920,D2
beqg SFC455E
subgq.w #1,D2
swap D2

Column O

Current cursor line
Set cursor

Turn cursor on again

ESC M, Delete line

EsSC f, Cursor off
Current cursor line
Move rest of screen up

Set background color
Color 0-15
Type color

Set background color
Color 0-15
Background color

ESC d, Clear screen to cursor
ESC o, Clear line to cursor
Current cursor line

Zero, done

21BM]JOS SNIBQY

sjeusduy IS ey

144%

FC4570 34390000290E move.w $290E,D2
FC4576 7200 moveg.l #0,D1
FC4578 €00002AC bra SFC4826
‘k‘k***‘k‘k*********‘k***‘k***********************************
FC457C 4A79000027E0 tst.w $27E0
FC4582 67DA beq SFC455E
FC4584 4279000027E0 clr.w $27E0
FC458A 41F900002934 lea $2934,A0
FC4590 08100000 btst #0, (AO)
FC4594 660E bne SFC45A4
FC4596 08D00002 bset #2, (AO)
FC459A 227900002918 move.l $2918,Al
FC45A0 60000456 bra SFC49F8
FC45A4 61F4 bsr $FC459A
FC45A6 08D00001 bset #1, (AO)
FC45AA 08D00002 bset #2, (AO)
FC45AE 4E75 rts

**

FC45B0
FC45B6
FC45B8
FC45BE
FC45C0O

47A79000027E0
67A6
5379000027E0
67CA
4E75

tst.w
beq
subg.w
beqg
rts

$27E0
$FC455E
#1,$27E0
$FC458A

*******************************‘k************************

FC45C2
FC45C8
FC45CE
FC45D2
FC45D4

5279000027E0
41F900002934
08900002
678A
08100000

addg.w
lea
bclr
beq
btst

#1,$27E0
$2934,A0
#2, (A0)
SFC455E
#0, (AD)

Maximum cursor coclumn

Clear screen area

ESC e, Turn cursor on
Cursor already on?

Yes, done

Clear number of hide calls
Cursor flag

Screen address of the cursor
Invert character at cursor position

Invert character at cursor position

Cursor on ?

Yes, rts

Decrement number of hide calls
Turn on again

ESC f, Cursor off

Increment number of hide calls
Curscr flag

Cursor not visible

Cursor was already off

Cursor flashing ?

IEM]JOS SNOBQY

sjeutdyu] IS HB)Y

Svv

FC45D8 67C0O
FC45DA 08900001
FC45DE 66BA
FC45E0 4E75

beq SFC459A
bclr #1, (AQ)
bne SFC459A
rts

**

FC45E2 08F9000500002934

FC45EA 41F9000027EC
FC45F0 30F90000291E
FC45F6 30B900002920
FC45FC 4E75

bset #5,52934
lea $27EC, AO
move.w $291E, (AO)+
move.w $2920, (A0)
rts

**

FC45FE 08B9000500002934

FC4606 6700FDB6
FC460A 41F9000027EC
FC4610 3018

FC4612 3210

FC4614 60000364

beclr #5,52934
beq SFC43BE
lea $27EC, AO
move.w (AO)+,D0
move.w (A0),D1
bra SFC497A

‘k***********'k***************************************‘k***

FC4618 61A8

FC461A 323900002920
FC4620 3401

FC4622 4841

FC4624 4241

FC4626 4842

FC4628 34390000290E
FC462E 610001F6
FC4632 6000FEF6

bsr SFC45C2
move.w $2920,D1
move.w D1,D2

swap D1
clr.w D1
swap D2
move.w $290E,D2
bsr SFC4826
bra SFC452A

**

No
Cursor not visible
Invert character at cursor position

ESC j, Save cursor position
Cursor flag, position saved
Address of the save area
Current cursor column
Current cursor line

ESC k, Cursor to saved position
Cursor flag, position saved?
No, Cursor home

Address of the save area

Cursor column

Cursor line

Set cursor

ESC 1, Delete line
ESC f, Turn cursor off
Current cursor line

Maximum cursor cclumn
Clear screen area
Cursor 1n colun zero

ESC o, Clear line to cursor

31BM)JOS Snoeqy

sjewsdyu] LS LIe}y

4%

FC4636 618A

FC4638 61A8

FC463A 34390000291E
FC4640 6730

FCc4642 08020000
FC4646 6610

FC4648 323C0020
FC464C 6100012E
FC4650 34390000291E
FC4656 5542

FC4658 4842

FC465A 343900002920
FC4660 3202

FC4662 4842

FC4664 4841

FC4666 4241

FC4668 610001BC
FC466C 6190

FC466E 6000FF40
FC4672 323C0020
FC4676 61000104
FC467A 60FO

bsr
bsr
move.w
beq
btst
bne
move .w
bsr
move . W
subg.w
swap
move.w
move.w
swap
swap
clr.w
bsr
bsr
bra
move . w
bsr
bra

$FC45C2
$FC45E2
$291E,D2
$FC4672
#0,D2
$FC4658
#$20,D1
$FC477C
$291E,D2
#2,D2

D2
$2920,D2
D2,D1

D2

D1

D1
$FC4826
SFC45FE
SFC45B0
#520,D1
$FC477C
$FC466C

ESC f, Turn cursor off

ESC j, Save cursor position
Current cursor column

Zero, done

Blank
output
Current cursor column

Current cursor line

Clear screen area

ESC k, Cursor to saved position

and turn cursor back on
Blank
output

**

FC467C 08F9000300002934 bset #3,52934
FC4684 4ET5 rts

**

FC4686 08B9000300002934 bclr #3,5$2934
FC468E 4E75 rts

**

ESC v,
Cursor

ESC w,
Cursor

Turn line-wrap off
flag, flag for new line

Turn line-wrap on
flag, clear flag

CR, Cursor to column zero

31BM1}J0S Sndeqy

sjpuau] LS 1By

Lyy

FC4690 323900002920 move.w $2920,Dl1
FC4696 4240 clr.w DO
FC4698 600002E0 bra SFC497A

hhkhkhkkkkkkkkkkkhkkhkhkhkh A khkkdk kX kkkrrrkkkhkokkkhkkknhkkkkkkxxxk

FC469C 303900002920 move.w $2920,D0
FC46A2 B07900002910 cmp . w $2910,D0
FC46A8 6600FCCC bne SFC4376
FC46AC 6100FF14 bsr $FC45C2
FC46BO 4241 clr.w D1

FC46B2 610003B6 bsr SFC4A6A
FC46B6 6000FEF8 bra $FC45B0

% %k Kk ek Kk ke sk gk Kk sk ke %k %k ke Sk sk gk ok ok %k ko ks sk vk sk sk ok dk ke ok ke ok ok ok ki ok ok ok sk ok ki ok ok ok ok ke ke

FC46BA 41F900002934 lea $2934,A0
FC46C0O0 08100006 btst #6, (A0)
FC46C4 662A bne SFC46F0
FC46C6 08100002 btst #2, (A0)
FC46CA 6724 beq SFC46F0
FC46CC 08100000 btst #0, (A0)
FC46D0 671E beq SFC46F0
FC46D2 43F900002923 lea $2923,A1
FC46D8 5311 subg.b #1, (Al)
FC46DA 6614 bne SFC46F0
FC46DC 12B900002922 move.b $2922, (Al)
FC46E2 08500001 bchg #1, (AQ)
FC46E6 227300002918 move.l $2918,Al
FC46EC 6000030A bra SFC49F8
FC46F0 4E7S rts

Kk Kk K sk Kk %k gk Tk gk e gk kK ok ke ok k Kk k ke kK ok Kk ok kg 3k ke ke ke gk ok ok ok ok K ok ok sk ok kK ok ok kb ke ke ki ke ke ke

FC46F2 302F0004 move.w 4(A7),D0

Current cursor line
Column zero
Set cursor

LF, (VT, FF), Cursor down

Current cursor line

Maximum cursor line

Not in lowest line, just cursor down
ESC f, Turn cursor off

Scroll screen up
and turn cursor back on

Flash cursor

Cursor flag

Update flag set ?

Yes, do nothing

Cursor turned on ?

No

Cursor flashing ?

No

Cursor flash counter
decrement

Run out?

Reload cursor flash rate
Invert cursor phase

Screen address of the cursor
Invert character at cursor position

Cursor configuration
Function number

31BM}JOS SMIBQY

sjeuadyuy LS ey

147

FC46F6 6BF8 bmi SFC46F0

FC46F8 BO7C0005 cmp.w #5,D0

FC46FC 6EF2 bgt SFC46F0

FC46FE E340 asl.w #1,D0

FC4700 41F900FC4718 lea SFC4718,A0

FC4706 DOFB0004 add.w SFC470C{(PC,D0.w), A0
FC470A 4EDO jmp (AO)

**

FC470C 0000 dc.w $FC4718-SFC4718
FC470E 0004 dc.w $FC471C-$FC4718
FC4710 0008 dc.w $FC4720~3$FC4718
FC4712 0016 dc.w $FC472E-$FC4718
FC4714 0024 dc.w SFC473C-$FC4718
FC4716 002C dc.w $FC4744-$FC4718

FC4718 6000FEAS8 bra SFC45C2

FC471C 6000FESE bra SFC457C

ok ok K ek ok ok ok ok ok ok K Kk ko ok K ok ok ok ok ok kK K ok kR ek Kk ok kK K R K ROk
FC4720 6100FEAQ bsr SFC45C2

FC4724 08ED00002934 bset #0, 52934 (A5)

FC472A 6000FE84 bra SFC45B0

**

FC472E 6100FE92 bsr SFC45C2
FC4732 08AD00002934 beclr #0,$2934 (AD)
FC4738 6000FE76 bra $FC45B0

*7‘(**

Negative, ignore
Greater than 5 ?

Yes

Word access

Base address of the table
plus relative address
Execute routine

Jump table for cursor configuration

0
ESC f, Turn

1
ESC e, Turn
2
ESC £, Turn
Cursor flag
And back on

3

ESC f, Turn
Cursor flag
And back on

cursor

cursor

cursor

cursor

on

on

off

off

31BM}JOS SnIBqy

sfeudyuy LS 1€}y

(1147

FC473C 1B6F00072922 move.b 7(A7),%$2922 (A5)
FC4742 4E7S rts

*************‘k******‘k*‘k**‘k******************************

FC4744 7000 moveqg.l #0,DO0
FC4746 102D2922 move.b $2922(A5),DO
FC474A 4ET5 rts

**

FC474C 36390000292A move.w $292A,D3

FC4752 B243 cmp.w D3,D1
FC4754 6522 bcs $FC4778
FC4756 B27900002928 cmp.w $2928,D1
FC475C 621A bhi SFC4778
FC475E 207900002930 move.l $2930,A0
FC4764 D241 add.w D1,D1
FC4766 32301000 move.w O(AO,D1.w),D1
FC476A E649 lsr.w #3,D1
FC476C 207900002924 move.l $2924,A0
FC4772 DOC1 add.w D1,A0
FC4774 4243 clr.w D3
FC4776 4E75 rts

FC4778 7601 moveqg.l #1,D3
FC477A 4E75 rts

**

FC477C 61CE bsr SFC474C
FC477E 6702 beq $FC4782
FC4780 4E75 rts

move.l $2918,Al
move.w $2914,D7

FC4782 227900002918
FC4788 3E3900002914

Set cursor flash rate

Load cursor flash rate

Calculate font data for character in D1
Smallest ASCII code in font

Compare with character to output
Character not in font

Largest ASCII code in font

Character not in font

Pointer to offset data

Code times 2

Yields bit number in font

Divided by 8 equals byte number

Pointer to font data

Yields pointer to data for this character
Flag for character present

Character not in font

ascout, ignore control codes
Character in font?
Yes

Screen address of the cursor
Background color

a1BM}J0S SnIeqy

sfeusdjuy LS Hey

oSy

FC478E
FC4790
FC4796
FC479E
FC47A0
FC47A2
FC47AA
FC47AC
FC47BO
FC47B6
FC47BC
FC47C2
FC47C6
FC47C8
FC47CE
FC47D0
FC47D6
FC47D8
FC47DA
FC47EC
FC47E2
FC47E8
FC47EA
FC47EC
FC47F0
FC47F2
FC47F6
FC47FA
FC4800
FC4806
FC480C
FC480E

4847
3E3900002916
0839000400002934
6702

4847
08B9000200002934
40E7
61000160
227900002918
30390000291E
323900002920
6100026E
6732
303900002912
cocl
22790000044E
D3CO

4240
B27900002910
640A
D2F900002912
5241

600E
48E7C040
7200
61000276
4CDF0203
23C900002918
33C00000291E
33C100002920
44DF

6714

swap
move.w
btst
beg
swap
bclr
move.w
bsr
move.l
move.w
move.w
bsr

beq
move.wW
mulu.w
move.l
add.l
clr.w
cmp.w
bce
add.w
addg.w
bra
movem. 1
moveq.l
bsr
movem. 1l
move.l
move.w
move.w
move ., w
beqg

D7
$2916,D7
#4,52934
SFC47TA2
D7
$#2,5$2934
SR, -{(A7)
$FC490E
$2918,A1
$291E,DO
$2920,D1
SFC4A32
SFC47FA
$2912,D0
D1, DO
$44E,Al
DO,Al

DO
$2910,D1
$FC47EC
$2912,A1
#1,D1
$FC47FA
DO-D1/Al, - (A7)
#0,D1
SFCA4A6A
(A7) +,D0-D1/A1
Al,$2918
D0, $291E
D1,$2920
(A7) +,CCR
$FC4824

In upper word

Type color in lower word

Cursor flag, reverse ?

No

Exchange colors

Cursor flag, character in flash phase?
Save status

Write character to the screen
Screen address of the cursor
Current cursor column

Current cursor line

Increment cursor position

No CR/LF needed ?

Bytes per character line

times lines

_Vv_bs_ad

Yields address of the character
Column O

Cursor in lowest line?

Yes

Bytes per character line, next line
Increment line

Save registers

to lire O

Scroll screen up

Restore registers

Screen address of the cursor
Current cursor column
Current cursor line

Restore status

Flag not set?

