

STBASICtoC
Olaf Hartwig

A Data Becker Book from

Abacus

Second Printing, May 1988
Printed in U.S.A.
Copyright © 1986

Copyright © 1986

Data Becker GmbH
Merowingerstr.30
4000 Dusseldorf, West Germany
Abacus Software, Inc.
P.O. Box 7219
Grand Rapids, MI 49510

This book is copyrighted. No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of Abacus Software or Data Becker, GmbH.

Every effort has been made to insure complete and accurate information
concerning the material presented in this book. However Abacus Software
can neither guarantee nor be held legally responsible for any mistakes in
printing or faulty instructions contained in this book. The authors will
always appreciate receiving notice of subsequent mistakes.

ATARI, 520ST, ST, TOS, ST BASIC and ST LOGO are trademarks or
registered trademarks of Atari Corp.

GEM, GEM Draw and GEM Write are trademarks or registered trademarks
of Digital Research Inc.

IDM is a registered trademark of International Business Machines.

ISBN 0-916439-58-5

Table of Contents

Chapter 1 Development, applications, and the C language 1

Chapter 2 First steps for (former) BASIC programmers 7

2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.5
2.5.1
2.5.2
2.5.3
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.7
2.7.1
2.7.2
2.7.3
2.8
2.8.1
2.8.2
2.9
2.9.1
2.9.2
2.9.3

Learn the elementary structures of C in one day
Functions and text output to the screen
Program fonnat
Numerical screen output
Variable declarations
Initializing variables
The fonnat instructions
Loops and comments
The for loop
The while loop
Comments in C
Data input
The get char () function
The Aleyon C get char ()
The scanf function
The Aleyon C scan f ()
Further use of variables in programs
Arithmetic in C
Similarities to BASIC
Differences from BASIC
The increment and decrement operators
More control structures in C
The if statement
The if-else statement
Data types in C
Variables
Constants
Arrays

9
10
12
13
14
15
15
17
17
20
22
23
23
25
26
27
27
28
28
29
31
32
32
33
35
35
35
36

Chapter 3 The basic elements of C

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Program structure
Comments
Screen output
Variables and constants
Loops
Data input
Arithmetic in C
The if-else control structure

Chapter 4 Screen Input/Output Operations

4.1
4.2
4.3
4.3.1
4.3.1.1
4.3.1.2
4.3.2
4.3.3
4.3.4
4.3.5
4.4
4.4.1
4.4.2
4.4.3
4.5
4.5.1
4.5.2
4.5.3
4.5.3.1
4.5.3.2
4.5.3.3
4.5.3.4
4.5.4
4.5.5

Outputting text on the screen
Printing numerical values
Format instructions
Conversion elements
Numerical output
Character output
Format specifiers
Examples of numeric output
Text formatting
More uses for conversions and formats
Printing string variables on the screen
Printing a single character
More screen output
Additional output possibilities
Data input functions
The get char () function
Input with gets ()
The scanf input function
scanf for character and string input
Arrays in place of pointers
Entering numbers via scanf
Entering multiple data
The GET$/INKEY$ function in C
Implementing put char (), getchar ()
and getch () on Alcyon C for the Atari ST

39

41
42
42
43
44
44
45
45

47

49
50
52
52
52
53
53
54
56
56
58
60
61
62
65
66
67
68
69
70
71
72
73

74

Chapter 5 Variable Types in C 77

5.1 Variable names 79
5.2 Constants 81
5.3 Data types 83
5.4 Converting data types 84
5.4.1 Character/integer conversion 84
5.4.2 Converting between numeric types 87
5.5 Variable declarations 88
5.6 Global/local variables 90
5.7 Arrays 91
5.7.1 Multi-dimensional arrays 94
5.7.2 Strings 94

Chapter 6 C Pointers 97

6.1 Pointer fundamentals 99
6.2 Using pointers 102
6.3 Pointers and arrays 102
6.4 Numeric arrays 103
6.5 Strings and arrays 106

Chapter 7 Arithmetic Operators and Expressions 109

7.1 What are operators? 111
7.2 Value assignments 112
7.3 The modulo operator 114
7.4 The increment and decrement operators 115
7.5 Comparison operators 117
7.6 Logical combinations 119
7.7 The negation operator 120
7.8 Multiple assignments 122
7.9 The bit operators 123

Chapter 8 Control Structures in C 125

8.1 Control structures in BASIC 127
8.2 The if statement 128
8.2.1 The exit () statement 132

8.2.2
8.2.3
8.2.4
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.4
8.4.1
8.4.2
8.4.3
8.5
8.6
8.7
8.7.1
8.7.2
8.7.3
8.8
8.8.1
8.8.2

The if-else test
Combining if-else statements
else-if chains
for loops
Review and summary
Infinite loops
The comma operator
Nested for loops
while loops
Combinations of for and while loops
Nested while loops
The do-while loop
break for leaving loops
The cont inue statement
The goto jump
The goto syntax
Avoiding gotos
Applications for got 0

Conditional execution with switch
Example
The switch syntax

Chapter 9 Common Mistakes of BASIC Programmers

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

Error # 1
Error# 2
Error# 3
Error# 4
Error# 5
Error # 6
Error # 7
Error # 8
Error# 9
Error #10
Error #11
Error #12
Error #13
Error #14

133
134
135
136
137
138
140
141
145
147
148
149
150
152
154
154
156
156
157
157
158

163

165
166
167
168
168
169
170
171
172
172
173
174
174
175

9.15 Error #15 176
9.16 Error #16 176
9.17 Error #17 177
9.18 Error #18 178
9.19 Error #19 179

Chapter 10 C Functions 181

10.1 Fundamentals of functions 184
10.1.1 Calling functions 184
10.1.2 Functions without parameters 185
10.1.3 Functions calling each other 188
10.2 Passing parameters to functions 190
10.2.1 Returning integer data 192
10.2.2 Returning other numerical data types 194
10.2.3 Pointers, functions and simultaneous

parameter passing 195
10.3 The DEF FN command 197

Chapter 11 Structures 201

11.1 Declaring structures 203
11.2 Use of structure variables 204
11.3 Arrays and structures 206

Chapter 12 An overview of C 209

12.1 Keywords in C 211
12.2 C language statements 213
12.2.1 The break statement 213
12.2.2 The case statement 213
12.2.3 The cont inue statement 214
12.2.4 The #define statement 214
12.2.5 The default statement 215
12.2.6 The do statement 215
12.2.7 The e 1 s e statement 216
12.2.8 The else if statement 216
12.2.9 The for statement 216

12.2.10 The goto statement 217
12.2.11 The if statement 217
12.2.12 The n u 11 statement 217
12.2.13 The return statement 218
12.2.14 The s t ru ct statement 218
12.2.15 The s wit ch statement 219
12.2.16 The whi Ie statement 220
12.3 Variable types in C 221
12.3.1 Integer variables 221
12.3.2 Floating-point variables 221
12.4 Operators in C 222

Appendix A 225

Appendix B 227

Index 229

Chapter 1

(Introduction to the C language)

Abacus Software Atari ST BASIC to C

Development, applications, and the C language

C is a universal high-level programming language. This relatively new
language was developed in the early 70's by Dennis Ritchie at Bell
Laboratories (AT&T).

Many software designers consider C to be the programming language of the
future. The most important reason for this is its compact syntax, which
allows very concise expressions and programming structures close to the
machine level.

C is also considered an "easy assembler" because compiling a C program
generates pure machine code. Many C language programmers once
programmed in machine language.

C is relatively close to the machine language level. This means that C
works with the same objects (Le. characters, numbers, and memory
addresses) as the microprocessor. This feature is largely responsible for C's
popularity for developing professional software. Nearly all
high-performance software packages, such as the Lotus 1-2-3 spreadsheet
and Ashton-Tate's dBASE ill database manager, are written in C.

What interests us is that many programs for the Atari ST and the GEM
operating system are written in C.

C is a very compact language. It has about the same number of language
elements as BASIC. Therefore it should not be too difficult to learn the C
language and syntax quickly.

The great strength of C lies in the number and variety of functions stored in
libraries. The user can use these functions for all of his applications. With
easy access to libraries, it is not necessary for the programmer to
"reprogram" these functions over and over again. Features such as
drop-down menus or dialog boxes are easily performed using the library
functions of GEM. GEM is actually a collection of C library functions.

Because C is so much closer to the machine level than COBOL, Pascal, or
BASIC, many programmers have difficulty switching over to C.

3

Abacus Software Atari ST BASIC to C

This applies especially to BASIC programmers. The change from BASIC
to C is not easy if you have extensive BASIC experience. One main reason
why so few BASIC programmers have "jumped ship" to C in the past is
BASIC is the first language learned by nearly all non-professional
programmers.

But now that you have an ST, you should change to C as soon as possible.
Although ST BASIC is a highly refined language, it does not allow you to
write more advanced programs.

The main reason for this is that GEM is inaccessable from BASIC. And the
fantastic possibilities of GEM and mouse input, the fast MC68000
microprocessor and the ample RAM in the 520 ST or 1040 ST, are the
outstanding capabilities of this computer.

For example, if you want to make use of the sophisticated graphics
capability of the ST, you must program either in machine language or in C.
There are a few graphics commands in ST BASIC, but they just scratch the
surface of the fantastic graphics capability of this computer.

It may not make sense to program in machine language on the ST. The
speed of C approaches the speed of actual machine language-and it takes 6
to 10 times longer to program in machine language than it does in C.
Furthermore, machine language programs are much more difficult to modify
than programs written in C.

Another disadvantage of working in machine language is that your machine
code programs cannot be easily transported to computers with different
processors. Even with the same processors, adaptation to a different
computer can be an agonizing process for every programmer. On the other
hand, C programs from the ST are easier to transfer to other computers,
such as the Commodore AMIGA or the mM PC.

The programs you now run on your ST are therefore more likely to have a
future if you write them in C. If you later change to a different computer
system at a later time, you can still use your old C programs.

The power of C is demonstrated by the fact that not only GEM, but illl of
the Digital Research routines not written in machine code were written in C.

4

Abacus Software Atari ST BASIC to C

This book gives you the opportunity to move from BASIC to C. Although
the common difficulties mentioned above do hinder the programmer from
changing from BASIC to C, they can all be overcome. To make things
easier, the entire concept of this book was developed especially for the
BASIC programmer, and is directed specifically toward the capabilities of
the ST.

The examples in this book use the Aleyon compiler that is part of the Atari
Developer's Package. It was chosen because it is considered the "standard"
among ST C compilers. Other C compilers such as Megamax, Lattice, and
Mark Williams are very similar and can be used with very few syntax
changes.

5

r

Chapter 2

First steps for (former)
BASIC programmers

Abacus Software Atari ST BASIC to C

First Steps for (former) BASIC programmers

2.1 Learn the elementary structures of C in one day

Yes, it's possible. This chapter includes all of the important structures of
C-and you'll need just one day to work through it. You will be able to
write your flrst C programs on the ST by the time you finish this chapter.

We can learn a new programming language only by experimenting with it
and writing programs. For this reason you will start writing in C now, so
that in a short time you reach a point where you can write your own
programs unaided.

You can switch to C quickly and easily by studying this chapter. We'll
concentrate on the important language elements without losing ourselves in
details, limitations, exceptions, and rules. This chapter makes absolutely no
claim to be comprehensive or complete. The details, along with many other
essentials (such as tips and tricks for effective programming in C) are
found in the subsequent chapters.

With the compact, yet precise introduction in this chapter, we'll have you
writing your own C programs in the shortest time possible.

Of course, this method alsc has its disadvantages. If we leave out complete
details for a while, we cannot avoid repeating parts of this chapter later on.
However, we believe that this ongoing review is not annoying, but helps
you learn even more.

9

Abacus Software Atari ST BASIC to C

2.2 Functions and text output to the screen

One elementary task in every programming language is displaying
comments and messages on the screen. For example, how do you make the
computer display:

Hello, how are you?

on the screen?

In BASIC, we do it with a simple PRINT statement:

10 PRINT "HELLO, HOW ARE YOU?"

In C, the corresponding program looks similar:

main ()
{

printf("Hello, how are you?\n");
gemdos(Oxl);

}

The additional GEMDOS call:

gemdos (OxI)

must be added to the program for the ST's C compiler.

This causes the program execution to stop until a certain key is pressed.
You must keep this GEM-specific characteristic in mind with the following
examples. Always add the GEMDOS call to the end of your program.

One word about compiling these C programs. Because of the powerful
capabilities of the ST, compilation is often quite time-consuming. For
instance, a different L INK procedure is used depending on whether the C
program is a TOS application, a GEM application or a desk accessory.

10

Abacus Software

In our example program:

main ()
{

Atari ST BASIC to C

printf("Hello, how are you?\n");
gerndos(Oxl);

}

the fIrst thing we see is the opening:

main ()

This line represents a special C function. C programs are normally
composed of a series of individual functions.

These functions are somewhat comparable to BASIC subroutines, which
are called using GOSUB and ended with RETURN. They also correspond to
the procedures familiar to Pascal programmers.

Every function in C is assigned a name. For example, the following
function is called input :

input ()
{

The commands of the function
input go here.

The function called rna i n () is a special function. When the program is
executed, rna in () is always the frrst function to be called and the fIrst to be
carried out. It is therefore the "master function" in the C program.

It is important to make sure that every C program contains a rna in ()
somewhere in its text. rna in () normally makes calls to other
functions-additional subprograms.

The braces surrounding the program in our simple example start and end all
the statements that make up a function. The last closing brace is like the END
command in BASIC.

11

Abacus Software Atari ST BASIC to C

Now we come to the line:

printf("Hello, how are you?\n");

To make life simpler, we will say that:

printf () ;

is equivalent to the PRINT command in BASIC, even though pr int f does
more and is syntactically more complex than the BASIC command PRINT.
Text to be printed must be enclosed by parentheses as in our example, like
the argument of a function.

Now we'll explain the meaning of the '\ n' in the program text. This
symbol is not printed, but executes a line feed (end-of-line).

If you had left this symbol off and printed the line like this:

printf("Hello, how are you?");

it would be equivalent to the BASIC instruction:

10 PRINT "Hello, how are you?";

2.3 Program format

You could also formulate the C program like this:

main ()
{

}

printf("Hello, H);
printf ("how");
printf("are H);
printf("you?");
printf("\n");
gemdos (Oxl) ;

12

Abacus Software Atari ST BASIC to C

This is also possible in BASIC. The program then reads as follows:

10 PRINT "Hello, " . ,
20 PRINT "how " . ,
30 PRINT "are " . ,
40 PRINT "you?";
50 PRINT

An essential difference between the C compiler and the BASIC interpreter is
that the C compiler accepts an arbitrary program format. This means that
you could also write the program as follows:

main ()
{

}

printf ("Hello,
how
are
you?\n") ;
gemdos(Ox1) ;

Nonnally a C compiler accepts this input. A BASIC interpreter does not.
However, you should not become accustomed to this sort of programming
style or the legibility of your programs will suffer. Several compilers,
including the Alcyon compiler from the ST Developer's Package, do not
accept this format either. Instead you'll get this error message:

string cannot cross line

Take a look at the semicolons in the C program. Their job is to separate
single statements, much like the colon in BASIC or the separating
semicolon in Pascal.

2.4 Numerical screen output

We have now had our first experience with program format, looked at
functions, and learned how to print text on the screen. But printing numeric
variables to the screen is not as easy.

13

Abacus Software Atari ST BASIC to C

Numeric output as well as simple text output is possible in BASIC using a
PRINT command. Take the following BASIC program, for example:

10 A=1
20 B=3.14
30 PRINT A;B
40 END

The corresponding C program reads as follows:

main ()
{

int a;
float b;
a = 1;
b = 3.14;
printf("%7d %5.1f\n", a, b);
gemdos (Ox1) ;

}

2.4.1 Variable declarations

First, we need a few elementary explanations of the structure of a function
in C.

All variables within these routines must be declared at the beginning of the
function. In BASIC, this is usually not necessary.

The declaration tells the computer which variables it should use and thereby
defines the variable names. In this case, they are a and b.

In addition, the variable types are established:

int a;

The variable a therefore represents an integer number, determined by the
variable type in t.

14

Abacus Software Atari ST BASIC to C

The declaration:

float b;

establishes b as a floating point variable.

2.4.2 Initializing variables

After initialization, variables must be given a value. In our example
program, this process looks like this:

a = 1;
b 3.14;

This may appear strange and unnecessarily complicated to BASIC
programmers. When you programmed in BASIC in the past, all the
variables were automatically set to zero when the program was RUN.

However, this does not happen in C. The initial declaration does not assign
a value to the variables.

Variables must always be assigned a value explicitly. To the BASIC
programmer this may seem unnecessary, but you will find that your
C programs are more structured, execute better, and are more easily
modified as a result.

2.4.3 The format instructions

Now we come to the program line:

printf("%7d %5.1f\n", a, b);

15

Abacus Software Atari ST BASIC to C

This compares to the following BASIC instruction:

PRINT A; B

The C statement looks much more complicated. However, it can do much
more than you see at first glance.

You already know the basic structure of the printf command from our
earlier examples.

The only new elements are the control instructions between the quotation
marks. These act as format instructions. One example of this is the format:

n%5.1fn

Every format statement is prefIxed with a % character. This lets the computer
know that it should output a value (here the value of the variable b) in a
specifIc format.

The format itself is determined by the element 5 . 1. The 5 . 1 means that the
number should be printed in a space comprised of five characters and
containing one place after the decimal.

The letter f, an abbreviation of "float", indicates the conversion element and
instructs the ST to print out a floating-point number. Correspondingly, the
d stands for an integer (whole number) value. Format statements are quite
useful. Output formatting in BASIC is considerably more complicated than
it is in C with the printf command.

16

Abacus Sortware Atari ST BASIC to C

2.5 Loops and comments

We cannot write very meaningful programs using only text and numeric
output. We also need loops, like the FOR-NEXT loop in BASIC.

2.5.1 The for loop

You should have an easy time understanding the for loop in C, because
it's closely related to the FOR-NEXT loop in BASIC. You'll notice this right
away in the following example program. The program prints a list of the
numbers from one to twenty and their squares:

main ()
{

}

int X;
for (x = 1; x <= 20; x = x + 1)

printf("%2d %3d\n", x, x*x);
gemdos (Ox1) ;

The program output looks like this:

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

18 324
19 361

20 400

17

Abacus Software Atari ST BASIC to C

The corresponding BASIC commands are clearly similar to C's for loop:

10 FOR X=l TO 20 STEP +1
20 PRINT X; X*X
30 NEXT X
40 END

The result of this BASIC program is absolutely identical to that of the
previous C program.

We already know the structure of the C program. First, the function
main () is opened and the variable x must be declared as an integer. Then
comes the actual for loop:

for (x = 1; x <= 20; x = x + 1)
printf("%2d %3d\n", x, x*x);

The first thing done is to set the first x value to one. The BASIC
construction:

FOR X=l

becomes the following in C:

x = 1;

Note that it is not necessary to give the variable x a value beforehand under
these circumstances. An additional x = 1; is not necessary before the
for loop. The initialization takes place right in the loop instead.

The second part of the C for loop is the outer interval limit.

The BASIC FOR-NEXT expression:

TO 20

is replaced in C with:

x <= 20;

18

Abacus Software Atari ST BASIC to C

Many other delimiters are possible, of course. One example would be:

x < 21;

which has exactly the same effect as the instruction x <= 20.

The third part of the for loop is the step width. In BASIC, you don't have
to include the step width of + 1.

When you omit the STEP instruction from a FOR-NEXT loop, the BASIC
interpreter automatically sets the step width to + 1.

You must change your thinking a little in C, however. The step width must
always be specified explicitly, as it is in this case with:

x = x + 1

This is comparable to the BASIC instruction:

STEP +1

Note also that the loop declaration may not be followed by a semicolon:

for (first interval bound;
second bound;

step width)

You've probably noticed that we have always talked about the for loop in
relation to a BASIC FOR-NEXT loop. But where do we find the
corresponding NEXT statement in a C program? In other words, how many
statements does the C compiler repeat within the for loop?

The answer is simple: one. If we want to repeat more than one statement,
we can place them in braces, making a statement block.

19

Abacus Sortware Atari ST BASIC to C

This is an example:

main ()
{

}

int X;
for (x = 1; x <= 20; x = x + 1)

{

}

printf("Value of X is ... ");
printf("%2d\n", x);
printf("X squared is ... ");
printf("%3d\n", x*x);

gemdos (Oxl) ;

Here, a whole block ofprintf calls follows the for statement. The entire
block must be enclosed in braces.

This program prints the values of x together with the values of x squared,
each printed on a separate line:

Value of X is 1
X squared is 1

Value of X is 2
X squared is 4

(through)

Value of X is 20
X squared is 400

2.5.2 The while loop

This loop is probably less familiar to you as a BASIC programmer than the
FOR-NEXT loop. For our purposes, while can best be expressed as
"as long as ."

20

Abacus Software Atari ST BASIC to C

The algorithm of the loop used in our previous example program should
look something like this:

x = 1;
as long as x <= 20 do the following:
{

x = x + 1;
print x
and x squared

You can also formulate this algorithm in BASIC like this:

10 X=l
20 '
30 IF X<=20 THEN PRINT X;X*X:GOT030
40 '
50 END

Below is the corresponding C program with the correct syntax for the
while loop:

/* Value table for X squared */
main ()
{

}

int x;
x = 1;
while (x <= 20)
{

}

printf ("Value of X is ... ");
printf("%2d\n", x);
printf ("X squared is ... ") ;
printf("%3d\n", x*x);
x = x + 1;

gemdos(Oxl);

This program prints out a value table just like our last example, which used
a for loop.

21

Abacus Software Atari ST BASIC to C

However, you must initialize x with a value after you declare it as an
integer. This was done in our program with:

x = 1;

This is important, because the x value is used immediately as a loop
condition. In the for loop, the initialization is handled right in the loop
declaration.

The syntax of the while loop is self-explanatory. The parentheses enclose
the condition for the execution of the statements in the loop. The
instructions to be repeated are enclosed in the braces. This corresponds
exactly to the syntax of the for loop.

For example, if only one instruction needs to be repeated, the braces can be
dropped, just as they are in our for loop example. Also parallel to the for
loop syntax is the fact that no semicolon follows the wh i 1 e loop
declaration.

The step width must be handled inside the loop instruction, as it is in this
case with:

x = x + 1;

We also could have specified any other step width, such as "2" or "0 . 5 " .

2.5.3 Comments in C

The only thing missing now is an explanation of the fIrst program line:

/* Value table for X squared */

This command corresponds to a REM line in BASIC. You could add the
corresponding BASIC line to the previous BASIC program:

5 REM Value table for X squared

22

Abacus Software Atari ST BASIC to C

The text between the slashes and asterisks is ignored by the compiler.

To maintain the readability of long programs, you should learn early to
insert comments about the structure at the beginning of your functions
(subroutines).

The syntax of this instruction is always as follows:

/* Comment text */

Note that a semicolon may llill follow a comment line.

2.6 Data input

At this point you're ready to write your fIrst programs. But there is still one
very important element missing: the ability to enter data.

Just as the printf instruction can do much more than the normal BASIC
PRINT instruction, there are many different variations of data input with
different capabilities in C.

To keep things simple, we'll first simulate the BASIC INPUT command
with two different C commands.

2.6.1 The qetchar () function

The syntax of our fIrst input option reads like this:

letter = getchar()

This function, which assigns a character read from the keyboard to the
variable letter, mru~es it easy to enter a single character in a running
program. It is comparable to a BASIC routine containing a GE T command:

23

Abacus Software

10 LET LT$ =""
20 GET LT$
30 IF LT$="" THEN GOTO 20
40 '
50 REM LETTER LT$ CHOSEN

Atari ST BASIC to C

Longer character strings must be built-up using a repeat loop. It can look
like the following in C:

#inc1ude "stdio.h"
main ()
{
int Lt;

Lt = getchar () ;
while (Lt 1= EOF)

printf("%c\n", 1);
Lt = getchar();

}
gemdos (Oxl) ;

The program takes the characters from the keyboard and prints them on the
screen. The input is ended with <ControbZ.

The variable 1 is declared as type integer. This may seem strange to a
BASIC programmer. You may think you should have to declare a character
type, because a character is printed out.

get char () doesn't really read a character from the keyboard, but the
ASCII value of the character. This value must be passed as type int rather
than type char.

Of course, 1 can also be defined as a character value. The program would
run perfectly in almost every situation. But problems can sometimes arise in
actual practice. It is therefore better to use integer values instead of character
values with the get char () function.

The expression " % c" in this p r in t f call tells the computer to print a
character.

