Learning C
on the '

Atari ST

Joseph Boyle Wikert

Scott, Foresman and Company Computer Books

I

LEARNING C
ON THE ATARI ST

y

Al

LEARNING C
ON THE ATARI ST

J

Joseph Boyle Wikert

Scott, Foresman and Company

Glenview, llinois London

I would like to dedicate this book to my parents, Joseph and Bar-
bara Wikert. Thank you for everything you have done and provided for
me in my life.

Atari ST and TOS are trademarks of the Atari Corporation
UNIX is a trademark of Bell Telephone Laboratories

Lattice is a trademark of Lattice, Inc.

GEM, AES, and VDI are trademarks of Digital Research Inc.
Mark Williams C is a trademark of Mark Williams Company

Library of Congress Cataloging-in-Publication Data

Wikert, Joseph Boyle.
Learning C on the Atari ST / Joseph Boyle Wikert.
p. cm.
Includes index.
ISBN 0-673-18738-1
1. Atari 8T computers—Programming. 2, C (Computer program
language) 1. Title.
QAT76.8.A824W55 1988 87-26236
005.265—dc19 CIp

Printer's Key: 123 4 56 EBL 92 91 90 89 88 87

ISBN 0-b73-187348-)

Copyright € 1988 Scott, Foresman and Company.
All Rights Reserved.
Printed in the United States of America.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. Neither the author nor Scott,
Foresman and Company shall have any liability to customer or any other person or entity with respect to any liability,
loss. or damage caused or alleged to be caused directly or indirectly by the programs contained herein. This includes,
but is not limited to, interruption of service, loss of data, Joss of business or anticipatory profits, or consequential
damages trom the use of the programs.

Scott, Foresman Professional Publishing Group books are available for bulk sales at quantity discounts. For infor-
mation, please contact the Marketing Manager, Professional Books, Professional Publishing Group, Scott, Foresman
and Company, 1900 East Lake Avenue, Glenview, IL 60025,

Table of Contents

Chapter 1.

Chapter 2.

What Is C?. 1
The Origin of C 2
C vs. BASIC and Logo 2
Atari ST C Compilers 3

The Graphics Environment Manager (GEM) 4
Using the Megamax C Compiler 5
Summing Up 12
Glossary for Review 12
Quiz 13
C Revealed: Structure and Syntax 15
The Right Stuff: Syntax 16
The Elements of a C Program 16
Variables in C 18
The Basic C Data Types 19

Int 19

Float 21

Characters and Strings 22
What to Declare? 24
Assigning Variables 24
Classes of Storage 25
Expressing Ourselves 27
Mathematical Order of Operation 28

Simple C Arithmetic 29

Contents

vi

Chapter 3.

Chapter 4.

Program Formatting N
Glossary for Review 32
Quiz 32
C Statements 33
The printf Function 34
The putchar Function 37
The scanf Function 37
The getchar Functions 39
Statements of Choice: The Conditionals 39
Decisions, Decisicns . . . The
Thinking ST 40
A Couple of Common Errors with “if”
Statements 42
Nesting Your “if” Statements 44
Logical Operators 46
The ?: (Conditional) Operator 46
The Switch Alternative 47
Quiz 49
More Statements: The Looping Structures

Programs That Repeat 52

The “while” Statement 52

Counting Your Loops 54

Loops That Sum 55

More Mathematical Operators 57

The “for” Statement 39

The “do-while™ Statement 65
“while” vs. “do-while” 66

Nested Loops 66

One More Loop: The goto Statement 67

Glossary for Review 69

Quiz 69

51

Contents

Chapter 5.

Chapter 6.

Chapter 7.

C Functions 7

Structured Design 72

What Is a Function? 73

What Does a Function Consist Of? 73

Where Is a Function Placed? 73

How Are Functions Used? 74

Using Variables with Functions 76
Global vs. Local Variables 76
Value Parameters 78

The Return Statement 80

Variable Parameters 82

Glossary for Review 84

Quiz 84

Library Features 85

How to Avoid Reinventing the Wheel 86
The Central Library 86
Standard C Functions 87
Mathematical 87
String 88
Macros 89
GEM Functions 920
Windows 93
Glossary for Review 97
Quiz 97

Programmer’s Corner 99

The Entire Picture: Complete C Programs 100

Metric Conversions Program 100
Guess a Number Program 104
Decimal to Hexadecimal Conversion Program 110
Tape Counter Program 114

Glossary for Review 17

Quiz 117

Contents

Chapter 8. Advanced Data Structures and Concepts 119

Advanced Numeric Types: Longs, Doubles, Words,

and Unsigned Types 120
Simple Arrays 121
Paralle] Arrays 124
Structures and Files 125
Using Arrays and Structures in an Application 127
Recursion (or, Can I Call Myself?) 130
Glossary for Review 133
Quiz 133
Chapter 9. More on Structures and Files 135
Fields, Structures, and Files 136
Files vs. Arrays of Structures 137
File Handling Library Routines 138
Using a File in a Phone Book Program 139
Sorting and Merging Entries 143
Glossary for Review 150
Quiz 150
Chapter 10. Debugging and File Analysis 151
Debugging 152
File Analysis 153
Glossary for Review 161
Quiz 161
Chapter 11. Graphics 163
Atari ST Graphics in C 164
Fun with the Mouse 171
Glossary for Review 174
Quiz 174

viii

Contents

Chapter 12. A Few Programs for the Road 175
The Date Minder Program 176
Batting Average Program 182
Record Album Data Base Program 187
Summing Up 195
Glossary for Review 195
Quiz 195
Appendix A: Reserved Words 197
Appendix B: Answers to Quiz Questions 199
Index 203

ix

Introduction

As the proud owner of an Atari ST personal computer, you are probably
already aware of the capabilities of this powerful system. The purpose of this
book is to allow you to make your computer do what you want through C,
an equally powerful compiler language.)

For the beginner, the book starts to teach the basics of C on a very low
level. After a few easy-reading chapters, you will be ready to begin writing
programs of your own. For the more knowledgeable programmer, special
care has been taken to point out unique features of the ST, enabling you to
quickly pick up on this revolutionary computer. Finally, when you are fin-
ished reading Learning C on the Atari ST, you will want to keep it handy as
a reference guide.

As you read through the book, you should try out every program that
is presented. Enter them into your system, and make sure you understand
them thoroughly. After all, this sort of exercise will usually serve to reinforce
what you have learned. Good luck, and welcome to the world of C on the
Atari ST!

~— Chapter 1

What Is C?

In this chapter, you will learn:

« A brief history of the C language.

- How C compares with other languages available for the ST.
« What C compilers are available for the ST.

* What GEM is, and how C interfaces with it.

+ How to enter, compile, and link a short C program.

Learning C on the ST

The Origin of C)

The C language was created by Dennis Ritchie in 1972 at Bell Labs. Since
that time, numerous C compilers have been developed to run on various main-
frames, mini-, and microcomputers. Most of these compilers claim to be a
“Full K & R C Compiler” as one of their selling points. This simply means
that their compiler follows the rules of C as laid out in Kernighan and Rit-
chie’s The C Programming Language (1978, Prentice-Hall). This book is
commonly referred to as the “bible” of C and should be read by anyone who
is seriously considering writing in C. '

C has become a very popular language over the last several years, mostly
because of its power and portability. In most high-level languages (for ex-
ample, BASIC, PASCAL), the programmer is limited to how close he can
get to working with the computer on its own level of bits and bytes. In C,
however, you have the ability to manipulate memory all the way down to
the bit level, yvet the C code is much more readable than the same instructions
in assembly language. In addition, because of the Kernighan and Ritchie
compatibility, a great deal of code written for one machine may easily be
ported to another with few, if any, changes. This point alone is why so many
software developers are writing in C; the expense of rewriting a piece of
software the size of say, an operating system, in assembly language for an-
other completely different computer can be quite overwhelming. Just imagine
writing a sizable program in BASIC on your Atari ST and trying to make
“minor” changes to the code so that it will run on your friend’s Apple Mac-
intosh. Finally, well-written C code will generally take on a much more com-
pact and concise appearance than the same code written in most other high-
level languages. Currently, there are two other popular high-level languages
available for the ST: BASIC and Logo.

C vs. BASIC and Logo)

When the Atari ST computers were originally introduced, programmers had
the option of writing in either BASIC or Logo; interpreters for both these
languages are included with the machines. BASIC (Beginner’s All-purpose
Symbolic Instruction Code) is the result of an attempt to develop a language
that was easier to learn than its predecessors. Developed in 1964 at Dartmouth

What is C?

College, BASIC is the most symbotlic of the natural languages. Its instruc-
tions are analogous to English-like commands. BASIC has become the most
popular language among microcomputer users because of its simplistic ap-
proach and ease of use. Logo and BASIC are both used to teach programming
to the novice, and Logo, with its unique “turtle” graphics, is geared mostly
to younger programmers. BASIC and Logo, however, have their limitations
and are not recommended for long, complex programs.

When you program with an interpreter, the code you entered in is trans-
lated, or interpreted, into the machine’s native language when the program
is executed. That is, if you type in the following lines using a BASIC inter-
preter:

10 PRINT “C IS FUN"
20 GOTO 10
RUN

the phrase C IS FUN will be displayed over and over again until you stop
the program. There was no intermediate step in getting your program to run.
You simply enter in the statements, and the interpreter acts as somewhat of
a hidden middleman by specifying your intentions to the computer.

Using a compiler requires additional step(s), but for the serious pro-
grammer, the time spent is well worth the effort. A compiler translates the
program into machine-readable form, which may then be stored on a disk or
linked into a double-clickable application. This action causes most compiler-
generated programs to execute much faster than interpreted ones, since the
computer no longer needs to translate your statements one at a time while
the program is running.

Now that you understand some of the benefits of using a compiler, spe-
cifically C, instead of an interpreter, let’s briefly look at a few of the C
compilers available for the ST.

Atari ST C Compilers)

The author has looked closely at the following three C compilers for the Atari
ST computers: Lattice C (Metacomco), Mark Williams C, and Megamax C.
Although each of these compilers is fairly easy to use and learn, I recommend
the C compiler from Megamax because of its ease of use and performance.

3

Learning C on the ST

At the time this book was written, Lattice C was the least expensive of the
three, and yet the software package itself really has no noticeable shortcom-
ings. One of the major problems with using this C compiler is the lack of
support from Metacomco, the company that distributes and supports Lattice
C for the Atari ST. Metacomco used to have a phone number in California
that users could call for support, but now I understand that you must try and
call Great Britain for support—not much of a bargain for an inexpensive
compiler. In addition, it appears that both the Mark Williams and Megamax
packages are outselling Lattice.

The Mark Williams package (the second most expensive) is very im-
pressive and contains a 600-page manual that thoroughly explains the com-
piler and most of the standard library routines. My biggest complaint with
this compiler is the fact that you really need a hard disk to work with it
without driving yourself crazy by swapping floppies. In addition, this is a
five-pass compiler, whereas Lattice C requires only two passes, and Mega-
max only one. I also ran into some problems with the msh (microsheil) utility
Mark Williams supplies with the package. One day it would work perfectly
fine, and the next day I couldn’t compile even the simplest of programs.

Finally, the Megamax C package is by far the easiest and most note-
worthy C compiler for the Atari ST I have seen. It boasts an editor that makes
excellent use of the mouse and therefore keeps the user from having to re-
member all the special commands to save, copy, etc. The compile and link
processes may be easily combined within the development shell, and the com-
piler comes with an excellent 442-page manual that thoroughly describes the
system.

For these reasons, all the examples in this book are written using Me-
gamax’s C, but because of C’s portability, very few (if any) modifications
to them will allow you to run them using a different compiler. Another reason
why you should be able to execute these programs on different compilers is
the fact that the Atari uses the Graphics Environment Manager (GEM} to
handle a great deal of the processing necessary to take advantage of the ST’s
powerful capabilities.

The Graphics Environment Manager (GEM)

As the owner of an Atari ST computer, you are already aware of the graphics
power this system possesses. The drop-down menus, cute icons, and handy
windows are only a few of the responsibilities of the Graphics Environment
Manager. This “manager” is actually a collection of efficient routines that

What is C?

were written for the purpose of making all ST applications “look™ and “feel”
the same. Just think how confusing it would be if sometimes the menus came
from the bottom of the screen up and sometimes from side to side, or if
sometimes you had to click twice on an icon to open it, whereas other times
it only took one click. If everyone uses these common routines, all programs
will operate similarly, and time will be saved.

The GEM library may be further broken down into the Virtual Device
Interface (VDI) and the Application Environment System (AES). A descrip-
tion of each GEM routine will be provided as they are used in later chapters.
A listing of the specific routines available to you with Megamax C is avail-
able in Chapters 11 and 12 of the Megamax manual. The best description of
GEM and its routines is provided by the Atart ST GEM Programmer’s Ret-
erence (published by Abacus Software). This book outlines all of GEM in
general, but you will still have to familiarize yourself with the interfaces used
by your specific compiler.

Using the Megamax C Compiler)

The Megamax C compiler package comes with two 3%-inch microfloppy disks
called System and Utility. Briefly, the System disk contains the compiler and
linker and all the supplemental files necessary to compile and link a C pro-
gram, and the Utility disk contains several example programs and a copy of
the game Megaroids, which, by the way, is quite fun to play. The author’s
ST configuration includes two disk drives, but the Megamax C compiler may
be run on single drive systems. You may, however, develop a headache hav-
ing to swap disks unless you can fit your programs on the System disk. For
you single drive system owners, any reference to drive B simply means you
should eject the current disk and insert the one referred to in the second drive.

To start with, you should place your System disk in drive A and a blank
formatted disk in drive B. This blank disk will be used to hold our C source
code and executable programs. If you open the window for the System disk,
you willl see an icon called SHELL.PRG. This icon represents the driver
program of the Megamax system. If you double-click on it, a screen will be
displayed with four menus: Desk, File, Execute, and Locate. At this point
we are primarily interested in the Execute menu, which contains seven items:
Compiler, Linker, Editor, Disassembler, Librarian, Other, and Make. If you
select the Editor option, a dialog box is displayed that asks you to select the

5

Learning C on the ST

file you wish to edit. Select Drive B:, and when the disk stops spinning,
select the New box. Another dialog box will be displayed that asks you to
enter the name of this new file. Enter the following:

welcome.c

and press (RETURN) or click the OK box. The editor will be started up.
Once it has performed all its setup, the cursor will be blinking in the top left-
hand corner of the screen, and you may begin entering C code. The wel-
come.c line that you entered in at the last dialog box means that you wish
to open, or in this case create, a file on the disk in drive B by the name of
welcome.c. “Welcome” is commonly referred to as the file name and the ¢
portion is called the extension. We will always use the ¢ extension for files
that contain C source code.
Now go ahead and type in the following short C program:

/*First C Program*/

#include {stdio.h)
main {)

{

printf("Welcome to C"'};
getchar();
}

Just enter the program as if you were typing it into a typewriter. However,
the editor is quite a bit more sophisticated than a typewriter; your mistakes
can easily be fixed by backspacing over and retyping the incorrect characters.
There are several menus in the editor that enable you 1o enter your C code
easily. These are quite well documented in Chapter 5 of the Megamax man-
ual, and it is not the intention of this book to discuss thoroughly any one
particular editor. However, most of your code entry can be done simply via
the mouse (for positioning the cursor) and the backspace key.

Once you have the program entered, you will want to save it on your
source code disk. You can do this by selecting the Save option from the File
menti. The disk in drive B will spin for a moment while the file is being
saved, and when this process is complete. the editor will be ready for you
to enter more text. A great feature of the Megamax editor is that you can
have up to four edit windows open at any one time, so you could be looking
in different files for routines without having to close one file to get to the
next. This feature is also very useful when you are fixing compile errors

What is C?

because you can open a special file (errors out) that contains all your errors
and simultaneously have your C source file open for editing.

If you made any errors while entering the program. fix them now, and
then use the Save option to update the file. Then, when you have correctly
entered the code, select the Quit option in the File menu to leave the editor.
Control now is passed back to the shell, and the previous four menus (Desk,
File, Execute, and Locate) are displayed. If you were to exit the shell and
look at the desktop entry for your disk in Drive B:, you would see an icon
for the welcome.c file.

At this point, you are ready to compile your first C program. As was
mentioned earlier in this chapter, the Megamax C compiler is a one-pass
compiler, which means that your programs must go through only one phase
of error checking and manipulation before the results are ready to be linked
and executed. The compiler may be started up by selecting the Compiler
option from the Execute menu. Again, a dialog box is displayed that requests
you to enter the name of the file you wish to compile. Select Drive B:, and
once the entries for that disk are displayed, either click on the welcome.c
entry and press the OK box or simply double-click on the welcome.c entry.
The compilation process will then be started, and you should first see a mes-
sage that shows the version number of the compiler and one line specifying
that the file BAWELCOME.C is the file being compiled and that the resulting
output file is B:WELCOME.o. This latter file is called the object file, and
it will be used as input for the next phase, linkage. This information is dis-
played, and assuming no errors were encountered, the shell window is dis-
played again very quickly. Again, if you were to look at the desktop entry
for your disk in Drive B:, you would see an entry for a file called WEL-
COME.Q. This file contains information that is used to link your program
and create the final double-clickable application. Before we discuss linking,
let’s look at what happens if your code contains errors.

Let’s say that you accidentally entered the program like this:

/*First C Program*/

#include (stdio.h)
main()

{

printf("Welcome to C”)
getchar();
}

without the semicolon at the end of the printf(*Welcome to C*’) statement.

7

Learning C on the ST

If you then try to compile the program, the compiler will abort with the error:

getchar{);

"BAWELCOME.C”, line 7: Function type expected before ‘('
Number of errors: 1

press RETURN to continue

The line number 7 refers to the line number in your source code. If you had
a different number of blank lines in your file, your number may be different.
After the line number, the error mnemonic is displayed. Although this error
doesn’t specifically say that you forgot to put a semicolon at the end of your
printf statement, if you go back and look at your source code. it should be
apparent why the compiler got confused. To fix this problem, simply press
RETURN, and the Megamax shell will return to your file in the editor. In
addition, another window with the file AAERRORS.OUT is open. As was
discussed above, this file contains the error messages encountered in your
last compile. You may either select your source code file (by clicking any-
where in it) or close the ERRORS.OUT file by clicking on its close box in
the upper left-hand corner. Now go ahead and put the semicolon back on the
end of the printf(‘‘Welcome to C*’) line, then update and exit the editor via
the Save and Quit options in the File menu. When you have returned to the
shell, run the compiler (Compiler option in the Execute menu) again on the
corrected version of your program so that a valid WELCOME.o file will be
generated for the linker.

Now that we have an error-free WELCOME.o file, the next step in
creating a double-clickable application is to link this file with some other files
to tie up some loose ends. Our program is quite simple; it will merely display
the message Welcome to C and wait for you to press a key to continue. Let’s
take a closer look at what exactly will cause these actions to take place in
the code:

/*First C Program*/

#include (stdio.h}
main()

{

printf(“Welcome to C'"');
getchar();
}

The first line of the program is enclosed in the characters /* */. These char-

What is C?

acters designate a comment, and the compiler ignores everything between
them. Comments are very important ways of leaving notes in your code so
that you or someone else will know exactly what you were trying to do when
you wrote it. The next line in the code instructs the compiler to pull in the
file named stdio.h (the .4 extension is used to specify this file as a “header”
file) via the include directive. Quite simply, when your code is being com-
piled, if a #include is encountered, the compiler treats your program as though
the entire file specified was typed in at that spot. If you look at the contents
of the stdie.h file on your System disk, you’ll see it contains a lot of infor-
mation that, although it may be meaningless to you now, is used to assist
the compiler in transtating various input/output (I/0) instructions. Input/
output instructions are those instructions that allow the computer to accept
the information you enter into it and provide information back to you via the
screen, speaker, etc. You will see this directive used throughout this book
and in most other C programs because 1) it is much easier than typing in the
information contained within that file every time you write a program that
uses 1/0, and 2) even if you did want to have that information in every one
of your C source files, if for some reason the stdio.h file needs to be changed,
you would have to change it in every single program you entered it into!

As you can see, the #include directive is a very useful shortcut to ref-
erence common external files in your C code without having to worry about
entering them in and keeping up with modifications to them.

The next statement in the program is main(). This statement says that
this is the start of a routine or function, and this is where the actual program
instructions begin. A function performs a simple task and is designated by
a set of instructions enclosed within the symbols { and }. This particular pro-
gram has only one function called main, but you will later see programs that
have numerous other functions used to perform different tasks. Because a
program can, and usually does, contain muitiple functions, the compiler needs
to have some method of determining where to start processing instructions.
For this reason, main is reserved to designate the beginning of the central
routine.

The next statement,

printf("Welcome to C"');

is responsible for displaying the message “Welcome to C” on your screen.
Printf is an external function that takes parameters (within the parentheses)
and, based on certain formatting rules that will be discussed later, sends char-
acters to the monitor. Note the use of the semicolon (;) at the end of this

9

Learning C on the ST

statement. The compiler must have a method of knowing where each instruc-
tion ends and the next one begins, and the semicolon is used for this purpose.

Finally, the last statement enclosed within the main function’s start)]
and end (}) symbols is

getchar();

which is responsible for making the program wait until the user presses the
RETURN key on the ST’s keyboard. Getchar is another external function,
and, because of this 1/0, we generally need to place the #include {stdio.h)
staternent at the beginning of our program. However, the stdio.h file does
not contain the actual instructions that cause the I/O to work; these instruc-
tions are in another compiled file, and the only way we can have them in-
cluded in our simple program is to use the linker to call them in. This com-
bining of files is performed by the linker, which uses your instructions to tell
it exactly which files to work with. It is not important for you to know a
great deal about how the linker works, but you should be aware that you can
use it to pull together several of your own compiled files as well as other
compiled files that come with the Megamax system to create your executable
program. Even if you feel you don’t need to call in other external files, it is
still necessary to put your object file through the linker because the compiler
itself does not output a double-clickable application.

With this knowledge about linking, start up the linker by selecting the
Linker option from the Execute menu. A new dialog box will be displayed
that asks you to keep entering the names of the files you wish to have linked.
Select Drive B:, and click on the WELCOME.O entry. Then click the))ADD))
box, and you should see the entry for BAWELCOME.QO in the “To be linked”
miniwindow. If we had other files to pull into our link, we could continue
to select them in this manner. Now use the keyboard to change the name of
the Executable File (at the bottom of the dialog box) from A.PRG to WEL-
COME.TOS. Finally, click on the OK button, and the link process will be
started.

When the linker starts up, the screen is cleared and information about
the linker is displayed. The linker then informs you that your WELCOME.O
file is being loaded, and then all the external files are traversed to determine
if you need any of the information in them. When all the external files have
been looked at, some information about the sizes of different segments of
your program is displayed, and finally, control is returned to the shell, if no
linkage problems are encountered. If an error occurred during linkage, an

What is C?

error message will be displayed, and you should correct the problem and
relink.

After a successful link, you should see an icon named WEL-
COME.TOS on your B disk if you return to the GEM desktop. There’s no
need to leave the shell to check this, though; simply select the Other option
from the Execute menu. In the resulting dialog box, you should see an entry
for WELCOME.TOS. Now go ahead and double-click on the WEL-
COME.TOS entry. The screen is cleared, the mouse is hidden, and within
a few seconds the message Welcome to C is displayed on your screen. The
message will remain on your screen until you press RETURN. When RE-
TURN is pressed, the program is terminated, and control is returned to the
Megamax shell.

An casier method of compiling and linking your programs is provided
by Megamax via the “make” utility. Before using “make,” however, you
must always make sure that system time and date on your ST are current.
This may be achieved by using the Control Panel option in the Desk menu.
Once you have these items properly set, enter the editor, and create a file
called WELCOME.MAK on the disk in drive B. Enter these lines in the
file:

stdio.h
b:welcome.c
mmilink.ttpb:welcome.o-ob:welcome.tos

The first line tells “make” that you wish to pull in the stdio.h file when
compiling. The second line is used to inform the utility that you want to
compile the file welcome.c on the disk in drive B. Finally, the last line tells
“make” that you want to link b:welcome.o, with the resulting executable file
being b:welcome.tos. Notice that your executable program will now be placed
on the disk in drive B; this way you can keep your System disk free of un-
wanted files and keep all your own files on the disk in drive B. Save off the
file and open your source code file b:welcome.c. The “make” utility checks
to see if your source code file has been updated more recently than its as-
sociated object file (b:welcome.o0). If it has been, “make” knows that the
file should be recompiled. So even though we have no changes to make to
b:welcome.c, we must change the time entry for it on the disk so that “make”
will recompile it for us. Simply Save and Quit the editor, and select the Make
File option from the Locate menu. Select the WELCOME.MAK file from
drive B and click on the OK button. By doing this, you have informed the

11

Learning C on the ST

Megamax shell that you want B:WELCOME.MAK to be the information
file used in the “make” utility. Now select the Make option from the Execute
menu, and the compile/link process will be automatically done for you!

Congratulations, you have just finished compiling and linking your first
C program on the Atari ST! Go back and review any of the areas that may
have been unclear to you on your first reading, and be sure you understand
all the concepts presented in this chapter, because they will be the foundation
for the remainder of the book.

Summing Up)

12

This chapter has presented you with some basic information on the C lan-
guage, including a history and comparison of it with the other popular lan-
guages available on your Atari ST. A brief discussion of the C compilers
available for the ST and the reasons why this book is based on Megamax's
product were also discussed. Finally, you have worked with the editor, en-
tered the source code for your first C program, compiled, linked, and exe-
cuted it, and have been introduced to some of the more fundamental areas
of C (comments, the #include directive, functions, statements, etc.) as well
as Megamax’s powerful “make” utility.

Glossary for Review

interpreter—a translation program that converts your code into the ma-
chine’s native language when the program is executed

compiler—a translation program that converts your code into machine-
readable form, which may then be stored on a disk or linked into an ap-
plication

GEM—Graphics Environment Manager
VDI—Virtual Device Interface
AES—Application Environment System

linker—pulls together one or more compiled files (.0} and creates a
double-clickable program

What is C?

— Quiz]

1. What does it mean when a compiler is said to be a “full Kernighan and
Ritchie C compiler”?

2. What are the two fundamental reasons for C’s popularity?
3. How does a C compiler translate this line?

/*prigf{*'Welcome to C);*/

13

~—— Chapter 2 w |

C Revealed: Structure and
Syntax

. J

In this chapter, you will learn:

» What the proper structure and syntax of a C program is.
+ What the different data types are.

+ What a variable is.

» How to use comments and #define constants.

* How to use mathematical operations for arithmetic.

Learning C on the ST

— The Right Stuff: Syntax

This chapter focuses on many programming fundamentals necessary to
use C on the Atari ST. The first step in the programming process is to analyze
the problem and then to develop a general solution or algorithm. Next, the
solution is translated into C language instructions and then implemented to
test the results. From now on, we will emphasize the task of writing the
program instruction developed from algorithms.

Before we can begin to solve complex problems, we must first master
some fundamental concepts of the language itself. The first concept is the
structure of a C program and all the elements that make up a simple program.
Later in this chapter, we will introduce the concept of a variable and show
how this feature is invaluable for more complex programming problems.

When working with any language, certain rules must be followed. A natural
language, such as English, calls these rules grammar. A programming lan-
guage, like C, refers to these rules as syntax. Writing a program in C requires
that the program be properly constructed. Strict rules are imposed when writ-
ing programs. Programs must be syntactically correct and use valid state-
ments. If the rules or syntax are not followed—for example, if a semicolon
is misplaced or a key word is missing—a program will fail, leaving the pro-
gramming problem unsolved. Throughout this book, we will learn many syn-
tax rules. In the next section, we introduce a few of the most common ones.

The Elements of a C Program]

In general, a C program may be broken up into the following elements (in
pseudo—-C code):

#include files
#define constants
global structures
global variables
main(}

{

C Revealed: Structure and Syntax

main structures
main variables

main code

}

funct()

{

funcl structures
funcl variables

funcl code

}

func2()

{

func2 structures
func2 variables

func? code

}

funcN()

{

funcN structures
funcN variables

funcN code

}

We saw an example of an #include file in Chapter 1 with #include
(stdio.h). There are, of course, other files that may be pulied into your C
source code with the #include directive. Any time you see the #include
directive being used in a program, it simply means that the program needs
to reference at least one item specified in that file. As a final note on #in-
clude, the file name may appear in double quotes (‘‘filename.h’”) instead of
the brackets {({filename.h}). Both methods are correct, but you should choose
one and use it always.

The ability to set up symbolic constants in your C programs exists via
the #define initiative. If you are writing a program that asks users to enter
a number, and if it matches your lucky number, they win, you might want
to declare your lucky number like this:

#define LUCKY 13

17

Learning C on the ST

When your program is compiled, anywhere the characters LUCKY appear
(except in quotes), the compiler will replace them with the number 13. In
this manner, you can change your lucky number by simply changing its def-
inition in the #define statement and not have to worry about changing every
occurrence of it in your code. The name LUCKY is called an identifier be-
cause it identifies the number 13 as a constant that may be used throughout
your program.

C places some restrictions on identifiers. For instance, identifiers may
only contain upper- or Jowercase letters, digits, or the underscore (_) symbol.
More specifically, they must begin with a letter, and although they may be
several characters in length in Megamax C, only the first ten characters are
actually used by the compiler. For this reason, abedefghijk and abcdefghijl
would be considered the same name even though you and | realize the dif-
ference. In addition, C programmers have conventionally used uppercase
characters for #define identifiers and lowercase characters for variable dec-
laration identifiers (which we will discuss shortly}. This naming convention
makes it easy for a programmer to know immediately whether the name iden-
tifies a constant or a variable, You should also note that there is no semicolon
used at the end of a #define statement.

Both the #include and #define directives are part of the C preproces-
sor, which performs various tasks before actually compiling your C program.

The next parts of a C program are the global structures and global vari-
ables. In fact, as you can see, the remainder of our C program structure 1s
nothing more than various functions with their appropriate structures and vari-
ables. We'll discuss structures shortly, but first let’s discuss the concept of
variables.

Variables in C)

What is a variable? You may recall from basic algebra that a variable is
something that you can change. Computers use variables in much the same
way: A variable represents something that can change. Specifically, data val-
ues are stored in memory at different locations. Each location may contain
a value that can change. The computer must have the ability to manipulate
data and change its values.

In algebra, a common expression might be represented by y = x + .2.
The value of y changes as the value of x changes. x and y are called variables
because you can change their values. Similarly, visualize an empty box marked

C Revealed: Structure and Syntax

X. This box can represent a location in memory, and it can only accept one
item at a time. You can put any value in this box you wish, as if it were a
~ constant value, until you change or remove it.

On the Atari ST, each individual box is represented by a numeric ad-
dress or location. The 520 ST contains approximately 524,000 of these lo-
cations in RAM, whereas the 1040 ST contains approximately 1,048,000,
Fortunately, C allows us to assign a descriptive name (an identifier) to these
locations. Using identifiers to represent specific locations in memory is much
casier than using thousands of unique numeric addresses. Each particular
identifier must have a type associated with it in order for C to understand
how you intend to use it. So let’s look at the basic data types available to
you in C.

The Basic C Data Types B

In programming, data is represented using different types of information, such
as letters, numbers, and sets of characters. Before these types of information
can be processed, they first must be defined. In this section, we review the
common data types required for short programs. These data types include int,
float, and char.

Int

An imt (short for integer) is a whole number, which may be either positive
or negative, that cannot include a comma. Signs—positive (+) and negative
(—}—are allowed. If a positive sign is omitted, the positive is assumed. As
you know, the number of integers is infinite. However, there is a limit to the
number available on the ST in Megamax C. The largest number represented
by an int type is 32767, while the smallest is —32768. In any of our variable
sections listed above, we could insert the line:

int a;

and we would then have a space in memory set aside that could be referenced
by the variable name a and could contain any of the values between and
including 32767 and —32768. An int requires 16 bits of storage space in
Megamax C and therefore is two bytes long. A byte is simply a group of 8

19

Learning C on the ST

bits, or binary digits, which is used to hold data on a computer in the base
2, or binary, number system. For those of you unfamiliar with binary math,
the following is a brief table of decimal numbers and their binary equivalent:

Decimal Binary

00000001
00000010
00000011
00000100
00000101

o W N —

It is not necessary that you thoroughly understand the binary numbering
system now, but if you are unfamiliar with it, it is suggested that you read
one of the numerous mathematics books that are dedicated to this system.

