


Machine 
Language 

Complete introduction to machine/assembly 
language on the ATARI ST 

By B. Grohmann, P. Seidler & H. Slibar 

A Data Becker Book 

Published by 

Abacus IHHHllHl Software 



Fourth Printing, March 1989 
Printed in U.S.A. 
Copyright © 1985, 1987, 1988 

Germany 
Copyright © 1986, 1987, 1988 

Data Becker GmbH 
MerowingerstraBe 30 
4000 DUsseldorf, West 

Abacus Software, Inc. 
5370 52nd Street SE 
Grand Rapids, MI 49508 

This book is copyrighted. No part of this book may be 
reproduced, stored in a retrieval system, or transmitted in any 
form or by any means, electronic, mechanical, photcopying, 
recording or otherwise without the prior written permission of 
Abacus, Inc. or Data Becker GmbH. 

ATARI, 520ST, ST, TOS, ST BASIC and ST LOGO are 
trademarks or registered trademarks of Atari Corp. 

GEM, GEM Draw and GEM Write are trademarks or registered 
trademarks of Digital Research Inc. 

IBM is a registered trademark of International Business 
Machines. 

ISBN 0-916439-48-8 



Table of Contents 

Preface v 

1 Microcomputer Fundamentals 1 
• Introduction 3 
• Representation of data 5 
• Logical operations and bit manipulation 28 
• Program development 31 

2 Hardware Fundamentals 35 
• Introduction 37 
• Memory 37 
• Central processing unit 44 
• Input/output 45 

3 The 68000 Microprocessor 49 
• Introduction 51 
• Register structure and data organization 52 
• Operating states 62 
• Addressing modes 65 
• Overview of the instruction set 71 

4 Program and Memory Structures 73 
• Introduction 75 
• Procedures and functions 85 
• Memory structures 89 

5 Operating System and Programs 97 

6 Fundamentals of Assembly Language Programming 107 
• Introduction 109 
• The editor 110 
• The assembler 114 
• The debugger 162 
• Procedure conventions 166 

ill 



7 Programming Step by Step 
• Introduction 
• Example: Decimal/hexadecimal conversion 

8 Solutions to Typical Problems 
• Introduction 
• Hexadecima1ldecimal conversion 
• Decimallhexdecimal conversion 
• Calculating an average 
• Simple sorting 
• Output: Strings 
• Input: Strings with check 
• Output: Date 
• Factorial calculation 

Appendix 

IV 

171 
173 
174 

211 
213 
214 
224 
231 
239 
248 
250 
255 
260 

271 



Preface 

This book is intended especially for those new to machine language. In 

general, we assume that you have mastered the fundamentals of a 

programming language. Since programming in machine language requires a 

solid knowledge of the construction and operation of a computer, we have 

included a chapter in this book to present these primary topics. 

The chapters presenting the practical examples in machine language take 

up relatively little room in the book when one considers that they are really 

our theme. But our purpose is not to offer as many practical examples as 

possible, but to lead into our theme systematically. To a degree, we have 

also" developed" our machine language examples for this purpose. 

In the final analysis, programming in machine language does not differ 

in principle from programming in a high-level language. The assembler and 

microprocessor commands are only much less "powerful" than those of a 

high-level language. By this we mean that more commands are required to 

write a program in assembly language than for the equivalent in Logo, for 

instance. But assembly language programs are faster and can solve 

problems that are almost impossible in a high-level language. 

v 



This book is written especially for the Atari ST; the examples given can 

be executed on this computer directly. If you use assembly tools for 

assembly language programming other than those we used, you will have to 

modify the programs slightly (start address, etc.). The documentation 

included with your assembler will contain the necessary information. Apart 

from that, you should execute the examples as TOS applications. 

Last, but not least, we would like to thank all of those who helped with 

the creation of this book and with its corrections, in particular Andreas 

Lucht, who brought several "oversights" to our attention. 

Berlin, August 1985 

Bernd Grohmann 

Petra Seidler 

Harald Slibar 
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Abacus Software Machine Language for the Atari ST 

( Introduction) 

This chapter will describe the fundamentals of program development. 

Readers who are familiar with these terms can skim through this section. 

However, we believe that even the experienced programmer will find some 

interesting subjects here. 

What do we mean by programming? 

Given a problem, we must search for a solution. We try to find a 

step-by-step procedure to solve the problem. This step-by-step procedure is 

called an algorithm. Often we Lry to divide the problem into smaller 

sub-problems that are easy to solve. 

An algorithm represents a set of rules by which a problem may be 

solved step by step. It may consist of only a finite number of steps. The 

algorithm can be expressed in any desired symbols or language. A simple 

example of an algorithm is: 

1) Turn the cassette recorder's power on. 

2) Insert the cassette. 

3) Select the desired volume. 

4) Press the recorder's "play" button. 
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As soon as a solution to a problem is described as an algorithm, it can 

be translated into a set of symbols, or a "language" that a computer can 

understand. English or other "natural" languages are not well-suited to 

writing programs. The reason for this is that every natural language contains 

many syntactic ambiguities that the computer cannot understand. An 

artificial language can be created, however, with all its terms well-defined. 

The terms can even be borrowed from a natural language in order to make it 

easier for humans to read and understand. This type of artificial language is 

called a programming language. 

However, the computer usually cannot understand a programming 

language. The computer knows only a something called machine language. 

Utility programs are required that take programs written in a programming 

language and convert them to the machine language of the computer. 

It is possible to convert the algorithm directly to machine language. But 

since the internal representation of the machine language instructions is not 

very descriptive, something called assembly language is used. Each 

assembly language instruction represents exactly one machine language 

instruction. A program called an assembler takes a program written in 

assembly language and converts it to machine language .. The other features 

of an assembler will be described in the following chapters. 
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( Data Representation ) 

Data is processed in some manner by every program, whether the 

program interprets or creates it. Therefore data must also be converted to a 

form that the computer can work with. 

Reoresentin2 numerical data 

In order to understand the representation of numerical data in the 

computer, it makes sense to take a look at the elementary representation of 

numbers. So, we will fIrst describe the decimal system. 

In the decimal system, a number is expressed as a sequence of digits. 

As the name decimal system implies, there are ten different digits from 0 to 

9. Each of these has a specifIc value depending on the place in the number at 

which the digit is located. In general, this means that a digit in the "nth" 

place in the number has ten times the value of a digit in the (n-1 )th place. 

For example, the "1" in the number "1000" has ten times the value of the 

"I" in the number "0100". 

The number "12345" is just an abbreviated notation for the expression: 

1*10000 + 2*1000 + 3*100 + 4*10 + 5*1 

5 



Abacus Software Machine Language for the Atari ST 

or, written "mathematically": 

It should be noted that, in the decimal system, the value of a digit is 

determined by its position. The Roman numeral system, for example, does 

not conform to this method. 

The system of digits and positions has certain advantages when it 

comes to calculations. Since each place (position) describes a certain range 

of the number, the calculations can be performed place by place. For 

example, an addition can be performed as follows: 

235 

+ 582 

817 

First the right column is added: 5+2=7. 

Then the middle column: 3+8= 11. This can be thought of as a "1" and a 

carry of " 1" . 

The carry is added to the two digits in the next column: 2+5 +1=8. 

6 
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The method of solution can easily be formulated as an algorithm: 

1) Add the flrst column with carry. 

2) Add the following column, with carry if necessary 

(and create a carry if required). 

3) Repeat 2 until all columns have been processed. 

This algorithm does not take into account the case when a carry occurs 

in the last place. This can be accomplished as follows: 

4) If a carry occurs in the last column, extend the result 

by one place and write the carry in this place. 

If the extension by one place is not possible (as is often the case), an 

error can also be generated to indicate overflow. Several numbers can be 

added by successive execution of the algorithm. 

As this point we should ask ourselves if the method of solution is 

mathematically valid, and if it always leads to the correct result. With this 

simple example, we would hardly doubt our solution. But it is possible to 

prove that our column addition is valid: 

235 = 2*10 2 + 3*10 1 + 5 *1 0 ° 
582 = 5*102 + 8*1 01 + 2* 100 

235 + 582 .. .•..... . . . .. . . . (2 *102 + 3*10 1 + 5 *10°) 
+ (5 *10 2 + 8*101 + 2*10°) 

7 

(2+ 5 )*10 2 + (3+8)*101 + (5+2)*10°= 
7*10 2 + 11*101 + 7*10°= 
7*10 2 + 1*102 + 1*101 + 7*10°= 

8*10 2 + 1*10 1 + 7*10°= 
817 
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In this explanation we have used the commutative and associative 

properties, among others. But we have proven the procedure only for this 

example. The proof for other examples can be formulated similarly. 

In practice, you won't prove each algorithm mathematically before 

using it. Many perfectly correct algorithms cannot be so proven because 

they are too complex or complicated. In other words, no one has found (or 

looked for ... ) a proof for these algorithms, at least as of yet. In many 

instances it is reasonable to check the algorithm for mathematical 

correctness. Errors (such as exception cases) can often be found this way. 

Multiplication can be performed in a manner similar to addition. The 

general procedure is well known: 

243 * 103 

729 
o 

+ 243 

25029 

In this algorithm, column-type multiplications are performed first. The 

results of these multiplications are added, being valued according to the 

place at which a factor stands. 

Note the partial multiplications by "1" and "0". For a partial 

multiplication by "0", only a zero is written down below, and by a "1", 

simply the original factor "243". 
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With this short introduction we wanted simply to look at the decimal 

system in order to be able to recognize analogies between computation 

procedures in the various number systems. 

How is data represented in the computer? 

There are many ways to represent data or numbers in computers. You 

could assign a voltage to each number proportional to its value-such as 

1.23 Volts for the number 1.23. This principle is used in analog computers. 

The disadvantage of this methods is obvious-all computer components and 

memory units must work very precisely. With a required calculation 

accuracy of three places, the deviation must be under one-thousandth. With 

a range of 4 places, voltages between 0.01 and 10 must be recognized and 

processed precisely. In addition, the number range is limited. Other 

disadvantages of analog computers are that they are harder to program, and 

in practice can only process numerical values. 

For representing numbers in a computer we must select a well-suited 

number system with place notation. You might naturally choose the decimal 

system. Immediately a question is raised: how is a digit represented? Again, 

the problem is differentiating between the ten individual digits. 

We are able to prove mathematically the number of possibilities per digit 

a number system should have to be most effective. Thankfully this has been 

done for us already; the number arrived at was 2.7. Rounded off we get 3. 

Consequently, we have the digits 0,1, and 2 available. But limiting the 

number of possibilities per digit to two is technically simpler and less prone 

to error. As a result, the binary system was chosen for computers. 

9 
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In the binary system, each place has only two possible 

conditions-namely "0" and "1". These two conditions can also be 

represented easily. For example: 

"0" 

Voltage absent 

No current flowing 

Relay not making contact 

Switch off 

Lamp off 

"I" 

Voltage pres en t 

Current flowing 

Relay making contact 

Switch on 

Lamp on 

The abbreviated term "bit" was derived from the phrase "binary digit." 

A bit is therefore a two-value digit; it can be only "0" or "1". 

As in the decimal system, larger numbers can be represented in place 

notation. It is simple to write several bits in succession. The base in the 

binary system is naturally two, and not ten as in the decimal system. 

The binary number "OWl" is therefore an abbreviation of: 

The principle is exactly the same as for the decimal system. Since the base is 

two, it has to be "2x", and not "lOX" as in the decimal system. The binary 

number "0101" can be converted to the decimal system directly: 

10 
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Naturally, larger binary numbers can also be converted to decimal 

numbers. As an example we take "01101110": 

0 * 27 0 * 128 0 

+1 * 2 6 1 * 64 64 

+1 * 2 5 1 * 32 32 

+0 * 24 0 * 16 0 

+1 * 2 3 1 * 8 8 

+1 * 22 1 * 4 4 

+1 * 21 1 * 2 2 

+0 * 2 0 0 * 1 0 

110 

To avoid confusion concerning the base of a number, we will indicate a 

binary number by placing a "%" in front of it (such as %01101110 = 110). 

Decimal numbers receive no additional indication. 

Naturally, you can convert a decimal number to a binary number as 

well. We will use 110 as an example again. The following method can be 

used: 

110 / 2 55 remainder: 0 

55 / 2 27 remainder: 1 

27 / 2 13 remainder: 1 

13 / 2 6 remainder: 1 

6 / 2 3 remainder: 0 

3 / 2 = 1 remainder: 1 

1 / 2 1 remainder: 1 

11 
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The remainder column yields the binary number, read from bottom to 

top, in our example %1101110. Clearly %1101110 = %01101110. This 

also gives us the proof for our first conversion. 

You can compute with binary numbers using the same procedures used 

for decimal numbers. Just remember that only two digits are available. A 

carry occurs "beyond" 1 already, and not first at "9" as in the decimal 

system. 

An addition of two binary numbers looks like this: 

0110 
+ 1011 

10001 ( 6 + 11 = 17 ) 

At this point it would be a good idea to try out some examples of this 

method. Also, practice the conversions to and from the decimal system. 

Multiplication of binary numbers is also performed in the same way as 

decimal numbers. Since only the digits "0" and "1" occur in the binary 

system, only the zero and the first factor are added. We made a 

corresponding observation in the multiplication of decimal numbers. As an 

example we will calculate %0110 * %1011: 

0110 * 1011 

0110 
0110 

0000 
+ 0110 

1000010 6 * 11 66 ) 

12 
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Subtraction can be perfonned as usual, but taking the different base into 

account. Another way to perform subtraction is by adding a negative 

number; to do this, you must first consider how a negative number is 

represented in binary. We make the following consideration: 

If we add % 1 to the number % 1111, without taking the carry into 

account, we get %0000. The reverse would be to subtract one from %0000. 

Then we clearly get % 1111 back. So % 1111 corresponds to "-1". In order 

to make a clear designation, the highest order bit is defmed as the sign bit. If 

it is a "1", the number is negative; if a "0", it is positive. 

When computing with negative binary numbers it is important to ensure 

that both numbers have the same number of digits (bits). 

The negative numbers can be easily recognized: 

%1100 %1101 %1110 %1111 %0000 %0001 %0010 %0011 

-4 -3 -2 -1 o 1 2 3 

You may have figured out that for a given number of bits, there is 

always one more negative number than positive. With four bits, we can get 

the numbers -8 ... 7, and with eight bits the numbers -128 ... 127. 

A negative binary number easily can be converted from a negative 

decimal number. First the corresponding positive decimal number is 

converted to binary. Then all the bits of the binary number are reversed-a 

"1" bit becomes a "0" and vice versa. The procedure is called generating the 

"one's complement." To this one's complement you then add one, this 

result in the negative binary number and is called the two's complement. 

13 
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Example: 

-5 : 
One's complement of 

Result: 

5 - 4 : 

(5) %0101 
(-4) + %1100 

(1) %0001 

5 %0101 
%0101 

-5 

Machine Language for the Atari ST 

= %1010 
+ %0001 

%1011 
%1011 

3 - 6 

(3 ) %0011 
(-6)+ %1010 
-------------
(-3) %1101 

If the carry is not taken into account in the addition (example "5 - 4"), 

we get the correct result. With this type of calculation, you must limit the 

number range. Since in microcomputers the number range is always limited, 

this is no difficulty in practice. 

Without a complete proof, we have shown here that the representation 

really works-we can add and subtract (adding the negative numbers). 

In order to convert a 4-bit binary number to an 8-bit binary number, we 

have to take into account the value of the highest-order bit (the sign bit) of 

the 4-bit number. If this bit is zero, the top four bits of the 8-bit binary 

number are filled with %0000, and otherwise with" 1111". For example: 

4-bit binary number 

%0110 
%1111 
%1001 
%0100 

8-bit binary number 

14 

%00000110 
%11111111 
%11111001 
%00000100 
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When converting 8-bit binary numbers to 4-bit binary numbers, the top 

(left-most) four bits are simply stripped off. However, a check must first be 

made to see if the number will fit into four bits. 

Naturally, this principle applies to more than just 4 and 8-bit binary 

numbers. It can be applied to all other combinations as well. 

It's obvious that representing numbers in binary makes them hard for 

mere humans to read. It is much easier for us to work with a number like 

110 than with its binary equivalent, %01101110. To form a direct bridge 

between the numbers with which computers work, and numbers that 

humans prefer (numbers with fewer places required), it makes sense to 

combine several binary places together. This way the computer can continue 

to work in binary internally, while we use numbers with fewer places 

externally. 

Unfortunately, combining places does not work with the decimal 

system. This is because ten is not an integer power of two. All binary 

possibilities of the combined binary places must have a correspondence with 

the new digits. If we take three bits at a time, the digits 0 ... 7 can be 

expressed. Since the digits 8 and 9 are not required, we cannot use the usual 

decimal notation. On the other hand, if we group four binary digits together, 

the bit combinations %0000 ... %1001 can be expressed by the digits 0 ... 9. 

The remaining bit combinations have correspondence in the decimal system. 

It becomes clear that the number systems familiar to us will not work. 

For the base of the number system we are looking for, we must use a 

number that is a power of two. In theory and in practice, we have only two 

options: the numbers 8 and 16. 

15 
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If we want to use 8, we must group exactly three bits, since three bits 

give us 23=8 combinations. The number system resulting from this 

grouping is called the octal system. It found widespread use in older 

mainframe computers. The reason for this is that the digits in the octal 

system are only a subset of the digits in the decimal system. You need not 

introduce any "new" digits, so every printer that can output decimal digits 

(such as the printing mechanism of calculators) can also output octal digits. 

The following table contrasts binary, octal, and decimal numbers: 

Decimal Binary Octal 
------------------------------------

0 000 0 
1 001 1 
2 010 2 
3 011 3 
4 100 4 
5 101 5 
6 110 6 
7 111 7 

8 1000 10 
9 1001 11 

10 1010 12 
11 1011 13 
12 1100 14 
13 1101 15 
14 1110 16 
15 1111 17 
16 10000 20 

Computations can be performed in the octal system as they would be in 

any other of our number systems. If you are interested, try a few problems. 

You can check your work by converting to the corresponding binary 

representation and then to the decimal system, and back again. 

16 
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The main disadvantage of the octal system is that one decimal place 

cannot be stored in the field for one octal digit. In other words, numbers 8 

and 9 cannot be represented "one for one." To represent the digits "8" and 

"9" we need a second octal digit. 

This disadvantage is eliminated when we group four bits together. 

Since four bits give 24=16 bit combinations, the base of the resulting 

system is 16. This number system is called the hexadecimal system. 

In order to represent the sixteen combinations, six new characters are 

required in addition to the ten "normal" digits. For the sake of simplicity, 

the letters A through F are used. The table below shows the conversion 

between the various number systems: 

Decimal Binary Octal Hexadecimal 
--------------------------------------------------------------

0 0000 0 0 
1 0001 1 1 
2 0010 2 2 
3 0011 3 3 
4 0100 4 4 
5 0101 5 5 
6 0110 6 6 
7 0111 7 7 
8 1000 10 8 
9 1001 11 9 

10 1010 12 A 
11 1011 13 B 
12 1100 14 C 
13 1101 15 D 

14 1110 16 E 
15 1111 17 F 
16 10000 20 10 
23 10111 27 17 
24 11000 30 18 
32 100000 40 20 

17 
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The conversion from hexadecimal to decimal follows the same principle 

as that from binary to decimal. Since it is used so often, here's an example. 

The hexadecimal number "e57 A" is just an abbreviated notation for: 

or, written another way: 

12*163 + 5*16 2 + 7*16 1 + 10*160 = 50554 

There are two possibilities for the conversion back to hexadecimal. The 

simplest is to convert the decimal number to its binary equivalent and then 

convert the binary number to hexadecimal. However, this procedure 

requires a large number of computational steps. 

The other procedure is more difficult, but gets the result faster: 

The number to be converted is divided by the largest power 

of sixteen that is smaller than the number itself. The 

number after the decimal point is then multiplied by sixteen. 

As an example, let's take the number 50554. The largest power of 16 

smaller than 50554 is 163=4096; 164 is already 65536. 

50554 / 4096 =12.34228516 ==:12 (decimal) = C (hex) 

0.3442285 *16 =5.476562499 -- 5 (decimal) = 5 (hex) 

0.47656 * 16 =7.624999987 7 (decimal) = 7 (hex) 

0.625 * 16 =10 ==:10 (decimal) = A (hex) 

18 
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At this point we stop because we divided by the third power of 16. Our 

result is (as expected) "C57 A". It should be noted that calculation does not 

always "come out even." In this case we were just "lucky" with the 

rounding-off. In any event, you should practice this process if you have no 

other way of converting hex numbers. 

We denote hexadecimal numbers by placing a $ in front of them. We 

would write the hexadecimal number "C57 A" as $C57 A. 

Calculations can be performed with hexadecimal numbers as with 

decimal numbers. You need only note that a carry does not occur until "F", 

instead of "9". 

Example of "hex addition": 

C5D9 
+ 13EA 

D9C3 

At first glance this looks complicated, but it can be easily explained: 

$9+$A =9+10 =19 =16+3 =(carry $1) + $3 

(carry $1) +$D+$E =1+13+14 =28 =16+12 = (carry $1) +$C 

(carry $1) +$5+$3 =1+5+3 =9 =$9 

$C+$l =12+1 =13 =$D 

You will be seeing such calculations more often, since computers work 

fundamentally with bits, and these are almost always gathered into hex 

numbers. The multiplication of hex numbers is usually performed as 

multiplication of the binary representation of the factors. 

19 
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Negative binary numbers in two's complement can also be written as 

hex numbers, and processed as such. 

Example: 

-95 $A1 %1010001 

The same rules applying to computation with negative binary numbers 

in two's complement also apply to computation with negative hex numbers 

in two's complement. In the final analysis, hexadecimal representation is 

only an abbreviated notation for binary representation. 

At this point we could write more about working with hex numbers, but 

it would be difficult to remember everything if we explained it now. In 

particular, we will explain how calculations are performed with the 

MC68000 microprocessor in a later chapter. 

Representation of decimal fractions 

So far we haven't said anything about how decimal fractions are 

represented in a computer. We will just give some examples, since we do 

not have enough space to explain in detail here. But these decimal fractions 

are important, especially so as we learn machine language programming. 

A widely-used form of representation of decimal fractions is what's 

known as the normalized exponential representation. In the number 

0.0000234, four places (the four zeros after the decimal) are required just to 

indicate where the decimal goes. This number can also be written as 

20 

... 



Abacus Software Machine Language for the Atari ST 

0.234*10-5. The number -100 can be written as -0.1*103,41.23 as 

0.4123*102. The 0.4123 (in the last example) is usually called the 

mantissa, and the 2 is called the exponent. 

This method of representation can also be carried over to binary 

numbers. You call also write the binary number 1010.011 as 

0.1010011 *24. 

Binary numbers in exponential notation can be represented in the 

computer in various formats. One commonly used format is 32 bits for 

representation: 

S Exponen 
E M 

Mantissa 
01 

SE : sign of the exponent SM : sign of the mantissa 

In this example, both the exponent and the mantissa are represented in 

two's complement. The exponent can therefore accept the values -128 .. 127. 

There are 24 bits available for the mantissa. Since the first bit indicates the 

signJ 23 bits remain for the amount. 

This is obviously just one example of representation in the normalized 

exponential form. The number of bits used can be varied, of course. 

Conversion errors always arise when converting from decimal to binary 

or hexadecimal and back again. Binary representations are not well-suited 

for applications requiring absolute accuracy (such as corporate business 

21 
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applications, and shuttle launches). To petform such calculations, there is 

another form of representation. 

BCD representation 

BCD is an acronym for Binary-Coded Decimal. In BCD, each four bits 

represent a decimal digit. It must be note that the computation rules for 

binary numbers cannot be applied to BCD numbers. BCD numbers have 

the same form as binary numbers, but have other properties. 

The number 735 would be represented as follows: 

735 = 0111 0011 0101 (BCD) 

Note that a number like 1101 0111 0101 is not a BCD number, 

because 1101 doesn't represent a decimal digit (it represents 13 or D). 

Additional "tricks" are often used to represent BCD numbers efficiently. 

For example, the first BCD digit can indicate how many places the number 

has. The second digit can determine whether the number is positive or 

negative (%0000 = +, %0001 = -): 

0011 

3 

0001 0111 

7 

0011 

3 

0101 

5 

This grouping would represent -735 according to this BCD convention 

(3 places, negative, quantity= 735). 

22 
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Decimal fractions can be similarly represented. A BCD digit that 

indicates the position of the decimal point (counting from the right) can be 

inserted between the ftrst two groups of four: 

0011 

3 

0010 

2 

0001 0111 

7 

0011 

3 

0101 

5 

This grouping would indicate -7.35 (3 places, decimal at the second 

position from the right, negative, quantity = 735). 