31BM}JOS SNdBQY

s|PuIANE] LS M3V

1894

FC4810 610001E6 bsr SFC49F8
FC4814 08F9000100002934 bset #1,%52934
FC481C 08F9000200002934 bset #2,52934
FC4824 4E75 rts

**

FC4826 9481 sub.1l D1,D2
FC4828 3001 move.w D1,DO
FC482A 4841 swap D1
FC482C 61000098 bsr SFC48C6
FC4830 E242 asr.w #1,D2
FC4832 36390000293A move.w $293A,D3
FC4838 0C430004 cmp.w #4,D3
FC483C 6602 bne $FC4840
FC483E 5343 subg.w #1,D3
FC4840 3202 move.w D2,Dl
FC4842 5241 addg.w #1,D1
FC4844 ET761 asl.w D3,D1
FC4846 34790000293C move.w $293C,A2
FC484C 94C1 sub.w D1,A2
FC484E 3202 move.w D2,D1
FC4850 4842 swap D2
FC4852 5242 addg.w #1,D2
FC4854 C4F90000290C mulu.w $290C,D2
FC485A 5342 subg.w #1,D2
FC485C 4280 clr.l DO
FC485E 3A3900002914 move.w $2914,D5
FC4864 0C7900020000293A cmp.w #2,$293A
FC486C 6B44 bmi SFC48B2
FC486E 6728 beqg SFC4898

**

FC4870 E245 asr.w #1,D5

Invert character at cursor position
Cursor flag, cursor visible
Cursor flag, cursor in flash phase

Clear screen area

Cursor column
Cursor line
Calculate cursor position

Number of screen planes
Low resolution ?

No

minus 1, yields 1, 2, 3

Number of bytes per screen line

times height of a character
als dbra counter

Background color

Number of screen planes

High resolution ?

Medium resolution 2

Low resolution

Background color, bit O into carry

31BM)JOS SMIBGY

sjeusadyu] LS ey

(47

FC4872
FC4874
FC4876
FC4878
FC487A
FC487C
FC487E
FC4880
FC4882
FC4884
FC4886
FCc4888
FC488A
Fc488cC
FC4890
FC4892
FC4896

Ak kA AR KKK ARk kkk kAR k kA kkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkx

FC4898
FC489A
FC489C
FC489E
FC48A0
FC48A2
FC48A4
FC48A6
FC48AA
FC48AC
FC48B0

4040
4840
E245
4040
4283
E245
4043
4843
E245
4043
3A01
22C0
22C3
51CDFFFA
D3CA
51CAFFF2
4E75

E245
4040
4840
E245
4040
3A01
22C0
51CDFFFC
D3CA
S51CAFFF4
4E75

negx.w
swap
asr.w
negx.w
clr.l
asr.w
negx.w
swap
asr.w
negx.w
move .w
move.l
move.l
dbra
add.l
dbra
rts

asr.w
negx.w
swap
asr.w
negx.w
move . W
move.l
dbra
add.l
dbra
rts

DO

DO

#1,D5

DO

D3

#1,D5

D3

D3

#1,D5

D3

D1,D5

DO, (Al) +
D3, (Al)+
D5, $FC4888
A2,Al

D2, $FC4886

#1,D5

DO

DO

#1,D5

DO

D1,D5

DO, (Al)+
D5, $FC48A4
A2,Al

D2, $FC48A2

Bit set, invert word

Background color, bit 1 intoc color
Bit set, invert word
Planes three and four
Background color, bit 2 into carry
Bit set, invert word

Background color, bit 3 into carry
Bit set, invert word

Number of long words per line
Color planes one and two

Color planes three and four

Next long word

Pointer to next raster line

Next raster line

Medium resolution
Background color, bit 0 into carry
Bit set, invert word

Background color, bit 1 into carry
Bit set, invert word

Number of long words per line
Color planes one and two

Next long word

Pointer to next raster line

Next raster line

3IeM}JOS Sndeqy

sjeusajuy LS 1iepy

159%

FC48B2
FC48B4
FC48B6
FC48B8
FC48BA
FC48BE
FC48CO
FC48C4

* Kk kKK k kK k ok kk Kk

FC48C6
FC48CC
FC48CE
FC48D0
FC48D2
FC48D8
FC48DA
FC48DC
FC48DE
FC48E4
FC48E6
FC48EA
FC48EC
FC48F0Q
FC48F2
FC48F4
FC48FA
FC48FC
FC4902
FC4904
FC4906

E245
4040
3A01
32C0
51CDFFFC
D3CA
S51CAFFF4
4E75

36390000290E
B640

6A02

3003
363900002910
B641

6A02

3203
36390000293A
3A00
08850000
Ce6C5S
08000000
6702

5283
3A3900002912
CAC1
22790000044E
D3C5

D3C3
D2F90000291C

asr.w
negx.w
move . W
move . W
dbra
add. 1l
dbra
rts

move.w
cmp. W
bpl
move.w
move.w
cmp.w
bpl
move.w
move . W
move . W
bclr
mulu.w
btst
beg
addg.l
move.w
mulu.w
move.l
add.l
add.1l
add.w

Kk kK x k kK k ok ok ok ok koK % % Kk d Kk Kk Kk k k ok k Kk

#1,D5

DO

D1,D5

DO, (A1) +
D5, SFC48B8
A2,Al
D2,$FC48B6

*************‘k*****************************

$290E, D3
DO, D3
$FC48D2
D3,DO
$2910,D3
D1,D3
$FCA48DE
D3,D1
$293A,D3
DO, D5
#0,D5
DS, D3
#0,D0
$FC48F4
#1,D3
$2912,D5
D1,D5
$44E,Al
D5, Al
D3,Al
$291C,Al

high resolution

Background color, bit 0 in carry
Bit set, invert word

Number of long words per line
Color plane one

Next long word

Pointer to next raster line

Next raster line

Calculate cursor position (D0/D1)
Maximum cursor column

Column value too large?

No

Replace with maximum value
Maximum cursor line

Line value too large?

No

Replace with maximum value
Number of screen planes
Column

Round to even value

Number of screen planes times cursor column
0dd column?

No

Add one

Bytes per character line
Times cursor line

_v_bs_ad

plus line offset

plus column offset

plus offset from screen start

31BM}JOS STIBQY

sjewIdu] LS e}y

1234

FC490C 4E75 rts

AEEKEAAKKA K AKA R KA AR KRR KKk Ak kkdkkkkkkdkhkkkkkkkhkkhkdxkhkkdkxkkkk*k

FC490E 34790000292C move.w $292C,A2
FC4914 36790000293C move.w $293C,A3
FC491A 38390000290C move.w $290C,D4
FC4920 5344 subg.w #1,D4
FC4922 3C390000293A move.w $293A,D6
FC4928 5346 subg.w #1,D6
FC492A 3A04 move.w D4,D5
FC492C 2848 move.l AO0,A4
FC492E 2A49 move.l Al,AS5
FC4930 E287 asr.1l #1,D7
FC4932 0807000F btst #15,D7
FC4936 6706 beq SFC493E
FC4938 642A bcc SFC4964
FC493A 76FF moveq.l #-1,D3
FC493C 6004 bra $FC4942
FC493E 6512 bcs $FC4952
FC4940 7600 moveq.l #0,D3
FC4942 1A83 move.b D3, (A5)
FC4944 DACB add.w A3,A5
FC4946 51CDFFFA dbra D5, $FC4942
FC494A 5449 addq.w #2,A1
FC494C 51CEFFDC dbra D6, $FC492A
FC4950 4E75 rts

% %k Kk &k ok kK Kk ok ok kK Kk Kk k ke ok Rk Kk %k kK %k ok ek ek ok ok ok gk ek ok gk ok ok ke ok ok ok ok ke ok ok ok ok ok ok ke

FC4952 1A94 move.b (A4), (A5)
FC4954 DACB add.w A3,A5
FC4956 D8BCA add.w A2,A4

Character from font on the screen
Width of font, formwidth

Number of bytes per screen line
Height of a character

as dbra counter

Number of screen planes

as dbra counter

Counter for raster lines

Font address of the character
Screen address of the character
Next bit back- and foreground color
Bit set in background color?

No

Foreground color not set?

Fore- and background colors set

Foreground color set?

Fore and background cleared
Set byte in video RAM
Pointer to next raster line
Next raster line

Pointer to next color plane
Next color plane

Set foreground color only

Copy byte in font in video RAM
Next raster line of the screen
Next raster line in font

31BM)JOS Snoeqy

s[ewayuy IS 1B}y

9Y%

FC4958 51CDFFF8
FC495C 5449
FC495E 51CEFFCA
FC4962 4E75

dbra D5, $FC4952
addg.w #2,Al

dbra D6, SFC492A
rts

**

FC4964 1614
FC4966 4603
FC4968 1A83
FC496A DACB
FC496C D8CA
FC496E 51CDFFF4
FC4972 5449
FC4974 51CEFFB4
FC4978 4E75

*****************************-k*************k*************

FC497A B0790000290CE
FC4980 6306

FC4982 30390000290E
FC4988 B279%00002910
FC498E 6306

FC4990 323900002910
FC4996 33C00000291E
FC499C 33C100002920
FC49A2 41F900002934
FC49A8 08100002
FC49AC 673E

FC49AE 08100000
FC49B2 670A

FC49B4 08900002
FC49B8 08100001

move.b (A4),D3
not.b D3

move.b D3, (AS)
add.w A3,A5
add.w A2,Ad

dbra D5, $FC4964
addg.w #2,Al

dbra D6, SFC492A
rts

cmp.w $290E,DO
bls $FC4988

move.w $290E,DO
cmp.w $2910,D1
bls $SFC4996

move.w $2910,D1
move.w DO,$291E
move.w D1,%$2920

lea $2934,A0
btst #2, (RO)
beq SFC49EC
btst #0, (A0)
beg SFC49BE

bclr #2, (AO)
btst #1, (A0)

Write next raster line
Pointer to next color plane
Next color plane

Set background color only

Get byte from font

Invert

and to screen

Next raster line on the screen
Next raster line in font
Display next raster line
Pointer to next color plane
Next color plane

Set cursor

Compare column with maximum value

Smaller ?
Maximum cursor column

Compare line with maximum value

Smaller ?

Maximum cursor line
Current cursor column
Current cursor line
Cursor flag

Cursor in flash phase?
No

Cursor flashing ?

No

Clear flag for flash phase
Cursor visible ?

31BM1JOS SNIBQY

sjeutdu] LS 11y

9SY

FC49BC
FC49BE
FC49C4
FC49C6
FC49CA
FC49D0
FC49D2
FC49DA
FC49bC
FC49EQ
FC49E6
FC49EA
FC49EC
FC49F0
FC49F6

% % % Kk Kk ok ko K kK K K Kk kR Rk ok Kk ke g ok ok ok sk ok ke kR ke ke ke ok ok ok ok ok 3k ok ok ok ke ok ok ok K ok ek ke ok ke ok

FC49F8
FC49FE
FC4A04
FC4A06
FC4AQC
FC4AOQE
FC4Al6
FC4Al18
FC4A1A
FC4AlC
FC4AlE
FC4A22
FC4A24
FC4A28
FC4A30

671E
227900002918
6132
610C0FEFE
23C800002918
6126
08F9000200002934
4E75
6100FEES
23C900002918
08D00002
4E75
6100FED8
23C900002918
4E75

34790000293C
38390000290C
5344
3C390000293A
5346
08F9000600002934
3A04

2849

4614

D8CA

51CDFFFA

5449

51CEFFFO
08B9000600002934
4E75

beg
move.l
bsr
bsr
move .l
bsr
bset
rts
bsr
move.l
bset
rts
bsr
move.l
rts

move.w
move ., w
subg.w
move.w
subg.w
bset
move .w
move.l
not.b
add.w
dbra
addg.w
dbra
bclr
rts

SFC49DC
$2918,A1
SFC49F8
$FC48Ce
Al,$2918
SFC49F8
#2,$2934

SFC48C6
Al,$2918
#2, (AO)

$FC48C6
Al,$2918

$293C,A2
$290C, D4
#1,D4
$293A,D6
#1,D6
#6,52934
D4, D5
Al,A4

(A4)

A2,A4

D5, SFC4AlA
#2,A1

D6, $FC4Al6
#6,52934

No

Screen address of the old cursor
Invert character at cursor position
Calculate new cursor position
Screen address of the new cursor
Invert character at cursor position
Cursor flag

Calculate cursor position
Screen address of the cursor
Cursor in flash phase

Calculate cursor position
Screen addres of the cursor

Invert character at cursor position
Number of bytes per screen line
Height of a character

as dbra counter

Number of screen planes

as dbra as counter

Set cursor flag for update
Counter for raster lines

Screen address of the cursor
Invert byte

Pointer to next raster line
Next raster line

Pointer to next color plane
Next color plane

Clear cursor flag for update

>
=2
S
&
=]
w
72]
=
-
£
&
-
o

sjeusduy IS 1)y

LSY

* % Kk kkkkk KKk

FC4A32
FC4A38
FC4A3A
FC4A42
FC4A44
FC4A46

FC4A48
FC4A4A

FC4AAC
FC4A4E
FC4A52
FC4A54
FC4A56
FC4A58

FC4A5A
FC4A60
FC4A62
FC4RA64
FC4A66
FC4A68

**

FC4A6A
FC4AT0
FC4AT6
FC4AT8
FC4A'IC
FC4ATE

B0790000290E
6612
0839000300002934
6604

4243

4E75

7601
4E75

5240
08000000
6706
5249
4243
4E75

36390000293A
E343
5343
p2C3
4243
4E75

26790000044E
363900002912
céCl
47F33000
4441
D27900002910

cmp.wW
bne
btst
bne
clr.w
rts

moveq.1l
rts

addg.w
btst
beqg
addg.w
clr.w
rts

move.w
asl.w
subg.w
add.w
clr.w
rts

move.l
move.w
mulu.w
lea
neg.w
add.w

*************‘k********************************

$290E, DO
SFC4A4C
#3,52934
$SFC4A48
D3

#1,D3

#1,D0
#0,D0
SFC4A5A
#1,A1
D3

$293A,D3
#1,D3
#1,D3
D3,Al

D3

$44E,A3
$2912,D3
D1,D3
0(A3,D3.w),A3
D1

$2910,D1

Increment cursor position (DO/D1)

Cursor in last column?
No

Cursor flag, overflow in next line?

Yes
Cursor still in same line

CR/LF necessary

Next column

Even column number?