24

Abacus Software Atari ST BASIC to C

Another new thing here is the EOF. This means End Of File. It indicates
when the input was ended-in other words, when <RETU:RN> was entered.

One further comment: ! = in C stands for "is not equal to." It corresponds to
the BASIC inequality operator <>.

The command

iinclude "stdio.h"

combines the standard library of the compiler with the program. This
defines a set of standard functions and constants. In our example, these are
the EOF constant and the function getchar ().

2.6.2 The Alcyon C qet char ()

A change is necessary to the Alcyon C compiler included in the Atari
development system. This version does not have a working get char ()
function. It must be implemented with a separate function.

To do this, add the fi llowing lines to the previous program:

getchar ()
{

char c;
return (read(O, &c, 1) > 0) ? c & 0377 : EOF);

This function addii ion must be made to all programs that use the
getchar () functi

At the time this boo is being published, it is not certain whether or not the
function is irnplem in the official Alcyon C ST version.

On the ST, the sig al for the end of a line is <Control>Z. To end the
program, you must u e this control character instead of <RETURN>.

25

Abacus Software Atari ST BASIC to C

The output for our program using the Alcyon C package can look like this:

abcd"'Z

The output would then read:

a
b
c
d

You don't have to worry about this function anymore for the time being.

2.6.3 The scan f function

You can now input single characters into the computer. This is very easy to
do, as you have already seen.

But this is not enough, obviously. We will now find ways to implement the
BASIC commands like INPUT A or INPUT A$ in C.

Let's translate the following BASIC program:

10 INPUT A% : REM INTEGER NUMBERS ONLY
20 '
30 END

In C, we get:

main ()
{

}

int a;
scanf("%d", &a);
gemdos (Ox1) ;

Note the ampersand (&) in front of the a variable. This is necessary
whenever numeric input is entered with the scanf function.

26

Abacus Software Atari ST BASIC to C

This involves a pointer, which tells the computer where input is to be
stored. We'll look at pointers in more detail later.

2.6.4 The Alcyon C scanf ()

Aleyon C stores ASCII inputs, and therefore the scanf () function stores
the input as files, each with a line feed at the end. A <ControbZ (Ox1a)
stands for the End Of File.

The input for scanf () must therefore be ended with this control code.
This is not enough for the input to be accepted, however. A character which
does not match the format must be entered before the terminating
<ControbZ. The reason for this is that the scanf () function terminates as
soon as the input does not agree with the format. For example, the input of
the integer 1245 must be written as follows:

1245 "z

The space (_) doesn't match the input, since it doesn't represent a number.
The "Z represents the terminating <ControbZ character. <Return> must be
pressed after this input.

This complicated input procedure is unacceptable for the user. We hope that
an updated version of the Alcyon C for the ST will provide a standard input
ended simply with <RETURN>.

2.6.5 Further use of variables in programs

Now let's explore the further use of the &a variables in a program.

Our BASIC program, which uses the variable A% after input, might look
like the following:

27

Abacus Sortware

10 INPUT A%
20 PRINT A%; A%A2
30 END

Translated into C it reads:

main ()
{

}

int a;
scanf("%d", &a);
printf("%d %d\n", a, a * a);
gemdos(Oxl);

Atari ST BASIC to C

The address operator & is used here only with the scan f instruction.

2.7 Arithmetic in C

As a BASIC programmer, you should have no trouble learning how to use
arithmetic expressions in C, because in many respects it is almost identical
to BASIC arithmetic.

2.7.1 Similarities to BASIC

In our previous examples we presented the math as self-explanatory,
without explaining it in any detail.

A few examples of what we've used so far are:

1. x = x + 1;
2. x * x;
3. while (x <= 20)
4. for (x = 1; x <= 20; x = x + 1)
5. a = 2/ (3*3) ;

28

Abacus Software Atari ST BASIC to C

Here you see once again that C expressions like a = 2/ (3 * 3) are identical
to BASIC expressions in their syntax, logic, and placement of parentheses.

In addition, all of the following C operations correspond to their BASIC
counterparts:

<, >, <=, >=, +, *, /,

2.7.2 Differences from BASIC

But C has minor notation differences which often trip up BASIC
programmers. One specific example has already been covered. The
inequality operator, represented in BASIC with this:

<>

is written in C using:

!=

C also distinguishes between:

=

for value assignment, and

which is the equality operator. The symbol for value assignment, as used in
the following line:

x = -1;

assigns a value to x, just as in BASIC.

29

Abacus Software Atari ST BASIC to C

An if statement (see the next section) is implemented with an expression
such as:

if (x == 1)
statement

C uses the equivalence operator == to test for the equality of two values.

There are still a few more formal differences.

In BASIC, the logical

AND

is formulated in C with:

&&

Similarly, BASIC's logical

OR

is represented in C with:

I I

The BASIC line:

IF A=l AND B=2 OR C=5 THEN (...)

is translated in Cas:

if(a == 1 && b
{

2 II c 5)

30

Abacus Software Atari ST BASIC to C

At first glance, this looks somewhat unusual. However, all that is new is
the form of some of the arithmetic expressions in C. You already know the
syntax and possible uses of these expressions from BASIC, and there are
no major changes.

2.7.3 The increment and decrement operators

In C, there are instructions like:

x++; (or) ++x;

These lines use an element called an increment operator. This operator
increments the value of x by one. We'll learn what the difference between
the two forms is in a later section.

The following statement:

x++;

is equivalent (by itself) to the BASIC-like statement:

x = x + 1;

In the same way, the decrement operator (- -) allows us to use the
statement:

x--

in place of:

x = x - 1

The increment and decrement operators are unusual in that they can be used
either before or after the variable they modify, and have different operations
in each case. Since they are operators, their result is an expression. More on
this later.

31

Abacus Software Atari ST BASIC to C

2.8 More control structures in C

Control structures define the execution order of commands within a
program. We have already covered two such structures, the for and
while loops.

Now, we'll quickly cover the if and i i-else control structures and
make ourselves familiar with them.

2.8.1 The if statement

The following BASIC program asks you to guess a number, and prints an
appropriate message if you guess the right one. It shouldn't be taken too
seriously-its main purpose is to demonstrate the if structure.

10 INPUT X%
20 '
30 IF X%=13 THEN PRINT "CORRECT!":

PRINT "THAT WAS THE ANSWER!"
40 END

When we translate this program into C, we get:

main ()
{

int Xi
scanf ("%d", &x);

if (x == 13)
{

printf("Correct!\n");
printf("That was the answer!\n");

}

}
gemdos(Oxl);

32

Abacus Software Atari ST BASIC to C

As you can see, there are really no differences in the normal if structure for
the BASIC programmer. The construction is the same, and the syntax
corresponds to the while loop, which we've already covered.

Note especially the comparison (x == 13). Unlike BASIC, it uses two
equal signs in a row. Also note that no semicolon follows the if command.

If more than one statement follows the if condition, as in our example,
they must all be surrounded by braces.

However, they can be left off if only one command is to be executed after
the if statement.

2.8.2 The if-else statement

Most versions of BASIC allow IF-THEN-ELSE control structures. If we
were to add ELSE statement to the above program, we would get:

10 INPUT X%
20 '
30 IF X%=13 THEN PRINT "VICTORY!";

PRINT "THAT WAS THE ANSWER!"
ELSE PRINT "TOO BAD! WRONG GUESS!"

40 END

Our extended C program then looks like this:

33

Abacus Software

main ()
{

Atari ST BASIC to C

int x;
scanf("%d", &x);
if (x == 13)

else
{

}

{

}

printf("Correct!\n");
printf("That was the answer!\n");

printf("ToO bad! Wrong guess!");
printf("\n") ;

gemdos (Ox1) ;

Just as in BASIC, the else statement is simply placed after the if.

However, it's very easy to formulate a large block of commands directly as
an else statement. But in BASIC, where all ELSE commands must fit
onto one line, this is not possible without additional programming. The only
real solution is to call a subroutine with GOSUB. For a single call this is
neither as elegant nor as efficient as the C method for a single call, however.

The syntax of the else statement should be clear and self-explanatory now
that you've had some exposure to C control structures. Just as with the if
and while statements, there is no semicolon after the else statement.

Again, else causes one statement to be executed if the result of the if
statement is false. If more than one statement is to be executed, they must be
placed in braces.

34

Abacus Software Atari ST BASIC to C

2.9 Data types in C

2.9.1 Variables

You have already learned the most important variable types:

int for integer numbers

float for floating-point numbers

char for character values

C has more variable types for other purposes, such as greater mathematical
precision. We will cover these other types in later chapters.

2.9.2 Constants

C can also define symbolic constants. This is done with the #de fine
instruction. It might look like this in a program:

#define INCREMENT 1
#define LO . BOUND 0
#define HI.BOUND 20
main ()
{

int X;
for(x = LO.BOUND; X <= HI.BOUND; x = x + INCREMENT)

printf(" %2d\n", x);
gemdos(Oxl) ;

35

Abacus Software Atari ST BASIC to C

This short C program counts from the lower bound of an interval (defined
with the value zero by the constant LO . BOUND) until the upper bound
HI. BOUND is reached. The increment is set at one.

The three constants defined before the main program are used later in the
for statement. You might ask why we even bother with symbolic
constants. Granted, in this short program they are somewhat complicated
and really unnecessary.

Constants are much more useful in larger programs. If there are values
which you use over and over in a program and they do not change, you
should define them as constants. This way, if you want to change this
value, you only have to change it once instead of every occurrence.

The structure of a constant defmition is:

#define CONSTANT contents

You should note that no semicolon follows the #de fine construction, just
as none follows a comment. You can assign text to a symbolic constant as
well as numbers. The compiler then converts the constant text during
compiling, and replaces all of the constant names with the corresponding
text. As you would expect, constant names within quotes are not replaced.

2.9.3 Arrays

Arrays in C are very much like arrays in BASIC, so there's nothing to be
afraid of here.

The BASIC dimensioning command:

10 DIM S(20)

is accomplished in C with the variable declaration:

int s [20] (or) float s[20]

or any other variable type that the elements of the array are to have.

36

Abacus Software Atari ST BASIC to C

Note that unlike most BASIC arrays, which start at 1, arrays in C start
numbering the elements with zero. This means that int s [20]
dimensions an array with a total of 20 elements, which are then numbered
s [0] through s [1 9] .

An important point for BASIC programmers is that every single element in
an array must be given a value before it is used.The BASIC command:

DIM S (20)

automatically sets all of the variables from S (1) to S (20) to zero. But in
C, you must do this separately before you can do anything else with the
array. In the following example a short for loop does this job:

main ()
{

int s[20];
int i;
for(i = 0; i < 20; i = i + 1)

s[i] = 0;
/* additional program steps ... */

gemdos (Ox1) ;
}

In this program, the variables from s [0] to s [1 9] in the array are
initialized and ready for further use.

For practice, here is a short program that uses the get char () function to
read a character from the keyboard and put it into the array. In BASIC, it
would look like this:

10 DIM T$(50)
20 1=0
30 A$=""
40 GET A$
50 IF A$="" THEN 40
60 '
70 1=1+1
80 T$(I)=A$
90 IF A$<>CHR$(13) AND 1<50 THEN GOTO 30
100 END

37

Abacus Software

The C version follows:

#define EOF (-1)
main ()
{

char a;
int i;
char t[50];
for(i = 0; i < 50; i i + 1)

t[i] = 0;
i = 0;
a = getchar();
while (a != EOF && i < 50)

{

i = i + 1;
t[i] = a;
a = getchar();

Atari ST BASIC to C

printf("Contents of the string:\n");
for (i = 0; i < 50; ++i)

printf("%c\n", t[i]);
gemdos(Ox1);

getchar ()
{

char Ci

return((read(O, &c, 1) >0) ? c & 0377 :EOF);

All of the structures in this program have already been explained in the
section on data input and the get char () function.

Something new here is the string assignment section. The syntax and details
of arrays were explained on the preceding pages.

You should not only read the above program, but also type it into the
computer. You should also experiment with the C you have learned so far
by changing or expanding the program. You'll learn C like any other
language, through active programming and practical application-not by
just reading! This advice applies to all of the programs in this book.

38

Chapter 3

(The basic elements of C)

Abacus Software Atari ST BASIC to C

The BASIC elements of C

Now that you've learned the elementary structures of C, you're ready to
write your first solo programs.

First you should solidify your knowledge of C. This means that you should
experiment-sit in front of the ST and write simple programs based on what
you learned in the previous chapter. The time that you so invest now will be
worth twice its value later, when we work through the more complex
structures of C.

To help you with your first programs, the following pages contain a short
review of the material we have covered so far, with special emphasis on
comparisons to BASIC.

3.1 Program structure

A program consists of individual jUnctions. Every function has a title and its
instructions are enclosed in braces.

Example:

square ()
{

instructions in the function "square"
}

The function with the title rna in () has a special position. It is always the
first function to be executed and it usually calls the other functions. Each
individual statement within a function is separated from the others by a
semicolon, in the same manner that BASIC commands on a single line can
be separated by colons.

41

Abacus Software Atari ST BASIC to C

3.2 Comments

Comments help to explain your program to both yourself and other
programmers. Comments are ignored by the C compiler. Their syntax is as
follows:

/* Comment text-can contain anything */

3.3 Screen output

Strings are printed on the screen as follows:

printf ("Text ") ;

This example does not create a carriage return-that is, additional output
would follow immediately after "Text" and not on a new line. To create a
carriage return, ·a command character must be added to the end of the text:

printf("Text\n");

Numerical output requires an indication of the variable type and follows a
format like the following:

printf("%d %f7.2\n" a,b);

The most important variable type instructions are:

d for integer output

f for floating-point output

s for string output

The format "7 .2" in the above example of the pr in t f instruction causes
a number with a total of 7 digits, including two after the decimal point, to be
printed out for the variable b.

42

Abacus Software Atari ST BASIC to C

3.4 Variables and constants

Constants are defined using the #define construction before the main ()
function in a program, and they can be used in every function thereafter.

Example:

#define constant 33

No semicolon follows the definition.

Variables used within a function must be defined before they are used. The
most important variable types are as follows:

int a;
float a;
char a;

definition for an integer.
definition for a floating-point number.
a represents a single character.

All variable types can be defined as arrays. For example, this is how an
array of 20 integers is defined:

int a[20]

All variables, as well as all individual elements of an array, must always be
given a value before they are used in any way. If you have defined the
variable a as an integer, then a variable assignment such as the following
must take place:

a = 1;

43

Abacus Sortware

3.5 Loops

The for loop is represented in C as follows:

for(i = 0; i < 20; i = i + 1)
statement (block)

Atari ST BASIC to C

The three parameters give the initial value of the initial loop value, end
value, and step size.

Multiple loop instructions must be enclosed in braces. This is not necessary
for only one instruction. No semicolon follows the for statement (unless
the loop is empty).

The whi Ie loop has the following syntax:

while (x < 15)
{

Commands to be repeated
x = x + 1;

}

The increment is specified within the loop. In the example above, it is set to
one with:

x = x + 1;

3.6 Data input

Single characters can be read using the get char () function, similar to the
BASIC command GET:

int a;
a = getchar();

44

Abacus Software Atari ST BASIC to C

The scanf command can be substituted for the BASIC INPUT command:

int a;
scanf("%d", &a);

Just like the printf command, scanf must use one or more of the
variable types, of which % d, % f, and % s are the most important. In the
scanf command, the address operator & must always precede the variable
name, unless the variable is an array name, such as a string.

3.7 Arithmetic in C

The BASIC inequality operator <> translates to ! = in C.

The logical AND is represented by & &, and the OR by I I.

The statement x=x+1 can be rewritten using the incnment operator ++ as
x++ or ++x. Similarly, the expression x=x-1 can be rewritten with the
decrement operator -- as x-- or --x.

3.8 The if-else control structure

The if-else structure has the following syntax:

if (x == 1)
{

then execute these commands
}

else
{

execute these commands.
}

45

Abacus Software Atari ST BASIC to C

It is important that no semicolon follows the if and else statements, and
that a double equals sign (==) is used for comparison:

if (x == 1)

This concludes our brief overview of the fundamental elements of C.

This list is certainly not complete, because C has many more elements than
those mentioned so far.

Use this list to start programming. You can learn C only through practice!

46

Chapter 4

(Screen Input/Output Operations)

Abacus Software Atari ST BASIC to C

Screen Input/Output operations

The following chapters take a close look at various operations of C,
explaining them with numerous examples from BASIC. The information
will help you learn C's details, as well as the powerful C structures.

Now that you have already learned a few elementary capabilities of data
input and output, we'll give you a detailed description of these operations
on the screen.

4.1 Outputting text on the screen

We have already covered text output in the previous chapters. First we'll
review briefly:

The BASIC line:

10 PRINT "HELLO"

would be translated into C as follows:

main ()
{

printf("Hello\n");
gemdos (Ox1) ;

}

The control character \n is the new-line character. It moves subsequent
output to the start of the next line. If this character is omitted:

main ()
{

}

printf ("he");
printf(IIlloll);

then no new-line character is generated.

49

Abacus Software Atari ST BASIC to C

This assembles the word "hello" from two words. It corresponds to the
following example in BASIC:

10 PRINT "he";
20 PRINT "110";

In both cases, the output is as follows:

hello

The underline character () represents the cursor position after the execution
of the command. -

4.2 Printing numerical values

In the previous chapters we saw that printing numerical values in C is more
flexible than in BASIC, but that it is also more difficult

The BASIC routine:

10 X=3.14
20 PRINT X

translates into Cas:

main ()
{

float X;
X = 3.14;
printf("%f\n", x);

gemdos (Oxl) ;
}

If we wanted to print integers instead of 3 . 14, we would write a BASIC
program like this:

10 X%=15
20 PRINT X%

50

Abacus Software

The corresponding C program would read:

main ()
{

}

int X;
X = 15;
printf("%d\n", x);

gemdos (Ox1) ;

Atari ST BASIC to C

We could use an even shorter program to get the same result:

10 PRINT 15

The corresponding C function looks like this:

main ()
{

printf("%d\n", 15);
gemdos (Ox1) ;

}

The complete syntax definition of the printf function is as follows:

p r in t f (''format statements", argument 1, argument 2 , ...);

The format statements contain commands that determine the form of the
output. In our examples, the specification % d was chosen for the integer
15, just as % f was chosen for the floating point value 3 . 14. In the next
section we'll look at these conversion specifications more closely.

51

Abacus Software Atari ST BASIC to C

4.3 Format instructions

These commands can be divided into the format specifiers, which determine
how many places of a number are printed, for example, and the conversion
elements, which determine the output type, such as integer, float, or string.
First we'll look at the conversion elements.

4.3.1 Conversion elements

You are already familiar with these conversion characters:

f for floating point numbers, such as 3.14

d for integers, such as 15

We also briefly mentioned the conversion character:

s for character output

However, C has some more type declarations that we left out of our initial
overview. The next sections contain a complete list of the conversion
characters which the printf function allows.

4.3.1.1 Numerical output

% d As in the examples, this character is used to print decimal numbers. If
you try to output a floating-point number with this conversion
character, you will get an error. This is a very common mistake and
happens most often when an expression which does not return an
integer is used.

%u Similar to % d, except the integer is treated as unsigned (always
positive).

% 0 Prints the argument in base 8 (octal) without the leading zero.

52

Abacus Software Atari ST BASIC to C

%x Works like %0, except that it puts the argument into base 16
(hexadecimal).

%f Outputs float or double (floating-point numbers with double
precision) arguments. The values are printed out in decimal form
(with leading minus sign if necessary).

%e Similar to % f in that it applies to float a.nd double variable types,
but the resulting output is in exponential (scientific) notation:

(-)m.nnnnnnE(+-)xx

%q Results in output like %e or %f, whichever is shorter.

4.3.1.2 Character output

% c Treats the output as a single character.

% s Prints a string, i.e. an array of characters. Every position of the string
that has been given a character value is printed out.

4.3.2 Format specifiers

In a printf call the format specifiers tell how many places before and after
the decimal point will be printed, and also whether the output will be right
or left-justified.

Some formats have default values:

% f Places six digits after the decimal point, while the number of digits
before the decimal point remains arbitrary.

% e Sets number of digits after the decimal point to six, in exponential
notation.

53

Abacus Software Atari ST BASIC to C

If you want to change these formats or set other formats, a statement of the
following form can be used:

"%7.Sf"

This prints a floating-point number with a total of seven digits, five of
which are after the decimal point.

Positioning the output:

If a minus sign directly follows the % sign, then the text or variable will be
left-justified. The normal alignment, without the added minus sign, is
right-justification. These rules apply only when the argument to be printed
is smaller than the defined field width. If the argument will not fit into the
field when printed, the argument will be extended to the left, with the
numbers filling in from the right.

4.3.3 Examples of numeric output

For the moment we'll concentrate on outputting numbers to the screen.
Let's take the following BASIC program line as an example:

10 PRINT 2*13

Translated to C, we get:

main ()
{

printf("%d\n", 2*13);
gemdos(Ox1);

}

Just like with BASIC, we can carry out a calculation right in the output line
instead of printing just a single number.

This also applies for a succession of calculations, as in the following
BASIC program:

10 PRINT 2*13; 2/3; 3.14*2.222222; 4-2.2

54

Abacus Software

We would write the following C function:

main ()
{

Atari ST BASIC to C

printf("%d %f %f %f\n", 2 * 13, 2.0 / 3.0;
3.14 * 2.222222,4.0 - 2.2);

gemdos (Ox1) ;
}

We can so the same with variables in calculation.

The BASIC program:

10 A=6
20 B=88
30 '
40 PRINT A/B

is translated in Cas:

main ()
{

float a,
b;

a = 6;
b = 88;
printf("%f\n", a/b);
gemdos (Ox1) ;

Here there are really no essential differences between the two versions.

Look closely at the variable declaration. You should make sure that you do
not create a new format as a result of calculations. This can happen when a
floating-point number results from two integer variables. When this
happens, the format must be changed to % f to avoid an errors or incorrect
output.

55

Abacus Sortware Atari ST BASIC to C

4.3.4 Text formatting

You can format text as well as numbers. Concrete examples are the best
way to show how this works.

The printed text is of type 5 t r in g, and contains the twelve characters of
the name "Fred Johnson".

Format Command

%10s
%-10s
%20s
%-20s
%20.9s
%-20.9s
%.4s
%.7s

Result

Fred Johnson
Fred Johnson
--------Fred Johnson
Fred Johnson-------
-----------Fred John
Fred John----------
Fred
Fred Jo

4.3.5 More uses for conversions and formats

If we display a normal float variable on the screen, as with this program:

main ()
{

float a;
a = 15;
printf("%f\n", a);
gemdos (Ox1) ;

}

then we get the output 15 . 000000. The six zeros are printed automatically
because we didn't specify any additional format instructions after the %
sign.

This format can be improved with a statement like:

printf("%.Of\n", a);

56

Abacus Software Atari ST BASIC to C

This statement truncates all positions after the decimal point

If you want to leave two positions after the decimal point, then the printf
call would look like this:

printf("%.2f\n", a);

You should be aware of a very common error associatied with the % f
format. Look at the following BASIC line:

10 PRINT 2/3

And now the corresponding C program:

main ()
{

printf("%f\n", 2/3);
gemdos(Ox1);

}

This produces incorrect output with the result 0 .000000.

In BASIC, the numbers 2 and 3 are automatically handled as floating-point
numbers rather than integers during division. This is not the case in C; we
must change the program as follows to get the correct answer:

main ()
{

printf("%f\n", 2.0/3 . 0);
gemdos (Ox1) ;

}

The result of this program is now correct:

0 . 666667

57

Abacus Software Atari ST BASIC to C

4.4 Printing string variables on the screen

We have already gone into some detail about printing numeric variables.
Now welllook more closely at printing string variables. One example is the
following BASIC program:

10 A$="ATARI ST"
20 PRINT A$

In C it looks like this:

main ()
{

char *a;
a = "ATARI ST";
printf("%s\n", a);
gemdos (Ox1) ;

}

The string variable a must be preceded by an indirection operator (*),
which is the inverse of the & operator which accompanies the 5 can f
command In this case, the string variable type % 5 must be used for output

The program could have been shortened to:

main ()
{

printf("%s\n", "ATARI ST");
gemdos (Ox1) ;

}

Now we will combine two different variable types in our output Again we
start with a BASIC program:

10 A%=12345
20 B$="THE NUMBER IS ... >"
30 '
40 PRINT B$iA%

58

Abacus Software

And now the C version:

main ()
{

}

int a;
char *b;
a = 12345
b = "The number is ... >" ;
printf("%s %d\n", b, a);
gemdos (Ox!) ;

Atari ST BASIC to C

This program has exactly the same output as the BASIC version. The
variables a and b were defined as integer and string, respectively, and were
subsequently assigned values.