There are many similar representations, of course, but we only want to 

present the principle here. 

Nibbles. bytes. etc. 

Often several bits are used together. Some names for vanous 

"groupings" of bits have come into common use. We will not make an 

attempt to explain their origin, but merely present them: 

1 nibble corresponds to 4 bits 

1 byte corresponds to 8 bits 

1 word corresponds to 16 bits 

1 long word corresponds to 32 bits 

Accordingly, a byte contains two nibbles, a word contains four 

nibbles, a long word contains four bytes, and so on. A nibble can be written 

as one hexadecimal digit. The larger groupings are usually written as 

multiple hexadecimal digits. Naturally, they can all be written as binary, but 

23 
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already at the byte level this becomes difficult to read. The octal system is 

not well-suited for specifying values, since neither 4 nor 8, 16, or 32 is 

divisible by 3, and the octal digits are not used efficiently. 

Representin& letters 

As we know, the computer always stores data in binary. In order to be 

able to process letter characters (a, b, c, d ... ) in the computer, we must 

defme a code that assigns a unique bit combination to each character. 

Such a code has been in use for a long time: the telex code. The telex 

code uses 5 bits, giving a total of 32 bit combinations. Although the telex 

uses only lower case letters, the number of combinations is not enough. In 

addition to the 26 letters, 10 digits are required. A trick is used to represent 

the digits and punctuation characters. Two code levels are used in parallel. 

One contains all of the letters, while the other contains the special characters 

(like ":", "=", etc.). Switching between the letters and the special characters 

is done with two non-printing control characters. Two control characters, 

the control character for carriage return & line feed, and the one for a space, 

exist in both code levels with the same bit combinations. 

If, for example, you send the bit combination %01100, an "i" is 

printed if the letter code level is active. The digit and special character code 

level is enabled by the control character %11011. Now the code %01100 

causes the character "8" to be printed. The code %00100 represents the 

space character, regardless of the active code level. 

24 



Abacus Software Machine Language for the Atari ST 

Because of this switching of the code levels, the telex code is 

inconvenient to use. Another disadvantage is that the upper case letters are 

not present. But for a long time, many computer hobbyists used telex 

machines for printers. In 1982 a used telex machine could be purchased for 

less than $100, while a computer printer would cost at least $500. But since 

printer prices have fallen so dramatically, there is little interest in trying to 

cope with the disadvantages (not to mention noise and slow speed) of a 

telex machine. 

Another code that allows the representation of all of the usual 

characters is the EBCDIC code from IBM. This would be of interest only to 

those who want to work with IBM mainframes. 

The most widely-used code is the ASCII code. ASCII (pronounced 

as-key) is an abbreviation for American Standard Code for Information 

Interchange. 

Twenty-six upper-case and and 26 lower-case letters must be 

represented in the English language. In addition, 10 digits and about 20 

special characters are required. This results in a total number of 82 

representable characters. In order to represent this many characters as bit 

combinations, but without having to use code levels like the telex, 7 bits are 

required. The ASCII code is in fact a 7-bit code. The remaining 

combinations are used as control characters for line feed, calTiage return, 

etc. In addition, there are several control codes that control the data traffic to 

and from peripheral devices. 

Since seven is an "uneven" number, ASCII characters are usually 

represented with eight bits. Then an ASCII character is exactly as wide as a 
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byte. This has decisive advantages when storing data. The eighth bit is often 

used for error checking, to enable various character sets or type sizes, etc. 

On the next page is a table of the ASCII code. The combinations in the 

first section of the first column (0-31) represent the control characters. 

Many of these are used only rarely in practice. The following are the most 

important for learning machine language: 

BEL Bell 

BS Back space 

LF Line feed 

FF Form feed 

CR Carriage return 

The standard ASCII character set contains no foreign language 

characters. Some of the unused bit combinations in the 7-bit code are 

frequently used for these missing characters. 

26 



Abacus Software 

DEC HEX ASCII CfRL 
o 
1 
2 
3 

00 
01 
02 
03 

4 04 
5 05 
6 06 
7 07 
8 08 
9 09 
10 OA 
11 OB 
12 OC 
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14 OE 
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16 10 
17 11 
18 12 
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20 14 
21 15 
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30 1E 
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A 

B 
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OC3 S 
OC4 T 
NAK U 
SYN V 
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GS 
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% 

& 

( 

) 

* 
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71 
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74 
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U 
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\ 
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r ~ I Logical operations and bit manipulation J 
~ ~ 

In addition to the more familiar arithmetic operations (addition, 

multiplication, etc.) there are also some logical operations. Logical 

operations, in contrast to arithmetic operations, affect only the individual 

bits. Furthermore, a logical operation can be either unary or binary-that is, 

it may have one or two operands. There are four particularly important 

logical operations, as shown below: 

NOT AND 

A NQT A A B A AND B 

0 1 0 0 0 

1 0 0 1 0 

1 0 0 

1 1 1 

OR EXOR 

A B A QR B A B A EXQR B 

0 0 0 0 0 0 

0 1 1 0 1 1 

1 0 1 1 0 1 

1 1 1 1 1 0 
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For "0" we say "false," and "true" for" 1". Then we see that the logical 

operators shown here correspond to the usual logical operators in 

mathematics. An example of logical operators: 

An "0" in A signals that the weather is bad; 

a "1" that the weather is good. 

A "1" in B signals that it's the weekend; 

a "0" that it is not the weekend. 

If you want to go swimming on the weekend when the weather is good, 

you could say that (A AND B) must be "1". The expression (A OR B) 

would mean that you would go swimming if only one of the criteria were 

fulfilled. The expression (A EXOR B) means that exactly one of the criteria 

may be fulfilled. 

Naturally, these logical operators can be combined with each other and 

thereby form new logical operators. These can then combine three or more 

bits with each other. 

Back to our example. We do not go swimming when "NOT (A and 

B)" is "1". The expression "«NOT (A» or (NOT (B»)" is equivalent to 

"NOT (A and B)". This can be proven mathematically. 

Logical operators can be used on bytes, words, or more generally on 

multiple bits, or bit fields. The operation is simply performed bit by bit with 

the corresponding bits of the operands. 
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We have already seen one eXllmple. We have formed the one's 

complement of a binary number. We simply "reversed" the individual bits. 

This corresponds to the bitwise execution of the NOT function. 

Another example: 

NOT (0010) 1101 

The following are examples of the other logical operations: 

(0010) 
OR(1011) 

= 1011 

(0010) 
AND (10 1 1) 

= 0010 

(0010) 
EXOR (1011) 

= 1001 

These operations are often used to make intentional, conditional 

changes of bits. The operators are often written differently. We will explain 

the notation at the appropriate point later. 

Bit shift operations 

In addition to the logical operations, there are operations that shift the 

individual bits of a binary number. The MC68000 in your Atari ST has a 

number of commands to do this. We will simply present some examples 

here. We'll take the binary number %00101100. 

Shifted one position to the right, it reads %00010110 (provided the free 

place is filled with a zero). If we take into account the value of the number, 

we see that it has been reduced by half. As a rule, shifting to the right 

corresponds to a division of the binary number by two. 
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Shifting one position to the left results in the original number becoming 

%01011000. Now the value has doubled. As a rule, shifting to the left 

corresponds to a multiplication of the binary number by two. 

In addition to these bit-shifting operations, there are operations that 

rotate bits. For example, %10011000 rotated one position to the left 

becomes %00 11 000 1. 

,. 
t Program development I 
~ ~ 

When you're starting to write a program, you first must know exactly 

what you are trying to solve. Consequently, you must determine the end 

result. To do this, you must first clarify what data should be printed out. It 

seems quite logical, but fIrst, what do we mean by "data"? One definition: 

Data: any representation of characters, symbols, and letters that are to be 

processed in some manner. 

In addition to this you should note that data also may represent 

decisions, logical conditions, etc. 
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After determining the problem and specifying the end result (data 

printout), you should determine clearly the source of the data to be 

processed. Next, you usually make an exact data flow plan. This data flow 

plan can take almost any form, depending on the preferences of the 

programmer. Whatever its form, the data flow plan must clearly determine 

the course of the processing, the input/output, the storage, etc. Now the 

exact algorithm should be developed. Under certain circumstances existing 

algorithms that satisfactorily solve the problem can be found. Why re-invent 

the wheel, after all? 

When all of the above is done, a flow chart or structogram (sometimes 

both) is created. (More information on flow charts and structograms can be 

found in chapter 5). Here the breakdown and routing of the data flow is 

refined, and sometimes the algorithm has to be reformulated. 

Not until this is done should the program be formulated in the selected 

programming language. Often parts of the program are written in a 

high-level language (BASIC, Pascal, C etc.), while other sections are 

written in machine language (assembly language). Time-critical portions are 

often written in machine language because it is usually much faster than 

high-level languages. 

Not until the program is completely written should it be tried on the 

computer. Programming by trial and error is not particularly sensible (no 

matter how often it's done by the general popUlation). It is important to test 

the program from as many different angles and viewpoints as possible. 

Errors often occur under unexpected conditions. 
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After the actual program is finished, the program documentation is 

prepared. This should make it possible for the programmer, and others, to 

change the program later. Without good documentation, sometimes even 

you won't be able to understand your own programs after a year or two. 

Also important is the creation of a user's guide. The user's guide is 

important in determining the actual utility that the program has for others. 

Naturally, the target audience must taken into account. A program intended 

for a programmer's use must be described differently than a program to be 

used by a secretary with no knowledge of computers. 

Even after the program is "finished," your work on it is not done. 

Errors discovered by users must be corrected; changes in other 

circumstances must be taken into account (for instance, revised tax laws as 

they affect your income tax program). And the actual use of the program 

almost always shows that it lacks something. These post-programming 

situations come under the heading Program Maintenance. 

In summary, the phases of program development are as follows: 

1) Exact specification of the problem 

2) Creation of a data-flow plan 

3) Writing a flowchart or structogram 

4) Writing the program in a programming language 

5) Entering program, testing it, correcting errors 

6) Program documentation 

7) User's guide 

8) Program maintenance 
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In practice, these phases/steps obviously can become blurred. But in 

principle, a good programmer will try to work according to this plan. A 

good programmer doesn't sit down at the computer and not get up again 

until the program is done; he/she follows the above plan intelligently. Often 

individual processes are carried out in your head (especially with small 

programs) . This procedure divides large programs up into smaller 

programs, making it possible for several people to work on the project 

independently, without hindering each other. Naturally, the tasks must be 

carefully defined beforehand to make this process work. 

Probably the biggest problem is that only 10% of all programmers are 

actually able to work with an exact concept and plan-but the other 90% 

believe they belong to this 10%. 
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( Introduction) 

A computer consists of three basic components: 

Memory 

Central processing unit 

Input/output devices 

However, these three components are not three neatly-packaged electronic 

chips; there are considerably more than three components in the Atari ST. 

Several integrated cicuits are required to perform each of the functions listed 

above. 

( Memory) 

There are basically two types of memory: 

l) Read/write memory (RAM) 

and 

2) Read-only memory (ROM) 
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The read/write memory is also called RAM, which stands for Random 

Access Memory. The primary difference between RAM and ROM is that 

you can write to RAM memory, while the content of ROM is fixed and 

unchangeable. 

You can picture RAM as a dresser with several drawers. Let's assume 

that our dresser has six drawers, organized as two rows of three drawers. 

We then can picture the six drawers in two ways: 

1 ) 

0 1 2 

3 4 5 

This gives us drawers 0 ... 5 that we can clearly distinguish between. 

(Computer scientists almost always start counting at zero, which has its 

advantages when working with computers and their programs). There is 

also another way to picture these drawers: 

2) 

o 

1 

0 

0 

Here we get the names 

1 

1 

(0,0), (0,1), (0,2) 
(1,0), (1,1), (1,2) 
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Again, all of the drawers can be identified individually, with no 

ambiguity. We want to remember these two methods of numbering for the 

future. The first is called linear ordering; the second we will refer to as 

matrix ordering. 

Note that from a hardware perspective, memory is seen as a matrix of a 

certain size; but from a software point of view, the memory locations are 

thought of and addressed linearly. (To confuse things, matrices are also 

programmed in a linear fashion-but we won't get into this). 

In our case we have six distinct drawers we want to put to use. Let's 

open drawer zero and see what is inside: 

Nothing 

Why nothing? Because we haven't put anything into it! But then again, 

is nothing really Nothing? This question is quite philosophical. We'll stray a 

bit from this topic in order to clarify three very important computer science 

terms. These terms will help us answer the above question-at least for our 

purposes! 

The computer scientist distinguishes between three characteristics of 

information: 

1) the syntactic, 

2) the semantic, and 

3) the pragmatic aspects of information. 

By first term, syntactic, we mean the primary ordered structure of 

information. Take any word, say "man." If we mean "man" but instead 
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write "one," no one would understand us. So we keep to the rules of 

English (syntax rules) and write "man." 

A traffic light provides another example. The syntax of a traffic light is: 

red 

yellow 

green 

If two of the colors were to appear simultaneously, no one would 

understand the traffic light. This would be syntactically false. 

By semantic we mean the content of the information, or the intended 

meaning of the information. Said another way, the semantic meaning is the 

effect the message has when stated. For example, the semantic aspect of the 

red light is "STOP." This is the intended message of a red light. 

The third way to view a piece of information is pragmatically. It 

indicates the utility of the information to the end user; in other words, how 

you might use the information. For example, if you see a yellow light, you 

might think "No problem, I can still make it"; another mental reaction you 

might have is "Whoa! better put on the brakes." 

With these definitions we can answer the philosophically unanswerable 

question, "We see nothing in the drawer just opened." At least for our 

pragmatic purposes, the answer is: the drawer holds 

Nothing that we can use 
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According to our three points: 

1) The syntax of the information is valid; something is 

certainly in the drawer, even if it is just a vacuum. 

2) The semantic meaning is also clear: we put nothing in, 

so we can't get anything out. 

3) Viewed pragmatically, the drawer, for us, is 

empty--even though something (namely Nothing) is 

in it! We can put anything we want into it. If we chose 

the put something in the drawer, and neither we nor 

anyone else takes it out again, we will always find it 

there when we open the drawer. 

Now we'll technically formulate the procedure described above. We 

will call the numbers we gave to the drawers addresses. 

And exactly eight bits will fit into each drawer! 

Now we open a drawer, such as number 3. The process of opening a 

drawer we will call addressing. 

Looking into it we will call 

Putting something in we call 

The drawer itself is called 

reading 

writing 

memory location 

In time we'll learn to use all of these terms properly. 
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So, let's address the memory location 3 and read it. What is in it? 

Nothing, of course; we haven't written anything into it. 

As we learned in the previous chapter, only zeros and ones can be in a 

memory location, since we have only two digits. Moreover, we have just 

said that nothing need not be nothing (absolutely or philosophically). It may 

be that the number %01101100 ($6C) is there. Why? 

Technically, this random number being in the drawer can be explained. 

Due to the unevenness of the conductive traces within a computer's 

electronic components, the memory contains random, arbitrary bit 

combinations after power-up. These bit combinations can be any of the 256 

combinations of eight zeros and ones, namely %00000000 to % 11111111. 

Let's assume that we have a computer that, after being turned on, 

contains the hex number $6C in memory location 3. 

We can read this value at any time, since it is in the drawer. However, 

the pragmatic portion of this information is negligible; we have no use for 

this purely random information. 

So we want to write some real data into it. We select "$D7". We 

address our memory location number 3 and write the number $D7 to it. 

What happens? The random number $6C leaves memory location 3 and 

the $D7 is stored. When we later access memory location 3, we will 

always read the number $D7 until we write a new number into the memory 

location or turn the computer off. Should we write a new number into the 

memory location, the $D7 obviously will be overwritten by the new 
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number. If we tum the computer off, we'll again get random data when the 

computer is turned back on. 

Isn't there any way to retrieve stored information in RAM and protect it 

from being overwritten after we tum the computer off? 

For us, the answer is no-unless we modify with the circuitry of the 

computer. RAM is read/write memory. If we want to have memory that 

gives us useful information but cannot be overwritten, we must use 

read-only memory. If we absolutely, positively have to protect the 

information in RAM when the computer is turned off, the RAMs must be 

supplied with current after all of the components have been turned off. For 

this purpose, there are RAMs that use very little current and may be backed 

up by a battery circuit. The Atari ST, however, uses "normal" RAMs. 

Read-Qnly Memory 

Read-only memory is called ROM. There are many types of ROM, and 

these are differentiated by the letters preceding ROM: EPROM, EEROM, 

EAROM, PROM, IPROM. 

But all these types of ROMs have one thing in common. Without 

outside tampering, the computer cannot change the information contained in 

ROM. In some of the components, the information is embedded in them 

when the chip is made so that it can never be altered (except, of course, by 

destroying the component itself). 
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~ ~J I Central processing unit 
~ ~ 

The central processing unit manages the whole computer. It addresses 

the available memory, handles data in the memory, and manages or directs 

the peripherals. It is the heart of every computer; if defective, nothing in the 

computer will work properly. 

Generally, the CPU consists of some internal memory locations called 

registers; in contrast to the usual memory, registers have the advantage that 

they can be addressed almost instantly by the central processing unit. The 

CPU also has circuits for controlling the memory and I/O lines, the complex 

logic for computation, as well as internal temporary storage that cannot be 

directly addressed. 

The CPU supplies address signals for controlling the other 

components, data lines for transferring data (reading or writing), and 

control signals indicating the status of the CPU (such as a read/write line, 

which indicates whether data is being sent or being read). 

The CPU used in the Atari ST is the MC68000. This chip has 24 

address lines; therefore, 224 (1, 677, 216) different bytes can theoretically 

be addressed in memory. Naturally, the actual memory of the ST is not this 

large--extensive areas of addressing range are unused. 
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The 68000 is a 16-bit microprocessor. This means that the data bus (the 

lines over which data flow to and from the microprocessor) is 16 bits wide. 

Therefore, the memory is also 16 bits wide. Two bytes (one word) are 

always accessed together in the memory. Each of these bytes has its own 

address because the 68000 is a byte-oriented machine. But since the data 

bus can transport both bytes at once, it is possible to write or read the entire 

memory word in one access. There is one condition for this: a word access 

can be made to even-numbered addresses only. 

( Input/Output) 

A computer has input/output components that allow it to communicate 

with the "outside world." The keyboard is an example of an input 

components; the mouse is also an input device. On the Atari ST, output 

goes to the screen or to a printer. Sounds it creates and plays on the 

speakers are outputs, also. 

The disk drives are connected to the Atari ST via a special component 

called a floppy controller, also an input/output device. The disk drives are 

not counted as normal memory because the data cannot be simply addressed 

as it is in the normal RAM/ROM memory. 
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The data can be transferred from a peripheral to memory in two ways: 

1) The processor itself reads 1the data from the peripheral device or 

outputs the address itself. It usually accesses a register in the 

peripheral. The access resembles that of a normal memory 

location. The transmission can be initiated in one of two ways: a) 

the microprocessor continually checks to see if data is available or 

required (this is called "polling"); or b) while in the middle of 

executing some program, it is interrupted by a hardware signal 

from the peripheral that tells it when data is available or required. 

The first method is like having someone constantly waiting by the 

telephone. A drawback of this technique is that time is required to 

see if someone is on the phone. With the second technique, no 

time is wasted if the telephone isn't ringing. 

2) The processor initializes 1the data transfer in a DMA controller 

(DMA: Direct Memory Access). The processor determines what 

data from which memory range is to be transferred to a new 

memory location. The actual transfer from memory to peripheral 

device (and vice versa) is performed by the DMA controller. On 

a signal from the peripheral device, the DMA controller takes 

over control of the system bus and performs the data transfer 

itself. The main processor is relieved of this burden, and as a 

result the whole system is more efficient. Not until the entire 

transmission is complete is the main processor notified by the 

DMA controller that the bus is free for other purposes. The main 

processor can also check to see if the transfer is done. This DMA 

transfer is usually made much faster than other transfer types. 
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The following analogy can be made to a DMA transfer: 

You ask your friend to telephone a local auto dealer and get the 

prices of all late-model Porsches on the lot. You tell him that 

when he has all of the information he should put it in your 

mailbox, and ring the doorbell. In the meantime, you'll be having 

a candlelight dinner with an intimate acquaintance. Your hear the 

doorbell ring after the main course, retrieve the Porsche prices, 

and impress your guest during dessert ... 
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( Introduction) 

This chapter is intended to give a brief overview of the structure of the 

Atari ST's MC68000 microprocessor. First we'll explain a few terms used 

throughout the remainder of the book. An exact description of all of the 

68oo0's instructions is beyond the scope of this book; only the most useful 

of the instructions are explained. Exceptions will be explained in principle 

only, for their exact description does not belong in a book intended to teach 

machine language. 

We advise you to get a book on the 68000 processor and its 

instructions. Even if you already know machine language programming, 

you will still need a 68000 reference work; in it you will also find the 

instructions not explained here. Now let's proceed wth the terminology. 

The 68000 has two different addressing modes. These are called the 

supervisor and the user modes. Of these two, only the supervisor mode 

allows use of all instructions. The supervisor mode makes it possible to 

build "exit-proof' multi-user systems. 

For example, the operating system can be run in the supervisor mode at 

the same time user programs run in the user mode. In the Atari ST, the 

memory and peripheral area at the bottom of the address range can be 

accessed only when the processor is in the supervisor mode. In the user 

mode, the program is halted and an error-handling routine is called. Other 

51 



Abacus Software Machine Language for the Atari ST 

systems have components called MMUs (Memory Management Units) that 

monitor which addresses are accessed. If an attempt is made to access 

"forbidden" area, the MMU interrupts the program. 

r ~ I Register structure and data organization J 
~ ~ 

The 68000 has eight data registers available to the user. Each of these 

data registers has a width of 32 bits. For this reason, the 68000 is often 

referred to as a 32-bit processor. But since its data bus is only 16 bits wide, 

it is considered a 16-bit processor. The data registers are named DO to D7. 

In addition to the data registers, there are seven address registers and a 

program counter. Again, these registers are 32 bits wide. This results in an 

address range of 4 gigabytes. But because the 68000's address bus is only 

24 bits wide, only 16 megabytes are available. The address registers are 

named AO ... A6. The program counter is referred to as PC. 

Because there is a large number registers, it is possible to store many 

variables in the registers and limit the number of memory accesses within a 

program. Since the registers are 32 bits wide, they can also contain an entire 

memory address. 
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Furthermore, there are two stack pointers, one for the user mode and 

one for the supervisor mode. Exactly one stack pointer is active at a time, 

depending on the operating mode. The stack pointers are designated A 7 and 

A 7'. From the designation it should be clear that the active stack pointer can 

also be addressed as address register 7. Instructions that work with address 

registers do not address the stack pointer implicitly. Only the currently 

active stack pointer can be used. One exception to this is the instruction 

MOVE U SP. Since two stacks are present, it is very easy to construct 

separate stacks for user and supervisor. 

The program counter in the 68000 is 32 bits wide. However, only 24 

bits are usable via the address bus. The remaining eight bits are intended for 

later expansion (anticipating such, the 68000 may one day have a 4 gigabyte 

address space). 

Last, but not least is a status register with a width of 16 bits. It is 

divided into a user status (bits 0 ... 7) and a system status (bits 8 ... 15). 

In the user mode, it is only possible to write to the user status. Only the 

supervisor can change the operating mode of the CPU (which makes 

sense). The flags tested by conditional branch instructions are found in the 

user status. The flags give information about the results of many 

instructions, whether results are zero or negative, if an overflow ocurred, 

etc. A jump to another location in the program can then be made conditional, 

for instance, on whether or not the previous comparison resulted in zero. 
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Qperand formats 

The operand format is either given implicitly by the instruction or is 

contained explicitly in the instruction. The following operand formats are 

defined: 

1 long word 

1 word 

1 byte 

corresponds to 

corresponds to 

corresponds to 

32 bits 

16 bits 

8 bits 

It is also possible to work with BCD operands. Two BCD digits are 

"packed" into one byte. In addition to these there are bit manipulation 

instructions. 

A word is the standard operand format, because the 68000 works with 

a 16-bit data bus. 

All operand formats are valid for the data registers. Byte operands 

occupy the lowest 8 bits, and word operands the lowest 16 bits. Long-word 

operands use the entire 32 bits. 

When a data register is used as a source or destination operand and the 

operand format is not 32 bits, only the addressed portion of the register is 

changed. The remainder is neither used nor changed. 

Only word and long-word operands are allowed for the address 

registers and the two stack pointers. The address registers and the stack 

pointers do not work with byte and bit data. The stack pointers always point 

to the last valid data and "grow" downward. 
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When an address register is used as a source operand, either the entire 

register or just the lower word is used, depending on the operand format 

selected. If an address register is used as a destination operand, the entire 

registers is affected, regardless of the operand format. If the format is of a 

word, all operands are sign-extended to 32 bits. 