Yes, not in same word
Increment addres by one
Cursor still in same line

Number of screen planes
times 2

minus 1

Address of next position
Cursor still in same line

Scroll screen up at line D1
_v_bs_ad

Bytes per character line
multiply by number of lines
Address of the current line
Current line

Maximum cursor line - current line

a1em}JoS snoeqy

sjeusduy LS Hely

344

FC4A84 363900002912
FC4A8A 45F33000
FC4AB8E C6Cl

FC4AS0 E443

FC4A92 6002

FC4A94 26DA

FC4A%6 51CBFFFC
FC4A9A 323900002910
FC4AAQ0 3401

FC4AA2 4841

FC4AA4 4842

FC4AA6 4241

FC4AA8 34390000290E
FC4AAE 6000FD76

move .w
lea
mulu.w
asr.w
bra
move.l
dbra
move.w
move .w
swap
swap
clr.w
move.w
bra

$2912,D3
0(A3,D3.w),A2
D1,D3

#2,D3
SFC4A96
(A2) +, (A3) +
D3, $FC4A94
$2910,D1
D1,D2

D1

D2

D1

$290E,D2
SFC4826

% %k % % % ok %k K ok ok ek Kk kK kX kK kR ke ok kR ok ok 3k %k kR %k %k ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ek ok ok ok

FC4AB2 26790000044E
FC4AB8 363900002910
FC4ABE C6F900002912
FC4AC4 47F33000
FC4AC8 363900002912
FC4ACE 45F33000
FC4AD2 3001

FC4AD4 4440

FC4AD6 D07900002910
FC4ADC C6CO

FC4ADE E443

FC4AEO 6002

FC4AE2 2523

FC4AE4 51CBFFFC
FC4AE8 60B6

move.1l
move.w
mulu.w
lea
move .w
lea
move .w
neg.w
add.w
mulu.w
asr.w
bra
move .l
dbra
bra

$44E,A3
$2910,D3
$2912,D3
0(A3,D3.w) ,A3
$2912,D3
0(A3,D3.w),A2
b1,DO

DO

$2910,D0

DO, D3

#2,D3

SFC4AEA4
-(A3),-{A2)
D3, SFC4AE2
SFC4AAQ

Bytes per character line
Address of the last line
Number of bytes to move

Divided by four, equals number of longs

Copy screen lines
Next long word
Maximum cursor line

Maximum cursor column
Clear last line

Scroll screen down at line D1
v bs_ad

Maximum cursor line

Bytes per character line
Address of the last line
Bytes per character line
Address of the first line
Current line

Maximum cursor line
times bytes per character line
Divided by 4 for long word counter

Copy screen lines
Next long word
Clear top line

JIBM}JOS STOBQY

sjeudyuy LS LBV

65y

*****************‘k**************************************

FC4AEA
FC4AFo0
FC4AF2
FC4AF6
FC4AFC
FC4B02
FC4B04
FC4BOA
FC4BOC
FC4B12
FC4B1l4
FC4B16
FC4B1C
FC4B1E
FC4B24
FC4B28
FC4B2A
FC4B30
FC4B38
FC4B40
FC4B48
FC4B50
FC4B58

FCATIC4
FCATCA
FCATCE
FCATD2
FCATDA4
FCATD8

207900002942
2050

30280052
33C00000290C
32390000293C
c2Co
33C100002912
7200
323900002936
82C0

5341
33C100002910
7200
32390000292E
82E80034

5341
33C10000290E
33E800500000292C
33E800240000292A
33E8002600002928
23E8004C00002924
23E8004800002930
4E75

10390000044C
c07C0003
BO7C0003
6604
303C0002
3F00

move.l
move.l
move . W
move . w
move.w
mulu.w
move .w
moveq.1l
move.w
divu.w
subg.w
move .w
moveq. 1l
move .w
divu.w
subg.w
move .w
move . W
move . W
move.w
move.l
move.l
rts

move.b
and.w
cmp.wW
bne
move . W
move .w

$2942,A0
(A0) , A0

82 (A0),DO
DO, $290C
$293C,D1
DO,D1

D1, %2912
#0,D1
$2936,D1

DO, D1

#1,D1

D1, $2910
#0,D1
$292E,D1

52 (A0),D1
#1,D1
D1,$290E

80 (A0),$292C
36(A0),%$292A
38(A0),$2928
76 (A0),$2924
72 (RA0),$2930

$44C, DO
#3,D0
#3,D0
$SFCATDS
#2,D0
DO, — (A7)

* Kk k Kk Kk kK k)

VDI ESC 102, Initialize font parameters
Address of INTIN array

Address of the font header

formhight, height of a character

save

Number of bytes per screen line

times height of a character

yields bytes per character line

Screen height in bits
Divided by font height
minus 1

yields maximum cursor line

Screen width in bits

Divide by maximum character width
minus 1

yields maximum cursor column
Width of the font, formwidth
Smallest ASCII code in font
Largest ASCIT code in font
Pointer to font data

Pointer to offset data

Initialize screen output
sshiftmd, screen resolution
Isolate bits 0 and 1

32

No

Replace with 2 (high resolution)
Save resolution

31EM}JOS SMIBQY

sjeutdjuy LS 1B}y

09

FCATDA
FCATDE
FCATEQ
FCATE®6
FCATEA
FCATEC
FCATEF2
FCATF6
FCATFE
FCA800
FCA806
FCABOC
FCA812
FCAB18
FCAB1E
Fcag24
FCAB2C
FCAB34
FCAB83C
FCAB44
FCAB48
FCA84A
FCAB4E
FCA858

F ok Kk Kk sk ok ok sk ok K ok 3k ok ook Kk k kR Sk ok ok ok ek R ok ok kK ok k ko ke ok ko ok ok ok Kk ok R ok ok ok ok ok ok

FCA85A
FCAB85C
FCAB60
FCA866
FCA86A
FCABT0

6100007E
301F
41F900FD2D0O
B0O7C0002
6606
41F300FD375C
6100A2FE

33FCFFFF00002916

7000

33C000002914
33C00000291E
33C000002920
33C00000291C
20790000044E
23C800002918

13FC000100002934
13FC001E00002923
13FCO001E00002922
33FC0001000027E0

323C1F3F
20C0
51CSFFFC

23FCOOFC41BCO00004A8

4E75

7200
123B00G30
33C10000293A
123B0029
33C10000293C
33C100002938

bsr
move .
lea
cmp.w
bne
lea
bsr
move.

moveqg, 1l

move .,
move .
move .,
move.
move.,
move .
move.
move .,
move ,
move.
move .
move.
dbra
move.
rts

\

w

w
w
w
w
1
1
b
b
b
W
w
1

1

SFCA85A
(A7) +,D0
$FD2D00, AO
#2,D0
SFCATF2
$FD375C, A0
SFC4AF2
#SFFFF,$2916
#0,D0

DO, $2914
DO, $291E
D0, $2920
DO, $291C
$44E, A0
A0, $2918
#1,$2934
#$1E, 52923
#$1E, $2922
#1,$27E0
#S1F3F,D1
DO, (AO) +
D1, S$FCA848
#SFC41BC, $4A8

moveq.l #0,D1

move.
move.,
move
move,
move.

b
w
.b
w
w

SFCAB88E(PC,DO.w),D1

D1,5$293A

$FCA891(PC,DO.w) ,D1

D1,$293C
D1,5$2938

Set parameters for screen resolution
Restore resolution

Address of the 8x8 system-font header

High resolution ?

No

Else address of the 8x16 system-font header
Initialize font data

Type color to black

Background color white
Cursor column zero
Cursor line zero

Line offset zero
_Vv_bs_ad, screen address
as cursor address

Set cursor flag

Cursor flash counter to 30
Cursor flash rate to 30
Cursor not visible

8000 long words

Clear screen

constate vector to standard

Set parameters for screen resolution

Get number of screen planes
and save

Get bytes per screen line
and save

31BM)JOS SnIBqY

s[eusasuy LS Me)y

9%

FCA876 E340

FCA878 323B0O0O1A
FCA87C 33C100002936
FCA882 323B0016
FCA886 33C10000292E
FCA88C 4E75

asl.w
move.
move.
move.
move.
rts

£ % £ =

#1,D0

$FCA894 (PC,D0.w) , D1
D1,%2936
SFCA89A(PC,DO.w) ,D1
D1,$292E

**

FCA88E 040201
FCA891 AOAOS50
FCA894 00C800C80190
FCA89A 014002800280

dc.b
dc.b
dc.w
dc.w

4,2,1
160,160, 80
200,200,400
320,640,640

Resolution as word index
Get screen height

and save

Get screen width

and save

Screen parameters

Number of screen planes

Number of bytes per screen line
Screen height

Screen width

21BM1JOS SNIBQY

sjeusduy LS M}y

Chapter Four

Appendix

4.1 The System Fonts
4.2 Alphabetical listing of GEMDOS functions

Abacus Software Atari ST Internals

4.1 The System Fonts

The operating system contains three different fonts for character output.

The 6x6 font is used by the icons, the 8x8 font is used as the standard
output on a color monitor, and the 8x16 font is used for the monochrome
monitor output. The chart on the next page includes the characters with the
ASCII codes 1 to 255.

465

Atari ST Internals

Abacus Software

8X8 System Font 8X16 System Font

6X6 System Font

—tzur ooz [I5%
=U30$2580.4M0Z s JgneoY ShLUL lURLEXENArULC OUL LULE TX((804,. ..0BUINBFOR€> 1%%-=275EHUND
B9AFIN0AN0CO0YRIYYTL13AIPRRRINTV~{| }2AxMANY SIDdOUN [N TYBLaPIqR. ~y [\] ZAXMANLSYD

Nwee L erw Neew s os

dONWTATIHO43008YBi<=> 1 168LISPEZTO/ "~ +%) 1 94481 T e © 5BEBLICNER! SN/ % A VO IO

¥
!

—ETUP BTN FTTE
SU3CFPUOTLWOTUIGONVSALOL L UMLE KGO T ULE c Ous LULy Cx(IUEDb: ., QYYDOSICSTED | KL 25
CFBAIINQANDASHRIYNIIIIAZSTCREINSV~ (1) ZTAXANANISIDAOUN I TYESapOqe \—y [\]ZAXMANLSHD

dONHTIAC IHD 43AAYBE<TI 11 6829GPEZTO/ " - “+% () ., PSR, i A D ICEBLISHES! C Wl QNS OC0D

—CTUuLreeT2f)53
SUICSPUSTLTO UG P RV I ALBL LU ALAKRGNALUGC CNULLULETIRG ! wOBS 4 e RRVDIFIIT AR IV T L 4 PTENUNGS
FFEAIINQABNORQQITIYH LI IRAIICNES iNIvatlIIRxman LS UDJOUWINSITUGSI 3P S2QC T L\NIZAXMANLSND

dONHIANCTHOAIADEYIELCx)>{168L9SPER IO/ "= 4+ HC) ¢BXERu i AKCINeHVLNENEI IO HGL vO ARUGIE TS

466

Abacus Software Atari ST Internals

4.2 Alphabetical listing of GEMDOS functions

Name Opcode (hex) Page Number
Cauxin 03 108
Cauxis 12 115
Cauxos 13 115
Cauxout 04 109
Cconin 01 107
Cconis 0B 113
Cconos 10 114
Cconout 02 108
Cconrs 0A 112
Cconws 09 111
Cnecin 08 111
Cprnos 11 115
Cprnout 05 109
Crawcin 07 110
Crawio 06 110
Dcreate 39 123
Ddelete 3A 124
Dfree 36 122
Dgetdrv 19 116
Dgetpath 47 135
Dsetdrv OE 114
Dsetpath 3B 125
Fattrib 43 132
Fclose 3E 128
Fcreate 3C 126
Fdatime 57 143
Fdelete 41 130
Fdup 45 134
Fforce 46 134
Fgetdta 2F 120
Fopen 3D 127
Fread 3F 129
Frename 56 143
Fseek 42 131
Fsetdta 1A 116
Fsfirst 4E 140
Fsnext 4F 142
Fwrite 40 130

467

Abacus Software

Atari ST Internals

Malloc
Mfree
Mshrink
Pexec
Pterm
PtermO
Ptermres
Super
Sversion
Tgetdate
Tgettime
Tsetdate
Tsettime

468

135
137
137
138
140
107
121
117
121
118
119
119
120

Abacus Software Atari ST Internals

4.3 The blitter chip

Anyone who has followed the development of the ST has surely heard the
word blitter. More than two years were spent developing the blitter chip.
The main advantage of this chip is its speed, working with data in the DMA
register. The blitter uses a memory range independent of the 63000
microprocessor. Without the blitter chip, you need several kilobytes of
program code to realize graphics through software.

The basic graphic routines of the ST are accessed by software through
line-A opcodes. The blitter can take on parts of these routines and execute
them faster than the 68000 could handle them. That is first taken by the
BITBLT function, shifting the established pixel-oriented memory range.
However, the fill can be taken up in any memory range. The details of the
blitter options follow later. First let's look at chip design.

Figure 4.3-1 BLITTER

T 0 Y U'of-(wnvm\ohcoa\.c-’c:

288%20a0n0annnnananan

ewsoada25848323493

S-0-0-6-0-0-6-6-6-6-0006800
DTACK 27 () & o D312
BG 28 (P b 8 o3
BGACK 29 (D ® 7 D14
BR 30 (® 6 D15
N.C. 31 Q 5 Vss
N.c. 32 (D O 4 A23
vss 33 O 3 A =22
cLK 34 (D . h 2 A2l
aNp 35 Blltter ? 1 vee
N.c. 36 (P D 68 N.C
BG 37 O O 67 A 20
RESET 38 O 66 A 19
BERR 39 O 65 A 18
BGACK 40 O 64 A 17
Nt 41 @ O 63 A 16
N.c. 42 @ b 62 A 15
rc2 43 P D 61 A 14

S-0-0-6-6- 0600000500600

QLD\DI\G)O\OHN(’VQ'M\O(\QO\O

I . I I Y B Yo BT B To B T B To T T BT B T T I]

HQUHNﬂQ\ﬂ\DI\DU\HHSHU

I L I R R

469

Abacus Software Atari ST Internals

Since the blitter is a DMA device, it must be able to transfer the processor in
an idle state. The processor needs the 68000 pins BR (Bus Request), BG
(Bus Grant) and BGACK (Bus Grant Acknowledge). The BG pin conveys
everything needed for the address and data bus. If the processor recognizes
a Bus Request, BG tells the attached device that there is now a bus available
for the DMA device. Now a short delay loop executes until the 68000 stops
its activity in the different pins (see Section 1.2). As long as the DMA entry
has established that the processor is no longer active, then it restarts with
the help of BGACK. After data transfer finishes, BGACK clears, and the
processor receives control of the bus.