Note the space between the format expressions % sand %d. Because this
space is inside quotation marks, it is printed out. This means that an actual
space ends up between the string and the number. In BASIC, this
separation is automatically performed in the expression:

40 PRINT A$;B

simply because of the sequence of variables. In C this is generally
accomplished by means of an inserted space. Any other text appearing in the
control specification for pr int f will also be printed out.

Let's look at this more closely in another program:

10 T$="USER"
20 PRINT "HELLO ";T$

Now the C program:

main ()
{

char *t;
t = "user";
printf("Hello %s\n", t);
gemdos (Ox!) ;

}

59

Abacus Software Atari ST BASIC to C

In this example, it is easy to see that all of the characters (not belonging to a
conversion specifier) inside the quotation marks are printed out. Most
interesting is that in the call

printf("Hello %s\n", t);

pr int f is able to distinguish between arbitrarily intermixed text and format
statements.

This can be seen if you decide to print the variable before the text. This is
done by changing the printf line to this:

printf("%s Hello\n",t);

The output is then:

user Hello

The space before Hello is also printed out.

4.4.1 Printing a single character

Unlike BASIC, C distinguishes between individual characters and strings.

The BASIC program:

10 T$="W"
20 PRINT T$

looks like this in C:

main ()
{

char t;
t = 'W';
printf("%c\n", t);
gemdos(Ox1);

60

Abacus Software Atari ST BASIC to C

Pay attention to the statement:

t = 'W';

This is the correct syntax for character variables. If t were a string, then the
line would be:

t = "W";

What is the difference between these two lines?

A character variable contains only a single character, which is enclosed in
single quotes. However, a string always has an additional control character
\ 0, which indicates the end of the string.

The string in the assignment:

t = "w";

really consists of w\ 0 rather than just w.

4.4.2 More screen output

The BASIC function CHR$O is easy to duplicate in C.

The BASIC program line:

10 PRINT CHR$(67)

is written in Cas:

main ()
{

printf("%c\n", 67);
gemdos (Ox1) ;

}

This routine prints the character with ASCII value 67 on the screen. This
corresponds to the value of the letter C.

61

Abacus Software Atari ST BASIC to C

The CHR$ () instruction is replaced in C by the conversion functions of the
printf function.

We can imitate the function ASC ("") in much the same way.

The BASIC program:

10 PRINT ASC("B")

prints the ASCn value ofB (66) on the screen.

The corresponding C function reads:

main ()
{

printf("%d\n", 'B');
gemdos(Oxl);

}

Another, more detailed version is the following:

main ()
{

}

char t;
t = 'B';

printf("%d\n", t);
gemdos (Oxl) ;

You can use these two functions (Le. the routines corresponding to ASC
and CHR$) to analyze strings or input to see what characters are present, or
to eliminate certain characters.

4.4.3 Additional output possibilities

Until now we have used only the pr int f function to print out data.
However, there are two other functions for outputting data.

62

Abacus Software Atari ST BASIC to C

These functions are:

put char () and puts ()

What do these functions do? putchar () corresponds directly to the
function:

a = get char () ;

We looked at this function in the introductory chapter. You11 remember that
this command reads a single character from the keyboard.

In the same manner, putchar () sends a single character to the screen.
The use of putchar () is clarified with an example program:

iinclude "stdio.h"
idefine putchar(a) putc(a,stdout)
main ()
{

}

char a;
a = Ip I;

putchar(a);
gemdos(Oxl);

This routine assigns the character I p I to the variable a and prints the single
character on the screen.

With put char () you can print single characters on the screen without the
trouble and expense of print f . However, this function is limited to screen
output.

Now let's look at the puts () function. This command stands for "output
string," and outputs strings of characters.

An example of this is shown with the following BASIC program:

10 A$="FRED JOHNSON"
20 PRINT A$

63

Abacus Software Atari ST BASIC to C

This program is easily translated to C with the put s () function:

iinclude "stdio.h"
main ()
{

char *a;
a = "Fred Johnson";
puts (a) ;
gemdos (Ox1) ;

}

For comparison, here is the old formulation with printf:

main ()
{

char *a;
a = "Fred Johnson";
printf("%s\n", a);
gemdos (Ox1) ;

}

In both examples you can use shorter programs to get the same result,
taking as an example the following BASIC line:

10 PRINT "PH

In C, it can look like this:

iinclude "stdio.h"
idefine putchar(c) putc(c,stdout)
main ()
{

}

putchar ('P') ;
gemdos(Ox1);

The same program can be written using the standard print f statement:

main ()
{

printf("%c\n", 'PI);
gemdos(Ox1);

}

64

Abacus Sortware

The same applies to printing strings. The BASIC line:

10 PRINT "FRED JOHNSON"

is transfonned into the C function:

iinclude "stdio.h"
main ()
{

}

puts ("Fred Johnson");
gemdos(Ox1);

Atari ST BASIC to C

Now compare this to the corresponding printf program:

main ()
{

printf("%s\n", "Fred Johnson");
gemdos(Ox1);

}

As you can see, character output is much more elegant using putchar ()
and puts () than it is with printf (). In actual programming you will
use these compact fonns when no conversion fonnats are necessary. There
is no substitute for the formatting commands supported by the p r i n t f
function.

In addition, when more than one value is to be printed out on a line, only
the printf function will work, because puts () and putchar () both
execute an automatic new-line.

4.5 Data input functions

In our introductory chapters, we left out quite a bit about input as well as
output. In addition to what we have already learned about scanf and
getchar () , there are many other possibilities for data input. Most of all,
we need to look more closely at the two input functions we have already
learned. First let's examine the function get char.

65

Abacus Software Atari ST BASIC to C

4.5.1 The get char () function

We have already compared this function to the BASIC GET command. In
some BASIC dialects, the INKEY$ function can take the place of GET.

The BASIC programs below:

Version with INKEY$:

10 A$=INKEY$
20 IF A$="" THEN GOTO 10
30 '
40 PRINT A$

become the following program in C:

#include "stdio.h"

Version with GET:

10 GET A$
20 IF A$="" THEN GOTO 10
30 '
40 PRINT A$

#define getchar() getc(stdin)
#define putchar(c) putc(c,stdout)
main ()
{

}

int a;
a = getchar();
while (a != EOF)

{
putchar (a) ;
a = getchar();

}
gemdos (Ox1) ;

The specific structures are explained in the introductory chapters. To avoid
unnecessary repetition, we will not explain them again. Compare this
program with the getchar () example in the introductory chapter.

In the formulation chosen here, we have used the put char () function for
output and get char () for input of a character. It should be clear to you
that these functions are related to each other.

66

Abacus Software Atari ST BASIC to C

The putchar () syntax reads:

putchar (character) ;

Similarly, the getchar () structure reads:

character = getchar () ;

4.5.2 Input with qet s ()

Along with the put char () statement for printing a single character, we
have the following function that prints a string:

puts ()

There is a corresponding command for data input as well. It is:

gets (string) ;

gets is an abbreviation for "get string." This function assigns an array of
characters-a string-to the variable in the parentheses.

Let's look at a short example:

10 INPUT A$
20 PRINT A$

This is written in C as follows, using gets () and puts () :

#include "stdio.h"
main ()
{

}

char *a;
gets(a);
puts(a);
gemdos (Ox1) ;

67

Abacus Software Atari ST BASIC to C

Notice that the output of a string is much more elegant using puts () ,
because this function is much easier to use than the printf function. This
can be seen by comparing the previous example with the following:

#include "stdio.h"
main ()
{

}

char *a;
gets(a);
printf("%s\n", a);
gemdos (OxI) ;

As a result, we conclude:

For reading in single characters or strings, the functions getchar () and
gets () are preferred over the scanf function.

Likewise, putchar () and puts () are preferred for output of characters
and strings.

The Alcyon C version in the ST development system has problems with the
get s function. These are due to an incorrect input format not found in
standard C compilers. This function runs with no problem on all other ST C
compilers. We hope that the commercial version of the Alcyon C makes use
of a standard input format

4.5.3 The 8 canf input function

This command works not only for the input of numerical values, but also
allows the input of strings or single characters. Because of this versatility,
the scanf function corresponds more closely to the BASIC command
INPUT than does any other C function. This versatility is obtained at the
cost of a somewhat more complicated structure, however.

The scanf function offers the best way to enter numeric data into a
program. We will go over each of the two applications separately and in
detail in the following pages. First we'll look at the input of characters and
strings, and then work with numeric data.

68

Abacus Software Atari ST BASIC to C

4.5.3.1 8canf for character and string input

The following BASIC program reads in and prints out a string:

10 INPUT T$
20 PRINT T$

As we have seen, this program can be formulated in C using the get s ()
function, or it can be translated with scanf, as in the following program:

main ()
{

char *t;
scanf("%s", t);
printf("%s\n", t);
gemdos (Ox1) ;

}

We have already declared the variable t as a string with the pointer
marker *. Therefore we need nothing more to specify a pointer in the
scan f cal1. It is already a pointer variable. Perhaps you remember that we
had to use the pointer marker & for numeric input in the scanf function.
As a general rule, all variables within a scanf function call must be
pointers.

Another important part of our demo program is the control statement % s
within the scan f call. This tells the ST to output a string expression.

The input format specific to Alcyon C was already explained in the first
chapter. The number 15, for example, is entered as follows:

15 "z

and strings are ended with <Control>Z:

input text"Z

69

Abacus Software Atari ST BASIC to C

4.5.3.2 Arrays in place of pointers

We could also have formulated the program without the pointer variable, as
this example demonstrates:

main ()
{

}

char t[30];
scanf("%s", t);
printf("%s\n", t);
gemdos(Ox1);

Here the character variable is declared as an array with 30 elements.

An array is treated like a pointer variable. This means that you can also use
arrays in conjunction with scanf calls.

Nevertheless, pointer structures are more flexible and use storage more
efficiently than array structures. If only twelve elements are placed into a
3D-element array, for example, the memory still holds places for 30
elements. However, the pointer structure would have only twelve elements
plus an end marker in memory. Thus, a great deal of storage space can be
saved by using pointers instead of arrays.

Now, let's look at one more small problem. The BASIC program:

10 INPUT "PLEASE TYPE IN THE TEXT "; X$
20 PRINT X$

is best translated into C as follows:

'include "stdio.h"
main ()
{

char *x;
printf("Please type in the text ");
scanf("%s", x);
puts(x);
gemdos (Ox1) ;

}

In both cases, input directly follows the text without a new-line in between.

70

Abacus Sortware

4.5.3.3 Entering numbers via scanf

The BASIC program:

10 INPUT Z%
20 PRINT Z%

is translated to C as follows:

main ()
{

}

int Z;
scanf("%d", &z);
printf("%d\n", z);
gemdos (Ox1) ;

Atari ST BASIC to C

So far nothing is new. As we have already learned, the address operator &
is always necessary so that the computer knows where it must store the
value in memory.

Now let's write a program that allows floating-point numbers as well as
integers. In BASIC this is very easy to do:

10 INPUT Z
20 PRINT Z

And here is the program in C:

main ()
{

float Z;
scan f (" % f", & z) ;
printf("%f\n", z);
gemdos (Ox1);

}

This program automatically converts integers to floating-point numbers
before assigning them to z.

71

Abacus Sortware Atari ST BASIC to C

As we have already learned in the section about formatting, the numbers
take a certain fonnat:

15.000000

The above line is the printed form of the integer 15 in the example. The
same section tells how to correct this.

One possibility is the following printf statement:

printf("%.Of\n", z);

which truncates all digits after the decimal point.

4.5.3.4 Entering multiple data

In BASIC it is possible to read in values for several variables with one
INPUT command:

10 INPUT T$, A, B%
20 PRINT T$;A;B%

More than one variable can be entered using commas to separate the
individual variables in BASIC. And the same is true of C:

text, 2, 3.14

In C the BASIC program looks like this using a scanf call:

main ()
{

}

char *t;
float a;
int b;

scanf("%s %f %d", t, &a, &b);
printf("%s %f %d", t, a, b);
gemdos(Ox1);

Both programs do the same thing. In C, the format expressions must be
integrated into the printf and scanf function calls, as we have already
seen.

72

Abacus Sortware Atari ST BASIC to C

Just as in the printf function, the format expressions ("%s %f %d"),
separated by spaces, are placed before the variables (t, a, b) which they
represent.

4.5.4 The GET$/INKEY$ function in C

You might complain that we have already covered this with the
getchar () function. That's true, but the get char () function does not
correspond exactly to the BASIC line:

10 A$=INKEY$

The following expression:

character = getchar();

does indeed read in a single character, just as the INKEY$ or GET function
does in BASIC. But it then expects a RETURN to end the input.

This is not true with the new C function:

character = getch();

The function get ch corresponds exactly to the following BASIC routine:

10 A$=INKEY$
20 IF A$="" THEN 10

When this statement is encountered in a program, execution halts until a key
is pressed. The character corresponding to this key is then returned via
getch.

73

Abacus Software Atari ST BASIC to C

Used in a program it looks like this:

iinclude "stdio.h"
idefine putchar(a) putch(a,stdout)
idefine getchar() getc(stdin)
main ()
{

}

int a;
a = getch () ;
putchar(a);
gemdos(Ox1);

char bf [100] ;
int b=O;
getch ()
{

return«b > 0) ? bf[--b] : getchar(»;
}

Here you see how simple this operation is with the getch () function.

However, note that the variable read into getch () is of type integer. Just
as with the get char function, this function reads in the ASCII value of the
character entered-i.e. an integer.

The function call:

putchar(a);

could have been replaced by this:

printf("%c\n", a);

4.5.5 Implementing putchar (), qetchar () and
qetch () on Aleyon C for the Atari ST

The compiler version included in the Atari development package does not
include the above functions. But they are easy to simulate. The
getchar () function was already synthesized in the introductory chapter.

74

Abacus Software Atari ST BASIC to C

If you want to use these functions in Alcyon C, then add the following to
the end of your program:

/ * getchar () * /
getchar ()
{

char c;
return ((read(O, &c, 1) > 0) ? c & 0377 : EOF);

Also, since the getchar function is already defined as a macro in
stdio . h, we have to "undefine" it before our function version will take
effect. The new program header must look like this:

#include "stdio_.h"
#define putchar(a) putch(a,stdout)
#undef get char
main ()

In Digital C, all input must be ended with a <ControbZ. All of the other C
compilers use the traditional C standard, so none of them need this
additional control character.

The putchar () function can be defined as a macro. All you have to do is
insert the following #def ine line before the main () in your program:

#define putchar(c) putc(c,stdout)

The above getchar function can also be defined as a macro. This reads:

#define getchar() getc(stdin)

The function putch () can almost always be replaced by putchar () and
is therefore not constructed here, even though it is also omitted from the
Alcyon C function library.

It is not necessary for you to understand the makeup of these functions at
this time. In all of the programs in this book, the command extensions are
simple enough to be quickly and easily added to the existing programs
wherever they are used.

75

Chapter 5

(Variable Types in C)

Abacus Software Atari ST BASIC to C

Variable Types in C

Now that we have looked at the screen input/output functions, let's take a
closer look at the data types in C. This topic includes explanations of
variable names and constants, which we have already touched upon. We'll
also cover data types and conversions and declaration headers.

In addition, we'll look at other important areas including arrays and the
differences between local and global variables in a program. Finally, we
will explain important details and special cases relating to pointers.

5.1 Variable names

In many versions of BASIC, variable names are limited to two characters.
Although the names can be longer, only the first two are used to distinguish
variables names from each other. There are some exceptions, such as the
BASIC on the Sinclair ZX-Spectrum and QL, which allows and identifies
variable names of any length.

Normally, however, it is the case that the names:

VAR 1 and VAR 2

are seen as the same variable because the first two letters (VA) are the same.

C goes further here and identifies the first eight characters of variable
names. But just as in BASIC, variable names can be longer than the first
eight significant characters.

It it important that the first character of a C variable name be a letter rather
than a punctuation mark or a digit. The character "_" counts as a letter for
this purpose. It is used most often between words of a variable name to
improve readability.

79

Abacus Software Atari ST BASIC to C

For example, instead of the following variable for a street number:

strnum

We could use the following name and make the meaning clearer:

str num

Another important difference between BASIC and C variable names is that
C distinguishes between upper- and lowercase letters. For example, the
variable NAME is nQ1 the same as the variable name. This is probably the
most unusual aspect of C variable names compared to BASIC.

C names do have distinct advantages. In C it has become standard
procedure to write the names of symbolic constants in capital letters. By the
same token, the names of all other data types are written in lowercase. This
leads to substantially better readability in a program, because constants can
then be distinguished immediately from variables. You should adopt this
practice for your programs as well.

Reserved language elements may never be used as variable names. These
elements include:

if
while
for
case
break
return

else
do while
switch
default
continue
goto

Note also that these language elements generally must be written in
lowercase letters.

Choose suggestive variable names, i.e., names that immediately give away
the purpose of the name in the program. Y ou'll save yourself a lot of time
debugging large programs.

In BASIC you quickly learn to use short variables of one or two characters.
You should try to unlearn this when programming in C, especially when
working with more complex programs.

80

Abacus Software Atari ST BASIC to C

5.2 Constants

We developed a program that used symbolic constants in the introductory
chapter. As you recall, the definition is made with #define. The full
structure reads:

#define CONSTANT string

There is no semicolon after this declaration.

So far, we have declared only integer constants. However, all variable types
can be defined as constants, since the text following the constant name is
simply inserted in place of the name where it occurs. Note that this
replacement does not occur if the constant name appears in quotation marks
as an element of a string.

In the following example program, we define constants for each of the four
major variable types in C: INTEGER, FLOAT, CHAR and STRING.

#define INTEGER 22
#define FLOAT 1.2345
#define CHAR 'D'
#define STRING "This is a text"
main ()
{

}

printf("%d\n", INTEGER);
printf("%f\n", FLOAT);
printf("%c\n", CHAR);
printf("%s\n", STRING);

gemdos(Ox1);

As you can see, the use of these constants is identical to the use of
corresponding variables, despite differing types.

Characters must be enclosed in single quotes. This BASIC expression reads
as follows:

10 CHAR$="D"

81

Abacus Software Atari ST BASIC to C

The C definition must read:

#define CHAR '0'

The equals sign is not necessary in C, and single quotes C) are used instead
of double quotes ("). These differences may lead to mistakes because of
your familiarity with BASIC. One possible error is this:

#define CHAR "0"

This error--confusing double and single quotes--can be very frustrating
because it is so difficult to find. In addition, this error usually does not
generate an error message, but only incorrect output.

From a BASIC standpoint, this statement does not seem to be wrong,
because BASIC always uses double quotes. If you take careful note of the
small differences between BASIC and C, you will save yourself a good deal
of trouble and frustration looking for errors later.

On the other hand, string constants must be enclosed in double quotes, just
as with definition of string variables:

#define STRING "This is a string"

Note that the replacement is strictly text replacement and there are therefore
no constant "types." This means that the quotation marks ~ part of the
replacement text

The float constants can also be written out in scientific notation, like this:

#define FLOAT 12.65432E-4

or like this:

#define FLOAT O.02e5

All floating-point constants are handled like double variables, i.e. like
float variables, but with double precision.

Long integer constants can be defmed with an L character:

12345678L

82

Abacus Software Atari ST BASIC to C

The above is an example of a long constant

An integer that is too large for regular integer format is automatically
interpreted as long.

5.3 Data types

The elementary data types in BASIC are as follow:

A% Integer
A Floating point
A$ Character/string

We will talk about arrays, which are more complex forms of the
fundamental data types, in a later section.

The data types above are also found in C. In addition, double values are
considered one of the elementary data types.

The following list shows the data types which are possible in C:

Data type Explanation

int
float
double
char

Integer number, no fractional portion
Floating-point number with normal precision
Floating-point number with double precision
One byte, any character from the ST's char. set

Integer variables can be subdivided further. A small diagram will illustrate
this:

1. short int

int 2. long int

3. unsigned int

83

Abacus Software Atari ST BASIC to C

short int and long int represent integers of varying lengths.

unsigned int values are always positive. Unsigned integer values obey
the mathematical "modulo 2"u" rules, where n represents the number of bits
in an integer value.

Declarations of the integer data types look like this:

short int ai
long int bi
unsigned int Ci

Nonnally, the word int can be left out of the declaration.

At this point, we would like to restate that all declared variables must be
given a value before they can be used in a program.

In the following sections we discuss the data types you know from BASIC
as strings and arrays.

5.4 Converting data types

In BASIC, variables are not often converted to other variable types. The
situation is different in C-data type conversions are very common. We
have already mentioned a few of these possibilities.

5.4.1 Character/integer conversion

In the previous chapter, we learned the C equivalent to the BASIC
statement:

10 PRINT CHR$(66)

84

Abacus Software

It reads as follows:

main ()
{

}

printf("%c\n", 66);
gemdos (Ox1) ;

Atari ST BASIC to C

The result of both programs is that the character B (ASCII value 66) is
printed out on the screen. When you look at the programs closely, you see
the same thing is happening in both: the number 66 is being converted to the
letter B. But C can do more. The following program is also possible
(although it may seem unusual to you as a BASIC programmer):

main ()
{

int value;
value = 123 + 'B';
printf("%d\n", value);
gemdos (Ox1) ;

}

In the assignment line:

value = 123 + 'B';

the letter 'B' is automatically converted to the integer corresponding to its
ASCn value, and added to 123.

Even more impressive is the following program. It reads in uppercase letters
and converts them to lowercase. Other characters are printed out in the same
form in which they were read in.

The Atari ST development system version of Alcyon C does not perform the
conversion of character variables completely. As a result the following
program will not run on this compiler. It will, however, run on all other
standard compilers.

85

Abacus Software Atari ST BASIC to C

/* Conversion from upper to lowercase letters */
'include "stdio.h"
'define put char (c) putc(c,stdout)
main ()
{

}

int character;
scanf("%d", &character);

if (character >= 'A' && character <= 'Z')
printf("%c\n", character + 'a' - 'A');

else
printf("%c\n", character);

gemdos(Oxl);

It's obvious that the character variable character was declared as an
integer. In this example it becomes clear how a numeric variable is
converted to a character variable. The integer variable is automatically
assigned the ASCII value of the character in the scan f () function. The
character corresponding to this value is then printed on the screen.

When converting characters into numeric values, you must pay attention to
whether a negative number results. The C compiler does not check to see if
a character value is negative or positive. If a conversion results in the value
-30, for example, the compiler would set it to the positive value +30.

It is necessary to declare all variables which are to be assigned by
getchar () as integers, rather than as characters.

The reason for this is that getchar () can be used for all possible inputs.
In addition, a separate value for the EO I (End Of Input) is necessary.

This character is treated as a number. Therefore the result of getchar ()
can be outputted only as a number. A character variable usually causes this
conversion to be performed.

Now let's sum everything up quickly:

Character and integer values can be combined arbitrarily and used together
in arithmetic expressions. This is not possible in BASIC. This aspect of C
results in great flexibility, especially when programming character
transformations.

86

Abacus Software Atari ST BASIC to C

5.4.2 Converting between numeric types

If different numeric types are used in an arithmetic expression, the compiler
changes them automatically to a single given numeric format. For example,
if you use the expression:

float value = integer + float;

in a program, where the variable float_value of type float is being
assigned the sum of an integer and a floating-point number, the integer is
automatically changed to a floating-point number before the addition occurs.

As in this example, conversions are generally performed only if they make
sense.

The following ground rules apply for such transformations:

Initial Variable Type:

short int
float

If one operand is of the type:

double
long
unsigned

Converted to:

int
double

Then the other operand is also
converted to the type:

double
long
unsigned

If none of the above is true, the compiler converts all operands to type
integer.

If you set afloat variable equal to an integer value, as in the example:

float var = int var

a conversion is performed. The fractional part of flo a t va r IS

suppressed.

87

Abacus Software Atari ST BASIC to C

Conversions can also be reversed. For example, if you change a character
variable into an integer variable and then back into a character variable, no
net change is made. A demonstration program:

main ()
{

char character;
int number;

character = I A I;
number = 22;
number = character;
character = number;

}

The value of the variable character remains unchanged because the
conversion is reversed. The Atari ST system development version of
Alcyon C does not convert characters completely, however.

The conversions shown in this section offer you a great new programming
flexibility which BASIC did not offer. All of these possibilities can seem a
little confusing at ftrst, but it does not take much practice to become familiar
with all of the conversion functions .

5.5 Variable declarations

As we have already made clear, all variables must be declared and thereby
given a specific variable type before they are used in a program. The
declaration usually takes place in the header of a function. But it also may
occur anywhere else in the function. The important thing is that the
declaration take place before the variable is used.