There are other data types that may be used to define an integer besides
the int. If you do not need the full two bytes of storage for your variable,
vou could declare a to be a short int like this:

short int &;
or, more simply:

short a;
Either method will define a variable named a that occupies one byte or 8 bits
in memory, half the size of a regular int. Alternatively, we could define a
as a long int like this:

long int a;
or, again leaving off the int descriptor:

long a;
The long int in Megamax C on the ST defines a storage location of 32 bits
or 4 bytes, twice the size of the normal int declaration.

Another modifier, unsigned, may be used to alter the range of values
allowed in your int variables. An unsigned short, declared ke this:

C Revealed: Structure and Syntax

unsigned short a;

still allocates one byte of storage, but now the range of allowable values in
ais 0 to 255. An unsigned int may be declared like this:

unsigned a;

which results in the allocation of 16 bits of storage in which any of the values
0 to 65535 may reside. An unsigned long int may be declared like this:

unsigned long a;
which results in the allocation of 32 bits of storage in which any of the values

0 to 4294967295 may reside. In summary, Megamax C’s various int data
types on the ST are:

Data Type Size in Bytes Range
it 2 —32768 to 32767
long int 4 —2147483648 to 2147483647
unsigned int 2 0 to 65535
unsigned long int 4 0 1o 4294967295
short int 1 —128 to 127
unsigned short int 1 (to 255

Notice that the use of the unsigned modifier does not affect the storage
size allocation, but does affect the range of values that may occupy that space.
As you know, mathematical operations are not limited to whole number val-
ues. For this reason, the float data type may be used to work with real num-
bers.

Float

Real numbers are numbers that contain decimal numbers. Generally, at least
one digit is placed to the right of the decimal point, indicating the fractional
part of the real number. In C, real numbers are called floats because of their
floating decimal point, which is not restricted to any particular position. Floats
are commonly referenced in what is called scientific or exponential notation.

Scientific notation is the method the ST uses to work with very large

21

Learning C on the ST

or very small numbers. For example, the number 5 million, represented as
5.0 x 10, is written as:

50E + 7

where the number 5.0 is called the coefficient or mantissa, and the number
+7 is called the exporent. The 5 is the whole part of the number to the left
of the decimal point, while the fractional part, or exponent, represents the
power of ten or the number of places to the right of the decimal point. The
letter “E™ means exponent. Therefore, to determine a number written in sci-
entific notation, move the decimal point of the mantissa the number of places
specified by the exponent to the right. Another example: 4.43E + 2 repre-
sents 443.

Similarly, very small numbers are represented with scientific notation.
For example, the real number represented by .00001234 is written as:

1.234E - 5

where the negative exponent means that the decimal point of the mantissa
should be moved five spaces to the left instead of to the right. For a negative
real number, the negation sign is placed in front of the mantissa; that is,
—4.52E — 3 represents —.00452.

In Megamax C, the data types float and double, or long float, are avail-
able for variable definition. The declaration

float a;

defines a variable space that is 32 bits long and may hold any of the values
from +/—10E—37 to +/—10E38. A double float is declared like this:

double a;

in which a represents a float that is 64 bits leng and may be in the range of
+/-10E-307 to +/—10E308.

Characters and Strings

Fortunately, numbers are not the only data types that can be manipulated with
C. We can also work with text information that is represented by upper- and

C Revealed: Structure and Syntax

lowercase letters, special characters, etc. Such information is represented by
the data type char. A char variable may be declared like this:

char a;

which would result in the allocation of one byte of memory for a character
value. Thus, a could hold the value ‘M’, or ‘8, or ‘#’, etc. When we show
a character value, it is always represented with that character surrounded by
single quotes (* ’). At this point you can see that the char data type is quite
useful. But what makes it even more powerful is the fact that it can be used
to define variables that hold more than one character—called strings. A string
is nothing more than a collection of characters with a known end point. We
set up a char variable to hold more than one character by making it an array
of characters. (The concept of arrays is thoroughly discussed in Chapter 8;
however, a brief introduction to them is necessary for you to understand strings
in C.) For instance, the following declaration

char a[10];

would allocate space in memory to hold a string of up to ten characters. The
name “Oliver” could be put into this string, as could the name “Atari.” When
we show the value of a string, it is shown surrounded by double quotes (‘¢).
If you were to look into the actual memory location occupied by the variable
a, you would see the following when “Oliver” is in it:

IOI‘!IlIiI'JVJ fe'.lrll\ol
and this when “Atari” is 1n it:
lAf‘tl!arlr'Iifl\Ol'

As you might have guessed, each letter in the names occupies one byte of
memory, but then it is followed by a \0’, or null character. Remember, part
of the definition of a string is that there must be some termination signal,
and that is what the null character represents. Although "0’ appears (o be
two characters, it is really just one character value that requires two characters
to show its meaning. Later we will be seeing other escape or control char-
acters like the null character, but for now you only need to understand that
‘0’ tells C that this is the end of the string.

We can access individual characters within a string by indexing the vari-
able like this:

23

Learning C on the ST

al4]

which would have the value ‘e’ and ‘i" when the string was “Oliver” and
“Atani” respectively. You may have thought the value of a[4] would be ‘v’
and ‘r’, but the C language uses zero as the beginning of its array indices.
So, instead of being able to look at any of the characters a[1] through a[10],
the proper indices would be a[0] through a[9].

What to Declare?)

In general, C provides the ability to mix and match variables of different
types via loose type checking. For this reason, it is possible to assign almost
any type of variable to another variable of a completely different type. This
functionality can be good in the sense that it allows for a great deal of flex-
ibility in coding and may alleviate conversion problems for the programmer.
However, it can also cause serious problems if not used properly. For this
reason, it is recommended that as a beginning C programmer, you should not
attempt to take advantage of this advanced feature. Wait until you have writ-
ten several lengthy programs and feel completely comfortable with C before
mixing and matching!

Before moving on, we want to emphasize that when providing variable
identifiers, we strongly recommend using identifiers that are descriptive or
meaningful to the variable defined. As stated above, identifiers can be several
characters long, although only the first eight are significant to the compiler.
While there is nothing technically wrong with an identifier defined by a single
character, readability should be a major consideration for proper program
documentation. For example, a variable that represents someone’s grade in
a class is better suited by an identifier that is descriptive of its use rather than
the letier x. For example, we can use

float grade;

Assigning Variables)

In our box example, we state that a variable inside the box, or memory lo-
cation, can contain any value. To do this, we need a method for inputting

C Revealed: Structure and Syntax

values into a memory location. We can assign values to a variable by using
the assignment statement. The assignment statement has the following general
syntax:

variable = expression

where the variable on the left is assigned the value of the expression on the
right. The symbol = is an assignment operator. If, for example, the variable
represents a legal numeric variable identifier, an assignment statement might
be:

age = 29;

where the value 29 is assigned to the memory location defined by the variable
age. It is important to note that using the assignment operator here is not the
same as using the equal sign used in basic algebra. In algebra, two values
may be considered equal in value. C’s assignment operator simply means a
variable is “assigned to” or “is given or becomes the value of” the expres-
sion. As a final note on C variable assignment, the assignment may take place
at the point of the declaration, like this:

inta = 4;

which results in space being allocated for a and that space being initialized
to 4. This form of variable initialization comes in handy quite often. But keep
in mind that because the value 1s assigned in the declaration part, it may be
easy to overlook when you are reading through the code and could cause
severe headaches when you are trying to track down a problem.

Classes of Storage]

As the earlier pseudo—C code listing showed, C programs consist of a main
routine and perhaps several other routines or functions. Up to this point, all
the variables we have discussed are called automatic, or auto, variables. This
is because the variable is automatically assigned a space in memory for that
routine. In fact, we could have preceded all of our variable declarations with
the reserved word auto like this:

25

(Rt ru—

e

Learning C on the ST

auto int x;

but the default storage class is automatic, so it is not necessary. In general,
storage space for an auto variable is allocated whenever the function in which
it resides is invoked, and when that function has completed execution, the
storage space is relinquished for other program usage. For this reason, if a
function contains an auto variable, you can never assume that that variable
still contains the same value that was in it the last time the function was
invoked. :

Alternatively, a variable declared to have the static storage class will
always still have the most recent value assigned to it even if it was assigned
several invocations ago. A static variable is declared like this:

static int x;

A third storage class of variables is the register type. By preceding the
variable declaration with the reserved word register, like this:

register int x;

on some systems and with some compilers one of the microprocessor’s (the
“brains” of the system) registers will be used to hold the variable’s value.
This sort of declaration may help to speed your program up if you use it with
a variable that is used quite intensely. Registers on the Atari ST are four
bytes long, so keep in mind that only variables that have a data type of four
bytes or less may be declared as register variables.

The last storage class of variables is the extern class, which simply in-
forms the compiler that this variable name is used externally to this routine,
and both references to it are for the same space in memory. For example,
with the following declarations

int x;
char y;
main()

{

extern int x;
extern char y;

you are informing the compiler that you know x and y were declared earlier
outside of main{) and that all references to both of them are for the memory
space allocated by the external declarations. In this situation, the extern dec-

C Revealed: Structure and Syntax

larations are not necessary because both sets of declarations are in the same
file. But when you later progress to writing lengthy programs that are split
up into multiple source code files, the extern declaration can come in quite
handy.

Expressing Ourselves)

We have introduced the concept of an expression during our discussion of
the assignment statement. An expression is a sequence made up of variables,
mathematical operators, and constants (via the #define directive). The fol-
lowing are valid expressions:

6+ 2

a+b-3
pay — 3.25
sum + 1

As you recall, we use the assignment operator to assign the value of an
expression to a memory location defined by an identifier. The operators used
in an expression must be valid for the type of data they operate on. The most
commonly used expressions are arithmetic. C is capable of performing most
of the mathematical operations that you are familiar with:

+ addition
- subtraction
multiplication
division
% modulus or modulo division (remainder from integer division)

In C, there also exists a unary minus (—) operator that may be used to
change the sign of the operand. You should recognize the operation of +,
—, ¥, and /, however, the operator % (modulo division) may be new to you.
The modulo operator is used to calculate the remainder of integer division.
For example;

6 %35 returns a value of 1
8% 4 returns a value of 0

27

Learning C on the ST

9% 6 returns a value of 3
9 %2 returns a value of 1

The modulo operator has no meaning on real values and, as such, may not
be used with them.

Mathematical Order of Operation

Mathematical operations are performed in a particular order. For example,
multiplication and division are performed before addition or subtraction. To
illustrate, what do you think the result of this operation will be:

3+5*6

If you read this example from left to right, you might interpret the result as
48 instead of 33. The multiplication (§ * 6) is done before the addition (3 +
5). This is a result of the order of operator precedence. Operators with the
highest precedence are performed before operators with the lowest prece-
dence. The unary (—) operator has the highest precedence of the mathematical
operators. After it, the high precedence operators are *, /, and %. Operators
with low precedence are + and —.

If an operation consists of operators of the same precedence, then the
calculation may be performed from left to right. In the example below, the
left operation (addition) may be calculated first, followed by the second op-
eration (subtraction).

6+9-2

As you probably determined, the result of this expression is 13.

Parentheses are used to dictate the order of operations—the same way
they are used in basic mathematics. The operations contained within paren-
theses have a higher order of precedence than multiplication or division. For
example, consider this assignment statement:

i = (4 + 8)/2;

The result is that the variable / is assigned a value of 6. The operation con-
tained within the parentheses is performed before the division (/) operation.

C Revealed: Structure and Syntax

Operations contained within a set of parentheses must follow the normal
order of precedence. Can you determine the correct value of this statement:

rate = (6 * 2 + 18) — (8 — 16/4);

The correct value is 26.

In summary, arithmetic expressions consist of a sequence of variables,
operators, and/or constants. To eliminate any ambiguity in an arithmetic
expression, a mathematical order of operations, or operator precedence, must
be followed.

Simple C Arithmetic)

We have covered several fundamental concepts in this chapter, and so it is
appropriate that we should review them in a couple of simple program ex-
amples. Consider the task of calculating your gas mileage—a simple problem
that C on your Atari ST can easily calculate. How many miles do you travel
to work or school? How many gallons of gas do you use? You know that
mileage can be defined as the number of miles traveled divided by the number
of gallions of gas used, right? If you answered these questions, you have
defined the programming problem. If you determine that you traveled 200
miles last week on 8 gallons of gas, you can write a program that looks like
this:

/*This program calculates your gas mileage.*/
#include (stdio.h)
float miles, gas, mileage;

main()

i

miles = 200;

gas = 8;

mileage = miles/gas;
printf(“%f"”’, mileage);
getchar(};

}

When you run this program (after compiling and linking it), the result

29

Learning C on the ST

is displayed in the upper left-hand corner of the display as 25.000000. Let’s
quickly review this program step by step. We won’t explain every program
in such excruciating detail, but it is important that you master these beginning
concepts early.

The first line is a comment that briefly describes the program’s purpose.
The second line is our old friend, the #include directive, which tells the
compiler to pull in the stdio.h header file. Next, our three float-type variables
are declared. Notice that all three variables are declared on the same line with
only one reference to the float type. This is quite acceptable in C and is highly
recommended because it decreases the number of keystrokes necessary to
enter programs in the editor.

After our variables, we being the main() routine, which is surrounded
by the beginning and ending bracket pair ({ and }). The program statements
within the program block are the executable portion of the program. The first
three lines, following the begin bracket ({}, are all assignment statements.
Each line is concluded with a semicolon to separate the individual program
statements. The next statement is the printf statement. This statement will
be covered in detail in the next chapter. All you need to know now is that
it is responsible for displaying the result of our mileage calculation. In short,
the information contained within the parentheses of the printf statement tells
the compiler that we wish to display the value of the variable mileage in a
“float” (%f) format. Finally, the last statement is a call to the getchar()
routine, which we used earlier to allow the screen to stay unchanged until
you press the RETURN key.

The next example further illustrates the use of mathematical variables
and assignment statements. Study the following program, and determine if
you can understand each of the program’s components. If you can’t, you
should review the appropriate section.

/*This program calculates a student’s grade point average®*/
#include {stdio.h)

float test1, test2, tast3, testd;
float average;

char name[] = “Joe"”;

main(}

{

test1 = 85; /*the following are assignments*/
test2 = 90;

test3 = 78;

C Revealed: Structure and Syntax

testd = 79;

average = (test] + test2 + test3 + testd)/4;

printf("What is the student’s name and test average®\n'');
printf("“%s\n"’, name);

printf(“%f"”, average);

getchar({);

}

When vou execute this program, your screen should read:

What is the student’s name and test average?
Joe
83.000000,

Besides a couple of more printf variations, the only new item presented
in this program is the ability to declare a string without explicitly specifying
its length in the declaration. The compiler will determine the length for you
based on the length of the string we have initialized it to (in this case, “name”
occupies 4 bytes; don’t forget the trailing 0’ termination character). Finally,
let’s informally discuss how your programs should look in appearance, a con-
cept called program formatting.

Program Formatting)

Program formatting is a very important concept in C programming. In general
terms, program formatting is the position on your screen or line that you
begin a statement, insert a space, indent, etc. The reason for program for-
matting is more than a compulsive desire for neatness. Its purpose is to make
your programs more readable and thus reduce the amount of time needed for
debugging or comprehension of a program by someone other than the pro-
grammer who created it.

Indentation will become a major factor in proper program formatting as
we get into more complex source code. It is recommended that every time
an indentation i1s necessary, you should indent a fixed number of spaces, say,
3 or 4. This way, your programs will take on a much more professional
appearance and will lend themselves to easy tracing by other programmers.

We have covered a lot of ground, so we recommend that you take a 15-
minute break, absorb what you have leammed thus far, and then continue on

3

Learning C on the ST

to Chapter 3. If you don’t completely understand all the concepts presented
in this chapter, go back and reread the appropriate sections.
Glossary for Review

syntax—the rules of a language that must be followed to communicate
meanings properly

bit—binary digit (one or zero)

byte—group of 8 bits

— Quiz

1. What is wrong with this statement?
#define top 10
2. What are the two ways of including a separate source file in your code?

i 3. Which data type occupies more memory—int or unsigned int?

» 4. What does "0’ mean in a string?

~—— Chapter 3

C Statements

In this chapter, you will learn:

« How to communicate with the user; the Input/Output statements.
» What the printf and putchar routines are, and how to use them.
+ What the scanf and getchar routines are, and how to use them.
« How to write programs that make decisions.

Learning C on the ST

This chapter takes a deeper look into C. You have learned many of the
fundamentals of program construction in the previous chapters. Most of the
material you are about to read discusses various program statements that en-
able you to write more complex programs. As you recall, program statements
are the executable statements that appear within a program block, or { and }
pair. We will explore fundamental control structures that give the computer
the ability to make decisions. In addition, we will study interactive statements
between the computer and the user. First, however, we need to examine how
information is displayed, or output, to your screen. Let’s start by taking a
closer look at these output rouiines.

The printf Function)

You were briefly introduced to the printf function in the previous chapters.
In this section, we cover the printf function and related output functions in
more detail. These routines are very fundamental to programming in C. In
fact, these are the functions that C uses to communicate the output processed
by your programs so that you can readily understand its meaning. The general
syntax for the printf function is:

printf(“cont_strng”, arg1, arg2, . . ., argn};

where cont_strng is the control string that specifies how you want the output
formatted, and argl, arg2, etc. are the actual arguments that are to be dis-
played. We have already seen examples of how printf can be used to print
out a literal string like this:

printf{"“"Welcome to C"');

In this instance, the control string consists of a series of characters that we
want to put directly on the screen. That is, there are no argument parameters
used in this example. However, as our syntax notes, printf can be used to
display both literal strings and other values as passed in the arguments. For
example, if we want to display the value of the int variable goals, we would
write it like this:

printf(“%d", goals);

C Statements

In the control string, the % character signifies that the next character will be
a conversion character specifying the format of the accompanying argument.
In this case, the conversion character ts a ¢, meaning decimal format. The
nine conversion characters and their translations are:

Conv. Char. Meaning
c print a single character
print a decimal value
e real (float} number; display in exponential
notation (¢.g., 4.56 E — 5)
f real (float) number; display in decimal

form (e.g., 45600000.00)

use the shorter of e or f above
display in unsigned octal form (base &)

print a string
display in unsigned hexadecimal form
(base 16)

Ea T A <]

In addition to displaying just the arguments in the parameter list, we
can mix literals in with the conversion characters to display statements with
variables like this:

printf{“Mike is %d years old.”, age);

where the %d references the int variable age and would produce the following
output (if age is set to 25):

Mike is 25 years old.

You could also have set up a string variable like this:
char name[] = “Mike";

and then written the printf like this:
printf{""%s is %d years old,”, name, age);

and you would have achieved the same results.

35

Learning C on the ST

All of your output has been on one line so far, but, of course, this need
not always be the case. The control character \n may be used in printf state-
ments to advance the output position the next line down on the screen. For
example:

printf(*Mike is %d years oldwn.”, age);
printf(He is almost as old as %s.”, name2);

will display the following:

Mike is 25 years old.
He is almost as old as Mary.

if, of course, age is equal to 25 and name2 is equal to Mary. These new line
characters may be interspersed in your control string as you see fit to format
your output properly.

Speaking of output formatting, you may have noticed that printf will
always display a float variable with 6 decimal positions even though you may
only be interested in a couple of them. Consider the following declarations
and C statements:

float miles = 300;
float gallons = 12;
float mpg;

mpg = miles/gallons;
printf("You got %5.2f miles per gallon\n"”, mpg);
printf(“You got %5.2f miles per gallom\n”, miles/gallons};

The output produced by the two printf statements will be:

You got 25.00 miles per galion
You got 25.00 miles per gallon

because the %5.2f control segment specifies that you desire a float value
placed in a field that is five characters wide, and two of those characters, at
most, are to be for the fractional portion of the number.

You now know the basic concepts behind the printf function. Try a few
short programs of your own where you print out combinations of floats, ints,
and strings so that you thoroughly understand the principles.

C Statements

The putchar Function)

In addition to the printf function, putchar is available to display one char-
acter at a time. The syntax of putchar is:

putchar{ch);

where “ch” is a char value. So the following declarations:

Iar

char a = ‘a’;
char b = 'b’;
char ¢ = ‘c’;

and putchar statements:

putchar(a);
putchar(b);
putcharic};

will display the characters abc in the upper left-hand comer of your screen.
Now that we have an understanding of the fundamental output functions
available in C, let’s take a look at the functions available to receive input

from the user.

The scanf Function -)

The scanf function is quite similar to printf, and its syntax is:
scanf(“cont_strng”, arg1, arg2, . . ., argn};

where the control string characters have the same meaning as those in printf
except that there are no %u, %e, or %g, but there is a %h, which may be
used to read in a short int. So, if we want to elicit input from the user, we

could say:

37

Learning C on the ST

printf{“What is your first name?\n”);
scanf("%s”, fname);

Whatever you enter in at this prompt would then be put into the frame vari-
able location. We could then print it back out like this:

printf(“Your name is %s.”, fname);

Take a look at this interactive example:

/*This program asks for your name and age and displays them.*/
#include {stdio.h)

I char fname[10];
int age;

% main{)

printf(“What is your first name\n”’};

A scanf('%s”’, fname);
E. printf{”"How old are you?n"};
:i?’ scanf("'%d"”,&age);
i printf("““\n\nYour name is %s and you are %d years old . . .”, fname,
]. age);
! getchar{});

| This program first asks you to enter your first name, and then it asks
;Y you for your age. The scanf call for inputting your age is a little bit different
‘ than the one used for your name, though. There is an ampersand (&) before
the age parameter. This ampersand means that scanf is not using the actual
age variable but rather a pointer to it. It is not really necessary for you to
know the difference between the two here, since pointers will be discussed
later. But you do need to know that for all arguments other than strings, you
need to precede the variable name with an ampersand in the parameter list.
Other than this difference, the scanf function s very easy to understand. So
now let’s take a look at another routine that allows you as a programmer to
accept input one character at a time.

C Statements

The getchar Function

You have already seen getchar used in some of the earlier programs in this
book as a method of making the program stop so that you can look at the
screen before the GEM desktop is redisplayed. The syntax of getchar is:

ch = getchar{);

Notice that ch, which is taken to be an int variable, is not passed as a pa-
rameter to getchar, rather it is the value returned by the function. We will
deal with functions and their methods of returning values in Chapter 5, but
for now, when you see a variable on the left side of a statement and a function
catl on the right side, you may assume that the variable takes on the value
returned by the function. So, we could accept characters and display them

back out to the screen by having getchar and putchar right after each other
like this:

ch = getchar({};

putcharich);

ch = getchar{};

putchar(ch);

ch = getchar(};

putchar(ch); /*andsoon...*/

You have now been exposed to enough input/output routines to allow
you to write even fairly sophisticated programs. But, in order for you to make
your ST really work for you, you need to leamn about how you can instruct
it to make decisions.

Statements of Choice: The Conditionals]

A fundamental feature of any computer is its ability to make decisions. The
computer makes its decisions based on certain conditions or tests. If a par-
ticular condition is met, the flow of conirol within a program is modified,
and a different set of instructions is performed. Changing the flow of control
of a program is essential to writing powerful programs. The programs de-

39

Learning C on the ST

picted in this book thus far simply execute each statement sequentially. Such
step-by-step execution limits the programmer’s ability to develop complex
and useful programs. In the next section, we will learn how to change the
flow of sequential instructions by looking at some fundamental control state-
ments: the “if . . . else” compound statement and the switch statement.

Decisions, Decisions . . . The Thinking ST

For practical applications, the computer must have the ability to make de-
cisions based on a conditional. What do we mean by a conditional? If, for
example, you ask a question, and the response can only be true or false, such
a response is an assertion to the circumstance of the question. The statement
in C that creates the conditional is called the “if” statement.

The “if” statement makes a decision by performing a decision test. The
test has a true or false, yes or no, or precisely one or zero result based on
the conditional expression. We say “one or zero” because the only way any
computer can think is in terms of ones and zeros as bits. The syntax of the
“if” statement is written as a compound statement, with the associated state-
ment and the optional “else” statement. The structure of the simple “if” state-
ment provides two related choices. The first option is:

if (expression is nonzero)

{

statement;
statement2;
statement3;

}

statement4;

This first option states that if the expression is nonzero, statement] is
executed, followed by statement?, etc., until the end of the block. Then
statement4 would be executed. The conditional block is enclosed within the
familiar beginning and ending brackets ({ and }). If the expression is zero,
the conditional block is bypassed, and the next statement to be executed is
statement4.

A second structure of the “if” statement can be written as:

if {expression is nonzero)
statement1;

C Statements

else
statement2;
statement3;

The choice above adds a second option, the “else” portion, to our com-
pound statement. The addition of “else” provides the possibility of one more
statement being executed if the expression evaluates to zero. Thus, if the
expression is nonzero (or true), statementl is executed, statement2 is skipped
over, and statement3 is then executed. If the expression is zero (or false),
statement] 1s skipped over, statement2 is executed, and then statement3 is
executed.

As we have said, when a conditional expression is executed, a rela-
tionship is compared to determine if a condition is true or nonzero. If the
condition is true, then the next statement or block of statements is executed.
The condition itself is specified by relational clauses or operators. The re-
lational operators used in C are: '

== {equal)

= (not equal)

< (less than)

> (greater than)

<= (less than or equal to)
= (greater than or equal to)

This simple example illustrates the conditional “if” statement:

/*This program shows how to use the “if’ statement.*/
#include {stdio.h)
int num1, num2;

main(}
{
printf{“Enter a number:"});
scanf("%d” , &num1);
printf{”Enter another number:”);
scanf(%d”,&num2);
if {num1 == num2)
printf(*’Both numbers are equalhin”);

41

Learning C on the ST

else
printf{”Both numbers are not equall\n’’);
printf(““lsn’t this fun?!”’};
getchar{);
}

Let’s study this program. If you obey the computer and enter the num-
bers 4 and 2, then the second printf statement is executed and displays:

Both numbers are not equal!
Isn‘t this fun?!

Your curiosity gets the better of you, however. You decide to test the com-
puter to see if it’s awake. You run the program a second time, but now you
enter the same number twice. This time your ST responds with:

Both numbers are equal!
Isn’t this fun?!

Why? Our second test resulted in a condition that was true. Under a true
condition, the first printf statement is executed. Our first test resulted in a
false condition; therefore, the first printf statement is skipped over, while
control of the program passes to the next available statement.

A Couple of Common Errors with “if’ Statements

Beginning programmers in C often make a common mistake when using the
“if” statement. The mistake is a logical one where the output received is an
unexpected value. Specifically, we are referring to the result of the condi-
tional when the condition is false and more than one statement follows the
check.

As you recall, when a condition is false, program flow skips the first
statement and then continues with the first statement after the affirmative
block. Execution, however, continues from that point, and the next statement
is executed in successive order. This truth may not provide the results desired.
To illustrate, let’s examine a portion from our previous example:

if (num1 == num?2)
printf(Both numbers are equall\n’’};

C Statements

else
printf(“Both numbers are not equall\n”};
printf(”lsn’t this fun?!"”};

When the value of numl is equal to num2, the condition is true and
the program flows to the first printf statement and then to the third printf
statement. However, suppose you don’t want the third printf statement to be
executed when the condition is true. At present, this situation is not possible
because the program flow will simply continue from the first to the third in
a true condition. To do this, we can include all the alternatives in a single
block of statements. The statements within the compound statement ({ and })
are executed in sequence. Consider this modification to our program:

/*This is a modification to our program which shows how to use the “if”
statement.*/

#include {stdio.h)
int num1, num2;

main()

printf(“Enter a number:”);
scanf("%d"”,&num1};
printf(“Enter another number:"};
scanf(’*%d"" ,&num?2);
if (num1 == num2)

printf(”Both humbers are equall\n’’};
else

{

printf{"Both numbers are not equall\n”};
printf(“Isn‘t this fun?!”);

}
getchar(};

}

In this situation, the message “Isn’t this fun?!” is displayed only when-
ever two different numbers are entered. Because it is within the block of the
“else” portion, as designated by the begin and end brackets ({ and }), it will
never be executed when two identical numbers are entered.

Another error with “if” statements that is usually encountered by pro-
grammers familiar with other languages (especially PASCAL) is the use of

43

Learning C on the ST

a semicolon at the end of the statement before the “else” clause. As all C
programimers know, the semicolon is used at the end of all executable state-
ments, but sometimes it i1s difficult to remember to use it even before an
“else” if you are used to leaving it off!

Also, always indent statements within a compound block (as shown above)
so that it is easy to trace which statements are meant to go with which block.
It may not appear to be very important now, but when you start writing more
sophisticated code, you’ll be glad you did 1t.

Nesting Your “if’ Statements

The statements that follow the true or faise clauses may be of any kind. The
statements can be printf statements, assignment statements, compound state-
ments ({ and }), or even another “if” statement. When an “if” statement
appears within another “if” statement, the statement is called a compound
“if” statement. The technique of using multiple “if” statements within the
same program structure is called nesting the “if” statement. There is no stead-
fast restriction to the number of “if” statements that may appear nested within
each other; this generally changes from compiler to compiler. However, such
a complicated structure can become very difficult to follow logically. A sam-
ple syntax of nested “if” statements might be:

{
if {condition1)
if {condition2)
statement1;
else
statement2;
else
statement3;
h

Notice the successive indentation of each “if” statement. Again, this for-
matting makes programs much easier to understand.

Why use a nested “if” statement? The answer is simple. Suppose you
want a program to make a decision and then to perform one of two exclusive
actions. In this case, an “if” statement will satisfy your needs. Suppose, how-
ever, that you want the computer to provide three alternative actions instead
of just two. To remedy this problem, we imbed or nest an additional decision
test. To illustrate, let’s study the following example of calculating an em-

ployee’s pay:

C Statements

/*This program calculates pay including overtime*/

#include (stdio.h)

#define RATE 4.00
int hrs;
float pay;

main()

{

printf(“How many hours worked?"'};
scanf{"’%d",&hrs);
if {hrs > 40)

if (hrs > 45)

{
pay = (RATE * 40.0) + (2.0 * (RATE * {(hrs — 40}));
printf(’You earned double OT! Your pay is $%10.2f", pay);

}

else

{
pay = {RATE * 40.0) + (1.5 * (RATE * (hrs — 40)}};
printf(“You earned OT! Your pay is $%10.2f), pay);
}

else

{
pay = RATE * hrs;
printf("Your pay this period is $%10.2f", pay);

}
getchar(};

}

When the program is executed, the user is requested to input the number
of hours worked. If a value of 40 hours or less is entered, a straight-time pay
rate ($4.00 per hour} is provided. If a value greater than 40 hours but not
exceeding 45 is entered, the employee earns overtime pay. A value of greater
than 45 hours results in double overtime pay. For example, if you enter 40,
the screen displays:

Your pay this period is $ 160.00
If you respond by entering 45 instead, the output is:

You earned OT! Your pay is $ 190.00

45

Learning C on the ST

Lastly. if you enter 50 instead, then the output is:
You earned double OT! Your pay is $ 220.00

In our sample program, the nested “if™ statement provides three courses
of action. Only one statement or statement block may follow the affirmative.
or true clause, and appear before each “else.”

Logical Operators

We have not discussed logical operators. A conditional or logical expression
is offered a greater amount of flexibility with the logical operators || (or), &&
(and) and ! (not, or negation). These operators give you the ability to write
compound expressions. For example, suppose you input a value that you want
tested to be between the value of 1 and 10. We can write:

if (num > 1) && {num < 10)

where the expression is only true if both assertions are true. Notice that both
assertions are enclosed within a set of parentheses and separated by the “and”
operator &&. The individual should be enclosed within parentheses to assure
your intent is understood.

The remaining two operators function in a similar fashion. The logical
operator || (or) states that only one (or both) of the individual assertions must
be true for the entire expression to be true. The logical operator! (not) pro-
vides the exact opposite of a truth value and is called the logical negation
(i.e., not true is false). The result of the three logical operators can be sum-
marized in what is called a truth table as follows:

A && B Result Al|lB Result 'A Resull

T T T TT T T F
T F F T F T F T
F T F FT T
F F F F F F

The ?: (Conditional) Operator

Through the simple “if” statement we have the ability to write a portion of
code like this:

C Statements

if (hrs < 20)
pay = hrs * 2.00;
else

pay = hrs * 4.00;

where if the condition (hrs < 20) is true, then the pay will be based on a $2
per hour rate; otherwise pay will be based on a $4 per hour rate. C provides
an operator that may be used to abbreviate this sort of “if . . . else” condition
and it looks like this:

pay = (hrs < 20) ? (hrs * 2.00}: (hrs * 4.00);

If the condition (hrs < 20) is true, the first expression to the right of the
question mark (hrs * 2.00) will be evaluated with the result assigned to the
variable on the left side of the equal sign (pay); otherwise, the expression
after the colon (hrs * 4.00) will be evaluated with the result assigned to the
variable. This operator may take some time to get used to, but it can cut out
a few extra lines from your source file.