The blitter chip can use the entire address range of the 68000 (16
megabytes). In order to manipulate the data in memory through
programming, the processor cannot produce any control signals. These
controlled by the READ/WRITE pin, which determines which data is read
and which is written to memory. Other important signals for accessing
memory are AS (Address Strobe), LDS (Lower Data Strobe) and UDS
(Upper Data Strobe).

The DTACK signal (Data Transfer Acknowledge) invokes the blitter chip
only, when the processor displays the transfer of data. It cannot do the
DMA transfer itself, since the RAM chip timing is set by the blitter or the
CLK signal. Like the other onboard DMA channels (floppy disk and DMA
port) and the ACIAs, the blitter is also capable of performing interrupts.
This means that it can create its own interrupts to end data transfers.
Therefore, it uses the free bit 3 of the MFP interrupt entry (GPIP). This
option is not usually used by the ST operatng system. However, other
interrupt-oriented operating systems like RTOS, OS9 or UNIX should have
blitter integration.

The last group of blitter connections belong to the power connections. In
addition to the usual 5 volt current and ground, the blitter needs a time
signal of 8 mHz.

470

Abacus Software Atari ST Internals

4.3.1 The blitter registers

The ST blitter chip is the hardware implementation of the BITBLT algorithm
used in the line-A opcodes.

Figure 4.3.1-1 shows a block diagram of the blitter functions. The blitter
can basically set up a source range which can be combined with a current
raster, a destination range of 16 different logical operands, and a destination
range in which it stores the result. Both source and destination ranges can
be stored in the same area of RAM. Unlike the processor, which can only
operate in bytes and words, the blitter is bit-oriented. This makes the blitter
ideal for handling bitmapped graphics. It is also practical for normal copy
and transfer commands, e.g., high-speed RAM disk operations without
hard disk interrupts.

The following is a look at the individual registers used by the blitter:

Figure 4.3.1-1 BLITTER BLOCK DIAGRAM

Source Source Destination
l— Shift —-|
|
Half-tone HOP —{ Logic OP
Endmask

New destination data

The first 16 registers are marked as half-tone RAM, and contain the raster
used in half-tone operations. The registers are each 16 bits wide. When the
raster is used, a proportional register for a lin is used. The raster repeats
over all 16 lines. The Line Number register (see below) determines which
half-tone register is used next.

471

Abacus Software Atari ST Internals

Bit FEDCBA9876543210
SFFBAO0 R/W X X X X X X X X X X X X X X X XHalf-tone RAM 0
SFF8A02 R/W X X X X X X X X X X X X X X X XHalf-tone RAM 1
SFF8A04 R/W X X X X X X X X X X X X X X X XHalf-tone RAM 2
SFF8A06 R/W X X X X X X X X X X X X X X X XHalf-tone RAM 3
SFF8A08 R/W X X X X X X X XX X X X X X X XHalf-tone RAM 4
SFF8AO0A R/W X X X X X X X X X X X X X X X XHalf-tone RAM 5
SFF8AOC R/W X X X X X X X X X X X X X X X XHalf-tone RAM 6
SFF8AOE R/W X X X X X X X X X X X X X X X XHalf-tone RAM 7
SFF8A10 R/W X X X X X X X X X X X X X X X XHalf-tone RAM 8
SFF8A12 R/W X X X X X XX X X X X X X X X XHalf-tone RAM 9
SFF8A14 R/W X X X X X X X X X X X X X X X XHalf-tone RAM 10
SFF8A16 R/W X X X X X X X X X X X X X X X XHalf-tone RAM 11
SFF8Al18 R/W X X X X X X X X X X X X X X X XHalf-tone RAM 12
SFF8AIA R/W X X X X X X X X X X X X X X X XHalf-tone RAM 13
SFF8A1C R/W X X X X X X XXX XXX X X X XHalf-tone RAM 14
SFFB8AIE R/W X X X X X X X X X X X X X X X XHalf-tone RAM 15

The next register is called X Increment. This is a leading character
dependent 15-bit register. The lowest bit is ignored and constantly registers
0. This makes only even numbers possible. The register gives the offset in
bytes in the next source word in the same line. Normally, the Atari gives a 2
for monochrome mode. This is also the case when all planes are copied in
color mode. If a plane is copied in medium-res or low-res mode,then 4 or 8
must exist in this register.

Bit

FEDCBAY9876543210
SFF8A20 R/W X X X X X XX XX XXX XXXO0 Source X
| Increment
(always zero, even increments only)

The Source Y Increment register determines how many bytes must be added
to the current source address, in order to figure out the distance from the
end of the current line to the start of the next line.In monochrome mode, a
set of pixels measures 80 bytes: When only a segment of 20 bytes is copied,
the Source Y Increment gives a value of 60.

Bit F

EDCBA9876543210
SFF8A22 R/W X X X X X XX XX XXX XXXO0 Source Y
| Increment
(always zero, even increments only)

472

Abacus Software Atari ST Internals

The Source Address register determines the starting address at the beginning
of the copy. It can read or write long word accesses. Bits 0 and 24-31 are
used only for even 24- bit addresses. The contents of this register are
incremented as part of the operation with the help of the above mentioned
increment register (or decremented, depending on the leading character of
the increment register). By reading the source address register, the address
of the source word used next is received.

Low word
(always zero, even increments only)

Bit FEDCBA987¢6543210
SFF8A24 R/W = — = = = = = = X XX X XXX 0 Source Address
High Word
{unused) (24-bit addresses only)
Bit FEDCBA987 654321090
SFF8A26 R/W X X X X X X XX XXX X XXX 0 Source Address
|

The next three registers contain the endmask, which states which bits are
changed and which are unchanged.Since the blitter is pixel oriented, but the
bus accesses RAM in words, the first and the last word are read as bits. To
write 16 bits over the processor bus, the destination word must first read
then change the allowable bits, and transfer the result (Read-Modify-Write).
Endmask 1 does this for the beginning of a line, endmask 3 applies to the
end of a line. Endmask 2 is used by all other words. It is normally set to
$FFFF (all bits are altered by it). Thus, a previous reading of the destination
word is unnecessary.

Bit FEDCBA 9876543210
SFF8A28 R/W X X X X X X X XX XXX XXXX Endmask 1
SFF8A2A R/W X X X X XXX XXX XXXXXX Endmask 2
SFF8A2C R/W X X X X X X X X XX XXX XXX Endmask 3

The next three registers are Destination X Increment, Destination Y
Increment and Destination Address. They have the same uses as the above-
mentioned source registers, except that these three apply to the destination.

Bit

FEDCBA9876543210
SFFBA2E R/W X X X X X X X X XXX X XXX 0 Destination X
| Increment
(always zero, even increments only)

473

Abacus Software Atari ST Internals

Bit FEDCBA 9876543210
SFF8A30 R/W X X X X XX X XXX XXXXZXO0 Destination Y
| Increment
(always zero, even increments only)
Bit FEDCBA9876543210
$FF8A32 R/W - — = = = = - — X X X X X X X X Destination
Address High Word
(unused) (24-bit addresses only)

Bit

FEDCBAY9876543210
SFFBA34 R/W X X X X X X X X XX X X X X X 0 Destination
| Address Low Word
(always zero, even increments only)

The X Count register informs you how many words are in a destination
line. The minimum value is 1; the highest is 65536 ($0000). Reading the
register gives the number of values in this line as words are transferred.
When the X Count register is loaded with 1, the values in Destination X
Increment, as well as Source X Increment, are unused. Since the line after a
word is already the end, and the corresponding Y Increment is used direct.

The Y Count register determines the number of lines. The smallest value is
again one, and values of zero are interpreted as 65536. Reading this register
gives you the number of lines which need copying. After every transferred
line, the value decrements by one until it reaches 0, ending the transfer.

Bit FEDCBA9876543210
$FF8A36 R/W X X X X X X X X X X X X X X X X X-Count
SFF8A38 R/W X X X X X X X X X X X X X X X X Y-Count
All the abovementioned registers can only be read as words or long words;

byte access is not allowed.

The HOP register determines the combination of source and half-tone RAM.
The two lowest bits have the following meanings:

HOP Combination

All l-bits

Half-tone RAM

Source

Source and half-tone RAM

WP o

474

Abacus Software Atari ST Internals

You can therefore determine whether the source can be used unaltered (HOP
= 2), whether the half-tone RAM is combined with the logical AND (HOP =
3) or whether only the half-tone RAM is used (HOP =1). This is useful, for
example, when filling an area with a raster pattern. Furthermore, it is still
possible to fill the destination with 1-bits (HOP = 0). When half-tone RAM
is used, another register determines which half-tone registers are used.

Bit 76543210
SFF8A3A R/IW = = === XX HOP

Half-tone operation

The next register determines the receiver of the new destination value, after

logical operations between destination and source. Here are 16 different
options in the following table.

(~s&~d) | (~s&d) | (s&~d) | (s&d) Operation New destination
0 0 0 0 0 all O bits
0 0 0 1 1 source AND destination
0 0 1 0 2 source AND NOT destination
0 0 1 1 3 source
0 1 0 0 4 NOT source AND destination
0 1 0 1 5 destination
0 1 1 0 6 source XOR destination
0 1 1 1 7 source OR destination
1 0 0 0 8 NOT source AND NOT destination
1 0 0 1 9 NOT source XOR destination
1 0 1 0 10 NOT destination
1 0 1 1 11 source OR NOT destination
1 1 0 0 12 NOT source
1 1 0 1 13 NOT source OR destination
1 1 1 0 14 NOT source OR NOT destination
1 1 1 1 15 all 1 bits

The most important operations are the following three (Replace mode,
Source replaces and destination), 6 (XOR mode; overlapping of destination
and source) and and 7 (OR mode).

Bit 76543210
SFF8A3B R/W ---=-XXXX oP

Logical operation

475

Abacus Software Atari ST Internals

Bit 76543210
SFF8A3C R/W XXX-XXXX
I 1 Line number
| Unused
I SMUDGE
] HOG
| Busy

The next register combines several functions. The lowest 4 bits determine
which of the 16 half-tone RAM registers are even used. The value is
incremented or decremented after a line, depending on the leading character
in the Destination Y Register. When the SMUDGE bit is set, the number of
the half-tone RAM register is determined by the four lowest bits of the
above mentioned source data. The selected half-tone operation (HOP) stays
active. This allows special effects.

The next bit in this register determines the method of bus access in the
blitter. When the HOG bit clears, the blitter and processor share the same
bus. After 64 bus cycles, the blitter stops and the processor takes over the
bus for 64 bus cycles. When the HOG bit is set, the processor stops until
the blitter finishes its operations. In either case, other DMA devices (floppy
and harddisk) have priority over the blitter. The Prefetch mechanism of the
68000 processor lets you bypass HOG mode, so after the start of the blitter
the next processor command executes when the blitter is ready.

The BUSY bit is set, initializing all other blitter registers, in order to start
the blitter. It waits until the blitter ends its operation. Since the interrupt
output mirrors the status of the blitter, blitter operations can be ended by an
interrupt taken from the third bit of the GPIP within the MFP 68901.

Bit 76543210
$FF8A3D R/W XX ~--XXXX
RN SKEW
|| Unused
| NFSR
| FXSR

The last blitter register also has several functions. The lowest four bits
determine the source operand shifts, to protect the destination operations.
Since the blitter is bit-oriented, but bus access is word-oriented, the source
data must move to set the bit positions of half-tone masks and destination
data. Therefore, two source data words are read, shifting the relevant bits
for calling in a 16-bit source register (see Figure 4.3.1-1).

476

Abacus Software Atari ST Internals

FXSR and NFSR are abbreviations for Force eXtra Source Read and No
Final Source Read. When the FXSR bit is set, the beginning of each line is
read as an additional source word. The NFSR bit is set when the last word
of the source line cannot be read. The use of these bits require changes to
Source Y Increment and Source Address Register.

Normally you can access the blitter directly through the operating system.
When you use the line-A or VDI functions, the operating system can tell
whether the function is produced by software or by the blitter (see XBIOS
function $64).

477

Abacus Software Atari ST Internals

4.4 The Mega ST realtime clock

When the ST was initially released, GEMDOS set the software-run clock in
two-second increments. In addition, the clock and date needed resetting
every time the user switched on the computer.

To get around this, the ROM circuits, keyboard processor and clock IC
offered some solutions. The Mega ST's clock IC is a permanent solution to
the problem. Its timekeeping registers are as follows:

Bit 7 6 543210 (bits 4-7 unused)
SFFFC21 R/W - - - -XXXX one second
SFFFC23 R/W - - --XXXX ten seconds
SFFFC25 R/W - - - -XXXX one minute
SFFFC27 R/ W - - --XXXX ten minutes
SFFFC29 R/W - ---XXXX one hour
SFFFC2B R/W - - --XXXX ten hours
SFFFC2D R/W - ---XXXX weekday
SFFFC2F R/W - ---XXXX one day
SFFFC31 R/IW - ---XXXX tenth day
SFFFC33 R/W - - --XXXX one month
$SFFFC35 R/W - - --XXXX tenth month
SFFFC35 R/W - - - =-=XXXZX one year
SFFFC37 R/W - ---XXXX tenth year
SFFFC39 R/W - ---XXXX control register
SFFFC3B R/W - - --XXXX control register
SFFFC3D R/W - - --XXXX control register

The RP 5 C 15 appears to be the same as most clock ICs. It has a
four-bit-wide data and address bus,which addreses a total of 16 registers.
All of these registers had data width of 4 bits, and contain areas of date and
time in BCD format. The next three registers (SFFFC3B to $FFFC3F) are
unknown. They describe some registers of setting the clock, but
disassembly doesn't give any further information. Clock timing counts
through a quartz oscillator running at a frequency of 32,768 kHz. This
relatively slow IC is controlled through a PAL (programmable logic array).

All clock registers lie in the address area of the processor, offering a simple
to read and accurate clock. The Mega ST's operating system and XBIOS
functions determine theimselves whether the clock time is taken from the
keyboard processor, or whether the hardware clock is available at all.

478

Abacus Software Atari ST Internals

4.5 Blitter chip demonstration programs

This section contains programs demonstrating some of the blitter chip's

abilities.