88

Abacus Software Atari ST BASIC to C

The declarations in the previous sections and chapters were kept as simple
as possible. They generally looked something like this:

main ()
{

int a;
int X;
long y;
float b;
char c;
... the rest of the program ...

}

Variables can be ordered in any manner inside the declaration. The
following declaration sequence is also possible.

main ()
{

int a, b, c, d, e;
int X value, y value;
float-symbol 1

symbol_i;

}

This sequence is shorter and more compact than the previous example.

Until now we have always assigned values to variables at the beginning of
the program, right after the declaration section, as in this example:

main ()
{

}

int number;
number = 123

89

Abacus Sortware Atari ST BASIC to C

It is also possible to put the declaration and definition together. This has the
following syntax:

main ()
{

int number 123;

}

Which version you choose depends upon whether you prefer a compact
version like that immediately above, or a more readable version with the
value assignment closer to the context of the variable's actual use.

This is all we will say about variable declarations for now. We will look at
the declaration of single and multi-dimensional arrays later in the chapter.

5.6 Global/local variables

Until now, we have used only local variables, i.e., variables declared inside
a function (usually main).

However, C programs usually consist of a set of functions, which are
normally called from main () .

Here you must decide if you want a variable to be global (applicable to all
functions) or if you want it to be local to one function.

Local variables, also called automatic variables, are declared in the function
in which they will be used. They are valid only within this function. They
are different from variables in BASIC, which are always valid in every
function. BASIC has only global variables, which apply to the entire
program, including subroutines.

These global variables in C are declared before a function, in the same place
that symbolic constants are declared.

90

Abacus Software Atari ST BASIC to C

To make the difference between the two variable types clear, take a look at
the following program. The program contains both automatic and global
variables, as well as symbolic constants:

#define CONSTANT NUMBER 1234
int glob_inti
char char global;
main () -
{

char local_char = 'A';
float float local;
/* ... */

}
subroutine (c)
{

}

char local char2;
/* . .. */

Some important advice: BASIC programmers have a dangerous tendency to
declare all variables as global so that they can always use them. This leads
to unreadable programs, especially if they have a large number of functions!

5.7 Arrays

You should remember everything you learned in BASIC related to arrays.
Virtually all programs use arrays, even if they manage only a tiny amount of
data. We have already shown how simple one-dimensional arrays are
defined.

The BASIC command:

10 DIM A%(10)

corresponds to the C statement:

int c[10];

91

Abacus Software Atari ST BASIC to C

We declare arrays in the same way we declare all other data types: first the
variable type, then the name. All data types in C can be declared as arrays.
The size of the array is enclosed in square brackets as a numeric index.
After the declaration, you must remember to assign a value to each before
using it.

This assignment can be done using a for loop, as in this example program:

main ()
{

}

int a[10];
int i;
for (i = 0; i <= 10; i

a[i] = 0;
i + 1)

In the initialization condition of the for loop, it becomes clear that arrays in
C begin with zero rather than one, as in BASIC.

A C array with five elements:

int a[S]

contains the elements:

a[O]
a[l]
a[2]
a[3]

to a[4]

But the array doesn't contain a [5] !

Arrays in C are handled in much the same way as they are in BASIC. For
example, if you want to assign the number 12 to the second element of an
a [5] array (which is a [1]), then you simply write:

a[l] = 12;

92

Abacus Software Atari ST BASIC to C

Value assignment can be done directly in the initialization, just like the
instruction:

int c = 12;

This has one restriction: it is not possible to initialize local variables.

Global variables are initialized in the declaration as follows:

in t a [7] = [1, 6, 8, 2, 7, 1, 15];

The compiler performs this assignment from left to right. It assigns a value
from inside the brackets to each element in the array a.

This instruction can be made even simpler:

int a[] = {1, 6, 8, 2, 7, 1, 15};

The empty square brackets mean that the size of the array corresponds
exactly to the number of assigned elements.

In effect, the compiler counts these elements and places this number inside
the brackets.

Once more we would like to stress that this assignment technique does not
work with local arrays.

Here is an example of the above technique with a global array:

int arr[] = {la, 9, 8, 7, 6, 5, 4, 3, 2, 1, a};
main ()
{

}

int i;
for (i = 0; i < 11; ++i)

printf("%d\n", arr[i]);

This program assigns the global array arr with the values from ten to zero.
These values are then printed out in a for loop in main.

93

Abacus Software Atari ST BASIC to C

5.7.1 Multi-dimensional arrays

In BASIC we declare a five-by-five array as follows:

10 DIM A%(5,5)

In C, the same assignment looks like this:

int a [5 J [5 J ;

If we want to address a specific element of the array, it is done as follows:

a[2J [4] = 12;

Don't forget that again you must assign a value to each element before use.
With local variables, the best way to do this is with a for loop. With global
or static variables, the following initialization technique will declare the
array and ftIl it with numbers simultaneously:

static int field[3J [5J = {{1, 2, 3, 4, 5},
{2, 3, 4, 5, 6},
{4, 5, 6, 7, 8}};

5.7.2 Strings

For the sake of thoroughness we would like to mention some facts once
again about strings. Precisely defined, strings are nothing more than
one-dimensional arrays of characters. All information necessary for you to
use strings has already been covered.

A string is an array of characters terminated by the null character \ o. The
string:

"A"

is not the same as the character:

'A'

94

Abacus Software Atari ST BASIC to C

This is because the string contains the null character in addition to the letter
A, to mark the end of the string. Thus the string consists of two characters:
the 'A' and the '\ 0 ' . The character consists only of the 'A'.

A string can also be declared globally as a character array. This is done in a
program as follows:

char string char[]
main () -

"I am a string";

{

}

printf("%s\n", string_char);
gemdos(Oxl);

But this is possible only with global or static variables. The string
instruction %s in printf causes the global string to be printed.

We solved the problem of assignment to local variables with the pointer
marker *. In a program, it looked something like this:

main ()
{

}

char *string char;
string char = "I am a string";

printf("%s\n", string_char);
gemdos(Oxl) ;

The next chapter contains a detailed explanation of how this works and why
it must be done this way.

95

Chapter 6

(C Pointers J

Abacus Software Atari ST BASIC to C

C Pointers

Pointers and arrays are very closely related in C. All operations we've
carried out so far with arrays can also be done with pointers. Before we go
into exactly what this relation is, it would be a good idea to find out what
pointers really are-and what they can do.

6.1 Pointer fundamentals

Unless you have written routines in machine code, or your BASIC
supported VARPTR, you have probably never used pointers. Even with the
VARPTR command, BASIC is not well set up to make use of pointers.

But pointers are one of the primary features of C. You can't really tap the
potential of C without first mastering pointers.

What is a pointer, anyway? A pointer is a variable that holds the address of
another variable. This definition sounds a bit complicated, but the following
example should make it more clear.

When a variable name is defined, it is nothing but a placeholder for a value.
Variable names are then used instead of memory addresses in the computer.
An assignment like this:

int value1 = 15;

causes the value 15 to be copied into the memory location allocated to
valuel.

Pointers let you work directly with memory addresses. It looks like this in a
program:

addr valuel = &valuel

The & character, called the address operator, tells the compiler that the
variable addr value1 is to be assigned the value of the address of the
variable valuel-Le. addr_ valuel is the pointer to valuel.

99

Abacus Sortware Atari ST BASIC to C

To explain this we should frrst look at another pointer operator, *. We have
already seen this character in conjunction with strings, but it has not been
explained yet.

The * character preceding a pointer returns the ~ that the pointer points
to, instead of the value of the pointer itself (an address). This may seem
somewhat complicated, but it is really quite simple.

Assume that addr value1 is a pointer to the variable valuel. With the
assignment: -

value2 = *addr_value1;

the variable value2 is assigned the contents of the address to which
addr_value1 points.

For example, if the value. assigned to val u e 1 is 15, then the pointer
addr value1 contains the address of where this value is stored in the
ST.

With the assignment:

value2 = *addr_value1;

va 1 ue 2 receives the value 15, which is stored at the address to which
addr value1 points. The contents of value2 therefore correspond to
the original value ofvalue1, which is 15.

Written in one segment, our example program looks like this:

main ()
{

}

int value1, value2, *addr_value1;
value1 = 15;
addr value1 = &value1;
value2 = *addr value1;

100

Abacus Software Atari ST BASIC to C

The preceding program has the same result as the following program, which
does not use a pointer:

main ()
{

int valuel, value2;
valuel 15;
value2 = valuel;

}

The two assignments:

addr_valuel = &valuel;
value2 = *addr_valuel;

are equivalent to the simple assignment:

value2 = valuel;

Note: the prerelease version of A1cyon C does not handle the assignment of
pointer addresses and pointer contents correctly. The statement:

&value2 = *addr_valuel;

is not executed completely. All other ST compilers available on the market
adhere to the standard.

In summary:

Pointers are introduced by placing the address operator (&) in front of a
variable. This expression then returns the address of the contents of the
variable in memory:

addr valuel = &valuel;

In this expression, the pointer addr va 1 ue 1 is assigned the address of
the variable valuel. -

The contents of the memory address to which a pointer points can be
obtained using the * operator.

101

Abacus Software Atari ST BASIC to C

6.2 Using pointers

Now that you know what pointers are and what they do, you need to know
the best ways to use them in programs. At times you'll find that pointers are
the only way to perform certain calculations. You will probably not run into
cases like these when you are first learning C, however.

Pointers are among the major strengths of C and are generally necessary for
tight, elegant programs. At the same time, pointers must be used with
extreme care.

Improper use of pointers can hopelessly mangle a program, and break: all
the rules for optimal, well-structured programming. The reason for this is
largely because it is easy to insert a pointer that points just "anywhere."

One important use of pointers lies in the manipulation of data between
individual functions. We will cover this in detail in the chapter on functions.
Another major use of pointers is the management of arrays. We'll explain
this next.

6.3 Pointers and arrays

As we said at the beginning of this chapter, pointers and arrays are very
closely related. We have demonstrated this through the use of strings.
String variables must be used as pointers of the form:

char *string;
string = "Hello, how are you?";

We will explain this and many other details about arrays and pointers on the
following pages.

102

Abacus Software Atari ST BASIC to C

6.4 Numeric arrays

Let's define a one-dimensional array with 15 elements:

float x[15];

We thus obtain an array with the elements x [0] through x [14] .

Now let's declare a pointer call (pointer) to a float value:

float *pointer;

The instruction:

pointer = &x[O];

assigns the address of the first element of array x to pointer.

As we have already found out, we can find the contents of the address to
which a pointer points with the following command:

value = *pointer

This assigns the value of x [0] to the variable value.

If *pointer contains the value of the first element of the x array (x [0]),
then we can defme the value:

*(pointer + 1)

This is the next element of the array. * (pointer + 1) corresponds to
the value of x [1] .

In general terms, * (pointer + i) is identical to x [i], provided that
pointer points to the start of x as it does in our example.

103

Abacus Software Atari ST BASIC to C

Now let's go a bit further. The expression which we used earlier:

pointer = &x[O];

can also be written as follows:

pointer = X;

The address of the first element of an array thus has the same value as the
name of the array. Why?

During compilation, an array reference is automatically converted to the
address of the fIrst element plus an offset to the element being accessed.
Because the name of an array is thus identified with the address of its first
element, the assignment pointer = X is allowed.

This means that the expression:

X [i]

is converted to the form:

*(x+i);

The two expressions for the i th element of the X array are completely
equivalent and interchangable. This means that:

X [i] and (X + i)

are completely equivalent

This equivalence also applies to the use of the address operator (&):

(X + i) and &x[i]

are completely identical.

In other words, X + i represents the address of the i th element of the
array x.

104

Abacus Software Atari ST BASIC to C

This is also true for the pointer. It can be used with the square brackets and
an array index as a replacement for the original array variable (provided the
two are equal):

pointer[i] is the same as * (pointer + i)

It then follows that any pointer that points to an array can be used in exactly
the same way as the array name itself, and with the same results. It is
therefore logical that every array element has its own pointer.

All of these pointers correspond to the ascending order of the individual
array elements and are assigned in a uniform, ascending order. The frrst
pointer points to the first element of the array, the second pointer points the
second element, and so on.

All of these pointers can be used either in the form:

pointer[i]

or in the form:

* (pointer + i)

All of these explanations were demonstrated with examples using
one-dimensional arrays, but everything said here applies without exception
to multi-dimensional arrays as well.

Make sure that you really understand all of the details in this section. If not,
then carefully go through the section again. You should also try out the
examples in some programs of your own.

You will need this information when we leave numeric arrays and look at
character arrays again. Everything we have said about numeric arrays and
pointers applies to all other data types, including characters.

Character arrays, or strings, still have a few differences, which we will
explain next.

105

Abacus Software Atari ST BASIC to C

6.S Strings and arrays

A string is nothing more than a one-dimensional array of characters. The
string

"e is the programming language of the future!"

is represented in the computer as an array.

The compiler terminates the array with a null character (, \ 0 '). C has no
special functions for managing strings as such, because strings are simply
treated as character arrays.

Until now we have created strings as in this example:

main ()
{

char *string;
string = "ATARI ST";
printf("%s\n", string);
gemdos (Oxl) ;

}

The expression:

char *string;

is the same as:

char string[];

In this example it becomes clear that the strings in our previous programs
were one-dimensional arrays.

106

Abacus Sortware Atari ST BASIC to C

The statements:

char *string;

and:

char string[];

set up an array of undetermined length. This array will later be filled with
elements. This is done as follows:

string = "any text ... ";

Here, the variable string is simply assigned a pointer to the characters in
the string. The string itself is not copied-the pointer is simply assigned the
address of the string.

With the assignment:

string = "any text " ,

the variable string points to the first element of the array, in this case the
a many.

At first this may seem strange to BASIC programmers. For now, we will
consider it enough to know what pointers are and how they are used. But
rest assured that you will encounter pointers again and again in this book.

Pointers are also important for working with functions. You will learn more
about this in the chapter specifically devoted to functions in C.

107

Chapter 7

r " I Arithmetic Operators and Expressions)
~ ~

Abacus Software Atari ST BASIC to C

Arithmetic Operators and Expressions

If you worked through the previous chapter thoroughly, you should be able
to go through this chapter with somewhat less trouble. The elementary
arithmetic operations are practically the same as those you know from
BASIC. C, however, has a whole set of operators which we must go
through in detail yet. C possesses some very powerful arithmetic functions
which are not found in BASIC at all. We covered a few of these special
functions and differences from BASIC briefly in the introductory chapter.

On the following pages, we will explain these and other new arithmetic
properties of C, in detailed comparison to BASIC.

7.1 What are operators?

In the BASIC expression

10 PRINT 1+5/7

the symbols + and / are the operators. They work with the constants 1,5,
and 7. Operators are used in C the same way they are used in BASIC.

Look over the following list comparing BASIC and C arithmetic commands:

BASIC instruction

1. PRINT 1+5/7
2. PRINT 2.2+(4*2)/7

3. A=888*3
4. A=5-6*2+(3*3)/2
5. A=A+1

C instruction

printf("%f\n", 1 + 5 / 7);
printf("%f\n", 2.2 + (4.0 * 2.0)
/ 7.0);
a = 888 * 3;
a = 5 - 6 * 2 + (3 * 3) / 2;
a = a + 1;
or also ++a;

111

Abacus Software Atari ST BASIC to C

7.2 Value assignments

Now that you have seen some of the similarities between the arithmetic
operations of BASIC and C, let's look at some of the differences.

The BASIC expression

10 A=A+1

can be written the same way in C:

a = a + 1;

Another form is possible in C:

a += 1;

This version is much more compact in long expressions. In a = a + 1;
the name a is repeated on the left and right sides of the equals sign. There is
no repetition when the combined operator in a += 1; is used.

This operator combination is possible with all of the operators we have seen
so far:

+ * /

and also with the following new C operators, which we will explore in
detail later in this chapter:

% » « &

The arithmetic expression

value 1 = value 1 * 20;

can be written more compactly as follows:

value 1 *= 20;

112

Abacus Software Atari ST BASIC to C

In general, if EXP 1 and EXP 2 are expressions, then it is true that

EXPl operand= EXP2;
example: a + = 1;

is completely equivalent to

EXPl = (EXP1) operand (EXP2);
example: a a + 1;

Note the parentheses around EXP 1 and EXP 2 in the above expression.
These are set internally by the computer and ensure that:

z /= x + 2;

really corresponds to:

z=z/ (x+2);

and not:

z = z / x + 2;

where z is divided by x and the result divided by 2, rather than the intended
result of z being divided by (x + 2).

You will soon come to like this capability which C offers you. It lets you
write expressions more compactly and efficiently.

An example-assume that you want to make the assignment:

arrwt_le2[zz[aa]] = arrwt_le2[zz[aa]] * 22;

Using the new assignment operator, you can write it better as:

arrwt_le2[zz[aa]] *= 22;

One advantage of this capability is that you can avoid many unnecessary
errors by not having to repeat a complex variable on both sides of the equal
sign.

113

Abacus Software Atari ST BASIC to C

Also, assignments are much easier to understand, especially for other users
of your program. You don't have to spend a lot of time making sure that the
expression on the right of the equals sign is identical to the expression on
the left

Furthermore, this formulation saves memory space in compilation and
allows more efficient machine code to be generated.

7.3 The modulo operator

This operator is not available in-many versions of BASIC, though it is
available in ST BASIC as MOD. It returns the remainder of an integer
division.

In C this can be done using the following expression:

remainder = a % b;

The variable remainder is assigned the remainder of the division of a by
b.

There is, however, one limitation to the use of modulo operator. The
modulo operator cannot be used for double or float values, but only for
integers (int) and characters (char).

114

Abacus Software Atari ST BASIC to C

7.4 The increment and decrement operators

Now that you have learned that the expression:

x = x + 1;

which looks fairly familiar to BASIC programmers, can also be written
more compactly as:

x += 1;

We will cover another, even more compact formulation using the increment
operator.

This operator looks very unusual to a BASIC programmer and reads:

++x;

We also have the corresponding decrement operator, --. An example of its
use is the following expression:

--x;

This is the same as:

x = x - 1;

The decrement operator -- is the opposite of the increment operator ++ and
reduces the value of its operand by one. The increment operator, on the
other hand, increases the value of its operand by one.

The increment and decrement operators are rather unusual in that they can be
used both before and after the operand. Both the prefix notation:

--x;

and the postfix notation:

X--i

are possible.

115

Abacus Software Atari ST BASIC to C

At first glance there is no practical difference between the two versions. In
both cases, the value of the variable is reduced by one. The difference
comes into play when the operators are used within other expressions since
these operators return a value just like all operators in C.

In these cases, --x causes x to be decremented before the variable is used
so that the value of the expression --x is the original value of x minus 1.
x--, on the other hand, causes x to be decremented after it is used and the
value of x-- is equal simply to the original value of x.

This may sound a little dry but it can be easily demonstrated with an
example:

Assume that the variable x has the value 2. In the assignment:

y = ++x;

the incrementation takes place before the expression is evaluated and the
variable y is assigned the value of 2 + 1, or 3. The variable x also now has
the value of 3.

However, in the assignment:

y = x++;

the variable y is assigned the value 2. After the assignment the value of x is
incremented to 3.

For further clarification, let's look at the BASIC versions of these two
notations:

and

y = x++; corresponds to 10 Y=X
20 X=X+1

y = ++x; corresponds to 10 X=X+1
20 Y=X

The availability of the increment and decrement operators opens up many
elegant programming possibilities. You will find these operators used in
almost every C program.

116

Abacus Sortware Atari ST BASIC to C

7.5 Comparison operators

In BASIC we have the following comparison operators available to us:

< · less than
> · greater than
<= · less than or equal to
>= · greater than or equal to

All of these BASIC operators are exactly the same in C. Here you should
not have any problems changing over to C.

Now we come to the equivalence operators. In BASIC these are

= equal to

and

<> not equal to

These are different from those in C. In C, they are

-- equal to

and

!= not equal to

In spite of these formal differences, the use of equivalence operators in Cis
identical to that in BASIC. You need only remember the new symbols ==
and !=.

It will be easy for you with your BASIC experience to confuse the
assignment operator, =, and the equivalence operator, ==.

Now we'll briefly show you the most important uses of the comparison and
equivalence operators. For the most part, they are used with control
structures. We'll explain these in the next chapter. The most common
control structure is the if statement.

117

Abacus Software

As in this BASIC program:

10 A=2
20 IF A=2 THEN PRINT "OK!"

In C, the above becomes

main ()
{

}

int a = 2;
if (a == 2)

{
printf ("OK! \n") ;

}
gemdos (Ox1) ;

Atari ST BASIC to C

Another area of use is in wh i 1 e loops. The wh i 1 e statement can be
implemented as follows:

#include "stdio.h"
main ()
{

}

int a = 12;
while (a <= 11)

{
puts("All clear!");

}
gemdos(Ox1);

Even more common is the use of comparison and equivalence operators in
for loops. Here is a short program to demonstrate:

main ()
{

}

int X;
for(x = 0; X <= 20; ++x);

printf("%d\n", x);
gemdos (Ox1) ;

118

Abacus Software Atari ST BASIC to C

The loop counts from zero through twenty, using the comparison operator
"less than or equal to", <=.

The four comparison operations:

<
<=
>=
>

all have the same execution priority. Comparing them to the equivalence
operators == and ! = , we find that the comparison operators have the
higher priority, while the equivalence operators share the same priority.

7.6 Logical combinations

The logical operations in BASIC are AND and OR. Their meanings are
self-explanatory. The corresponding C operators are less obvious to the
BASIC programmer.

They are:

&& ••••••••• and

and

II or

In spite of the different forms of the C expressions, they are used in exactly
the same way.

119

Abacus Software Atari ST BASIC to C

The BASIC line:

10 IF A=l AND B=2 OR B=l THEN PRINT "Condition met ! "

is translated to Cas:

main ()
{

int a = 1;
int b = 2;
if (a == 1 && b == 2 I I b == 1)

printf("Condition met!\n");
gemdos (Ox1) ;

}

As you can see, the makeup of the expressions is identical. You should
have no difficulty adapting from BASIC here.

7.7 The negation operator

This operator is similar to the BASIC bit operator NOT. C has two different
negation operators. The first is the logical negation operator! The second is
the bitwise negation operator - . When dealing with a logical expression,
such as one involving a comparison, the logical operator! should be used.
It changes a zero value to a one and a non-zero value to a zero. There is no
direct BASIC counterpart to the logical negation operator in C.

Note the C program below:

main ()
{

}

int value = 0;
if (value == 0)

printf("ZERO!!!\n");
gemctos (Ox1) ;

120

Abacus Software

This program can also be fonnulated as follows:

main ()
{

}

int value = 0;
if (! value)

printf("ZERO!!!\n");
gemdos(Oxl);

You might ask how the the expression:

if (value == 0)

can be replaced simply with:

if (! value)

Atari ST BASIC to C

The exclamation point in front of the variable val ue is the negation
operator. This operator is always used as a prefix before the operand.

This produces a logical 1 when a variable which it preceeds is equal to zero.
The compiler interprets all logical values not equal to zero as "true." A zero
is always viewed as "false." So if the contents of the variable val ue are
not equal to zero, the negation operator returns a logical zero, or false.

If this were the case, the command following the if condition would not be
executed. You could quickly demonstrate this by changing the assignment
statement in our example program to:

int value = 2;

Once again, the expression:

if (value == 0)

is identical to the shorter fonn using the negation operator:

if (!value)

The logical negation operator can also be used in conjunction with the other
logical operators to produce NAND, NOR, and other functions.

121

Abacus Software Atari ST BASIC to C

7.8 Multiple assignments

Unlike BASIC, C allows multiple assignments. For example, an expression
like:

a = b = c = d = 15;

IS allowed and is functionally equivalent to the following series of
assignments:

a = 15;
b = 15;
c = 15;
d = 15;

or alternatively:

d = 15;
c = d;
b C;
a = b;

All of the variables are assigned the same value by this combined
assignment statement.

Variables can also be assigned in addition to constants like the 15 used in
our example. An example of this is the instruction:

This line assigns the contents of variables to the variables val u e _1
through value_3.

Multiple assignments allow a more compact and effective programming
style which takes up less memory space.

We have now covered all of the important arithmetic operators. Now let's
look at the bit operators in the next section.

122

Abacus Software Atari ST BASIC to C

7.9 The bit operators

Because C is a system language, it offers a whole series of special
operations for the manipulation of bits. These are assembled in the
following list:

Bit operator Function

&
«
»

"or" operation on bits
"and" operation on bits
shift bits left
shift bits right
"exclusive or" operation bits
one's complement or bit inversion

All of these bit operators are used in the same manner as the normal ones
which we have already explained in the sections on arithmetic. They may
not, however, be used with float or double variables.