The Switch Alternative

As we have discussed, the opportunity exists for you to write a segment of
code that checks a variable for a specific value and, based on that value, then
executes certain statements. We have seen this in “if” statements like this:

if {(num == 5)
printf{(’The number is five”);
else

printf{" The number is not five”});

With just two alternatives, this sort of statement is acceptable. However, what
if we had to display a unique message if the number was any integer from
one to five? The “if” statement would look like this:

if (num == 1)

printf(“The number is one”);
else if (num == 2}

printf{“The number is two");
else if (num == 3)

printf(“The number is three”);

47

Learning C on the ST

else if (hum == 4)
printf(" The number is four”);
else if (num == 5)
printf{""The number is five");
else
printf("“The number is not within one to five”);

As you can see, it is allowable to have progressive checks in an “if” statement
via the “else . . . if” option. This form of the “if” statement checks each
condition and, once it finds a true one, it executes the statement block as-
sociated with that condition and then skips over the rest of the “if” statement.

This form of the “if” statement is indeed quite useful, but C provides
another statement, the switch, that is much more readable than multiple else

. if’s. The same lengthy “if” statement looks like this as a switch state-
ment;

switch (num)

{

case 1. printf(*The number is one”);
break;

case 2; printf("“The number is two"};
break;

case 3: printf(“The number is three”};
break;

case 4: printf{"The number is four”);
break;

case b: printf("“The number is five''});
break;

default: printf(“The number is not within one to five");

}

As you might have guessed, the expression (num) is evaluated, and its value
is compared against each of the values specified by the reserved word case.
When a match is found, that case’s statement block is executed. However,
at this point, the switch statement is not intelligent enough just to jump over
the remaining checks. Rather, the break statement must be used to inform C
that you do not wish to execute the very next statement. This is also why a
begin/end bracket set ({}) is not necessary with any of the case statement
blocks. Finally, if the expression does not equal any of the case values, the
default block is executed. Note that there is no need for a break statement at
the end of the default block because we are already at the end of the switch
statement!

C Statements

You have just completed another large portion of C programming basics.
In Chapter 4 we cover more C statements that provide additional control over
the flow of your programs—the looping statements. It’s time now to review
what we have learned so far. Again, if you have trouble with a particular
section, review it first before continuing on to Chapter 4.

— Quiz)

1. What’s wrong with this statement?
scanf("’%d"”, num);

2. How are gerchar() and putchar() related?

3. What is printed in this “if” statement?

if {(num)

printf(“The number is non-zero™);
else

printf{“The number is zero");

49

~— Chapter 4 W '

More Statements: The
Looping Structures

N Y,

In this chapter, you will learn:

» How to use the “while” statement to construct a programming
loop.

How to use the ++, ——, +=, —=, "=, /=, and %= operators.
What a counting and summing loop is, and how to use one.
How to use the “for” statement in a looping structure.

How to use the “do-while” statement to construct a loop.

What a nested loop is, and how to use one.

Learning C on the ST

In this chapter we are going to continue our discussion of C statements.
In particular, we will examine a few additional control structures that allow
you to write programs that repeat or loop. Looping programs, again, allow
you to alter the flow of a program or its physical order of execution, se-
quentially, from the first program statement to the last. C offers us several
looping constructs to choose from: the “while” statement, “for” statement,
and “do-while” statement. Let’s begin by looking at one of our favorites, the
“while” statement.

Programs That Repeat)

Thus far, we have discussed programs that are executed one line at a time.
To execute a program; you double-click on its icon on the GEM deskiop. If
you wish to execute the program again, you must double-click on it a second
time. One command in C allows you to execute a program, or a block within
a program, repeatedly without double-clicking over and over again. To do
this, we can write a program that repeats itself over and over until a certain
condition is true. Such a conditional control is called the “while” statement.

The “while’” Statement)

Similar to the “if” statement, a “while” statement tests a condition to deter-
mine which of two courses of action to take. However, unlike the “if” state-
ment, after the body of the “while” statement executes, the program flow
“loops™ back to the start of the “while” statement to test the condition again.
As long as the tested condition is true, or nonzero, the first action is repeated
endlessly until the condition tested is false, or zero. A sample syntax of the
“while” loop can be written as:

while (expression)
statement?i;
statement2;

where the reserved word “while” is followed by a logical expression, and
statementl may represent one statement or a block of statements enclosed
within the { and } brackets. The expression is, of course, a true or false

More Statements: The Looping Structures

condition. If the expression is a true test, the program will execute the state-
ment (or statement block) once. After this execution, the program loops back
to test the expression again. This looping construct continues executing the
body of the loop until the expression results in a false, or zero, value. A false
test tells the computer to skip statementl (or the statement block) and execute
statement2. At this point, the looping “while” statement is completed, and
the program will execute the next available statement.

A special example of the “while” loop appears in the following pro-
gram. We provide this special program to illustrate a point. In this example,
you are requested to enter a number. Any response other than 13 will make
the condition true and continue to display the statement following the “while”
check endlessly. Such a loop is called an infinite loop. To stop an infinite
loop on your ST, hold down the (Control) key and press the C key. Pressing
the (Control) key while pressing another key is commonly written as CON-
TROL /key, or, in our situation, CONTROL/C. This key combination has
the effect of telling the computer to stop the program in progress. After you
press CONTROL/C, the GEM desktop will be redisplayed, and you can run
the program again or run something else. If the number entered is 13, the
loop is avoided.

/*First “while” loop program*/
#include (stdio.h)
#define MY_NUM 13
int num;

main()

printf(‘‘Please enter a number:");
scanf{’%d"”, &num};
while {num 1= 13}
printf(You entered the number %d.\n”, num); /* infinite loop */
printf{”You entered the number 13!11”);
getchar();

}

Try running the program above. A response of 13 causes the second
printf to be executed, and the loop is avoided. To see the effect of the infinite
loop, enter a number other than 13. The screen fills up so fast with the same
line it is almost hard to see each new one being displayed.

53

Learning C on the ST

The example above illustrates poor programming technique. Infinite loops
should be avoided. A more practical use of the “while” loop is a structure
where the loop is executed a specific number of times. This type of technique
is discussed next.

Counting Your Loops)

To control the number of times a loop executes, we can insert a counter that
accumulates the number of iterations that occur. A counter is actually a vari-
able that is assigned a value which increments each time the loop is executed.
When the expression of a “while” statement reaches some predefined value,
the condition results in a false value, and the flow of control moves out of
the program loop. To illustrate, try this program:

/*This program calculates products in a loop.*/
#include (stdio.h}

int count, loops_left;
int pum1, num2;

main(}

{

count = 0;

while {count < 5)
{

printf(”Enter a number:"};

scanf{'"%d" &num1);

printf(“Enter another number:”);

scanf("%d"”,&inum?2);

printf{*The product of this set is %dwn”, (num1 * numz2));

count = count + 1;

loops_left = 5 — count;

printf{*This loop has executed %d time(s).\n", count};
printf("This program will loop %d more time{s).\m\n",

loops_left);
}
printf(*\minTHIS PROGRAM HAS ENDED!!!");
getchar();

}

More Statements: The Looping Structures

This program illustrates two important points. First, notice the construc-
tion of the “while” statement. The first course of action following the “while”
line is a compound statement ({ and } pair). As we have said before, the
compound statement may contain any number of statements and still be con-
sidered a single block by the construct of the “while” loop. In other words,
referring back to the syntax of the “while” loop, the compound statement
represents statementl.

The second point of this example is the construction of the loop counter
variable. We have appropriately called ours count. The counter is first ini-
tialized to zero outside the loop. Within the loop, the counter is incremented
by one each time the “while” loop executes. When the condition of the “while”
statement is false, program flow exits from the loop and informs the user that
the program has ended. The loop itself executes exactly five times. How do
we know this? The number of times the loop executes is determined by the
loop control variable, in this case the variable count. We compare the value
assigned to the variable when it was initialized (count = 0;) to the value of
the condition test when the test is false {count << 5). We can set the count
equal to 1 and then set the condition test as (count <= 5). Either way, the
loop executes five times. Be careful when setting the number of controlled
loops. If the counter above was initially set to zero and the decision test was
set as (count <= 3), the loop would execute six times and not five!

— Loops That Sum)

We can also write a program that accumulates a result within a loop. Such
a loop is used to sum a list of values and is called an accumulator, or sum-
ming, loop. This type of loop looks just like the counter just discussed; in
fact, the difference between the two is almost negligible. The point to be
made is that a summing loop doesn’t need to be dependent upon the value
of the counting variable within a “while” loop. The two loops, a counter and
an accumulator, may coexist within the same “while” statement. For ex-
ample:

/*This program sums the five numbers you enter.*/
#include {stdio.h)

int num, count, sum;

55

Learning C on the ST

[——————————— -

main{)

{

printf{“This program will sum a list of numberan’);
printf(*’You will be prompted to enter 5 numbers and you\n”);
printf{“should press (RETURN) after each entry.\n"});

count = 0;

sum = 0;

while {count < b}

printf(’Enter a number:”};

scanf(’’%d” &num);

sum = sum + num;

printf(*The sum of your numbers so far is %d\n”, sum);

i count = count + 1;

printf{“"We have made %d pases through the loop.\mn’’, count);

printf(“The program is over and the sum of your numbers is %d.”,
g sum);

i getchar();

B }

As you can see, the variables count and sum are used to see how many
times we have been through the loop and the total of the numbers entered so
far, respectively. A sample run of the program might look like this:

This program will sum a list of numbers:

You will be prompted to enter 5 numbers and you should press
{(RETURN) after each entry.

Enter a number: 1

The sum of your nurnbers so far is 1

We have made 1 passes through the loop.

Enter a number: 2
The sum of your numbers so far is 3
We have made 2 passes through the loop.

Enter a number: 3
i The sum of your numbers so far is 6
i We have made 3 passes through the loop.

Enter a number: 4
The sum of your numbers so far is 10
We have made 4 passes through the loop.

More Statements: The Looping Structures

Enter a number: 5
The sum of your numbers so far is 15
We have made 5 passes through the loop.

The program is over and the sum of your numbers is 15.

Every time you enter a number, the sum so far is reported, as is the
number of times we have gone through the loop. After five passes, a message
is displayed showing you that the loop is finished, and your final total is
shown. Before we look at another way of looping in your programs, let’s
look at a few abbreviations C provides for some simple mathematical oper-
ations that come in quite handy, especially when you are working with loops.

More Mathematical Operators

In the example above, the statement we used to increment our count variable
was:

count = count + 1;

which is rather verbose. Fortunately C provides this shorthand notation for
incrementing variables by one:

var++; OR ++var;
where var++ increments the variable after its value has been used (post-
incrementing), and + +var increments it before its value has been used (pre-
incrementing). The difference between the two makes no difference to us in
our program, since we can simply replace the line:

count = count + 1;
with:

count++;

or:

57

Learning C on the ST

+-+count;

Either way, the variable count will be incremented every time either of these
statements is executed. To see exactly how the two formats differ, try this
program:

/*This program shows the difference between ++var/var++*/

#include {stdio.h)

int num1;
maind)

{

numl = 1;

printf(“With ++num1, we get %d,\n", ++numt);

] printf(“with num1++, we get %d,\n”, num1++);
printf(*“and the final value of num1 is %d.”, num1);
getchar();

}

Although you should not be surprised to discover that the value printed
in the first printf is 2, you may be puzzled to see that the second printf also
displays a value of 2. As we said, num1++ does not increment the variable
numl until after it’s current value has been used in that statement. This is
why the third printf shows the value of numl to be 3, which is what we
expect it to be after incrementing it twice,

C also provides the same type of incremental operators for subtraction,
namely:

var—-; AND ——var;

where the same rules of post-decrementing and pre-decrementing apply. In
addition to these mathematical shortcuts, C also provides the following ab-
breviations, which are shown with their general equivalents:

i General Form C Abbreviation
numl = numl + num?2; numl += num2;
I numt = numl — num?2; numl —= num2;
J:

i numl = numl ¥ num?2: numl *= num?2;
L numl = numl / num?2; numl! /= num?2;

numl = numl % num?2; numl %= num?2;

More Statements: The Looping Structures

So, if for some reason we would have wished to increment our variable by,
say 3, every time through a “while” loop, we could abbreviate this:

count = count + 3;
with this:
count += 3;
These shorter forms are quite handy in saving keystrokes when entering

a long program, and they should be used when possible. Now let’s take a
look at another method of looping, the “for™ statement.

The ‘“for”’ Statement)

The “for” statement, like the “while” statement, is a looping structure used
to execute statements repeatedly within a program. The “for” statement spec-
ifies the number of times a statement or compound statement executes with
a built-in counter, In addition, “for” allows you to initialize and perform
regular updates on other variables. lts general syntax is:

for (init; test; change)
statement1;
statement2;

where init is where your variable initializations are specified, test is where
the determination to perform another iteration is located (similar to the test
in a “while” loop), and change is where you describe your updates to vari-
ables that will be performed on each iteration. In its simplest form, a “for”
loop might look like this:

for (num1 = 0; num1 < 5; num1+ +)
printf(*The current value of num1 is %d.n”, num1};

where numl is first set to zero, the check is made to determine if (puml <C
3) is true, and if so, the printf statement is executed. What do you think is
displayed by this segment? If you guessed the numbers zero through four,

59

Learning C on the ST

you are correct. What do you think would be displayed if we changed the
third portion of the loop like this:

for (num1 = 0; num1 < 5; ++num1)
printf{"*The current value of num1 is %d.an", num1);

If you think the numbers one through five will be displayed, you are wrong!
Although we know the pre-increment operator (as in ++numl) increments
the variable before its value is used, in the “for” loop, the third (or update)
portion of the statement does not get executed until after the first iteration.
S0, the results for this version of the “for” loop are identical to those of the
previous one—zero through four.

What is the value of a loop? We have briefly discussed how a loop
provides the programmer with additional control over the flow of a program,
But a loop can be a real time-saver too. To illustrate, consider this program
segment:

for (x = 1; x <= 100; x++)
{
scanf(’%d’" &num):
printf{*"%d\n" ,num);

}

When the program executes this loop, the values assigned to x are printed
from the selected range of 1 to 100. In other words, the value of x is printed
100 times. An alternative method is simply to include 100 scanf and printf
statements. Which method is more practical? Let’s study a simple example:

/*This program performs simple accounting.*/

#include (stdio.h)

float sum, exp_sum, mth_net_inc, mth_exp;
float inc_ave, exp..ave;

int income, expenses;

main{}

{

sum = Q;

exp_sum = 0;

printf("“Enter your monthly income . . An");

for (income = 1; income <= 12; income++}
{

printf("Enter income for month %d: ”, income);

More Statements: The Looping Structures

scanf("%f"’,&mth._.net_inc);
sum += mth_net_inc;

}

printf(“\m\nEnter your monthly expenses . . \n"});
for (expenses = 1; expenses <= 12; expenses+ +)

{

printf{“Enter expenses for month %d: “, expenses);
scanf(''%f"’, &mth_exp);
exp_sum += mth_exp;

}

printf{*\mnYour total net income for the year is $%10.2fn", sum);
printf{”Your total expenses for the year is $%10.2f\n", exp_sum);
inc_ave = sum / 12;
exp_ave = exp.sum / 12;
printf(“Your ave. monthly net income is $%10.2f\n", inc_ave);
printf(*Your ave. monthly expenses is $%10.2f\n", exp_ave);
if (inc_ave < exp_ave)

printf(“Your accounts are in the redhn”});
else

printf{(*Your accounts are in the blackhn");
getchar();

}

When you execute this program, you are requested to enter your net
income for each of the 12 months first and then each monthly expense for
the same period. Examine the “for” statement itself. Both loops contain an
ending value of 12, which specifies that each loop will execute exactly 12
times (1 to 12). The statement following the “for” statement is a compound
set ({ and }). All statements contained within this block are executed 12 times.
This is how we are able to request input via scanf 12 times. In addition, we
included an accumulator within each loop to sum the amounts of net income
and our monthly expenses. When each loop is finished, program flow exits
the loop and executes the next available statement. Note that any range that
counts 12 times can be used in this example. In other words, a range from
12 to 23 will loop 12 times as well. The beginning value and the ending
value parameters of a loop that increments by one between these two values
are what is important.

The inclusion of a compound statement following each “for” statement
is important. Why? Because we want the I/O (printf and scanf) and the
accumulator to execute 12 times. If the { and } pair is omitted, only the first
statement following the “for” statement is executed as part of the loop. When

61

Learning C on the ST

the loop is finished, program flow would pass to the scanf, which would
only be executed once, and everything would be a mess!

You should be familiar with the components of the rest of this program.
Our goal, however, was to simplify a programming task via the “for” state-
ment, and although we have a fairly compact program (since we don’t have
12 separate printfs and scanfs for the 1/0), we could compact things even

more like this:

/* This program performs simple accounting, but in less code */
#include {stdio.h)

float sum, exp_sum, mth_net_inc, mth_exp;
int counter;

L main(}
{
sum = 0;
exp_sum = 0;
printf(”Enter your monthly income and expenses . . \n"};
for (counter = 1; counter <= 12; counter++)
{
printf{”Enter income for month %d: ", counter);
scanf(”%f",&mth_net_inc);
sum += mth_net_inc;
- printf{“Enter expenses for month %d: *, counter};
i scanf{”%¥F’, &mth_exp);
exp_sum += mth_exp;}
}
printf(*\m\nYour total net income for the year is $%10.2f\n”, sum};
printf(*Your total expenses for the year is $%10.2f\n", exp_sum);
printf(“Your ave. monthly net income is $%10.2f\n", sum / 12);
printf{“Your ave. monthly expenses is $%10.2f\n"’, exp_sum / 12);
if {(sum / 12} < {exp_sum / 12})
printf(”’Your accounts are in the redhn”);
else
printf{*Your accounts are in the blackhn’’);
geichar(};
}

variables: inc_ave and exp_ave. More importantly, however, is the fact that

!I
In this version, we have removed a couple of somewhat unnecessary
i

th

J we were able to consolidate our income and expense loops into one. Here

More Statements: The Looping Structures

we enter each month’s income followed immediately by each month’s ex-
penses. Because of this, we were able to replace the loop counting variables
income and expenses with the generic one, counter. In our haste to cut out
variables and code, we actually added a bit of processing time to the program,
since it now has to calculate both the average income (sum / 12) and the
average expenses (exp_sum / 12) in both the printf statements and the “if”
statement.

The “for” statement is a very flexible control structure. A program may
contain several “for” statements within the same program block. In addition,
we can write a program that specifies the number of iterations a “for” state-
ment loops before it executes by predefining the ending value of the incre-
ment (e.g., 1 to 5). We can also write a program that lets the user interac-
tively specify the number of iterations as the program executes (before the
actual loop executes). The following example is another slightly modified
version of our accountant program:

/*This program performs simple accounting, but in less code*/
#include (stdio.h})

float sum, exp_sum, mth_net_inc, mth_exp;
int num_mnths, counter;
main()
{
sum = 0;
exp_sum = 0;
printf(“How many months do you wish to do: ”);
scanf {“%d"”,&num_mnths};
printf{“Enter your monthly income and expenses. . .\n"');
for {counter = 1; counter <= num_mnths; counter++)
{
printf(“Enter income for month %d: ", counter);
scanf('*%f", &mth_net_inc);
sum += mth_net_ing;
printf{“Enter expenses for month %d: “, counter);
scanf("'%f" , &mth_exp};
exp_sum += mth_exp;}
}
printf(*“\m\nYour total net income for the year is $%10.2f\n", sum);
printf(“Your total expenses for the year is $%10.2f\n”, exp_sum);
printf(“Your ave. monthly net income is $%10.2f\n", sum /
num_mnths);

63

Learning C on the ST

printf(“Your ave. monthly expenses is $3:10.2f\n”, exp_sum /
num.mnths);
if {({sum / num_mnths) < (exp_sum / num_mnths))
printf("“Your accounts are in the redhn’’);
else
printf("Your accounts are in the black\n"');
getchar();

}

The primary difference between this program and the last version of the
accountant program is that the user interactively selects the number of times
the loop executes. This task is accomplished with the scanf statement, which
assigns a value to the variable representing the ending value of the range in
the “for” statement. Specifically, we used the variable num_mnths to rep-
resent the ending value. Therefore, from our previous program, the statement:

1; counter <= 12; counter++}

for {counter

becomes:
for (counter = 1; counter <= num_mnths; counter—+ +)

where the value assigned to the variable num_mnths is the ending value of
the “for” loop that replaces the value 12. This value must be assigned before
the “for” statement executes. In our example, the user is prompted to enter
the desired value just before the “for” statement. Such a method provides a
larger degree of tlexibility. You can select 3 months, 6 months, 12 months,
or any whole number that you desire.

Referring to the rest of the program, notice that the formats of the for-
mulas for the printf statements that display the average value have been changed
to incorporate the num_mnths variable. If we simply left these denominators
at 12, the resulting values would only be correct when the user entered in 12
for the number of months to process.

Although we have not explicitly said so up to now, the “for” loop may
be used to loop backwards like this:

for (i = 100; i > 0; i——})
printf(“We are looping backwards!!l\n");

This sort of “for” loop is very convenient to use in certain situations, but
basically operates just like the upwards counting loops we have already seen.

More Statements: The Looping Structures

That is, after initialization (i = 100), if the condition is true (i > 100}, the
associated block is executed, and each time the update portion (i——) is per-
formed. In the next section, we discuss one more looping control structure,
the “do-while” statement. This structure is the last of C’s three looping op-
tions.

The “do-while’’ Statement

The “do-while” statement consists of two parts: the body and the termination
condition. It is essentially an upside-down “while” statement in which the
condition is not checked until the loop has performed at least one iteration.
As with the “while” statement, the programmer should include a condition
where the expression will be false and the flow exits the loop. Otherwise,
the loop won't terminate, and we face the problem of an infinite loop. This
simple program example satisifes this requirement:

/*This program calculates your family budget.*/

include {stdio.h)
float rent, utilities, groceries, car, misc;
float net_income, budget;

main{)

printf{"’This program calculates your monthly family budget.n®);
printf{"“The program will quit when you are over budget:n”);
do

{

printf{”Rent: ");
scanf(“%f",&rent);
printf{’‘Utilities: '');
scanf(”%f", &utilities);
printf("’Groceries: ");
scanf("%f" &groceries);
printf{"’Car payment: "');
scanf("%f",&car);
printf(“Miscelianeous: "'};
scanf("%f" &misc);
printf(*Total net income: ");
scanf(“%f"”,&net_income);

65

Learning C on the ST

budget = net_income — (rent + utilities + groceries + car +
misc);

printf{*"\n\nYou are left over with $%10.2f\n”, budget):

} while {budget > 0);
printf(*\mnYour expenses exceeded your net income!ll”);
getchar();
1

This program calculates a family’s monthly budget. All the statements
within the body of the loop will execute at least once. The program first
instructs the user to enter a series of expenses (i.e., rent, utilities, groceries)
followed by the user’s net income. Expenses are totaled and then subtracted
from net income to arrive at a budget for this particular month. If net income
is greater than the expenses, the program repeats another calculation (cal-
culate another month). The mechanism used to exit the loop is provided by
the condition at the end of the loop (while (budget > 0)}. Specifically, when
the net income for a particular month is less than the total amount of ex-
penses, program flow exits the loop and the program ends.

“while” vs. “do-while”

Because of the similarity in structure of the “while” loop and the “do-while”
loop, these two loops are often compared. These two loops, however, have
one significant difference regarding their execution. Both loops must test a
condition in order to execute the loop itself. Performing the decision test
differentiates between the two. Specifically, the “while” statement tests the
loop condition before executing the body of the loop. On the other hand, the
“do-while” statement tests the loop condition at the end of the loop. In other
words, the “do-while” statement always executes its loop body at least once.
The choice of which to use is entirely up to you, but for most instances, the
“while” version will be the most appropriate.

Nested Loops

What is a nested loop? Nested loops are loops within a loop. We have il-
lustrated nesting program structures before, such as the compound { and }
pair and nested “if” statements. The logic for nesting a loop, such as the

More Statements: The Looping Structures

“while,” “do-while,” or “for” statement is similar in execution. In simple
terms, the way a nested loop works is that the outer loop executes its initial
task, and then waits until the inner loop completes all of its loops or tasks.
Here's a simple example that illustrates a nested “for” statement:

/*This program shows how nested loops work. */
#include (stdio.h}
int loop1, loop2, ¢cntl, cnt2;

main{}

{

printf{"How many times do you want the outer loop to execute: “);
scanf{"%d” &loop1};
printf{How many times do you want the inner loop to execute: ");
scanf{"%d" &loop2};
for {cnt1 = 1; cntl <= loop1; cnt1++)

{

printf{’*Outer loop iteration #%d\n", cnt1);

for {ent2 = 1; ent2 <= loop2; cnt2+ +}

printf(“Inner loop iteration #%d\n", cnt2);

printf("\n\nAll loops are now complete.”’);
getchar();
b

This program requests users to select the number of times they want the
nested loop to execute. First, you enter a value for the outer loop, and then
you are requested to enter a value for the inner loop. In each case, the outer
loop and inner loop will execute the number of times assigned to the ending
value (loopl and loop2) of the control variable (cntl and cnt2).

One More Loop: The goto Statement]

As we discussed, the “while” and “do-while” statements are called condi-
tional looping statements. In addition, we leamed how to use the “if” and
“switch™ statements to perform a conditional branch. Conditional structures
execute a selected number of statements depending on the value of an expres-
sion (the condition). C offers one additional looping structure that alters pro-

67

Learning C on the ST

gram flow unconditionally. This type of unconditional branching is called the
goto statement.

The goto statement is common among other programming languages,
such as BASIC. However, it is not generally recommended because of its
uncontrollable nature and its inconvenience when trying to trace program flow.
Its purpose is to pass control of the program flow unconditionally from one
point in a program to another, skipping the execution of any statement(s)
between the two points. A common use of the goto statement is to exit from
a loop.

The point where the flow of program control is transferred to is iden-
tified with a “label.” The general format of the goto statement is:

goto label;

where “label” represents a valid name with naming rules identical to those
of variables. For example:

here: printf("We used a goto statement\n”};
“here” 1s a valid label and the statement:
goto here;

although it does not sound grammatically correct, causes program flow to
jump to the printf statement denoted by the “here” label.

C offers several control structures designed for solid structured pro-
gramming technique. The goto statement is not one of them. Programs can
be written efficiently without the goto statement. We were tempted to omit
this statemnent from our discussion; however, you do have the right to know
it is available. Compare it to the control structures that have only one exit
and one entry. Which structure would you like to read, follow, or debug?
We think you will agree that you should avoid using the goto statement.

This chapter taught you several concepts of program lcops. You learned
about the three important looping structures—“while” loops, “for” state-
ments, and “do-while” loops. You learned about counting loops and loops
that accumulate. In addition, you learned about the differences between loops.

It’s time to take another break. Review the summaries and exercises that
follow. When you're ready, continue on to Chapter § to study a very im-
portant feature of structured programming in C—functions.

More Statements: The Looping Structures

Glossary for Review

infinite loop—a loop that will never end because the condition to be
tested never evaluates to a terminating value

pre-incrementing—adding one to the value of a variable before its value
is used

post-incrementing—adding one to the value of a vartable after its value
is used

pre-decrementing—subtracting one from the value of a variable before
its value is used

post-decrementing—subtracting one from the value of a variable after
its value is used

[_— Quiz]

1. What is the primary difference between a “while” loop and a “do-while”
loop?

2. What is the difference between num++ and ++num?
3. How many iterations will the following loop perform?

for {(num = 5; num < % num++)
printf(*Hi there.n”};

69

4 Chapter 5

C Functions

In this chapter, you will learn:

« How to write a program that features structured design.

+ What a function is, and how to define one.

+ How to use a function correctly with variables and parameters.

+ How to use the return statement.

Learning C on the ST

Thus far, we have covered many important programming tools from
which you can build useful programs. All of our examples have used a single
program module or block to accomplish a single task. In this chapter, we are
going to discuss ways of putting together a group of modules, each perform-
ing a single task. When the individual modules are taken collectively, a larger
programming task is performed. This type of programming is called modular

: programming. One mechanism used to accomplish this goal is called a func-
fi tion.

— Struptu red Design _ ____]

Large programming problems are often broken down into smaller subpro-
grams. Subprograms are further divided into smaller subprograms until each
subprogram consists of a few manageable statements. These “miniprograms”
. are generally easier to solve than the original “macro” program. Each sub-
& program performs a particular task, such as processing data mathematically
or printing results. The individual subprograms are treated as modules. The
final program consists of a collection of these individual modules. This type
of programming design is referred to as structured because of the hierarchical
: tree nature of modular programming.
In this chapter, we are going to discuss a particular type of structured
design, called top-down design. Top-down design (sometimes called stepwise
refinement) is a methodical approach where the original macro problem is
represented by a main module. The main module could consist of the major
programming steps required to solve a problem. The main module then calls
upon the individual subprograms to solve specific tasks. When all the simpler
tasks are solved, we have a solution to our original problem.
As stated, the main module is divided into smaller and smaller modules,
Each module represents a specific level of programming that performs a task
independently of the other modules. For example, the main module can be
depicted as level 0, the next set of modules as level 1, and so on. Any module
within this tree structure at a higher level can make demands on any module
at a lower level.
Writing programs as a collection of modules is a very important feature
of the C language. Let’s now turn our attention to the logical method used
to identify a subprogram or module—the function.

C Functions

What Is a Function?)

A function is used to identify a collection of C statements that perform a
specific task. The function represents a subprogram and is executed each time
the function is invoked. To access a function, you assign it a name and then
“call” it by name from some other point in the program. Once a function has
executed, the flow of program control returns to the calling routine. For ex-
ample, we have already worked with the functions printf and scanf (to name
but two). Although they may appear to you to be some magical black box
in which you send some information and get other information back (in the
form of a display, assignment, etc.), they are simply C functions that, when
invoked, cause program flow to start executing their statements. Program
flow is then resumed with the statement that immediately follows the one that
called the function.

What Does a Function Consist Of?)

The structure of the function is just like the program examples that we have
been discussing. A function consists of two parts: the heading and the body.
The heading, or name assigned to a function, is simply the label you use to
refer to the function. The body is the sequence of program statements (in-
cluding declarations) specific to a function. Generally, there are no restric-
tions placed on the number of statements that a function may contain. How-
ever, one of the primary purposes of using functions is to break down the
programming problem into more meaningful tasks for both readability and to
reduce the number of identical code blocks. For these reasons, you really
don’t want to have a function that is ridiculously long and could be broken
down further. The function may look just like a miniprogram, complete with
a section for declarations and a { and } pair to show the beginning and ending
points of the function.

Where Is a Function Placed?)

In general, a function may be placed anywhere in your source code in re-
lationship to the main routine. Unlike languages such as PASCAL, the func-

73

Learning C on the ST

tions do not have to be declared before the main routine, so it is up to you

to decide where you would like to place them. We have seen code that places

¥i main at the beginning of the source and at the end. While neither may be
more correct, we prefer to place main at the beginning.

i 2
— How Are Functions Used?)

i Suppose you have a program that you wish to perform a number of statements
! over and over again. We can simply rewrite the same sequential set of state-
: ments each time they are required; or, we can “call” a miniprogram or func-
; tion to accomplish the same task. When the task is completed, we then con-
E tinue on about our business. For example, let’s examine the following program.

It contains two mathematical functions, one for addition and one for multi-
plication:

/*This program shows how functions may be used.*/

#include {stdio.h)

float num1, num2, sum, product;

S e o

main()

printf(“Enter a number: ”'};

scanf("%f"”",&inum1);

printf(Enter another number: ”);

scanf{"%f"”,&num?2);

printf(*\n\nWe are now computing the addition . . .\n"');
add{};

printf("\n\nWe are now computing the multiplication . . . \n"’};
mult(};

printf(*\minThe program is finished!”};

getchar();

)

add(}
{

sum = numt + numz2;
printf{“The sum of your numbers is %f\n", sum};

}

C Functions

mult{)

{
product = num1 * num2;
printf(“The product of your numbers is %f.\n", product);

}

We think it’s important that you understand the flow of program control
in our simple example above. Let’s take a look step by step.

When you execute the program above, you are asked to input two num-
bers. This is accomplished by the two printf and scanf combinations in the
main routine. Next, a message is displayed that informs you that the addition
is about to be performed. At this point, the routine add() is invoked, and
control jumps to this function. The add() routine has all of its statements
enclosed with a { and } pair. The first statement executed is the calculation
of the sum. Next, the sum is printed out, and the function ends. Then, control
returns to the main routine, and a message is displayed indicating that the
multiplication is about to be performed. As you can see, when we left the
main routine, we were about to perform this printf statement, and as soon
as we return, it is executed. At this point, the mult() function is invoked,
and control is passed to it, just as it was to add(). First the product is cal-
culated, and then it is displayed. This function then ends, and control is trans-
ferred back to the main routine, where the message “The program is fin-
ished!” is displayed.