Status re2ister 

The status register consists of a user byte and a system byte. 

User byte: 

Bit 0: 
Bit 1: 
Bit 2: 
Bit 3: 
Bit 4: 
Bit 5: 
Bit 6: 
Bit 7: 

Carry flag 
Overflow flag 
Zero flag 
Negative flag 
Extension flag 
unused 
unused 
unused 

System byte: 

Bit 8 .. 10: 
Bit 11 : 
Bit 12 : 
Bit 13 : 
Bit 14 : 
Bit 15 : 

15 14 13 

T - S 

Interrupt mask 
unused 
unused 
Supervisor status 
unused 
Trace mode 

12 11 10 9 8 

- - I1 I2 IO 

7 

-

Carry C 
Overflow V 
Zero Z 
Negative N 
Extension X 

10, n, 12 

6 5 4 3 2 1 

- - X N Z V 
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Carry 

The carry flag is always set to one if an arithmetic operation caused a 

carry from the highest bit. It is also used to indicate a "borrow" in a 

subtraction. 

Overflow 

The overflow flag is used to indicate the user that the number was 

exceeded during an arithmetic operation. For example, this happens 

when the result of the addition of two positive numbers does not fit in 

the register when it represents a two's complement number. The 

overflow flag is also used for division operations; it indicates that the 

quotient would be larger than 16 bits, or the dividend is too large. 

Zero flag 

The zero flag is set if, after an operation, the highest bit of the result 

is set, indicating that the number is negative in two's complement. 

Extension flag 

The extension flag behaves just like the carry flag. But it is not 

affected by all of the instructions influencing the carry flag. For 

example, it is treated like the carry flag for addition and subtraction, 

but not for the rotation instructions. The instruction list indicates 

which instructions affect the extension flag. The extension flag can be 

used to preserve the carry for multi-byte operations. The extension 

flag is unique to the 68000. 
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When reading the other (unused) bits in the user byte of the status 

register, zero is always returned, even if other values are written to them. 

This also applies to the status register's unused bits of the system byte. The 

following terms describe the bits in the system byte: 

Interrupt mask 

The 68000 has seven interrupt levels (numbered from 1...7). An 

interrupt is allowed only when the value of the interrupt mask is 

lower than the priority level of the interrupt. However, interrupt level 

7 cannot be disabled; it is what's known as a Non-Maskable Interrupt 

(NMI). Interrupts can be enabled and disabled by changing the 

interrupt mask. 

Supervisor status 

This bit switches the processor between the user and supervisor 

status. A zero stands for the user status, and a one for the supervisor 

status. The switch makes it possible to make multi-user systems 

crash -proof. 

Trace-mode 

If this bit is set, the 68000 is placed in the trace mode. The 68000 

then processes an exception after every instruction. This makes 

single-step operation of the 68000 in software possible. 

58 



Abacus Software Machine Language for the Atari ST 

Data Qr~anization 

Although the 68000 is a 16-bit processor, it works as a byte machine. 

This means that every word is divided into two bytes and each of these two 

bytes has its own address. Of course, both bytes of a word can be accessed 

at once with the 68000, since the data bus is 16 bits wide. Each byte 

occupies one address in the memory space; each word therefore occupies 

two addresses. The higher-order byte of the word (the word at address n) is 

located at the lower address (address n) and the lower-order byte is located 

at the higher address (address n+l). 

The following figures should clarify these concepts: 

Byte 000000 Byte 000001 

Byte 000002 Byte 000003 

Byte 000004 Byte 000005 

Byte FFFFFC ByteFFFFFD 

Byte FFFFFE Byte FFFFFF 

Even Address Odd Address 

Bytes and Words in Memory 
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15 12 11 8 7 

BCD 7 BCD 6 BCD 5 

BCD 3 BCD 2 BCD 1 

BCD 7 : Highest order digit 
BCD 0 : Lowest order digit 

Decimal Data ( BCD code) 

Data Representation 

Machine Language for the Atari ST 

43 o 
BCD 4 Wordn 

BCD 0 Word n+2 

The structure of the 68000 determines some rules for memory access: 

1) Access to words and long words are restricted to even 

addresses. 

2) This means that operation codes (opcodes or 

instructions) must be located at even addresses. 

3) Access to bytes may be at both even a nd odd 

addresses. 

If these rules are not followed, normal operation is interrupted and an 

exception-handling routine is called by the processor. 
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( Operating states) 

The 68000 works in either the supervisor mode (supervisor bit = 1) or 

the user mode (supervisor bit=O). The privileged state determines which 

operations are allowed. Some instructions are prohibited in the user mode, 

and if you try to use them, cause an exception. The stack pointer A 7' is 

always used in the supervisor mode, and the stack pointer A 7 always used 

in the user mode. It makes no difference if the stack pointer is used by a 

instruction implicitly (such as PEA) or if register A 7 is specified explicitly as 

the source or destination in the instruction. 

There are three basic operating states of the 68000: 

Normal operation 

Halt state 

Exception handling 

The normal execution of instructions represents the flrst state. A special 

case of this state is the stopped condition of the CPU. This state is caused 

by the STOP instruction. No further memory access is possible in this 

condition. 

The halt state is caused by serious errors; should this occur, we must 

assume that the system is no longer capable of functioning. The processor 

leaves this state only after an external RESET signal. For example, the halt 

state is entered when a bus error occurs during the exception handling of a 
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previous bus error (double bus error). However, the halt state is not 

identical to the stopped condition. 

The exception condition results from interrupts, TRAP instructions, the 

trace operation, or other exception conditions. The implementation of the 

exception condition makes it possible, for instance, to have the processor 

react to error situations, or to unforeseen situations. 

A peripheral can request the services of the processor through interrupts 

to process transmitted data. 

All exception handling is done in the supervisor mode. When exception 

handling is begun, the processor saves the old status word on the stack and 

sets the supervisor bit. All instructions are allowed in the supervisor mode. 

The exception handling can be initiated internally or externally. 

Examples of internal initiation would be address errors (word access to an 

uneven address), division by zero, direct instructions (TRAP instruction), or 

the trace mode. Externally, exceptions can be generated by interrupts, bus 

errors (errors in the bus hardware), or RESET. 

The 68000 has a large number of exceptions available, and this is one 

of its strong points. Through exceptions it is possible to place the processor 

in the exception state and allow it to react to errors. Here the 68000 

surpasses CPUs in many minicomputers, and most other microprocessors. 

The individual exception cases are numbered, and the processor fetches 

an exception vector from memory depending on the case. This vector 

represents a 32-bit address and it is stored like every other address. The 
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lowest 1024 bytes (or 512 words) of the memory (address space) are used 

as a table for the 256 vectors. 

The status register is saved at the start of the exception handling. The 

supervisor bit is then set. In addition, the trace bit is cleared, preventing 

another exception from being generated after the first instruction of the 

exception handling routine. If an interrupt generated the exception (possible 

only when the interrupt has a higher priority than the setting in the interrupt 

mask of the status register), the interrupt mask in the status register is set to 

the new value. The return address and the old contents of the status register 

are placed on the supervisor stack. 

The processor can receive the vector number in one of two ways. It can 

create it internally (such as with bus and address errors, but also with 

auto-vector interrupts); or, it receives the vector number for a 

non-auto-vector interrupt from the bus (directly or indirectly from the device 

that generated the interrupt). The 68000 multiplies the vector number by 

four (by "left-shifting" the bits of the vector number twice). It uses the 

resulting number as the address. From this address it loads a long-word and 

into the program counter. Then it begins execution at the instruction to 

which the (new) program counter points, and so starts to process the 

exception. 

There are 16 special exceptions, called TRAP s, that allow operating 

system routines in the supervisor mode to be called from user programs 

running in the user mode. An exception is generated by the instruction 

"TRAP #n" (with number "n" from 0 to 15). The appropriate operating 

system functions are then performed in the routine to which the exception 

vector points. In this manner, it is possible to to make carefully selected 
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calls to program fragments running in the supervisor mode-leaving the 

protection concept of the 68000 unbroken. 

We do not want to delve any deeper into the other individual 

exceptions, because they are relatively unimportant for learning and 

understanding machine language. 

( Addressing mOdes) 

The instructions must somehow indicate which operands are to be used. 

The 68000 instructions consist of two parts: 

I) The type of operation to be performed 

2) The address of the operand(s) 

By address we do not mean only a memory address, since a register can 

also supply an address. 

The instructions can determine the operand address in three ways: 

1) Register specification: The register number is given in the 

instruction. 

2) Effective address: Various addressing modes are used to obtain 
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the address. the selection is made through six bits in the 

instruction (the 6-bit field is referred to as the effective address). 

3) Implicit reference: the operand (a register) is already given in the 

instuction implicitly. 

The 68000 has 14 addressing modes that serve to determine the operand 

address according to the techniques named. These 14 addressing modes can 

be divided into six main groups: 

Register direct 

A register containing the operand IS specified directly 1D the 

instruction. 

Register indirect 

A register that contains the address of the operand in memory as 

specified in the instruction. 

Data absolute 

The address of the operand in memory is specified explicitly in the 

instruction. 

Relative to program counter 

An offset relative to the program counter is given. This means that a 

signed word or long-word is added to the program counter. The sum 

is the address of the operand. This addressing mode makes it possible 

to write programs that can run at any address in the 

system-programs that are relocatable. 

66 



Abacus Software Machine Language for the Atari ST 

Data immediate 

The operand is included within the instruction (one or two words). 

Implicit 

The operand is specified implicitly by the instruction. Stack 

operations, for example, implicitly have the stack pointer as the 

pointer to the operand address. 

Of the 15 addressing modes, 13 create an effective address. This 

effective address occupies a field of 2x3 (two times three) bits in the (frrst) 

instruction word of the opcode. Additional words required by this 

immediately follow the first word of the opcode, depending on the 

addressing mode. 

For instructions with effective addresses, the opcode consists of the 

following: 

Bits 0 ... 2: Contain the register field. 

Bits 3 ... 5: Contain the mode field. (bits 0 ... 5 represent the 

effective address). 

Bits 6 ... 11: Contain either the effective address of the second 

operand, or a part of the instruction specification. 

Bits 12 ... 15: Contain the instruction type. 

The following table represents the addressing modes that can be 

selected by an effective address. We use the following abbreviations: 
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ARI 

An 

Dn 
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Address register indirect 

Number of an address register (3 bits, 0 .. 7) 

Number of a data register (3 bits , 0 .. 7) 

Effectiye address 

Mode Register Addressing mode 

000 Dn Data register direct 

001 An Address register direct 

010 An Addres register indirect (ARI) 

011 An ARI with post increment 

100 An ARI with predecrement 

101 An ARI with displacement 

110 An ARI with displacement and index 

111 000 Absolute short 

111 001 Absolute long 

111 010 PC relative with displacement 

111 011 PC relative with displacement and index 

111 100 Data immediate 

Effective addressing is not needed for implicit addressing. 

The following list explains addressing modes we have not yet 

described. Their function will become clearer as we use them in program 

examples. 
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Address register indirect with post·increment 

The address of the operand is found in the address register specified. 

After the operation, the address register is incremented by 1,2, or 4, 

depending on the length of the operand. If the address register is the 

stack pointer, the address is incremented by at least 2 so that the stack 

pointer retains an even value. Additional stacks can be constructed 

with this addressing mode. 

Address register indirect with pre-decrement 

The specified register is decremented by 1, 2 or 4. If the address 

register is the stack pointer, it is decremented by 2 or 4 so that it 

remains even. This prevents address error exceptions. The access is 

then made to the address which is found in the address register after 

the subtraction. 

Address register indirect with displacement 

With this addressing mode, an additonal word is added to the 

contents of the specified address register. An additional word 

containing the 16-bit displacement follows the initial. The effective 

address of the operand is the sum of the register contents and the 

signed 16-bit address displacement value. 

Address register indirect with displacement and index 

This addressing mode is analogous to the previous mode. An 

additional word follows the initial opcode. The lower byte of the 

additional word represents a signed 8-bit displacement that is added. 

The upper byte contains information about the type of index register 

(address or data register), the size of the index (signed word or 

long-word), and the register number. The effective address is the 
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displacement sum of the register contentsd, the 8-bit displacement and 

the index register (8- or 16-bits) contents. 

Absolute short 

An additional word following the initial opcode contains an absolute 

signed 16-bit address. The effective address is the sum of the register 

contents and this 16-bit address. 

Absolute long 

Two additional words follow the initial opcode. The higher-order 

portion of the 32-bit address is found in the first extension word, and 

the lower-order portion in the second extension word. The effective 

address is the sum of the register contents and the 32-bit address. 

Program counter (PC) relative with displacement 

An additional word is follows the initial opcode containing the 16-bit 

displacement. The effective address results is the sum of the program 

counter and this signed 16-bit displacement 

Program counter relative with displacement and index 

This addressing mode is analogous to the previous mode. The 

additional word following the opcode consists of two subfields. The 

lower byte represents a signed 8-bit displacement that is added to the 

Pc. The upper byte contains information regarding the type of the 

index register (address or data register), the size of the index (signed 

word or long word), and the register number. The effective address is 

the sum of the PC contents, the 8-bit dispalcement and the index 

register (8- or 16-bits) contents. 
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Data immediate 
One or two additional words follow the initial opcode (depending on 

the length of the operand) and contain the operand. The lower-order 

byte of the word is used for byte operations. For long-word 

operations, the higher-order word is contained in the first word 

following the initial opcode word and the lower-order in the second 

word following the opcode. 

Overview of the instruction set I 

The assembly language instruction set of the 68000 is comprised of 56 

instructions. This is a small number compared to other processors; 

however, the 14 addressing modes make the 68000 very flexible and 

powerful. If each instruction in all addressing modes had its own 

designation, there would be over 1000 assembler instructions. The 56 

instructions can be mastered only because of the open construction of the 

68000 with its addressing modes. In addition, the assembly language 

supports modular programming and, in particular, compiler programming. 

The 68000 is a "true" two-address machine. This means that both the 

source and destination of an operation can reside in memory. This means it 

is possible to move data from one memory location directly to another. With 

most other processors, the contents of the memory location must first be 
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moved to a processor register with one instruction, and then written to the 

other memory location with a second instruction. 

A 68000 instruction consists of one to five words, from two to ten 

bytes. The length and type of the instruction is determined by the first 

opcode word. The instructions in the 68000 are systematically constructed. 

The 68ooo's instruction set can be divided into the following groups: 

• arithmetic operations (with integers)' 

• BCD instructions 

• logical instructions 

• shift and rotate instructions 

• bit manipulation instructions 

• data transfer instructions 

• program control instructions 

Many 68000 instructions can process several different data types. For 

example, the MOVE instructions will move bytes, words , and long-words. 

So in addition to the different addressing modes available for the 

instructions, different operand lengths are also possible. 
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( IntrodUCtion) 

In early computers, data and program were kept separate from one 

another. While the data was stored in registers and memory cells, the 

program was stored from the "outside". Computers were programmed by 

plug boards in many cases. Another technique of storing the program was 

to use perforated paper tape. 

Present-day digital computers are so-called "Von Neumann computers." 

We won't bore you with the historical development of the computer. We'll 

mention only the primary characteristic of a Von Neumann computer: in it 

the program and the data are stored in the same memory. The central 

processing unit contains only one register (the program counter) that points 

to the next executable instruction in the memory. The instructions are simply 

stored sequentially in memory. By changing the program counter, you can 

cause the central processor to deviate from the normal sequence of 

instructions. 

This makes jumps in the program possible. You can write programs 

that react according to the situation while the program is actually running. 

This is the chief advantage of the Von Neumann computer. In older 

computers the program runs as a long, single chain of instructions. 

In this chapter we present some examples of the construction and 

structure of programs. You'll find additional examples, especially practical 

application programs, in later chapters. 
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One element of conditional structures in programs is the simple 

branch. A branch is made to a certain program part based on a specific 

condition. If this condition is not fulfilled, execution simply continues with 

the next instruction in the "instruction chain" (program). As an example, 

we test to see if the variable A is zero. 

Previous Command 

Yes 

Branch 

Next Command 

Flow Chart 

Previous Command 

is A=O 
Yes No 

Branch 

Nassi-Shneiderman Structo2ram 
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You must be asking yourself how the execution of the program can 

continue. We have simply written "branch," but we haven't explained what 

we meant. Here a specific program part, or segment, is performed only if 

the condition (A=O) is true. After the execution of that program segment, a 

branch is usually made back to the main program. Naturally, other branches 

can be made within the first branch. If the condition is not true, execution 

simply continues with the next instruction in line. Instead of this, a program 

segment handling the case of the untrue condition can be called at this point. 

The program segment called when the condition is true is called the "IF 

portion"; the other segement is called the "ELSE portion." Here is a short 

example in Pascal: 

IF A=O THEN 
BEGIN 

(* Condition is fulfilled *) 

END 
ELSE 

BEGIN 
(* Condition is not fulfilled *) 

END; 

In a BASIC dialect that doesn't have an IF-TIffiN-ELSE (as opposed to 

a simple IF-THEN), the algorithm must be formulated differently. For 

example: 

10 IF A=O GOTO 50 
20 
30 ... (Instructions, if condition not true) 
40 GOTO 70 
50 
60 (Instructions, if condition fulfilled) 
70 (next instruction, same for both) 
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Command 
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Reaction to 

>------4 "condition 

No 
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Reaction to 
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fulfilled" 

Command 

Fulfilled" 

Reaction to 
"condition 

Fulfilled" 

Next command for both cases 
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But it is also possible to construct loops in programs, in which tests 

and jumps are executed only when the condition of the test is fulfilled (or 

not fulfilled). This way we can specify that an action be repeated a certain 

number of times in succession. There are two different types of loops: 

1) The condition is tested before a pass is made through the loop. If the 

condition is satisfied, the instructions in the loop are executed once 

and the condition is checked again. If the condition is not satisfied, 

execution jumps to the program position after the loop. 

2) The condition is tested after the actual pass through the loop. The 

instructions in the loop are therefore always executed at least once. If 

the condition is satisfied, the next instruction in the program is 

usually executed. Otherwise execution jumps to the fIrst instruction in 

the loop. Another "pass" is made through the loop. The condition is 

then tested again. 

With all loops, care must be taken to ensure that they will actually end at 

some point. If the condition is never fulfilled (as a result of an error in the 

program) the execution of the loop will never end. This is referred to as the 

program "hanging up." More reverent programmers call these anomalies 

"eternal loops." 

In many programming languages there are special instructions for 

constructing loops. As an example, we could print out the multiplication 

table for the number 4 using a FORINEXT loop: 

10 FOR X = 1 TO 10 
20 PRINT 4 * X 
30 NEXT X 
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No 
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Print X*4 
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, 
Set X 1 ".., 

Set X = 1 

Print X*4 

X X + 1 

Repeat until X #= 1 

Next Conunand 

..., 
v 

X + 1 

Yes 

Test after loop 
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The two drawings show the two basic variants of a loop. The 

mUltiplication table for the number 4 is calculated and printed by the 

programs symbolized there. 

In looking at the examples, you can see that in one a test is made for 

equality, and in the other a test for inequality. In the first example the loops 

end when the condition is no longer fulfilled. If X reaches the value" 11", 

thelloop must be ended. Therefore X is tested to see if it is not equal to 11. 

If X is no longer not equal to 11, then X is equal to 11, and the loop is 

ended. 

You can think of many variations of loops all leading to the same result. 

Try to develop another flowchart. You could, for example, start with x=o 
and increment X by one before printing. 

There are often loops in which the ending condition is tested in the 

middle. However, such a loop rarely can be constructed logically. In most 

cases, the program simply becomes harder to read. In addition, errors often 

occur, since it is difficult to follow the current value of the index variable 

(the variable that is changed). For this reason, the index variable should be 

changed only at the start or end of the loop. 

Within a program, a pressed key often initiates some activity. The key 

pressed is usually stored in a variable. In the program all variants of the 

variable (the key press) must be tested, and corresponding reactions started. 

Usually specific procedures or functions are called, dependent on the key 

pressed. However, a certain program segment often is executed like a 

"normal" branch. 
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83 

No 

Reaction to 
"other value" 



Abacus Software Machine Language for the Atari ST 

Usually another reaction is defined, a reaction taken if an undefined 

condition is present (when an invalid key is pressed). We also did this in 

our example. Another method is to read characters until a valid character is 

encountered. 

As you can see, a Nassi-Shneiderman structogram can become difficult 

to read very quickly. Consequently, it is very difficult or impossible to use 

when creating the program on the computer. But there is another way to 

draw structograms. The second method avoids using the triangle for tests. 

In addition, the individual variables are listed under each other and not next 

to each other, so that such structograms can be written with "normal" word 

processing programs. This is an important advantage srtuctograms have 

over flowcharts. Here is our last example, written differently: 

A is read from keyboard 

Is A = 1 

Yes Reaction 1 

Is A = 2 
No 

Yes Reaction 2 

No Is A = 3 

Yes Reaction 3 

No Reaction other A 

Next command 
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There are also other techniques for clearly representing structograms. 

The example we selected has the disadvantage of requiring a wide work 

sheet for "nested" tests. For learning machine language, the structogram we 

selected and the Nassi-Shneiderman will work well. Flowcharts are also 

good for this purpose; their major disadvantage is that they can easily create 

spaghetti code, because they do not force structured programming. It may 

not be clear now why small programs have to be programmed "cleanly," but 

it's a good idea to learn and practice the techniques for larger programs. We 

will go into some structured programming approaches in the next section . 

l 
., 

Procedures and functions ) 

Clearly we can write very capable programs with the different tests , 

branches, and loops. But in practice it often occurs that a certain program 

segment is needed at different locations. Here it usually doesn't make sense 

to repeat the same program text in all the places it's required. 

The technique of subroutine was devised for just this purpose. You 

already know of these from BASIC; they work much the same way in 

machine language. An example is shown on the next page. 
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10 (program) 
20 GOSUB 100 (subroutine call) 
30 (first command after the subroutine) 

100 (start of subroutine) 
110 (subroutine) 
120 RETURN (return to the calling program) 

A subroutine call is like a normal jump to another place in the program. 

But in a subroutine call, the address of the next command after the 

subroutine call is placed on the system stack (we will explain what we mean 

by this later). As soon as the CPU gets the command to return from the 

subroutine, it gets the address from the system stack and thereby knows 

exactly where it has to jump. 

The return addresses can be simply stored on the system stack when 

several calls are nested within each other-i.e. when one subroutine calls 

another. When returning, the processor always reads the top address off the 

stack, and the other data on the stack is "pulled" toward the top of the stack. 

The disadvantage of this procedure is that no parameters can be passed 

directly to the subroutine. In addition, the subroutine cannot pass any value 

back directly to the caller. 

Efficient programs can be written even with this disadvantage. 

Problems will always arise when the subroutine of one program is used in 

another program. In addition, programs written in this manner are almost 

always hard to read because the parameters, etc., can be difficult to follow. 

Moreover, leapfrogging all over the place will produce more spaghetti code; 

however, in practice, the exclusive use of subroutine calls and returns is 

rare. 
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Subroutines can be defined differently, however. In Pascal (and also in 

other languages like ADA, Modula 2, C, etc.), there are structures known 

as procedures and functions. A function or procedure is called like a 

normal subroutine. But as part of the call, the pre-defined parameters are 

passed to the subroutine. These parameters are stored in the subroutine as 

local variables. They are variables that can be used only by the subroutine, 

and are usually erased when execution returns to the main program. This 

way, even errors resulting from the improper use of variables in large 

programs can be avoided. Above all, procedures and functions can be easily 

used in other programs. 

When the procedure or function is ended, control is returned to the main 

program as with simple subroutines. This causes the local variables (the 

variables used only by the subroutine) to be erased. With a function, a 

value-known as the function value-is also returned to the calling 

program. Herein lies the difference between a procedure and a function-a 

function always returns a value. Naturally, groups of values can also serve 

as the function value. The function value can be viewed as the "result" of 

the function. 

Next we present a typical function and a typical procedure, both 

formulated in Pascal. Example: 

FUNCTION SQUARE (X: REAL): REAL; 
BEGIN 

SQUARE := X*X; 
END; 

This function calculates the square of a number. The expression 

SQUARE (9) returns "81", for example. 

87 



Abacus Software Machine Language for the Atari ST 

The next example is a procedure that outputs a given number of blank 

lines. The expression LINE (10) will write 10 blank lines: 

PROCEDURE LINE(N: INT); 
VAR I: INTi 
BEGIN 

FOR 1:=1 TO N DO 
WRITELNi 

ENDi 

The machine language of the 68000, like that of other processors, is not 

fully implemented. For the most part only instructions to initiate a 

subroutine call and return from the subroutine are present. But the 68000 

has an advantage over other processors in that it has instructions that reserve 

and free memory for local variables. Therefore, in order to be able to work 

with procedures and functions in machine language, you must create a 

procedure convention. 