A chart follows, showing a few ways in which these operators can be used
in arithmetic expressions:

Example of use:

x = Y & 011
y = y I mask;
y « 4
y » 2
y & 077

Function accomplished:

Sets bits to zero.
Sets bits to one.
Shifts y four bits to the left.
Shifts y two bits to the right.
Masks out bits in an integer value.

We will now leave our brief introduction to bit operators and their
applications. This book was conceived for BASIC programmers and other
newcomers to C. Manipulation of bits is a theme you will not need until you
want to try your hand at advanced systems programming. A comprehensive
overview of this specialized aspect of C would really accomplish nothing
other than to scare the average BASIC programmer.

If, however, you have some machine language programming experience,
you should now be able to use these bit operators in your programs with the
help of this short introduction.

123

Abacus Software Atari ST BASIC to C

You can also try out a few of these operations on your own, even if you are
a beginner. But in practice you'll find you need these operations only for
specialized systems programming for which detailed system knowledge is
also necessary.

In summary, we can state that any bit operation which is carried out in
BASIC with the AND and OR operators is carried out using the bitwise
operators found on the previous pages.

The BASIC bit operation:

10 X = 7 AND 1

is written in Cas:

x = 7 & 1;

124

Chapter 8

(Control Structures in C)

Abacus Sortware Atari ST BASIC to C

Control Structures in C

Control structures are the core of every programming language. They make
it possible to specify which operations the computer should execute at a
given time. In essence, they are used to determine the order in which actions
are carried out

8.1 Control structures in BASIC

The following control structures are available in most common varieties of
BASIC:

IF ... THEN
FOR ••• NEXT
ON .•. GOTO

Some more structured BASIC dialects also offer statements like

IF .•. THEN ... ELSE

and

WHILE ... WEND

All of these BASIC structures are found in C, although some of the syntax
is a little different. In addition, you have a whole series of powerful
possibilities for the control of program execution which are not available in
BASIC.

127

Abacus Software Atari ST BASIC to C

8.2 The if statement

We have already used the i f statement in the previous chapters. For
example, we determined that the program:

10 X=15
20 Y=X
30 IF X=Y THEN [Execute the following commands]

is formulated in Cas:

main ()
{

int x, y;
x = 15;
Y = x;
if (x == y)

{
then execute the commands
here inside the brackets;

}
}

The syntax for the IF command in BASIC:

IF [expression] THEN [execute commands]

is expressed as follows in C:

if (expression)
[execute commands;]

As this statement is executed, the computer checks if the arithmetic
expression in the parentheses is true or false. As we have already observed,
C considers a logical zero to be false and any other logical value to be true.

If the expression is true, then the statement following the expression is
executed. Note that multiple statements can be combined into a block as a
single statement with the curly braces {}.

128

Abacus Software Atari ST BASIC to C

We can shorten our statements with this background knowledge about the
logic of evaluation in the if statement. We already covered one of these
abbreviations, which used the negation operator (!) in the chapter on
artithmetic.

Let's review:

if(value == 0)

can be written with the use of the negation operator in a more compact form
as:

if (! value)

Another clear simplification involves the use of:
I

if (value)

instead of:

if{value != 0)

If this variable val ue does not equal zero, the condition is viewed to be
true, without having to use the ! =0 test, and the statements following the
if statement are executed.

Here is a summary of the information about the if statement from the
previous chapters:

Any of the comparison and equivalence operators can be used in the
condition of an if statement:

<
>
<=
>=

as well as:

!=

129

Abacus Software Atari ST BASIC to C

Comparison operators of the fonn:

=<

and:

=>

are not allowed.

AND instructions, as has been already explained, are represented by:

&&

and the OR instruction by:

I I

An example: The BASIC line:

10 IF A=4 OR X>=3 AND B<>6 THEN [execute]

is translated in C to:

if(a == 4 I I x >= 3 && b != 6)
{

execute;
}

Watch out for the following error in your C programs:

if(a = 4 I I x >= 3 && b != 6)
(...)

Here the assignment operator = is confused with the comparison operator
== . This mistake is very typical for programmers who are used to BASIC.

As the assignment and equality operators in BASIC use the same character,
you must pay close attention when translating an algorithm to C.

130

Abacus Software Atari ST BASIC to C

If we translate the following program into C:

10 INPUT Y%
20 IF Y%=15 THEN PRINT "THIS IS THE ANSWER":

PRINT "THE NUMBER 15 IS CORRECT!"

we get:

main ()
{

int y;
scanf("%d", &y);
if (y == 15)

{

printf("This is the answer\n");
printf("The number 15 is correct!\n") ;

gemdos (Ox1) ;

With this example you see once again that if more than one statement is to
be executed, they must all be enclosed in curly braces. The braces may be
left off if only one statement follows the if statement.

It is also possible to combine several if statements. Such a combination,
which corresponds to the AND operation, is demonstrated in the following
C program fragment:

if(a != 4)
if (b == 12)

if (x > 5)
printf("All conditions fulfilled!");

This is the same as the following expression using logical AND:

if(a != 4 && b == 12 && x > 5)
printf("All conditions fulfilled!");

131

Abacus Sortware Atari ST BASIC to C

8.2.1 The exit () statement

Let's say that you want to adapt our previous BASIC example to C:

10 INPUT Y%
20 IF Y%=15 THEN PRINT "THAT'S THE ANSWER!"
30 END

The main difference is END (line 30). Now for the C translation:

main ()
{

int y;
scanf("%d", &y);
if (y == 15)

printf("That's the answer!\n");
exit(O);

}

You are already familiar with the program from the previous pages and it
needs no further explanation. It is almost an exact duplicate of the previous
C program.

Until now, however, we have not seen the function exit () , which is
called in the statement:

exit(O);

The argument we use is not important for this application. The argument, in
this case zero (0), is passed backed to the function which called ex i t () .
In our example this is passed back to main () .

In this C program, the call to exit () is comparable to the END command
in BASIC. The statement is quite useful in a program like the following:

10 INPUT Y$
20 IF Y$="STOP" THEN END
25 REM
30 PRINT "LET'S KEEP GOING ... "

132

Abacus Software

This is translated into C as follows:

main ()
{

}

char *y;
scanf("%s", y);
if (y == "s t op ")

exit(O);
printf("Continuing ... \n");
gemdos (Oxl) ;

Atari ST BASIC to C

The exi t (0) call is quite important in this program. It ends the program
just like BASIC END instruction and ensures that the pr int f command
which prints "Continuing ... " is not executed if you've told the program to
stop.

In the first C program in this section, the exi t () statement was not
needed. The program would have ended automatically because there were
no additional commands. In the program above, however, we needed it to
accomplish our purpose. This exit command is very useful in conjunction
with goto statements. More about this later in the chapter.

The Aleyon C for the Atari ST also offers another similar function. Its
syntax is

abort(O);

This function exits the current program and generates an error.

8.2.2 The if-else test

Every normal if statement test can also have a e 1 s e part added. Some
versions of BASIC allow the following program which contains an ELSE
statement.

133

Abacus Software Atari ST BASIC to C

10 INPUT A%
20 IF A%<20 THEN PRINT A%*A% ELSE PRINT "THE NORMAL

VALUE IS:";A%

This is also possible in C:

main ()
{

}

int a;
scanf("%d", &a);
if (a < 20)

printf("%d\n", a * a);
else

{

}

printf("The normal value is: ");
printf("%d\n", a);

gemdos (Oxl) ;

The else portion corresponds to the syntax of the if statement in that no
semicolon follows it, and that if you want more than one statement to follow
it they must be enclosed in curly braces, as in our example.

In general, the if-else construction in C is represented as follows:

if (condition fulfilled)
{

}

else
{

}

execute command block 1

execute command block 2

8.2.3 Combining if-else statements

This construction can be expanded with any number of i f and e 1 s e
statements. This leads to a problem.

134

Abacus Software Atari ST BASIC to C

Let's say you find the following section in a program.

if(a -- 2)
if(b != 15)

a = a * 2;
else

a = a * 3;

Here we have to figure out which if statement the else statement belongs
to, the first or the second. An else statement always applies to the if
immediately preceeding it So in this case the else statement belongs to the
second if statement, if (b ! = 15).

H the e 1 s e is supposed to belong to the first if, you have to indicate this
by adding braces. In our example, this change would look like this:

Old version: New version:

if(a == 2) if(a == 2)
{

if(b != 15) if(b != 15)
a = a * 2; a = a * 2;

else else
a = a * 3; a = a * 3;

8.2.4 alsa-if chains

Combinations of if and e 1 s e statements are often used. The e 1 s e - i f
construction looks like this:

if(condition 1 fulfilled)
execute command block 1

else if(condition 2 fulfilled)
execute command block 2

else if(condition n-l fulfilled)
execute command block n-1
else

execute command block n

135

Abacus Software Atari ST BASIC to C

The advantage of this method is that it allows one of a variety alternatives to
be selected.

The conditions are evaluated in order and when one is met the
corresponding block of commands is executed and the search through the
else-if chain is terminated.

The last statement,

else
execute command block n

is not always necessary.

The last statement is often used because it handles the situation when none
of the conditions are fulfilled. It can recognize errors or illegal input and
take care of the trouble before it can cause problems later in the program.

We will now leave our detailed explanation of if and e 1 s e statements and
their combinations to discuss another control structure, the for loop. After
that we will cover the while loop and the special do-while construction.

8.3 for loops

We have already used this loop in a number of examples in our introductory
chapter. First, we will quickly review what we already learned and then we
will discuss additional details about for loops in c.

8.3.1 Review and summary

As we determined, the C statement

for(x = 1; x <= 20; x = x + 2)
{

loop contents to be repeated
}

136

Abacus Software

is identical to the familiar BASIC FOR-NEXT loop

FOR X=l TO 20 STEP +2
loop contents to be repeated

NEXT X

The loop declaration

for(x = 1; x <= 20; x = x + 2)

in C is divided into three parts, just as it is in BASIC.

Atari ST BASIC to C

The fIrst part in our example, x = 1;, detennines the initial value of the
loop. This part could be translated to English as "Start the loop with the
x-value of 1." This part corresponds to the BASIC FOR X=1. After that
comes x <= 20, comparable with TO 20 in BASIC, which defInes the
end of the interval during which the loop is repeated. The third part, x = x
+ 2, determines the step size and is roughly equivalent to the BASIC STEP
+2.

The step size must always be specified explicitly in C. This includes an
increment of + 1, which can be omitted in BASIC, but is written in C as

x = x + 1

or more compactly as

++x;

The statement immediately following the for loop in C is always repeated.
If more than one statement is to be executed inside the for loop they must
be combined into a statement block within curly braces.

8.3.2 Infinite loops

If you leave the three parts-the initial value, the end value, and the
increment size-{)ut of a for loop, the result is an infinite loop and it looks
like this:

137

Abacus Software

for(ii)
{

Atari ST BASIC to C

commands to be repeated endlessly
}

The reason for the infinite repetition of the commands is that the compiler
interperets the middle parameter (the end interval of the loop) as the test of a
condition. In other words, the result is checked only to see if it is true or
false. It makes no difference to the compiler what condition is used for the
middle parameter.

Because an empty middle parameter is not equal to a binary zero, it is
viewed as true and the compiler never exits the loop. With the following
program, for example, the letter "H' is printed on the screen in a continuous
loop:

main ()
{

for(;;)
printf("%c", 'H');

}

It is also possible to write infinite loops in BASIC, such as with the
instruction:

FOR X=Y TO Z STEP 0

The STEP 0 causes the loop to be repeated indefinitely. Our example C
program would look like this in BASIC:

10 FOR X=1 TO 2 STEP 0
20 PRINT "H";
30 NEXT X

Here, however, you must make sure that there is a difference between the
lower and upper bounds.

10 FOR X=1 TO 1 STEP 0

does not cause an endless loop, but these will:

10 FOR X=1 TO 4 STEP 0

138

Abacus Software Atari ST BASIC to C

10 FOR X=l TO -30 STEP 0

Infinite loops in C can only be terminated by break or goto statements.
We will see how to use these in the following sections of this chapter.

Since only the middle statement of the loop declaration matters here, the
following program also causes an infinite loop.

iinclude "stdio.h"
#define putchar(c) putc(c,stdout)
main ()
{

}

char y;
for (y = 'H';;)

putchar(y);

This example also prints the letter H on the screen repeatedly, but the
variable is assigned right in the for loop this time. The middle parameter is
still empty, however, so the compiler still considers it to be true.

For this reason, the following program does not result in an infinite loop:

main ()
{

int a;
for (a = 1; a < 20;)

{
printf("%d\n", a * a);
a++;

}
gemdos (Ox1) ;

}

It is not the same as the BASIC program:

10 FOR A=l TO 20
20 PRINT A*A
30 NEXT A

but much more like the following version in which the incrementation also
takes place within the loop:

139

Abacus Sortware

10 FOR A=1 TO 20 STEP 0
20 PRINT A*A;
30 A=A+1
40 NEXT A

Atari ST BASIC to C

Infinite loops are not often used in BASIC programs (not on purpose,
anyway), but they more common in C because of the availability of the
goto and break statements.

8.3.3 The comma operator

This special C operator is most often used in conjunction with the for
statement, but it can be used in other applications as well. Two expressions
separated by a comma are evaluated from left to right. This means that the
data type and value of the result of one statement are automatically the data
type and value of the operand to the right of the comma.

This allows multiple statements to be combined. First, the statement to the
left of the comma operator is executed, and then the one on the right is
performed.

The following program illustrates the comma operator in a for loop.

main ()
{

int a, C;
for (a = 1, c = 15; c < 30; a--, c++)

printf("%d n%d\n", a, c);
gemdos (Ox1) ;

}

As you can see in this example, the flexibility of the for loop can be greatly
increased using the comma operator. It can be used in both the initialization
and in the incrementation sections of the loop declaration.

The loop declaration:

for(a = 1, c = 15; c < 30; a--, c++)

140

Abacus Software Atari ST BASIC to C

includes two simultaneous initializations:

a = 1, c = 15;

The same is true for the incrementation part of the loop:

a--, c++

The increment and decrement instructions joined together by the comma are
executed at the same time.

8.3.4 Nested for loops

Just as in BASIC, C for loops can be nested within each other. A BASIC
example is the program:

10 FOR A%=l TO 50
20 FOR B%=20 TO 1 STEP -1
30 PRINT A%, B%
40 NEXT B%
50 NEXT A%

The following program shows how this loop construction would be
accomplished in C. This has exactly the same results as the BASIC program
above.

main ()
{

}

int a, b;
for (a = 1; a <= 50; ++a)

for(b = 20; b >= 1; --b)
printf("%d %d\n", a, b);

gemdos (Ox1) ;

The curly braces can be omitted here because the for loop consists of just
one line.

141

Abacus Software Atari ST BASIC to C

Now let's add two lines to our previous BASIC program:

10 FOR A%=1 TO 50
20 FOR B%=20 TO 1 STEP -1
30 PRINT A%, B%
40 PRINT "X"2 VALUE Y"2 VALUE"
50 PRINT A%*A%, B%*B%
60 NEXT B%
70 NEXT A%

In C, the two new PRINT instructions are simply added to the second loop
by making a statement block containing them and the original printf call.

For clarification, here is the modified program:

main ()
{

int a, b;
for (a = 1; a <= 50; ++a)

for(b = 20; b >= 1; --b)
{

printf("%d %d\n", a, b);
printf("x"2 value y"2 value\n");
printf("%d %d\n", a * a, b * b);

}

}
gemdos(Oxl);

You must also use these brackets if you want to call additional functions
between the loops. A corresponding example of our previous BASIC
program reads:

10 FOR A%=1 TO 50
20 FOR B%=20 TO 1 STEP -1
30 PRINT A%, B%
40 PRINT "X"2 VALUE y"2 VALUE"
50 PRINT A%*A%, B%*B%
60 NEXT B%
70 PRINT "OUTER LOOP"
80 NEXT A%

In translating this program to C you must use brackets to build statement
blocks as follows:

142

Abacus Software

main ()
{

int a, b;
for (a = 1; a <= 50; ++a)
{

for(b = 20; b >= 1; --b)
{

Atari ST BASIC to C

printf("%d %d\n", a, b);
printf("xA2 value yA2 value\n");
printf("%d %d\n", a * a, b * b);

}
printf("Outer loop\n");

}
gemdos (Ox1) ;

}

Look at the command structure carefully. First an inner loop is formed as a
statement block. The block:

{
printf("%d %d\n", a, b);
printf("xA2 value yA2 value\n");
printf("%d %d\n", a * a, b * b);

}

is repeated twenty times via the second for statement, until the variable b is
equal to one. The outer loop is then executed.

Next there is the command:

printf("Outer loop\n");

which prints an appropriate message. This happens 50 times as determined
by the variable a. This variable is incremented by one up to fifty by the fIrst
for declaration.

As we know, it is generally shorter and more efficient to declare a step size
using the increment operator, as in the example above.

++X;

should be used instead of the old form:

143

Abacus Software Atari ST BASIC to C

x = x + 1;

with which we are familiar from BASIC.

The same goes for the decrement operator:

--x;

which should generally be used instead of:

x = x - 1;

Of course this applies only to increment/decrement values of one. The
expression for an increment size of +2, for example, must be written like
this:

x = x + 2;

or like this:

x += 2;

144

Abacus Software Atari ST BASIC to C

8.4 while loops

Now that we have covered the more common for loops, its time to tum to
a discussion of while loops. In the following examples, it must be noted
that not all versions of BASIC support while loops. The ST BASIC does
support them and the construction used is standard in Microsoft BASIC, so
we will include examples of while loops in BASIC.

Don't worry if you've never used while loops before. The syntax is easy
to understand and it is also easy to see where you might want to use them.
Let's take the following Microsoft BASIC program as an example:

10 REM COUNT FROM 1 TO 10
20 '
30 WHILE A%<10
40 A%=A%+l
50 PRINT A%
60 WEND

As you can see, the WHILE construction forms a block beginning with the
WHILE statement itself and ending with WEND, which is short for "WHILE
END".

The commands inside this block are repeated for as long as the WH I LE
condition, in our case,

A%<10

is true. The command can be read "While the value of the variable A is less
than 10, do the following." The variable A, initialized to zero by the RUN
command, is incremented from 1 to 10, and each value is printed on the
screen.

145

Abacus Software Atari ST BASIC to C

How does this look in C? This is the program corresponding to our BASIC
example:

main ()
{

int a;
a = 0;
while (a < 10)
{

++a;
printf("%d\n", a);

}
gemdos (Ox1) ;

The syntax of the while statement in C is almost exactly the same as that
of the BASIC WHILE command:

while (a < 10)

Again, the statements in the command block are executed "so long as the
value of the variable a is less than 10." But make sure that the variables
used in the loop are declared and given values before the actual while
statement. This is not necessary in BASIC because the variable a is
automatically set to zero by the RUN command.

In C, however, both the declaration:

int a;

and the value assignment:

a = 0;

are necessary. They can both be done in one statement, as we have
mentioned before, like this:

int a = 0;

Note also that the incrementation, which in our example is ++a, must
always be specified explicitly within the loop.

146

Abacus Software Atari ST BASIC to C

8.4.1 Combinations of for and while loops

You can arbitrarily combine these two types of loops in both BASIC and C.
The following program shows how we might do this in BASIC:

10 WHILE A%<20
20 A%=A%+l
30 PRINT "PASS NUMBER";A%
40 ,
50 FOR B%=l TO 15
60 PRINT B%;
70 NEXT B%
80 WEND

And here is the corresponding C version:

main ()
{

int a = 0;
int b;
while (a < 20)
{

++a;
for(b = 1; b <= 15; ++b);

printf("%d\n", b);
}
gemdos (Ox1) ;

}

Both of the programs fill twenty screen lines with the numbers from one to
futeen.

This example shows you how simply the two types of loop can be
combined in whatever ways you like.

147

Abacus Software Atari ST BASIC to C

8.4.2 Nested while loops

while loops can be nested as easily as for loops. We have here a
program to demonstrate this.

First the BASIC version:

10 WHILE A%<8
20 WHILE B%<2
30 B%=B%+l
40 PRINT A%, B%
50 WEND
55 '
60 B%=O
70 A%=A%+2
80 PRINT "OUTER LOOP"
90 WEND

Now the C version:

main ()
{

int a, b;
a = b = 0;
while(a < 8)
{

while (b < 2)
{

++b;
printf("%d %d\n", a, b);

}

}

}
b = 0;
a a + 2;
printf("Outer loop\n");

gemdos (Oxl) ;

148

Abacus Software Atari ST BASIC to C

8.4.3 The do-while loop

The do-while loop is a special form of the normal while loop. With this
construction, the condition of the loop is checked at the end of the loop
instead of the beginning.

A BASIC program would simulate this as follows:

10 FOR A=l TO 2 STEP 0
20 B=B+1
30 PRINT B
40 IF B=100 THEN END
50 NEXT A

BASIC does not have the option of a do-while loop. It was therefore
simulated in this program using an infinite loop. In this loop, the variable a
"counts" from 1 to infinity.

The end of the loop is tested in the simulated do-while loop with the IF
line. This statement ends the program when the value of the variable B
reaches 100.

Now we come to the C version of the do-while loop. The above BASIC
program can be written quite simply as follows:

main ()
{

}

int a = 0;
do
{

++a;
printf("%d\n", a);

} while (a <= 100);
gemdos (Ox1) ;

Here the while condition is found at the end of the statement block which
was introduced with do. The do statements are repeated as long as the
while condition is true. When the while condition becomes false, the
compiler leaves the loop and continues with the program.

149

Abacus Software Atari ST BASIC to C

It is important to note that the commands within the loop are always
executed at least once even if the while condition is false to begin with.

Our BASIC version works only in the case where the program and the loop
are to be ended at the same time. If additional commands followed our C
loop, they would be executed, but because of the END statement, this is not
true in the BASIC loop.

This leads directly to our next C control structure, the break statement

8.5 break for leaving loops

Let's say we have written the following short C program:

main ()
{

int bi
for(b = 1 ii)
{

++b;
printf("%d\n", b);

}

}
gemdos(Oxl);

As we already know from the section on for loops, this program contains
an infinite loop. It counts from one on up using the variable b.

How do you get out of loops like this? If you have looked at the title of this
section, you might guess that the break statement will be of some help.
break is very easy to implement in our example.

150

Abacus Software

Now let's look at the modified program:

main ()
{

}

int b;
for(b = 1 ;;)
{

}

++b;
printf("%d\n", b);
if (b == 100)

break;

printf("Loop broken\n");
gemdos (Ox1) ;

Atari ST BASIC to C

This program, expanded with if and break statements, counts to 100.
When this value is reached the break statement interrupts the loop and the
compiler leaves it and executes the statements which follow.

In our example, the command:

printf("LoOp broken\n");

is executed.

The break statement does not, therefore, correspond to an END command
in BASIC, but instead it allows you to leave for, while, and do-while
loops at any point in the loop.

In BASIC, we could simulate the C program as follows:

10 FOR A=l TO 2 STEP 0
20 B=B+1
30 PRINT B
40 IF B=100 THEN GOTO 60
50 NEXT A
55 ,
60 PRINT "LOOP BROKEN"

151

Abacus Software Atari ST BASIC to C

Here we see that the break statement is simulated by a GOTO jump in line
40 which does not end the program, as did the END command in the earlier
program. The endless loop is simply exited and the program continues in
line 60. This is very poor programming practice in BASIC, however.

8.6 The continue statement

The cont inue statement is the opposite of the break statement It causes
the next repetition of the current for, while or do-while loop to begin
immediately.

This means that if the compiler encounters the continue statement inside
a loop, the statements following it in the loop are not executed, but instead
the loop is started again from the beginning.

Let's take a look at a C program:

main ()
{

}

int a[5];
int i;
a[O] = 15;
a[l] -2;
a[2] 0;
a[3] 12;
a[4] -14;
for(i = 0; i <= 4; ++i)
{

}

if (a [i] <= 0)
{

}

printf("Value is negative!\n");
continue;

printf("Value is positive!\n");

gemdos (Ox!) ;

152

Abacus Software Atari ST BASIC to C

First an array of five elements is defined and each element is assigned a
positive or negative integer value. In the for loop which follows, each
element is evaluated and identified as positive or negative.

If an array element is negative, we don't have to check to see if it is positive
after the execution of the line

printf("Value is negative.\n");

we can go right on to check the next element of the array.

The statement

continue;

causes execution to start back at the top of the for loop.