Two important points to note are that the names of the functions add()
and mult() appear at the beginning of those functions just as main(} appears
at the beginning of the main routine. In addition. note again that the func-
tion’s statements arc enclosed with a { and } end pair, just like those of the
main routine, and that compound statements would appear within braces just
like they have in main().

Writing programs, such as the one just discussed, is easily accomplished
using top-down design. The first step in writing the actual program code
involves breaking down the main program into smaller manageable minipro-
grams. The logic of the main program is first developed. In our previous
example, for instance, we put all the little initializing input/output statements
in the body of the main program. Next, we break the building blocks of the
program into separate smaller tasks, such as a function to do addition and its
output, another to do multiplication and its output, etc. Whenever such a task
is required, we simply call on that particular procedure again. Remember,
we can call a function from any point in the main program as many times as
we want. We can even have one function call another function. This should

75

Learning C on the ST

be easy to visualize, since main() is nothing more than a special function
ntself.

Obviously, a function may contain a miniprogram that completes a more
complex task than adding or multiplying two numbers. However, the concept
is the same. It is important that you understand the logic behind structured
programming with a top-down design where large programs are really a col-
lection of smaller ones. Later in this book, we will introduce applications
that utilize this very important feature.

Using Variables with Functions]

Understanding and defining how a procedure works is a simple concept.
However, there are a few additional rules that we need to discuss. In our
previous example, we created a program that transmitted information from a
procedure back to the main program. All of our variables were global to the
program, and so any function was permitted to modify them at any time
(recall the global variable description in Chapter 2). The way we modified
these variables via the functions add() and mult() was via their global na-
ture. However, variables can be passed from one Runction to another, and
therefore they need not be global to the program in order to be modi-
fied. There are actually two different methods of passing values to a func-
tion—by value and by address. These two methods differ greatly and will
be discussed later. First, let’s review a bit and further discuss the concept of
global versus local variables.

Global vs. Local Variables

Before you write a function that uses variables, you must first determine how
it’s going to be used and what effect the variable will have on the rest of the
program. In C, there are rules for governing the variables in a function, which
are called scope rules. The scope of a variable is defining its accessibility to
the rest of the program. For example, if a variable named a is used in a
function, do you want its value accessible by other functions? Our mathe-
matics program used this type of variable, a global variable. A global variable
has meaning throughout the program.

On the other hand, suppose you want a function that uses a variable that
has no effect outside the function itself. This type of variable is called a local

C Functions

variable. A local variable is one that only has meaning while the body of the
function where it resides is executing. When execution of this function is
complete, a local variable no longer exists (unless it is declared to be a static
variable).

How do we identify or define the scope of a variable? As you recall,
all variables must first be declared before they are used in a program. This
rule applies whether the variable is used in the body of the main function or
within another function. It's where you place the variable declaration that
defines its scope. If the variable is declared within a function’s { and } block,
it may be accessed only by that function. If however, the variable is declared
outside the main’s { and } block (as our variables were), then it is accessible
by the entire program.

Beware if you declare a variable with the same name both globally and
locally to a function. Why? Because once the function transfers control back
to the calling routine, the local variable will no longer exist as far as the
calling routine is concerned. The value assigned to the variable will be the
last value assigned from within the rest of the program that addressed the
main declaration. The result may not be what you expected.

When do we use a local variable or a global one? Good programming
practice dictates that, whenever possible, you use a local variable instead of
a global one. Why? This is a practical question, since our first example used
global variables. However, a global variable can sometimes wreck a good
program. The reason is simple. It's wise to use a function to complete its
task, and then go about your business with the rest of the calling routine. In
a large program, you may wish to use the same variable used within a func-
tion again. A global variable retains its value, and can produce undesirable
side effects later in your program. A local variable, however, has no effect
on main program and can be used over and over again without fear of un-
expected results.

Perhaps the best reason to use a local variable in a function is the flex-
ibility when making multiple calls to the same routine. Each time a call to a
function is made in such a case (again, assuming no static variables), the
variables will be starting from scratch. If global variables were used, the
values left over from the previous execution of the function would still be in
effect.

Regardless of the reason, most experienced C programmers agree that
unnecessary global variables often lead to programming bugs. Such bugs are
difficult to find even for the most seasoned programmer. As a rule of thumb,
you should try to use local variables whenever possible to avoid the problems
outlined above.

77

Learning C on the ST

We just made a case for using local variables, but we haven’t defined
the method for exchanging information to and from a function when local
variables are used. To do this, we use a mechanism called a parameter.

Value Parameters

Calling a function using variable parameters is slightly different than calling
a function without them. Suppose we want to pass the values of the variables
numl and num2 from the main routine to the routines add() and mult().
Our program would look like this:

/*Now we are passing parameters by value*/

#include (stdio.h)

main()

{

float num1, num2;

printf{”"Enter a number: ");

scanf(’‘%f",&num1);

printf(“Enter another number: "');

scanf('%f",&numa2);

printf(*"n\nWe are now computing the addition . . . \n");
add{num1, numz2);

printf(*'\n\nWe are now computing the multiplication . . . \n"};
mult{inum1, num?2);

printf(""n\nThe program is finished!");

getchar();

}
add(x, y}
float x, vy;

{

float sum;

sum = x + y;
printf{“The sum of your numbers is %f.\n", sum);

}

mult{x, y}

C Functions

float x, y;

{

float product;
product = x * vy,
printf(“The product of your numbers is %f\n”, product);

}

In our new program, you should notice that the variables numl and
num2 are now local to and accessible only by main(). Also, the functions
add() and mult() now have parameters associated with them in both their
calls and definitions. For instance,

add(x, v);

declares add{) as a routine with two parameters, X and y, whose type are
tloat as defined by the next statement:

float x, y;

Whenever you declare a function to have parameters, you must define them
after this declaration.

Now when we invoke add(), we place the values of numl and num2
within the parentheses in the call. This is identical to the way we have been
calling printf and scanf all along; we simply place the parameters in the order
in which the function expects them. The same rules outlined for add() apply
to the function mult(). You should also notice that the variables sum and
product are no longer declared globally either. They are now local variables
to the routines in which they are used. That is, now only mult() can access
the variable product, and add() is the only function that can access the wvari-
able sum.

We refer to this method of parameter passing as passing by “value,”
primarily because the parameters that are passed may be changed in the called
function, but the calling function will not see any change. For instance, if
we were to change x or y in add() or mult(), only these local versions of
the parameters num1 and num2 would be affected. The actual parameters
num! and num2 would remain unchanged. Later we will see a method of
changing parameter values. But first let’s look at how a function can return
a single value.

79

Learning C on the ST

The Return Statement)

80

A function may be set up to return one value to its calling function via the
return statement. The return statement’s syntax is:

return{value);

where the value in parentheses is returned to the calling routine. For example,
try this new version of our mathematics program:

/*Now we are using the return statement.*/

#include (stdio.h)

float num1, num2, sum, product;
float mult(), add(});

main()

{

printf(“Enter a number: "'});

scanf(“%f",&num1};

printf(“Enter another number: '');

scanf(%f"",&num?2);

printf(*\n\nWe are now computing the addition . . . \n");
sum = add{);

printf(“The sum of your numbers is: %f\n"', sum);
printf("'\m\nWe are now computing the multiplication . . . \n"};
product = mult(};

printf{”The product of your numbers is: %fin', product);
printf{’"\mnThe program is finished!”);

getchar();

h

float add()
{

float x;

X = num?l + num2;
return(x);

}

float mult(}

C Functions

{

float x;

= puml * numz2;
return{x);

}

You should first of all notice that we made numl, num2, sum, and
product global again, and our next declaration is something new. We have
declared our function add() and mult() to be of type float. This simply means
that they will be returning a value (via the return statement) of type float.
The return value of a function defaults to int, and we would not have had to
make these declarations if add() and mult() were returning int values.
Nevertheless, it is good practice always to declare your functions like this
even if they are returning an int value,

The first several statements of main() are unchanged until the statement:

sum = add{);

which means that the function add() is invoked, and the value it returns is
to be placed in the variable sum. Looking at add(), the local variable x is
declared, and the sum of num1 and num?2 is placed in this local variable and
is returned to main() by the statement:

return(x);

It’s as simple as that! The routine mult() is invoked and a value returned in
the same manner as add(). The variables sum and product are then used in
printf statements after the invocations of add() and mult(), respectively.

The return statement is not only responsible for sending a value back
to the calling routine, its execution also terminates its routine’s execution.
For example, if we were to change add() to look like this:

float add();
{

float x;

X = num1 + num?2;
return(x);

printf(“Hi there.\n”);
}

81

Learning C on the ST

the printf statement would never be executed. As soon as the return state-
ment is reached, no other statements within that function will execute. This
can be advantageous to the programmer who wants to exit routines from sev-
eral different points, but in general, it is analogous to the goto statement in
terms of unconditionally jumping out of a piece of code. And you know how

E

i : R

: we feel about gotos! As a final note on return, the value portion of the general
l syntax is optional. So, you could use a return statement that looks like this:
¢ return;

}

i and returns no value but does cause control to be passed back to the calling
function.

Now that we have seen how to pass information by value and with the
return statement, let’s look at how to pass parameters by address.

[
[l .
{ — Variable Parameters)

When we pass a variable parameter in a function, it is usually just a copy of
that variable, and the calling function may not use this to change the value

: of the actual variable. We say “usually” because all variables except arrays
§+ (i.e., strings) are passed by value unless they are preceded by the address
B | operator &. We have already seen this operator used in scanf statements

when we are inputting certain values. These certain values that require the
& in scanf are, not coincidentally, any variable except arrays. When a string
variable (which is the only array type we know so far) is passed to a function
(such as scanf), a pointer to the beginning of it is passed, not the actual string.
This is done automatically by C with no interventton on your part. Because
of this, the called function is able to modify the original variable, since it
: knows exactly where it resides in memory. All other parameters are not passed
| as addresses by default. However, their addresses may be passed by using
I the & operator if it is desired. Consider our final version of the mathematics
i programt.

|

/*Now we are using pointers to variables.*/ ,

#include (stdio.h)

mainl)

82

C Functions

{

float num1, num2, sum, product;

printf(“Enter a number: ");

scanf("%f" &num1);

printf{Enter another number: ');

scanf("%f" &num2};

printf("\n\nWe are now computing the addition . . . \n");
add(num1, num2, &sum);

printf(“"The sum of the numbers is: %fin"”, sum);
printf("\mnWe are now computing the multiplication . . . \n");
multinum1, num2, &product);

printf(“The product of the numbers is: %f.\n"”, product);
printf("\minThe program is finished!”);

getchar();

'

add{x, y, z)
float x, v, *z;
{

¥ r=x Ty,
}

mult{x, vy, z)
float x, y, *z;
{

*z = y ¥ v;

}

Again, there are no new items in the program until we reach the in-
vocation for the add function:

add{num?, num2, &sum};

This is read to say that “add is invoked and the values of num1 and num2
are passed along with the address of the variable sum.” The declaration of
add() shows that it has three parameters: X, ¥, and z. These parameters are
then defined (just as they were in our value parameter example) by specifying
their type and names. However, the last variable has an asterisk in front of
it. Why? Because this parameter is a pointer and * is the pointer operator.
You would read this declaration as “add is a function with three parameters:
x and y are float values, and z is a pointer to a float value.” Remember that
this mysterious third parameter has an address in it and is therefore called a

83

\
"
;1 Learning C on the ST

i pointer to a value. With this address, we are able to take the sum of x and
¥ and put the result where z points. That is the meaning of:

*z=x+y;

In short, z points to the variable sum, so all reference to *z are actually
8 references to sum itself. The concepts behind the mult() function are iden-
;; tical to those of add(), except that z now points to the variable product.

u In summary, you just completed a very important chapter on C pro-
gramming. You learned how to define and to write a function properly. You
now know the difference between a global variable and a local variable. You
learned how to pass information using value and address parameters using
pointers. Lastly, you were also introduced to the return statement. Take a
few minutes, give yourself a pat on the back, and review what you have
‘ learned. You’ll discover you can write some interesting programs with what
]. . you have learned thus far.
|

Glossary for Review

¥ modular programming—the breaking down of various tasks within a
J program into individual functions as opposed to one large routine

top-down design—a design where the resulting program has one main
driving routine that calls other routines to perform specific tasks

scope rules—the rules governing which functions can access which
variables (i.e., global, local)

— Quiz)

1. What is the difference between global and local variables?
2. What does this declare:
int *number; ?

3. What is the difference between passing values by value and passing ad-
dresses of values?

84

~—— Chapter 6 W ‘

Library Features

In this chapter, you will learn:

+ What the library concept is.

+ How to use the available library routines for mathematics, strings,
etc.

» How to use the numerous GEM library routines.

+ How to create a window in C.

Learning C on the ST

How to Avoid Reinventing the Wheel B

When you begin writing your own programs, you soon realize that it would
be nice if the computer could magically perform some common tasks that
you use in different programs. For example, you might want to write a routine
that would allow you to read in a string containing multiple words. The stan-
dard scanf function will simply truncate all the data entered after a “white
space” (e.g., tab, space, etc.). so you must have some method of not ter-
minating the input when a white space ts encountered. One way would be to
use the getch()function repeatedly until a new line is input. Each successive
character could be placed into a character string, and the new line would
signal us to place a “0° terminator at the end of the string.

It may have only taken you a few minutes to develop a function like
this, but if someone had already written one for you, this would be a waste
of time. In fact, there is a function available to you in the Standard I/O C
library that is very similar to our description. But before we discuss it and
several other library routines, let’s first take a closer look at what is meant
by a library.

The Central Library)

86

If you're an avid book reader, you have come to learn that your local library
has a wealth of books on topics from A to Z. And you've learned that by
taking advantage of this library’s offerings you may have saved yourself
hundreds of dollars by not having to purchase these books yourself. The C
libraries are very similar to your local library in that they hold a wealth of
functions enabling you to perform various tasks quickly, from complex math-
ematics to high-resolution graphics. Because of this, the C libraries can save
you time (just as your library has saved you money), since you don’t have
to write these commonly used routines yourself. All you need to do is prop-
erly invoke them and follow a couple of simple rules: 1) if the library routine
returns a value, make sure that the variable you are assigning to its value is
compatible with what the function returns; and 2) if the routine passes pa-
rameters, make certain that the order of your parameters is identical to that
of the routine and that their types and sizes (e.g., long, short) match.

Once you have an understanding of the routines, all you need to do is

Library Features

use the #include directive to let the compiler know you will be using that
particular library and reference them as if they were your own. The remainder
of this chapter is dedicated to presenting some of the more popular routines
and macros available, with a brief discussion of each.

Standard C Functions]

Mathematical

The Cosine Function. This is a trigonometric function available to you that
returns the cosine of the angle expressed in radians with this format:

result = cos{angle};
where both result and angle are declared as double.
The Sine Function. This is another of the trigonometric functions available
to you that returns the sine of an angle expressed in radians with the following
format:

result = sin{angle};

again, where both result and angle are double.

The Tangent Function. Again, this is a trigonometric function in which the
result and the angle are double with the following format:

result = tan{angle);

The Square Root Function. Use this function to determine the square root
of a numeric value (i.e., the square root of 4 is 2) with this format:

result = sgri{number);
where both result and number are double.

The ASCII-to-Integer Function. If for some reason you would desire to read

87

Learning C on the ST

in 2 number as a string and then convert it to an integer, this function will
do the job:

number = atoi{string);

where number is an integer, and string may either be the name of a character
array or a pointer to a character string. The reason for this leniency for string’s
type is that a character array’s name is viewed internally by the compiler as
a pointer to the first element of the array.

String

The gets Function. Up to now the only way we know of to read in a char-
acter string is with the scanf function like this:

scanf({""%s" &a_string);

A serious shortcoming of this method is the fact that any white space in the
input string is viewed by scanf as the end of the string. Therefore it and all
the characters following it are ignored. In short, scanf keeps reading in char-
acters until it encounters either a white space or a new line and then replaces
that character with the null terminator (A0°). The easiest way of avoiding this
shortcoming of scanf is to use the gets function with the following format:

gets(a_string);

The gets function will allow you to read in, say, a last and first name and
place them both in the same string variable without any further manipulation.
[NOTE: For Lattice C users, a problem with gets was discovered by the
author in an early version (3.03.03). If you used a gets after a scanf in a
program, the gets would usually be ignored as if the input buffer was not
completely cleared out after the scanf. A null value would then be placed in
the variable passed to gets, resulting in a variable that never held much of
anything! This problem has been reported to Metacomco, who said they would
look into it. |

The strcat Function. The ability to concatenate strings, or place one string
at the end of another, is handled by the streat function:

strcat{a_string,b_string);

Library Features

where a_string and b_string are both pointers to strings. The b_string is
concatenated to the a_string so that, if a_string contained “not” and b_string
contained “hing” before the call to strcat, the value of a_string after strecat
would be “nothing.” Notice that there are no spaces implicit in the call to
streat, so if you concatenate a first and last name, be sure to have a space
gither at the end of the first name or at the beginning of the last name before
calling strcat.

The stremp Function. In order to compare one string to another, you cannot
simply compare the string names like this:

if (a_string == b_string)

because this compares two unique addresses and will never be true (remember
again that the name of a string simply represents the address of the first char-
acter of the string!). The stremp function may be used instead:

strcmpla_string,b_string);

This function will return a value of zero if the strings are equal, a negative
number if a_string is less than b_string, or a positive number if b_string
is less than a_string. Be sure to use this function always when comparing
strings: If you see an “if” statement like the one above, don’t be surprised
if it is always evaluated as being false.

The strlen Function. In other languages, the length of a string is specified
in the first one or two bytes of the string so that the end point is known. C
does not need this format, since it uses the null terminator to signify the end
of a string. Sometime, however, you might need to know the length of a
particular string, and rather than write a routine that will count characters
until a null byte is found, you could use the strlen function: '

strlen{a_string});

This function returns an integer value that represents the length of the string
up to but not including the null terminator.

Macros

Also available to the C programmer are a number of very useful macros. The
following is a list of several of these, along with a description of each:

89

et e

Learning C on the ST

isalpha(i)—this macro will return a nonzero value if i is an alphabetic char-
acter (e.g., A through Z or a through 2); a zero will be returned oth-
erwise.

isupper(i)—a nonzero value is returned if i is an uppercase character (e.g..
A through Z); a zero is returned otherwise.

islower(i)—-a nonzero value is returned if i is a lowercase character (e.g., a
through z); a zero is returned otherwise.

isdigit(i)—a nonzero value is returned if i is a numeric character (e.g., 0
through 9); a zero is returned otherwise.

isspace(i)—a nonzero value is returned if i is a white space character (e.g.,
space, tab, etc.); a zero is returned otherwise.

isalnum(i)—a nonzero value is returned if i is either an alphabetic or numeric
character (i.e., fitting the criteria of either isalpha(i) or isdigit(i), above);
a zero is returned otherwise.

isprint(i)—a nonzero value is returned if i is a printable character; a zero is
returned otherwise.

isentrl(i)—a nonzero value is returned if i is a control character; a zero is
returned otherwise.

isascii(i)—a nonzero value is returned if i is an ASCII character (decimal
values 0 through 127); a zero is returned otherwise.

toupper(i)—if i is a lowercase character, it is converted to uppercase.

tolower(i)—if i is an uppercase character, it is converted to lowercase.

abs(i)— the absolute value or magnitude of i is returned (e.g., abs(9) is 9,
abs(—9) is 9, etc.).

GEM Functions)

90

Included with your C compiler is a fairly extensive interface to the GEM, or
Graphics Environment Manager, routines, which enable you to make your
applications easily run like other programmers’ in both look and fecl. The
Megamax C package has descriptions of each of the GEM and AES routines
that they support. These descriptions include explanations of the routines as
well as fairly thorough explanations of the parameters that are passed to them.

As a C programmer on the ST, you will probably never use most of the
routines contained in this GEM library, but for when you do, if you are using
Megamax C you need not worry about having to pull in special libraries; the

Library Features

shell takes care of this for you by checking all the libraries on your System
disk. If you are using another compiler, however, say, Lattice C, all you
need to do is use the #include directive for the gemlib.h file (if you intend
to use any of the constants within it), change your linkage control file to
LIBRARY the gemlib.bin file, and call the routine just as you would any
other function (see the description of the linkage control file in your Lattice
C manual). Be extra careful in the sizes of the parameters that you pass any
of these routines! This is a rule that should always be followed no matter
which library you are working with. But remember, if the routine is looking
for a short or a word parameter, don’t pass it an int or a long.

The remainder of this section is a description of a few GEM routines
that are either necessary or very useful for your applications. Take note that
if you are wishing to learn GEM graphics routines, they will be covered in
Chapter 10; these routines are more general purpose ones that everyone should
be interested in.

appl_init() Before you can call any other GEM routings in your program,
you must call the appl_init function. The basic premise behind this is initially
to identify yourself. Appl_init is also used to allow multitasking, or the run-
ning of more than one application at once. For this reason, appl_init will
return a long value that represents your application identification number as
follows:

my_id = appl_init(};

If my_id is not greater than zero, the function did not work. For our pur-
poses, it is not necessary to look at the value returned from appl .init.

graf_handle() The next step in initializing your program is to get a chunk
of memory that will contain all the attributes of the application. The
graf_handle routine will return a pointer to this area that later may be used
as a parameter to other routines specifying our application. We have always
used graf_handle like this:

handle = graf_handle{&dummy,&dummy,&dummy,&dummy});

The four parameters represent character attributes that we do not wish to
change from the default values. Now that we have a handle to call our own,
we can use it to open our own workstation and set more attributes.

91

Learning C on the ST

92

v_opnvwk({) The v_opnvwk function is invoked like this:
v_opnvwk{work_in,8&work_stn_hndle,work_out};

where work_in is an 11-element array containing information such as line
type, text color, fill type, etc.; &work_stn_hndle is the address of our han-
dle from graf_handle; and work _out is an array that is filled in by v_opnvwk
and contains advanced information that we don’t use in this book, such as
raster information. We have always initialized the work_in array to 10 ones
and & 2 as follows:

for {loop = 0; loop < 10; loop++) work_in{loop] = 1;
work_in[10] = 2;

This is a fairly standard way of setting up these atiributes and should suffice
for your programs.

As was mentioned, we don’t ever look at the work_out array, but, of
course, it must be present in your call to v_opnvwk. Finally, we can see the
first use of our work_stn_hndle from graf_handle here as it specifies our
application to GEM.

v_clsvwk(} Once we are finished with our application, we must call v_clsvwk
in order to close our workstation. The function has one parameter, the handle

to our workstation, and is called as follows:

v_clsvwk(work_stn_hndle);

appl_exit(} The last task to be completed in a simple program is to tell
GEM that we are finished by calling appl_exit:

appl_exit();

This lets GEM know that the application will now be terminated and any
overhead variable space can be released.

graf_mouse() When you want to change the characteristics of the mouse,
graf_mouse may be called:

graf_mouse(shape,¬hing);

Library Features

where shape is a long value that defines the mouse form, and nothing is an
address of a custom mouse’s shape’s description in memory. We have used
graf_mouse to turn the mouse’s display on and off using two of the constants
defined in the gemlib.h file: M_OFF and M_ON. There are several other
constants that you can use to change the mouse, such as ARROW (the fa-
miliar arrow pointer), TEXT_CRSR (the I-Bar form used in certain word
processors and editors), etc. 1f the USER_DEF constant is used, graf_mouse
will go to the address of nothing and use the values there to build a user-
defined mouse form.

v_clrwk() If you want to clear the screen in your C program, call v_eclrwk
as follows:

v_cirwk(work_stn_hndle);

Again, we need to use the work_stn_hndle in order to specify which work-
station we are referring to. However, a call to v_clrwk is not enough to clear
the screen in the traditional sense; the cursor is still located in its last position,
so we also need to move the cursor to the home position with v_curhome.

v_curhome() After calling v_clrwk, v_curhome should be invoked to move
the cursor to the home position:

v_curhome({work_stn_hndle);

The combination of these two routines will clear the screen and place the
cursor in the home position much like a clearing routine in other languages
(e.g., CLS in many forms of BASIC). [NOTE: As of release 1.0 of Megamax
C, their v_curhome is not implemented; perhaps Megamax will be including
this function in release 2.0.]

Windows

Probably the most noticeable feature of the GEM interface for the Atari 520
ST is windowing. The ability to manipulate multiple windows simultaneously
on the screen is certainly an attribute that adds to the user-friendliness of the
system. However, if you're used to working with functions to control win-
dows on, say, the Apple Macintosh, you’ll be greatly disappointed by the
amount of code necessary simply to create a window, let alone direct 1/0 to

93

Learning C on the ST

it; while it requires only a handful of instructions to display and write to a
p window on the Macintosh, it takes several dozen instructions to do the same
l on the ST. As you have seen in the program examples up to this point, it’s
' not necessary to work with windows at all on the ST. For this reason, and
g the fact that an entire book could be written on window handling, we will
| simply show you how to create and display a window in C.

fi The following is a C listing that, when compiled, linked, and executed
;}l with a PRG extension, will display the outline of a window with corner co-
" ordinates (50,50), (550,50), (50,300), and (550,300). The window will be
“1 displayed until the RETURN key is pressed on the keyboard.
I

{

i

!

!

/*Window Display Program*/

: #include (stdio.h)

#include {gembind.h)

int wind_handle; /*pointer to our window*/

int work_stn_hndle,handle;

int contrl{12], intin[128], ptsin[128], intout[128], ptsout[128];

main{)

{

int nothing;

window_set_up{);
graf_mouse{M_QFF,¬hing);
getchar(); /*wait for user to press RETURN to quit*/
‘ graf_mouse(M_ON, ¬hing);
. clean_up();
- }
) window_set_up()
{
short loop;
int work_in[11];
int work_out[57];

intt dummy;
int x_loc = 50;
int y_loc = 50;

int height = 250;
int width = 500;

appl_init();
handle = graf_handle(&dummy,&dummy,8&dummy,&dummy);
work_stn_hndle = handle;

Library Features

for {loop = 0; loop < 10; loop++) work_in[icop] = 1;
work_in[10] = 2;

v_opnvwk{work_in,&work_stn_hndle,work_out);

wind_handle = wind_create(0x02,x_loc,y_loc,width,height); /*get
handle*/

wind_open{wind_handle,x_loc,y_loc,width,height); /* open the
window.*/

}

clean_up{)

{

wind_close(wind_handle); /*close the window*/
wind_delete{wind_handle); /*get rid of the window*/
v_clsvwk(work_stn_hndle);

appl_exit(};

}

You should pay close attention to this program’s format because it is
the way the remaining chapters in this book are laid out. In order to access
many of GEM's abilities, we use a setup routine that invokes appl_imit()
and v_opnvwk(), which were described above. In addition, when we are
finished with our program, we call a clean_up() routine that closes our work-
station via v_clsvwk() and ends the application via appl..exit(). After the
program initialization, a call to the gemlib routine wind_create is made as
follows:

wind_handle = wind_create(0x02,x_loc,y_loc,width,height);

where 0x02 is the value passed for the window flags, x_lo¢ and y_loc are
the coordinates of the upper left-hand corner of the window, and width and
height specify how wide and high the window extends. These points are
based on the screen’s monochrome coordinate system, which has 640 points
horizontally and 400 points vertically. Each point is also commonly referred
to as a picture element, or pixel. So there are 256,000 pixels in monochrome
mode.
The possible flags that may be set include the following bit positions:

title bar and name

symbol to close

symbol to make the window full-size
symbol to move the window

[V I I I]

95

Learning C on the ST

4 information line

5 symbol to resize the window
6 up arrow symbol

7 down arrow symbol

8 vertical slider

9 left arrow symbol

10 right arrow symbol

11 horizontal slider

In our example, only bit number 1 is set, so that the only extra feature of
the window is a close symbol. The previously initialized variables x_loc,
y_loc, height, and width are also passed to wind_create to specify the max-
imum size of the window. A handle for the window is returmned by wind_create
and placed in the variable wind_handle. This handle, similar to our familiar
work_stn_hndle, is simply a pointer to the information that describes our
window; it must be used in any further calls to window routines to specify
this window,

Next, the wind_open routine is invoked to display the window. The
parameters passed to it are the wind_handle (which was set by wind_create,
above), the coordinates for the top left-hand corner of the window, as well
as its width and height. For simplicity, we used the same values for the last
four parameters that we used in wind_create; but you could have used dif-
ferent values, which would have resulted in a smaller window size.

The getchar() routine is then called to await the depression of RE-
TURN, and finally the clean_up() routine is invoked first to close the win-
dow via the wind_close function and then to delete the window with
wind_delete. Each of these routines takes the window handle as an argument
in order to know which window you want to close and delete. Once you close
a window you may open it again later, but once you have deleted the window,
its attributes no longer exist in memory.

You might have noticed that we declared five int variables that we never
used in the line:

int contrlf12], intin[128], ptsin[128], intout[128], ptsout[128];

These variables are used in some of the VDI routines on the ST. If you are
using any VDI routines, these variables must be declared in your program.
You don’t need to know what they are responsible for, but you will run into
linkage errors on Megamax C if you do not include them.

Library Features

As was mentioned above, this is a fairly simple look at windowing on
the ST, and you could easily develop very sophisticated applications without
ever even having to use windows at all. However, if you do need more in-
formation on ST window routines, we suggest that you take a look at the
Atari ST GEM Programmer’s Reference Guide from Abacus Software; this
book goes into painful detail on advanced window concepts as well as event
handling, which is a must for any serious window application.

Glossary for Review

library—a central gathering of commonly used routines; the various C
libraries (¢.g., gemlib.bin} have routines for mathematics, string manip-
ulation, graphics, etc.

pixels—the tiny dots that make up the screen of a computer display; the
ST has about 256,000 of them!

— Quiz)

1. What are the results of the following functions/macros?

A, strcat(*‘Ata”’,“ri”’); B. sqrt(25);
C. abs(12); D. islower(*a’);
E. stremp(*‘Joe’’,*“Joe’); F. isspace(*3’);

2. What happens if v_clrwk is not followed by a call to v_curhome?

3. What is the difference between the x_loc, y_loc, width, and height
parameters in wind_create and wind_open?

97

T Sl S NIRRT LU ETTE SN

Chapter 7

Programmer’s Corner

In this chapter, you will learn:

» How complete C programs operate on the Atari ST.

+ How to modify existing programs to suit your particular needs
better.

« Why comments are such a critical part of programming.

+ The importance of proper error handling.

« Four programs dealing with metric conversions, guessing num-
bers, hexadecimal notation, and album-to-cassette length calcu-
lation, which are all documented with line-by-line and variable ex-
planations.

Learning C on the ST

The Entire Picture: Complete C
I Programs

Now that you have learned most of the individual elements of C program-
ming, it is time {0 put everything together and discuss a few application pro-
grams. Each of these programs has been selected and designed for the purpose
of tying together all the topics that have already been discussed, as well as
preparing you for further study in the areas of file handling, graphics, re-
cursion, and arrays. Let’s first take a look at a program that will perform
various conversions to the metric system.