A procedure convention is an agreement; it's a statement of intent as to 

how parameters will be passed to the subroutine, and how function values 

will be returned. In addition, a procedure convention usually determines 

which registers retain their old values when the subroutine returns. In 

chapter 7 we'll present the procedure convention used in this book's 

examples. 
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( Memory Structures) 

In the second chapter we mentioned that, from the point of view of the 

software, the memory is linear, or one-dimensional. The memory appears 

as an array of bytes, each byte having its own address. In hardware, bytes 

are paired together, because the 68000 is a 16-bit processor. Access is 

usually made only to even-numbered addresses for this reason. But the 

68000 need perform only one read or write cycle for a word access. 

In practice, multi-dimensional arrays are needed more often than 

one-dimensional memory. Appropriate software can accomplish this easily. 

To do this, the size of the array must be limited. The multi-dimensional 

array can then be structured in the available memory. The following can be 

done for a two-dimensional array with $100 X $100 (256 * 256) elements, 

each one byte large; assume that the array will begin at address $10000. 

Then the individual rows of the field begin at the following addresses: 

Row $0 

Row $1 

Row $2 

Row $FE: 

Row$FF : 

89 

$ 10000 .. $ lOOFF 

$IOIOO .. $lOlFF 

$10200 .. $102FF 

$lFEOO .. $IFEFF 

$lFFOO .. $lFFFF 



Abacus Software Machine Language for the Atari ST 

Element $30 in row $2 would then be located at address $10230. 

Arrays of higher dimension can be defined according to the same principle. 

You must ensure that the border of a row is never exceeded, since this is 

equivalent to accessing a different row. 

In the last section we use a stack to store return addresses. But what 

do we mean by a stack? 

Another designation for stack is a LIFO structure. LIFO being an 

acronym for Last-In First-Out. This name already defines the operation of a 

stack quite well. The data last placed on the stack is the first to be read back 

out. We can compare a stack in memory to a stack of papers. New 

information is written on a sheet of paper and placed on the top of the stack. 

If information is required, the last piece of paper placed on the stack is the 

flrst to be removed. 

In practice, a stack works like this: 

A certain memory area is reserved for the stack. A CPU register, called 

the stack pointer, points to a word in this memory area. If data is placed on 

the stack, the stack pointer is simply decremented by the number of bytes to 

be written. The data is written in the address range between the old and new 

stack pointer values. Reading data from the stack is also simple. The 

contents of the memory location to which the stack pointer points are read. 

The data on the stack is no longer available and is made "invalid" by 

incrementing the stack pointer by the number of bytes read. 
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Old 
Data 

Current 
Data 

$1000 
$2000 
$3000 
$4000 
$5000 
$3333 f- SP 

Principle of a Stack on the 68000 

Orginal Condition 

Old 
Data 

Current 
Data 

$1 000 
$2000 
$3000 
$4000 
$500 0 
$3333 

Old 
Data 

f- SP La s t 
Dat a 

Writing to the Stack 

Old 
Data 

Current 
Data 

Orginal Condition 

$1000 
$2000 
$3000 
$4000 
$500 0 
$3333 
$7777 

f- SP 

Old 
Da t a 

Last 
Data 

$777 
Reading from the Stack 

Machine Language for the Atari ST 

Decrement Stack Pointer 

$1000 
$20 00 
$3000 
$4000 
$50 00 
$3333 
..... . f-'- ·sp 

Old 
Data 

Current 
Data 

$7777 

Write Data 

1000 
2000 
3000 
4000 

$5000 

f- SP 
1-----4 

Read Data Increment Stack Pointer 

1000 
2000 
3000 

f- SP 
........ ---1 

Old 
Data 

Current 
Da ta 
Old 
Data 

S 10 0 0 
$2000 
~3000 

$4000 
$5 000 
$3333 r SP 

$7777 

Operation of the Stack on the 68000 
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In the 68000, address register A 7 (or A 7' in the supervisor mode) is 

defined as the system stack pointer. It is automatically used for 

subroutine calls, such as those made using JSR, for storing the return 

address. Other instructions also use A 7 (or A 7') as the stack pointer 

implicitly. But all of the other address registers can also be used as stack 

pointers for user stacks, using the addressing modes "address register 

indirect with predecrement" and "address register indirect with 

postdecrement." 

The use of the stack pointer is implemented on the 68000 as follows: 

1) The stack pointer always points to the current entry-the 

entry at the very top of the stack. 

2) The stack "grows" downward, to lower addresses. The stack 

pointer is therefore decremented every time new entries are 

placed on the stack; it is incremented every time entries are 

removed from it. 

In the context of this definition, data that is physically "lower" in 

memory is logically "higher" on the stack. This is somewhat confusing; but 

its meaning should become clearer as we begin to work with stacks. 

Something called FIFO storage is often used to store data temporarily; 

FIFO is an acronym for First-In First-Out. Commonly called a buffer, FIFO 

storage can be used in data transfer programs, for example. It often occurs 

that the receiver returns the data at regular intervals, but the receiving 

program can't always process it immediately. Instead, it saves data on the 

disk from time to time. In this situation you can program the data transfer 
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with a buffer storage. Each time a byte is received, the processor interrupts 

its normal activity and places the byte from the receiver in the buffer 

storage. The main program then always gets the data from the buffer when 

it is required. 

Naturally, certain problems can arise, because buffers have finite 

memory area. You must ensure that the data is processed quickly enough. 

Also, the data must be stored in the buffer almost immediate1y-otherwise 

new data may arrive while the current data is being stored, and data will be 

lost. 

A practical problem results from the principle of the FIFO 

storagelbuffers. A stack grows in one direction, but it is always built "from 

the top." One byte in the stack memory area is used again and again. In a 

buffer, each byte is used only once. After this, the "chain" of data has 

moved on by one position. 
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i 
Read Pointer--7 

1-------1 

· . 
· . . . 

i · . . . 
Write Pointe~ 

• • • • 

In practice, buffers generally are built as ring storage. Ring storage can 

be imagined simply as a ring, or circle, of bytes. Each of these bytes has a 

certain address. There are also two pointers, one for write and one for read, 

that are required by the ring. The write pointer always points to the address 

to which the next write access will go; after the write, it is incremented by 

the number of bytes written. The read pointer points to the location at which 

the reader (the program or programs that fetch the data from the buffer) can 

find the next byte. After a byte is read, this pointer is also incremented. 

One error situation can occur using this structure. If the reader and 

writer operate at markedly different speeds, one may catch up to the other. 

Therefore, when changing the value of one pointer, it's necessary to check 

the value of the other pointer. 
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You will no doubt ask yourself how a ring buffer can be made out of 

linear memory. To do it, an area of memory is designated as ring storage 

(FIFO storage). Once the read or write pointer reaches the highest address 

in the storage area, it is reset to the starting address of the buffer on the next 

increment. This requires another test when changing the pointer. Moreover, 

a situation will arise where the value of the write pointer is lower than that 

of the read pointer. But according to the principle of a buffer, the position 

where writing will take place is after the read position. The comparisons 

required to detect errors in the pointer values are not all that easy to 

formulate. 
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( IntrodUCtion) 

Any microcomputer requires a program to do useful work. When the 

68000 is sitting idle with no devices interrupting the system bus, it tries to 

execute the next instruction. The 68000 can be put in a "sleep" state wherein 

it waits for an interupt, and is otherwise inactive. This state is generated by 

the STOP instruction, and is called the "halt" state. If, during the operation 

of the 68000, serious errors occur and it is determined that reasonable 

operation can no longer continue (such as a double bus error), the halt state 

is entered. This can be exited only through a processor RESET. 

Since a microprocessor cannot function without a program, a program 

is required as soon as the computer is turned on. This program reads the 

instructions and determines what it will do next. On many computers, the 

built-in BASIC interpreter (or other programming language) is simply 

started after the computer is turned on. Larger systems, particularly systems 

with disk drives, generally have more complex system software. 

Some tasks must be performed in every program. Almost every 

program requires character input/output via the keyboard, screen, and 

printer. In addition, all programs are required to read from and write to the 

disk drive in the same way, so that a diskette can hold multiple programs 

and data. It doesn't make any sense to rewrite the necessary routines 

(subroutines or procedures and functions) in every program. This is why 

almost all computers have what is known as an operating system. 
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The operating system contains the routines required to operate the 

peripherals. The programs are usually divided into machine-dependent and 

machine-independent parts. If the operating system is to be used on other 

computers (ported), then only the machine-dependent parts need be 

rewritten or changed for the new computer. 

The actual user programs (such as word processors or BASIC) then 

access the peripherals via the operating system. Since the operating system 

can be the same on different computers, programs can be run on different 

computers without any changes; as a result, computers with the same 

operating system but different hardware can be interchanged. 

Large operating systems often have the task of managing the working 

memory. Programs request the required working memory from the 

operating system. 

The actual user does not come into contact with the heart of the 

operating system, as long as he does not write any programs on the 

operating system level. Another part of the operating system is the user 

level. To the user level belong programs with which the user can tell the 

operating system to execute a program, to erase files from the diskette, 

print them out, and so on. 

On the Atari ST, the TOS operating system is used with the GEM 

interface for the user. TOS is in many respects identical to CP/M68K from 

Digital Research. It offers routines for accessing the peripherals. Control of 

screen windows, the use of the mouse, and so on are all controlled by 

GEM. We won't go any further into the structure of TOS and GEM, but 

will explain their operation as far as necessary in the following chapters. 
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Up to now we have assumed that the computer executes only one 

program. But there are operating systems that allow the computer to appear 

to execute several programs simultaneously. Such operating systems are 

called mulit-tasking operating systems. By simultaneous we mean that the 

computer executes one program for a fraction of second, and then executes 

the next one for a fraction, switching back and forth, switching back and 

forth. This procedure is usually called time-sharing. 

Multi-tasking can be performed in one of two ways: 

1) A program runs in the foreground. The user works with the 

program interactively. All other programs run in the background. 

After a background program has been started, it runs on its own 

without further accessing the screen or keyboard. For example, a 

background program can print a file to the printer, while a 

processor interacts with the user in the foreground. 

2) There is no distinction made between foreground and 

background. The screen can be switched from one task or 

program to another by means of a simple command. A new 

window can be opened for a new task. This technique is 

considerably easier to use than the first, but requires a 

considerably more complicated operating system. But this 

actually allows use of two programs at once. 

With multi-tasking you can do more than execute various programs on 

the user level at the same time. Individual programs could be composed of 

different programs. A word processing program could consist two parts. 

The first part would be a conventional word processing program; the second 
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could be a program that at regular intervals made backup copies of text 

being edited. Since both programs run at the same time, the user isn't even 

aware that the backup is being made. 

Multiple "terminals" (screen and keyboard) can also be serviced with a 

single microprocessor. Just as a multi-tasking operating system (of the 

second type) executes multiple programs simultaneously on one terminal, an 

operating system can also execute multiple programs on multiple terminals. 

In this manner, several users can work on one computer at the same time. 

Systems using this technique are called multi-user systems. 

PrOl:rams 

A microprocessor works only with its machine language. It does not 

understand high-level programming languages (although there are 

processors with a built-in programming language, such as FORTH or 

BASIC). The machine language is simply a stream of bits that represent the 

instructions and immediate data of a program. It is difficult for humans to 

read, since there are no readily apparent connections between the machine 

language instruction and the resulting code. Programming languages were 

created because of the very fact that machine language is difficult to read. 

"High-level" language programs can be converted to machine language by 

appropriate programs. 

Additional utility programs are used to write the program text, and to 

test and correct the software. We would like to present a few groups of 

these programs in order to clarify the terms. 
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Assembler 

Every machine language instruction is assigned a mnemonic by the 

manufacturer of the microprocessor. The assembler translates the 

mnemonics into the machine language. For example, since jumps are 

possible only to addresses, and it is not yet clear when writing the 

program where sections of the program will end up in memory, the 

assember also inserts the proper addresses. The programmer puts 

labels in the program to indicate jump destinations. In addition, 

names can be given to memory locations. These memory locations 

can then be used like variables. Here is a fragment of an example 

assembly language program: 

addbcd: 

addloop: 

MOVEA.L 
MOVEA.L 
MOVE.W 
ABCD 
DBF 

#SOURCEPTR,AO 
#DESTPTR,AI 
#length-I,DO 
- (AO) , - (AI) 
DO,addloop 

In the final analysis, writing programs in assembly language is 

equivalent to writing them in machine language. But the assembler 

syntax is mastered much more easily than the cryptic bit streams of 

the machine language itself, because the mnemonics represent 

"abbreviations" of the instructions. 

Compiler 

A compiler is a program that translates programs in a "high-level" 

programming language into machine language. For instance, Pascal is 

converted to machine language by means of a compiler. Compilers 

and assemblers are based on the same principle. The difference is that 

a compiler usually converts a high-level language command into 
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several machine language instructions. An assembler, on the other 

hand, translates each assembly language instruction into exactly one 

machine language instruction. Various checks are made while the 

programming is running, depending on the language. In Pascal, for 

example, the array bounds may be checked for a valid range. By 

contrast, almost no checks are made in C. This makes C programs 

faster than Pascal programs but significant errors can easily occur. 

Interpreter 

An interpreter does not convert a high-level language program. 

Instead, the interpreter executes an equivalent sequence of machine 

language instructions for each command in the hign-Ievellanguage. 

A single command is read, interpreted, and executed. A command in 

a loop that's executed 100 times is completely read, interpreted and 

executed 100 times. The advantage of an interpreter is that the entire 

program need not be retranslated after making a change in the test 

phase. 

In practice, often it's hard to tell compilers from interpreters. For 

example, there are Pascal compilers (such as UCSD Pascal) that do 

not compile to machine language, but to a pseudo-code. This 

pseudo-code resembles machine language, but must be executed by 

an interpreter. 

Editor 

An editor is a program that writes text for programming languages. In 

many programming languages (like BASIC), the editor is already 

included as part of the programming language. For others (like Pascal 

and C), a separate editor is used. A wordprocessing program is an 

104 



Abacus Software Machine Language for the Atari S!' 

editor intended not for programs but for letters, books, and so on. 

This book was written using a word processing program. 

Monitor 

A monitor is a program allowing us to view and change memory 

locations and processor registers directly. In addition, a monitor has 

functions to convert machine language back into mnemonics (to 

"disassemble" it). A monitor program is usually used to check and 

test as well as correct programs in machine language. 

Debugger 

A monitor is also a debugger. A debugger is a program that aids in 

finding program errors. There are not only debuggers that work on 

the machine language level like a monitor, but also those that work 

directly with a high-level language. 

Linker 

A linker is a program that combines multiple, individually assembled 

machine language program segments. Modules of different languages 

can also be combined with a linker. For example, speed-critical 

program fragments written in assembler are often combined with 

Pascal programs. 

There are many other tools available to the programmer in addition to 

the programs named here. For example, the Atari ST development system 

has a program that lets you easily develop the icons that symbolize the files. 

Other tools create lists of the variables used in a program. 
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( IntrodUCtiOn) 

In this chapter we want to familiarize ourselves with the functions of a 

68000 assembler. We'll explain important terms used in assembly language 

programming and introduce the assembler's general operation and special 

syntactical rules. We want to prepare you for assembly language 

programming by showing you the full range of features. 

The authors used the assembler included with the Atari 520 ST 

Development System. 

The Atari Development System contains the CP/M 68K assembler 

(AS68) from Digital Research. You do not need an assembler in order to 

understand the examples in this book. However, if you want to write your 

own programs in assembly language, some kind of assembler is required. 
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( The editor) 

Up until now we have always spoken of a program as an abtsract 

representation of instructions that the assembler translates into machine 

language instructions. These instructions resemble a language-the 

programming language. All programs formulated in languages are 

represented in some written form. This written form is the program text. 

The program text must, like every written document, be entered into the 

computer by the programmer before it can be processed. A special program 

is required to do this-the editor. 

The program text is stored on the diskette/hard disk as a file. The editor 

is in control of all the possibilities for creating and changing a text file. The 

ease with which these functions can be used depends on the editor. 

An editor called MINCE was used with the Atari ST Development 

System. In principle, any editor that creates text files in ASCII code can be 

used for entering a program. Therefore it is possible to use an editor that is 

not included with the assembler. This makes sense if you have an editor that 

exceeds the capabilities of the assembler editor, or if you just want to use a 

single editor. 

The list on the next page should give you an idea of an editor's tasks. 
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• Create a text ftle on the diskettelhard disk 

• Modify a test ftle 

• Delete a text ftle from the diskettelhard disk 

• Accept characters from the keyboard 

• Display the text on the screen 

• Output a text on the printer 

• Execute an editor command 

• Move text on the screen 

• Format the text 

As a general rule, the editor is started from the operating system level 

(GEM or TOS). The file to be processed is identified or named when the 

editor is started. If the file already exists, the editor loads the file from the 

diskette/hard disk into memory and displays it on the screen. If the file is 

new, a new text file is created. In addition to the text you're currently 

working on, the editor displays additional information about the text. 

This additional information includes statements about the amount of 

memory available for additional text, descriptions of the currently available 

editor functions, information such as the position of the cursor 

(page/line/column), and the name of the ftle being edited. 

Once the editor is started and a file is being processed (even a new, 

previous empty text), the programmer is in the edit mode of the editor. On 

this level the editor has three basic operating modes: Writing mode, 

Movement mode, and Command mode . . 
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In the Writing mode, all letters, digits, and special characters entered are 

inserted into the text. The Writing mode is automatically selected by 

pressing an appropriate key. A character entered always appears at the 

current cursor position. 

By using the cursor keys, the cursor position in the text can be 

changed. The editor is automatically placed in the Movement mode when an 

appropriate cursor key is pressed. 

As a rule, the Command mode is activated by pressing the control key 

together with a letter key. One or more of these key combinations cause the 

editor to execute a certain command. There are both simple and very 

complex commands that make text processing flexible and complete. 

Here's an overview of the more popular editor commands: 

Write mode: 

Movement mode: 

Command mode: 

Digits, letters, special characters 

Cursor left, right, up, down 

Delete character (delete, backspace) 

Tab 

-File management: Read, write, delete file 

Save (write, continue) 

Rename, copy file 

Display disk contents 

Insert text block (from disk) 
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-Movement: 

-Delete: 

Machine Language for the Atari ST 

Word left, word right 

Start of line, start of new line 

Line forewards, line backwards 

Page forewards, page backwards 

Start of text, end of text 

Word left, word right 

From start of line to cursor 

From cursor to end of line 

From cursor to end of text 

Delete line 

Delete entire text 

-Block commands: Mark start of block 

Mark end of block 

Delete marked block 

Copy marked block 

Move marked block 

-Other: 

Save marked block (disk) 

Search in text 

Search and replace 

Print text fIle 

Set or clear tabs 

End program and save text 

Interrupt program 

Call help text 
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( The assembler) 

The term assembler is used to refer to a collection of programs that 

allow the programmer to work with machine language on the computer. An 

assembler program package has several distinct functions, and typically 

includes an editor and a debugger. 

In this section we'll discuss the typical components of an assembler 

package such as the debugger. But first let's take a look at the actual 

assembler. When we speak of an assembler, we refer to a program that 

takes machine language instructions written in symbolic form and stored as 

a text file, and translates them into codes that the 68000 processor can 

execute. 

Operation of the assembler 

As you already know, an assembler is just a program that processes 

data according to certain rules. The data to be processed is a series of 

symbolic machine language commands (mnemonics). These instructions 

comprise a file that is typically entered into the computer using an editor and 

saved as a text file on diskette or hard disk for later processing. Since the 

assembler creates a machine language program from this text file, it is often 

designated as the source file, or source text. 
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The goal of processing a source file is to create an executable machine 

language program. Since this translation procedure is peformed by the 

assembler, this process is also called assembly or assembling. 

As a general rule, the resulting code of an assembly is stored on the 

disk, again in the form of a file. Since a finished machine language program 

represents only a specific arrangement of binary data, this file is called a 

binary file. Other names used for it are object file, object code, absolute 

file and destination file. It should be mentioned that an assembler can also 

manage the source and destination files directly in the memory of the 

computer. This is called memory-to-memory assembly. This has its 

advantages when you're working with short programs and/or on small 

computers, in that processing speed is increased considerably because no 

mass storage accesses are required for the assembly. 

For computer systems with the performance features of the Atari ST, a 

good assembler offers the capability of creating relocatable files. In contrast 

to executable machine language programs (which, as a rule, are bound to a 

specific address space in the computer's memory), a relocatable file consists 

of a "half-finished" machine language program missing the address space 

specifications for the address space. These address specifications are stored 

in a special way in a relocatable file. To create an executable machine 

language program from a relocatable file, a special utility program is needed 

to combine the "half-finished" conversion with the address specifications or 

location. This creates an executable binary file from the machine language 

program, or it loads the machine language program into memory at the same 

time. Such a utility program is called a loader. 
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At fIrst, working with relocatable fIles sounds complicated, but it offers 

enormous advantages when considered and used carefully. Since the loader 

must insert absolute addresses in the half-finished machine code, it 

performs its task considerably faster than a complete assembly. The loader 

does not have to make any conversions or error checks, because these were 

all made by the assembler. Individual machine language programs are 

usually created in a relocatable form when a program must be loaded at 

different addresses. This is often the case during the test phase of a 

program. As an alternative to using a loader, the programmer can write his 

programs using relocatable code, in which no absolute addressing is used. 

But there are also other, more significant aspects of relocatable flies. By 

using another utility program-the linker-you can combine several 

separately assembled, relocatable files into a single program. A new binary 

or relocatable fIle then can be created by a linker. 

You can use the combination of relocatable fIles and the linker for many 

purposes. When you create larger programs, you will probably divide the 

whole program into several small, logically distinct program modules . 

These smaller programs can be developed and tested separately. When some 

of the parts are finished, you can combine these modules into larger 

modules and test it again until you have fmished the program. 

Working this way, you will discover modules that were running 

smoothly suddenly behave wildly when you add a new module. If you are 

working with a single source text in such cases, you must reassemble the 

entire file for each test pass-even the parts already working. This wastes 

time unnecessarily. It is much better to break large programs up into smaller 

source files and relocatable files . In the test phase you will have to make 
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changes to and reassemble only the suspect module. You then can quickly 

create an executable program with the linker. 

This modularization has some interesting side effects. For example, 

when working with large, complex programs, you can store the source files 

of finished modules on another disk, keeping only the relocatable files on 

the work diskette. This saves space on the disk that you can use for your 

current source files. From experience, we have found that the ratio of the 

source file size to the size of the resulting machine language program is 

about 10 to 1. If you write programs as collections of individual modules, 

using sensible divisions and standard procedure conventions (which we'll 

talk about later), over time you will develop an entire collection of library 

functions that you can use in new programs. 

We should mention here that there are several such complete, tested 

libraries on the market. There are, for example, comprehensive libraries for 

file management or for solving special numerical problems. A professional 

programmer can become considerably more efficient by using the routines 

contained in such libraries. 

Another important application of relocatable files is when we want to 

solve some special problems in machine language, but actually write the 

main program in a compiled language. The problem lies in connecting the 

program parts written in machine language to those that the compiler 

converted to machine language itself. As a general rule, compilers can also 

be instructed to create relocatable files. The linker can then combine these 

files with your own machine language programs. This lets you design 

programs consisting of modules created by different high-level language 

compilers. 
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Let us now turn briefly to another possible component of the assembler 

package. Often a debugger or a monitor is used during the development and 

test phase. When looking for errors, we can view the machine language 

program directly in memory, and perhaps modify it for test purposes. 

The debugger or monitor is a component of most development 

packages. Since the debugger or monitor displays your assembled machine 

language program, it is unaware of the source file from which the 

assembled code was produced. It cannot give you any information about the 

variable names that you used in in the source file, for example. Therefore 

the debugger or monitor becomes less and less useful, unless the 

programmer can remember what variables the machine code represents. 

To address this shortcoming, many assembler packages use symbol 

files or label files. This file contains all of the symbolic names that the 

programmer defined in high-level language. In addition, the assembler 

places information in this symbOl file corresponding to the absolute values 

of these symbols. When using a relocatable file, the symbol file is naturally 

expanded by the linker. This makes all of the important information 

available, separate from the executable machine language program. The 

debugger or monitor can display the complete information about the 

machine language program at any time by evaluating the symbol table. 

Some systems even make the entire source text with all of the programmer's 

comments available. 

In conclusion, we would like to mention that the assembler also creates 

a listing as it assembles. This listing contains the source file and machine 

language opcodes produced by the assembler. This is very useful in the test 

phase, when the assembler also creates a symbol table. All of the variable 
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names (symbols) defined by the programmer, and together with their 

assigned values are listed (and usually sorted) in the symbol table. A cross 

reference list (or simply cross reference) showing all program lines 

where the variables were found is also produced by most assemblers. 