The statement following the continue, or

printf("Value is positive.\n");

in our example, is then executed. It's not a good idea, after all, to first call a
number negative and then turn around right away and call it positive!

In BASIC the direct NEXT instruction corresponds roughly to the C
continue statement.

Compare the C program with the following BASIC version:

10 DIM A(5)
20 '
30 FOR 1=1 TO 5 STEP 1
40 IF A(I)<= 0 THEN PRINT "VALUE IS

NEGATIVE!":
NEXT A: REM "CONTINUE"

50 PRINT "VALUE IS POSITIVE!"
60 NEXT A

153

Abacus Software Atari ST BASIC to C

8.7 The qot 0 jump

Even C offers a got 0 statement, and it is even more flexible than its
BASIC counterpart. In BASIC, a large part of the control structure is built
around GOTO commands. Frequent use of these statements can lead to
unreadable "spaghetti" code, however, in which it is virtually impossible for
someone reading the program to tell what is going on.

To prevent this from the start, we have not used any such goto statements
in our C programs. You will very seldom find a goto statement in a C
program, and even then only in isolated cases.

Dennis Ritchie, the developer of the C programming language, strongly
recommends that the "goto" statement not be used at all, or at least as
sparingly as possible. You should therefore discipline yourself not to carry
all of your GOTO commands over from BASIC to C.

For situations where the circumstances demand the use of got 0 statements
in C, the following pages contain a complete description of this control
structure.

The ST's Alcyon C development system does not have this statement yet,
but the finished commercial version probably will.

8.7.1 The qoto syntax

As usual, we will start with a BASIC example:

10 A%=10
20 PRINT A%
30 A%=A%-l
40 IF A%>O THEN GOTO 20

154

Abacus Software

Translation to C produces the following program:

main ()
{

}

int a = 10;
20:
printf("%d\n", a);
--a;
if(a > 0)

goto 20;
gemdos (Ox1) ;

Atari ST BASIC to C

Both programs are constructed the same way and both count down from ten
to one. As you can see, the goto statement in this example works just like
the BASIC GOTO statement. The command

goto 20;

causes a direct jump to line 20, which is wherever the label

20:

is located in our program.

In C, the got 0 labels are seen as names and not as BASIC-like line
numbers. You could, in fact, replace the label 2 0 with a name if you like.

In the following program, the name IBeg in, short for "If Begin" has
replaced 20 as the beginning label of the loop. The program then looks like
this:

main ()
{

int a = 10;
IBegin:

}

printf("%d\n", a);
--a;
if(a > 0)

goto IBegin;
gemdos(Ox1);

155

Abacus Software Atari ST BASIC to C

8.7.2 Avoiding gotos

This example also shows why got 0 jumps are extremely rare in C. Our
program can be written more effectively and compactly using a while
loop.

main ()
{

int a = 10;
while (a > 0)
{

printf("%d\n", a);

}

--a;
}
gemdos(Ox1);

Here it is clear that goto jumps can almost always be replaced by another
loop construction or by functions. Essentially, any program can be written
without goto statements.

But where can a goto actually be useful?

8.7.3 Applications for got 0

In practice, it has been shown that the most common use of goto is to exit
several loops in one move. If, for example, you need to escape from a
deeply-nested loop structure, then goto is very helpful indeed.

You could use break, of course, but remember that break leaves only the
current loop. To escape a deep structure of nested loops, it is more effective
to use the goto jump than a long, complex series of interconnected break
statements.

In using got 0, it is important to note that the jump can take place only
within a function . This means that you cannot use goto to jump out of a
function or from one function to another.

156

Abacus Software Atari ST BASIC to C

8.8 Conditional execution with switch

The swi tch statement checks an expression to see if it matches one of
several constants. It therefore allows the computer to select one of a number
of alteratives based on the value of an expression.

This control structure corresponds roughly to the ON-GOTO or ON-GOSUB
structures in BASIC. Both branching structures are much less flexible than
C's switch construction. Let's look at this in more detail with an example.

8.8.1 Example

First the BASIC program, then the C version, which uses switch:

10 INPUT A
20 ON A GOTO 40, 50
30 PRINT "DEFAULT, VALUE I S NOT 1 OR 2":
40 PRINT "A IS 1": END
50 PRINT "A IS 2": END

main ()
{

int a;
scanf(" %d", &a);
switch(a)
{

case 1:
printf("Value is l\n");
break;

case 2:
printf("Value is 2\n");
break;

default:

END

printf("Default, value is not 1 or 2\n");

gemdos (Oxl) ;

157

Abacus Software Atari ST BASIC to C

Both of these programs read in a number from the keyboard and then
determine if this number is 1, 2, or neither of these two.

In C, the switch statement takes the following form:

switch (x)
case Yi
default

(initialization)
(case test)
(default case)

8.8.2 The switch syntax

The switch control structure is introduced with the command:

switch (a) ;

This determines the expression to be evaluated. Note that the variable or
expression inside the parentheses must represent an integer value.

The conditional statements which follow are then assembled into a statement
block inside curly braces.

The individual cases are assigned using a format like:

case 1:
printf("Value is l\n");

If the value of the switch expression is 1 then the statements after ca s e 1:
are executed. Groups of statements following a single case statement need
not be assembled into statements blocks with curly braces; the statements
themselves serve as separators.

If none of the case constants match the variable, then the statements after:

default:

are executed. de fa u 1 t is optional. If there is no de fa u 1 t statement and
no matching case constant in the switch structure, then no action at all is
taken.

158

Abacus Software Atari ST BAste to e

case conditions, by the way, do not have to follow in numeric order (1, 2,
... , default) as they do in BASIC. The following unordered sequence of 2,
3, 1, and default is also possible:

main ()
{

int a;
scanf("%d", &a);
switch(a)
{

case 2:
printf("Value is 2\n");
break;

case 3:
printf("Value is 3\n");
break;

case 1:
printf("Value is l\n");
break;

default:
printf("Value is not 2, 3, or l\n");

gemdos (Ox1) ;

The switch command is not limited to numbers, as in the examples so far,
but can work with any integer type, like character values.

159

Abacus Software Atari ST BASIC to C

This is demonstrated in the following program:

main ()
{

}

char c;
c = 'h';
switch(c)
{

case 'y':
printf("Character y\n");
break;

case 'a':
printf("Character a\n");
break;

case 'h':
printf("Character h\n");
break;

}
gemdos(Oxl) ;

The only real difference between this s wit ch structure and the previous
ones is that the form of the case statements is

case 'character':

rather than

case numerical value:

One additional function of swi tch which cannot be accomplished with
BASIC's ON - GO TO is the possibility of multiple assignments. The
following program uses the cas e tests to determine whether or not a
character is a digit

This can be done more efficiently using the ASCn values of the input (see
the chapter on screen input/output operations), but the program below
serves as a demonstration of this use of the switch structure.

160

Abacus Software

main ()
{

char a;
a = 6;
switch (a)
{

case '0' :
case '1' :
case '2' :
case '3' :
case '4' :
case '5' :
case '6' :
case '7' :
case '8' :
case '9':

Atari ST BASIC to C

printf("Character is a digit!\n");
break;

default:
printf("Character is a not a digit!\n");

gemdos (Oxl) ;

In this program, there is no break between the alternatives so the program
passes immediately from one to the other.

In general, this can be sketched as follows:

switch (x)
{

case a:
case b:
case c:

Execute commands when x matches a, b, or c

Take careful note of the use of break statement. Its role in the switch
structure is very important. If one case is found to be true, it doesn't usually
make sense to examine the rest of the cases. The break statement is used
here in order to avoid this wasteful procedure. Our previous examples are
all optimized using break.

161

Chapter 9

" Common Mistakes of BASIC Programmers I
~ ~

Abacus Software Atari ST BASIC to C

Common Mistakes of BASIC Programmers

You have now reached a point where you should have a large part of C
mastered. Most of all, the relationships between BASIC and C should be
clear to you. What we have covered so far is a complete description of the
elementary elements of the C programming language.

Before we cover the material in the following chapters in any detail, we
should look at some of the most common mistakes which BASIC
programmers make. Seeing these typical mistakes now will help you to
avoid making them later.

Consider this chapter a quiz. First you will see a program containing one
mistake. Following it will be a complete explanation of this error.

Don't read the explanation right away if the answer does not come to you
immediately. Look carefully; many mistakes will not be apparent at fIrst.

9.1 Error # 1

main ()
{

int x;
x = 15;
print ("%d",x) ;
gemdos (Oxl) ;

Have you found the error yet? No? At first sight this program seems to be
completely in order. This is a typical mistake which can really be made only
by someone who has programmed in BASIC. Nobody learning C as his
fIrst programming language would make this error (except as a typo).

In case you still haven't noticed, the pr int () function is certainly familiar
from BASIC as the PRINT statement, but the actual name of the C function
is printf () and not print (). This type of mistake is especially
frustrating because it is so difficult to fInd.

165

Abacus Software

9.2 Error # 2

main ()
{

int integer;
while(integer < 10)
{

Atari ST BASIC to C

printf("Value x ft 2 value\n");
printf("%d %d\n", integer, integer * integer);
++integer;

gemdos (Ox1) ;

This program uses a while loop to create a table of the squares of the
integers from one to ten. The mistake is again one typical of BASIC
programmers.

Look again at the initialization of the variable. After the declaration:

int integer;

there must be a value assignment before the start of the whi Ie loop:

integer = 0;

In BASIC, this is not necessary because the values of all variables are
automatically set to zero by the RUN command. In C, however, you must
never forget to set the initial value of every variable before it is used.

This can be done with the combined declaration/assignment statement, as
you know:

int integer = 0;

166

Abacus Software

9.3 Error # 3

main ()
{

int i nteger;

Atari ST BASIC to C

for(integer = 0; integer <= 10; ++integer);
{

printf("Value xA2 value\n");
printf("%d %d\ n", i nteger, integer * integer);

gemdos (Ox1) ;

This program corresponds exactly to the previous one, except that the loop
is created using for instead of while .

Have you found the mistake yet? You might guess that there would be a
problem because the variable integer is not initialized before the loop. It
is initialized inside the loop, however, so this is not necessary.

Again, the error is rather subtle. Remember that a semicolon in C separates
statements, so that when the compiler sees a semicolon it thinks that the
statement is over and goes on to the next one. The for statement in C is
viewed by the compiler as exactly one statement even though the for loop
may contain hundreds of other statements. The curly braces make the
compiler treat the whole loop as one statement. So the problem here is that
the for loop is really over before we get to the statements that it is
supposed to repeat. The instructions between the braces after the for
statement are not repeated but are executed only once. To fix this, remove
the semicolon after the for loop declaration.

167

Abacus Software

9.4 Error #4

main ()
{

int value;
scanf("%d", &value);
if(value = 15)

printf("15 is the answer ! \n);
else

printf("That's not it!\n");
gemdos(Oxl);

Atari ST BASIC to C

This one may also have been difficult for you. It really looks completely
nonnal to a BASIC programmer.

Look more carefully at the if statement. In the previous chapters we said
that the assignment operator = must not be confused with the equality
comparison operator ==. The correct i f statement would then read
if (va 1 u e == 15) rather than i f (va 1 u e = 15).

9.5 Error #5

main ()
{

int value_I, value 2;
value_l = 15;

printf("%d\n", value 1 * value_2) ;
gemdos (Oxl) ;

Here the variables value 1 and value 2 are declared, assigned values,
and multiplied together. Their product is then printed on the screen.

Have you noticed where the mistake is?

168

Abacus Software Atari ST BASIC to C

The error lies in the value assignments. Because value 2 was declared as
an integer, just like val ue _1, it cannot be assigned the floating-point value
3.5.

This program would run on most compilers, but with the unwanted side
effect that value 2 would be assigned the integer value of 3.5, which is
3. -

If, however, you want the value 3.5 to be used, you must first declare
value_2 as a float variable. Next, the printf call must be changed.
Instead of % ct, you must write % f for the number to be printed as
floating-point.

9.6 Error #6

main ()
{

a = 15i
printf("%d\n", a)i

gemdos (Ox1) i

Here we see another typical BASIC error. At first glance, the program looks
correct. There are no errors in the printf call and the braces around the
function main () are placed correctly. The value assignment of the variable
a is also in order.

There is, however, a mistake here. In BASIC, it is not necessary to declare
a variable, but it must never be forgotten in C. Insert the line

int a;

or

f l oat a;

depending on whether the variable a should be treated as an integer or a
floating-point number, and the program is complete.

169

Abacus Software

9.7 Error #7

main ()
{

printf("%f\n", 1 / 3);
gemdos(Ox1) ;

Atari ST BASIC to C

What? This program is wrong? Are you trying to trick me?

If you don't believe that the above program contains an error, just run it
through your C compiler and you will receive the (incorrect!) output

0 . 000000

or maybe even an error.

The error can only lie in the pr int f call. This should print out the fraction
113. The output format is also correctly set at % f.

As we have already stressed in the chapter on screen input and output,
however, the numbers 1 and 3 must be written specifically as floating-point
values rather than as integers.

The correct program looks like this:

ma i n ()
{

printf("%f\n", 1.0 / 3.0);
gemdos (Ox1) ;

170

Abacus Software

9.8 Error #8

main ()
int a, b, c, d;
scanf("%d", &a);
b = a + 6;
c = b * 4;
d = b - c;

Atari ST BASIC to C

printf("%d %d %d %d\n", a, b, c, d);
gemdos (Ox!) ;

Many of you probably noticed this error right away. The problem with this
error is that the compiler will generate several different error messages,
none of which give the specific reason for the error.

In this example, the fIrst curly brace after the rna in () function declaration
is missing. In this short program, the mistake was easy to find. In larger
programs, however, it may be exceptionally diffIcult to fInd these errors due
to the misleading error messages.

When you think about it, a large program would not consist of a single
block of commands, but would instead have a complex series of them,
intermixed and nested within one another to the point where it would be
very easy to leave a brace out

When you suspect that you have left a brace off a block somewhere deep in
a confusing series of nested loops you'll have to decide yourself where you
should look, because the compiler is not going to give you very helpful
error messages.

171

Abacus Software

9.9 Error #9

main ()
(

int loop;
for (loop = 1; loop =< 10; ++loop)
{

Atari ST BASIC to C

printf("%d %d\n", loop, loop * 2);

gemdos (Oxl) ;

Granted, the error is hard to find.

Look more carefully at the for loop definition. The error is found in the
condition loop =< 10;. In a few BASIC versions, the comparison
operator =< is permissible, but not in C.

The correct version must read loop <= 10;.

Just remember that the equals sign always comes last in the "less than or
equal to" and "greater than or equal to" operators, resulting in <= and >=.

9.10 Error #10

main ()
{

int x;
scanf("%d", x);
printf("%d %d\n", x, x * x);
gemdos (Oxl) ;

Again, at first glance there seems to be no mistake hidden in this program ...
or is there? How did that go with the scanf function again?

172

Abacus Software Atari ST BASIC to C

If you didn't notice the error immediately, do you remember now? scanf
always needs a pointer to tell the computer where in memory it should place
the value it reads in.

The correct scan f call changes the integer variable to a pointer variable
with the address operator & and looks like this:

scanf("%d", &x);

9.11 Error #11

main ()
{

int a, b, c, d;
a = b 15;
for(c = a, d = c * 2; a < 5; a++, d++)
{

printf("%d\n", a);
c = a * 12;
b = c - a;
printf("%d %d\n", c, b);

gemdos (Ox1) ;

Don't let this program confuse you. The nature of this error is very simple.
It does not lie in the for statement, although this is extended with the
comma operator.

You will find the error immediately if you again look at the information
given on the brace structure in error number 8. To be precise, the bracket at
the end of the for loop has been left out. This must be inserted after the last
printf statement.

173

Abacus Software

9.12 Error #12

main ()
{

int a, di
float bi
char *Ci

scanf("%d %f Is", &a, &b, &C)i

for(d = Ii d < ai ++d)
printf("%s\n", C)i

gemdos(Oxl)i

Atari ST BASIC to C

This program reads in a string, an integer, and a floating-point number, and
uses a for loop to print out the string a times on the screen.

This time the scanf call contains the error. If you have not yet found the
error, look more carefully at this statement. The string variable c has
already been declared as a pointer and therefore does not need the address
operator to make it one. The correct call is as follows:

scanf("%d %f %s", &a, &b, c);

9.13 Error #13

main ()
{

char *stringi
string = "I I" i
printf(%s "Error", string)i
gemdos (Oxl) i

174

Abacus Software Atari ST BASIC to C

This program should print the message

I I Error

on the screen.

In its present fonn, however, the program will not do it. This is because the
% s expression is inside the p r in t f call. This and all other data type
assignments for printing must always be inside the quotation marks.

The corrected line reads:

printf("%s Error", string);

9.14 Error #14

main ()
{

printf("There is a future\n in programming\n
in C!\n");

gemdos (Oxl) ;

Does this program have an error or not? Try it out!

Although this looks strange, it runs without a problem. It prints three lines:

There is a future
in programming
in C!

one after the other on the screen.

The new line marker \n, which represents the end of a line, can be put
anywhere in a string, not just at the end of a line.

175

Abacus Software

9.15 Error #15

main ()
{

int X;
for(x = 10; X > 0; --x)

printf("%d\n", x)
gemdos (Ox1) ;

Atari ST BASIC to C

Have you found the error yet? If not, you will probably kick yourself when
you finally discover it

This is an error most often caused by haste, and every C programmer makes
it at some point, but BASIC programmers are especially prone to it

For the solution, look more carefully at the printf call in the for loop.
This line is simply missing its semicolon.

In BASIC, we would not have to use a statement separator here. You must
always remember that the semicolon must be used to separate individual
statements from one another. In that respect, it corresponds to the colon in
BASIC, but the semicolon must follow every statement in C (remember
that the printf call is really part of the for statement).

9.16 Error #16

main ()
{

int x = 10;
while (x > 0)
{

printf("The number is %d"\n,x);
--x;

gemdos(Ox1);

This program counts down from ten to one.

176

Abacus Software Atari ST BASIC to C

The error is in the printf call. The new-line control character "\n", like
all other control characters, must be inside the quotation marks.

The correct call reads as follows:

printf("The number is %d\n",x);

This example also shows how to print out strings and numeric variables
together, using one call. This is more efficient than two separate pr int f
calls. Remember this structure because you will certainly use it often in your
programs.

9.17 Error #17

main ()
{

int X;

scanf("%d\n", &x);
printf("%d %d\n", x, x*x*x);
gemdos(Oxl);

Here we have a logical error in the scan f input call. Take another look at
this statement.

Do you notice anything unusual? The control character \n is completely out
of place in this statement.

This error can occur because scanf and printf are almost identical in
their syntax, and pr int f very often uses the new-line character \n. The
scanf function, however, has no reason to look for this character because
the new-line after the input is automatic.

The correct line must read:

scanf("%d", &x);

Some compilers, like Aleyon C, ignore the misplaced new-line character
and therefore produce no error.

177

Abacus Software

9.18 Error #18

main ()
{

int a, h;
char *c;

a = b = 15;
c = "DIGITAL GEM";

printf("%d %s %d\n", a, b, c);
gemdos (Ox1) ;

Atari ST BASIC to C

The error in this program is a difficult one to find. Again, it is in the
p r in t f call. If you compare the data type control characters with the
corresponding variables, you will quickly see that the variable b is of type
integer, but that it will be printed out as a string. Likewise, the printf
function tries to print the string variable cas %d, an integer.

It is important to avoid these mistakes because they don't usually generate
error messages, just incorrect output. Always be careful to use the correct
data-type control characters.

The correct pr int f call must read:

printf("%d %d %s\n", a, h, c);

178

Abacus Software

9.19 Error #19

main ()
{

int x, y;
scanf("%d", &x);
y = 14;
if (x <> y)

Atari ST BASIC to C

printf("The x-value is not equal to the
y-value!\n");

else
printf("The x-value is equal to the

y-value\n") ;
gemdos (Ox1) ;

The error here is very typical of BASIC programmers, but you have enough
C experience that you should find it right away.

The mistake is in the if statement if (x <> y) . The BASIC inequality
symbol is indeed <>, but in C it is ! =.

The if statement is written correctly as

if(x != y)

179

Chapter 10

(C Functions)

Abacus Software Atari ST BASIC to C

C Functions

As we said before, most C programs consist of a set of individual
functions. A function is a subprogram, comparable to subroutines in
BASIC which are called with GOSUB and ended with RETURN.

Even though C does not require you to use functions, it is not good
programming style to put all of your commands in one procedure (that is, in
the main () function) as is often the case in BASIC. Instead, you should
divide your program into separate functions which are called from rna in () .

You will soon get used to this new programming style. Forget your BASIC
programming structure. Your C programs will be much easier to read and
understand if you build them up out of individual functions . Also, it is
much less complicated to change a program that is divided into functions
than one which is just a mass of statements.

One of the primary advantages of functions is that you can use what are
called "standard functions ." Once created, these functions can be used in
any program.

This is the main reason that functions play such an important role in C.
Functions allow you to virtually write your own programming language.
The C language itself is really quite compact and has relatively few
commands. Functions, however, extend the language greatly and handle all
of the machine-dependent tasks such as input/output

The C compiler libraries on the Atari ST are really nothing more than
functions which you can access. To use GEM in your C programs, for
example, all you have to do is link the corresponding libraries to your
program. The libraries then provide a large supply of useful functions for
you to use in your programs.

Naturally this raises some questions: How are these functions constructed?
How are they included in programs? How are they called from the
programs?

We will answer these and other questions in the following pages, using
many BASIC and C examples.

183

Abacus Software Atari ST BASIC to C

10.1 Fundamentals of functions

Any C program can contain an arbitrary number of functions. At least one
function is required in every program. This is the function

main ()

This function represents the program head; and it is always the first function
called when the program is executed. The general procedure is then to call
all of the other functions from rna in () so that the program is not actually
located in this main function, but the operations take place in the individual
subroutines. The function main () is therefore used primarily to manage
and call the other functions.

10.1.1 Calling functions

Take a look at the following example. In this example, the function
main () calls itself again.

main ()
{

printf("Hello, how are you?\n");
main () ;

This program prints the following output:

Hello, how are you?
Hello, how are you?
Hello, how are you?
Hello, how are you?
Hello, how are you?
Hello, how are you?
Hello, how are you?

The text is printed on the screen over and over again.

184

Abacus Software Atari ST BASIC to C

Press <CTRL> C to end the program and return to C again.

In this example, the function main () calls itself with:

main() ;

A function is generally called by placing its name in the program.
Parameters can be passed to the function by enclosing them in parentheses
after the function name. Since rna in doesn't take any parameters here, there
is nothing between them. The parentheses themselves must be included,
however.

10.1.2 Functions without parameters

Now let's use the facts we have mentioned in a demonstration program.
Here is a BASIC example:

10 PRINT "BASIC"
20 GOSUB 1000
30 ,
40 PRINT "FORTH"
50 GOSUB 1000
60 ,
70 PRINT "LISP"
80 GOSUB 1000
90 ,
100 PRINT "PROLOG"
110 GOSUB 1000
120 ,
130 PRINT "C"
140 GOSUB 1000
150 END
160 ,
1000 REM SUBROUTINE "KEYSTOP"
1005 ,
1010 PRINT "PRESS A KEY ... "
1020 GET A$
1030 IF A$="" THEN 1020
1035 ,
1040 RETURN

185

Abacus Software Atari ST BASIC to C

This program prints the names of several programming languages, one after
the other. After each language, the program uses GOS UB to jump to the
subroutine KEYSTOP, in which the message:

PRESS A KEY •••

appears on the screen and the computer waits for a keystroke. When a key
is pressed, the RETURN command restores control to the main program.

Now compare the BASIC program with the following C version:

.include "stdio.h"
fdefine getchar() getc(stdin)
main ()
{

printf("BASIC\n");
keystop();
printf("FORTH\n");
keystop();
printf("LISP\n");
keystop();
printf ("PROLOG\n") ;
keystop () ;
printf("C\n");
keystop();
gemdos(Oxl);

keystop ()
{

int a;
printf("Press a key ... \n");
getch (a) ;

char bf[lOO);
int b = 0;
getch ()
{

return«b> 0) ? bf[--b)

186

getchar());

Abacus Software Atari ST BASIC to C

In this program, you see the function keys top called from the main
program rna in () with the statement:

keystop();

The fIrst thing this function does is to defIne a local variable of type integer.
Next, the message:

Press a key ...

is printed out and the program then uses the call getch (a) to wait for a
key to be pressed on the keyboard. The return of control to the calling
program is then automatic. In Digital C, however, ret urn must be
specifIed explicitly.

As you can see, there aren't too many differences between BASIC and C
routines. In C, a function is called simply using the function name, whereas
in BASIC, the line number of the fIrst command of the subroutine is used.