C Metric Conversions Program)

Enter the following program into your ST while paying close attention to
spacing within quotes and the use of special characters (e.g., &, #, etc.):

/*Metric Conversion Program*/

#include {stdio.h}
#include {(gembind.h)

#define METER_CONV 39.37 /*conversion constant of inch to

meter*/

#define LITER_CONV 61.02 /*conversion constant of cub. inch to
meter*/

#define GRAM_CONV 0.035 /*conversion constant of ounces to
grams*/

short work_stn_hndle,handle;
int nothing;
int contrl[12], intin[128], ptsin[128], intout[128], ptsout[128];

main(}

{

int done; /*are we finished yet?*/
int valid; /*is this valid input?*/

char choice; /*user's choice from menu*/

Programmer’s Corner

window_set_up();
graf_mouse(M_OFF,¬hing};
done = FALSE;
while {ldone)

{

valid = FALSE;

while (!valid)

printf(*Which do you wish to do:\n\n"'};
printf(** 1. Convert from inches to meters\n”};
printf("* 2. Convert from cubic inches to liters\n”});
printf(* 3. Convert from ounces to gramsin’’};
printf(4. QUIT\nw");
printf(“"PLEASE ENTER 1, 2, 3 OR 4");
switch {chice = getchar())

{
case ‘1" inch_to_meter(};
valid = TRUE;
break;
case ‘2'; cub_inch_to_liter({);
valid = TRUE;
break;
case '3": ounce_to_gram(};
valid = TRUE;
break;
case ‘4": valid = TRUE;
done = TRUE;
break;
default: printf(“\nINVALID RESPONSE ... PLEASE TRY
AGAINN MmN,
}
b
!
graf_mouse(M_ON,¬hing};
clean_upl(};
h
window_set_up{)}
{
short loop;

int work_in[11];
int work_out[57];
int dummy;

101

Learning C on the ST

d appl_init(};

; handle = graf_handle{(&dummy,&dummy,&dummy,&dummy);
i work_stn_handle = handle;

; for {loop = 0; loop < 10; loop++} work..inlloop] = 1;

i work_in[10] = 2;

| v_opnvwk{work_in,&work_stn_hndle ,work_out};

clean_upt)

{
v_clsvwk(work_stn_hndle);
appl_exit{);

}

inch_to_meter()

{

float inches; /*how many inches to express in meters*/
float meters; /*how many meters*/

{1 printf{’\mnHow many inches? "'};

b scanf(""%f"" &inches);

A meters = inches / METER_CONV;

; : printf{’\n%8.2f inches equals %8.2f meters.\mn”’,inches,meters);

i)
cub_inch_to_liter{)
{

¥ float cubic_inches; /*how many cubic inches*/
float liters; /*how many liters*/

_ printf("\minHow many cubic inches? ");
4 scanf("%f" ,&cubic_inches);
¥ liters = cubic_inches / LITER_CONV;

printf{"\n%8.2f cubic inches equals %8.2f liters.\n\n"
.cubic_inches,liters);
}
5 ounce_to_grams()
{
float ounces; /*how many ounces*/
float grams; /*how many grams*®/

printf(*\m\nHow many ounces? “'};

scanf{'"%f"" ,&ounces);

grams = ounces / GRAM_CONV;

printf(*\n%8.2f ounces equals %8.2f grams.\m\n"",ounces, grams);

102

|

Programmer’s Corner

This program will allow you to convert inches to meters, cubic inches
to liters, and ounces to grams. You may coniinue to make numerous con-
versions without having to rerun the program, and the modular nature of the
conversion procedures allow you to add more options easily.

Program Explanation

We begin, of course, with our program name as a comment. The #include
directive is then used to include the stdio.h and gembind.h header files.
Next, the #define directive is used to set up constants for our conversions.
The global variables are then declared and immediately thereafter are the
blocks containing the main routine, our usual setup and cleanup routines, and
three conversion routines: inch_to_meter, cub_inch_to_liter, and
ounce_to_gram. Now let’s look at each block in detail in order to determine
exactly how they fit together.

The main program block begins by declaring a done variable to indicate
when the user is finished performing conversions, a valid variable to indicate
whether the user’s input is valid, and a choeice variable to hold the user’s
input. The window__set_up graf_mouse routines are then called to set up
the program. Each of these procedures has already been explained and should
warrant no further discussion, other than mentioning that it is indeed good
practice to develop a series of functions that you will use at the beginning
of your interactive programs so that they are consistent; otherwise your pro-
grams may look rather shabby and be difficult to debug.

Immediately after this initialization, the done is set to FALSE, and we
begin the main loop with a while (!done) condition. The valid is initialized
to FALSE, and a nested while (!valid} loop is started that will be directly
affected by valid input from the user. A menu is then displayed that shows
four options for the user to choose to continue. As shown in the successive
printf staiements, the options include each of the three conversions and the
option to quit the program. A getchar is then cxecuted, and whatever char-
acter the user entered at the menu is then used in a switch statement to de-
termine the appropriate action. As the switch statement reads, if the user
entered a 1, 2, or 3, then the appropriate procedure is invoked, and valid is
set to TRUE because the user’s response was acceptable. If a 4 was entered,
both variables valid and done are set to TRUE because the user wishes to
quit, and the response was acceptable. The default clause of the switch state-
ment is then used to display an error message to the user, and no variables
(flags) are changed.

When you now look back up at the two previous while loops, it should

103

Learning C on the ST

be obvious that the outer one (while (!done)) terminates only when a 4 is
entered, whereas the inner one (while (!valid)) terminates when any value
from 1 to 4 is entered.

The three procedures are quite similar in that they all request an amount
of some type (inches, cubic inches, or ounces) and then convert that armount
into its equivalent in the metric system (meters, liters, or grams) through the
use of a conversion constant (METER_CONV, LITER_CONYV, or
GRAM_CONY). You may also have noticed that each of these three pro-
cedures uses the formatted printf statement (for example, %8.2f), where the
first digit (8) specifies the number of characters to be printed (field width),
and the second digit (2) specifies how many digits will be displayed to the
right of the decimal point.

Be sure to save this program on your disk so that you may now look at
the next program, which guesses a number in the least average number of
attempts.

Guess a Number Program

This particular program was designed to guess a number you would choose
from 1 to 100 in the least number of tries. In fact, we guarantee that it will
require no more than seven guesses to determine your number!

The secret behind the program is called a binary search, and it works
as follows:

1. first, a range is set up for possible values (in this case, 1 to 100);

2. next, the user is asked to pick a number within that range;

3. the midpoint of possible values is then calculated with the formula:
{maximum value + minimum value) + 2, which would yield 50
((100 + 1) + 2 = 50,

4. the program then asks you if your number is a) equal to this mid-
point, b) greater than this midpoint, or ¢) less than this midpoint;

5. if it is equal to your number, then the program stops; otherwise, if
your number is greater, then the bottom half of possible values {1—
50 for the first guess) are thrown out, and we make the midpoint (or
guess) the lowest possible value (actually, midpoint + 1 is the lowest
possible value, but due to integer truncation we can ignore the “+

Programmer’'s Corner

17} and go back to step 3. If your number is less than the guess,
then the top half of possible values (50—100 for the first guess) are
thrown out, and we make the midpoint {or guess) the highest possible
value and go back to step 3.

This loop from step 5 to step 3 will continue until your number has
correctly been identified and, with the given range of 1 to 100, will take no
more than seven attempts. Seven is not some magical number that holds true
for all ranges, however; rather, this figure is derived from determining the
lowest power of 2 that exceeds the range size. To understand this concept
more clearly, take a moment to review the following table of powers of 2:

Power Expression Equivalent
0 2 1
1 2! 2
2 2 4
3 A 8
4 2 16
5 2° 32
6 28 64
7 2 128
8 28 256
g 2° 512

10 2! 1024

As you can see, the lowest power of 2 that results in a figure equal to
or greater than our range size (100) is 7. Therefore, it will take at most seven
guesses before the number is correctly picked. Also, the reason we raise 2
to a particular power is because we are halving the list of possibilities with
each guess.

Now that you have an understanding of how the program works, enter
it into your ST as it appears below:

/*Number Guessing Program */

#includ {stdio.h}
#include (gembind.h}

105

Learning C on the ST

#define MAX_GUESS 7 /*maximum guesses the program will make*/
#define MIN_START 1 /¥initial min_num value*/
#define MAX_START 100 /*initial max_num value*/

int work_stn_hndle,handle;

int nothing;

char go_ahead; /*input character from user*/

int found; /*has your number been found?*/

int guess; /*the actual guess*/

int done; /*are you finished with the game?*/
int max_num; /*the current maximum range of guesses*/
: int min_num; /*the current minimum range of guesses*/
int count; /*the number of guesses which have been made*/
: int valid; /*did you provide a valid response?*/
i main()

{

1 window_set_up();
graf_mouse(M_OFF,¬hing};

i done = FALSE;
3 while (ldone)
{

min_num = MIN_START; /*set the range from 1 to 100*/
max_num = MAX_START,;
printf(*Pick a number between 1 and 100 . . . \n"");
printf(“Press any key to continue . . . \n\n"'};
go_ahead = getchar{};

i found = FALSE;

! guess = {max_num + min_numj}/2;

I count = 1;

while {{(!found} && (count <= MAX_GUESS))
| {

b printf("\nls your number less than (L), greater than (G),”);
§ printf{“or equal to (E)%—3d?",quess); /*left justify guess*/
switch (go_ahead = getchar{))
{
case 'E’":
} case ‘'e"; found = TRUE;
H break;
v case ‘L":
! case ‘I': max_num = guess;
| guess = (max_num + min_num)}/2;
i ++count;

106

Programmer’s Corner

break;
case ‘G":
case 'g’: min_num = guess;
guess = (max_num -+ min_num)/2;
+ +count;
break;
default: printf’"\nINVALID RESPONSE . . . PLEASE TRY
AGAIN!Thn"};
}
1
if {count <= MAX_GUESS)
printf(“\nSee, we guessed your number in only %1d
guessesn”,count);
else

printf("\mnYou must have missed your number because the
programin”};
printf{’has already made the maximum number of guesses\n");

}
valid = FALSE;
while (lvalid)

{
printf(“\nWould you like to play again (Y/N)?");
switch (go_ahead = getchar())

{

case ‘Y':

case ‘y": valid = TRUE;
break;

case ‘N':

case 'n’: done = TRUE;
valid = TRUE;
break;

default: printf{("\nINVALID RESPONSE . . . PLEASE TRY AGAINI");

printf("\mn"’);
}

graf_mouse{M_ON, ¬hing);
clean_up();

}

window _set_up(}

{

short loop;

107

Learming C on the ST

108

int work_in[11];
int work_out[b7];
int dummy;

appl_init(};

handle = graf_handle(&dummy,&dummy,&dummy,&dummy);
work_stn_hndle = handle;

for {loop = 0; loop < 10; loop+ +) work_in[loop] = 1;
work_in[10] = 2;
v_opnvwk{work_in,&work_stn_hndle,work_out);

}

clean_up()

{
v_clsvwk({work_stn_hndle);
appl_exit(};

}

Program Explanation

This program contains no functions other than the main and initialization/
cleanup routines and is therefore easily read from top to bottom. After our
constant and variable declarations, we begin again by setting up the screen
for input/output with the user.

After this screen initialization takes place, we begin our main loop (while
(done)), which will continue until the user decides to stop playing. We im-
mediately assign values to our min_num (1) and max_num (100) variables,
and through the use of printf and getch we ask the user to pick a number
between 1 and 100 and wait for any key to be pressed to continue. We then
initialize found to FALSE and use the formula for finding the midpoint be-
tween two numbers to determine our first guess (the formula simply adds our
max_num and min_num figures and then divides the sum by 2 to arrive at
an average, or midpoint, of the two numbers). The integer count is then in-
itialized to 1 and through the next “while” loop (while (!found) and (count
<= MAX_GUESS)) is not permitted to exceed 7. Rather than saying:

while ((Ifound) && (count <= 7))
we chose 1o assign a constant (MAX_GUESS) to represent 7 for two reasons:

1} it makes the statement more readable, and 2) it lends itself to a more
obvious change should anyone choose to modify the program to allow the

Programmer’s Corner

range of numbers to be 1 to 1000. (This is because, from the power of 2
chart above, you would have to make the maximum number of guesses equal
to 10, and you may forget what the 7 represented; but with the constant name
MAX_GUESS, it should be more meaningful.)

So we begin this “while” loop and continue to execute it until we either
find the user’s number or we have made the maximum number of guesses.
After starting this loop, the user is asked to say whether his /her number is
less than, greater than, or equal to the calculated guess. A switch statement
is then performed on the response and.

1. if the guess is equal to the user’s number, found is set to TRUE so
that the while((!found) && (count <= MAX_GUESS)) loop will
terminate;

2. if the user’s number is less than the guess, the top half of possible
numbers is thrown away (by assigning max_num = guess) and a
new guess is calculated;

3. if the user’'s number is greater than the guess, the bottom half of
possible numbers is thrown away (by assigning min_num = guess)
and a new guess is calculated; or

4. if the user enters in an invalid response (the default clause), a mes-
sage 1s displayed.

[Note that both uppercase and lowercase letters are used in the switch state-
ment, so that the user can have the Caps Lock key down or up and the input
will be valid.]

Next, when the program has either found the number or has guessed the
maximum number of guesses, if the user’s number was guessed (meaning
that count <= MAX_GUESS is TRUE), a message is displayed that says
that it took only count guesses to determine it, or a message is displayed that
tells the user that the maximum number of guesses has been made and since
the number was not found, he/she must have missed it. When either of these
events is complete, the other nested “while” loop (while (!valid)) is executed.
This loop is used to ask the user if he/she would like to play again, and
based on the user’s input, the flags valid (if a “Y’, *y’, ‘N’, or ‘n’ is entered)
and done (if a ‘N’ or ‘n’ is entered) are set to TRUE. As with other inputs
of this nature, if an invalid response is entered (the default clause) then an
error message is displayed.

109

Learning C on the ST

110

Decimal to Hexadecimal Conversion Program

The next program in this chapter may be used to convert any decimal (base
10) integer value into its hexadecimal {base 16) equivalent. If you are familiar
with hexadecimal notation, simply enter the program, and follow its instruc-
tions to perform conversions. For those of you who are unfamiliar with hexa-
decimal numbers, or “hex” as they are commonly referred to, the following
is a brief explanation of their use and significance in the computer world.

Since we were small children, we have used the base 10 numbering
system; we simply use the digits 0 to 9 to represent any number (there are
10 unique digits (0, 1, . . ., 8, 9) in this system). Let’s take a look at the
number 425. What this number really represents is four hundreds, two tens,
and five ones, because the first digit (5) is in the one’s position, the second
digit (2) is in the ten’s position, and the third digit (4) is in the hundred’s
position. If we multiply and add these figures together, we get:

4 » 100 = 400

2x10= 20

5x1= 5
425 TOTAL

Also note that since we are using base 10, each digit is multiplied by
10 raised to its position minus 1, or mathematically:

decimal place value = digit X 10D
For instance, the second decimal place’s value is:
2x 109" =2x10"'=2x10= 20

as was stated above.

This discussion may seem quite trivial, but now keep in mind that the
same rules apply for hexadecimal numbers, except that now we have 16 unique
digits, and each hexadecimal place in the number is multiplied by a power
of 16. First of all, the 16 digits for hexadecimal notation are:

Programmer's Corner

Hex Decimal Equivalent
$0 0
$1]
$2 2
53 3
$4 4
$5 5
$6 6
$7 7
$8 8
$9 9
$A 10
$B Il
$C 12
$D 13
$E 14
$F 15

As you can see, the digits O through 9 are equivalent in both systems,
and the values 10 through 15 are represented by the first six letters in the
alphabet. In addition, hex numbers are usually preceded by a dollar sign to
differentiate them from a base 10 value.

Now let’s look at the hex number $1A9. What is this equivalent to in
base 10? If we use our rules from above, we would multiply and add to get
the following:

1 x16%7" =1 x 16° = 256
10 x 16" =10 X 16" = 160
9)(16(]—1)=9—x 16(0): 9

425 TOTAL

The hex values are represented in boldface to show how they fit into
the computations; compare them to the base 10 values from our earlier ex-
ample to understand the similarity figuring the total. (Also, recall that $A is
equal to 10 in base 10.)

111

Learning C on the ST

112

Now that you know how to translate a hex number into base 10, let’s
see what’s invelved in converting from decimal to hex; all you have to re-
member is to divide by 16 and write the remainder. For example, to convett
425 into hex we first divide it by 16:

425 + 16 = 26 with a remainder of 9
we then divide the resulting dividend (26) by 16:

26 ~ 16 = | with a remainder of 10
we then divide this resulting dividend (1) by 16:

1 = 16 = 0 with a remainder of 1

and, since our dividend is zero, we stop. We have determined that 1, 10,
and 9 are the remainders (from last to first), and if we convert them to their
respective hex equivalents (basically, only 10 must be converted to A), we
find that the hex equivalent of 425 is $1A9.

You now know how to go from decimal to hex and vice versa, but you
may still be wondering how this knowliedge could ever be useful. In computer
applications, numbers are quite often expressed in systems other than base
10, and hexadecimal notation is one of the most popular of these systems.
Therefore, it is worth your while to try a few conversions on your own and
check them by either converting back to the original system or by using the
following program:

/*Hexadecimal Conversion Program*/

#include (stdio.h)
#include {gembind.h}

int work_stn_hndle,handle;

main{}

{

int done;

int valid;

int number = 0;
char answer;

int nothing;

Programmer's Corner

window_set_up{};
graf_mouse{M_OFF,¬hing);
done = FALSE;

while {ldone)

printf(*’Please enter a decimal integer without commas or decimal
point.);

scanf(’’%d"” &number);

printf(*The hexadecimal equivalent of %d is %x\n”,number,number);
valid = FALSE;

while (lvalid})

printf{“Would you like to try another number (Y /N)?");
answer = getchar(});
switch (answer)

{

case 'Y':
case ‘y': printf('"\n""};
valid = TRUE;
break;
case '‘N";
case 'n": valid = TRUE;
done = TRUE;
break;
default: printf("\nINVALID RESPONSE . . . PLEASE TRY
AGAINNN");
}
}
1
araf_mouse{M_ON, ¬hing);
clean_up();

}

window_set_up{}
{

short loop;

int work_in[11];
int work_out[57];
int dummy;

appl_init{);

handle = graf_handle{&dummy,&dummy,&dummy,&dummy};
work_stn_hndle = handle;

for (loop = 0; loop < 10; loop++) work_in[loop] = 1;

113

Learning C on the ST

114

work_in[10] = 2;
v_opnvwk{work_in,&work_stn_hndle,work_out);

}

clean_up()

{
v_clsvwk{work_stn_hndle};
appl_exit();

}

Program Explanation

This program is very simple in nature, thanks to C’s convenient conversion
abilities in printf statements.

After our usual initialization, the main “while” loop (while (!done)) is
begun, and the user is requested to enter a base 10 integer, which is then
converted within the second printf statement. By using the %d control string,
the number is displayed as a base 10 integer. But when we use the % x control
string, the number will be displayed as a hexadecimal number. Notice that
we precede the hex value by the $ sign to signify that it is a base 16 value.

This very simple conversion, which took place in one printf statement
in C, might require a few dozen statements in, say, PASCAL, where you
would have to read the number in and then look at it one digit at a time and
convert it to a string so that the digits 10 through 15 (A through F) could be
displayed. This is indeed a very nice feature of C, one that we will use again
later in the book to create a program that will “dump” (or display) files in
both hex and character form.

After we have displayed the converted number, another “while” loop is
started ((while (Ivalid)), which asks the user if he/she would like to convert
another number. The input is received via getch, and a switch statement is
used to determine the appropriate action. If an invalid response is made, the
default option in the switch is again used to display an error message. Finally,
the program ends with our familiar clean_up routine to shut down the ap-
plication.

Tape Counter Program

If you have ever made any recordings of your phonograph albums, you are
familiar with the problem of trying to figure out exactly how many songs
you can get on one side of a tape. We have all spent some time adding
minutes and seconds to try and get the most out of a blank tape. But if you

Programmer’'s Corner

take a few moments to use the following program, your future tapes will be

a snap to make.

All you have to do is enter each song’s length in minutes and seconds,
and the program will keep a running total of the amount of time necessary

to make the recording.

/*Tape Counter Program*/

#include (stdio.h)
#include (gembind.h)

int work_stn_hndle,handie;

int minutes; /*song’s number of minutes*/

int seconds; /¥*song’s number of seconds*/

int tot_minutes; /*total minutes of all songs entered*/
int tot_seconds: /*total seconds of all songs entered*/

main()

{

int nathing;

window_set_upl{);
graf_mouse{M_OFF ¬hing);
tot_minutes = 0;
tot_seconds = 0O;
do
{
printf("How many minutes is this song?");
scanf(’'%d"" &minutes);
if (minutes = 0)
{
printf{’’How many seconds?”};
scanf("%d’" &seconds);
calc_and_disp();
}
} while {(minutes != 0};
graf_mouse{M_ON,¬hing);
clean_up();

}

window_set_up()

{

short loop;
int work_in[11];

115

Learning C on the ST

int work_out[57];
int dummy;

appl_init();

handle = graf_handle(&dummy,&dummy,&dummy,&dummy);

work_stn_hndle = handle;

g for (loop = 0; loop < 10; loop++);work_in[loop] = 1;
work_in[10] = 2;

v_opnvwk{work_in,&work_stn_hndle,work_out};

}

clean_up{)
{
B v_clsvwk{work_stn_hndle);
;;: appl_exit();
; t

calc_and_disp()
tot_minutes = tot_minutes + minutes + {tot_seconds + seconds}/60;
tot_seconds =-{tot_seconds + seconds) % 60;
printf{’\minTOTAL REQUIRED TIME SO FAR IS: %d MINUTES
%d SECONDS\m\n",
tot_minutes,tot_seconds);
i

Program Explanation

The tape counter program has one main “do . . . while” loop, which con-

tinues until the user enters a zero value for the number of minutes in a song.

This loop first requests the number of minutes, and then if minutes is not

zero, the number of seconds is requested. Then, calc_and_disp is called to
i figure the total number of minutes and seconds thus far. The tot_minutes
¢ figure is calculated by adding the previous tot_minutes to the latest song’s
number of minutes. This amount is then added to the remainder after adding
k the tot_seconds to the latest song’s seconds and dividing that sum by 60 as
[; follows:

tot_minutes = tot_minutes + minutes + (tot_seconds + seconds)/
60;

|
i The tot..seconds amount is then figured by using the remainder, or modulus,
l of adding the tot_seconds to the latest song’s seconds and dividing by 60.

| 116

Programmer’s Corner

Again, the % operator is used to determine the remainder of dividing X by
YX % Y).

The cumulative totals are then displayed by calc_and_disp, and control
returns to main, where the “do . . . while” loop continues. The program
ends with the clean_up routine.

Glossary for Review

binary search—the search method used whereby the list of possible
items is reduced by one-half with each successive guess

base 10 numbering system—the common numbering system that uses
the ten digits O through 9 to represent all possible values

hexadecimal numbering system—the computer-oriented numbering
system that uses the 16 digits 0 through F to represent all possible values

Quiz]

1. Why weren’t min_num and max_num (originally 1 and 100, respec-
tively) declared as constants with the #define directive in the number
guessing program?

2. Why weren’t the three routines inch_to_meter, cub_inch_to_meter, and
ounce_to_gram combined into one routine, since they all perform some
sort of conversion?

3. Why was “do . . . while” loop used in the tape counter program instead
of a regular “while” loop?

4, Are there any numbers that have the same representation in both hexa-
decimal and base 10 notation?

117

— Chapter 8 w |

Advanced Data Structures
and Concepts

J

In this chapter, you will learn:

» More about data types.
» The concept of arrays, and how they are used in programs.

» About the struct and file types.
» The concept of recursion, and how to use it in C.

Learning C on the ST

Advanced Numeric Types: Longs,
Doubles, Words, and Unsigned Types J

120

We have already used the LONG, short, and WORD variable types, but it
is worth noting some of the reasons behind using them versus just declaring
an int type. We have stated that the maximum range for a long int is from
—2,147,483,648 to 2,147,483,647 and should accommodate most of your
needs. You will probably never need to work with a value outside this range,
and, in fact, it would be more efficient if you could use a variable that did
not take up the four bytes that a long int uses. To this end, C provides the
WORD or short declaration types. WORD and short are interchangeable in
Lattice C in that they use only two bytes of memory (WORD is declared as
#define WORD short). On other compilers, such as Megamax, WORD is
defined in the portab.h file as an int (two bytes), whereas a short int is
defined to be one byte. The WORD or int type range is from —32,768 to
32,767, which still provides a rather large range of values, but only requires
half the memory of a long int.

In addition to these fundamental integer types, a variable can be declared
to be an unsigned short, int, LONG, or WORD. For example, an unsigned
int would have a range of 0 to 63,535. The unsigned int may hold a larger
number than the regular int, but it still does so in only two bytes. How is
this possible? In an int, the two bytes are comprised of 16 bits (8 bits per
byte), and one of the bits is used to determine if the number is positive or
negative and is commonly referred to as the sign bit. The unsigned int does
not need to use one of its bits as an indicator of the sign and can therefore
result in producing a larger positive number. However, both types have iden-
tically sized ranges, because there are only so many combinations of numbers
that may be represented by 16 bits!

The unsigned modifier may be used on any of the types we have used
so far with the same results as described for ints. For real numbers, the float
type is four bytes in length and a long float, or double, is eight bytes long
and provides a more precise real value.

You will notice that many of the GEM library routines use WORDs,
shorts, etc. for parameters, and you should always be careful to match your
variable sizes to those of the library routines. Quite often you will find a bug
with a program that arises because of a size mismatch. In addition, if you
are converting programs from, say, Lattice C to Megamax C, be aware that

Advanced Data Structures and Concepts

Lattice treats ints and long ints identically, and some of the parameters in
the GEM functions may need to have different types in the two versions.

Simple Arrays)

Up to now you have been exposed to the basic types of C including int, float,
char, etc. These types are quite useful indeed, but would be somewhat limited
for general programming without a mechanism to further categorize somehow
groups of similar variables. The array structure is one that greatly adds to
the programmer’s set of tools for solving problems. We have already seen
how arrays may be used to create strings like this:

char my_string[10];

This declaration reserves ten bytes of memory for storing the characters that
you wish to place in my_string. It might be helpful to picture these ten bytes
as being laid out as follows:

I O A O
0 1 6 7

2 3 4 5 8 9
my_string

We could then assign a value to my_string via the gets function like this:
gets(my_string};

Let’s say that we enter the name Kelly when the gets requests our input; now
my_string looks like this:

1O I L) R
o 1 2 3 4 5 6 7 8 9

my_string

As you can see, each of the characters in the name Kelly are stored one after
another in my_string, and the 6th position is filled with a \0 or a null char-
acter. This is because C has to have some way of knowing exactly how many

121

Learning C on the ST

122

characters in the ten-byte my_string location are used to make up the string.
In other words, C starts at the first location of my_string and continues to
view each character as part of the string until a null character is encountered.
Other languages have different ways of determining the length of strings. For
example, many implementations of PASCAL use a byte or two before the
string to hold the string length; this requires at least one exira byte per string
and might therefore be viewed as excess memory usage. But remember that
C needs one byte to hold the null termination character in its string repre-
sentation.

Even though we declared my_string to hold ten characters, we could
very easily assign a string with, say, 15 characters to my_string. What do
you think would happen? If you have any variables declared after my_string,
the contents of my_string will overflow into the next variable(s). Again,
your variables are stored sequentially in memory, and although we specified
that we only needed ten bytes of memory in our declaration of my_string,
C looks at the declaration as an address at which to place the first character
of the string; additional characters are placed one after another in memory
until the end of the string. So, be careful when assigning strings, because it
is very easy to trash another variable by overwriting it with a lengthy string.

Now that you are more familiar with the layout and structure of simple
arrays in the form of strings, let’s see how we can use the array concept to
solve some programming problems. For instance, let’s say you were writing
a program that displays the number of wins of six baseball teams. In order
to have these figures placed in variables, we would have to make declarations
like this:

int team1;
int team2;
int team3;
int team4;
int teamb;
int teamb;

We can assign the values to these variables like this:

team1 = 50;
team2 = 75;
team3 = 37;
team4 = 45;
teamb = 57,
team6 = 27;

Advanced Data Structures and Concepts

We could have created an array that would hold each of these values
like this:

int team_array[6);
and we would make the assignments like this:

team_array(0] = 50;
team_array[1]}] = 75;
team_array[2] = 37;
team_arrayl3] = 45;
team_array[4] = 57;
team_array[d] = 27;

We say that the variable team_array is “an array one to six of type
int.” In other words, team_array may have up to six elements, each element
is an int, and the array is indexed from O to 5. The last portion of that state-
ment is worth noting: Although the index has a defined size of six, the ref-
erencing index begins at zero and goes to one less than the defined size.
Picture the team_array as a set of six slots whose values after assignment
look like this:

5127 1
4 57]
(45]
(37]
I__ 75 1]
O[___5 |
team_array

Array elements may be assigned to one another just like other variable
types. So we could say:

team_array[1] = 45;
team_array[2] = team_array[1];

which would place the value 45 in both team_array[1] and team_array[2].
Arrays don’t have to contain int types; we could have an array of float, char,
LONG, etc.

123

Learning C on the ST

In general, the array’s syntax is:
array.type var_name[number of elements};

where number of elements represents the range (such as [10], meaning in-
dexed from 0 to 9), and array_type is the predefined type of each element.

Parallel Arrays)

124

One of the most popular applications of arrays utilizes the concept of parallel
arrays, which are arrays that are related to one another by index. Consider
the situation of a teacher with 30 students who would like to write a program
that prompts for each student’s identification number (ID) and grade and then
sorts them in descending order. The major data structures for this problem
might look like this:

int id_array[30];
int grade_array;

If we were to assign the first three elements of each array based on this
information:

Student ID Grade
1234 84
5678 100
3456 91

with this code:

id_array[0] = 1234;
grade_arrayl[0] = 84;
id_array[1] = 5678;
grade_array[1] = 100;
id_array[2] = 3456;
grade_array[2] = 91;

the arrays would look like this:

Advanced Data Structures and Concepts

2[_ 3456] 2[_ 91]
1] 5678 1 1[__100]
o[1234] o[__ 84]

id_array grade_array

As you may have noticed in the assignment statements above, each in-
dividual student’s ID and grade are located in matching locations in the two
arrays (i.e., ID 5678 is in slot 1 of the id_array, and that student’s grade
is also in slot 1 of the grade_array). This may seen rather trivial on first
inspection. However, when the items are later sorted in descending grade
order, it is imperative that the relationship remain intact. Otherwise there
would be no way of knowing which ID corresponds to which grade!

Structures and Files]

The student ID/grade example discussed earlier might better be solved through
the use of a record data structure. A structure or, record, is a collection of
one or more different item(s) or field(s) that are grouped together for logic
and convenience. For instance, this declaration would provide a structure for
our student ID/grade problem:

struct student_rec

{
int id;
int grade;

%

In our student_rec type we say that we have two fields: id and grade. In
general, the structure type declaration looks like this:

struct rec_type

{
typel field1;
type2 field2;

type;1 fieldn;
|

125

lLearning C on the ST

126

We must next declare a variable of this type so that we may work with
it in a program:

struct student_rec a_record;

In order to make an assignment to a structure’s fields we must specify
the structure’s name followed by a dot (.) and then the field name itself. Here
is how we could assign values to a_record:

a_record.id = 6789;
a_record.grade = 91;

It’s as simple as that! But if we assign new values to those fields (such as
the next ID and grade), the original values are lost. A simple solution to that
would be to declare an array of structures like this:

struct student_rec

{

int id;

int grade;
k

struct student_rec class_array{30];

We could now make our student 1D/grade assignments like this:

class_array[0].id = 1234,
class_array{0].grade = 84;
class_array(1].id = 5678,
class_arrayl1]l.grade = 100;
class_array{2].id = 3456;
class_array(2].grade = 91;

Instead of creating an array of structures, we could have created a file
that is simply a collection of records on a disk. The following is a valid file
declaration:

FILE *my_class;
This declaration says that my_class points to a file; the contents of the file

are at this point unknown, but when the my_class value is used in file ma-
nipulation routines, the structure format is passed as a function parameter.

Advanced Data Structures and Concepts

We can use the FILE type to store our various entries on a disk for
later retrieval. To understand better the relationship between files, records,
and fields, think of the filing cabinet in a doctor’s office. The cabinet is a
file because it is full of folders on different patients. Each patient’s folder is
a record, and each item in that folder (i.e., name, address, height, and weight)
is a field. Now let’s look at a prograrn that uses arrays and structures to create
a baseball team lineup.