Short assembler tvpolol:Y 

Here we would like to take the time to clarify some important 

differences between various assembler packages. If you are considering 

purchasing an assembler, you should familiarize yourself with the various 

features so that you can make the right purchase decision. 

The simplest form of an assembler is the direct assembler, or 

line-by-line assembler. For this form of assembler there is no source file 

and no editor. The programmer interacts with the assembler. He enters a 

single instruction directly to the assembler. The assembler then immediately 

translates the entire line into the corresponding machine code, and also 

places the result directly into memory. This type of assembler does not 

work with symbols. A line-by-line assembler rarely forms the heart of an 

assembler package. But it is a useful tool within a monitor or debugger, 

allowing quick changes to a machine language program being tested without 

having to use the actual assembler. It doesn't make sense to use a 

line-by-line assembler for long programs. 

For more comprehensive programs a full symbolic assembler may 

be used. This type of assembler allows the use of symbolic names for 

constants, variables, and addresses in the source file. We'll explore the 

flexibility that symbols offer later in the book. Here we'll say only that a 

120 



Abacus Software Machine Language for the Atari ST 

symbolic assembler performs two passes through a source file in order to 

create a machine language program. During the first pass the assembler 

searches the source file looking for symbols and creates the values of these 

symbols. The machine language code is generated during the second pass. 

Because of this characteristic, this type is also known as a two-pass 

assembler. Some assemblers use additional passes when assembling. 

A macroassembler offers even more capabilities and options. A 

macro is a sequence of several machine language instructions that can be 

defined by the programmer with a macro name. Macros are usually defined 

for recurring sequences of instructions in the source text. Wherever the 

programmer puts a macro call in the source text, it behaves as if the 

programmer had actually typed in all of the instructions for which the macro 

stands. You can defme an entire library of typical instruction sequences with 

macros. Since this is not a programming technique per se, macro processing 

is also known as pure text substitution, a sort of programming shorthand. 

For the sake of thoroughness, and to prevent confusion of terms, we'll 

mention the term cross assembler. An assembler does not necessarily 

have to be implemented on the machine for which it creates machine code. 

The computer on which the cross assembler runs is called the host. The 

computer on which the generated machine code is to run is called the target. 

Machine code produced by a cross assembler usually cannot be run on the 

host computers. Testing machine language program under such conditions 

calls for a simulation program. Cross assemblers are mainly used in cases 

where the target system does not exist yet (computers in development) or 

the target system is not powerful enough to support program development 

(rnicrocontrollers ). 
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The format of the source file 

As we have already learned, a source file represents the symbolic form 

of a machine language program. The text of the source file is line-oriented, 

whereby each line usually contains just one instruction that the assembler 

processes. The logical processing sequence within a line is from left to 

right, from the first (top) line to the last (bottom). This form of 

representation follows our normal style of reading written materials, i.e. 

newspapers, books, etc. 

In an assembly language program, we can distinguish between several 

groups of instructions that perform certain tasks, and their different 

syntactic rules. In this section we want to familiarize you with these groups 

of instructions before we discuss them individually. 

As already mentioned, in an assembly language program, machine 

language instructions are represented by mnemonics and operands. A label 

may be placed in front of a mnemonic and is a symbol designation of the 

address at which a machine language instruction is created by the assembler. 

The programmer may use this label to refer to this address elsewhere in the 

program without having to know the value of the address. We'll discuss 

symbols in more detail later. 

A line within the source file may also contain a comment. Comments 

explain the purpose of complex programs and the programmer may make 

the algorithms that he uses easier to understand. We recommend that you 

place comments within the source files so that it is clear what it going on in 

the program. Naturally, a line within a source file may contain only a label 

and/or comment. This serves only to improve the readability and appearance 
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of the program text and has no other function.We can include these lines in 

a source file, even though they create no machine code. The same applies to 

blank lines. 

Another group of assembler instructions includes all types of direct 

label and symbol definitions. These lines are called declarations. Other 

terms that you may encounter are value assignments and symbol or address 

definitions. 

A declaration is the assignment of a specific value to a symbol or label. 

Declarations are used by the programmer to keep a program independent of 

values as much as possible. For example, a programmer can designate a 

print position as "column" and assign the constant "10" to this designation. 

In the program he can always refer to the symbol "column" when he means 

the print position "10". This has two useful effects. First, the 

self-documenting nature of the program is increased; second, the program 

becomes easier to change. If the programmer wants to change the print 

position later, he need change only the constant in the declaration of the 

symbol "column". The assembler then uses the new print position wherever 

the symbol "column" appears. 

We have already mentioned labels. In contrast to symbols, which 

designate variable and constant values, labels are used exclusively for the 

symbolic designation of addresses. Not every address used by the 

programmer (jump destinations in particular) can be defined by a label in a 

line of source code. This is because some of these jump destinations do not 

lie within the assembly language program. These addresses, which must be 

defined by means of a symbol declaration, are designated as external labels. 
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Some assemblers are capable of textual declarations. Special reserved 

symbol names are assigned text strings. Such a textual declaration could be, 

for example, "DO = COUNTER" . "DO" is a reserved symbol and in the 

assembler syntax designates a data register of the 68000. If the programmer 

uses this declaration in his/her program, the assembler understands from 

this declaration that the programmer wants to refer to the DO register as 

"COUNTER". This function also has no effect on the logical operation of 

the machine language program. Good programmers often write their 

programs completely symbolically, as this practice leads to fewer errors. 

The last group of assembly language instructions is the assembler 

directives. These are often referred to as pseudo-opcodes, or simply 

pseudo-ops. As a general rule, assembler directives do not create machine 

code. They serve to control the assembly, to select certain options, and to 

organize the machine instructions in memory. We can divide the directives 

into various groups according to their function. The most important 

directive in assembly language programming tells the assembler where-the 

assembled code will reside in memory. In this same group are all the 

directives that tell the assembler where in memory it should reserve space 

for data, or where tables will be defined. Other directives are responsible for 

the appearance of the listing or telling the assembler what source files it 

should work with. More on this later. 
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Constants and arithmetic expressions 

In assembly language programming, we distinguish only between 

numeric and alphanumeric constants. As you have already learned, 

microprocessors work with binary data. Numerical constants can be 

represented in various number systems according to the purpose they serve. 

Syntax rules governing the designation of the number system make it 

possible for the assembler to interpret a constant in a specific number 

system. 

In the decimal system, numbers are represented by the digits 0-9. In 

some cases, a "#" (number sign) is placed in front of the decimal number. 

Examples: 1 0 0 

#100 

Some assemblers recognize hexadecimal numbers by default. To 

distinguish hexadecimal numbers from decimal numbers and symbols, they 

must have a leading zero. This is often the case, because a programmer 

almost always writes hex numbers in byte or word form. Another 

possibility is to precede the number with a "$" (as we have used) or suffix 

the number with the letter "H" . 

Examples: OD 

$FOOO 

lOOOH 
Some assemblers also allow the representation of octal numbers. Octal 

numbers are usually indicated with an "@" sign placed before or after the 

number. 
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Examples: 1 7@ 

@10 
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You can also represent binary numbers; they are indicated with a "%" 

placed before or after the number. 

Examples: %1000000 

%1010 

Independent of the representation and the number of places specified, 

the assembler evaluates numbers from the right. It automatically expands or 

truncates the number to fit the appropriate size of the operand. If bits are lost 

during this process, a warning message is usually indicated. 

Some assemblers allow the use of a variable number base. Here the 

number is followed by an "X" and the number base. The number base is 

specified in decimal. 

Examples: 1010x2 (binary number) corresponds to decimal 10 

1000x8 (octal number) corresponds to decimal 512 

1250x10 (decimal number) corresponds to decimal 1250 

2000x16 (hex number) corresponds to decimal 8192 

An alphanumeric constant is designated as a sequence of characters 

in ASCII code. It doesn't matter if the codes are printable characters or 

control characters. Since some control characters cannot be processed by a 

text editor, the programmer must represent these in the form of numeric 

constants. In order for the assembler to be able to distinguish strings from 

normal source text, the characters that form a character string are enclosed in 
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delimiters. One delimiter designates the start of the string, and a matching 
delimiter the end. Typical delimiters are the quotation mark ("), slash (I), 

and apostrophe ('). 

Examples: "Hello ATARI!" 

/Hello reader!/ 

A special rule concerns the representation of the delimiter itself within a 

string. To represent the delimiter itself within a string, it must appear as two 

successive delimiters. 

Examples: "Hello "" reader""" corresponds to I Hello "reade r " I 

/ 1 0 / / 5=2 / corresponds to "10/5=2" 

An arithmetic expression is one or more constants, symbols or 

functions connected by an operator. Constants andlor symbols of various 

types occur in a mixed expression. Various operators and functions are 

available to you depending on the capability of the assembler. These 

operations are not converted to machine language instructions by the 

assembler. Rather, these operations are used exclusively for calculating the 

value of the operands of instructions. 

Examples: 10+$OA 

LINE+1 

NOT 10 

In general, all 68000 assemblers offer all of the basic arithmetic 

operators and some of the logical operators for generating an expression. 
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Symbols and system constants 

We have talked about using symbols and labels. Now we'll familiarize 

ourselves with the syntactic rules of symbolic assembly language 

programming. The assembler must be able to clearly distinguish symbols 

from the rest of the text in the source file. For this reason there are certain 

rules regarding the definition of symbols. Generally, symbol names consist 

of a continuous sequence of letters, digits and certain special characters. 

Imbedded spaces in a symbol name are not allowed. Symbols must usually 

be separated from other parts of the source file text by spaces. If the 

separation can be made clear through other characters, such as with 

mathematical operators, the spaces can usually be omitted. A symbol may 

not begin with a digit. This distinguishes between symbols and numbers. 

U sing a reserved name as a symbol is forbidden. Most assemblers, 

however, allow a reserved name to appear within a label. Reserved names 

include all mnemonics, assembler directives, function names, and system 

constants. System constants are predefined symbol names whose value the 

assembler itself manages. We'll talk more about the system constants later. 

Usually the length of a symbol is limited to a maximum number of 

characters. For obscure reasons, a length of 6 characters is often the 

maximum for a symbol name. Some assemblers allow arbitrarily long 

symbol names, but only a certain number of the leading characters are 

evaluated to distinguish symbols from each other. These are called 

significant characters. Because of these limitations, the programmer is often 

forced to find short, easily-remembered abbreviations for his symbols. 

Some assemblers allow special characters in the symbol name in order to 

increase our comprehension. Typical special characters allowed are a period 

(.), underline L), backslash (\), and colon (:). 
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Examples: CHROUT 

DATA IN 

LOOP! : 

SPC.20 
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System constants are a special group of symbols. The symbol 

names and the number of system constants are different depending on the 

assembler. Here are some commonly-used system constants. 

Examples: CR 

TRUE, HIGH 

FALSE, LOW 

* 

Control character ($OD) 

True ($FFFF) 

False ($0000) 

Current address 

The last system constant in our example is not really a constant at all. 

The value of this symbol is always calculated by the assembler at the start of 

each program line. The value always remains constant within that line. This 

symbol always represents the address at which the assembler will place the 

next machine instruction. Later we'll talk more about this symbol in 

connection with address calculation. 
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Mnemonics and mnemonic extensions 

In this section we'll take a look at the syntactic rules for the mnemonics 

or opcodes that detennine the actual machine language instructions. 

Unfortunately, these mnemonics are not standardized. But there is a 

standard set by the manufacturer and followed by assembler developers. We 

will make special mention of differences. 

As you can easily see on the next pages, a mnemonic is always selected 

from a specific group of instructions; within it the assembler will find the 

actual instruction. An instruction group includes only machine language 

instructions that perform essentially the same function. 

We will explain all of the instructions used in this book. The following 

table serves as an overview and explains principle relationships. You do not 

have to memorize all of the mnemonics. 
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ABCD.B 
ADD.X 
ADDA.X 
ADD I .X 
ADDQ.X 
ADDX.X 
AND.X 
AND I .X 
ASL.X 
ASR.X 
Bcc.X 
BCHG.X 
BCLR.X 
BRA.X 
BSET.X 
BSR.X 
BTST.X 
CHK.W 
CLR.X 
CMP.X 
CMPA.X 
CMPI.X 
CMPM.X 
DBcc.X 
DIVS.W 
DIVU.W 
EOR.X 
EORI.X 
EXG.L 
EXT.X 
JMP 
JSR 
LEA.L 
LINK 
LSL.X 
LSR.X 
MOVE.X 
MOVEA.X 
MOVEM.X 
MOVEP.X 
MOVEQ.L 
MULS.W 
MULU.W 

OPl,OP2 
OPl,OP2 
OPl,OP2 
OPl,OP2 
OPl,OP2 
OPI,OP2 
OPI,OP2 
OPl,OP2 
OPI (,OP2) 
OPI (,OP2) 
OPI 
OPl,OP2 
OP1,OP2 
OPI 
OPI,OP2 
OPI 
OPI,OP2 
OPl,OP2 
OPI 
OPI,OP2 
OPl,OP2 
OPI,OP2 
OPI,OP2 
OPI,OP2 
OPI,OP2 
OPI,OP2 
OPI,OP2 
OPl,OP2 
OPl,OP2 
OPI 
OPI 
OPI 
OPI,OP2 
OPl,OP2 
OPl,OP2 
OPl,OP2 
OPI,OP2 
OPl,OP2 
OPl,OP2 
OPl,OP2 
OPI,OP2 
OPl,OP2 
OP1,OP2 
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Add binary-coded decimal, extend 
Add binary 
Add binary to address register 
Add immediate 
Add immediate quick 
Add binary with extended 
Logical AND 
Logical AND with immediate value 
Arithmetic shift left 
Arithmetic shift right 
Branch if condition code true 
Test bit and change 
Bit test and clear 
Branch always 
Bit test and set 
Branch to subroutine 
Bit test 
Check register against bounds 
Clear 
Compare 
Compare address register 
Compare immediate 
Compare in memory 
Decrement and branch, conditionally 
Divide signed 
Divide unsigned 
Logical exclusive OR 
Logical exclusive OR with immediate 
Exchange register 
Sign extend 
Jump absolute 
Jump to subroutine absolute 
Load effective addr to addr register 
Link local base pointer 
Logical shift left 
Logical shift right 
Move source data to destination 
Move to address register 
Move multiple register 
Move from or to peripheral register 
Move immediate quick 
Multiply with sign 
Multiply without sign 
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NBCD . B 
NEG.X 
NEGX.X 
NOP 
NOT.X 
OR.X 
ORI.X 
PEA.L 
RESET 
ROL.X 
ROR . X 
ROXL.X 
ROXR.X 
RTE 
RTR 
RTS 
SBCD.B 
Scc.B 
STOP 
SUB.X 
SUBA . X 
SUBI.X 
SUBQ.X 
SUBX.X 
SWAP.X 
TAS.B 
TRAP 
TRAPV 
TST.X 
UNLK 

OPl,OP2 
OPI 
OPI 

OPI 
OPl,OP2 
OPl,OP2 
OPI 

OPI (,OP2) 
OPI (,OP2) 
OPI (,OP2) 
OPl(,OP2) 

OPl,OP2 
OPI 
OPI 
OPl,OP2 
OPl,OP2 
OPl,OP2 
OPl,OP2 
OPl,OP2 
OPI 
OPI 
OPI 
OPI 
OPI 
OPI 
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Negate binary-coded decimal 
Negate 
Negate with extend 
No operation 
Logical NOT 
Logical OR 
Logical OR with immediate value 
Push effective address 
Reset external devices 
Rotate left 
Rotate right 
Rotate left with extended bit 
Rotate right with extended bit 
Return from exception 
Return and restore register 
Return from suboutine 
Subtract bin. coded dec. with extend 
Set byte according to condition code 
Stop with condition code loaded 
Subtract binary 
Subtract binary from address reg 
Subtract immediate 
Subtract immediate quick 
Subtract binary with extend 
Swap register halves 
Test byte and set always bit 7 
Software trap always 
Trap on overflow 
Test byte 
Unlink local area 

You probably noticed the . x, . B, . w, and . L extensions on many 

of the instructions. These mnemonic extensions are used to specify the 

width of the operand that the instruction will use. The extensions have the 

following meanings: 
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· B operand width BYTE, 8 bits, 1 byte, 112 word 

• W operand width WORD, 16 bits, 2 bytes, 1 word 

· L operand width LONG, 32 bits, 4 bytes, 2 words 

· X any of the above operand widths 

When you use an instruction in the mnemonic table labelled with .B, . W 

or . L, it means that this instruction can be used only with this operand 

width. Some assemblers permit the programmer to omit the extension on 

these commands. Instructions having . X as the extension can be used with 

any of the three operand widths. If the extension is omitted when using 

these commands, the assembler assumes that programmer wants to use the 

WORD operand width. Commands for which no extension is listed in the 

mnemonic table have an implicit operand width. 

Some instructions in the mnemonic table have a special form of 

mnemonic extension in the form of two lower-case c's (c c). These are 

condition codes, instructions to test for a specific condition and 

performing an operation based on the result of the test. The condition code 

determines the condition that the instruction will test for. The programmer 

extends the mnemonic with this condition code (cc). 

The second column of the table contains the specification of the 

instruction operands. Some commands have no operands. In this case these 

instructions specify the operand(s) implicitly. An operand specified in 

parentheses is optional. We'll explain more about the operand formation 

later. 
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Condition codes 

We won't examine all of the condition codes of the 68000 flag register. 

Instead we want to give you a general understanding of the purpose of the 

condition codes. 

68000 instructions that test the flags always refer to one or more of the 

following flags: 

c carry carry for addition, borrow for subtraction 

N negative result is negative (two's complement) 

V overflow last operation lead to an overflow 

z zero result is zero (all bits) 

There are two condition codes for each of these flags, depending on 

whether the programmer is interested in a set (1) or a cleared (0) flag. We'll 

present these eight condition codes using a conditional branch instruction. 

The general form of the instruction is Bcc OPI, where OPI is the branch 

destination if a test for a specific condition is true (see addressing modes). 

ee Bee OPl Branch if carry clear Jump if e = 0 
es Bes OPl Branch if carry set Jump if C = 1 
P L BPL OPl Branch if plus Jump if N = 0 
MI BMI OPl Branch if minus Jump if N = 1 
ve BVe OPl Branch if overflow clea Jump if V = 0 
VS BVS OPl Branch if overflow set Jump_ if V = 1 
NE BNE OPl Branch if not equal Jump if Z = 0 
EQ BEQ OPl Branch if equal Jump if Z = 1 
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These condition codes are used when the programmer wants to test the 

state of the flags. The setting of a flag can take place as a result of a 

comparison operation. For example, suppose we compare two operands: 

CMP OPI, OP2 

As a result of this instruction the Zero flag is set or reset. If OP 1 =op 2 , 

the Zero flag is set. If OP l::tOP2 the Zero flag is reset. Two condition 

codes can be used to test the Zero flag: EQ (tests for Zero flag set) and NE 

(tests for Zero flag reset). 

EQ BEQ OPl Branch if equal Jump if OPl = OP2 
NE BNE OPl Branch if not equal Jump if OPl ~ OP 2 

To test for OP 1 greater than OP 2, OP 1 less than OP 2 or OP 1 equal to 

OP2, we must recall binary number representation. Binary numbers can be 

viewed as either signed or unsigned numbers. An example will clarify this: 

255> 0 

-1 < 0 

(% 11111111 is greater than %00000000) 

(%11111111 is less than %00000000) 

Note how the numbers are complemented for negative numbers. The 

68000 supports the processing of both types of numbers. The following 

condition codes are used for unsigned numbers: 

HS BHS Branch higher same Jump if >= OPI 
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And for signed numbers: 

L p 
L p 

G Branch reater 
GE Branch greater/eq. 

It should be noted that these comparison instructions work in 

conjunction with the CMP instructions. As a result OP 1 is always compared 

to OP2. We will mention two more condition codes having a special 

relationship to the instructions DBcc. W OP 1, OP 2 and Sec. B OP 1. 

These are special instructions that affect the execution of the instruction 

depending on the condition. More on these commands later. 

T ST OPl TRUE: The condition 
, 

always fulfilled 1S 

F DBF, OP1, OP2 FALSE: The condition 1S never fulfilled 

These condition codes have no meaning In connection with the 

conditional branch instructions. There is another mnemonic for the 

instruction BT (branch true): BRA (branch always). The variant BF is not 

allowed since the corresponding opcode would be identical to that of BSR 

(relative subroutine call)-and it's a little obscure anyway. 

Syntax of the addressjne modes 

By using the addressing modes you can determine what operands an 

instruction will operate on. In the chapter describing the 68000 

microprocessor, we explained the function of all 14 addressing modes. 
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Here we'll show you how to represent and use the individual addressing 

modes in assembly language programming. If you take a look at the list of 

mnemonics, you will see that there are basically four classes of instructions: 

• instructions without operands 

• instructions with one operand 

• instructions with two operands 

• instructions with one and optionally two operands 

Instructions that do not need an operand represent the first and simplest 

form of addressing. The instruction contains the addressing mode 

implicitly. In assembler syntax, implicit addressing is represented by simply 

writing the mnemonic. 

Examples: NOP 

RESET 

RTS 

no operation 

reset peripherals 

return from subroutine 

All instructions requiring operands use one or more of the 13 other 

addressing modes. In theory, any of these addressing modes can be used to 

generate an opcode. In practice, however, there are some limitations on the 

combination of instructions and addressing modes in the 68000 instruction 

set. The instruction overview in the appendix indicates what instructions can 

be used with a particular addressing mode. 

One of the most important addressing modes is direct register 

addressing. A distinction is made between data and address register. 
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Examples: CLR.L DO * clear data register 0 

ADD.L Dl,DO *DO=DO+Dl 

ADDA.L DO,Al * Al =Al +DO 

MOVEA.L AO,Al * Al = AO 

In the above examples we always used the long-word operand width in 

order to use all 32 bits. For. W, for instance, only the lower 16 bits are 

used. In these examples you can also recognize the use of two operands 

(separated by a comma) and the mixing of two addressing modes (address 

and data register direct) . 

If constants are required for an operation, the immediate addressing 

mode is used. In assembler syntax, the immediate operand is written as a 

"#" (number sign) followed by an arithmetic expression. 

Examples: MOVE. L # 3 0 , DO 

ADDI. W #$AO, D7 

CMFI. B #CR, DO 

* DO = 30 (load DO with 30) 

*D7 =D7 + 160 

* Compare 00 with CR 

Many operands' addresses in memory are already known. In these 

cases the programmer can access this address directly. This access is called 

absolute addressing. The 68000 distinguishes between the addressing 

modes absolute long and absolute short. When formulating an assembly 

language program, the programmer does not need to take this difference into 

consideration, because the assembler itself will chose an appropriate 

addressing mode based on the size of the operand. In the assembler syntax, 

we simply specify the desired address as an operand by means of an 

arithmetic expression. 
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Examples: MOVE . B 

CLR.W 
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$OOABCDEF, DO * Load byte (abs.long) 

$1000 * clear word (short) 

Another form of operand addressing is the address register indirect 

mode. Here the absolute address is not given in the instruction, but only an 

address register that contains the absolute address. In assembler syntax this 

is indicated by placing the address register in parentheses. 

Examples: MOVE. L DO, (AO) 

MOVE.B (AO) , (Al) 

* DO to address in AO 

* Byte from AO to Al 

Note in the last example the transfer of a byte, with address in address 

register AO, to the address contained in address register AI, without 

requiring an additional register. 

The postincrement and predecrement modes are extensions of the 

address register indirect addressing mode. As you can see in the last 

example, tranferring a byte (or any other operand width) is very simple. In 

practice, however, entire strings of bytes are often processed. Here you 

must program a loop whereby the address register is incremented by the 

number of bytes to be transferred. The addressing mode predecrement is the 

opposite of postincrement. In assembler syntax these addressing modes are 

represented by prefixed and suffixed addition and subtraction signs. 

Examples: CLR.B (AO)+ * Clear byte and AO=AO+ I 

CLR . W - (AI) * AI=AI-2 and clear word 

MOVE (AO) +, (Al) + * Move word, address+2 

MOVE (AO) +, (Al)- * Rotate words: AO to Al 

MOVE (AO)+,DO * Word from AO to DO, AO+2 
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Another variant of the address register indirect addressing is the 

address register indirect addressing with displacement. With this 

addressing mode, a constant value (displacement) is added to the actual 

address contained in the address register. By using this addressing mode, 

the programmer can easily access an element of an array without having to 

change the address register for each access. In assembler syntax, the 

displacement is specified as an arithmetic expression placed before the 

indirect addressing. 