This sample program moves the screen memory to another location. The
function blit is universal, however, you can blit any RAM. Try the program
as a test only. The main purpose of this program is to show how to
establish screen areas (forms) and pixel coordinates for the individual
registers of the blitter. This program directly accesses the blitter, and must
run in 68000 supervisor mode. If you attempt to run the program in user
mode, a bus error occurs.

blitter

halftone
src_xinc
src_yinc
src_addr
ENDMASK1
endmask?2
endmask3
dst xinc
dst_yinc
dst_addr
X_count
y_count
hop

op
line_num
skew

.
’

flinebusy

mhop_src

mskewfxsr
mskewnfsr

equ $ff8a00

blitter register offsets

equ 0

equ $20
equ 522
equ $24
EQU $28
equ $2a
equ $2c
equ $2e
equ $30
equ $32
equ $36
equ $38
equ $3a
equ $3b
equ $3c
equ $3d

blitter register flags
equ 7 ;busy bit

mask blitter register bit

equ $02 ;half-tone operation: source
equ $80 ;fxsr mask
equ $40 ;nfsr mask

479

Abacus Software

Atari ST Internals

mlinebusy equ

physbase equ
xbios equ

demo:
lea

move
trap
addqg.1l

move.1
move.l

moveq
move
move

moveq
move
move
moveq
move

move

move
move

move
move

move
move
move
jsr
rts

para dc.w

e

1f_endmask:

end maskn

580 ;busy mask

2 ;get screen address
14

para, ad

#physbase, - (sp)
#xbios
#2,sp

d0, src_form(ad)
d0,dst_form(ad)

#2,d0
d0, src_nxwd (a4)
d0,dst _nxwd(a4)

#80,d0O
d0,src_nxln(a4)
d0,dst_nxln(a4)

#2,d0
do, src_nxpl (a4)
d0,dst_nxpl (a4)

#25,src_xmin(a4)
#34,src_ymin (a4)

#220,dst_xmin (a4)
#234,dst_ymin(a4)

#77,width(ad)
#50,height (a4)
#1,planes (ad)

blit_it

17

480

;jget screen address

;screen acts as
;source and destination

;2 bytes offset

;jto next word in

;same color plane

;one line is 80 bytes long
3 (

monochrome mode)

;offset to next color plane
;not used in
;monochrome mode

;1 xl-coordinate source
;yl-coordinate source

:Xl-coordinate destination
;yl-coordinate destination

;width in pixels

;height-pixels (number of lines)
;monochrome

;jaccess blitter

; ready

iroom for parameter block

Abacus Software

Atari ST Internals

dc.w

rt_endmask:

src_form
src_nxwd
src_nxln
src_nxpl
src_xmin
src_ymin

dst_form
dst nxwd
dst nxln
dst_nxpl
dst_xmin
dst_ymin

width
height

planes

blit_it:

dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
de.w
dc.w
dc.w

SEEff

STEEf
S3fff
S1f£ff
SOfff
SO7fEf
$03ff
$01ff
$O00ff
$007£
$003f
$001f
$000f
$0007
$0003
$0001
$0000

input: pointer to 34-byte parameter block in a4

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ

equ

equ
equ

lea

= = 0 6 & O

N O

18
20
22
24
26

28
30
32

;base address source memory form
;joffset next word in source
;source form width

;joffset between source planes
;source x1

;source yl

;base address dest memory form
;offset next word in dest
;dest form width

;offset between dst planes
;dest x1

;dest vyl

;width in pixels
;height in pixels
;number of planes

blitter,ab

4381

1 src_xmin mod 16 > dst_xmin mod 16

Abacus Software Atari ST Internals
; compute xmax from xmin and width
move width (ad),dé
subqg #1,d6 ;width -1
move src_xmin(a4),do
move do,d1l
add d6,dl ;src_xmax
move dst_xmin (a4),d2
move d2,d3
add d6,d3 ;dst_xmax
moveq #Sf,d6 ;mod 16 mask
move d2,d4 ;dst_xmin
and dé,d4 ;dst_xmin mod 16
add d4,d4 ;pointer to left end mask table
move lf_endmask(pc,d4),d4 ;left end mask
move d3,db ;dst_xmax
and dé6,d5 ;dst_xmax mod 16
add d5,dSs ;pointer to right end mask
;table
move rt_endmask(pc,dS),dS sinverted left end mask
not d5 ;right end mask
; calculate skew
; ({dst_xmin mod 16) - (src_xmin mod 16)) mod 16
;
; determine FXSR and NFSR
; 3 bit index in table
;
i bit 0 0 src_xmin mod 16 >= dst_xmin mod 16
;
;

bit 1 0 src_xmax/16 - src_xmin/16 <> dst_xmax/16 -
dst_xmin/16
0 src_xmax/16 - src_xmin/16 <> dst_xmax/16 -
dst_xmin/16

bit 2 0 dst_span equals several words
1 dst_span equals one word

e Ne Ne Ne Ne Ne e e

move dz,d7 ;dst_xmin

482

Abacus Software

Atari ST Internals

and de,d7 ;dst_xmin mod 16

and do, dé ;src_xmin mod 16

sub de,d7 ;dst_xmin mod 16 - src_xmin mod 16
; >2?2cy =1 cy =0

clr dé ;delete index in table

addx dé6,dé6 ;cy after bit 0

lsr #4,d0 ;src_xmin / 16

lsr #4,dl isrc_xmax / 16

sub do,dl isrc_span - 1

lsr #4,d2 ;dst_xmin / 16

lsr #4,d3 ;dst_xmax / 16

sub d2,d3 ;dst _span - 1

bne set _endmask
i if
; if dst_span = one word, both endmasks stand in endmask 1
H the blitter ignores endmask 2

and d5,d4

addg #4,d6 ;dé bit 2 = 1 one word destination

set_endmask:

move d4, endmaskl (a5) ;left endmask
move #Sffff,endmask2 (a5) imiddle endmask
move d5, endmask3 (a5) ;right endmask
cmp dl,d3 ;number of source und dest words
jequal?
bne set_count ino
addgq #2,d6 ;d6 bit 1 = 1 equal number of
;words
set count:
move d3,d4
addg #1,d4 snumber of words in dest line
move d4,x_count(a5)
; determine source start address
; src_form + (src_ymin * src nxln) * (src_xmin/16 * src_nxwd)

483

Abacus Software Atari ST Internals

move.l src_form(ad), a0 ;a0 -> start src form
move src_ymin(a4),d4 ;offset in lines to ymin
y move src_nxln(a4),d5 ;length src line
i. mulu d5,d4
! add.l d4, a0 ;a0 -> (0, ymin)
[
| move src_nxwd(a4d) ,d4 ;offset of next word
move d4,src_xinc(ab)
B mulu d4,do
i add.l do0, a0 ;a0 -> first word (xmin, ymin)
mulu d4,d1 ;source line length in bytes
j sub dil,ds
f move d5, src_yinc(ab) ;offset next end line beginning
i
E‘ ; compute destination start address
i
move. 1l dst_form(ad), al ;al -> start dst form
move dst_ymin (ad),d4
' move dst_nxln(a4),d5
i
mulu d5, a4
add.l d4,al
move dst _nxwd(a4) ,d4
move d4,dst_xinc(ab)
mulu d4,d2
add.l d2,dl
; compute dst yinc
3 mulu d4,d3
E sub d3,d5
i move d5,dst_yinc(a5) ;destination y increment
:
| and.b #$£,47
? or.b skew_flags(pc,d6),d7 ;skew-flags from table
move.b d7, skew(ab) ;in blitter
move.b #mhop_src,hop(a5) ;half-tone operation: source only
move.b #3,0p(as) ;replace mode
lea line_num(a5),a2 ;pointer to line number register

[484

Abacus Software

Atari ST Internals

move.b
move
bra

skew flags:
dec.
dc.
dc.
dec.

go oo

dc.
dc.
de.
dc.

o o oo

next plane:

move.l
move.l
move

move.b

add

add
restart:

bset

nop

bne

begin dbra

rts
end

#flinebusy,d2
planes{ad),d?
begin

mskewnfsr
mskewfxsr
0

mskewnfsr+mskewfxsr

0
mskewfxsr
0
0

a0, src_addr (ab)
al,dst_addr (a5)

;busy bit after d2
;number of bitplanes

;load source address
;load destination address

height (a4),y count(a5) ;number of lines

#mlinebusy, (a2)
src_nxpl(ad), a0
dst_nxpl(ad),al

d2, (a2)
restart

d7,next_plane

;start blitter
;start next src plane
;start next dst plane

;restart blitter

;jnot ready yet?

;next bitplane

Here are some extremely interesting sample programs for the BITBLT

line-A command.

The first example defines a monochrome picture and copies it to a
monchrome screen. The picture should appear on the screen starting at the
coordinates X = 200 and Y = 100. This replaces the original screen contents
using the replace mode. No raster is used, so the raster address is set to
zero. The program looks like this:

435

Abacus Software Atari ST Internals

% ek Kk kK kK Kk ke ke sk ke ke ke vk %k ke gk sk ke b gk %k sk gk ok ok gk ok ok ok gk ok dk ok ok ok ok ok 9k ok ok 9k ok ok 9k e ok 3k ok ok ok ok ok %k ke ke Rk ok ke ok ok ke

;
; bitblt demo *
; copy one-color source range to monochrome screen *
,-***
bitblt equ $a007 ;jop code
b_width equ 0 ;jwidth in pixel
b_height equ 2 ;height in pixel
planes equ 4 ;number of colorplanes
fg _col equ 6 ;foreground color
bg_col equ 8 sbackground color
| op_tab equ 10 ;logical operations
‘ s_xmin equ 14 ;x—-coordinate in source
l s_ymin equ 16 ;y-coordinate in source
P s_form equ 18 ;address of source
[s_nxwd equ 22 - joffset of next word in source
: s_nxln equ 24 ;offset of next line in source
’ s_nxpl equ 26 ;offset of next colorplane in source
d_xmin equ 28 ;}x-coordinate in destination
d_ymin equ 30 ;y-coordinate in destination
d_form equ 32 jaddress of destination
; d nxwd equ 36 ;offset of next word in destination
d_nxln equ 38 ;joffset of next line in destination
d _nxpl equ 40 ;offset of next colorplane in
;destination
: p_addr equ 42 ;jaddress of raster used
; p_nxln equ 46 joffset of next line in raster
: p_nxpl equ 48 ;offset of next colorplane in raster
p_mask equ 50 ;raster index mask (number of lines)
physbase equ 2
xbios egu 14
do_blit lea para(pc), a6 ;jpointer to parameter block
move #92,b_width(aé) swidth in pixel
move #52,b_height (aé) sheight in pixel
move #1,planes (a6) ;monochrome
move #1, fg_col (a6) ; foreground color
move #0,bg _col(aé) 1background color
486

Abacus Software Atari ST Internals

para:

source

move.l #503030303,0p_tab(a6) ;replace mode

transfer source data

move #0,s_xmin(aé) ;upper left corner of source

move #0,s_ymin(a6)

move. 1l #source,s_form(aé) ;source address

move $#2,22(a6) ;2 byte offset of next word

move #12,s_nxln(aé) ;80 byte offset of next
;1line

move #2,s_nxpl(a6) ;2 byte offset of next

;colorplane

screen is destination

move #200,d_xmin (a6) ; x-coordinate of screen
move $#100,d_ymin(aé) ;y-coordinate of screen
move #physbase, - (sp)

trap #xbios ;jget screen address

addq.l #2,sp

move.l d0,d _form(aé) ;as destination address

move #2,d_nxwd(aé) ;2 byte offset of next word
move #80,d_nxln(aé) ;80 byte offset of next line
move #2,d_nxpl (a6) ;2 byte offset of next

;colorplane

clr.l p_addr (aé) sno raster used
dc.w bitblt ;execute bitblt
rts

align

ds.b 76 ;76 byte parameter block
width = 92 width of source in pixels
height = 52 height of source in pixels
dc.w SAAAA, SAAAA, SAAAA, SAAAA, SAAAA, SAAAO
dc.w $5555, $5555, $5555, $5555, $5555, $5550
dc.w $AAAA,SAAAA,$AAAA,$AAAA,$AAAA,$AAAO
dc.w $5555, $5555, $5555, $5555, $5555, $5550
dc.w SAAAA, SARAA, SAAAA, SAAAA, SAAAA, $SAAAD
dc.w $5555, $5555, 5555, $5FD5, $5555, $5550