Using Arrays and Structures in an Application

The following program requests information for nine players on a baseball
team, including name, position, batting average, and spot in the batting order.
When this information is entered for each player, the array of players (struc-
ture) is scanned through to display the batting order of the team. Let’s take
a look at the program line by line:

/*Baseball Lineup Program*/

#include {stdio.h)
#inculde (gembind.h)
#include {define.h}

struct player..rec /*record for each player®/
char name[20]; /*player’'s name*/
char position[15]; /*player’s position (e.g. shortstop)*/
int average; /*player’s batting average (e.g. 300)*/
int bat_order; /*player’s spot in batting order*/
|7

struct player_rec team_array[9]; /*array of players*/

int order_set[9]; /*batting order positions*/

int work_stn_hndle,handle;
int contrt[12], intin[128], ptsin[128], intout[128], ptsout[128];

main()

{

int nothing;

window_set_up();
graf_mouse(M..OFF,¬hing);
get_player_info();
display_player_info(};

127

Learning C on the ST

graf_mouse(M_ON,¬hing);
clean_upt);

}

window_set_upl()
{

short loop;

int work_in[11];
int work_out[57];
int dummy;

appi_init();

handle = graf_handle(&dummy,&dummy,&dummy,&dummy);
work_stn_hndle = handle;

for{loop = 0; loop < 10; loop++)work_in[loop] = 1;
work_in[10] = 2;
v_opnvwk{work_in,&work_stn_hndle,work_out);

}

clean_upl()

{

v_clsvwkiwork_stn_hndle);
appi_exit{);

}

get_player_info{)

{

int counter; /¥*dummy counter*/
int valid; /*is this entry valid?*/

for (counter = 0; counter <=8; counter++)
order_set[counter] = FALSE; /*initialize order_set to no
entries*/

for {counter = @; counter <=8; counter++)
{
printf(“"What is this player's name?’};
scanf(’’%6s’ &team_array[counter].name);
printf(“What is this player’s position?");
gets(team_array[counter].position};
printf(“What is this player’'s batting average? {e.g. 300)"');
scanf{''%d"" &team_arraylcounter].average);
do
{
valid = TRUE;
printf{*“What is this player's spot in the batting order {e.g.2)7");

128

Advanced Data Structures and Concepts

scanf(**%d",&team_array[counter].bat_order};
iflorder_set[team_array[counter].bat_order])

printf("\nThat spot in the order has already been usedhnin’’);
valid = FALSE;
}

else

{

order_set[team_array|[counter].bat_order] = TRUE;
printf{("\n");
|3
!
t
}

display__player_.info()

int which_batter; /*dummy counter*/
int counter; /¥dummy counter*/

printf(*\m\nYour batting order is as follows:\n\n");
for{which_batter = 1; which_batter <=9; which_batter++}

{
counter = 0;
while (team_array[counter].bat_order!= which_batter}
+-+counter;
printf(” Batter %d is %s who is playing %s/n", which_batter,
team_arraylcounter}.name,team_array[counter].position);
!

printf("\m\nPRESS RETURN TO CONTINUE. . .”);
getchar();

}

When you run this baseball program, you are requested to enter player
name, position, batting average, and position in the batting order for nine
team members. If for any reason you should enter two players with the same
batting order position, the program will note this discrepancy with an error
message and request you to enter another batting order position for that player.

The baseball program has two functions—one for gathering the player
information (get_player_info()) and another for displaying the information
(display_player_info()).

The main program’s declarations begin with a structure for the players

129

Learning C on the ST

130

that contains fields for name, position, batting average, and position in the
batting order. The team_array array is then declared so that it may hold nine
player records, and an array called order_set is declared to hold nine ele-
ments that indicate whether each of the nine batting order positions is already
occupied. The main program merely performs the usual initialization and calls
both get_player_info() and display_player..info().

The routine get_player_info() begins by initializing the order_set to
all FALSE values. Then for each player the name, position, average, and
batting order position are requested. During the request for batting order po-
sition the order_set is used to make sure that no two players have the same
position in the batting order (which would make no logical sense, but because
the user could mistakenly enter the same number twice, we have incorporated
this error handling mechanism). Again, if it is determined that the number
the user entered for the batting order is the index of an entry that is already
set to TRUE, an error is displayed; otherwise, that slot in the order_set is
set to TRUE.

The function display player _info() simply scans through the team_array
for each successive position in the batting order, and with each one that it
finds, it performs a printf, which displays the player’s name and position.

Enter the lineup of your favorite team, or make one up to see how the
program works in various situations. Be sure to attempt to enter the same
batting order position for two or more players.

As you can see, advanced data structures like arrays and records have
significant use within C and in fact are complementary to one another in
assisting the programmer with smooth, readable code.

Recursion (or, Can | Call Myself?)

We have seen how functions can be used in C to simplify the task of writing
lengthy programs by centralizing common operations and separating logical
blocks of code. We have also explained that functions can be called or ref-
erenced by the main routine or other routine depending on the program scope.
One point we have not discussed, however, is that of a function calling itself.
For example, let’s say we want to write a program that, given a particular
integer, calculates the product of itself and every integer between itself and
1 (i.e., given 4, the result is 4*3*2*] = 24}, (This mathematical concept is
known as “factorials” and is written as 4!, which is read “four factorial.™)
This program accomplishes the job:

Advanced Data Structures and Concepts

/*Recursion Program*/

#include {stdio.h}

#include (gembind.h)
#include {define.h)

int work_stn_hndle, handle;

int done; /*are we finished yet?*/

int valid; /*is this a valid number?*/

int fac_num; /*number to factorialize®/

int temp_num; /*temp variable used to perform factorials*/
long float result; /*the result of factorializing again*/

char again; /*Y/N answer to calculate again*/

int contri[12], intin[128], ptsin[128], intout[128], ptsout[128];

main{}

{

int nothing;

window_set_up(};
graf_mouse(M_OFF,¬hing);

done = FALSE;
while (Idone)
{
result = 1, /¥initialize result*/
valid = FALSE;

while (lvalid)

printf(“Please enter an integer between 1 and 150 which you\n");
print("want to factorialize. . .”);

scanf("%d" &fac_num);

if ((fac_num > 0} && (fac_num <= 150})

valid = TRUE;
else
printf("\mnINVALID RESPONSE. . .PLEASE TRY AGAINIn\n\n*);
t
temp_num = fac_num;
calc_fact();

printf(*\n\m\nThe result of factorializing %d is %g.\n" fac_num,result);
printf{"Would you like to calculate another number(Y/N)?");
again = getchar{);

if {{again == ‘N’) || {again == ‘n')}
done = TRUE;
else
printf(*\n\n"");

131

Learning C on the ST

graf_mouse{M_ON,¬hing};
clean_upl);

}

window_set_up{)

{

short loop;

int work_in[11];
int work_out[57];
int dummy;

appl_init{);

handle = graf_handle(&dummy,&dummy,&dummy,&dummy);
i work_stn_hndle = handle;
for ({loop = 0; loop < 10; loop++)work_in[loop] = 1;
work_in[10] = 2;
v_opnvwk{work_in,&work_stn_hndle,work_out);

b

clean_upt)

{

v_clsvwk(work_stn_hndle);
appl_exit();
}

calc_fact()

{
while(temp_num != 1)
{
: result *= temp_num;
—temp_num;
{ calc_fact():
(}
}

The program accepts a number between 1 and 150 and through the re-
" cursive routine cale_fact calculates the factorial of the given number.
‘ Calc_fact() is said to be recursive because it calls itself (at the end of the
1 “while” loop). It makes sense to set up the program in this manner, since
’i we are repeatedly performing the same operation on a number. However, the
same goal can be accomplished with another “while” loop in cale_fact(). In
fact, most (if not all) recursive functions can be eliminated by coding the
routine in a different manner. Try to avoid programming recursively for three

major reasons:

132

Advanced Data Structures and Concepts

1. it is very difficult for someone else (and sometimes even for your-
self) to follow the logic of a recursive routine;

2. recursive routines are famous for causing programs to “crash” be-
cause they eat up a lot of memory; and

3. it is very easy to get into an infinite loop with a recursive routine
where the “while” loop used to control the recursive call never has
its condition check set to FALSE. This could occur because the loop
counter is being incremented instead of decremented, etc.

At any rate, it is recommended that you exhaust every other program-
ming method before embarking on recursive routines.
Glossary for Review

sign bit—the bit used in signed numbers that indicates whether the num-
ber is positive or negative

array—a collection of like items that are categorized by an index, which
points to a location within the structure

record—a data structure that contains one or more item{s) or ficld(s)
and is used to centralize their meaning and use

Jield—the smallest divisible portion of a record
Jile—a collection of records

recursion-—the act of a function calling itself in a repeating fashion {one
of the most popular examples is the mathematical factorial function)

 — Quiz :)

1. Describe the relationship between fields, records and files.

2. Why does it not make sense to try and put as many fields as possible in
a recored declaration?

3. What was the purpose of the “for” loop in the baseball program, which
successively set the items in the order_set to FALSE in the get_player _info
function?

133

f— Chapter 9

More on Structures and Files

In this chapter, you will learn:

« About the organization of fields within structures and structures
within files.

» The similarities between files and arrays of structures.

» Some of the most useful file handling library routines.

« How to sort and merge structures within a file.

Learning C on the ST

Fields, Structures, and Files)

136

Every day we deal with files of many different types. Your local phone book
is one of the most obvious examples of a file. It consists of numerous entries,
such as your own, that contain names, addresses, and phone numbers of local
residents. Below is a portion of a sample phone book:

Craig, Joe D. 451 Emerson Rd. 555-1200
Staton, Mike 2009 Sidneywood Rd. 555-1201
Mackowick, Paul 1487 Alitaview Ave 555-1202

Zimmerman, Terry 1234 Miamisburg Rd. 555-1203

The entire book is called a file, each entry is a structure, or record, and
each structure has three fields: name, address, and number. The following C
structure could be used to represent a phone book record:

struct phone_type

char name|25];
char address[30};
char number(9];

|5
If we then make the following variable declaration:
struct phone_type ph_var;
we could read in the fields of the structure like this:

printf(“What is the person’s name? ”};
getsi{ph_var.name);

printf(“What is their address? ");
gets{ph_var.address);

printf{“What is their phone number? "');
gets(ph_var.number);

We would then want to put these in what we have been referring to as
a file but we don’t know how to do this yet so let’s look at another alternative
to storing this information in a familiar manner.

More on Structures and Files

Files vs. Arrays of Structures)

If we wanted to work with several phone book entries within a program we
could declare a variable like this:

struct phone_type ph_bk_array[10];

which would allow us to read in up to 10 entries like this:

for (i =0;71<10; i++)
{
printf{"What is the person’s name? ”');
gets{ph_bk_array[i].name};
printf(“What is their address?);
gets(ph_bk_array[i].address);
printf(“What is their phone number? "');
gets(ph_bk_array[i]l.number);
}

We could then manipulate this array so that it is sorted alphabetically
by last name, phone number, etc. The main problem arises when we want
to save the information for future use; when you end the program, the array’s
contents are forever lost, and although you could have declared a larger array,
you will always be limited by the size of the array if you want to work with
many more entries.

The C file type could be used to simplify this problem. We wouid need
to declare a file within the program such as this:

FILE *phone_file;

This declaration will later allow us to place multiple phone_type structures
on a disk and in a manner that we can later retrieve and manipulate. The file
is then the obvious choice for storing your phone book entries, since the
information may be retrieved after the program has been terminated, and the
number of entries is usually limited only by the available disk space. The
manipulation of files involves four major C functions: fopen, fread, fwrite,
and fclose.

137

Learning C on the ST

File Handling Library Routines)

138

In order to access a file for reading or writing, you must first open it with
this function:

ptr_to_file = fopen(file_name,access_type);

where ptr_.to_file is the FILE variable used in the program to reference the
file (¢.g., phone_file as declared above), file_name is the name of the file
as it appears on the disk (or as it will be named when viewed as an icon in
the disk window), and access_type is the mode for which the file is to be
opened. Possible values for access_type include “r” for read mode, “w” for
write mode, and “a” for append mode.

Once you have opened a file, you may then either read or write 1o it
using these functions:

fread(&struct_var,struct_size,num_of_structs,ptr_to_file);

fwrite(&struct_var,struct _size,num_of_structs,ptr_to_file);

where, again, ptr_to_file is the FILE variable used in the program to ref-
erence the file, struct_var is the item (notice that the address is passed via
the & operator) you wish to read from or write to the file, struct_size is the
size of the struct_var, and num_of_structs is the number of structures to
be read /written. Rather than figuring exactly how large the struct_var is, it
is common to use the sizeof operator like this:

fread(&struct_var,sizeof(struct_var),num_of_structs,ptr_to_file);
or:

fread{&struct_var,sizeof{struct
struct_type),num_of_structs,ptr_to_file};

Either one of these methods will provide the desired results, since the sizeof
operator will determine the exact size of the struct_var, whether you use
sizeof with the variable (struct_var) or its structure type (struct_type). Be
careful, however; if you do use the structure type, make sure that you precede
it with the reserved word struct.

More on Structures and Files

When you are finished with a file, you should always close it with this
function:

fcloseiptr_to_file);

There should always be a corresponding fclose performed upon every
fopen-ed file. If you do not follow that simple rule, you could end up with
many problems in your programs.

Finally, when reading from a file, it is an error to attempt to read beyond
the last entry in the file or to try to read from a nonexistent file, since there
is nothing there! You can ensure that you have successfully read in an entry
(and therefore not be at the end of the file) by setting up your reading loop
like this:

while {fread(&phone_record,sizeof{struct phone_type),
1,phone_file)==1};

As long as the result of fread is equal to 1, we have been able to read another
entry, and we aren’t at the end of the file.

In order to avoid the problem of reading from a nonexistent file, we can
check the result placed in the file pointer against the NULL value (as #de-
fined in the portab.h file in Megamax); if it equals NULL, the file does not
exist on the disk. Here’s an example of how to check for this situation:

if{iphone_file = fopen{name,”r”))!= NULL)
/*it's safe to attempt an fread*/

Using a File in a Phone Book Program

The concepts described above are brought out in this program, which may
be used to keep your own private phone book on a disk:

/*Phone Book Program*/

#include (stdio.h}
#include (portab.h)
#include (gembind.h)
#inctude {(define.h)

struct phone_type
{

139

Learning C on the ST

1
' char first_name[10]; /*entry’'s first name*/
: char last_name[10]; /*entry's last name*/
: char number[9]; /*entry's phone number*/
, 7
|

: int work_stn_hndle,handle;
: int nothing;
char user_file_name[10]; /*user’s phone book file name*/

FILE *phone_file; /*phone book file pointer*/
char response; /*menu selection*/
int done; /*are we finished?*/

: struct phone_type phone_record; /*variable for reading/writing to file*/
‘ int contrl[12], intin[128], ptsin[128], intout[128], ptsout{128];

|
B
"5 main()
| {
| window_set_up();
. graf_mouse(M_OFF ¬hing);
done = FALSE;
printf(“Enter your file’s name: "');
scanf{"%s’ &user_file_name);
while (!done)

{

printf{*\n\nWhich do you wish to do:\n\n"’);

printf{“ 1. Add a record to the file\n"'};

printf(" 2. Search the file\n”’};

printf{” 3. QUIT\W\n");

printf("PLEASE ENTER A 1,2 OR 3 "'};

switch{response = getchar(}}

. case ’'1":add_record(};
i break;
| case ‘2":search_file();
; break;
{ case ‘3":done = TRUE;
break;
default:printf("\mnINVALID RESPONSE. . .PLEASE TRY
AGAINIhN");

i t

graf_mouse{M_ON,¬hing);
clean_upl);

}

|

|
Z[
l 140
‘

|

More on Structures and Files

window_set_up()
{

short loop;

int work_in[11];
int work_out[57];
int dummy;

appl_init(};

handle = graf_handle{&dummy,&dummy,&dummy,&dummy);
work_stn_hndle = handle;

for(loop = 0; loop < 10; loop++)work_in[loop] = 1;
work_in[10] = 2;
v_opnvwki{work_in,&work_stn_hndle,work_out);

y

clean_up()

{
v_clsvwkiwork_stn_hndle);
appl_exit(};

}

add_record{}

printf(*\n\nWhat is this person's first name? ");
scanf{''%s",8phone_record.first_name);

printf{*What is this person’s last name? "');
scanf({’'%s",8phone_record.last_name});

printf(“What is this person's phone number? (e.g., 5565-1212) "');
scanf('%s"”,&phone_record.number};

phone_file = fopen{user_file_name,"’a’’}; /*append to the file*/
fwrite(&phone_record,sizeof(struct phone_type),1,phone_file);
fclose{phone_file);

}

search_file()

char find_name[10]; /*name use wants to search for*/
int found; /*have we found the name yet?*/

printf("\n\nWhat is the last name you wish to search for? ”);
scanf(’'%s” , &find_name);
if(iphone_file = fopen(user_file_name,"r”))!= NULL)

{
found = FALSE;

141

Learning C on the ST

142

while {{{found) && (fread(&phone_record,sizeof{struct phone_type),
1,phone_file) == 1}}

if(strcemp(phone_record.last_name,find_name} == 0}
found = TRUE;

if {found)
{

printf{*\n\n%s %s's”,phone_record.first_name,
phone_record.last_name};
printf(phone number is: %s\n”’,phone_record.number)};

}

else
printf(*\n\nYour file contains no number for %s\n” find_name);
fclose{phone_file);

}

else
printf{“\minThere is no file called %s on the diskl\n",user_file_name);

}

This program may be used to create your own disk-based phone book
file, add records to it, and search for particular entries. When you run the
program, you will see that a menu is displayed that asks you to select either
to add a record, search the file, or quit. If you choose to add a record, the
program requests the first and last name and phone number of the person to
add to the file. If you choose to search the file, you are requested to enter
the last name of the person you are searching; if the name is on the file, the
full name and number will be displayed. After every add and search, the
original menu is redisplayed so that you can perform several additions/searches
without quitting the program.

The FILE, which is declared in the program, is called phone_file and
is used to write /read the phone_record structure, which has fields for first
and last names and phone number. Notice how the file pointer declaration
(FILE *phone_file;) makes no reference whatsoever to the type of structure
that is being written to that file (phone_type).

Aside from our usual initialization /cleanup routines, the program is bro-
ken up into the main routine and two functions, add_record() and
search_file(), which place an entry at the end of the file and find a particular
entry within the file, respectively.

The main program performs the initialization and asks the user for a file
name (user_file_name) to use in the remainder of the program. The program
menu is then displayed, which includes the options to add a record, search
the file, and quit the program. Depending on the user’s selection, either

More on Structures and Files

add_record() or search_file() will be invoked, or the variable done will be
set to TRUE and the program will be terminated.

When add_record() is invoked, the function requests the first name,
last name, and phone number of the entry to be added to the file. The file
is then fopen-cd, and the entry is appended to the end of the file, and the
file is then closed via felose. (Recall that the a option in fopen provides us
with the ability to append to the file.)

When the search_file() rouiine is called, the user is asked which last
name he/she wishes to locate in the file. The file is then fopen-ed, and the
search is begun through a “while” loop, which continues until either the last
name is found or the end of file is reached (again, we can check the end of
file by comparing the result of the fread to 1, which would be TRUE if we
were able to read in one record). If the name is found, the entire name is
displayed along with its associated phone number; otherwise, a message is
displayed that explains that the name is not in the file. In either situation,
the file is then closed before returning to the main routine.

The phone book program creates a very simple file; there is no real order
to the entries within the file. When a new entry is added to the file, it is
placed at the end and not in alphabetical order like your local phone book.
This should not create a problem for a small file that is infrequently used,
but if there are quite a few entries in your file and you are searching it often,
it might be nice not to have to look at almost every entry in the file before
finding the one you want. If we add more logic to the program so that the
file is stored in alphabetical order, you would notice a difference in speed
when accessing a particular entry. To do this, we need to discuss the concepts
of sorting and merging entries.

Sorting and Merging Entries]

Your local phone book is a compilation of names and numbers in alphabetical
order. If the book were not in any order, it would take hours to find the
number of a friend. Our phone book program would have just that problem,
but since the computer can search files so quickly, this lengthy period of time
goes almost unnoticed, unless the file to be searched is quite large. In order
to make our phone book program create a file similar to your local phone
book, we must have the program sort the entries in the file before actually
writing to and closing it. If we need to add an entry that would be the last
one in the file, we simply add it to the end like we did in the original program,

143

Learning C on the ST

144

But when we need to insert the entry at the beginning or between two existing
entries, we must make room for the new entry and merge it with the existing
ones. The following program has the modifications necessary to create an
alphabetical phone book file:

/*Sort/Merge Phone Book Program*/

#include (stdio.h}
#include {portab.h)
#include (gembind.h)
#include (define.h)

struct phone_type
{
char first_name[10];
char last_name[10];
char number[9];

%

int work_stn_hndle,handle;

int nothing;

char user_file_name(10];

FILE *phone_file;

struct phone_type phone_array[60]; /*array for sorting*/
struct phone_type phone_record;

char response;

int done;

int index; /*phone_array index*/
int counter;

int contrl[12], intin[128],ptsin[128],intout[128],ptsout[128];

main()

{

window_set_up(};
graf_mouse(M_OFF,¬hing);
done = FALSE;

printf(*’Enter your file's name: ”');
scanf{"'%s" &user_file_name};
while {!done)

{

printf(*\n\nWhich do you wish to do:\m\in”);
printf(* 1. Add a record to the file\n"};
printf(** 2. Search the file\n™);

printf(* 3.QUIT\m\n"");

More on Structures and Files

printf("PLEASE ENTER A 1,2 OR 3. . ."');
switch (response = getchar(})

{
case ‘1":add_record();
break;
case ‘2" :search_file();
break;
case ‘3":done = TRUE;
break;
default: printf{"\m\nINVALID RESPONSE . . . TRY AGAINI\n"});
}

}
graf_mouse(M_ON,¬hing});
clean_up();

Y
window_set_up()
{

short loop;

int work_in[11];
int work_.out(57];
int dummy;

appl_init{};

handle = graf_handle(&dummy,&dummy,&dummy,&dummy);
work_stn_hndle = handle;

for(loop = 0; loop < 10; loop++) work_in[loop] = 1;
waork_in[10] = 2;
v_opnvwk{work_in,&work_stn_hndle,work_out);

clean_up()

{

v_clsvwk{work_stn_hndle};
appl_exit();
}

insert_and_sort{)

{

int located_slot; /*have we found the spot to insert record?*/
int dummy; /*used to slide array elements down in sort*/

located_slot = FALSE;
counter = 0;
while {{counter < index)&&({!located_slot))

145

Learning C on the ST

if {strcmp({phone_array[counter].last_name,
phone_record.last..name)} < 0)
++counter;
else
located_slot = TRUE;
1
for {dummy = index; dummy > counter; dummy—-)
phone_array[dummy] = phone_arrayldummy — 1];
phone_array[counter] = phone_record;

H

add_record()

{

int dummy; /*used as index for writing to file*/
index = 0;

if((phone_file = fopen{user_fite_name,”r"})) t= NULL)

while(fread(&phone_array[index],sizeof(struct phone_type),
1,phone_file) == 1)
++index;
fclose(phone_file};

printf("\nWhat is this person's first name?);

scanf("%s"” , &phone_record.first_name);

printf(“What is this person’s last name? "');

scanf("“%s"”,&phone_record.last_name);

printf(“What is this person’s phone number? (e.g. 555-1212) ”);

scanf{""%s" &phone_record.number);

insert_and_sort();

phone_file = fopen{user_file_name,"w");

for (dummy = 0; dummy <= index; dummy++)
fwrite(&phone_array[dummy],sizeof(struct phone_type),1,phone._file);

fclose(phone_file);

.lsearch_file()

{

char find_name[10];

int found,;

int beyond; /*have we gone alphabetically beyond the name?*/
beyond = FALSE;

printf{“\n\nWhat is the last name you wish to search for? "');

146

More on Structures and Files

scanf{"%s",&find_name);
if {phone_file = fopen{user_file_name,”r"”}) = NULL)
{
found = FALSE;
while {({found)&&(fread(&phone_record,sizeof(struct phone_type),
1,phone_fite) == 1} && (Ibeyond})
if (strcmp(phone_record.last_name,find_name) == 0)
found = TRUE;
else if {strcmp(phone_record.last_name,find_name)} > 0)
beyond = TRUE; /*we've gone too far in the file*/
if(found)

{

printf("\n\n%s %s's",
phone_record.first_name,phone_record.last_name);
printf(" phone number is: %s\n"",phone_record.number);

}

else
printf*"\m\nYour file contains no number for %s\n”, find_name);
fclose(phone_file};

}

else
printf("\mnThere is no file called %s on the disk!\n"user_file_name);

}

This new program uses a phone_array, which can hold up to 50
phone_type entries and is used to sort the file before writing it to disk. The
function add_record() has been changed to read the file into the array and
then call the function insert_and_sort(), which finds the position within the
array where the insertion should be made, slides all entries below this point
down one position within the array, and then places the new entry in its
proper position. Finally, the function search_file() no longer simply searches
the file until it either finds the correct entry or hits the end of the file; it now
knows that because the file is arranged alphabetically, once it gets past the
point where the entry should be it quits. For example, if you are searching
for the name Boyle and you are currently at the name Carlson in the file,
you know that you have gone too far, and the name is not in the file.

You probably will not notice much difference in this version of the pro-
gram, but to see how the file itself is completely different, use the following
program to display the contents of your phone book file. Be sure to use same
file name that you used in the original phone book program.

147

Learning C on the ST

/*Display Phone Book Program*/

#include (stdio.h)
#include (portab.h}
#include {gembind.h)
#include (define.h)

struct phone_type
{
char first_name(10];
char last_name[10];
char number[9];
5
int work_stn_hndle,handle;
int nothing;
char user_filte_name[10];
FILE *phone_file;
struct phone_type phone_record;
int contrl[12], intin{128], ptsin[128], intout[128], ptsout[128];

main{)

{

window_set_up();

graf_mouse{M_OFF,¬hing};

printf{Enter your file's name: "');

scanf('“%s’" &user_file_name);

printf(“smn");

if{{phone_file = fopen(user_file_name,”r"’})) |= NULL)

while (fread{8phone_record,sizeof(struct phone_type),1,phone_file)
printf{“%s %s %s\n’’,phone_record.first_name,
phone_record.last_name,phone_record.number);
fclose{phone_file);
)
else
printf("“There is no file called %s on he disk\n",user_file_name);
printf("\mn PRESS RETURN TO CONTINUE. . .");
getchar(});
graf_mouse{(M_ON,¬hing);
ctean_up{};

}

window_set_up(}

148

More on Structures and Files

{

short loop;

int work_in[11];
int work_out[b7];
int dummy;

appl_init();

handle = graf_handle{&dummy,&dummy,&dummy,&dummy);
work_stn_hndle = handle;

for (loop = 0; loop < 10; loop++} work_in[loop] = 1;
work_in[10] = 2;
v_opnvwk{work_in,&work_stn_hndle,work_out);

}

clean_up()
v_clsvwkiwork_stn_hndle);

appl_exit{ };
b

Throughout our discussion of structures we have looked at variables that

are declared to be of the structure type. We can also declare a variable to be
a pointer to a structure type like this:

struct phone_type
{
char first_name[10];
char last_name[10];
char number[9];

%

struct phone_type *an_entry;

We can assign the address of our phone_record variable to an_entry like

an_entry = &phone_record;

Then we could look at what is in phone_record by using the —> operator
{which works just like the dot (.) operator for nonpointer type structures) like

if {strempl(an_entry—>last_name,find_name) == 0)

149

Learning C on the ST

which would be the same as saying this:
if (stremp{phone_record.last_name,find_name) == Q)

One of the most important reasons for working with pointers to struc-
tures would be to pass them as parameters to functions, but for most appli-
cations, you can very easily achieve your goals by using nonpointer type
structure variables.

Glossary for Review

NULL—the value that may be compared to a file pointer variable to
determine if the file is on disk; if the pointer equals NULL, the file does
not exist (found in the portab.h header file listed in the Megamax manual
but not on the disk—so, you must create the file yourself)

sorting—the act of organizing entries in a particular order (i.e., alpha-
betically, numerically, etc.)

merging—the act of combining one set of entries with existing entries
in a file so that the entire file is properly sorted

Quiz,]

150

1. How would you analogize a file to a collection of musical albums?

2. In the phone book example, how were we able automatically to place all
of our additions to the file at the end of the file?

3. How would you modify all the phone book programs so that you don’t
have to put the name of your phone book file in the programs each time
you run them?

4 Chapter 10 w '

Debugging and File Analysis
.)

In this chapter, you will learn:

= Some tips on debugging programs with Megamax C.

» A file dump utility that will allow you to view entire contents of
files.

+ A file encipher program that will protect your files from unwanted
viewing.

Learning C on the ST

Debugging)

152

The program logic we have dealt with up to now has, we hope, been very
easy for you to follow. Programs that are only a few dozen lines long can
be written and debugged in a fairly short period of time. For those of you
who are unfamiliar with the phrase debug, it is a term used in the computer
world to represent the act of fixing program problems. A debugger is a utility
that assists the programmer in fixing the problems by allowing him or her to
step through the program line by line and look at or even modify variable
values. So if you have run into a problem with a program, with the help of
a debugger you might be able to look at a variable in question and see why
it’s causing you headaches.

If you are using the Lattice or Megamax C packages on your Atari ST,
you probably already know that there currently is no debugging package
available to help get your programs up and running. As the Lattice compiler
documentation states, “A special debugger is required . . . which is not sup-
plied with the package.” Although this is an unfortunate situation, you are
certainly able to debug large programs without the use of a sophisticated
debugger; we prefer to say that it’s just that much more challenging! And
actually, without having a debugger handy, you are forced to think through
the logic of your programs more than you might have to if you could rely
on a debugger to look at the program while it’s running. Even if you are
using a C compiler with a debug package, the following few debugging tips
will probably come in handy some day, and you won’t have to work with a
debugger to solve some problems.

First of all, you should closely monitor the activity of your program for
such things as disk activity and screen display. For instance, you might notice
that one string you’re trying to display is making it to the screen, but the
very next one is not. Or maybe you're working with a file-based program
that is supposed to read/write a file on one of your disks. If you notice that
the disk light never comes on before the program bombs out, you could look
at the code before your disk command statements. As you can see with just
these small bits of knowledge, you can better pinpoint the location of your
problem.

It is also worth noting that if you accidentally say something like this:

if {a = b)
instead of this:

if ta == b)

Debugging and File Analysis

you can wind up with some fascinating and head-scratching experiences. Some
compilers may evaluate the first expression as TRUE, whereas others may
view it as FALSE. At any rate, it is incorrect, and unfortunately some com-
pilers won’t even flag it as an error! So, be careful of forgetting the double
equal signs when you’re working with “if” statements.

If you’re having problems with a particular variable and you're not sure
what value it is holding, it might be a good idea to use a few printf statements
to display the variable at strategic iocations with your code. This is commonly
referred to as echo-printing because you are echoing the value of the variable
to the screen. Although this process requires an extra compilation/link or
two, in the end it could save you hours of distress. In fact, the author of this
book relied heavily on echo-printing to solve several strange problems! If you
do use echo printing, you'll quickly discover that you should look at strings
in hex rather than their string format; if for some reason the string has a null
value and you try to display it, it may appear that the echo-print did not work,
whereas if you were to look at the string in hex on a byte-by-byte basis, you
could see that the first byte was null.

If you start working with very lengthy programs, you might find it con-
venient 10 have a debug routine that you could call at any time to look at
particular variables. This is a rather awkward way to try and fix problems,
but once you get the function written, you would only be bothered with in-
serting calls to it where you need them; you wouldn’t have to worry about
duplicating large blocks of code and remembering to remove them once the
problems are fixed.

If you are working with a file-building program and you were able to
achieve some disk activity, you could always look at what was written with
the SHOW or PRINT options that are displayed when you try to open the
files on the Atari desktop. Sometimes this is all you need to see exactly how
much information got written to the file, but most likely you will discover
that these options don’t really show all the bytes that are in the file. For this
reason, we have developed a file dump program that allows you to look at
most of your files so that you can see exactly what they contain.

File Analysis)

Let’s take a look at this program:

/*Hex/Character file dump program*/

#include {stdio.h)
#include {gembind.h)

153

Learning C on the ST

#define NEW_LINE “\n’
int work_stn__hndle,handle;
int contrl[12], intin[128], ptsin[128], intout[128], ptsout[128];

maint);

{

int nothing;

inti,j; /*counters*/

char file_name{15]; /*file to be dumped*/

FILE *file_ptr; /*pointer to the file*/

char a_char; /*character in file*/

char non_hex[18]; /*the array of printable characters*/

window_set_upl(});
graf_mouse(M_QOFF,¬hing);
printf(““Please enter the file name: ");
scanf(*'%s” &file_name};
printf{’"\n"’);
if ((file_ptr = fopen(file_name,”’r"")} '= NULL)
{
for {(j = 0; j < 16; j++)

non_hex[j] = *’; /¥initialize the array*/
i=0;
while {{{a_char = getc{file_ptr}} != EOF))

if (*a_char < 16)
printf(" 0%x’',a_char);
else
printf{** %x",a_char);
if {(*a_char >= ‘') && (*a_char <= '~ '}} /*printable*/
non_hexli] = a_char;
if {i == 7) /*blank after every 8 characters*/
printf(”"});
else if (i == 15)
{ /*force out the non_hex array*/
printf(** “};
if {(non_hex[15] == NEW_LINE)
non_hex[15] = '.";
for {(j = 0; j <= 15; ++j)

{
printf(*%c”,non_hex(j]};
non_hex[j} = *.'; /*re-initialize array*/

printf(’\n"’);

154

Debugging and File Analysis

= -1, /[*reset the counter; ++i will then set it to 0*/

+ - =

+

}
if (i >= 0) /*gracefully force out the rest of the last line*/
{
for {j = i; j <= 15, ++j)
printf(" "), /*three blanks per hex dump space*/
if {i <7} /*putin extra space for break between 8 and 9*/
printf(* ');
printf(*); /*space between hex and char*/
for{j=0;j<=i-1; ++j)
printf("%c"" ,non_hex(j]);
'
}

else

printf(""NON-EXISTENT FILE ERROR!'\n"’};
printf(*\nyn\n - PRESS RETURN TO QUIT . . .”};
getchar(};
graf_mouse(M_ON,¬hing};
clean_up{};

}

window_set_up{)
{

short loop;

int work_in[11];
int work_out[57];
int dummy;

r

appl_int();

handle = graf_handle(&dummy,&dummy,&dummy,&dummy);
work_stn_hndle = handle;

for {loop = 0; loop < 10; loop++) work_in[loop] = 1;
work_in[10] = 2;
v_opnvwk{work_in,&work_stn_hndle,work_out);

}

clean_up()

v_clsvwkiwork_stn_hndle};
appl_exit{);

}

155

Learning C on the ST

156

The hex/character dump program is fairly straightforward and intro-
duces only one new C function: getc(). As you probably assumed, this func-
tion is used to get a character from the file specified as the parameter. We

continue to call gete() vntil the EOF value is returned.