It is not necessary to use return to end a function in C. The return to the
calling function is performed automatically after the last statement in the
function has been executed. In our case, control was returned to the
function rna in () after the statement get ch (a) ;.

We could have formulated the function keystop in a number of different
ways. We could have written a PAUSE function, or a WAIT instruction as it
is implemented in some versions of BASIC.

The BASIC example would then read:

1000 REM PAUSE SUBROUTINE "KEYSTOP"
1005
1010 PAUSE 1000
1020 RETURN

or, if your BASIC does not include the PAUSE n command, as follows:

1000 REM PAUSE SUBROUTINE "KEYSTOP"
1005
1010 FOR A=l TO 10000: NEXT A
1020 RETURN

187

Abacus Software Atari ST BASIC to C

Both subprograms produce a certain time delay before the next
programming language is printed out.

In C, the corresponding function would look like this:

keystop ()
{

int x;
for(x 1; x < 30000; ++x)

;

This pause routine, as well as the previous keystroke function, can be put to
use in your own programs.

10.1.3 Functions calling each other

Look at the following C program:

main 0
{

eO
{

M()
(

sO
{

MO;
gemdos (Oxl) ;

putchar ('e ') ;
sO;
putchar('! ');

putchar ('M') ;
e();

printf("ss");

188

Abacus Software Atari ST BASIC to C

In this example, it becomes clear how functions in C can call each other.

This can also be done in BASIC. The above C program looks something
like this in BASIC:

10 GOSUB 100
20 END
30 ,
100 PRINT "M" ;
110 GOSUB 200
120 RETURN
130 ,
200 PRINT "E";
210 GOSUB 300
220 PRINT " , " . ,
230 RETURN
240 ,
300 PRINT "55";
310 RETURN

Have you figured out what these programs do? Consistent with the nature
of the programs and their function calls, the outputs of the C and BASIC
programs are:

Mess!

and

MESS!

respectively. In this example you can see how C functions can be called by
and nested within each another.

189

Abacus Software Atari ST BASIC to C

10.2 Passing parameters to functions

Up to now, C functions have not seemed much different from subroutines
in BASIC. This is only because we have not started passing parameters yet.

This case was shown in the examples on the previous pages. The function
keystop () , called from main () ,generates only a fixed time delay.

Assume, for example, that you want to simulate a

PAUSE n

command like the one already found in BASIC.

To accomplish this in C, the parameter n must be passed to the function.

The function then looks like this:

pause(n)i
int n;
{

int a;
for(a 1; a < n; ++a)

;

The n in the parentheses after p a use tells it that it should accept a
parameter passed to it and call it n.

The function is called with a statement like

pause(10000) i

or

pause(40000);

or pause (n) with any other number. This makes the for loop longer or
shorter, corresponding exactly to the BASIC command.

190

Abacus Software Atari ST BASIC to C

Let's look at our new pa use (n) function more closely in an example
program:

main ()
{

printf("Hello, ");
pause(30000);
printf ("how");
pause(20000);
printf(" are you?\n");
gemdos (Ox1) ;

}
pause(n) ;
int n;
{

int a;
for (a 1; a < n; ++a)

}

As another opportunity for comparison, here is the corresponding program
in BASIC.

We will assume here that the version of BASIC we are using does not
include the PAUSE n command and must therefore be written as follows:

10 PRINT "HELLO, ";
20 N=3000: GOSUB 1000
25 '
30 PRINT "HOW";
40 N=2000: GOSUB 1000
45 '
50 PRINT " ARE YOU?"
60 END
65 '
1000 REM PAUSE N
1010 FOR A=l TO N: NEXT A
1020 RETURN

In BASIC it is not possible to pass parameters directly. As in this example,
they must be passed indirectly using global variables.

191

Abacus Software Atari ST BASIC to C

In this case, the variable N represents the length of the pause, which
controls the FOR-NEXT loop in the subroutine starting at line 1000.

10.2.1 Returning integer data

So far we have covered the format of functions, how they call each other,
and how parameters are passed.

If, however, you want the function to return a value to the calling function,
you must follow a procedure which is somewhat unusual compared to
BASIC.

Let's take the following program, which computes the cube of a number, as
an example:

10 INPUT x %
20 GOSUB 100
30 PRINT Y%
40 END
50 ,
100 Y% = X% * X% * X%
110 RETURN

We write a corresponding C program using two functions:

main ()
{

int x, y;
scanf("%d", &x);
y = cube (x) ;
printf ("The cube of X is %d\n", y);
gemdos (Ox1) ;

cube(z)
int z;
{

return(z * z * z);

192

Abacus Software Atari ST BASIC to C

In C, the value of x3 must be returned to main () using the ret urn
statement.

The statement

y = cube(x);

assigns to y the exact value which appears between the parentheses in the
ret urn statement in cube. This is hard to get used to, especially for
BASIC programmers, but it offers advantages which will become obvious
by the end of the chapter.

For comparison, let me show you an example of how functions may not be
used:

main ()
{

int x, y;
scanf("%d", &x);
y = square(x);

printf("%d\n", y);
gemdos (Ox!) ;

square (q)
int q;
{

q = q * q;
}

This program illustrates an error very typical of BASIC programmers. In
BASIC, a subroutine structured like this would run without a problem, but
not in C. Why?

The procedure changes only the value of a variable, but does not
permanently assign the new value to a memory address. To accomplish this,
you use the return statement as before.

In this book we have learned another way to assign variable values to
specific memory addresses. This is done with pointer variables. In a few
pages we will explain how you can use pointers to arbitrarily exchange
values between functions without using the ret urn statement.

193

Abacus Software Atari ST BASIC to C

10.2.2 Returning other numerical data types

When we want a function to return a variable type other than integer, we
have to make a change. To explain this, let's change our previous BASIC
program so that the number to be cubed doesn't have to be an integer, but
can also be a floating-point variable.

10 INPUT X
20 GOSUB 100
30 PRINT Y
40 END
50 I

100 Y = X * X * X
110 RETURN

The C version would then read:

main ()
{

float x, y, cube();
scanf("%d", &x);

}

y = cube (x) ;
printf("The cube of X is %d\n", y);
gemdos (Ox1) ;

float cube(z)
float z;
{

return(z * z * z);
}

As you can see, the function name must be declared as flo a t at the
beginning of the function main () if it is to return a floating-point number.

This is done with the declaration statement

float cube();

This variable type must then be declared in the function cube () . Again,
this is not necessary for integer values.

194

Abacus Software Atari ST BASIC to C

Notice that the function was no longer introduced with just the simple
function name

cube(z)

but with the function header

float cube(z)

You must therefore declare the variable type again before the function name.
In practice, however, you will find or actually use very few flo at
functions in C programs. Instead, most functions which do not return
integer values will be declared as "double" functions in order to take
advantage of the increased accuracy of this variable type.

10.2.3 Pointers, functions, and simultaneous
parameter passing

Pointers play a very important role in transferring data between functions.
Let's look at how pointers are used, starting with a BASIC program.

10 INPUT A
20 INPUT B
30 GOSUB 1000
40 PRINT A;B
50 END
100 ,
1000 REM SWAP
1010 HI=A
1020 A=B
1030 B=HI
1040 RETURN

Here, the subroutine SWAP exchanges the values of the variables A and B.
Some versions of BASIC include a special SWAP command for this
purpose. This, if it is offered, corresponds exactly to the subroutine above.
A command like this is very useful, and is used in sorting routines, among
others.

195

Abacus Software

Now we come to the C version, which uses pointers:

main ()
{

}

int a, b;
scanf("%d %d", &a, &b);
swap (&a, &b);
printf("%d %d\n", a, b);
gemdos(Oxl);

swap (c, d)
int *c, *d;
{

}

int temp;
temp = *c;
*c *d;
*d = temp;

Atari ST BASIC to C

A comparison between the C and BASIC subroutines quickly reveals how
much alike they are. Using pointers, you can write subroutines in C in
almost the same way you would in BASIC.

The only real difference is the declaration of pointers. You must, of course,
declare a11local variables within a function as usual.

Pointers have already been thoroughly explained in this book. To avoid
repeating this material, we will restrict ourselves to a brief explaination of
the specific uses of pointers in transferring values between functions, using
this program as an example.

First, let's look at the call to the swap function in the line

swap (&a, &b);

The variables a and b must always be preceded by the address operator &

because the values in the function s wa p () are to be changed using memory
addresses. The memory addresses of the variables are passed to swap via
&a and &b.

196

Abacus Software Atari ST BASIC to C

Inside the called function, the variables c and d must be declared as integer
pointers so that they can receive the contents of the pointers &a and &b from
main () . The values in the two pointer addresses are then exchanged. The
variable temp which is used for this purpose need not be a pointer.

The two altered variables are then returned to the function rna i n () as
integer pointers. The contents of the variables a and b are thus swapped.

In this example, we passed two parameters to a function and got two values
back as well. ret urn can pass back only one value. Only the use of
pointers allows us to return more than one value.

As we have already mentioned, the development version of the Alcyon C on
the Atari ST does not perform pointer operations correctly, so this function
won't work properly with this compiler.

The non-standard pointer operations are the biggest fault of this compiler,
and certainly must be fixed before the commercial version can be considered
ready. On all other compilers, the pointer operators function as described
above.

10.3 The DEF FN command

In BASIC it is possible to define functions using DEF FN. The following
example program defines and performs a cube function.

10 DEF FNCUBE(X) = X*x*x
20 ,
30 INPUT X:
40 Y=FNCUBE(X) : PRINT Y
50 END

197

Abacus Software Atari ST BASIC to C

In C, we can define a function using the #define construction, which we
have already used to create symbolic constants. Our BASIC program is then
changed in C to:

*define cube(x) x * x * x
main ()
{

int x, Yi
scanf("%d", &X)i

Y = cube (x) i

printf("The cube of X is %d\n", Y);
gemdos (Oxl) ;

Here the statement:

*define cube(x) x * x * x

is what is called a macro. Macros are quick and easy to write. Their biggest
advantages are their flexibility and uncomplicated structure.

Compare the cube macro with the corresponding conventional ftinction:

cube(z)
int Z;
{

return(z * z * Z)i

As you can see, this function is larger and less efficient than the macro.
Because of this, macros are found quite often in C programs.

How does a macro work? This method of constructing functions is identical
to the symbolic constants described earlier in this book. There, we said that
the compiler substitutes the contents of the #define expression wherever
the corresponding name appears.

198

Abacus Software Atari ST BASIC to C

This allows us to write anything as a macro, not just functions. This
includes statements and function calls, as is shown in the following
example:

idefine printfs(x) printf("%s\n", x);
main ()
{

}

char *a;
a = "Input ... >";

pr intfs (a) ;
gemdos(Oxl);

199

Chapter 11

(Structures)

Abacus Software Atari ST BASIC to C

Structures

Structures are not available in BASIC, but they are available in many other
programming languages. In Pascal, for example, this variable type is called
a record.

In the following pages, we will describe everything important for you to
know as a BASIC programmer-the syntax of structures and how they are
used in programs.

To reassure you, we would like to make something clear from the start. In
our opinion, structures are not all that important for BASIC programmers at
the beginning. As we have already mentioned, any C program can be
written without them, using only the customary variable types.

As your experience and knowledge of C grow, you will find that
complicated algorithms can be simplified and made more readable using
structures.

11.1 Declaring structures

What are structures? Structures allow us to group together several variables
of different types so that we can access them under one name. We use
arrays to associate items of the same type together and structures allow us to
associate items of differing types.

The declaration takes place in its own routine. Take a look at the following
example:

struct item
{

int quantity;
char *description;
float price;

} ;

203

Abacus Software Atari ST BASIC to C

The declaration of i tern sets up a structure which might be used in an
inventory. The individual elements of the structure are the quantity,
description, and price of the item.

The example, when written out, makes it clear why we have referred to
structures as a way of associating variables. The structure name item
applies to all of the names which are defined under it.

This type of structure declaration normally takes place at the beginning of a
program, before global or local variables are defined. Note the semicolon
which follows the declaration--it must always follow the closing bracket.

11.2 Use of structure variables

Let's stay with our item example. The form of the structure i tern is
determined through the above declaration. In other words, we have declared
that the first element of the structure represents the quantity, the second
the description, and the third the price. In a table, it looks like this:

FORM : qua nt i t y (int) descr i pt i o n (* c h a r) pr i ce (f l oat)

item n o. 1
item n o .2
item no . 3

item no.n

The first line of the chart represents the form of the structure item, which
was determined by the previous structure declaration. As is shown in the
left column, this form can be used with an arbitrary number of items.

The number of items you want and exactly how they should be addressed as
variables, are determined in the structure variable declaration. If, for
example, only three items (no_l through no_3) are to be declared as
variables of the structure, then the following notation is necessary.

204

Abacus Software Atari ST BASIC to C

This table shows how the individual variables are addressed later in the
program:

number (int) description (*char) price(float)

nO_1.quantity no_ 1.descr iption nO_1.price
no_2.quantity no_2 .description nO_2.price
no_3 . quantity no_3.description no_3.price

Here you can see how the individual elements of the structure item are
accessed. The general form is

structure variable name.element name

First you must give the structure variable name, in this case, no 1, no 2, - -
or no 3, followed by a period and the name of the element from the
structure declaration must be included. In our example, these elements are
quantity, description, and price.

Structure variables formulated in this manner can be used just like normal
variables. For example:

no_2.quantity 125;

or

no_1.description = "ATARI 520ST";

!his short example program demonstrates how structure elements are used
m a program:

struct item

int quantity;
char *description ;
float price;

} ;

main ()
{

struct item no_1, no_2, no_3;
no_1.quantity = 125;
no_1.description = "ATARI 520ST ";
no_l.price = 699.0;
no_2.quantity = 15;

205

Abacus Software

no_ 2.description = "Commodore C-128";

no_ 2.price = 279.0;

no_ 3.quantity = 548;
no_3 . description = "Amiga";
no_3.price = 1295.0;

Atari ST BASIC to C

printf("The quantity of the first item is %d\n",no_1.quantity);
printf("The second item is a %s\n",no_2.description);
printf("The price of the first item is %f\n",no_1.price);
gemdos(Ox1);

Two things are shown in the main () function of this program. First, we
once again show how structure variable are declared, and second, we show
how elements of structures are used in a program.

11.3 Arrays and structures

You can now use structures and structure variables in your programs
without problems. In this section, you will learn how to simplify working
with structure variables. In the previous example, the structure variable
names were labeled no_I, no_2, and no_3.

In practice, things are almost never done this way. The articles can be
addressed more efficiently using arrays.

The structure variable declaration in the main () function looks like this
with an array:

struct item no[3];

instead of the original

Arrays make it much easier to access structure variables from a large group
of them.

206

Abacus Software

Our table would then be changed to:

quantity (int) description (*char) price (float)

noll] .quantity noll] .description
no[2] .quantity no[2] .description
no[3] .quantity no[3] .description

no[l].price
no[2].price
no [3] .price

Atari ST BASIC to C

Now let's extend our previous program using an array:

struct item

int quantity;
char *description
float price;

} ;

main ()
{

int n;
struct item no[3];

no[l] .quantity = 125;
no[l] .description = "ATARI 520ST";
no[l] .price = 699.0;

no[2] .quantity = 15;
no[2] .description = "Commodore C-128";
no[2] .price = 279.0;

no[3] .quantity = 548;
no[3] .description = "Amiga";
no[3] .price = 1295.0;

printf("Quantity Description Price\n");
for(n=O; n < 3; ++n)
{

printf("%d %s %f\n", no[n] .quantity,
no[n] . description, no[n] .price);

gemdos(Oxl);

In this example it becomes clear why nearly all structures are defined as
arrays.

207

Abacus Software Atari ST BASIC to C

The for loop, which prints out all of the elements of a structure, can be
used only with the help of arrays. This makes possible the generalized calls:

no [n] . number

no[n] . description

and

no [n] .price

Using arrays of structures also makes it easier to change the program later.
For example, if you want to change the number of items in our program
from 3 to 100, all you have to do is change the number in the declaration.

The declaration:

struct item no[3]i

would then be changed to:

struct item no[lOO];

After you have tried out the example programs, experiment with structures
in your own programs to reinforce your knowledge.

208

Chapter 12

(An Overview of C)

Abacus Software Atari ST BASIC to C

A C overview

12.1 Keywords in C

The following pages contain a brief summary of the most important C
language elements.

LOOP INSTRUCTIONS

for
do
while

DECISION INSTRUCTIONS

if
else
switch
case
default

JUMP INSTRUCTIONS

break
continue
goto

STORAGE CLASSES

auto
extern
static

211

Abacus Software

DATA TYPES

int
short
long
unsigned
float
double
char
struct

OTHER EXPRESSIONS

return
exit
type
define
include
printf
scanf

Atari ST BASIC to C

These key words, especially important for those learning C, represent the
language's core vocabulary . You can see that this fundamental vocabulary is
considerably smaller than that of BASIC.

In the following sections we discuss the core statements of the language.

212

Abacus Software Atari ST BASIC to C

12.2 C language statements

In this summary you will get one last look at the important language
elements and their syntax and how they are implemented in C programs.

12.2.1 The break statement

Syntax.:

break;

The break statement is used whenever a do, for, switch, or while
statement should be stopped immediately. After the break jump, the
program resumes running after the loop or s wit ch statement, as the case
may be.

12.2.2 The case statement

Syntax:

case constant:
statement 1;
statement 2;

The case statement is a component element of the switch branching
structure. If the constant in the ca s e statement matches the s wit ch
expression, then the statements within the case block are executed.

213

Abacus Software Atari ST BASIC to C

12.2.3 The cont inue statement

Syntax:

continue;

The con tin ue statement is used inside a loop. If this statement is
encountered, none of the statements which follow it in the loop are
executed. Instead, the next pass through the loop is begun.

12.2.4 The #define statement

Syntax 1:

#define name replacement_text

When this statement is used at the beginning of a C program, name will be
replaced by the replacement text wherever name is encountered after the
definition in program.

Syntax 2:

#define name(param_l, param_2, ... param_n) text

The macro name is defined and places the n parameters in the text
statement, which is substituted for name in the program. One example is
the macro

#define square (x) x * x

The macro is called with a statement like

x = square(value_l * 2);

which is replaced with

x = (value_l * 2) * (value_l * 2);

214

Abacus Software Atari ST BASIC to C

12.2.5 The de fa u 1 t statement

Syntax:

default:
program expression;

the defaul t statement causes the statements following it to be carried out
within a swi tch structure when none of the preceding case statements
match the s wit ch expression.

!fa switch structure contains no default statement and none of the
case conditions are fulfilled, nothing is executed.

12.2.6 The do statement

Syntax:

do
{

}
statements

while (condition)

The program statements within the do loop are executed as long as the
condition in the while statement is true.

It should be noted that statements within the do loop are executed at least
once because the while condition is not checked until the end of the loop.

215

Abacus Software Atari ST BASIC to C

12.2.7 The else statement

Syntax:

else
statement;

The e 1 s e statement is a component of the i f structure. The e 1 s e
statement (which may also be a statement block) is executed when the if
condition is false, or logically equal to zero.

12.2.8 The else if statement

Syntax:

else if (condition)
statement;

The .e 1 s e if statement follows an if statement or another e 1 s e if. If
the else if condition is true, or logically unequal to zero, the statement
(block) following it will be executed.

12.2.9 The for statement

Syntax:

for (first interval bound, second bound, step size)
statement;

The first interval bound initializes a loop variable. This value
determines the lower boundary of the loop. The second bound sets the
condition for the end of the for loop.

The step size determines the change made in the loop variable each time
the loop is executed. The statement is repeated within the loop.

216

Abacus Software Atari ST BASIC to C

12.2.10 The qoto statement

Syntax:

goto label;

The execution of the goto statement causes a direct jump to the position
within the program which is identified by

label: statement

12.2.11 The if statement

Syntax:

if (condition)
statement;

If the condition is true, or logically unequal to zero, the statement will be
executed.

12.2.12 The null statement

Syntax:

. ,
This expression does absolutely nothing while the program is running. It
must often be used, however, to fill in the requirements of the specific
syntax of some statements (for example, in do, for, and while loops).

An example of its use is a delay loop like the following:

for(a = 1; a < 1000; ++a)
;

217

Abacus Software Atari ST BASIC to C

12.2.13 The return statement

Syntax 1:

return;

The return statement causes an immediate jump from the function in
which it is located back to the calling function. This instruction is not
necessary if the function is to end when the last statement is executed.
Syntax 2:

return (expression);

The value of the expression is returned to the function name.

12.2.14 The struct statement

Syntax:

struct name
{

} ;

variable declaration 1
variable declaration 2

variable declaration n

struct name variable 1, variable 2, ... , variable n;

First, the structure variable name is declared with n variables. The variables
may be of any type. Before it can be used in a program, variable names
must be assigned the structure's form.

Structure elements are accessed in a program as follows:

First the name of the structure is entered, followed by a period and the name
of the element declared within the structure.

218

Abacus Sortware

12.2.15 The switch statement

Syntax:

switch (expression)
{

case constant 1:
statement 1;
statement 2;

break;
case constant 2:

statement 1;
statement 2;

break;

default:

Atari ST BASIC to C

The value of the expression in switch is compared with the constants in
the ca s e expressions. When a match is found, the corresponding block of
commands is executed.

It is wise to end a case block with break. The default statement,
which we have already discussed, can be included in the s wit ch
construction if you choose. The commands following the de fa u 1 t
statement are carried out if none of the ca se conditions are fulftlled.

219

Abacus Software

12.2.16 The while statement

Syntax.:

while (expression)
statement;

Atari ST BASIC to C

The statement (block) in the loop body is repeated as long as the while
expression is true, that is, as long as the logical value of the expression is
not zero. The expression can be replaced by a condition.

220

Abacus Software Atari ST BASIC to C

12.3 Variable types in C

The variable types can be divided into two parts: integral and floating-point
variables. The variations of these two elementary types are as follows,
although some C compilers do not support them all.

12.3.1 Integer variables

char
int
short int
long int
unsigned int

unsigned short

unsigned long

Single character value.
Integer value.
Small integer value.
Large integer value.
Positive integer, twice as large as
regular into
Positive int, twice as large as regular
short into
Positive in t, twice as large as regular
long into

12.3.2 Floating-point variables

float
double float
long float

Floating-point number.
Floating-point number with double precision.
Treated like double.

221

Abacus Software Atari ST BASIC to C

12.4 Operators in C

C has a wealth of operators in comparison to BASIC. The following list
includes the most important operators. The list is ordered according to
execution priority, each level having lower priority than the last.

PRIORITY LEVEL 1

() Parentheses, function call
[] Array element
- > Structure pointer operator

Structure variable operator

PRIORITY LEVEL 2

Negative operator
+ + Increment operator

Decrement operator
Logical negation operator

* Pointer operator
& Address operator

PRIORITY LEVEL 3

* Multiplication operator
/ Division operator
% Modulo operator

PRIORITY LEVEL 4

+ Addition operator
Subtraction operator

PRIORITY LEVEL 5

< < Left -shift operator
» Right-shift operator

222

Abacus Software Atari ST BASIC to C

PRIORITY LEVEL 6

< Less than relation
<= Less than or equal relation
> Greater than relation
>= Greater than or equal relation

PRIORITY LEVEL 7

Equality relation
, - Inequality relation

PRIORITY LEVEL 8

& Bitwise AND operator

PRIORITY LEVEL 9

1\ Bitwise exclusive OR operator

PRIORITY LEVEL 10

Bitwise inclusive OR operator

PRIORITY LEVEL 11

& & Logical AND operator

PRIORITY LEVEL 12

I I Logical OR operator

PRIORITY LEVEL 13

? : Conditional assignment

223

Abacus Software Atari ST BASIC to C

Appendix A

Now that you worked through this book, what should you do next?

First it would be a good idea to strengthen your C programming skills, and
the best way to do that is to get more practice. Write some new programs in
C or convert some of your old BASIC programs into C. You should find
the overview in the previous chapter helpful as you use the various C
structures. If you want more precise information, you can find the
appropriate sections of the book quickly with the index.

You have no doubt noticed that this book is just an introduction to C,
although it is also a good reference work for programmers with experience
in BASIC. Once you have strengthened your knowledge, you need more
information about C. C is a relatively complex language and we didn't have
enough room in this book to explain all of its features. The bibliography
contains a number of books which will tell you more about C.

225

Abacus Software Atari ST BASIC to C

Appendix B:

More books on C

AT & T/Bell Laboratories, C Programmer's Handbook, Prentice-Hall,
1985.

Bean, The Illustrated C Programming Book, Prentice-Hall, 1985.