Examples: CLR . B 

CLR.B 

MOVE 

O(AO) 

I (AO) 

(AO),I(AO) 

* Byte addressed via AO 

* Next byte, AO unchanged 

* 1st to 2nd byte of AO 

The addressing mode indirect address register addressing with 

displacement and index (whew!) is an extension of the indirect address 

register addressing with displacement. In this addressing mode, the contents 

of the address register, the displacement, and the contents of another data or 

address register are all added together to form the address of the operand. 

This addressing mode is also used to access elements of an array with the 

help of a variable pointer (index). The operand width of the index register 

(data or address register) can be specified in the instruction. Either a word 

(.W) or a long word (.L, the entire register) is then used in the addition. To 

represent this addressing mode in assembler syntax, the index register is 

placed inside the parentheses after the address register. 

Examples: NEG I (AO, DO. L) * Negate 2nd word, indexed DO 

NEG 2 (AO, AI) * Neg 3rd word, word index 
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Another form of addressing is the program counter relative mode, or 

simply relative addressing. The relative address involves an index added 

to the current program counter contents in order to get the effective memory 

address. This addressing mode is used for conditional jump instructions and 

for the two special instructions BSR and DBcc. Because relative 

addressing is defined by the mnemonic used, the programmer need not 

designate it specially in the instruction. The assembler not only recognizes 

the addressing mode, it also calculates the relative address of the instruction 

itself when the programmer specifies the address of the branch destination. 

We'll talk more about this function of the assembler in connection with 

address calculation. 

Examples: BNE 

BSR 

DBF 

NOTE QUAL 

CALC 

LOOP 

* Jump on OP1<>OP2 

* Relative subroutine jump 

* Jump to the start of the loop 

A special form of relative addressing is the program counter 

relative addressing with displacement and the program counter 

relative addressing index. These last two addressing modes function 

identically to the address register indirect addressing with displacement 

with or without index. These addressing modes are used to write relocatable 

programs. They cannot be combined with all machine language programs, 

however. In assembler syntax, these addressing modes are distinguished 

from the address register indirect addressing by the specification of PC, 

instead of an address register. 

Examples: CLR ARRAY (PC) * Clear 1 st word in data array 

CLR ARRAY (PC, AO) * Clear array, indexed AO 
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In the following sections we'll talk: more about the use of these 

addressing modes. We will also discuss some syntactic details of special 

instructions. 

As you see in the description of the last addressing modes, there are 

some special reserved names to indicate the special registers of the 68000. 

In the cause of program counter relative addressing, the program counter 

is indicated by pc. As you have already learned, address register A7 is the 

user stack pointer, or in the supervisor mode (A 7') it's the supervisor stack 

pointer. To improve the readability of the program, most assemblers allow 

the use of USP for the user stack pointer and SSP for the supervisor stack 

pointer. One exception is the use of USP within a M 0 V E 

instruction-different instructions will be created with this combination. 

Another special register is the status register (SR). Part of the status 

register is the condition code register (CCR). The status register can be 

completely or partially set to a defined value by means of a special MOVE 

instruction. A read access is possible only on the entire status register. Here 

again, we refer you to your 68000 microprocessor reference book for more 

information. Some examples of assembler syntax: 

Examples: MOVE 

MOVE 

MOVE 

#O,CCR 

#$1000,USP 

sr, '-(A7) 

* Condition code register true 

* Initialize stack pointer 

* Save status on stack 

In connection with the MOVE instruction, we make mention of a highly 

specialized operand formation-the register list. Some or all of the data 

and/or address registers can be stored at or loaded from an address 

simultaneously. The assembler can create the appropriate opcode from the 
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register list. A register list is an enumeration of registers in any order, with 
the registers separated by slashes (" 1"), or a sequence of registers in which 

the fIrst and last registers are given and connected by a dash (" _"). 

Examples: MOVEM 

MOVEM 

MOVEM 

MOVEM 

DO,-(A7) 

DO/AO,-(A7) 

* 1 reg on the stack 

* 2 regs on the stack 

(A 7) +, DO-D7 * Data regs from stack 

(A 7) +, DO-D7 /AO-A 7 * All regs from the stack 

In summary we would like to give you an overview of the syntax rules 

for the addressing modes, and indicate any deviations in different 

assemblers. 
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Addressira Mode 
Implicit 
Data Register direct 
Address Register direct 
Immediate 
Absolute long 
Absolute short 
Address register indirect 
Post increment 
Predecrement 

Machine Language for the Atari ST 

Ooerandtvoe 

Dn 
An 
#=Data.X 
Address.W 
Address.L 
(An) 
(An)+ 

Adr. reg. indirect with displ. 
- (An) 
D16(An) 
D8(An,Rn.X) 
Offset 
D16(PC) 
D8(PC,Rn.X) 

Adr. reg. indirect with displ. and index 
Relative 
Relative with displacement 
Relative with displ. and index 

Register list 
User stack pointer 
Supervisor stack pointer 
Status register 
Condition code register 
Program counter 

Key: 

aevlar.lons: 
(seldom) 

Dn 
An 
Rn 
Data 
Address 
Offset 
D8 
D16 
i, j, n 
.B 
.W 
. L 
.X 

SP 
$ 
Address 
Ri, Xi 
D 
A7 

Di-Dj/Ai-Aj 
USP 
SSP 
SR 
CCR 
PC 

Data registers 0-7 
Address registers 0-7 
Dn or An 
.B, .W, or .L constant 
.W or .L constant 
· B or . W constant 
• B constant 
· W constant 
Register number 0-7 
Byte 
Word 
Long word 
.B, .W, or .L 

corresponds to USP 
corresponds to PC 
corresponds to address 
corresponds to Rn 
corresponds to D8 or D16 
corresponds to SSP 

Syntax Summary for Addressing Modes 
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The assembler directives 

Every assembler offers a certain number of assembler directives 

(pseudo-opcodes). In general, directives do not create any machine code. 

For a better overview, we place the most important directives into the 

following main groups: 

• Address calculation, memory management, and organization 

• Source text management and pass control 

• Tables and data areas 

• Symbol declaration 

• Macro processing 

• Output format and options 

Directives are prefixed by a period (" .") followed by an abbreviation. The 

abbreviation or mnemonic can be followed by one or more operands. 

Generally, the same conditions that apply to the formation of arithmetic 

expressions apply to the formation of operands. 

The most important directive in the first group is the ORG directive. 

This directive tells the assembler where the generated machine code will run 

in memory. As a general rule, this is the first instruction in an assembly 

language program. In any event, the assembler must encounter an ORG 

directive before the fIrst machine instruction or table can be assembled, so 

that the assembler can create the appropriate machine code for the defined 

address. 

Example: .ORG 

.ORG 

$1000 

STARTADDR 
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Sometimes you may have to reserve space in a program-for instance, 

to save temporary values. The DS . X pseudo-op is used for this purpose. 

This directive reserves a specific number of bytes, words, or long words 

based on the operand width ( . X). A corresponding number of fill characters 

is then generated at the next available address. $00 is usually used as the fill 

character. At this point it should be mentioned that the programmer can also 

add a label to a pseudo-op instruction. By doing this, the reserved space can 

be accessed symbolically . 

Examples: 

TAB 

. DS . B 256 * 128 words will be reserved 

• DS . W 128 * 128 words will be reserved 

DATA .DS.L 64 

BYTE1 .DS.B 1 

* 128 words will be reserved 

* 1 byte will be reserved 

The attentive reader will note a typical problem of defining a table in our 

last example. As you have already learned, a machine language instruction 

must always begin on an even address. If the programmer defined a table 

that comprises an uneven number of bytes, the next machine instruction 

would begin on odd address. To avoid this, the EVEN directive is used to 

advance the address counter of the assembler to the next even address. 

There are also some assemblers that automatically preserve the word 

alignment after defining tables . 

Example: DATA . DS. B 3 * Reserve 3 bytes 

. EVEN * Align to word boundary 

START MOVE. B DO, DATA * Fill table 
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We said that the area reserved by the DS directive is filled with $00. But 

there are also assemblers that permit you to fill the area with an alternate 

character. The FILL directive is used to define an alternate fIll character. 

Examples: .FILL $20 

. FILL "A" 

* Fill with spaces 

* Fill with A ($41) 

Another form of the DS . X directive is the DC. X directive. With this 

directive, a memory area can be reserved and also filled with constants 

(table). The programmer can give a list of alphanumeric expressions, 

separated by commas, following the directive that are then placed in 

memory. 

Examples: TAB .DC.B 1, "A" * Creates $0141 

.DC.W 1, "A" * Creates $000 1 ,$4100 

.DC.L 1 * Creates $0000,$0001 

.DC.L "AB" * Creates $4142,$0000 

In the above examples, note the special treatment of strings. Strings are 

filled with $00 to the full length of the operand. As a general rule, the 

address counter of the assembler is not automatically advanced to the next 

even address after a DC. X directive (EVEN directive), so that several DC's 

can form a contiguous table. Some assemblers automatically recognize the 

end of multiple DC. X directives and correct the address counter to an even 

address as soon as an instruction following a DC. X is not DC . X. 

Another important task of an assembler is the definition of symbols and 

labels that cannot be assigned a value by the assembler (external jumps, 
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constants). These definitions are made by the EQU psuedo-op. No 

distinction is made as to whether the name is a symbol (data) or a label 

(address). A symbol can be assigned any value, as represented by an 

arithmetic expression, up to a maximum of 32 bits. A symbol may be 

defined only once. If a symbol must be assigned a new value, some 

assemblers offer a REDEF directive. Some examples clarify the assembler 

syntax of these directives: 

Examples: ADDRESS .EQU $1234 * corresponds to $0000 1234 

CHAR .EQU "A" * corresponds to $0000000 1 

TEXT .EQU " ABC" * corresponds to $00414243 

TEXT .REDEF CR * corresponds to $00000000 

Another group of directives allows the inclusion of multiple source files 

(separately created) that can be combined into a single machine language 

program. Multiple source files may be chained together with the FILE 

psuedo-op. The directive specifies the next source file which is to be 

assembled as part of the machine language program. The INCLUDE 

psuedo-op is similar; it's used to insert a source file at that particular point in 

the current source file. 
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Example: 

FILE A 

Source line 1 
Source Line 2 
Source Line 3 

• 
• 
• 

Source Line 
Include FILE 
Source Line 52 

• 
• 
• 
• 

File FILE 

Machine Language for the Atari ST 

FILE B 

Source Line 100 
Source Line 101 

• 
• 
• 

Source Line 

FILE C 

Source Line1000 
Source Line 1001 

• 
• 
• 
• 
• 

Source Line 1999 

The programmer has other directives available to alter the order of 

assembly. The simplest directive is . END. This directive indicates that the 

end of the source has been reached. 

Example: .END * End assembly 

Conditional assembly is controlled by a another group of directives. 

Here a condition is tested before a designated portion of the source text is 

assembled, and the assembly of this source text is perfonned only if the 

condition is true. If the condition is not true, this portion of the source text 

is excluded from the assembly. 
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Before we go into the syntax rules for these directives, we would like to 

illustrate the use of conditional assembly. 

Let's assume that you are developing a program that will be used in 

both English and German. You could first develop the program in English 

and then make a German translation when the development is complete. 

You might discover that it isn't possible to make a direct translation of the 

English words. Often an entire screen needs to be changed because a single 

word has become too long and no logical abbreviation or replacement can be 

found. Such modifications often require a large number of subsequent 

changes. When the program is finished, even an experienced programmer 

might find it too difficult to coordinate the changes. 

One alternative is conditional assembly. IT you're writing a segment of a 

program and anticipate changes will be required for the German version, 

you can then program both versions of the segment and test them. By 

means of conditional assembly you can specify only the English or German 

portion be assembled with the neutral language-dependent portions. In 

conditional assembly, an arithmetic expression is evaluated and the result 

examined. If the result is true (not zero), the condition is satisfied; if the 

result is zero, the condition is not satisfied. In our example, the programmer 

could define a symbol "LANGUAGE" as 0 for English and 1 for German, 

and use this symbol for the conditional assembly. A portion of the source 

me to be conditionally assembled is introduced by the following directives: 

Examples: . IFE LANGUAGE 

. IFN LANGUAGE 

* Assemble if LANGUAGE=O 

* Assemble if LANGUAGE <>0 
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The source file to be conditionally assembled is followed with the 

END IF directive. If the condition was unsatisfied, the assembly continues at 

this line. 

Example: . ENDIF * End of conditional assembly 

Some assembler allow limited interaction with the programmer during 

assembly. Two directives are used for this. The PRINT directive allows 

outputting of messages to the screen. The programmer can make a keyboard 

input by means of the INPUT directive. The assembler then assigns the 

keyboard input to a symbol, similar to the EQU directive. The INPUT 

directive is especially useful in the development and , test phase of a 

program, when there are much-used variable parameters to change. This 

form of programming allows you to avoid using the editor just to change a 

few parameters. In reference to our previous example (English/German), 

you could output a question regarding the language and assign a control 

value (0 or 1) to the symbol LANGUAGE by means of keyboard input. The 

following example should clarify the assembler syntax: 

Example: .PRINT "English (0) or German (l)?",CR 

.INPUT LANGUAGE 

Another group of directives handles the format control. These directives 

can control the format of the assembler listing. Moreover, the programmer 

can use certain options to adapt the list to his/her needs, or make it easier to 

read (program documentation). The following list illustrates the many 

possibilities and explains the syntax rules: 
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Examples: .NOLIST * Do not create a listing 

.LIST * Create listing again 

. PAGE * Move to a new page 

. NOFORMAT * No formatted output 

. FORMAT * Output listing formatted 

.SPC 3 * Print three blank lines 

.LLEN 80 * Fonnat 80 characterslline 

.LINE 72 * Set page length to 72 lines 

.TOP 6 * 6 blank lines between pages 

.TITLE "Text" * Defme page title 

.XPUNCH * No hex dump creation 

. PUNCH * Create hex dump again 

. NOCROSSREF * Suppress cross reference 

.CROSSREF * Print cross reference 

Some assemblers manage the assembly control options by means of an 

OPTION directive. Here each assembly control option does not have its 

own directive, but shares a common directive with all control options. The 

option list behind the OPTION directive controls which controls are on or 

off. 

Examples: . OPTION NOLIST, NOPUNCH, NOFORMAT 

.OPTION LIST, PUNCH, FORMAT 

Assembler directives are generally the least standardized elements of 

assembly language programming. We have tried to give you a look at the 

possible range and uses of directives. You can learn the syntax rules of your 

own assembler by reading your assembler manual. 
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Macro processin~ with an assembler 

We have already explained the possibilities that macro processing 

offers. Here we would like to familiarize you with the syntax rules. The 

macro definition and macro call are created with assembler instructions 

similar to directives. 

Example: . MACRO BYTEARRAY_ADR(XIND,YIND,ADDR) 

MOVEM DO, - (SP) * Save register 

MOVE. W YIND, DO * Y-index for multiplication 

MULU . W #100, DO * *BYTES perline 

ADD. L XIND, DO * Add X-index 

ADD I. L #BASE, DO * + Table start address 

MOVE.L DO,ADDR 

MOVEM (SP) +, DO 

.ENDM 

* Save address 

* Register to old value 

* End of defmition 

.•. BYTEARRAY_ADR (XPNT,YPNT,ST) 

In our example, the address of a byte within a two-dimensional table is 

calculated. It should be noted that a macro does not involve a subroutine 

call, but the assembler behaves as if the source text of the macro definition 

had been written at the place where the macro call occurred. Macros are 

written when a given sequence of instructions are used several times in a 

program. 

Here the assembler must know the type of data (symbols or labels) the 

macro will use. The programmer tells the assembler in the macro definition 

what symbols within the macro definition should be replaced by other 
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symbols in the macro call. All symbols within the macro definition have 

validity only within the macro, in order to avoid multiple definition 

problems in multiple macro calls. However, the programmer can use any 

external symbol inside the macro. 

To further clarify the function of macro processing, we'll show you 

what the assembler does when a macro is called twice . 

. .. BYTEARRAY ADR (XINDEX,YINDEX,ADDRESS) 

MOVEM DO,-(SP) * Save register 

MOVE . W YINDEX,DO * Y -index for multiplication 

MULU.W #100,DO * *Bytes per line 

ADD.L XINDEX,DO * Add X -index 

ADDI. L #BASE,DO * + Table start address 

MOVE.L DO, ADDRESS * Save address 

MOVEM (SP)+,DO * Register to old value 

... BYTEARRAY ADR (XPNT,YPNT,ST) 

MOVEM DO,-(SP) * Save register 

MOVE.W YPNT,DO * Y -index for multiplication 

MULU.W #100,DO * *Bytes per line 

ADD.L XPNT,DO * Add X-index 

ADDI. L #BASE,DO * + Table start address 

MOVE.L DO,ST * Save address 

MOVEM (SP)+,DO * Register to old value 
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Address calculation 

To extend your understanding of assembly language programming and 

the operation of the assembler, let's turn to the topic of address calculation. 

Address calculation, next to the translation of mnemonics, is the most 

important task of the assembler. From another angle, many typical 

"beginner's" mistakes have to do with address calculation. 

Most assemblers allow a source file to be written completely 

symbolically. In the most extreme case, the program defines all constants 

and external addresses as symbols and labels (declarations). These symbols 

don't give the assembler any trouble, because their values are pre-defined. 

The labels defined within a program, destinations for branches, subroutine 

calls, and accesses to tables, are more difficult for the assembler to process. 

To understand these difficulties, think back to the assembly operation. 

The text of a source file is processed by the assembler line by line, 

starting with the first line. If a symbol definition occurs within a line, the 

symbol is entered into a table together with its corresponding value. This 

symbol table contains all of the symbols (and their values) defined up to this 

point. If a symbol is used as an operand during the assembly, the assembler 

searches for the symbol in the symbol table and replaces it by the value from 

the symbol table. The assembler may have difficulty in discerning between 

symbols contained in the table already and those defined in a later line. 

If the symbol is contained in the table, then it was definitely defined in a 

previous line. This case is called a backward reference. If the symbol is not 

in the table, it may be defined later in the program. This is called a forward 

reference. 
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These forward references form the basic problem of address 

calculation. In order to translate an instruction, the assembler also needs the 

value of a forward reference. The assembler uses a simple trick to overcome 

these difficulties. It makes two passes through the text of the source file. In 

the first pass, no machine code is generated. At the end of the first pass, all 

symbols and values found are contained in the symbol table. If this is not 

the case, an error message is issued with the assembly containing errors. 

This is why a symbolic assembler is also called a two-pass assembler. 

Yet the programmer can still easily "confuse" the assembler even 

though the source code is syntactically and logically correct. Many 

assemblers become "trapped" by these constructions; we want to familiarize 

you with some of these errors. 

The first are the programmer errors of "cyclical definitions." 

Example: SYMBOL 1 

SYMBOL2 

SYMBOL3 

.EQU SYMBOL2 

.EQU SYMBOL3 

.EQU SYMBOL1 

* First defmition 

* Second definition 

* Third definition 

It is easy to see why this leads to an error because, in the final analysis, 

none of the symbols are defined. It behaves differently in the following 

case, which is very similar to the above. 

Example: SYMBOL 1 

SYMBOL2 

SYMBOL3 

.EQU SYMBOL2 

.EQU SYMBOL3 

.EQU 1234567 
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In this example we have a multiple forward reference. It is easy to see 

why a simple two-pass assembler would have trouble with it if we try to the 

assembly once "by hand." After pass 1, SYMBOLl and SYMBOL2 are 

undefined. In pass 2, SYMBOLl cannot be defined because SYMBOL2 is 

still not defined. SYMBOL2 can be defined in pass 2, since SYMBOL3 is 

known in pass 1. But already in pass 2 an error is generated in the definition 

of SYMBOLl (Whoa!). 

Another source of errors is a phase error, although most assemblers can 

no longer be "tripped up" by them. They are a deviation between the 

address calculation in pass 1 and the address calculation in pass 2, which 

the assembler usually recognizes and corrects. These phase errors are 

created by machine language instructions that have a variable instruction 

length depending on the size of the operand. If the operand is defined by a 

forward reference in such an instruction, the assembler reserves the 

maximum length for the instruction in pass 1 and calculates the symbolic 

address accordingly. If the instruction becomes shorter in pass 2 as the 

result of a smaller operand than was assumed in pass 1, all references to 

following labels must be corrected corresponding to this reduction. 

The assembler Jistipe 

We have already talked about the assembler listing and format options. 

Here we'll go into some of the details and characteristics of error handling. 

On the next page you see a typical assembler listing. In the list that 

follows, we do not go into the content of the example program, but we'll 

explain the individual elements of the listing. 

157 



Abacus Software Machine Language for the Atari ST 

C PI" b BOO 0 Ass e I b 1 e r 
Source File: B:DEMO.S~ 

1 

Revision 04.03 Page 1 

G) 

~0 
4 
5 0) G) b 
7 00000000 7E09 
B 
9 00000002 2C7COO078000 

10 
11 00000008 469E 
12 
13 OOOOOOOA BDFCOOOF8000 
14 00000010 65F6 
15 
16 00000012 2C3COO04FFFF 
17 
18 00000018 5386 
19 
20 0000001A OC8600000000 
21 00000020 bbFb 
22 
23 00000022 51CFFFDE 
24 
25 00000026 3F3COOOO 
26 0000002A 4E41 
27 
28 
29 00OOOO2C 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

III FLASH SCREEN DEMO LISTING III 

••••• "'.~"~'*"""""""* @ 
(2) 10 .1 19, d7 I nUlber of fl ashes 

flash: lovea.l 1$78000,.16 I pointer to screen 

loop: not.L (.16)+ I invert 

clpa.l 1$78000+$80000,a6 f screen end? 
blo loop I No: continue 

love. I U4ffff ,d6 f delay loop 

delay: subq.l 11,d6 I until d6=0 

c.pi.l 10,db I test 
bne delay I No: wait 

dbf.w d7, f1 ash I repeat if necessary 

lIIove.1f 10,-(sp) I Code: WARMSTART 
trap 11 I call 6EMDOS 

.end 

C P 1Mb 8 0 0 0 Ass e I b I e r 
Source File: BIDEMO,S 

Revision 04.03 Page 2 

SYlLbol Table @ 
delay 00000018 TEXT flash 00000002 TEXT loop 00000008 TEXT 

@ 
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1) Title, changeable by the programmer 

2) Filename of the source text being processed 

3) Page numbering, running numbering 

4) Source text line number, running numbering 

5) Memory address of the instruction or table 

6) HEX dump of the instruction or table 

7) Label field, contains the label name of the line 

8) Mnemonic field, contains mnemonics or directives 

9) Operand field, contains operands/addressing mode 

10) Comment field, contains comments 

11) Comment line, comment occupies entire line 

12) Symbol table, listing of all the symbols 

13) Symbol value (addresses, data) of the symbols 
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The assembler error analysis distinguishes between simple errors, fatal 

errors, and warnings. The last indicate possible sources of error, without 

leading to an interruption of the assembly, because the programmer may 

explicitly want the indicated situation under certain circumstances. As 

examples, the assembler points out unreferenced symbols, or indicate that a 

smaller operand width could be used for an instruction. 

Fatal errors are errors that interrupt the assembly because it no longer 

makes sense to continue. A missing symbol declaration is a fatal error. 

Some assemblers handle normal errors, such as a branch over too long 

a distance, as fatal errors. In spite of the danger of subsequent errors, it may 

make sense to continue the assembly up to the first fatal error, and simply 

display the errors found. This method has the advantage that many simple 

errors (such as syntax errors) can be recognized in the first assembly. The 

programmer can then correct more than just one error at a time. This saves a 

great deal of time during development. 

The error handling and the layout of the assembler listing differ widely 

from assembler to assembler, so we must refer you to your assembler 

documentation again. There you will find a description of all the error 

messages and warnings. 

Usim: the assembler 

Suppose you have edited a source file and now want to translate it into 

machine language using the assembler. We assume that you have created the 

source file with an editor, that you have saved the source text on diskette, 
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and have exited the editor program. At this point you will find yourself on 

the command level of the assembler package. Usually this command level is 

the TOS or GEM mode-at the operating system level. The assembler can 

be started from this level. 

Before the assembler can start with the conversion, it requires the 

filename of the source text to be assembled. The assembler may ask you for 

the name after it is called, or it may be that the programmer simply passes 

the filename, together with the program name of the assembler, at the 

command level (operating system). The TOS operating system passes the 

filename as a parameter to the assembler. 

Examples: A:ASSEM . ............................... Call 

File? TEXT.SRC ................... Read parameter 

A:ASSEM TEST.SRC .............. Call with parameter 

In addition to the filename, the programmer can specify assembler 

options at the assembler call. These are control functions for the object code 

file and the assembler listing. By means of these control parameters the 

programmer can suppress generation of the object code or direct the output 

of the listing to a printer or the screen. 