487

Abacus Software Atari ST Internals

$5540, 50000, $0000,$0000, $0000,$1550
$AAAO, 50000, $0000, $0000, $0000, SOAAO
$5543,$C71E, $49EF, $9CF9, $C722,$1550
$AAA2,$2220,$5202,$2220, $588B2, SOAAOD
$5542,$221C, $61C2, $3E20, $88AA, $1550
$AAA2,5$2202,$5022,52220,$88A6, SOAAD
$5543,$C73C, $4BC2,$2221,5C722,51550
$AAAO, $0000, $0000, $0000, $0000, SORAO
$5540, 50000, $0000, %0000, $0000,%$1550
$AAAC, $0000, $0000, $0000, $0000, SOAAOQ
$5555,$5555,$5555,$5555, $5555, $5550
SAAAA, SAAAA, SAAAA, SARAAA, SAAAA, $SARAAO
$5555, $5555, $5555, $5555, $5555, $5550
SAAAA, SAAAA, $AAAA, $SAAAA, SAAAA, SARAO
$5555, $5555, $5555, $5555, $5555, $5550
SAAAA, SAAAA, $AAAAR, SAARA, SAAAA, SAAAO
$5555, $5555, $5555, $5555, $5555, $5550

dc.w $AARA, SAAAA, SAAAA, SBOGA, SAAAA, SAAAD
dc.w $5555, $5555, $55FF, $SE03D, $5555, $5550
dc.w SAAAA, SAAAA, SAB83, $000A, $AAAA, SAAAO
dc.w $D555, $5555, $5701, $FFEF, $5555, $5550
de.w SEAAA, SAARA, SACO0, $002A, $AAAA, SAAAD
dec.w $F555, $5555, $5FF7, $F7A7, $5555, $5550
dc.w $FAAA, SAAAA, $BOOC, S18AE, SAAAA, SAAAQ
de.w $FD55, $5555, $7FF8, $OE9B, $5555, $5550
dc.w SEORA, SAAAA, $C000, $02B2, $AAAA, $SAAAD
dc.w $6555, $5555, $FFFF, $FC63, $5555, $5550
dc.w $B2AA, $ARARB, $0000, $04C6, $AAAA, SARAC
dc.w $3555,$5555, $0700, $058B, $5555, $5550
dc.w $9AAA, SARAARB, $0880, $0712, $AAAA, SAAAQ
| dc.w $5955, $5555, $0F80, $0627, $5555, $5550
| dc.w SA2AA, SAAAB, $0880, $044A, SAAAA, SAAAC
| de.w $5555, $5555, $0880, $0493, $5555, $5550
‘ dc.w $AAAA, SAAAB, $0000, 30522, $AAAA, SAAAC
dc.w $5555, $5555, $03FC, $0647, $5555, $5550
| dc.w $AAAA, SAAAB, $0204, $048C, SAAAA, $AAAO
| de.w $5555, $5555, $0204, $0519, $5555, $5550
de.w SAAAA, SAAAB, $03FC, $0632, $AAAA, SAAAD
dc.w $5555, $5555, $0000, $0465, $5555, $5550
dc.w $AAAA, SAAAB, $0000, $04CA, SAAAA, SAAAQ
: dc.w $5555, $5555, $060C, $0595, $5555, $5550
; dc.w SAAAA, SAAAB, $OFF8, $072A, SAAAA, SAAAO
3 dc.w $5555, $5555, $0000, $0655, $5555, $5550
. dc.w SAAMA, SAAAB, $0000, $04AA, SAAAA, SAAAQ
} dc.w $5555, $5555, $0000, $0555, $5555, $5550
. dc.w $AAAA, SAAAB, SFFFF, SFEAA, SAAAA, SAAAO
. W
W
oW
oW
W
W
W
W
W
W
W
w
W
W
oW
W
W

end

438

Abacus Software Atari ST Internals

The next example tests out raster use. A raster is basically a graphic area
which combines with a source range through a logical AND, and the desired
logical operation is copied to the destination range. The comparison of the
source range with the raster naturally occurs within the BITBLT function.
The source range itself stays independent.

p_mask and p_addr correspond to the variables _patptr and patmsk
through the function $A004, HORIZONTAL LINE. The variable p_nxlIn
gives the offset for the next line of the raster, and must be an even number,
so a line from any number of 16 bit words must coincide, as well as source
and destination.

A raster can usually be multicolor. The individual bitplanes must then be
overlapped word for word as described in the beginning of this chapter. The
raster index mask (p_mask) gives which raster line should be combined
with the source line. From the source line the number of raster line comes
from AND and p_mask. This is the usual count:

Raster Lines p_mask

2 1
4 3
8 7
16 15

The blitter has 16 registers of 16 bits into which a raster can be loaded.

This sample program is almost identical to the earlier BITBLT demo. Just
replace the material at the do_blit and rastexr labels with the coding
below. Then save the new version of BITBLT under another name.

;********‘k****’k************‘k***‘k***************************************
. *
r

; bitblt demo changes *
’
r

copy cne-color range to monchrome screen using a raster *
*

’-**

do blit lea para{pc),ab ;pointer to parameter block
move #92,b_width(a6) ;width in pixels
move #52,b_height (a6) ;height in pixels
move #1,planes{a6) ;monochrome

489

Abacus Software Atari ST Internals

move #1,fg_col (a6) ; foreground color
move #0,bg_col(a6) ;background color
move.l #5$03030303,0p_tab(a6) ;replace mode
; transfer source data
move #0,s_xmin(a6) ;source from upper left corner
move #0,s_ymin(a6)
move.l #source,s_form(aé) ;source address
move #2,s_nxwd(aé6) ;2 byte offset to next word
move #12,s_nxln(aé) ;80 byte offset to next line
move #2,s_nxpl(aé6) ;2 byte offset - next color plane
; dest is screen
move #200,d_xmin (a6) ix-coordinate on screen
move #100,d_ymin(aé) ;y-coordinate on screen
move #physbase, - (sp)
trap #xbios ;get screen address

addq.l #2,sp

move.l do,d_form(aé) juse as dest address
move #2,d nxwd(aé) ;2 byte offset of next word
move #80,d_nxln(a6) ;80 byte offset to next line
move #2,d_nxpl (a6) ;2 byte offset of next color
;plane
move.l #raster,p_addr(a6) ;use raster
move #2,p_nxln(aé) ;offset of next raster line
move #0,p_nxpl (aé) :;single color raster
move #1,p _mask (a6) ;jraster index mask
dc.w bitblt jexecute bitblt
rts
align
raster dc.w $1010101010101010 ;first raster line
dc.w %$0101010101010101 ;second raster line
para: ds.b 76 ;76-byte parameter block
; source and rest of original program follow....

Every other pixel is deleted, giving us a raster.

490

Abacus Software Atari ST Internals

Index
address bus 7,8
asynchronous bus control 8-9
ADDRESS STROBE (AS) 8
DTACK 9-12
LOWER DATA STROBE (LDS) 8
READ/WRITE (R/W) 8
UPPER DATA STROBE (UDS) 8
Asynchronous Communications Interface Adapter (ACIA) 41-47,62-63
pins 41-44
registers 45-47
BANK 55
Basic Input Output System (BIOS) 152-163,245,250
listing 271-461
BCD—see Binary Coded Decimal
BERR 11-15

BG-—see Bus Grant
BGACK—see Bus Grant Acknowledge

BGO—see Bus Grant Out

Binary Coded Decimal (BCD) 4
BIOS—see Basic Input Output System

BLANK 15
Blitter chip 204-205,469-476,484-496
Bus Grant (BG) 10,13
Bus Grant Acknowledge (BGACK) 10,13
Bus Grant Out (BGO) 13
Bus Request (BR) 1013
cartridge slot 96-98
Centronics interface 88-89
CLK 11
data bus 7
data registers 4
Data Request (DR) 22
DE—see Display Enable

Digital Research 105
Direct Memory Access (DMA) 8-9,12-13,18-19,25,5 8-59,101-102
Display Enable (DE) 15

DMA—see Direct Memory Access
DR-—see Data Request

491

Abacus Software

Atari ST Internals

exception vectors

FDC—see Floppy Disk Controller
Floppy Disk Controller (FDC)
Command Register (CR)
Data Register (DR)
Sector Register (SR)
Status Register (STR)
Track Register (TR)
floppy disk interface

GEM graphics
high-res
line-A opcodes
line-A variables
lo-res
medium-res
GEM graphic commands
BITBLT
COPY RASTER FORM
CONTOUR FILL
DRAW SPRITE
FILLED POLYGON
FILLED RECTANGLE
GET PIXEL
HIDE CURSOR
HORIZONTAL LINE
Initialize
LINE
PUT PIXEL
SHOW MOUSE
TEXTBLT
TRANSFORM MOUSE
UNDRAW SPRITE
GEMDOS
functions

€ITor messages
GLUE

HALT
HSYNC

492

235-237

206-234
207-210
227-234
224-226
206-209
205-207
211-224
215-217
224-225
223-224
222-223
214-215
213-214

211

221

213

211

212

211

220
217-222,232-235
221,230-231
221-222,221-222
105-151, 245
106-151

151

13-15, 18,69

11,12
15

Abacus Software Atari ST Internals

JACK 13
integrated circuits 3-63
INTEL 3
interrupts 7,10,240-244
I/O registers 55-63
ACIAs 62
DMA/Disk Controller 58-59
keyboard 62
MFP 68901 60-61
MIDI 62
sound chip 59-60
Video Display Register 56-58
keyboard control 67-71,74-84
line-F emulator 238-239
longword 7
Memory Management Unit(MMU) 11,13,15-16,18,55
memory maps 62-63
MFP 68901—see Multi-Function Peripheral
MFPINT 13

MIDI—see Musicial Instrument Digital Interface
MMU—see Memory Management Unit

Motorola 68000 microprocessor 3-12,258-270
instruction set 258-270
mouse 71-74
MS-DOS 106, 186
Multi-Function Peripheral(MFP 68901) 28-40,60-61,90,171 ,242-244
Active Edge Register(AER) 32
connections 28-32
Data Direction Register(DDR) 32
General Purpose 1/0 Interrupt Port(GPIP) 32
Interrupt Enable Register(ERA,IERB) 33
Interrupt In-Service Register(ISRA,ISRB) 34
Interrupt Mask Register(IMRA,IMRB) - 34
Interrupt Pending Register(IPRA,IPRB) 33-34
Receiver Status Register(RSR) 38-39
registers 32-40
Synchronous Character Register(SCR) 37
Timer A/B Control Register(TACR,TBCR) 35
Timers C and D Control Register(TCDCR) 36

493

Abacus Software Atari ST Internals

Timer Data Registers (TADR,TBDR,TCDR,TDDR) 37
Transmitter Status Register(TSR) 39-40
UCR/USART 37-38
UDR/USART 40
Vector Register(VR) 34
Musical Instrument Digital Interface(MIDI) 93-95,177
NMI—see Non-Maskable Interrupt
Non-Maskable Interrupt (NMI) 6,13,240
operating system 105

PSG (Programmable Sound Generator)—see YM-2149 Sound Generator

RESET
RS-232 interface

SHIFTER
status register
supervisor mode

synchronous bus control
E

Valid Memory Address (VMA)
Valid Peripheral Address (VPA)

system fonts
system variables

Tramiel Operating System (TOS)

UNIX
user mode

video interface
VSYNC
VT52 emulator

WD 1772
word

word access
XBIOS

YM-2149 Sound Generator

494

11-12

90-92,243-244
13,15,17,18

6
4,6,7,235
9

9
9
9,10

465-466
250-257

105

106
4,6,7,235

85-87
15
245-249
20-27

7

8
164-205

48-54

Optional Diskette

ATARI ST

Internals

Optional diskette

For your convenience, the program listings contained in this book are
available on an SF354 formatted floppy disk. You should order the diskette
if you want to use the programs, but don't want to type them in from the
listings in the book.

All programs on the diskette have been fully tested. You can change the
programs for your particular needs. The diskette is available for $14.95 plus
$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a
check, money order or credit card information. Mail your order to:

Abacus Software
P.O. Box 318
Grand Rapids, MI 49588

Or for fast service, call 616-698-0330.

Selected Abacus Products for the ATAR[F j[k?jﬁ‘

AssemPro

Machine language development system
for the Atari ST

"...I wish I had (AssemPro) a year and a half ago... it
could have saved me howrs and hours and hours."”

—Kurt Madden

ST World

"The whole system is well designed and makes the rapid
development of 68000 assembler programs very easy.”

—Jeff Lewis

Input

AssemPro is a complete machine language development
package for the Atari ST. It offers the user a single,
comprehensive package for writing high speed ST
programs in machine language, all at a very reasonable
price.

AssemPro is completely GEM-based—this makes it
easy to use. The powerful integrated editor is a breeze to
use and even has helpful search, replace, block,
upper/lower case conversion functions and user definable
function keys. AssemPro's extensive help menus
summarizes hundreds of pages of reference material.

The fast macro assembler assembles object code to
either disk or memory. If it finds an error, it lets you
correct it (if possible) and continue. This feature alone
can save the programmer countless hours of debugging.

The debugger is a pleasure to work with. It features
single-step, breakpoint, disassembly, reassembly and
68020 emulation. It lets users thoroughly and
conveniently test their programs immediately after
assembly.

AssemPro Features:

« Full screen editor with dozens of powerful features

« Fast 68000 macro assembler assembles to disk or
memory

» Powerful debugger with single-step, breakpoint,
68020 emulator, more

« Helpful tools such as disassembler and reassembler

« Includes comprehensive 175-page manual

AssemPro Suggested retail price: $59.95

nm Fllt

lssmblzr Debugger

Editor

Seyrch Block Help

Eroe o 6OBBE . TEXT 1 § . OAT8 : 5, 85 8, Rest : 620818
[]
N
T
Editor Windox Assembler Rindow Nenu Bar 1nfs Line

[8 PEERR: 1 or_[RRETRRRA ks
El} : 86980 SP_; 88843 , USP ¢ BBBARACE |, Pro rn -
HT1] = 000060 60 R °
L:oL = 08802 ll" u'lSl 0e, DD '
02 = IBBII DL.M SFC -
03 ngle 286 Ilﬂl!l!ll ORI, & #4,-(RO)
nd 68828 _Enul. DBBM 836A0884 HDVEP .M “Ml,ﬂ‘
305 kit 1 UDBC[$308 BSET D4, (RE) ¢
106 Drogr, D10 BEB4ERDA ORI.B w-576,04
L:g7 Haltable lll!ll 09848820 RI.B #$2C,D4
i [l 5 0@840833 OA1.8 #$18,D4
Al Breskpoint 8081C 0D4EBL4 ORI.B 0544,04
iRZ [828 80048858 ORL.B 050,04
‘A3 Execute progran@ee82é !BB‘HSX ORI.B #552,04
L:Ad =) erase 88828 & 9C.H SFC
L:AS - 8602R !CIH SUB.K AB,DE
L:R6 = 5 l!lnu(! BB:;E ::thlu %Idls:;glc,ﬂl
LiA? = lﬁil‘ []1 i
0% (e N o Msuiﬂ_“'_i_
hex Numeric o Xw! Searc utput | _
Save screen Ton nﬂress
il e IR gn
L T ETTERET
Desk File FIRTAT Oebugger Edltor Sesrch Block Heifg
9 ; €]
»e : : 9, Rest :
Fri 68888 Source texti® 8, 85§ (Y14}
Qbject cade:®
v File name cutput
I Ootimize backward Bcr's
I Flag undef. variadlies
‘g":il b1 ‘
wbal table
Error file : - £gitor__
v pc-retative "- ol To Tot
Aelocatable
Original |ina ILllEL m\ms L
Nenor: FDNLMEM #1,ALARNTEXT, X
FORM_ERROR 0,01
EEN EXIT
LMNTEXT DE l 1 (Thlsllslln

Alari ST, 520ST, 1040ST, TOS, ST BASIC and ST LOGO are trademarks or registered trademarks of Atari Corp.
GEM is a registered trademark of Digital Research Inc.

Selected Abacus Products for the ATARH® A@‘T_ﬁ«

BeckerText ST

The High-Powered Word
Processing Package for the ST

A word processing package for serious Atari ST owners.
Because BeckerText is more than a woid processor.