Birns, Brown, Muster, UNIXfor People, Prentice-Hall, 1984.

Cooper, Graphics Programming in C, Sybex, 1985.

Costales, C: From A to Z, Prentice-Hall, 1985.

Hendrix, The small C Handbook, Prentice-Hall, 1985.

Harbison, Steele, C: A Reference Manual, Prentice-Hall, 1985.

Hogan, The C Programmer's Handbook, Brady, 1984.

Hunter, Understanding C, Sybex, 1985.

Joyce, C by Example, Addison-Wesley, 1985.

Kelley, A Book on C, Addison-Wesley, 1985.

Kernighan, Ritchie, The C Programming Language, Prentice-Hall, 1978.

Kochan, Programming in C, Hayden, 1983.

Moore, Programming in C With a Bit of Unix, Prentice-Hall, 1985.

Plum, C Programming Guide Lines, Prentice-Hall, 1984.

Plum, Learning to Program in C, Prentice-Hall, 1983.

Tondo, Gimpel, The C Answer Book, Prentice-Hall, 1985.

Traister, Programming in C, Prentice-Hall, 1985.

227

Abacus Software Atari ST BASIC to C

Traister, Programming Halo Graphics in C, Prentice-Hall, 1985.

Tyler, Systems Programming in C, Sybex, 1985.

Waite, Prata, Martin, C Primer Plus, Howard Sams, 1984.

Wotman, Sidebottom, The C Programming Tutor, Brady, 1984.

Zahn, C Notes: A Guide to the C Programming Language, Yourdon Press,
1979.

228

Abacus Software

#define 81-82, 198-199, 214
& a variables 27
abort (0) 133

Atari ST BASIC to C

Index

address operator 28, 45, 71, 99, 101, 104, 173, 174, 196, 222
Alcyon C 5, 13, 25-27, 74-75
arithmetic operators 111-124
arrays 36-38, 43, 91-95, 99, 203, 206, 208
ASCII 24, 27, 61, 62, 74, 85, 86, 160
bit operators 123-124
break 211,213
case 213
char 80,203-205,207,212,221
COBOL 3
comma 140-141
command extensions 75
comments 22-23, 42
comparison operators 116-119, 129-130
constants 81-83
continue 211,214
control structures 31-34, 117, 127-158
conversion elements 52
data input 23, 38, 44, 49, 65, 67
data types 35, 79, 80, 83, 84, 91, 105, 193, 212
dBASE III 3
declaration headers 79
decrement operators 115-116, 144, 222
default 215
define 212, 214
DEF FN 197
Digital Research 4
do 215, 217, 221
do-while loop 148-149, 151-152
double 87, 212, 221
else 211, 216
else if 135-136, 216
End Of File(EOF) 24, 25, 38, 66, 75
equality operator 25, 29, 45, 130
exit () 131-133,212

229

Abacus Sortware

exponential notation 53
extern 211
float 87, 212,221
for 17-19, 136-144, 147, 211, 216
FOR-NEXT 17-20, 137, 191
fonnatinstructions 15, 16,52,56
fonnat specifiers 52, 53
functions 11, 41, 184-197
GEMDOSI0

Atari ST BASIC to C

getchar () 23-25, 37, 38, 44, 63, 65-68, 73-75, 86, 186
global variables 79,90, 91, 93, 191
goto 154-157,160,211,216,217
header 79, 88,195
hexadecimal 52
if 32-33,128-130, 211,213,217, 222
if-else 32, 33, 45, 133-135
IF-THEN-ELSE 33
increment operator 31,45, 115-116, 144,222
indirection operator 58 '
inequality operator 25,29,45
infinite loop 137-140, 149, 150
input functions 65
integer constants 81, 82
integer data types 84
jump instructions 211
justification 54
keywords 211-212
Lattice 5
libraries 3, 183
local variables 90, 93-95, 196, 204
logical AND 45, 131, 223
loops 44, 138
macro 75, 198, 199, 214
main () 10-14
MC680004
Megamax compiler 5
Microsoft Corporation 145
mistakes 82, 165, 178
modulo operator 114, 222
NAND 121
negation operator 120, 121, 129, 222
nested for loops 141-144

230

Abacus Software

nested while loops 148
new-line character 49, 177
null 217
octal 52
offset 104
operands 87

Atari ST BASIC to C

operators 31, 111, 112, 115-124, 129, 130, 172, 197,222
outer interval limit 18
outputting numbers 54
Pascal 3, 11, 13, 203
pointer 26, 69, 70, 79, 95, 99-105,107,173,174,193,195-197,222
pointers and arrays 99-102
printf 12-18
putchar () 63,65-68,74,75
puts () 27,63,65,67,68,86, 118
record 203
return 218
Ritchie, Dennis 3, 154
scanf 68-72,86,131-134,157,159,168,171-174,177,179,192-194,
196,198,212
scientific notation--see exponential notation
standard functions 25, 183
static 94,95,211
stdio.h 70,74,86,118,139,186
string assignment 38
string variables 58-59, 82, 102
struct 203-208, 211-213, 215, 216, 218, 219, 222
SWAP 195-197
switch 3,9,80, 156-161,211,213,215,218,219
symbolic constants. 35, 36, 80, 81, 90, 91, 198
text formatting 12-14,56-57
unsigned 52, 83, 84, 87, 212, 221
value assignment 112-114, 146, 166, 169
variable type 88-90, 203
variables 14-15, 79-80,203-206, 218, 221
while 211,213,215,217,220
while loop 20-22, 145-150,211,220

231

Optional Diskette

ATARI ST

BASIC to C

Optional Diskette

For your convenience, the 'C' program listings contained in this book are

available on an SF354 formatted floppy disk. Due to diskette directory

limitations the BASIC programs were not included. You should order the

diskette if you want to use the programs, but don 't want to type them in

from the listings in the book.

All programs on the diskette have been fully tested. You can change the

programs for your particular needs. The diskette is available for $14.95 plus

$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a

check, money order or credit card information. Mail your order to:

Abacus Software
5370 52nd. Street SE

Grand Rapids, MI 49508

Or for fast service, call 616/698-0330.

REQUIREDR~

INTERNALS
Essential guide to learning the
Inside information of the ST.
Detailed descriptions of sound
& graphics chips, internal
hardware, various ports. GEM.
Commented B lOS listing. An
Indispensible reference for
your library. 45Opp. $19.95

GEM Programmer'. Ref.
For serious programmers in
need of detailed Information
on GEM. Written with an
easy-to-understand format. All
GEM 8xClJ'lllies are written in
C and assembly. Required
reading for the serious pro
grammer. 45Opp. $19.95

TRICKS & TIPS
Fantastic collection of pro
grams and In'o for the ST.
Complete programs include:
super-fast RAM disk; time
saYing printer spooler; color
print hardcopy; plotter output
hardcopy. Money saving tricks
and tipo. 200 1'4). $19.95

GRAPIICS & SOUND
Detailed guide to understand·
ing graphics & sound on the
ST. 20 & 3D lunc1ion plotters,
Mot" patterns, various reso
lutions and graphic memory,
fradals , waveform generation.
Exarrples written In C, LOGO,
BASIC and Modula2. $19.95

BASIC Tr.,nlng GuIde
Indispensible handbook for
beginning BASIC program
mers. Learn fundamentals of
programming. Flowcharting,
numbering system, logical
operators, program strudures,
bits & bytes, disk use, chapter
qu~z.. . 200pp. $16.95

PRESENTING THE ST
Gives you an in·depth
look at this sensational
new computer. Discusses
the architecture of the
ST, working w~h GEM,
the mouse, operating
system, all the various
inlerlaces, the 68000
chip and its instructions,
LOOO. $16.95

MACHINE LANGUAGE LOGO PEEKS & POKES BEGINNER'S GUIDE BASIC TO C
Program in the fastest Take control of your Enhance your programs Finally a book for those If you are already familiar
language for your Atari ATARI ST by learning with the examples found new to the ST wanting to with BASIC, learning C
ST. Learn the 68000 LOGO-the easy·to· use, within this book. Explores understanding ST basics. w ill be all that much
assembly language, its yet powerful language. using the different lang- Thoroughly understand easier. Shows the trans·
numbering system, use Topics covered include uages BASIC, C, LOGO your ST and its many ition from a BASIC
01 registers, the structure structured programming, and machine language, devices. Learn the lunda· program, translated step
& important details of the graphic movement, file using various interfaces, mentals of BASIC, LOGO by step, to the final C
instruct ion set, and use 01 handling and more. An memory usage, reading and more. Complete with program. For all users
the internal system excellent book for kids as and saving from and to index, glossary and iIIus- interested in taking the
routinOS. 280pp $19.95 well as aduIIs. $19.95 disk, more. $16.95 Iralions. .200pp $16.95 next step. $19.95

5370 52nd Street SE Grand Rapids, MI 49508 Phone (616) 698-0330
Optional diskettes are available for all book titles at $14.95
Call now for the name of your nearest dealer, Or order directly from ABACUS with your MasterCard, VISA, Dr Amex card. Add
$4,00 per order for postage and handling, Foreign add $10 .00 per book. Other software and books coming soon. Call or
write for your free catalog. Dealer inquiries welcome--over 1400 dealers nationwide.

We have the software
you've been looking for!

Data Trieve
The electronic

filing system
for the ST

ST DataTrleve
Data management was never this
easy. Online help screens; lightning
fast operation ; tailorable display' user
definable edit masks; up to 64,000
records. Supports multiple files . In
cludes RAM-disk programs. Complete
search, sort and file subsetting . Inter
faces to TextPro. Easy yet powerful
printer control. Includes five common
database setups. $49_95

ST Forth/MT
Powerful, muni-tasking Forth for the ST.
A complete, 32-bit implementation
based on Forth-83 standard. Develop
ment aids: full screen editor, monitor,
macro assembler. t 500+ word library.
TOS/L1NEA commands. Floating point
and complex arithmetic. $49.95

Word processor for the ST

STTextPro
Wordprocessor with professional
features and easy-to-use! Full-screen
editing with mouse or keyboard
shortcuts. High speed input, scrolling
and editing; sideways printing;
multi-column output; flexible printer
installation; automatic index and table
of contents; up to t 80 chars/line; 30
definable function keys; metafile
output; much more. $49.95

AssemPro
The complete 68000

assembler development
package for the ST

ST AssemPro
Professional developer's package
includes editor, two-pass interactive
assembler with error locator, online help
including instruction address mode and
GEM parameter information ,
monitor-debugger, disassembler and
68020 simulator, more. $59.95

ST Paint Pro
Friendly, but powerful design and paint
ing program. A must for everyone's
artistic and graphics needs. Up to three
windows. Cut & paste between win
dows. 36 user-defined fill patterns;
definable line patterns; works in hi
med- & lo-res; accepts GDOS fonts .
Double-sized picture format. $49_95
PaintPro Library .1 5 fonts, 300+ electronic.
architectual . borders & dip art designs. $19.95

PowerPlan ST
Full-powered Spreadsheet
37 math fu nctions · 14 cigh precision
Large size · owr • . 2 billion cells
Multiple windows · ~ to 7
Graphics . 7 ~s of graphs

PowerPlan ST
Powerful analysis package. Large
spreadsheet (65536 X 65536 cells),
built-in calculator, notepad, and inte
grated graphics. 37 math functions, t 4
digit-precision. Seven windows to show
one of seven types of charts or another
section of your spreadsheet. $79.95

ST and 10405T are trademarka of Atan Corp.

Other software and books also available. Call or write
for your free catalog or the name of your nearest
dealer. Or order directly using your VISA, MC or Amex
card . Add $4.00 per order for shipping and handling.
Foreign orders add $10.00 per item. 30-day money
back guarantee on software. Dealers inquires
welcome--over 1500 dealers nationwide.

Abacus IIHtH]I
Abacus Software • 5370 52nd Street SE
Grand Rapids, MI 49508· Phone (616) 698-0330

Selected Abacus Products for the A1rM.~ ~ 0lJM

DataRetrieve
(fonnerly FilePro S1)

Database management package
for the Atari ST

"DaIoRetrieve is the most versaJile, and yet simple,
data base manager available for the Atari 520ST11040ST
on the market to date."

-Bruce Mittleman
Atari Journal

DataRetrieve is one of Abacus' best-selling software
packages for the Atari ST computers-it's received
highest ratings from many leading computer magazines.
DataRetrieve is perfect for your customers who need a
powerful, yet easy to use database system at a moderate
price of $49.95.

DataRetrieve's drop-down menus let the user quickly and
easily defme a file and enter information through screen
templates. But even though it's easy to use,
DataRetrieve is also powerful. DataRetrieve has fast
search and sorting capabilities, a capacity of up to
64,000 records, and allows numeric values with up to
15 significant digits. DataRetrieve lets the user access
data from up to four files simultaneously, indexes up to
20 different fields per file, supports multiple files, and
has an integral editor for complete reporting capabilities.

DataRetrieve's screen templates are paintable for
enhanced appearance on the screen and when printed, and
data items may be displayed in multiple type styles and
font sizes.

The package includes six predefmed databases for
mailing list, record/video albums, stamp and coin
collection, recipes, home inventory and auto
maintenance that users can customize to their own
requirements. The templates may be printed on Rolodex
cards, as well as 3 x 5 and 4 x 5 index cards.
DataRetrieve's built-in RAM disks support lightning
fast operation on the 1040ST. DataRetrieve interfaces to
TextPro flies, features easy printer control, many help
screens, and a complete manual.

DataRetrieve works with Atari ST systems with one or
more single- or double-sided disk drives. Works with
either monochrome or color monitors. Printer optional.

DataRetrieve Suggested Retail Price: $49.95

DataRetrieve
The electronic

cl 1 ~ l filing system
for the ST

I J ~I
V'b..m

DataRetrieve Features:

• Easily define your files using drop-down menus
• Design screen mask size to 5000 by 5000 pixels
• Choose from six font sizes and six text styles
• Add circles, boxes and lines to screen masks
• Fast search and sort capabilities
• Handles records up to 64,000 characters in length
• Organize files with up to 20 indexes
• Access up to four files simultaneously
• Cut, past and copy data to other files
• Change file defmitions and format
• Create subsets of files
• Interfaces with TextPro flies
• Complete built-in reporting capabilities

Change setup to support virtually any printer
• Add header, footer and page number to reports

Define printer masks for all reporting needs
• Send output to screen, printer, disk or 'modem
• 1ncludes and supports RAM disk for high-speed

1040ST operation
• Capacities: max. 2 b.ill.iilll characters per file

max. 64,000 records per file
max. 64,000 characters per record
max. fields: limited only by record size
max. 32,000 text characters per field
max. 20 index fields per file

• Index precision: 3 to 20 characters
• NUJreric precision: to 15 digits

Numeric range ±lO-308 ti ±10308

AIari sr, S2OST1100l0ST, IDS, sr BASIC and sr 1.000 uelndemllb or ",10 __ of Atari Corp. --------~

OI!MIaI "''' __ or!);,;,", R-m. Inc.

Selected Abacus Products for the ffi\1r~~ ~ ~

TextPro
Wordprocessing package

for the Atari ST

'TextPro seems to be well thought out, easy, flaible
anf fast . The program maJces excellent use of the GEM
interface and provides lots of small enhancements to
make your work go more easily ... if you have an ST
and haven't moved up to a GEM word processor, pick
up this one and become a text pro."

-John Kintz
ANTIC

'TextPro is the best word processor available for the ST'
-Randy McSorley

Pacus Report

TextPro is a first-class word processor for the Atari ST
that boasts dozens of features for the writer. It was
designed by three writers to incorporate features that
~ wanted in a wordprocessor-tbe result is a superior
package that suits the needs of all ST owners.

TextPro combines its "extra" features with easy
operation, flexibility, and speed-but at a very
reasonable price. The two-fmgered typist will find
TextPro to be a friendly, user-oriented program, with all
the capabilities needed for fine writing and good-looking
printouts. Textpro offers full-screen editing with mouse
or keyboard shortcuts, as well as high-speed input,
scrolling and editing. TextPro includes a number of easy
to use formatting commands, fast and practical cursor
positioning and multiple text styles.

Two of TextPro's advanced features are automatic table
of contents generation and index generation
--capabilities usually found only on wordprocessing
packages costing hundreds of dollars. TextPro can also
print text horizontally (normal typewriter roode) or
vertically (sideways). For that professional newsletter
look, TextPro can print the text in columns-up to six
columns per page in sideways roode.

The user can write form letters using the convenient
Mail Merge option. TextPro also supports GEM
oriented fonts and type styles---text can be bold,
underljned, italic, superscript, outlined, etc., and in a
number of point sizes. TextPro even has advanced
features for the programmer for development with its
Non-docurnent and C-sourcecode modes.

TextPro Suggested Retail Price: $49.95

Word Proceooor lor the Atorl

D .. ,. CM.utl,. htuilit.

"trl'S'1M" l'tntu',I"",
tllllllli eUef .. ,. IItu, .,..
dntl.

f,,,,,,tUil

• ,
I'at 11' 11:

TM. 1. .. ".,'1 If tMt

~:- tC~":~t1f:: f-:;::~~
th.. t~IS' IIttlltlll t.
Iftt.l, ... rhll rllult.. PI"

~1:~ .. ,r!:!IIIIvt~T ~,:~I.:!:
,,-hU .. _lttlt.lIl .

~1,," •• ft"'I""lt
In. ,It.t nll.lth ,utlllIMrt
II the Rltre IIMfut, •• ,,,.
.,' ... , .. ,nd ... "II. , ... te-
tI,n hI t.l", t,n .f ,.d
ust...,. Ilk, ...

W, hn. en ut,nsl ... , 1111111' 'f
1I •• s ,1141 "f • .,., .. cilllS .

TextPro ST Features:

• Full screen editing with either mouse or keyboard
• Automatic index generation
• Automatic table of contents generation
• Up to 30 user-defined function keys, max. 160

characters per key

t
o·

• Lines up to 180 characters using horizontal scrolling
• Automatic hyphenation
• Automatic wordwrap
• Variable number of tab stops
• Multiple-column output (maximum 5 columns)
• Sideways printin2 on Epson FX and compatibles
• Performs mail merge and document chaining
• Flexible and adaptable printer driver
• Supports RS-232 me transfer (computer-to-computer

transfer possible)
• Detailed 65+ page manual

TextPro works with Atari ST systems with one or more
single- or double-sided disk drives. Works with either
monochrome or color ST monitors.

TexPro allows for flexible printer configurations with
most popular dot-matrix printers.

AlariST. 52QST. 1040ST. TOS. STBASlCmI STLOOO ore _ or rqil_ .. - or Alari Cap. ---------~
OEM loa rqla __ oCDiplai R_

Selected Abacus Products for the AtrM~ ~ ~

PaintPro
Design and graphics software for the ST

PaintPro is a very friendly and very powerful package
for drawing and design on the Atari ST computers that
has many features other ST graphic programs don't
have. Based on GEMIM, PaintPro supports up to three
active windows in all three resolutions-up to 640x400
or 640x800 (full page) on monochrome monitor, and
320 x 200 or 320 x 400 on a color monitor.

PaintPro's complete toolkit of functions includes text,
fonts, brushes, spraypaint, pattern fills, boxes, circles
and ellipses, copy, paste and zoom and others. Text can
be typed in one of four directions-even upside down
and in one of six GEM fonts and eight sizes. PaintPro
can even load pictures from "foreign" formats (ST
LOGO, DEGAS, Neochrome and Doodle) for
enhancement using PaintPro's double-sized picture
format. Hardcopy can be sent to most popular dot
matrix printers.

PaintPro Features :
• Works in all 3 resolutions (mono, low and medium)
• Four character modes (replace, transparent, inverse

XOR)
• Four line thicknesses and user-defmable line pattern
• Uses all standard ST f1ll patterns and user definable

f1ll patterns
• Max. three windows (dependng on available memory)
• Resolution to 640 x400 or 640x800 pixels

(mono version only)
• Up to six GOOS type fonts, in 8-, 9-, 10-, 14-, 16-,

18-, 24- and 36-point sizes
• Text can be printed in four directions
• Handles other GOOS compatible fonts, such as those

in PaintPro Library # 1
• Blocks can be cut and pasted; mirrored horizontally

and vertically; marked, saved in LOGO format, and
recalled in LOGO

• Accepts ST LOGO, DEGAS, Doodle & Neocbrome
graphics

• Features help menus, full-screen display, and UNIX>
using the right mouse button

• Most dot-matrix printers can be easily adapted

PaintPro works with Atari ST systems with one or
mOre single- or double-sided disk drives. Works with
either monochrome or color ST monitors. Printer
optional.

PaintPro Suggested Retail Price: $49.95

., :>

Lk UEI'sioo
W....A.Ut. ..u iP-&~

Old c.- -. om~ fDn10
Illaiudall p8HIlrr1 .dltar

A.tui ST. S2OST, l040ST,l'OS,STBASlCand STLOOOue lrIdemarkJ « ug itteredtn.demark! of Alari Corp. ------------"

OEM is. rqillered trademark of Oigital Research Inc.

Selected Abacus Products for the AtrM.~ ~ ~

Chartpak ST
Professional-quality charts and graphs

on the Atari ST

In the past few years, Roy Wainwright has earned a
deserved reputation as a topnotch software author.
Chartpak ST may well be his best work yet Chartpak
ST combines the features of his Chartpak programs for
Commodore computers with the efficiency and power of
GEM on the Atari ST.

Chartpak ST is a versatile package for the ST that lets
the user make professional quality charts arid graphs
fast. Since it takes advantage of the STs GEM
functions, Chartpak ST combines speed and ease of use
that was unimaginable til now.

The user first inputs, saves and recalls his data using
"Chartpak ST's menus, then defines the data positioning,
scaling and labels. Chartpak ST also has routines for
standard deviation, least squares and averaging if they are
needed. Then, with a single command, your chart is
drawn instantly in any of 8 different formats-and the
user can change the format or resize it immediately to
draw a different type of chart

In addition to direct data input, Chartpak ST interfaces
with ST spreadsheet programs spreadsheet programs
(such as PowerLedger ST). Artwork can be imported
from PaintPro ST or DEGAS. Hardcopy of the fmshed
graphic can be sent most dot-matrix printers. The results
on both screen and paper are documents of truly
professional quality.

Your customers will be amazed by the versatile,
powerful graphing and charting capabilities of Chartpak
ST.

Chartpak ST wOIks with Atari ST systems with one or
more single- or double-sided disk drives. WOIks with
either monochrome or color ST monitors. Works with
most popular dot-matrix printers (optional).

Chartpak ST Suggested Retail Price: $49.95 '

N~ ,,~ ••• ~~.

- lUl - vum

IIldr; Slack ferformdnce
/1

Stli4 lilt il lus l I~U If ulltlli ..

Du!rI /jits Ut J If""i, ,;,, liltl

Vl1ll1

Selected Abacus Products for the #\1rM.W ~ ~
AssemPro

Machine language development system
for the Atari ST

.... .l wish I had (AssemPro) a year and a half ago . .. it
could have saved me hours and hours and hours."

-Kurt Madden
ST World

'The whole system is well designed and makes the rapid
development of68000 assembler programs very easy."

-IeffLewis
Input

AssemPro is a complete machine language development
package for the Atari ST. It offers the user a single,
comprehensive package for writing high speed ST
programs in machine language, all at a very reasonable
price.

AssemPro is completely GEM-based---this makes it
easy to use. The powerful integrated editor is a breeze to
use and even has helpful search, replace, block,
upperllower case conversion functions and user defmable
function keys. AssemPro's extensive help menus
summarizes hundreds of pages of reference material.

The fast macro assembler assembles object code to
either disk or memory. If it fmds an error, it lets you
correct it (if possible) and continue. This feature alone
can save the programmer countless hours of debugging.

The debugger is a pleasure to work with. It features
single-step, breakpoint, disassembly, reassembly and
68020 emulation. It lets users thoroughly and
conveniently test their programs immediately after
assembly.

AssemPro Features:

• Full screen editor with dozens of powerful features
• Fast 68000 macro assembler assembles to disk or

memory
• Powerful debugger with single-step, breakpoint,

68020 emulator, more
• Helpful tools such as disassembler and reassembler
• Includes comprehensive 175-page manual

AssemPro Suggested retail price: $59.95

Dnk rile

r : U888

flSS!l'lbJer Dtbulttr flitter Surefrl 110[11 IIfl
ihSMbhr

T Xl: RU :

Alari sr, S2OST, l040ST, lOS, ST BASIC and Sf LOOO are trademarks or registered trademarks of Atari Corp.

OEM is. rqislCTed tndemuk of Digital Reseucb. Ioc.

IIIfa Lila

	f
	Binder1
	Document
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)

	b