Examples: A:ASSEM 

File? TEST.SRC 

Object? ABS. OBJ 

Listing? P 

. ....................... Call 

............... Source text 

......... Object file name 

......... Output to printer 

A: ASSEM TEST. SRC/ABS. OBJ /p ............. Parameters 

161 



Abacus Software Machine Language for the Atari ST 

With some assemblers control parameters must be entered. If they are 

missing, the assembler uses default values. The specific defaults your 

assembler uses and how the assembler is called are explained in your 

manual. 

( The debUgger) 

We have already mentioned the debugger/monitor. Here we'll give you 

an overview of the use of these programming aids and their capabiltites. 

As a general rule, the debugger is initiated much like the assembler. The 

name of the machine language program to be tested is usually entered as a 

parameter. 

Examples: DDT . ........... .... Call the debugger 

DDT TEST.OBJ .............. Call and load TEST 

The Atari ST's debugger is designated SID (Symbolic Instruction 

Debugger). The SID is an improvement over earlier debuggers in thay it 

allows symbolic processing of a program. In this section we'll explain the 

basic operation of this tool. 
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The tasks of a debugger/monitor program can be broken up into four 

basic groups: 

• Read/write program (memory area) from/to disk 

• Display and/or change memory/register contents 

• Test the program (trace and breakpoint) 

• Aid functions (hex/dec conversion, arithmetic, etc.) 

After initiating the debugger, you are at the command level. This means 

that the debugger waits for you to enter a command, which must be 

followed with the <RETURN> key. Keep in mind that the debugger is 

usually a rather primitive and unintelligent tool. The command structure is 

extremely rigid and very sensitive to input errors. Syntactic and logical 

errors are acknowleged with very terse messages. The programmer should 

also be very familiar with programming at the machine level, since changes 

in the address space can cause the computer to crash. 

In this section we won't go into each individual command of the 

debugger. Instead, we'll present some interesting details that will introduce 

you to the test phase. In the end, the debugger is the only tool with which a 

programmer can track down a program error. 

The debugger that you use may have a slightly different command 

structure. In any event, you should use the documentation included with 

your debugger. The following list illustrates the commands found in a 

typical debugger (SID with the Atari Development System). 
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Ename Load a program for testing 
V Display parameters of the loaded program 
Iname Generate file control block (FCB) (from the name) 
Rname Load a memory area from disk 
Wname,s,f Write memory area from s to f address 

Ds Hex/ ASCII display of bytes at address s 
Ds,f HeX/ASCII display of bytes from address s to f 
DWs Hex/ASCII display of words at address s 
DLs Hex/ ASCn display of long words at address s 
Ls Disassemble at address s 
Ls,f Disassemble from address s to address f 
X Display the 68000 registers, Rn, PC, USP, SSP,ST 

Xr Change a register (r=Rn,PC,USP,SSP,ST) 
Ss b ... b Write bytes (b) at address s in memory 
SWs w ... w Write words (w) at address s in memory 
SLs 1...1 Write long word (1) at address s in memory 
Fs,f,x Fill memory from s to f with byte (b) 
FWs,f,x Fill memory from s to f with word (w) 
FLs,f,x Fill memory from s to f with long word (1) 
Ms,f,d Copy memory from s to fto d (b) 

G Start program at current PC 
Gs Start program at address s 
GS,bl. .. b2 Start program at address s with breakpoints 

T 
Tn 
U 
Un 
K 

Hxl,x2 

Key: 

Trace program at current PC 
Trace n machine language instructions at PC 
Execute I machine instruction at PC 
Execute program, trace n instructions 
Displays symbol table information 

Generate sum and difference of xl and x2 

name = fIlename s 
b 
x 
n 

= start address f = end address 
= word r = register 

I = long word 
bn = breakpoint 

= byte w 
= b/w/l d 
= number (1..n) ... 
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One of the most useful functions of the debugger is disassembly. 

This is the exact opposite of assembly. The disassembled program is 

displayed on the screen not only as a hex dump, but in assembler notation. 

The display includes mnemonics, operands and addressing modes. This 

fonn of representation is very easy to read and makes it easier to find errors. 

The trace function is probably the debugger's most important test aid. 

It allows a machine language program to be executed in the single-step 

mode, one instruction at a time. The program being tested can be so 

processed, except for certain limitations involving the operating system 

routines and particularly time-critical program segments (interrupts). In the 

single-step mode, the current register-set contents are displayed after each 

instruction. 

Breakpoints are another extension of the trace mode. Here the 

program under test is not processed step-by-step. However, the 

programmer has the option of interrupting the program at a given address 

(breakpoint). The debugger watches the machine language program and 

interrupts execution when the processor comes to the address of a 

breakpoint. At this point the current register contents of the processor are 

displayed. In addition to the other manipulation commands of the debugger, 

you can check the output of your program up to the breakpoint. 
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I Procedure conventions "1 
" 

As a general rule, machine language programs will run on a computer 

without any additional help; the operating system supports the essential 

functions of a computer. You will not have to program all of the functions 

yourself in machine language programming. Instead, you can use operating 

system routines (to output a character on the screen, for example) without 

having to consider the hardware-dependent aspects of these functions. 

These operating system functions are standardized. Therefore, 

programs that access operating system routines can run on any computer 

using the same microprocessor and operating system. One or more 

parameters are passed to the function when using an operating system 

function. After execution of the function, a result is passed back to the 

calling program. Procedure conventions refer to how parameters are passed, 

how the function is called, and where the result will be expected. 

Another form of procedure convention relates to the machine language 

program. The object program must be provided with a specific identification 

code and information about the executable program (start address, program 

length, etc.), so that it can be executed from the operating system. 

The procedure conventions are rigidly specified as far as the operating 

system is concerned. We urge you adhere to certain procedure conventions, 

and also to the modularization of your own machine language programs. 
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The simplest form is passing parameters through registers. Here all 

parameters are passed in the data and/or address registers. The results are 

also returned in certain registers. As a general rule, unused registers are not 

changed. If additional registers are required by a function, they are saved at 

the start of the function and restored again at the end. The registers are 

usually saved on the stack. 

In our examples we'll usually pass parameters in registers. When other 

forms are used (programming recursion, etc.), we'll point them out. 

Another form of parameters passing is the defmition of specific memory 

ranges for passing values. After execution of the function, the results are 

made available at a defined location in the parameter block. A parameter 

block can reside at a predetermined address in memory. As a general rule, 

the programmer passes the start of the parameter block to the function in an 

address register. 

The most elegant way of passing parameters is by the user stack, or 

self-defined stacks using the address registers. This method is also 

supported by the 68000 instructions LINK and UNLINK. This parameter 

passing is similar to the parameter block. However, the parameter area is 

not stored at a set address in memory, but it is dynamically managed on the 

stack. We'll use this form of parameter passing when talking about 

recursive programming. 

When using procedures and operating system routines, input and output 

parameters are defined by procedure conventions. Distinctions are made 

between the following types of calls: 
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• Subroutine call with start address of the routine 

• Subroutine call via a jump table. Here a complete sequence of 

branch instructions are defined in memory one after the other. The 

individual branch instructions branch to the actual routines that 

perform the function. The programmer uses only the address of 

the branch instruction in the jump table when calling the 

subroutine. 

• Subroutine call of a defmed routine in which the function is passed 

by means of a function number. The actual function is called by 

means of the function number in the called routine. 

• Function call via traps. A function number is usually passed. The 

actual routine that performs the functions is defined in the vector 

table of the 68000. The operating system in the Atari ST uses this 

form of function call extensively. 

When programming in a high-level language, often problems are 

encountered that can only be solved with an assembly language routine, or 

can be performed much faster in assembly language. For example, many 

compilers generate c0de for graphics programs-a slow process. To 

accelerate such programs, we might write routines in assembly language 

that accomplish the same graphics, but are considerably faster. 
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But now we encounter the problem of combining the assembly 

language module with the high-level language program. Even with 

"classically" interpreted languages like BASIC, we can write time-critical 

segments of the program in assembly language. 

To do so, we must follow the procedure conventions of the high-level 

language exactly (however painful) in the assembly language programs. 

Here are some important guidelines for doing this. 

• are the parameters passed correctly? 

• is the result returned properly? 

• is the stack changed? 

• are the registers used (to the degree required by the convention) 

saved and reloaded? 

• does the stack ever grow beyond a set boundary in the program? 

• are data moved to illegal areas? 

• will the assembly language program be interrupted by interrupts? 

• will the memory area processed by the assembly language 

program be changed by a DMA operation? 

A linker is used to merge assembly language routines with high-level 

language compiled programs. The assembly language routine is then called 

by name in the high-level language program. The linker ensures that the 

addresses in the assembly language program are known by the high-level 

language program. 

In BASIC programs, the assembly language routine is usually called by 

the command "CALL address" (or SYS ... , USR ... ). The user must 

ensure that the machine language routine is loaded at the correct address. 
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I Introduction J 
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Machine Language for the Atari ST 

This chapter will introduce you to practical assembly language 

programming, step by step. At this point we assume you know the material 

in Chapter 3 and Chapter 6 of this book. If you do not understand the layout 

of the 68000 microprocessor, or the use of your assembler, we suggest you 

turn to Chapter 3 and Chapter 6 first. 

Our example is intended to show you the step-by-step development of a 

short decimal to binary conversion routine. We have taken care to avoid any 

"tricks" concerning existing operating system functions . On one hand, we 

would like to slowly introduce you to the capabilities of the 68000; on the 

other hand, we don't want to "spoil" you with all of the comforts of the 

operating system. In this way we hope that what you learn here will be 

easily applied to other computer systems. 
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Decimal/binary conversion 

Problem description 

Here's our problem: convert a decimal number to a binary number in a 

machine language program. As you know, a decimal number is equal to its 

binary equivalent in value; only the representation (number base) is 

different. 

First let's clarify what data the program will work with. In our example 

the decimal number is the input, and the binary number is the output. For 

the time being let's just group the individual steps of the conversion under 

the heading "conversion." Now that we have all of the information, we can 

draw a data flow plan. 
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Data flow plan 

On this page you see the data flow plan of our example program. The 

data flow shows the path and type of data. It shows what and when 

something happens with the data. Because of the simplicity of our example, 

we make no futher comment 

Input Decimal 

Decimal/Binary 
Conversion 
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ATARI ST keyboard input 

machine language program 
"Step by step" 

ATARI ST screen output 
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Flowchart 

By using the flowchart, we can clarify how the data is processed. You 

can refine the problem step by step until an exact description of all the 

instructions for the processor is finally created. The process is called 

Top-Down programming; the flowchart should illustrate this method. 

Start 

Input 
Decimal Number 

Decimal/Binary 
conversion 

Output 
Binary Number 
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The first step: character output 

We tum now to the first step of fonnulating the algorithm. We want to 

represent an ASCII character on the screen. The screen doesn't recognize 

any letters or characters as we recognize them. The picture we see on the 

monitor is an exact copy of a 32K memory area in the Atari ST. Each bit in 

the memory is assigned to a point on the screen. A set bit appears dark and a 

cleared bit is illuminated (on a monochrome monitor). 

There is a table in the operating system that determines, bit-by-bit, the 

appearance of all of the printable characters (the character generator). You 

can imagine the work involved when outputting an ASCII character. The 

address of a character in the character generator is calculated, the address of 

the character pattern onscreen is determined, and the character is copied 

from the character generator to the screen. Alternatively, the operating 

system may have to perfonn special functions for special control characters. 

A programmer would have a lot of work to do if the operating system 

did not perfonn these elementary functions. As we have already explained, 

the ST's operating system is a large, complex program. After the operating 

system is loaded and has started a program, the loaded program takes 

responsibility for all subsequent actions. The machine language programmer 

is faced with the problem of how to pass control back and forth between the 

program and the operating system, to accomplish certain tasks (such as 

character input and output) using the operating system routines. The authors 

of the operating system specify these conventions, or individual operating 

system routines. 
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C P / ~ 6 8 0 0 0 Ass e I b I e r 
Source File: B:STEP1.S 

Revision 04.03 Page 

1 
2 
3 
4 
5 
6 
7 
8 00000000 3F3C0041 
9 00000004 3F3C0002 

10 00000008 4E41 
11 OOOOOOOA 588F 
12 
13 OOOOOOOC 3F3COOOD 
14 00000010 3F3C0002 
15 00000014 4E41 
16 00000016 588F 
17 
18 00000018 3F3COOOA 
19 0000001C 3F3C0002 
20 00000020 4E41 
21 00000022 588F 
22 
23 00000024 3F3COOOO 
24 00000028 4E41 
25 
26 0000002A 

ffffff,f,f,f",f,f,ffff",ff,fffffffff,ff,f.,ff 

ff Output of an ASCII character step 1 ff 
Ifffffflffffffffffffffffffflfffffffffffflflfiff 

love.N 165,-(sp) I output 'A U 

love,N 12,-(sp) I Code: CONOUT 
trap 11 f call SE~DOS 

addq,1 14,sp f stack correction 

love,1iI 113,-(sp) I output CR 
love,N 12,-(sp) f Code: CONOUT 
trap 11 f call SElmOS 
addq.1 14,sp f stack correction 

love,N IIO,-(sp) f output LF 
love,N 12,-(sp) I Code: CON OUT 
trap II f call SEMDOS 
addq,l l4,sp f stack correction 

love. iii IO,-(sp) f Code: NARMSTART 
trap 11 f call SE~DOS 

. end 

Here's our first short machine language program. It demonstrates 

outputting an ASCII character on the screen using an operating system 

routine. Basically, we are using the GEM-DOS interface of the ST. 

Complete compatibility with later releases of the ST is guaranteed only by 

using the GEM-DOS interface. 
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In our example, no starting address is defined in the assembly language 

program. Later, the linker is used to combine several assembled programs 

into one file. Then, the relocating modifier program creates a program to 

run in any memory space prior to execution.In any case, the programs we 

present in this book are directly executable under GEM or TOS. 

Lines 8-10 output a character (ASCII character A) to the screen. The 

screen position of the output is always the current cursor position. After 

outputting the character (or control character), the new cursor position is 

calculated by the operating system and saved for the subsequent output. 

Let's take a close look at how the operating system is used. Basically, 

one or more parameters are passed to GEM-DOS. These parameters are 

passed via the stack. Let's follow what happens here. The first parameter 

passed is the character to be printed (line 8). The operand width is one 

word. As you know, the ASCII code contains a maximum of 256 

characters. For the ST, each different character requires one byte. Parameter 

passing via the stack is always done in words, since the stack data always 

begins with an even byte address. The upper half of the ASCII word has no 

function. But in order to maintain compatibility with possible new character 

sets (which may exceed 256 characters), we recommend that you ignore the 

high-order half and keep it filled with binary zeros. 

A second parameter is placed on the stack in line 9. This is a function 

number-it tells the operating system what it should do with the data on 

the stack. The number of parameters is also stated implicitly by the function 

code. The collection of parameters and function numbers is called a 

parameter block. Our example's parameter block consists of two words 

(one representing the character, and one the GEM-DOS function code). 
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The operating system (GEM-DOS) is called by the TRAP instruction in 

line 10. We aren't really interested in all of the details of this call. However, 

the sketch below clarifies exactly what must happen in the preparation of the 

operating system call. Note that, internally, the operating system always 

works with the supervisor stack. The 68000 is placed into the supervisor 

mode after a TRAP, an exception. It gets data from the stack that was active 

when the function is called. This usually involves the user stack, because 

user programs are executed in the user mode. 

You must ensure that all parameters are removed from the stack again 

after calling an operating system routine. This is done in our example by the 

ADDQ. L instruction to the stack pointer. 

The TRAP instruction works here like a subroutine call. The address of 

this subroutine is defined by the TRAP number. The processor finds the 

address of the operating system routine to be called by the TRAP instruction 

in the vector table of the 68000 system. Once the operating system routine 

has been executed, the machine language program continues with the next 

instruction (line 13). 

Adr. 
n+2 old old old old old 

old f- SP n old SP old old old 
~ $004 n-2 ~O 0 4 f- SP $004 $0041 

n-4 $0002 f- SP $0002 f- SP $0002 
n-6 

Start 5i tuation MOVE.W t$41,-(5p) MOVE. W +2, - (5p) TRAP t1 ADDQ.L t4,5P 
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Lines 13 thm 21 repeat the function just described, but here we do not 

output a printable character. These are the control characters carriage return 

(CR) and linefeed (LF). A carriage return causes the cursor to be set to the 

start of the current line. A linefeed moves the cursor down one line. The 

cursor remains in the same column. If the cursor is already in the last line, 

the screen is "scrolled." This means that all of the screen lines are moved up 

one line. The top line disappears from the screen and a blank line is inserted 

at the lowest line position. In effect, the screen behaves like a sheet of paper 

in a typewriter. 

The instructions in lines 23 and 24 of our example return control to the 

operating system. This operating system call requires no additional 

parameters besides the function number. 

With this short example we have already told you three basic things 

about machine language programming. We have explained the principle of 

operating system calls, outputting characters, and returning to the operating 

system. To solve our example problem we must still explain how 

characters are passed from keyboard to the program (character input) 

through the operating system.(By the way, this method of problem-solving 

is called Bottom-Up programming, as opposed to the Top-Down method 

mentioned earlier). Let's take a look at another example program, on the 

following page. 
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C PI" 6 8 000 Ass e I b 1 e r 
Source File: B:STEP2.S 

Revision 04.03 Page 

1 
2 
3 
4 
5 
6 
7 
8 00000000 3F3C0001 
9 00000004 4E41 

10 00000006 548F 
11 
12 00000008 3EOO 
13 
14 OOOOOOOA 3F3COOOD 
15 OOOOOOOE 3F3C0002 
16 00000012 4E41 
17 00000014 S88F 
18 
19 00000016 3F3COOOA 
20 0000001A 3F3C0002 
21 0000001E 4E41 
22 00000020 SB8F 
23 
24 00000022 CE7COOFF 
25 
26 00000026 3F07 
27 00000028 3F3C0002 
28 0000002C 4E41 
29 0000002E 588F 
30 
31 00000030 3F3COOOO 
32 00000034 4E41 
33 
34 00000036 

1IIIIffffflfffflflflllfflfflfflffffffffffl'I'ff 

If Input of an ASCII character step 2 fl 
Ifillfllllllllllllllillfllillflfllllllllllllill 

love ... Il,-(sp) I Code: CONIN 
trap Il I call 6E"D05 
addq.l 12,sp I stack correction 

love." dO,d7 I save character 

love." 1l3,-(sp) I output CR 
love." 12,-(sp) I Code: CONOUT 
trap 11 I call 6E"D05 
addq.l 14,sp I stack correction 

love. II IIO,-(sp) I output LF 
love.1I 12,-(sp) I Code: CONOUT 
trap 11 I call 6E"D05 
addq .1 14,sp I stack correction 

and ... Uff ,d7 , lask character 

love.1I d7,-(sp) I output character 
love. II 12,-(sp) I Code: CONOUT 
trap Il I call GE"D05 
addq.l l4,sp I stack correction 

love.'" 10,-(sp) , Code: WARH5TART 
trap 11 f call 6EKDOS 

.end 
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The second step: character input 

In STEP 2 on the previous page, we demonstrate inputting a character 

from the keyboard. As a check to see if the routine really works, we 

echo-that is, immediately output the character to the screen. 

Lines 8-9 call the operating system function CONIN (function code 1). 

This function has no additional parameters. After the routine is called, the 

operating system waits until a key is pressed on the keyboard. If a key is 

pressed, the ASCII code is determined and passed to the calling program in 

the DO register. For further processing we correct the stack (line 10) and 

copy the contents of the DO register to the D7 register with the MOVE 

instruction (line 12). Lines 14 to 22 you recognize from our ftrst example. 

These lines reposition the cursor to the frrst column of the next line. 

When calling the character output routine, the contents of the DO 

register are changed. Therefore we created a copy of the character entered in 

the D7 register in line 12. Before we echo the character again, we make sure 

that the high-order byte is set to zero. Here we use the AND operation (in 

line 24). In this logical function, all the bits of the constant $FF are 

combined with the corresponding bits of the D7 register. 

Example of AND Instruction 

3 3 0 2 9 · . . 9 8 7 6 5 4 3 2 1 0 
BIT 

0 0 0 0 0 1 1 1 1 1 1 1 1 · . . rONS'T'A N'T' 

X X X X x A A A A A A A A · . . CHARACTER 
0 0 0 0 0 A A A A A A A A · . . RESULT 
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The above illustration clearly shows what happens in an AND operation. 

The bit positions containing a zero in the constant always yield a zero in the 

corresponding RESULT bit position. The bit positions containing a one in 

the CONSTANT and original CHARACTER always yield a one in the 

corresponding RESULT bit positions. The use of the AND instruction is 

sometimes called masking. 

At this point we would also like to clarify the conventions we have used 

in our examples. In our examples we'll define only one simple register 

convention. All parameters are passed via address or data registers. The 

registers are used in descending order according to their fIrst use (D7, D6, 

D5, ... D3 and A5) They are saved and restored again after use. This 

eliminates any conflict in register use among subroutines. We would like to 

point out that this a very simple convention that may not be appropriate for 

more complex programs. 

Back to our second example. The masked character is printed on the 

screen by calling the operating system routine CONOUT (console output) in 

lines 26-29. Lines 31 and 32 end the program as before. 

With our two examples we already have the important information 

about the operating system that we need to convert decimal numbers to 

binary. We won't concern ourselves with additional operating system 

routines in this chapter. 

Our next example brings us one step closer to the problem solution. We 

want to show you how to work with character strings. 
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C PI" 6 800 0 Ass e I b I e r 
Source File: B:STEP3.S 

Revision 04.03 Page 

1 
2 
3 
4 
5 
6 
7 
8 00000000 3E3C0030 
9 

10 00000004 3F07 
11 00000006 3F3C0002 
12 OOOOOOOA 4E41 
13 OOOOOOOC 588F 
14 
15 OOOOOOOE 5207 
16 
17 00000010 OC070039 
18 00000014 63EE 
19 
20 00000016 3F3COOOD 
21 0000001A 3F3C0002 
22 0000001E 4E41 
23 00000020 588F 
24 
25 00000022 3F3COOOA 
26 00000026 3F3C0002 
27 0000002A 4E41 
28 0000002C 588F 
29 
30 0000002E 3F3COOOO 
31 00000032 4E41 
32 
33 00000034 

fffffffffffffffffffffffffffffffffffffffffffffff 

ff Output of an ASCII line step 3 ff 
ffffffffff'ffffffffffffffffffffff'fffffffffffff 

lovedi U30,d7 , ASCII null 

out: love. iii d7,-(sp) , character output 
lIove.N 12,-(sp) f Code: CONOUT 
trap 11 , call GE"DOS 
addq.l 14,sp f stack correction 

addq.b 11,d7 f new ASCII character 

clpi. b 1$39,d7 f = "9" (ASCIIl 
bls out f Yes: next character 

love. iii 113,-(sp) , output CR 
love. iii 12,-(sp) f Code: CONOUT 
trap 11 f call 6E"DOS 
addq .1 '4,sp f stack correction 

love.w '10,-(sp) f output LF 
love.w 12,-(sp) f Code: CONOUT 
trap 11 f call GE"DOS 
addq .1 14,sp f stack correction 

love. iii 10,-(sp) f Code: WARMSTART 
trap 11 f call GEM DOS 

.end 
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The third step: loop processin2 

In our third example, we'll output several ASCII characters in a loop, 

and thereby become acquainted with loop structures within a machine 

language program. 

"0" ~ D7 

D7 + 1 ~ D7 
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Let's output the digits 0 through 9 as a character string. To do this, in 

line 8 we first form the constant $30 (ASCn character zero) in data register 

D7. In lines 10-13 the character in D7 (still zero) is printed. 

Next we form the next character (ASCn 1...9). Here we use the ADDQ 

(Add Quick) instruction of the 68000. This instruction allows the addition 

of a constant in the range 0-7 to the given destination. This instruction is 

comparable to the increment instruction of other processors. After execution 

of line 15, D7 contains the next ASCn value. Before we output this digit, 

we check to see if we have printed them all already. In the simplest form, 

we formulate a loop condition of "Repeat output as long as the digit is less 

than or equal to nine." We can see this logic in the flowchart. 

In the machine language program, the loop condition is provided by 

lines 17 and 18. The comparison is made in line 17, wherein $39 

corresponds to ASCII character 9 and the new ASCII value is in D7. The 

result of the comparison operation is tested in line 18 (for less than or equal 

to) and a branch is made to the label OUT if true, where a character is again 

printed. As you know, the BLS instruction is a relative branch instruction. 

you need not be concerned with the distance calculation, however. The 

assembler calculates the relative jump from the BLS instruction to the jump 

destination OUT itself. 