When you run the program, you are prompted to enter the name of the
file you wish to examine. Then, the file is displayed in both ASCII and the
character translation. For example, if you enter the following file:

Hi there.

This is what a file dump looks like.
As you can see, even numbers look kind of funny!

1234567890

But, this is a very good debugging tool for files.

its file dump looks like this:

48 69 20 74 68 65 72 65
73 20 77 68 61 74 20 61
6D 70 20 6C 6F 6F 6B 73
73 20 79 6F 75 20 63 61
76 65 6E 20 6E 75 6D 62
20 6B 69 6E 64 20 6F 66
3132 33 34 35 36 37 38
74 68 69 7320 69 73 20
6F 6F 64 20 64 65 62 75
6F 6C 20 66 6F 72 20 66

2E OA 54 68 69 73 20 69
20 66 69 6C 65 20 64 75
20 6C 69 6B 65 2E 0A 41
6E 20 73 65 65 2C 20 65
65 72 73 20 6C 6F 6F 68
20 66 75 6E 6E 79 21 0A
39300A4275742C 20
61 20 76 65 72 79 20 67
67 67 69 6E 67 20 74 6F
69 6C 65 73 2E 0A

Hi there. . .This i
s what a file du
mp looks like. . .A
$ you can see, &
ven numbers look
kind of funny!.
1234567890.But,
this is a very g
ood debugging to
ol for files. . .

Each line of the dump represents 16 bytes of the file first in ASCII and
second in the converted character representation. As mentioned earlier, ASCII
1s simply a common method of representing characters in a form that is rec-
ognizable by computers. The hexadecimal ASCII conversion values for print-
able characters are as follows:

Hex Value Character Hex Value
20 (space) 4F
21 ! 50
22 ! 51
23 # 52
24 $ 53

Character

v AL T O

Debugging and File Analysis

Hex Value Character

Character

Hex Value

-

54

1/2

25

D> B X

55

56

57
58

26
27

28

29
2A
2B
2C
2D
2E
2F
30
31

59
S5A
5B

N

— N —

5C

5D
5E
SF
60
61

62

33

63

34
35

64
65

36
37
38

66
67

I R

68

39
3A

69
O6A
6B
6C

-

3C
3D
3E
3F
40
41

— £ 2 0 LT =

6D
6E
6F
70
71

@

42

72
73

43

74

45

157

Learning C on the ST

158

Hex Value Character Hex Value Character

46 F 75 u
47 G 76 v
48 H 77 w
49 I 78 X
4A J 79 y
4B K TA z
4C L 7B {
4D M 7C |

4E N 7D }

When you analyze your files with this program you will be able to see
exactly how much information got written to the file on a byte-by-byte basis
until the end of the file is reached. You may have noticed that there are
several dots {*.”) in the character translation that actually weren’t in the orig-
inal file. The dots represent nonprintable characters or those that are not easily
represented on the screen. These are bytes that you would not be able to see
with the SHOW option on the Atari desktop, since that option shows you
only the printable characters.

As you can see, this dump utility is quite useful in many applications.
But now let’s look at a program that will allow you to encipher your data
files so that nobody else can see what they contain.

Try the following cipher/decipher program:

/*encipher/decipher program*/

#include {stdio.h)
#include {portab.h)
#include {(gembind.h)

#define DISK_CIPHER “CIPHTEXT"”
int work_stn_hndle handie;

int nothing;

char selection;

short valid;

char file_namel[8];

FILE *text_file;

char a_char;

FILE *cipher_file;

Debugging and File Analysis

main()

{

window_set_up(};

graf_mouse{M_OFF,¬hing);

valid = FALSE;

while (lvalid)
{
printf(** Please select the option you would like to do:nwn");
printf(* 1. Encipher a text file\n\n"');
printf(*” 2. Decipher the enciphered file\min™);
switch (selection = getchar(})

{

case '1":valid = TRUE;
encipher();
break;

case ‘2":valid = TRUE;
decipher();

break;
default; printf(“INVALID RESPONSE. . .PLEASE TRY
AGAINI\mn");
} h
printf(“PRESS RETURN TO CONTINUE, . .");
getchar{);

graf_mouse(M_ON,¬hing);
clean_up{);

}

window_set_up()

{

short loop;

int work_in[11];
int work_out[67];
int dummy;

apl_init();

handle = graf_handle{(&dummy,&dummy,&dummy,&dummy);
work_stn_hndle = handle;

for {loop = 0; loop < 10; loop++) work_in[loop] = 1;
work_in[10] = 2:
v_opnvwk(work_in,&work_stn_hndle,work_out);

clean_up()

159

Learning C on the ST

160

{

v_clsvwk{work_stn_hndle};
appl_exit();

encipher()

printf('\nWhat is the name of the text file? '}
scanf{''%s" , &file_name);
if {(text_file = fopen(file_name,”r”)} 1= NULL)

{

cipher_file = fopen{DISK_CIPHER, "w");

while ({{a_char = getcitext_file)} = EOF))

putc{{a..char + 1},cipher_file); /*add one to encipher*/

fcloselcipher_file);

fclose(text_file);

printf"\n\nYOUR FILE HAS BEEN ENCIPHERED!\n\n"});

}

else
printf(*A\nNO SUCH FILE ON DISKh\n\n"');

'
decipher()

{
if {{cipher_file = fopen(DISK_CIPHER,”r")) != NULL)

{

while ({{a_char = getc{cipher_file}) = EOF)}
putchar(a_char — 1); /*subtract one to display*/

fcloselcipher_file);

printf{“\n"’};

}

else
printf{""\nNO ENCIPHERED FILE ON DISK!\n\n"’);

}

The basic premise behind the encipher program is to add the value 1 to
every byte in the file and write the results out to a file called CIPHTEXT.
In other words, all spaces would appear as a $21, a capital A would appear
as a $42, etc. Now, the CIPHTEXT file will hold your enciphered file, and
no one will be able to read it, unless of course they know the algorithm behind
the encipher program. Then, when you need to view your file, you can run
the program again with the decipher option, and it will display the deciphered
file on the screen. The program can be easily modified to allow you to delete

Debugging and File Analysis i

your original file, specify a user-defined name for the enciphered file, or
decipher the enciphered file and write it to a file.
Glossary for Review

debugger—a utility that may allow you 1o view your program’s exe-
cution line by line and look at and modify variables

echo printing—a debugging method of showing variable values at stra-
tegic locations within your code

— Quiz]

1. Why is it sometimes beneficial not to have access to a sophisticated de-
bugger?

2. What does the following ASCII string say:
43 20 49 53 20 46 55 4E ?

161

4 Chapter 11 W~

Graphics

In this chapter, you will learn:
+ How to work with some of the more popular graphics routines
available to you in the GEM library.

* How to design programs that use a mouse-oriented routine, al-
lowing you to utilize this important feature of the Atari ST.

Learning C on the ST

Atari ST Graphics in C

164

As you know, your Atari ST is well-known for its graphics abilities. In fact,
the level of graphics attainable on the ST is equivalent to the capabilities of
systems costing four to five times as much. One of the reasons for the ST’s
excellent graphics capabilities is the high number of pixels, or dots, per square
inch on the high-resolution monochrome monitor screen; the more dots you
have compressed in a given area, the crisper the resulting picture.

In C, you also have access to the GEM graphics library, which is merely
a compilation of useful graphics routines. For various reasons these routines
are much faster and probably easier to use than most graphics routines you
could develop yoursel.

To understand better the concepts behind graphics in C, try out this
program, and before linking it, be sure to use a link control file (if you are
using Lattice C only), which links in the gemlib.bin library; just remove the
asterisk before the reference to this library in the standard control file. If you
are using Megamax C, you need not do anything differently, since the linker
in the shell automatically pulls in the necessary libraries.

/*Graphics Example Program*/

#include (stdio.h)
#include {gembind.h}
#include {ohdefs.h)
#include {define.h)

int work_stn_hndle,handle;
int cntrl{12], intin{128], ptsin[128], intout[128], ptsout(128};
main{) ~. ;
. NN R
{ S WP R l L)
int nothing; -~

window_set_up(};

graf_mouse(M_OFF ¬hing);

vsl_color(work_stn_hndle,BLACK); /*set drawing color to black*/
vsf_interior(work_stn_hndle,HOLLOW); /*set fill to hollow*/
draw_x(};

draw_circle();

draw_empty_rec();

draw_filled_rec(};

draw_filled_rec(});

Graphics

vst_color{work_stn_hndle,BLACK); /*set writing color 10 black*/

v_gtext(work_stn_hndle, 150,350,

“PRESS RETURN TO SEE TEXT VARIATIONS, . ."};
getchar();
v_clrwk(work_stn_hndle); /*clear the screen*/
do_text();
v_gtextiwork_stn_hndle, 150,350,

“PRESS RETURN TO QUIT THE PROGRAM. . .");
getchar{);
graf_mouse(M_ON,¬hing);
clean_upl(});

}

window_set_upl}
{

short toop;

int work_in[11];
int work_out[b7];
int dummy;

appl_init{);

handle = graf_handie(&dummy,&dummy,&dummy,&dummy);
work_stn_hndle = handle;

for{loop = 0; loop < 10; loop+ +} work_in{loop] = 1;
work_in[10] = 2;
v_opnvwki{work_in,&work_stn_hndle,work_out);

b

clean_up{)

v_clsvwk{work_stn_hndle);
appl_exit(};
'

draw_x(}

{

long num_of_points; /*number of points*/
WORD point_set[4]; /*actual line end points*/

num_of_points = 2;

vsl_color{work_stn_hndle,BLACK); /*set drawing color to black*/

point_set[0] = 50; /*(50,50)*/
point_set[1} = 50;

point_set[2] = 125; /*{125,150)*/
point_set{3} = 150;

Learning C on the ST

v_pline{work_stn_hndle,num_of_points,point_set): /*draw line*/
point_set[Q] = 125; /*{125,50)*/

point_set[1] = 50;

point_set[2] = 50; /*(50,150)*/

point_set[3] = 150;
v_pline{lwork_stn_hndle,num_of_points,point_set}; /*draw line*/

!

draw_circle()

{

int x_coord, /*x coordinate of circle’s center*/
int y_coord; /*y coordinate of circle’s center*/
int radius; /*circle's radius*/

x_coord = 350; /*(350,100)*/

y_coord = 100;

radius = 50,
v_circlelwork_stn_hndle,x_coord,y_coord,radius); /*draw the circte*/
t

draw._empty_rect()

int spec_array[4]; /*coordinate array*/

spec_array[0] = 50; /*array with (50,175), (250,325) opposite corners*/
spec._array[1] = 175;

spec_array[2] = 250;

spec_array[3] = 325;

v_bar{work_stn_hndle,spec_array);

}

draw_filled_rec()

{

int spec_array[4]

vsf_interior{work_stn_hndle,PATTERN); /*set the fill pattern to grid*/
vsf_style(work_stn_hndle,GRID};

spec_arrayf0] = 300; /*array with (300,175), (500,325) opposite cor-
ners*/

spec_array[1] = 175;

spec_arrayj2] = 500;

spec_arrayl3] = 325;

vr_recfliwork_stn_hndle,spec_array);

166

Graphics

}

do_text{)

{

vst_effects{work_stn_hndle, THICKENED);
v_gtext(work_stn_hndle, 50,50, This is thickened text”);
vst_effects{work_stn_hndle, SHADED};
v_gtext{work_stn_hndle, 50,100, This is shaded text");
vst_effects(work_stn_hndle,SKEWED);
v..gtextiwork_stn_hndle, 50,180, This is skewed text”});
vst_effects(iwork_stn_hndle, UNDERLINED);
v_gtext{iwork_stn_hndle, 50,200, This is underlined text''};
vst_effects{work_stn_hndle, OUTLINE);
v_gtext{iwork_stn_hndle,50,250,"This is outlined text’};
vst_effectsiwork_stn_hndle, SHADOW);
v_gtext{work_stn_hndle,50,300,"This is shadowed text”};
vst_effects{iwork_stn_hndle,0); /*return to no effects®/

}

If you run this program, you will see that it displays a screen with a
large X, a circle, an empty rectangle, and a filled rectangle. When RETURN
is pressed after this screen is displayed, another screen is displayed that shows
various text formats.

Besides the usual initialization/cleanup routines, the program has five
functions dedicated to drawing graphics and placing graphics text on the screen.
First off, the main routine calls the routine vsl_color to set the line color to
black; the format of this function call is:

vsi_color{handle,color};

where handle is the workstation handle, and color is any of the following
values:

Color Value
WHITE 0
BLACK 1
RED 2
GREEN 3
BLUE 4
CYAN 5

167

Learning C on the ST

168

YELLOW 6
MAGENTA 7
LWHITE 8
LBLACK 9
LRED 10
LGREEN 1
LBLUE 12
LCYAN 13
LYELLOW 14
LMAGENTA 15

These colors are defined with the above values in the obdefs.h file.
Next, the interior fill style is set to hollow via the vsf_interior function,
which has the following format:

vsf_interior(handle,style);

where handle is the workstation handle, and style is a fill style that may be
any of the following:

Style Value
HOLLOW 0
SOLID |
PATTERN 2
HATCH 3
UDFILLSTYLE 4

where UDFILLSTYLE signifies that a user-defined fill style will be used.
These constant values are also defined in the gemlib.h file.

After setting the interior fill style, the local routines draw_x(),
draw _circle(), draw_empty_rec(), and draw_filled_rec() are called to
draw the graphics screen. Then, the graphics writing color is set to black
with the vst_color function whose format is:

vst_colorthandle,color};

where handle is the workstation handle, and color is one of the values as
defined above for vsl_color. The graphics text function, v_gtext, is then

Graphics

invoked to display the message PRESS RETURN TO SEE TEXT VARI-
ATIONS . . . ; v-gtext has this format:

v_gtext{handle,x_coord,y_coord,message);

where handle is the workstation handle, x_coord and y_coord are the co-
ordinates where the text is to be placed, and message is the actual text. After
a key is pressed, the screen is cleared via v_clrwk(), and the local function
do_text() is called to display all the text formats. Then v_gtext is called
again o inform the user that RETURN must be pressed to quite the program,
and the usual cleanup routines are executed.

The draw_x() function is used to draw the large X on the screen. There
are two local variables declared in draw_x(): num_of points and point_set.
These variables are used in the graphics library routine v_pline whose format
is:

v_pline(handle,pt_count,points);

where handle is the workstation handle, and pt_count is the number of sets
of points in the points parameter. One shortcoming with v_pline is that it
cannot draw single points (by passing two identical end points) in its current
implementation. In draw_x(), num_of_peints is set to 2 because there are
two end points for each line that makes up the X. The routine vsl_color is
then called to set the drawing color to black. Next, the point_set array is set
up to hold the end points of the descending (V) line of the X with coordinates
(30,50) and (125,150). The routine v_pline is then invoked to draw the line,
the point_set is set to hold the coordinates of the ascending (/) line in the
X, and v_pline is called again to draw this line.

The draw_circle() function contains declarations for the center coor-
dinates (x_coord,y_coord) and radius of the circle. The coordinates and ra-
dius are set to be (350,100) and 50, respectively, and v-circle is called to
draw the circle. The vecircle library routine uses these parameters in this
fashion:

v_circte(handle,x,y,radius);

The next two routines, draw_empty_rect() and draw_filled_rec(),
operate in similar manners whereby an array (spec_array) is set up to contain
the coordinates of the opposite corners of the rectangles, and the appropriate
GEM routine is called to draw the rectangles. In the case of

169

Learning C on the ST

170

draw_empty_rect(), the opposite corners are (50,175) and (250,325). The
routine v_bar is called to draw the empty rectangle with the following for-
mat; .

v_bar{handle,coord_array);

For the filled rectangle in draw_filled_rec(), the interior style must first be
set up via vsf_interior, where the PATTERN parameter specifies that a pat-
tern will be designated in the call to vsf.style. When vsf_style is then called,
the GRID parameter informs GEM that we wish to fill with a GRID pattern.
The spec_array is then filled to hold the opposite corners (300,175) and
(500,325), and vr_recf] is called to draw the rectangle. So, the sequence of
events to draw a filled rectangle is first to set up the pattern with both
vsf_interior and vsf_style, set the opposite corners, and finally invoke vr_recfl
with this format:

vr_recfl(handle,coord_array);

Finally, the do_text() routine displays all the graphics text varations
through the use of vst_gtext (described above) and vst_effects. The style is
set in vst_effects like this:

vst_effects{handle,style};

where style may be one of the following values as defined in the gemlib.h
file:

Stvle Value
THICKENED 0x0001
SHADED 0x0002
SKEWED 0x0004
UNDERLINED 0x0008
OUTLINE 0x0010
SHADOW 0x0020

By passing a zero to vst_effects, all the special effects are turmed off (as
shown at the end of do_text()). [NOTE: In the case of these and all other
#defined constants, some compilers do not have header files with these val-
ues defined, whereas others do; depending on which compiler you are using,

Graphics

you may either have to define them in your source code file or create a header
file with them in it.] '

These are only some of the graphics functions available to you in the
GEM library, but as you can see. quite a few interesting graphics applications
may be developed using the routines described above. Let’s now look at a
nifty program that uses v_pline and a mouse-locating routine that allows you
to draw lines on the ST in high resolution.

Fun with the Mouse)

The Atari ST’s mouse can be used in several ditferent ways in C. Here we
will present one useful routine that allows you to know the status of the
mouse’s buttons and the position of the cursor on the screen.

If you enjoy drawing on your ST (with either a TV or color monitor),
you'll appreciate the following mouse-based program, which allows you to
draw lines in high resolution. When you run this program, press the left mouse
button and release it where you want one end point, and move and click it
again where you want the other end point of a line (remember that v_pline
cannot draw single points, so if you click twice on the same point, nothing
will be drawn):

/*Mouse Drawing Program*/

#include (stdio.h}
#include (portab.h)
#include {gembind.h)

int work_stn_hndle,handle;

int conrtl[12], intin[128], ptsin[128], intout[128], ptsout[128];
main()

{

int nothing;

window_set_up();

graf_mouse{M_ON,¬hing);
graf_mouse{THIN_CROSS, ¬hing); /*make mouse image thin
cross hair*/

mouse_draw();

clean_upl(});

}
window_set_up{)
{

171

Learning C on the ST

short loop;

int work_in{t1];
int work_out[57];
int dummy;

appl_inmt(};

handle = graf_handle{(&dummy,&dummy,&dummy,&dummy);
work_stn_hndle = handle;

for(loop = 0; loop < 10; ioop+ +}work_in[loop] = 1;
work_in[10] = 2;
v_opnvwki{work_in,&work_stn_hndle work_out};

}
clean_up{)}
{
v_clsvwk{work_stn_hndle};
appl_exit();
}
mouse_draw()
{
int done; /*are we finished yet?*/
int point_array[4]; /*hold points far line*/
int which_pr; /*which button was pressed?*/
int x_pos,y_pos; /*mouse position*/
int was_hit; /*fiag to tell if button was hit*/
done = FALSE;
vsl_color{work_stn_hndle, BLACK); /*set drawing color to black*/
do

{

was_hit = FALSE;

do

{
if {lwas_hit)
{
do

vg_mouse(work_stn_hndle,&which_pr,&x_pos,&y_pos);
while {which_pr == 0},
was_hit = TRUE;
}
vg_mouse{work_stn_hndle,&which_pr,&x_pos,&y_pos);
} while {which_pr!= 0)
if {(x_pos == 0) && (y_pos == 0)) /*quit if pressed at origin*/
done = FALSE;

172

Graphics

else /*draw line*/

{
point_array[0] = x_pos;
point_array[1] = y_pos;
was_hit = FALSE;
do
{
if (twas_hit)
{
do
vg_mouse{work_stn_hndle,&which_pr,&x_pos,&y_pos);
while {which_pr == 0);
was_hit = TRUE;
!

vg_mouse{work_stn_hndle,&which_pr,&x_pos,&y_pos);
} while {which_pr I= 0):
point_array[2] = x_pos;
point_array[3] = y_pos;
v_pline{work_stn_hndle,2,point_array);

}
}

The mouse_draw() function is the routine that controls where the lines
will be drawn on the screen. It uses another GEM library function, vq_mouse,
whose format is:

vg_mousethandle, &which_button, 8, &y);

where which_button represents which button was pressed. The value re-
turned in which_button is O if no button was pressed, 1 if the left button
was pressed, or 2 if the right button was pressed. The values x and y represent
the coordinates of the mouse when it was polled. The concept of polling may
be new to you, but it is very simple. Every time the vq_mouse routine is
invoked, it is not looking for any particular state (e.g., button down), rather
it is simply returning the position of the mouse and reporting whether either
button was pressed. The first incidence of the vq_mouse routine is involved
in a polling loop. The “do . . . while” loop keeps calling vq_mouse until
which_pr is not equal to zero. In other words, the program remains in an
infinite loop until a button is pressed on the mouse. For this reason, we say
that the mouse buttons are being polled and will continue to be polled until
a button is pressed.

173

Learning C on the ST

The vq_mouse routine executes very quickly, and because of this, there
has to be a check in the program to determine when the mouse button is
released after it has been pressed. Otherwise, the possibility exists that before
the button is released the first time, the next call to vg_mouse may have
already occurred and the same point would be returned (recail that v_pline
will not draw single points!). So, the next call to vq_mouse will determine
if the mouse button has been released yet. If it has not been released, the
next outer “do . . . while” loop will continue to execute until it is released.
Notice that the inner “do . . . while” loop will not be executed at this point
because the was_hit variable was set to TRUE after the button was pressed.
At this point, the position of the first button press is analyzed, and if the
coordinates are the origin of the screen (position (0,0), the upper left-hand
corner of the screen), done is set 10 TRUE so that the program will be stopped.
So when you want to stop the program, just click in the upper left-hand corner
of the screen when you would normally click for the first point of the line.

If the first click is somewhere other than the origin, the mouse position
will be saved off in the first two elements of the point_array, and a nested
set of “do . . . while” loops identical to the set described above are exe-
cuted. After these loops return the second click position, the x and y coor-
dinates are placed in the last two positions of the point_array, and v_pline
is called to draw the line.

There are many other GEM graphics routines available to you that would
require an entire book to explain fully. They are fully documented in the
GEM Programmer’s Reference Guide from Abacus Software. At this point,
you should be able to create your own drawings within C by applying all the
graphics concepts discussed here.

Glossary for Review

polling—the act of repeatedly checking a device to see if any action is
required within the program to reflect the status returned from the device.

r—_ Quiz J

174

1. What would happen in the graphics example program if the last call to
vst_effects in the do_text() function is deleted?

2. What happens if the mouse is clicked at the origin for the second point

in the line in the mouse drawing program?

 Chapter 12

A Few Programs for the Road

In this chapter, you will learn:
* A very useful electronic calendar program that can be modified
quite easily by incorporating additional routines.

* A program that may be used to calcuiate and maintain baseball
batting averages.

* A data base program that may be used to catalog your album
collection electronically.

» The concept of modularity for designing menu-driven programs.

Learning C on the ST

The Date Minder Program)

The first program we’d like to present to you in this chapter is one that we
hope you will find helpful all year round. It’s an electronic calendar that will
tell you what events are coming up in the next 30 days. All you have to do
is enter the information for your household (birthdays, anniversaries, etc.) so
that when you need to see what’s on the horizon for the next month, you
simply select the “View the next month of events” option from the menu.
All your calendar information will be stored in a file on your disk so that
you can add more dates to the file at any time.
Let’s look at the program and discuss it in detail:

/*Date Minder Program*/

#inctude (stdio.h)
#include (gembind.h}

#define NAME_OF_FILE “DATES"”

struct event_rec /*record for each event*/
{
int month; /¥event month*/
int date; /*event date*/
char occasion[20]; /¥event name*/
b

int work_stn_hndle ,handle;

int days_in_month[12] = {31,28,31,30,31,30,31,31,30,31,30,31};

charmonths [15] [12] = {“January”,”February”,”"March”,” April"","May"”’,
“June”,”July”,”August”’,''September”,
“Qctober”,"November”, " December’};

FILE *event_file; /*file of events*/

struct event_rec event_var_rec, /*reads/writes event_recs*/

int contrl[12], intin[128], ptsin[128], intout[128], ptsout[128];

main()

{

int nothing;

window_set_up()
graf_mouse{M_OFF,¬hing);
disptay_menu(};
graf_mouse{(M_ON,&nocthing);

176

A Few Programs for the Road

clean_up();

}

window_set_up()
{

short loop;

int work_in[11]:
int work_out[57];
int dummy;

appl_init{);

handle = graf_handle(&dummy,&dummy,&dummy,&dummy);
work_stn_hndle = handle;

for {loop = 0; loop < 10; loop++)} work_in[loop] = 1;
work_in[10] = 2;
v_opnvwk{work_in,&work_stn_hndle,work_out};

}

clean_up()

{

v_clsvwk{work_stn_hndle};

appl_exit{);

}

add_dates{)

{

int valid; /¥is user’s input valid?*/

int finished; /*is user finished adding dates?*/
char response; /*user's Y/N response for more additions*/

event_file = fopen{NAME_OF_FILE,”"a"’};
finsished = FALSE;
while (Ifinished)

{
valid = FALSE:;
while {!valid)

{

printf(*\minWhat month is this occasion{1-12)? '"):

scanf("%d" &event_var_rec.month):

if ((event_var_rec.month > Q) && {event_var_rec.month < 13}}
valid = TRUE;

}

valid = FALSE;

while {lvalid)

{

177

Learning C on the ST

178

printf("“What date is this occasion (1-31}? “);

scanf{*'%d'",&event_var_rec.date};

if {levent_var_rec.date > 0} && ({event_var_rec.date <=
days_in_monthjevent_var_rec.month — 1]})

{

event_var_rec.date += 40; /*avoid control characters*/
valid = TRUE;

}

printf{”What is the occasion?\n”);
gets(event_var_rec.occasion);
fwrite{&event_var_rec,sizeof{event_var_rec}),1,event_file);
printf{"\mnDo you have any more entries(Y/N)? ");
response = getche();

if ({response == ‘N'})|(response == ‘n’))

finished = TRUE;

fcloselevent_file};
printf(’\m\n");
t

view_dates()

{

int this_month; /*the month entered by the user*/
in this_date; /*the date entered by the user*/
int next_month; /*next month {for Jan. after Dec.)*/
int valid;

valid = FALSE;
while (lvalid)
{
printf{’\m\nWhat is this month {1-12)? ”');
scanf("“%d",&this_month);
if {{this_month > 0) && {this_month < 13)}
valid = TRUE;

}
valid = FALSE;
while (lvalid)

printf(What is today’s date (1-31)? ");
scanf(“%d",&this_date);
if {(this_date > 0) && (this_date <= days_in_month{this_month —
1)
valid = TRUE;

A Few Programs for the Road

}

printf(”\n**"):
printf{”**\n”);
if {{event_fite = fopen(NAME_OF_FILE,”r""}} 1= NULL)
{
if (this_month == 12)
next_month 1;
else
next_month = this_month + 1;
while {fread(&event_var_rec,sizeof(event_var_rec),1,event_file}) == 1 }

l

{

event_var_rec.date —=40; /*avoid control characters*/

if (((event_var_rec.month == this_mont) &&
{event_var_rec.date >= this_date))|

(levent_var_rec.month == next_month) &&
(event_var_rec.date < this_date)))
printf(* %s is on %s %d\n’’,event_var_rec.occasion,
months[event_var_rec.month — 1],
event_var_rec.date);

}

H it
prlntf{ \n*******%********************************”);

printf(“**”\n”);

fclosel{event_file);

}

else
printf("\n\n THERE IS NO DATES FILE ON YOUR DISKhn"};
printf’\minPRESS RETURN TO CONTINUE . . .");
getchar();
printf{*nn’);
}

display_menuf()

char selection;
int valid;
int done;

done = FALSE;

while {!done)

{

valid = FALSE:

while (lvalid) 1)
{
printf{”"Which would you like to do:\n\n");

179

Learning C on the ST

180

printf("* 1. Add dates to the file\n");

printf(" 2. View the next month of events\n");
printf(* 3. QUIT\m\n"");

printf(“Enter 1, 2, or 3. . .");

switch {selection = getchar(}}

case '1":add_dates();

valid = TRUE;
break;

case ‘2":view_dates(};
valid = TRUE;
break;

case '3 :valid = TRUE;
done = TRUE;
break;

default: printf(’\n\n\n");

}
}
}
}

The program has a structure type called event_rec, which is used to
hold the month, date, and name of each occasion. There are also two arrays
that show how to initialize an array in the declaration; all you need to do is
place all the initial values in order within a set of braces and precede the
block with an equal sign. In addition, the months array is a doubly dimen-
sioned array, which means that there are two indices. The first index of months
refers to the character position of each entry, whereas the second index refers
to the number of string entries. In short, the array may hold up to 12 elements
of up to 15 characters each. And again, this array is initialized by placing
all the initial values in order (since they are strings, they must be placed
within quotes) within a set of braces.

The main routine simply performs initialization, calls display _menu(),
and performs the cleanup. The routine display_menu()} shows the main menu
and, depending on the user’s selection, either calls add_dates(), view_dates(),
or quits the program.

The add_dates() routine is the one that actually writes the event records
out to the file. The file where these dates are stored is called DATES. This
name could be changed by simply changing the #define directive at the be-
ginning of the program. At the start of add_dates(), the file is opened with
the append option. Then, while the user is not finished adding records/events,

A Few Programs for the Road

two loops are performed to validate the input for the month and date of the
occasion. The occasion name is then entered, and the record is written to the
file. The user is then asked if he/she has any more entries. If there are more,
the while (!finished) loop is continued; otherwise the file is closed, and con-
trol is passed back to the display_menu() routine.

The last function in our date minder program is called view_dates().
First of all, the current date must be entered by the user. The event file is
then opened, and we determine the next month using this “if” statement:

if {this_month == 12} then
next_month = 1;

else
next_month := this_month + 1;

As you can see, if this month is December, we want to make next month
January. Otherwise, we just need to add 1 to the current month,.

Then, the events that are within the next month are displayed on the
screen. A very long “if” statement is used to determine whether a month fits
into this category. It may be helpful to split this statement into two separate
statements, either of which may be true for the date and event to be displayed:

1) if {levent_var_rec.month == this_month)&&
(event_var_rec.date >= this_date))

or.

2} ({event_var_rec.month == next_month)&&
{event_var_rec.date < this_date))

An example of the first case would be where today is July 10th and the
event takes place on July 31st; both segments of the case are true, since the
event’s month (event_var_rec.month) is the same as this_month, and the
event’s date {event_var_rec.date) is greater than this_date.

An example of the second case would be where, again, today is July
10th and the event is on August 5th. Both segments are true here also, since
the event’s month (event_var_rec.month} is the same as next_month and
the event’s date (event_var_rec.date) is less than this_date.

When the end of the file is reached, the file is closed, and control is
returned to the display_menu() routine.

One other point worth noting in the date minder program is where 40

181

Learning C on the ST

is added to the date before writing it to disk, and then it is subtracted im-
mediately after reading it in. The reason for this is so that control characters,
or characters that would not be interpreted as the number we intend them to
be, would be written to the disk and may not be correcily read in.

Now let’s take a look at a program that will allow you to maintain a
file of your favorite baseball player’s batting average.