It has all the features of our TextPro, and more:
WYSIWYG formatting and printing, graphic merge
capabilities, automatic hyphenation and indexing of your
documents.

But BeckerText also does a few things that you might
not expect...like calculate numbers within text, with
templates for calculations in up to five columns. (It's just
like having a spreadsheet program built into your word
processor!). BeckerText prints up to five columns of
text a page for professional-looking newsletters,
presentations, reports, etc. It even has two expandable
spelling checkers for 100% spelling accuracy.

BeckerText is also,a perfect choice for C language
programmers as an extremely flexible C editor. Whether
you’re deleting, adding or duplicating a block of C source
code, BeckerText does it all, automatically. The online
dictionary can double as a C syntax checker—catch those
syntax errors immediately.

BeckerText gives you the power and flexibility to
produce the professional-quality documents that you
demand. It adapts to, most popular dot-matrix and letter-
quality printers. Includes a comprehensive tutorial, manual
and glossary.

When you need more from your word processor than just

word processing, you need BeckerText. Discover the
power of BeckerText.

Suggested retail price: $99.95

Atari ST, S20ST, 1040ST, TOS, ST BASIC and ST LOOO are trademarks ar registered trademarks of Atari Corp.

Beckeriext

A

BeckerText Features:

Select options from dropdown menus or shortcut keys

Fast WYSIWYG formatting

Bold, italic, underline, superscript and subscript

characters

« Automatic wordwrap and page numbering

Sophisticated tab and indent options, with centering &

margin justification

Move, Copy, Delete, Search & Replace options

Automatic hyphenation & automatic indexing

+ Write up to 999 characters per line with horizontal
scrolling feature

« Online dictionary checks spelling as you're writing

+ Spelling checker interactively proofs text

Calculates numbers within text—use templates to

calculate in columns

« Customize up to 30 function keys to store often-used

text and macro commands

Merge graphics into documents

Includes BTSnap program for converting text blocks

to graphics

« C-source mode for quick and easy C language program

editing

Multiple-column printing—up to five columns on a

single page

- Adapts to virtually any dot-matrix or letter-quality
printer

+ Load & save files through the RS-232 port

- Comprehensive tutorial and manual

Not copy protected

GEM ia a regintered trademark of Digital Research Inc.

Selected Abacus Products for the ATAR[I@A%

‘Chartpak ST

Professional-quality charts and graphs
on the Atari ST

In the past few years, Roy Wainwright has earned a
deserved reputation as a topnotch software author.
Chartpak ST may well be his best work yet. Chartpak
ST combines the features of his Chartpak programs for
Commodore computers with the efficiency and power of
GEM on the Atari ST.

Chartpak ST is a versatile package for the ST that lets
the user make professional quality charts and graphs
fast. Since it takes advantage of the STs GEM
functions, Chartpak ST combines speed and ease of use
that was unimaginable til now.

The user first inputs, saves and recalls his data using
Chartpak ST's menus, then defines the data positioning,
scaling and labels. Chartpak ST also has routines for
standard deviation, least squares and averaging if they are
needed. Then, with a single command, your chart is
drawn instantly in any of 8 different formats—and the
user can change the format or resize it immediately to
draw a different type of chart.

In addition to direct data input, Chartpak ST interfaces
with ST spreadsheet programs spreadsheet programs
(such as PowerLedger ST). Artwork can be imported
from PaintPro ST or DEGAS. Hardcopy of the finshed
graphic can be sent most dot-matrix printers. The results
on both screen and paper are documents of truly
professional quality.

Your customers will be amazed by the versatile,
powerful graphing and charting capabilities of Chartpak
ST.

Chartpak ST works with Atari ST systems with one or
more single- or double-sided disk drives. Works with
either monochrome or color ST monitors. Works with
most popular dot-matrix printers (optional).

Chartpak ST Suggested Retail Price: $49.95

FRORCIED 01 CRD O 4BRE MREC

FORLDWIOE AETERIES [N MIRLLLTOMS

SR
At
A

S

L3 P U L]

L

=2
RGN [

- ¥

~=Rtari

X Atari Stock Ferformance t

High Price
Selid Tine

Dashed [ides are | std deviation Jines

First dog as pablic = ii/87/86

i least squure regression

e

2/4/87 R0V

PERSTARL CORPUTER SIFTAARE M

P SOFTHAE L11-1900

Telals (056

uin

OEFECET PRAECTEDNS o CRRA-GUDN

=19 FIONM
FEDERRL OEFICIT

bl

Selected Abacus Products for the ATARHE A@ﬁn

DataRetrieve

(formerly FilePro ST)

Database management package
for the Atari ST

“DataRetrieve is the most versatile, and yet simple,

data base manager available for the Atari 5205T/1040ST
on the market to date.”

—Bruce Mittleman

Atari Journal

DataRetrieve is one of Abacus' best-selling software
packages for the Atari ST computers—it's received
highest ratings from many leading computer magazines.
DataRetrieve is perfect for your customers who need a
powerful, yet easy to use database system at a moderate
price of $49.95.

DataRetrieve's drop-down menus let the user quickly and
easily define a file and enter information through screen
templates. But even though it's easy to use,
DataRetrieve is also powerful. DataRetrieve has fast
search and sorting capabilities, a capacity of up to
64,000 records, and allows numeric values with up to
15 significant digits. DataRetrieve lets the user access
data from up to four files simultaneously, indexes up to
20 different fields per file, supports multiple files, and
has an integral editor for complete reporting capabilities.

DataRetrieve's screen templates are paintable for
enhanced appearance on the screen and when printed, and
data items may be displayed in multiple type styles and
font sizes.

The package includes six predefined databases for
mailing list, record/video albums, stamp and coin
collection, recipes, home inventory and auto
maintenance that users can customize to their own
requirements, The templates may be printed on Rolodex
cards, as well as 3 x 5 and 4 x 5 index cards.
DataRetrieve's built-in RAM disks support lightning-
fast operation on the 1040ST. DataRetrieve interfaces to
TextPro files, features easy printer control, many help
screens, and a complete manual.

DataRetrieve works with Atari ST systems with one or
more single- or double-sided disk drives. Works with
either monochrome or color monitors. Printer optional.

DataRetrieve Suggested Retail Price: $49.95

Atari ST, 520ST, 1040ST, TOS, ST BASIC and ST LOGO are rks or

. DataRetrieve
The electronic
filing system
for the ST

Pesk File Change Options Input/Jutput Help
3 | b A NEW TES T el AR RACY e Berea] &
»Search nodec Data records : 18 Index ! Ko active index

©

o
t] Boftuare]
| PataTrieve

i | pndre Classen
Perd-Uwe Neukanp

Price ! ;ﬁ; i

Nunber of Pages [
ISEN #
Description

Product Type
Product Name

Authsr(s)

t] B-316433- 74 n
[simpie to use and
ersatile database
X ias.

DataRetrieve Features:

« Easily define your files using drop-down menus

« Design screen mask size to 5000 by 5000 pixels

Choose from six font sizes and six text styles

Add circles, boxes and lines to screen masks

Fast search and sort capabilities

Handles records up to 64,000 characters in length

+ Organize files with up to 20 indexes

Access up to four files simultaneously

« Cut, past and copy data to other files

« Change file definitions and format

* Create subsets of files

« Interfaces with TextPro files

« Complete built-in reporting capabilities

+ Change setup to support virtually any printer

 Add header, footer and page number to reports

+ Define printer masks for all reporting needs

« Send output to screen, printer, disk or modem

« Includes and supports RAM disk for high-speed

1040ST operation

« Capacities: max. 2 billion characters per file
max. 64,000 records per file
max. 64,000 characters per record
max. fields: limited only by record size
max. 32,000 text characters per field
max. 20 index fields per file

« Index precision: 3 to 20 characters

+ Numeric precision: to 15 digits

« Numeric range 10 8 i +10308

of Atari Corp.

GEM is a registered tradernark of Digital Research Inc.

PaintPro

Design and graphics software for the ST

PaintPro is a very friendly and very powerful package
for drawing and design on the Atari ST computers that
has many features other ST graphic programs don't
have. Based on GEM™, PaintPro supports up to three
active windows in all three resolutions—up to 640x400
or 640x800 (full page) on monochrome monitor, and
320 x 200 or 320 x 400 on a color monitor,

PaintPro’s complete toolkit of functions includes text,
fonts, brushes, spraypaint, pattern fills, boxes, circles
and ellipses, copy, paste and zoom and others. Text can
be typed in one of four directions—even upside down—
and in one of six GEM fonts and eight sizes. PaintPro
can even load pictures from "foreign" formats (ST
LOGO, DEGAS, Neochrome and Doodle) for
enhancement using PaintPro’s double-sized picture
format. Hardcopy can be sent to most popular dot-
matrix printers.

PaintPro Features :
» Works in all 3 resolutions (mono, low and medium)
« Four character modes (replace, transparent, inverse

XOR)

Four line thicknesses and user-definable line pattern

Uses all standard ST fill patterns and user definable

fill patterns

» Max. three windows (dependng on available memory)

* Resolution to 640 x400 or 640x800 pixels
{mono version only)

» Up to six GDOS type fonts, in 8-, 9-, 10-, 14-, 16-,
18-, 24- and 36-point sizes

+ Text can be printed in four directions

« Handles other GDOS compatible fonts, such as those
in PaintPro Library # 1

 Blocks can be cut and pasted; mirrored horizontally
and vertically; marked, saved in LOGO format, and
recalled in LOGO

« Accepts ST LOGO, DEGAS, Doodle & Neochrome
graphics

» Features help menus, full-screen display, and UNDO
using the right mouse button

+ Most dot-matrix printers can be easily adapted

PaintPro works with Atari ST systems with one or
more single- or double-sided disk drives. Works with
either monochrome or color ST monitors. Printer
optional.

PaintPro Suggested Retail Price: $49.95

Selected Abacus Products for the ATARF Agﬁ‘

PaintPro

Create double-
sized pictures

PaintPro

PaintPro 7

B

Multiple
windows

9 File Block Optlons Style Help
A:\SERHOLF PIC

A:\ATARILPLC

R ATA 52050

SN T =3
ULEL 4

3 \ROISE.PIC

E

8 _file Block

B4

| T
&

|
v
&)
N
-
-
o

11ght
under ined

I3

B “'Oje¢nvna@d

Direction: Size:

d e

0 . LASRELITY

5 =y o

- m
]

st W L

O file Block Optiens Pattern Color He!
A:\PRINTPRO.PIC

PaintPro
Coke Uersion -

b4

and con use GOOS forde. o O \PA TN TPR!

inoludas patiarn adlior

8 sadg WaintPro,

[] WWeachrome and IBegag i
PBictureg.

1\PRINTPRO, DIR\ATARIL.P

A ATARI 2051

 DIR\SERNOLF P3BE] K R

Atari ST, 520ST, 1040ST, TOS, ST BASIC and ST LOGO are trademnarks or registered trademarks of Atari Corp. —

GEM is a registered trademark of Digital Research Inc.

PCBoard
Designer

Interactive CAD Package
for printed circuit board layout
on the Atari ST

PCBoard Designer is an interactive, computer-aided
design package for creating electronic printed circuit
boards. It drastically reduces the cost, time and tedium of
making one or two-sided pc boards. The advanced
features of PCBoard Designer can improve a designer's
productivity ten-fold.

PCBoard Designer is easy to use. Design parameters are
conveniently entered and modified at the computer. The
user can position the components interactively by
moving them on the screen using the mouse. This lets
the user compare alternative component placement with
no extra effort.

As the user position the components on the screen
using the mouse, PCBoard Designer displays the new
connections! Automatic routing is fast and precise.

The most powerful feature of PCBoard Designer is its
fast automatic _routing capability. Traces are
automatically and precisely drawn on the screen. If the
user changes the design, the traces can be immediately
redrawn—this feature alone can save an enormous
amount of time and money. In addition, the user has
options of 45° or 90° angle traces, different trace widths,
routing from pin to pin, pin to BUS, BUS to BUS, as
well as two-sided boards. The rubberbanding feature lets
you see the user-defined components during
placement—and the wuser can reposition your
components at any time during the design process.

PCBoard Designer prints the completed layout to any
Epson/compatible dot matrix printer and Hewlett-
Packard plotters at 2:1. The high-quality printout is
camera-ready for final photo-etching. PCBoard Designer
also prints the component layout, and lists every
component and connection as well.

In conjuction with the Atari ST computer, PCBoard
Designer is the most affordable PC board CAD package
available. It boasts features that not available on
systems costing thousands of dollars.

AIAriST,SZ(S’l‘,lO‘OSI‘,TOS,STBASIClndSTIDOOnemdemrkxotregismedtmlmksof Atari Corp.

Selected Abacus Products for the ATAR? Agﬁﬂ

PCBoard
Designer

Create printed circuit board layouts

Features: Auto-routing, component
list, pinout list, net list

How PCBoard Designer works

There are basically four steps in creating a working
pc board:

+ Specify the components: For example, IC4 is an
integrated circuit that fits in a 14-pin dual-in-line
socket. You can also define custom component
types, for example a 99-pin circular IC.

« Specify the connections: For example, pin 2 of
integrated circuit IC4 is connected to lead 1 of
transistor Q7. You can change the connections at
any time.

» Position the components: Move the components
to their desired position on the screen by using
the Atari ST's mouse. You can reposition them at
any time. PCBoard Designer automatically routes
the connections when you're done.

« Output the design: The finished board can be
printed on any Epson/compatible printer or
Hewlett-Packard plotter. The printout is suitable
for photoetching. You can also print the
component layout (for silksereening), the
component list, and the list of connections.

GOEM is a registered trademark of Digital Research Inc.

Selected Abacus Products for the ATAR‘F’ A@ﬁl‘

Desh Fiie Inpet Layowt Rowting HManwvel Uetpet

__Besk_tile Inpet_Luyost |

Select ¥
Seiect-¥

"I was thoroughly impressed... a powerful, multi-

featured design tool that can be easily learned and
used."

—Bill Marquardt

Input magazine

"What makes this program especially easy to use
is that the components are drawn to scale on the
screen. This comes in handy when it's time for
the user to position the components.

"The author invested a lot of blood, sweat and
tears writing this portion of the program. PCBoard
Designer has a wide selection of options here that
allow for flexible design. Either all of the
connections or an individual connection can be
routed at the click of the mouse button.

"One thing is clear, though: author Florian
Sachse has produced a first-class software package.
This program will undoubtedly be a godsend to the
engineer and electronic hobbyist alike.

—_DATA WELT Magazine
APRIL 1986

Abacus Software, Inc.
5370 52nd St. S.E.
Grand Rapids, MI 49508

(616) 698-0330

Atari ST, 520ST, 1040ST, TOS, ST BASIC and ST LOGO are trademarks of registered trademarks of Atari Corp.

PCBoard Designer (continued)

PCBoard Designer Features:

¢ PC boards may be one-sided or two-sided

» Components are drawn to scale on the screen

« Custom components may be used

« Component positioning is flexible and interactive

+ Components may be roatated in 90° increments

» Traces are drawn using sophisticated and fast
automatic routing techniques—the user has the ability
to make 45° and 90° angle traces, variable trace
widths, pin to pin, pin to bus and bus to bus routing

« "Blockades" may be inserted onto the board to handle
special cases

« Printout is high quality and suitable for photo-
reproduction

 Features are clearly displayed and are selectable from
the drop-down menus

Hardware Requirements:

Computer: Atari 520ST or 1040ST computer and
monochrome monitor with one or more single-sided,
double-sided, or hard disk drives.

Printers/Plotters: PCBoard Designer prints your
completed layout to any Epson or Epson-compatible dot
matrix printer at 2:1. Epson FX-80, FX-100, Toshiba,
NEC P6 and P7 or compatible printersrequired for photo-
ready traces. Also works on Hewlett/Packard plotters.

¢ Package: Includes 100 page manual in 3-ring slipcase
| binder and program diskette.

i Free phone support to registered users.

{ PCBoard Designer can dramatically improve design

productivity by eliminating many redundant steps and
time-consuming alterations. With all of its advanced
time-saving capabilities, PCBoard Designer pays for

{ itself after the first successfully designed board.

PCBoard Designer

Suggested Retail Price:

$195.00

GEM is a registered trademark of Digital Reacarch Inc.

PowerLedger ST

(formerly PowerPlan ST)

Spreadsheet/Graphics package
for the Atari ST

"A superior spreadsheet program for weekend

bookeeping to the heavyweight job costing appli-
cations, (Powerledger ST) is a definite winner.”

—Judi Lambert

ST World

Ever since VisiCalc and Lotus 1-2-3 stormed the
personal computer market, the computer has become an
important planning tool. PowerLedger ST brings the
power of electronic spreadsheets to the Atari ST line of
computers—it lets the user quickly perform hundreds of
calculations and “what-if" analyses for business
applications, and crunch raw data into meaningful,
comprehensible information, to keep track of budgets,
expenses and statistics.

PowerLedger ST is a powerful analysis package that

features a large spreadsheet (65,536 X 65,536
cells—over 4 billion data items). It also contains a
built-in calculator, online notepad, and integrated
graphics.

PowerLedger ST is also very easy to learn, since it uses
the familiar GEM features built into the ST. And
PowerLedger ST can use multiple windows—up to
seven. Data from the spreadsheet can be graphically
summarized in in pie charts, bar graphs and line charts,
and displayed simultaneously with the spreadsheet. For
example, one window can display part of the
spreadsheet; a second window a different part; and a third
window, a pie or bar chart of the data.

PowerLedger ST works hand-in-hand with our
DataTrieve data management package and our TextPro
wordprocessing package.

PowerLedger ST's extraordinary combination of data and
graphic power, ease of use and low price makes it a
perfect tool for every ST owner's financial planning
needs.

PowerLedger ST works with Atari ST systems with one
or more single- or double-sided disk drives. Works with
either monochrome or color ST monitors. Works with
most popular dot-matrix printers (optional).

Selected Abacus Products for the ATARIF Agﬁm

PowerLedger =2
Full-powered Spre:

37 math functions - 14 digh precision

Large size - over 4.2 bilion cells

Muttiple windows - Up 10 7

Graphks - 7 types of graphs

r2dcid

B—) 14 S——
k1 EBprocuct 1 M Product 3

PowerLedger ST Features:

PowerLedger ST

Atari ST, 520ST, 1040ST, TOS, ST BASIC and ST LOGO are

Familiar drop-down menus make PowerPlan easy to
learn and use
Large capacity spreadsheet serves all the user's
analysis needs
Convenient built-in notepad documents your
important memos
Flexible online calculator gives you access to quick
computations
Powerful options such as cut, copy and paste
operations speeds the user'swork
Integrated graphics summarize hundreds of data items
Draws pie, bar, 3D bar, line and area charts
automatically (7 chart types)
Multiple windows emphasize the user's analyses
Accepts information from DataTrieve, our database
management software
Passes data to TextPro wordprocessing package
Capacities: maximum of 65,535 rows
maximum of 65,535 columns
variable column width
numeric precision of 14 digits
maximum value 1.797693 x 10308
minimum value 2.2 x 10-308
37 built-in functions

Suggested Retail Price: $79.95

of regi of Atari Corp.

GEM is a registered trademark of Digital Research Inc.

I
@
|
i

Selected Abacus Products for the ATAR[F) A@ﬁa

TextPro

Wordprocessing package
for the Atari ST

"TextPro seems to be well thought out, easy, flexible
arf fast. The program makes excellent use of the GEM
interface and provides lots of small enhancements to
make your work go more easily... if you have an ST
and haven’t moved up to a GEM word processor, pick
up this one and become a text pro.”
—John Kintz
ANTIC

"TextPro is the best wordprocessor available for the ST'
—Randy McSorley
Pacus Report

TextPro is a first-class word processor for the Atari ST
that boasts dozens of features for the writer. It was
designed by three writers to incorporate features that
they wanted in a wordprocessor—the result is a superior
package that suits the needs of all ST owners.

TextPro combines its "extra" features with easy
operation, flexibility, and speed—but at a very
reasonable price. The two-fingered typist will find
TextPro to be a friendly, user-oriented program, with all
the capabilities needed for fine writing and good-looking
printouts. Textpro offers full-screen editing with mouse
or keyboard shortcuts, as well as high-speed input,
scrolling and editing. TextPro includes a number of easy
to use formatting commands, fast and practical cursor
positioning and multiple text styles.

Two of TextPro's advanced features are automatic table
of contents generation and index generation
—capabilities usually found only on wordprocessing
packages costing hundreds of dollars. TextPro can also
print text horizontally (normal typewriter mode) or
vertically (sideways). For that professional newsletter
look, TextPro can print the text in columns—up to six
columns per page in sideways mode.

The user can write form letters using the convenient
Mail Merge option. TextPro also supports GEM-
oriented fonts and type styles—ext can be bold,
underlined, ifalic, SUPETSCTIPt outlined, etc., and in a
number of point sizes. TextPro even has advanced
features for the programmer for development with its
Non-document and C-sourcecode modes.

TextPro Suggested Retail Price: $49.95

Ui e . s e o e
DOC _ MRAP INSER? COLUNN | LINE &4 [ITT 3N
Shaces Seftware ATAAI ST Products L]
TUTRRIM. XXX This (s an exensle of b
colunn printing. Sea fermats 1
Dear Conputer Enthusiast, under the formatting menu, -
change these settings e
Here's eur latest cotalog coa- obtaln various results, Flve
taining all of our latest pre- column printing is eveiladle
by wsing the BUTPUT.ME ond
printing horizestaily,
CheEmB it one ef the largest
and most rellsble publishers
in the micre industry, and
we've sarned aur solld reputa-
tion by taking care of each
custoner like you.
We have an extensive lineup of
books and software packapes. g
° To

TextPro ST Features:

Full screen editing with either mouse or keyboard
Automatic index generation

Automatic table of contents generation

Up to 30 user-defined function keys, max. 160
characters per key

Lines up to 180 characters using horizontal scrolling
Automatic hyphenation

Automatic wordwrap

Variable number of tab stops

Multiple-column output (maximum 5 columns)
Sideways printing on Epson FX and compatibles
Performs mail merge and document chaining
Flexible and adaptable printer driver

Supports RS-232 file transfer (computer-to-computer
transfer possible)

Detailed 65+ page manual

TextPro works with Atari ST systems with one or more
single- or double-sided disk drives. Works with either
monochrome or color ST monitors.

TexPro allows for flexible printer configurations with
most popular dot-matrix printers.

Atari ST, 520ST, 1040ST, TOS, ST BASIC and ST LOGO are trademarks or registered trademarks of Atari Corp.

GEM is a registered trademark of Digital Rescarch Inc.

BASIC 1,

ANS

CETTT:
[
it

INTERNALS
Essential guide to learning the
inside information of the ST.
Detailed descriptions of sound
& graphics chips, internal

TRICKS & TIPS
Fantastic coliection of pro-
grams and info for the ST.
Complete programs include:
super-fast RAM disk; time-
saving printer spooler; color
print hardcopy; plotter output
hardcopy. Money saving tricks
and tips. 200 pp. $19.95

GEM Programmer's Ref.
For serious programmers in
need of detailed information
on GEM. Written with an
easy-to-understand format. All
GEM examples are written in
C and assembly. Required
reading for the setious pro-
grammer. 450pp. $19.95

GRAPHICS & SOUND
Detailed guide to understand-
ing graphics & sound on the
ST. 20 & 3D function plotters,
Moiré patterns, various reso-
lutions and graphic memory,
fractals, waveform generation.
Examples written in C, LOGO,
BASIC and Modula2. $19.95

BASIC Training Guide
Indispensible handbook for
beginning BASIC program-
mers. Learn fundamentals of
programming. Flowcharting,
numbering system, logical
operators, program structures,
bits & bytes, disk use, chapter
quizzes. 200pp. $16.95

hardware, various ports, GEM.
Commented BIOS listing. An
indispensible reference for
your library.

450pp. $19.95

PRESENTING THE ST
Gives you an in-depth
look at this sensational
new computer. Discusses
the architecture of the
ST, working with GEM,
the mouse, operating
systemn, all the various
interfaces, the 68000
chip and its instructions,
LOGO. $16.95

Abacus

MACHINE LANGUAGE

Program in the fastest
language for your Atari
ST. Learn the 68000
assembly language, its
numbering system, use
of registers, the structure
& important detaits of the
instruction set, and use of
the internal system
routines. 280pp $19.95

LOGO
Take contral of your
ATARI ST by learning
LOGO-the easy-to-use,
yet powerful language.
Topics covered include
structured programming,
graphic movement, tile
handling and more. An
excellent book for kids as
well as adutts. $19.95

(LI
T

PEEKS & POKES
Enhance your programs
with the exampies found
within this book. Explores
using the different lang-
uages BASIC, C, LOGO
and machine language,
using various interfaces,
memory usage, reading
ar:1 saving trom and to
disk, more. $16.95

BEGINNER'S GUIDE
Finally a book for those
new to the ST wanting to
understanding ST basics.
Thoroughly understand
your ST and its many
devices. Learn the funda-
mentals of BASIC, LOGO
and more. Complete with
index, glossary and illus-
trations. +200pp $16.95

BASICTOC
If you are already familiar
with BASIC, learning C
will be all that much
easier. Shows the trans-
ition from a BASIC
program, translated step
by step, to the final C
program. For all users
interested in taking the
next step. 9.95

The ATARI logo and ATARI ST are ¥ademarks of Atari Corp.

Software

5370 52nd Street SE Grand Rapids, M| 49508 Phone (616) 698-0330

Optional diskettes are available for all book titles at $14.95

Call now for the name of your nearest dealer. Or order directly from ABACUS with your MasterCard, VISA, or Amex card. Add
$4.00 per order for postage and handling. Foreign add $10.00 per book. Other software and books coming soon. Call or
write for your free catalog. Dealer inquiries welcome-over 1400 dealers nationwide.

_
How to Order

Abacus 5370 52nd Street SE Grand Rapids, Ml 49508

All of our ST products—applications and language software, and our
acclaimed 14 volume Atari ST Reference Library—are available at
more than 2000 dealers in the U.S. and Canada. To find out the

location of the Abacus dealer nearest to you, call:
-

>

Or order from Abacus directly by phone with your credit card. We
accept Mastercard, Visa and American Express.

(616) 698-0330

8:30 am-8:00 pm Eastern Standard Time

Every one of our software packages is backed by the Abacus 30-Day
Guarantee—if for any reason you're not satisified by the software
purchased directly from us, simply return the prooduct for a full refund
of the purchase price.

Order Blank

: @ Name: |
S |
1 g Addes gm=l
|§ p City State Zip Country %2 i
I.‘é §= Phone: / ;g l
15 = , <al
1= © E ty Name of product Price g- 1
[o
l% w b gi |
s @~ = °Rl
1o 28s 3 BEE
18 208 o : IX|[ZE |
I 328 =73 Mich. residents add 4% sales tax g NSl
I g ap< —E'E S f 4 2 E5 i
3 ho) > pping/ranaiing char, . !
18 3a¢ £z Shipping/Handling charge $4.00 q-:aa I
L 858 99 (Forclgn Orders $12 per item) g8 |
1 g Twe T . : %a 1
1> 2 . Check/Money order TOTAL enclosed ow]
=} =]
12 S S Credit Cadt 521
() - a s,
% S I LITIII[TTII[]T] Al
I Expiration date ~ Cardholder Signature |
I I
Woowl e — L5 R | L& § § § N | —-------—-_“-.MJ

INTERNALS

This tNTERNALS volume is a welcome addition to any ST
programmer's library. Inside you'll find important hardware and
programming information for your ST. Contains valuable
information for the professional programmer and ST novice.
Here is a short list of some of the things you can expect to read
about:

68000 processor Custom chips

WD 1772 disk controller « MFP 68901

« ACIA's 6850 * YM-2149 sound generator
« Centronics interface ¢+ R g0 ;
» MIDl-interface » DMA controller

« GEMDOS ; « BIOS &XBIOS

* Interrupt instructions » Error codes

« BIOS listing - Blitter chip

About the authors: ‘
 The authors, Klaus Gerits, Lothar Englisch and Rolf Bruckmann,
~are all part of the experienced Data Becker Product
,Devetopment team, based in Duesseldorf, W. Germany. They
are all best selling computer book authors and very
knowledgable concermng the subjects presented in this book.

. ISBNO-91bY439-Y4b-1

A Data Becker book publlshed by

ATARI

T 2.% 9‘ _Emmz>r

Brlickmann, English, Gerits