Batting Average Program)

182

The following program allows you to enter up to 20 baseball players, their
number, number of at bats, and number of hits, and it will calculate their
batting averages and store the file on disk:

/*Baseball Averages Program*/

#include {stdio.h)
#include (gembind.h)

#define TEAM “BALLCLUB"

struct player_rec

{

char number[4]; /*player’'s number*/
char last_name[15]; /*player's last name*/
char first_name[10] /*player's first name*/

float at_bats; /*number of at bats*/
float hits; /¥number of hits*/
float batting_ave; /¥batting average®*/

|5

int work_stn_hndle handle;
FILE *bb_team_file; /*the team’s file*/

struct player_rec a_piayer; /*a player variable*/
struct player_rec arr_of_pl[20]; /*array of players*/
int num_of_players; /*current number of players*/

int contrl[12], intin[128], ptsin[128], intout[128], ptsout[128];

main()

{

int nothing;

A Few Programs for the Road

window_set_up(};
graf_mouse{M_OFF,¬hing);
disp_menu(};
graf_mouse(M_ON,¬hing);
clean_up();

}

window_set_up(}
{

short ioop;

int work_in{11];
int work_out[67];
int dummy;

appl_init(};

handle = graf_handle{&dummy,&dummy,&dummy,&dummy);
work_stn_hndle = handle;

for {loop = 0; loop < 10; loop++) work_in[loop] = 1;
work_in[10] = 2;
v_opnvwk{work_in,&work_stn_hndle,work..out);

}

clean_up()

{
v_clsvwk{work_stn_hndle};
appl_exiti };

}

disp_menul(}

{

int choice; /*user's menu seiection*/

int done;

done = FALSE;

while (ldone)
{
printf("“"\min\nWhich of the following do you wish to
perform:mn”);
printf{” 1. Add a player to the file\n"');
printf(" 2. Delete a player from the filexn"};
printf(" 3. Enter information for a ptayenn’);
printf(” 4. Display the file by batting averagen”);
printf(” 5. QUIT\mn");
printf(” Please enter your selection: ''};
switch {choice = getchar(})

183

Learning C on the ST

184

{

case ‘1:add_plyr(});
break;

case ‘2":del_plyr{);
break;

case ‘3":ent_info();
break;

case '4":do_disp(};
break;

case '6":done = TRUE;
break;

default:printf{’"\mnINVALID SELECTION. . .TRY AGAINhn");

!

}
h

ent_info()

i

inti;

char response;
float data;

load_array(};
for {i = 0; 1 < num_of_plyrs; i++)

printf("\mnDo you have any data for %s {Y/N)* ,
arr_of_pl[il.last_name);
response = getchar();
if ({response == 'Y')|(response == ‘y'))
{
printf("“\nHow many additional at bats? ”);
scanf('*%f" %data);
arr_of_pl[i].at_bats += data;
printf(""How many additional hits? ”);
scanf('"%f"”, &data);
arr_of_pl[i].hits += data;
if (arr_of_plli].at_bats [= 0.0}
arr_of_plli].batting_ave = arr_of_pl[il.hits / arr_of_pl[il.at_bats;
else
arr_of_pl[i].batting_ave = 0.0;
t

re_do_file();

}

A Few Programs for the Road

dei_plyr()

{

char 1._name[15]; /*last name of player to be deleted*/
int i,j;

int found;

printf{’\n\nWhat is the last name of the player to be deleted? ");
scanf{’"%s" ,&1_name);

load_array();

i=0;

found = FALSE;

while {(i < num_of_plyrs) && {!found))

if {stremp(arr_of_pl[il.last_name,1_name)} == Q)
found = TRUE;
else
++i;
if {Ifound)
printf("“\m\nTHAT NAME 1S NOT IN THE FILE!"\n"');
else
{
for {j =i; | < num_of_plyrs — 1; j++)

arr_of_pl[j] = arr_of_pllj + 1];
-~ —num_of_plyrs;
re_do_file{);
printf{’minTHAT PLAYER HAS BEEN DELETED.AN");
'
printf("PRESS RETURN TO CONTINUE. . .”"});
getchar(};

}

do_disp()

{

int i:

sort(};

if ((bb_team_file = fopen(TEAM,"r"}} != NULL)
{
printf("\miminNUMBER NAME AT BATS HITS)
printf{"BATTING AVERAGE\n"});

printf{” "),
printf(* AR}
for (i = 0; i < num_of_plyrs; i++}

{

printf(" 9%s %—10s %1bs “,arr_of_pl[i].number,
arr_of_pl[i].first_name,arr_of_pl[il.last_name);

185

Learning C on the ST

printf("%4.0f %4.0f .%5.3f\n",arr_of_pl[i].at_bats,
arr_of_pl[il.hits,arr_of_pl[i]l.batting .ave};
}

fcloselbb_team_file};
H
else
printf{'*\\nTHERE 1S NO BASEBALL FILE ON THIS DISKITwn");
printf(“\m\nPRESS RETURN TO CONTINUE. . .");
getchar();
I

add_plyr(}
{
load_array();
++num_of_plyrs;
printf{*"\mnWhat is the player's first name? “);
scanf(*%s"",%arr_of_pl[num_of_plyrs — 1].first_name);
printf{"’What is the player's last name? ”');
scanf("%s" &arr_of_pllnum_of_plyrs — 1l.last_name};
printf(“What is his number? “};
scanf("“%s"”" &arr_of_pl[num_of_plyrs — 1].number};
printf(“How many at bats does he currently have? };
scanf("%f" &arr_of_pl[num_of_plyrs — 1].at_bats);
printf(“How many hits does he currently have? ");
scanf(%f"" &arr_of_pl[num_of_plyrs — 1l.hits};
if (arr_of_pllnum_of_plyrs — 1].at_bats = 0.0}
arr_of_pi[num_of__plyrs — 1].batting_ave =
arr_of_pl{num_of_plyrs — 1l.hits/arr_of_pl[num_of_plyrs —
1l.at_bats;
else
arr_of_pllnum_of_plyrs — 1].batting_ave = 0.0;
re_do_file();

}

re_do_file()

L

int i;

bb_team_file = fopen(TEAM,""w");

for {i = 0; 1 < num_of_plyrs; i++)
fwrite(&arr_of_pl|[i],sizeof{struct player_rec),1,bb_team_file);

fclose(bb_team_file);

}

sort(}

186

A Few Programs for the Road

{
int h,j;
struct player_rec temp_plyr; /*temporary storage for sort{}*/

load_array();
for (j = 0; j < num_of_plyrs; j++)
for(h = 0; | < num_of_plyrs — j; h++)
if (arr_of_plfh].batting_ave < arr_of_pllh + 1].batting_ave)
{
temp_plyr = arr_of_pl[h];
arr_of_pllh] = arr_of_pllh + 1];
arr_of_pllh + 1] = temp_plyr;
H
t
load_array()
{
num_of_plyrs = 0;
if {{bb_team_file = fopen(TEAM,”r"')} 1= NULL)
i
while {fread(&arr_of_pllnum_of_plyrs],sizeof(struct player_rec},
1,bb_team_file} == 1)
++num_of_plyrs;
feloselbb_team_file);
}
}

The baseball averages program introduces no new concepts and should
therefore be very easy for you to understand. Basically, the menu displays
four options: add a player, delete a player, enter information for existing
players, or display the file by order of batting average. The program contains
a separate function for each of these options, as well as three other routines
that are used by some or all of the menu option routines. These additional
functions, re._do_file(), sort(), and load_array(), are responsible for re-
writing the file, sorting the file in the memory array, and reading the file into
the memory array, respectively. Step through this program and try entering
a few statistics to verify that the program works as you expect.

Record Album Data Base Program)

The final program we will show you is one that allows you to catalog your
album collection electronically. Once you have entered all your albums, you

187

Learning C on the ST

can then go back and either sequentially view the file or search the file based
on album title, artist, year of release, or an extra field for your own use.
Again, there are no new concepts introduced in this program, so you should
have no problem following the logic:

/*Album Data Base Program*/

#include {stdio.h)
#include {gembind.h)

#define ALB_FILE "ALBUMS"

struct album_type

char title[25]; /*album title*/

char artist[20]; /*album artist*/

char year[5];/*album’s year of release*/

char xtra_field[20]; /*extra field for your own use*/

b

int work_stn_hndle,handle;

struct album_type an..album;

int done;

FILE *album_file;

int contrl[12], intin[128], ptsin[128], intout[128], ptsout[128];

main(}

{

int nothing;
char choice;

window_set_up();
graf_mouse{M_OFF,¬hing);
done = FALSE;

while (ldone)

v_clrwkiwork_stn_hndle);
v_curhome(work_stn_hndle};

printf{*Select one of the following options:\nimn”);
printf(" 1. Add albums to the file\n");

printf(* 2. Sequentially display the filexn”);
printf(** 3. Search the file\n"};

printf(” 4. QUIT\m\n\n""};

printf(What is your choice? '');

switch (choice = getchar())

188

A Few Programs for the Road

{

case ‘1 :add_albums{);
break;
case ‘2":display_file();
break;
case ‘3":search();
break;
case ‘4":done = TRUE;
break;
default: /*don‘t do anything, screen will be erased*/;

}

graf_mouse{M_ON,¬hing);
clean_upl(});

}

window_set_up()
{

short loop;

int work_in[11];
int work_out{57];
int dummy;

appl_init(};

handle = graf_handle{&dummy,&dummy,&dummy,&dummy);
work_stn_hndle = handle;

for {loop = 0; loop < 10; loop++} work_in[loop] = 1;
work_in[10] = 2;
v_opnhvwk(work_in,&work_stn_hndle,work_out);

}

clean_up()

{

v_clsvwk{work_stn_hndle);
appl_exit();
t

search{)

{

int done;
char selection;

donw = FALSE;
while (ldone)

{

189

Learning C on the ST

v_clrwk{work_stn_hndie);
v_curhome(work_stn_hndie};
printf(“Which field would you like to search?smmn’’);
printf(* 1. Group/Artist Namewn'};
printf(* 2. Album Title\n'’};
printf(" 3. Year of Release\n'’);
printf{(* 4. Extra field\n");
printf{(* 5. QUIT\\AN"'};
printf(""Please enter your selection: ”);
switch (selection = getchar())

{
case "1':grp_search{);
break;
case ‘2':title_search();
break;
case '3":year_search();
break;
case '4":tagl_search();
break;
case '‘b":done = TRUE;
break;
default: /*nothing, screen will be re-displayed*/
!
}
J
add_albumsi)
{
int done;

char *stop = "'$”;

done = FALSE;

album_file = fopen{ALB_FILE,"a"};

while {!done)
{
v_clrwk{work_stn_hndle};
v_curhomelwork_stn_hndle};
printf(*"What is the album’s titls {$ to end}? "};
gets{an_album.titte);

if (stremplan_album.title,stop) == 0} /*enter a dollar sign to end*/
done = TRUE;
else

printf{"Who is the artist? "};

190

A Few Programs for the Road

gets{an_album.artist);

printf(“What year was the album made? “};
gets{an_album.year);

printf(“What do you want in the extra field? "};
gets{an_album.xtra_field);

fwrite{(&an_album,sizeof{struct album_type),1,album_file};

t

fcloselalbum_file);

}
display_file()

i
if {{album_file = fopen{ALB_FILE,”r""}) != NULL)

while{fread(&an_album,sizeof(structalbum_type),1,album_file)=

disp_the_record();
else

{

printf{">"mnTHERE 1S NO ALBUM FILE ON THE DISK!\nimn');
printf("PRESS RETURN TO CONTINUE. . .”});

getchar();

}
}

disp_the_record()

v_clrwk{work_stn_hndie};
v_curhome({work_stn_hndle};

printf("The album title is: %s\n" , an_album_ title};

printf(“The album artist is: %s\n"" an_album.artist);
printf(“The aibum’s release was in %s\n"",an_album.year};
printf(“The extra field is: Yes\NM\NNNARY’,

an_album.xtra_field);
printf(“PRESS RETURN TO CONTINUE. . .”);

getchar(});

}

grp_search()

{

int found_one; /*have we found a match yet?*/

char groupl20]; /*holds name of group we wish to search*/

v_clrwk{work_stn_hndle);
v_curhome{wor_stn_hndle};

=1

191

Learning C on the ST

printf{*Which Group/Artist do you wish to search? ”');
gets(group);
if {{album_file = fopen{ALB_FILE, r"'}) |= NULL)
{
found_one = FALSE;
while (fread{&an_album,sizeof{struct album_type},1,album_file)==1}
if {strcmp(an_album.artist,group) == 0)
{
found _one = TRUE;
disp_the_record{);

if (Ifound_one)
{
printf(*"\m\nTHAT ARTIST IS NOT IN THE FILEAmn"');
printf("PRESS RETURN TO CONTINUE . . .");
getchar();
}
fclose{album_file);
}
else
{
printf(""\mnTHERE 1S NO ALBUM FILE ON THE DISKIhn\n\n"};
printf(""PRESS RETURN TO CONTINUE. . .");
getchar{);
h
}

tag1_search(}
{

int found_one;
char tag1[20};

v_clrwk{work_stn_hndle]);
v_curhomel{work_stn_hndle};
printf(""What is the extra field you wish to search? "};
getsitag1);
if {{album_file = fopen{ALB_FILE, " r"'}) |= NULL)
{
found _one = FALSE;
while (fread{&an_album,sizeof(struct album_type},1,album_file)]==1}
if {strcmp{an_album.xtra_field,tag1) == 0}
{
found_one = TRUE;
disp_the_record();

192

A Few Programs for the Road

}
if {Ifound_one)
1
printf(*"\minTHAT EXTRA FIELD IS NOT IN THE FILE!\n\n");
printf("PRESS RETURN TO CONTINUE. . ."");
getchar(};

fclose{album_file};
}
else
{
printf("~mnTHERE IS NO ALBUM FILE ON THE DISKI\n\mn'');
printf("PRESS RETURN TO CONTINUE. . .");
getchar();
}
h

titte_search()

{

int found_one;
char title[25];

v_clrwk{work_stn_hndle};
v_curhome(work_stn_hndle);
printf{”"What titles do you wish to search? ");
getsl(title);
if {(album_file = fopen{ALB_FILE,”r")} 1= NULL)
{
found_one = FALSE;

while (fread{&an_album,sizeof(struct album_type),1,album_file)==1)

if {strcmpf{an_album.title,title) == 0)

{
found_one = TRUE;

disp_the_record();
'

if (Mfound)
{
printf*"\m\nTHAT TITLE IS NOT IN THE FILE!\mn");
printfi’PRESS RETURN TO CONTINUE. . ."});
getchar{ };

fclose{album_file);

}

else

193

Learning C on the ST

{
printf(""\n\nTHERE IS NO ALBUM FILE ON THE DISKIn\m\n");
printf(“PRESS RETURN TO CONTINUE. . ."”);
getchar();
!
t
year_search()
{
int found_one;
char year[5];

v_clrwk{work_stn_hndle};
v_curhome{work_stn_hndle);
printf(“What year do you wish to search? ”);
gets{year);
if ({album_file = fopen{ALB_FILE, r")} 1= NULL)
{
found_one = FALSE;
while (fread(&an_album,sizeof(struct album_type},1,album_file}==1)
if {(stremp{an_album.year,year) == 0)
{
found_one = TRUE;
disp_the_record{();
}
if {found_one)
{
printf(*\m\inTHAT YEAR IS NOT IN THE FILE\n\n");
printf("’PRESS RETURN TO CONTINUE. . .");
getchar{};

fclose{album_file};

}

else
{
printf(*"v\nTHERE 1S NO ALBUM FILE ON THE DISKIn\nmin™);
printf{“PRESS RETURN TO CONTINUE. . .”);
getchar();
'
1

The album data base program is very modularized and lends itself to the
addition of new options and modules. Each of the search routines is almost
identical, except, of course, for the field being searched. When you wish to
stop adding albums to the file, just enter a dollar sign ($) and control will

194

A Few Programs for the Road

return to the main menu. The extra field in the structure may be used to
specify the condition of the album, the owner of the album, etc. Be sure to
log some or all of your albums so that you can see how easy it is, then to
see if you have any albums by a particular artist, from a certain year, etc.

Summing Up ' }

The date minder program can definitely be a help to you and your family if
you are prone to forgetting important dates. The program is also set up in a
modular manner so that you could easily add more options to the main menu—
like viewing the next 60 days® events or maybe even the entire file. Because
of the modular structure of the program (i.e., each task has its own separate
routine), all you would need to do is add more options to the menu in
display_menu() {(and make sure they are accepted as valid in the “if” and
switch statements thercafter) and add the appropriate functions to the pro-
gram, The baseball and album programs are both quite modular and can there-
fore easily be customized to your own unique needs.

We sincerely hope that the information you have learned in this and all
the preceding chapters are all you need to write your own applications. Even
though you are now finished with this book, you should always keep it handy
when working in C on your Atari ST as a quick reference guide.

Glossary for Review

modular structure—the structure used in all the programs in this chap-
ter, where each separate task has its own routine; more tasks can be added
by simply developing additional routines

multidimensional arrays—arrays that have two or more indices (such
as the months variable in the date minder program)

[— Quiz j

1. Why couldn’t we simply have added 1 to the current month to get the
value of the next month in the date minder program?

2. Why do we always check the value of the at_bats field before calculating
the batting average in the baseball averages program?

3. How are invalid entries handled in the main menu of the album data base
program?

195

Appendix A

auto
char

do
entry
for

int
return
static
typedef
while

break
continue
double
extern
goto
long
short
struct
union

Reserved Words

case
default
clse
float

if
register
sizeof
switch
unsigned

Appendix B

Answers to Quiz Questions

Chapter 1

1. This compiler follows the rules of C as laid out in Kerighan and
Ritchie’s The C Programming Language (1978, Prentice-Hall).

2. Power and portability.

3. This statement is a comment and is therefore ignored by the com-
piler, even though the printf command is misspelled.

Chapter 2

1. Generally, any identifier created with a #define statement should be
specified in lowercase letters.

2. #include (filename.ext) and #include ‘““filename.ext’’.
3. Both data types occupy 4 bytes of memory.

4. “\0” is the string terminator.

Chapter 3
l. The ampersand (&) is missing before the num parameter.

2. getchar() may be used to get input from the user, and putchar()
may be used to display the input from getchar().

Learning C on the ST

200

3. If the num variable is not zero, the first message is printed; other-

wise, the second is printed.

Chapter 4

1.

The “do-while” loop will always execute at least one iteration, whereas
the “while” loop may not execute any if the condition is not true.

2. pum++ increments num after its current value (post-incrementing)
has been used in this statement. and ++num increments num (pre-
incrementing), and this new value is used in the statement.

3. The loop will not execute any iterations, since i is initialized to 5,
and the condition for looping states that it must be less than 5 to
perform another iteration.

Chapter 5

I. Global variables may be accessed and changed by any function,
whereas local variables are limited to change by only the function in
which they are declared.

2. This declares number to be a pointer to an int value.

3. Passing by address permits the catled function to modify the actual
parameters that the calling function sent. Passing by value, on the
other hand, does not allow this, since a copy, and not the actual
value, is passed to the routine.

Chapter 6

1. A. Atari B. 5
C. 12 D. nonzero
E. zero F. zero

2. Any test sent to the screen via printf will begin where the cursor
was positioned before the call to v_clrwk.

3. The parameters in wind_create represent the maximum size of the
window, whereas they represent the actual initial size in wind_open.

Chapter 7

1. Because they vary throughout the program depending on the number

entered.

Answers to Quiz Questions

. They are broken apart so that they may be called independently of

each other (e.g., what if you only wanted to do one conversion?).

. Because you should always have at least one entry.

Yes. All the numbers from zero through nine.

Chapter 8

1.

Simply put, a file is a collection of records, and a record is a group-
ing of fields!

. Because the purpose of a record/structure is not to try and centralize

all your data structures, but rather to group together all related items
(like the name, position, etc., in our baseball program).

. It was used to remove any possible “garbage” that may have been

left over in memory from any other variables that may have been
using that memory location. It is not necessary for you to understand
why this “garbage” might exist; however, it is important for you
always to initialize your arrays just as you would initialize any other
variable.

Chapter 9

1.

The entire collection would be called the “file,” each album would
be called a “record” or “entry,” and each song would be a “field”
for that particular “record.”

We used the append (“a”) mode for writing to the file in the fopen
function.

You could use a constant name as declared with #define; this would
limit your capability to have more than one file, however, since you
would have to change the #define statement and recompile and re-
link every time you wanted to usc a different file name.

Chapter 10

1.

It forces the programmer to think through the program logic more
thoroughly without having a debugger to fall back on for help.

2. CIS FUN

201

Learning C on the ST

202

Chapter 11

1.

The SHADOW effect would still be in effect, and, therefore, the text
displayed in the v_gtext after do_text(} would be displayed with the
shadowed effect.

. If the mouse is clicked at the origin on the second point, a line is

drawn from the first point to the origin. Remember that the only time
a click at the origin causes the program to stop is when it is the first
of the two clicks.

Chapter 12

1.

That would be fine and is indeed what we do, except for when the
current month is December, and the next month is therefore January;
adding 1 to 12 would be 13, not 1!

. If we didn’t check the value of the at_bats field, it would be possible

to try to divide by zero, which would cause the program to abort.

. The default option in the switch statement performs nothing, so when

the “while” loop starts again, the screen is simply redisplayed. and
the menu once again prompts for a selection.

Index

Accumulator loop, 55
Advanced data structures/concepts
arrays, 121-30
parallel, 124-25
simple, 121-24
numeric types, 120-21
recursion, 130-33
structures /files, 125-30
appl_exit(}, 92
Application Environment System
(AES), 5
appl_init{), 91
Arrays
application use, 127-30
multidimensional arrays, 195
parallel arrays, 124-25
simple arrays, 121-24
versus files, 137
Atart ST C compilers, 3-5
Graphics Environment Manager
(GEM), 4-5

Application Environment System

(AES), 5

Virtual Device Interface (VDI), 5

Baseball averages program, 18287

Baseball lineup program, 127-30
BASIC language
versus C language, 2-3
interpreter, 3
origin of, 2

Binary search, 104
Bits, definition of, 19-20
Byte, definition of, 19-20

Central library. 86-87
CIPHTEXT file, 160
C language
versus BASIC 2-3
data types, 19-24
versus Logo, 2-3
erigin of, 2
programs
elements of, 16-18
expressions, 27-28
mathematical order of operation,
28-29
program tormatting, 31-32
simple C arithmetic, 29-31
storage classcs, 25-27
syntax, 16
variables, 1819
assignment of, 24-25
Compilation process, Megamax C
compiler, 7-8

Conditional statements, 39-49

“if” statement, 40-42
common errors with, 42—44
nesting of, 44—46

logical operators, 46Logical

operators, 46

Index

204

%(conditional) operator, 464946
switch alternative, 47-49
Cosine function, 87
C Programming Language
(Kernighan/Ritchie), 2

Data types
characters, 22-23
floats, 21-22
identifiers, 24
int, 19-20
strings, 23-24
Date minder program, 176-82
Debugging
definition of, 152
echo printing, 153
tips, 182-53
Display phone book program. 148-49
“Do-while” statement, 65—66
versus “while” statement, 66

Echo printing, 153
Encipher/decipher program, 158-60
Expressions, 27-28

External storage class, 26—27

Family budget program, 65-66
File analysis
encipher/decipher program, 158—60
hex/character file dump program,
153-56
Files, 125-30, 136
CIPHTEXT file, 160
handling library routines, 138—43
phone book program and, 13943
versus arrays of structures, 137
Formatting, 31-32
“For” statement, 59—65
defintion of, 59
flexibility of, 63
Functions
ASCli-to-integer function, 87-88
components of, 73

cosine function, 87
definition of, 73
functions program, 74-75
gete() function, 156
gets function, 88
macros, 89-90
mathematical functions, 87-88
placement of, 73-74
return statement, 80-82
sine function, 87
square roet function, 87
strcat function, 88—89
strcmp function, 89
string functions, 88—89
strlen function, 89
uses of, 74-76
using variables with, 76-79

global versus local variables,

76-78

value parameters, 78-79

variable parameters, 82—84

Gas mileage calculation program,
29-30

gete() function, 156

getchar function, 39

gets function, 88

global variables, 76-77

goto statement, 67-68

graf_handle(), 91

graf_.mouse(), 92-93

Graphics

Atari ST graphics, 164-71
graphics example program,
164—-67

v_bar routine, 170
v._circle library routine, 169
v_gtext function, 168-69
v_pline library routine, 169
v_recf function, 170
vsi_interior function, 168
vsl_color routine, 167, 168
vst_effects function, 170

index

mouse drawing program, 176-82
vg_mouse function, 173-74
Graphics Environment Manager
(GEM), 4-5
Application Environment System
(AES), 3
functions of, 90-93
appl_exit(), 92
appl_init(), 91
graf_handle(), 91
graf_mouse(), 92-93
v_clrwk(), 93
v_clswk(), 92
v_curhome(}, 93
v_opnvwk(), 92
vq-mouse, 173-74
windows, 93-97
Virtual Device Interface (VDI), 5

Hexadecimal conversion program,
110-14
ASCII conversion values, 156-58
program explanation, 116-17
Hex/character file dump program,
153-56

“If” statement, 40-42
common errors with, 4244
“if” statement program, 41-43
nesting of, 44-46

Interpreters, 2-3

Lattice C compiler, 3—4
Library features
central library, 86-87
Graphics Environmental Manager
(GEM) functions, 90-93
windows, 93-97
standard C functions, 87-90
macros, 89-90
mathematical, 87-88
string, 88-89

Linking, Megamax C compiler,
10-11

Local vanables, 76-77

Logical operators, 46

Logo, versus C language, 2-3

Loop counter variable, construction

of, 55

Looping structures
accumulator loops, 535
counting loops, 54-55
“do-while” statement, 65—-66
“for” statement, 59-65

definition of, 59
flexibility of, 63

goto statement, 67-68
infinite loops, 53
loops that sum, 55-59
nested loops, 6667
summing loops, 55
“while” statement, 52—34

Macros, 89-90
Mark Williams C package, 3, 4
Mathematical functions
ASCII-to-integer function, 87-88
cosine function, 87
sine function, 87
square root function, 87
Mathematical order of operation,
28-29
Megamax C compiler
compilation process, 7-8
compiler package, 3, 4
float data types, 22
int data types, 21
use of, 5-12
linking, 10-11
microfloppy disks, 5
program entry, 5-6
saving programs, 67
Merging, 143-50
definition of, 150

205

Index

display phone book program,
148-49
sort/merge phone book program,
144-47
Metric conversions program, 100—4
program cxplanation, 103-4
Microfloppy disks, Megamax C
compiler, §
Modular programming, 72
Modular structure, 195
Mouse
mouse drawing function, 176-82
vq mouse function, 17374
Mouse drawing program, 176—82
Multidimensional arrays, 195

Nested loops, 66—67
conditional statements, 44—46
nested loop program, 67
NULL, definition of, 139, 150
Number guessing program, 104-10
program explanation, 108—10
Numeric types, advanced, 120-21

Parallel arrays. 124-25
Phone book program, 139-43
Pixels, 95
Polling, 173, 174
Post- /pre-decrementing, 57-59
Post- /pre-incrementing, 57-59
Printf function, 3437
Program entry, Megamax C compiler,
5-6
Program formatting, 31-32
Programs
accounting program, 60--61
with less code, 62, 63-64
baseball averages program, 18287
date minder program, 176-82
difference between + +var/var++
program, 58
elements of, 16-18
family budget program, 65—66

first “while” loop program, 53

functions program, 74-75

gas mileage calculation program,
29-30

“if” statement program, 41-43

metric conversion program, 100-4

program expianation, 103—4
nested loop program, 67
number guessing program, 104-9
program explanation, 108-9

pay including overtime program,
45-46

phone book program, 139-43

products in a loop calculation, 54

record album data base program,
187-95

recursion program, 131-32

student’s grade point average

program, 30-31

summing program, 55-57

window display program, 94-95

Putchar function, 37

Record album data base program,
187-95

Record data structure, 125-30
Recursion, 130-33

Recursion Program, 131-32
Register storage class, 26
Reserved words, 197
Return statement, 80—82

Saving programs, Megamax C
compiler, 6-7

scanf function, 37-38

Scope rules, 76

Sign bit, 120

Simple arrays, 121-24°

Simple C arithmetic, 29-31

Sine function, 87

Sorting

definition of, 150

Index

display phone book program,
148-49
sort merge phone book program,
144-47
Square root function, &7
Statements
conditional statements, 39-49
“do-while” statement, 65—66
“for” statement, 5964
getchar function, 39
goto statement, 6768
“if” statement, 40-42
printf function, 3437
putchar function, 37
scanf function, 37-38
“while” statement, 52-34
See also Conditional statements.
Static storage class, 26
Stepwise refinement, 72
Storage classes, 25-27
for auvtomatic variables, 25-26
external storage class, 2627
register storage class, 26
static storage class, 26
Strcat function, 88—89
Stremp function, 89
String functions
gets function, 88
strcat function, 88—89
stremp function, 89
strlen function, 89
strlen function, 89
Structured design, 72
Structures, 125-30
application use, 127-30
Student’s grade point average
program, 30-31
Summing loop, 55

Summing program, 55-57
Switch alternative, 47—49
Symbolic constants, 17
Syntax, 16

Top-down design, 72
Unsigned modifier, 20--21]

Variable parameters, 82—84
Variables, 18-19
assignment of, 24-25
global variables, 76-77
identifiers, 24
local variables, 76-77
used with functions, 76-79
value parameters, 78—79
variable parameters, 82-84
v_bar routine, 170
v_circle library routine, 169
v_clrwk(), 93
v_clsvwk(), 92
v_curhome(}, 93
v_gtext function, 168-69
Virtual Device Interface (VDI), 5
v_opnvwk(), 92
v_pline library routine, 169
vq_mouse, 173-74
v_recf function, 170
vsf_interior function, 168
vsl_color routine, 167, 168
vst_effects function, 170

“While” statement, 52—54
versus “do-while” statement, 66
“while” loop program, 53
Windows, 93-97

207

Here’s how to receive your free catalog and save
money on your next book order from Scott,
Foresman and Company.

Simply mail in the response card below to receive your free copy of our
latest catalog featuring computer and business books. After you've looked
through the catalog and you're ready to place your order, attach the cou-
pon below to receive $1.00 off the catalog price of Scott, Foresman and
Company Professional Publishing Group computer and business books.

J YES, please send me my free catalog of your latest computer and business books!
I am especially interested in

O IBM [l Programming

[MACINTOSH O Business Applications

O AMIGA (] Networking /Telecommunications
O COMMODORE il Other

Name (please print)

Company

Address

City State Zip

Mail response card to: Scott, Foresman and Company
Professional Publishing Group
1900 East Lake Avenue
Glenview, IL 60025

PUBLISHER’S COUPON NO EXPIRATION DATE

SAVE $1.00

Limit one per order. Good only on Scott, Foresman and Company
Professivnal Publishing Group publications. Consumer pays any sales tax. Coupon may

not be assigned, transferred, or reproduced. Coupon will be redeemed by Scott. Foresman
and Company Profcssional Publishing Group, 1900 East Lake Avenue. Glenview, IL 60025,

Customer’s Signature

>$19.95

You Already Own a Powerful Personal Computer . . . Now Put Its
Power to Work for You with Learning C on the Atari ST

If you want to create your own programs in C on the Atari ST personal com-
puter, Learning C on the Atari ST is for you. Beginning and experienced
programmers alike will appreciate the easy-to-use, readable style of Learning
C on the Atari ST. Because the book describes the C programming language
so thoroughly, beginners will be able to write code immediately. Advanced
programmers will appreciate the detailed coverage of the unique features of
the ST.

This well-organized book includes:
* Recommended C compilers for the Atari ST
* What the Graphics Environment Manager is, and how you can use
GEM to take advantage of the ST's powerful capabilities
* The proper syntax and structure of a C program, what variables are, how
to comment and define constants
* How to write statements and routines as well as how to construct a loop
* Various C functions and how to write more sophisticated programs
that use files, multi-dimensional arrays, and pointers
* Popular graphics routines, and how to design programs that use a
mouse.
And, all programs are written so that they can be easily converted to most ST
C compilers on the market.

Because each chapter begins with objectives and ends with a review and quiz,
you won't miss important information essential to a clear understanding of the
C language. With Learning C on the Atari ST, you'll build solid C program-
ming skilis. And because this guide is so easy to use, you'll want to keep it
handy as a reference guide.

Joseph Boyle Wikert is a systems analyst for NCR Corporation. He is also coauthor of
Using Your Macintosh: Beginning Microsoft BASIC and Applications and Learning
Macintosh Pascal (published by Scott, Foresman). He currently lives in Miamisburg, Chio.

Scott, Foresman and Company

ISBN 0-b73-18736-1