The additional lines output a CRILF and end the program. 
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The fourth step: line input and output 

Our fourth example is an extension of the previous one, and a summary 

of everything we have learned so far. Here we want to read a line from the 

keyboard and output it again to the screen. New to this example is the 

temporary storage area to contain the string. This demonstrates the layout 

and management of variables. Take a look at the following flowchart and 

the machine language program pertaining to it. 

Index+l 
----) Index 11 

Yes 

NO 
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C P / M 6 BOO 0 Ass e I b I e r 
Source File: B:STEP4.S 

Revision 04.03 Page 

1 
2 
3 
4 
S 
6 
7 
B 00000000 2A7C0000004C 
9 

10 00000006 3F3COOOl 
11 OOOOOOOA 4E41 
12 OOOOOOOC 548F 
13 
14 OOOOOOOE lACO 
15 
16 00000010 OCOOOOOD 
17 00000014 66FO 
18 
19 00000016 3F3COOOD 
20 0000001A 3F3C0002 
21 0000001E 4E41 
22 00000020 saaF 
23 
24 00000022 3F3COOOA 
25 00000026 3F3C0002 
26 0000002A 4E41 
27 0000002C SaaF 
2a 
29 0000002E 2A7C0000004C 
30 
31 00000034 1E1D 
32 
33 00000036 3F07 
34 00000038 3F3C0002 
35 0000003C 4E41 
36 0000003E S8aF 
37 
38 00000040 OC07000D 
39 00000044 66EE 
40 00000046 

flflillflflffllfillflflfffll""'!"'fff'f'f'" 

" Input ~ Output of an ASCII char. step 4 f' 

"""'f""""'f"f""""""""""""'f 

in: 

lovea.l Iline,a5 

love. iii 11,-(sp) 
trap 11 
addq.l '2,sp 

ClpLb 113,dO 
bne in 

love. iii 
love. iii 
trap 
addq.l 

love.w 
love." 
trap 
addq.l 

113,-(sp) 
12,-(sp) 
11 
14,sp 

110,-(sp) 
12,-(sp) 
11 
14,sp 

lovea.l Iline,a5 

out: love.b (a5)+,d7 

.page 

love." d7,-(sp) 
love." 12,-(sp) 
trap 11 
addq.l 14,sp 

ClpLb 113,d7 
bne out 
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, set pointer 

, Code: CONIN 
, call GEMDOS 
, stack correction 

, save character 

, was character a CR 
, No: next character 

, output CR 
, Code: CONOUT 
, call GEMDOS 
, stack correction 

, output LF 
, Code: CONOUT 
, call GEMDOS 
, stack correction 

, reset pointer 

f character frol buffer 

, output 
, Code: CONOUT 
I call GEMDOS 
, stack correction 

f liIas character a CR 
I No: lore output 
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C P I M 680 0 0 Ass e I b 1 e r 
Source File: B:STEP4.S 

41 00000046 3F3COOOO 
42 0000004A 4E41 
43 

Machine Language for the Atari ST 

Revision 04.03 Page 2 

love.w 10,-(sp) 
tr ap 11 

f Code: NARMSTART 
f call 6EMDOS 

44 0000004C 
45 

line: .ds.b 80 f 80 character buffer 

46 0000009C .end 

Let's start with line 44 of this example. Here an 80-byte memory area is 

reserved by the DS.B directive. We'll store the characters entered from the 

keyboard in this area, before we output them again. At the same time, in line 

44 the symbol LINE is assigned the starting address of the storage area. 

Remember, this storage area is also called a buffer. 

In line 8, a pointer is assigned to the start of this buffer. Address 

register AS is loaded with the address of the buffer. We 11 access the 

individual elements in the buffer by means of some instructions explained 

in the rest of this section. 

First we'll concern ourselves with the input from the keyboard. A 

single character is read using the operating system function CONIN 

(console input, lines 10-12). The character is transferred to the buffer by the 

MOVE instruction in line 14. The addressing mode "address register indirect 

with postincrement" is used. The first character is placed at the address to 

which address register AS indirectly points. After this transfer, AS is 

incremented by 1 because we have selected "byte" as the operand format. 

The contents of the address register then point to the first free position 

within the line buffer after the ftrst character is moved. 
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Since we want to input several characters, we must again make a loop 

for the console input. Please note that no output of the keyboard input is 

necessary within this loop in order to make the input immediately visible. 

The operating system function used automatically outputs the corresponding 

character on the screen. But still we must define suitable ending criteria for 

our loop. 

As a general rule, input is always concluded with the <RETURN> key. 

When this key is pressed it returns the non-printable ASCII code CR, which 

we know from the previous examples. This also corresponds to the actual 

function of the key. In our example, this key should be interpreted as 

ending the input line. Correspondingly, we programmed the loop 

termination condition in lines 16 and 17 with this key. As long as the key 

pressed is not the <RETURN> key (ASCn code 13), the character is placed 

in the buffer and another character is read. 

You might have noticed that we haven't expressly checked to see if the 

buffer is full. We have purposely avoided this question in order to keep the 

program simple. To avoid the problem of buffer overflow, we simply made 

the buffer somewhat larger than we expect we'll need. You may want to 

check this condition yourself. 

Lines 19 to 27 output a CRiLF so that the cursor is set to the start of the 

next line before the buffer contents are printed. 

Before we can output the buffer character by character, we must reset 

the buffer pointer to its first position (with line 29). This is again done with 

a MOVE instruction, in which address register A5 is loaded with the address 

of the buffer. 
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The instructions in lines 31 to 36 get a character from the buffer and 

print it on the screen using the operation system function CONOUT (console 

output). 

Lines 31 through 36 deserve special consideration. A character, 

indirectly indicated by the address in address register A5, is moved from the 

buffer into data register D7 by the MOVE instruction in line 31. The address 

in address register A5 is incremented by 1 at the same time, in order to point 

to the next character in the buffer. The character is pushed onto the stack by 

the MOVE instruction in line 33 so that it can be printed by an operating 

system call in lines 34 and 36. It is not possible to move the character 

directly from the buffer to the stack with one instruction. As you know, 

only words or long words can be placed on the stack. But the characters are 

read byte by byte from our buffer. Since the 68000 requires that the operand 

width be the same for both the source and destination, you must process 

different data widths separately. 

The output of the buffer area is again programmed in a loop. The CR 

character is again used as the end criterium, since it was also stored in the 

buffer during the input (lines 38 and 39). The instructions following end the 

program as usual. 
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The fifth steD: binary QutDut 

Our next example represents another partial solution to our problem. 

We want to convert a binary number into an Ascn string. We assume that 

the number to be printed is found in data register D7. This number should 

be printed bit-by-bit as ASCII zeros and ones. Let's take a look at the 

flowchart for this problem and the machine language program below. 

C P I M 680 0 0 Ass e I b 1 e r 
Source File: 8:STEP5.S 

Revision 04.03 Page 

1 
2 
3 
4 
5 
6 
7 
8 00000000 2E3COOOOFOFO 
9 

10 00000006 7CIF 
11 
12 00000008 3A3C0018 
13 OOOOOOOC E38F 
14 OOOOOOOE D805 
15 
16 00000010 3F05 
17 00000012 3F3C0002 
18 00000016 4E41 
19 00000018 588F 
20 

••••••••••••••••• f.f ••••••••••••• f.f.fff.l.f.l. 

f* Output of an Binary NUlber step 5 ** 
*11*1*11111*111111111*11'11111111*111*1*111*1*1 

love.l UfOfO,d7 I nUlber to output 

binout: love.l 131,d6 I place counter 

out: love. II 1$18,d5 I ASCI I zero/2 
151.1 11,d7 I i sol ate bit 
addx.b d5,d5 • fori 011 ASCII 

love. II d5,-(sp) * output 
love." 12,-(sp) I Code: CONOUT 
trap 11 I call GEHDOS 
addq .1 14,sp I stack correction 

21 000000lA 51CEFFEC 
22 

dbf db,out f counter-1, test for 

23 0000001E 3F3COOOO 
24 00000022 4E41 
25 
26 00000024 

love.'" 
trap 

.end 
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Start 

Constant 
~ number 

31 ~ number 

$30~ character 
number left-shift 
carry~ X 

Character + X 
~ character 

Machine Language for the Atari ST 

Counter - 1 
~ counter 

In line 8 we load a binary value into data register D7. Next we define a 

counter so that we can process the number bit by bit within the loop. This is 

necessary to determine when a binary number is completely printed. In 

binary representation it is normal to include leading zeros. Therefore we use 

D6 for the counter and set it to the constant 31 in line 10 of the program. 

The constant 31 was chosen to enable us to use a special kind of loop. 

We actually want to process 32 bits. You might be tempted to use a counter 

from 0 to 32. But there is a special machine language instruction to 

decrement a data register (dx=dx-l) and compare the result. As long as the 

result is not -1, a branch is made to the top of the loop (line 12 and line 21). 

Another characteristic of the DBcc instruction is the conditional execution of 
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the instruction. A condition code is first checked before the instruction is 

executed (similar to the DBcc instruction). The DBcc instruction is 

executed only as long as the cc-defined condition is not true. Since we 

won't be using this possibility in our example, we use F (false=never) as 

the condition code. 

To output to the screen (which will be executed 32 times), we want to 

output one bit at a time within the loop. We'll output the most-significant bit 

first, and the least-significant bit last (let to right). The ASCII character is 

printed by lines 16 to 19 in the usual manner via an operating system call. 

The ASCII character printed (0 or 1) is dependent on the individual bits in 

data register D7. The generation the ASCII character is performed in lines 

12-14, whereby the following computation rule is used. 

The constant $18 is loaded into data register D5. This corresponds to 

one-half of ASCII zero ($3012=$18). The reason we chose this constant 

will be made clear by the next instructions. We use the LSL instruction to 

prepare the next bit for output. This instruction shifts the bits within the 

register a given number of places. Zero bits are placed in the low order end 

of the register, and the left-most bits are shifted out the other end. 

The last bit shifted is always copied to the X and C flags. Since we 

always want to output the next highest bit in the loop, we have chosen a 

shift left. We specify that we want to shift the register one place to the left. 

After execution of the instruction, our bit (0 or 1) is found in the 

processor X flag. We use this to form our ASCII character. The ASCII 

code for zero is $30, and for one is $31. We can therefore form the ASCII 

code by adding the X flag to the constant $30. Unfortunately, there is no 
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instruction that explicitly executes this operation. But there is an instruction 

that adds a source, a destination, and the X flag together. In this case the X 

flag is used as the carry bit in addition. 

We fonn the constant $30 in line 12 and add $30 (in register D5), the 

constant $00, and the contents of the X-flag in line 14, by means of the 

ADDX instruction. To do this we must still fonn the constant $00 in the 

addition instruction. However, it would be much more practical to use the 

same register as both the source and destination. So we add $18, $18 again 

(=$30), and the X flag. The advantage is that the program is shorter and the 

instruction executes somewhat faster. The problem can be solved differently 

at program portions not requiring fast execution time, of course. 

The sixth step: decimal to binary conversion 

Except for inputting a decimal number, we have solved all problems of 

decimal to binary conversion. Before we tie all of the steps together into a 

complete program, we want to develop a method that processes decimal 

digits . As you have already noticed, we can enter a decimal number as 

strings of characters consisting of ASCII digits. For further processing, 

including the binary output, we must convert the input buffer to binary 

fonnat. Here we use a simple rule of computation that we'll ftrst present as 

a flowchart. 
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r """"I 
I 

Convert , 
Index + 1 

O~ Index ~ Index 

O~ Result 
O~ Digit 

Results * 10 
~ Result 

Buffer index 
- $30 ~ 
digit Result 

+ digit 
~ result 

Yes 

Digit>9? Done ) 

Before we take a look at the corresponding program, we want to clarify 

decimal to binary conversion. Let's take a look at a single decimal digit. It 

can be assigned the value 0 to 9. This corresponds to its binary coded 

decimal (BCD) value. An ASCII digit can be converted to BCD simply by 

subtracting the constant $30. 

digit 0-9 = ASCII character $30-$39 = BCD value $00-$09 

After converting the fIrst digit we can view this as a temporary result. If 

a "non-digit character" follows the digit, we view the decimal number as 
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ended. To understand the conversion routine, let's take another look at the 

construction of a decimal number. 

123 1 * 1000 + result o * 10 + 1 

1 * 10 + 2 

1 

12 2 * 100 + 

3 * 10 + 

4 * 1 + 

result 

result 

result 

12 * 10 + 3 = 123 

123 * 10 + 4 = 1234 

We recognize that we need only multiply the previous conversion result 

(start=O) by 10, and then add the new digit, in order to get the converted 

number so far. 

No.# 1234 digit 1 ASCII $31 BCD $01 result $0001 

234 digit 2 ASCII $32 BCD $02 result $OOOC 

34 digit 3 ASCII $33 BCD $03 result $OO7B 

4 digit 4 ASCII $34 BCD $04 result $04D2 

This procedure is used in our example in lines 28 to 42. We'll describe 

the machine language procedure at the conclusion of the next listing. 
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Input: 
Decimal 
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Yes 

Decmial/Binary 
Conversion 

199 



Abacus Software Machine Language for the Atari ST 

C P 1Mb 8 0 0 0 Ass e I b I e r 
Source File: B:STEP6.S 

Revision 04.03 Page 

1 
2 
3 
4 
5 
6 
7 
8 00000000 2A7C0000006A 
9 

10 00000006 3F3COOOI 
11 OOOOOOOA 4E41 
12 OOOOOOOC 54BF 
13 OOOOOOOE IACO 
14 
15 00000010 OCOOOOOD 
16 00000014 66FO 
17 
18 00000016 3F3COOOD 
19 OOOOOOIA 3F3C0002 
20 OOOOOOIE 4E41 
21 00000020 588F 
22 
23 00000022 3F3COOOA 
24 00000026 3F3C0002 
25 0000002A 4E41 
26 0000002C S88F 
27 
28 0000002E 2A7C0000006A 
29 
30 00000034 4287 
31 00000036 4286 
32 
33 0000003B ICID 
34 0000003A 04060030 
35 
36 0000003E OC060009 
37 00000042 620B 
38 
39 00000044 CEFCOOOA 
40 00000048 DE86 
41 0000004A 

fffffffffffffffffffffffffffffffffffffffffffffff 

fl decinal/binary conversion step b ff 
fffffffffffffffffffffffffffffffffffffffffffffff 

in: 

lovea.l 'line,a5 

love." II,-(sp) 
trap II 
addq.l '2,sp 
love.b dO,(aS)+ 

clpLb '13,dO 
bne in 

love." 113,-(sp) 
love." 12,-(sp) 
trap II 
addq.l l4,sp 

love." 'IO,-(sp) 
love." 12,-(sp) 
trap II 
addq.l '4,sp 

.ovea.l 'line,aS 

clr.l d7 
dr.l d6 

convet: love.b (as)+,d6 
subi.b U30,d6 

.page 

clpi.b 19,d6 
bhi bi nout 

lIulu.w 'lO,d7 
add.l db,d7 
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f set up pointer 

f Code: CONIN 
f call 6EMDOS 
f stack correction 
f save character 

f was character a CR 
f No: next character 

f output CR 
f Code: CONOUT 
f call GEMDOS 
f stack correction 

f output LF 
f Code: CONOUT 
f call GEMDOS 
f stack correction 

f reset pointer 

f clear result field 
f clear digit 

f process digit 
f ACIl to BCD 

f BCD digit too large 
f Yes: no lore digits 

+ shift places 
f add digit 
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The above listing is the complete solution to our problem of 

decimal/binary conversion. We have three coherent function groups in our 

program: 

• input of a line (lines 8 to 26) 

• conversion ASCII-binary (lines 28 to 42) 

• output a binary number (lines 44 to 55) 
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Let's look at all the instructions in context. In line 8 a pointer (AS) is set 

to the input buffer. Lines 10-16 comprise the input loop. A character is read 

from the keyboard in lines 10 to 12. The function code (1) for the operating 

system function CONIN (console input) is placed on the stack by means of 

the MOVE instruction. The operating system is called by the TRAP 

instruction in the next line. The character is placed in the DO register and 

moved to the buffer area by the next MOVE instruction, as long as a CR was 

not entered. Note that the buffer pointer is incremented to the next position 

in the buffer by the MOVE instruction. 

Lines 18 to 26 set the cursor to the next line of the screen. A CRILF 

control character is outputted in the usual way by means of the CONOUT 

(console output) function. First the control character is placed on the stack, 

followed by the function code for CONOUT (2). The operating system is 

called by the TRAP instruction. The parameters are subsequently removed 

from the stack by the manipulation of the stack pointer. 

The number represented as an ASCn string and contained in the buffer 

is converted to a binary number (result in D7) in lines 28 to 42. The 

conversion rule is used to do this. First the pointer is set back to the first 

element in the buffer in line 28. Registers D7 and D6 are cleared (set to 

zero) in lines 30 and 31 . The actual conversion loop begins at line 33. 

A character is transferred from the input buffer to register D6, whereby 

the buffer pointer (AS) is simultaneously incremented by one byte. The 

ASCII digit is converted to a BCD number by subtracting the constant $30 

in line 34. The result is checked for validity (line 36). If the result is greater 

than 9, the character is not a digit and the conversion is terminated (line 37). 

The previous result is increased by a power 10 as a result of a multiplication 
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by 10 in line 39. The just-calculated position is added to the previous result 

in D7 (line 40). An absolute branch is made to the top of the loop with the 

BRA instruction in line 42. 

The decimal/binary conversion is ended by the branch instruction in line 

37. The program is continued in line 44. The decimal number entered is in 

register D7. This number is outputted as a binary number in the program 

segment from lines 44 to 55. Because our decimal conversion routine only 

works in the range 0 .. 65535 ($O-$FFFF, determined by the multiplication 

instruction, which processes only words), we'll output only 16 places of 

the result. We have already explained how the output of a binary number 

works. We'll explain the function again after the last assembler listing. 

In line 44 the counter in data register D6 is set to 15. The counter is then 

decremented by one until it becomes less then zero (DBF instruction in line 

55). This corresponds to exactly 16 passes through the loop. Within this 

loop, the highest-order bit from the lower-order word in D7 is shifted into 

the X flag by means of the LSL instruction in line 47. In line 46 the constant 

$18, which corresponds to half of ASCII zero ($30/2=$18), is formed. 

This constant is added to itself by the addition in line 48, which corresponds 

to a multiplication by two. The contents of the X flag are also added in. 

Since the bit to be printed is contained in the X flag, the addition results in 

either a $30 or $31 in the D5 register. These values correspond to the ASCII 

characters for zero and one. 

The result of this conversion in the D5 register is output to the screen in 

lines 50 to 53. With the instruction in line 50, the contents of the D5 register 

are pushed onto the stack. The function code 2 for the operating system 

function CONOUT is then formed. The operating system is called by means 
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of the TRAP instruction and the character is printed. Finally, the stack 

pointer is corrected. 

Once the loop is ended, the program continues with line 57. Here the 

function code for a warm start is generated and the operating system is 

called (line 58). This then ends the execution of the program. 

Line 60 of the assembler listing contains the defmition of the buffer area 

for the input loop. 

The seventh step; the input loop 

At the conclusion of this chapter, we want to refine our program. First 

we want to output a start message (prompt character) for input of the 

decimal number, and second, the whole routine should run in an input loop. 

This means that after one decimal/binary conversion is performed, another 

number is requested. Only when no number is entered will the program 

end. 

On the following pages you find an extended flowchart and the 

assembler listing of the extended example program. We then will describe 

the assembler listing again. 
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Subroutine 
"CR/LF" 
Output 

Character 
Buf f er inde 

Index + 1 
index 

yeS

8 

> 

Machine Language for the Atari ST 

o Index 
o Result 
o Digit 

Buffer inde 
$30 
digit 

Result * 10 
result 

Result 
+ digit 

result 
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C P I M 6 BOO 0 Ass e I b I e r 
Source File: B:STEP7.S 

Revision 04.03 Page 

1 
2 
3 
4 
5 
6 
7 
B 00000000 6174 
9 

10 00000002 3F3C203F 
11 00000006 3F3C0002 
12 OOOOOOOA 4E41 
13 OOOOOOOC 5BBF 
14 
15 OOOOOOOE 2A7C00000090 
16 
17 00000014 3F3COOOl 
18 00000018 4E41 
19 0000001A 548F 
20 
21 0000001C lACO 
22 
23 0000001E OCOOOOOD 
24 00000022 66FO 
25 
26 00000024 BBFC00000091 
27 0000002A 6744 
28 
29 0000002C 3F3C203D 
30 00000030 3F3C0002 
31 00000034 4E41 
32 00000036 588F 
33 
34 00000038 2A7C00000090 
35 
36 0000003E 4287 
37 00000040 4286 
38 
39 00000042 lClD 
40 00000044 04060030 
41 00000048 

fffffffffffffffffffffffffffffffflflfflflffllfff 

If decilal/binary conversion & loop step 7 ff 
1IIIfffflffffffffffffflffffflfllfffffffffffffff 

loop: bsr crlf f nell line 

love. II I" ?",-(spl f prolpt character 
love •• 12,-(spl I Code: CONOUT 
trap 11 I call SEI1D05 
addq.l 14,sp f stack correction 

lovea.l IIine,aS f set up pointer 

in: love •• Il,-(sp) f Code: CONIN 
trap 11 f call 6EI'ID05 
addq.l 12,sp f stack correction 

love.b dO, (as)+ f save character 

clpi.b 113,dO f is character a CR 
bne in f No: next character 

capa.l Iline+l,a5 f test for blank 
beq end f Yes: end progral 

love. II I" =",-(sp) f delileter 
love. II 12,-(spl f Code: CONOUT 
trap 11 f call 6EI1D05 
addq.l l4,sp f stack correction 

lovea.l Iline,aS f reset pointer 

elr.l d7 f result field 
clr .1 d6 f calc. field (relain 

convet: love.b (a5)+,d6 f process digit 
5ubi. b 1$30,d6 f ASCII to BCD 

.page 
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C P I M 6 8 0 0 0 Ass e I b I e r 
Source File: B:SrEP7.S 

42 00000048 OC060009 
43 0000004C 6208 
44 
45 0000004E CEFCOOOA 
46 00000052 DE86 
47 
48 00000054 60EC 
49 

Machine Language for the Atari ST 

Revision 04.03 Page 2 

clpLb 19,d6 I BCD digit too large 
bhi binout I Yes: no lore digits 

lulu.1I IlO,d7 f shi ft places 
add.1 d6,d7 f add digits 

bra con vet f new digit 

50 00000056 7COF binout: love.1 115,d6 f plate counter 
51 
52 00000058 3A3C0018 out: love. II U18,d5 f ASCII zero/2 
53 0000005C E34F 151 ... 11 ,d7 f i sol ate bit 
54 0000005E DB05 addx.b d5,d5 f fori ASCII OIl 
55 
56 00000060 3F05 love." d5,-lspl f output 
57 00000062 3F3COO02 love." 12,-lsp) f Code: CONOUT 
58 00000066 4E41 trap 11 f tall 6EMDOS 
59 00000068 588F addq .1 14,sp f stack correction 
60 
61 0000006A 51CEFFEC dbf d6,out f counter-I, test for 
62 
63 0000006E 6090 bra loop f new input 
64 
65 00000070 3F3COOOO end: love. II 10,-lsp) f Code: WARMSTART 
66 00000074 4E41 trap 11 f call 6EtlDOS 
67 
68 00000076 3F3COOOD crlf: love.1I 113,-lsp) f output CR 
69 0000007A 3F3COO02 love. II 12,-lspl f Code: CONOUr 
70 0000007E 4E41 trap 11 f call GEtlDOS 
71 00000080 588F addq.l 14,sp f statk correttion 
72 
73 00000082 3F3COOOA love. II 110,-(sp) f output LF 
74 00000086 3F3COO02 !'love. II 12,-(sp) f Code: CONOUT 
75 0000008A 4E41 trap 11 f call GEMDOS 
76 OOOOOOBC 5BBF addq.l 14,sp f stack correction 
77 
78 0000008E 4E75 rts f return 
79 
80 00000090 line: .ds.b 80 f 80 character buffer 
81 
82 OOOOOOEO . end 
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The frrst visible change in our program concerns the output of CR/LF. 

We have used this function as a subroutine. The subroutine is defined in 

lines 68 to 78; its function is identical to that in our previous examples. 

This subroutine is called in line 8. It is not used at any other place in the 

program; it serves only to demonstrate the BSR and RTS instructions. The 

prompt character (?) is printed with lines 10 to 13. The CON OUT function 

of the operating system again is used to do this. A special feature is found in 

line 10, where we define the character to be printed by means of a text 

constant. Here we have to get around an inadequacy of the assembler. The 

operand width of the MOVE instruction is defined as "word." If you specify 

only an ASCII character, it is expanded to word width by the assembler. It 

does this by appending a $00 on the right. But this means that character is 

no longer in the lower-order portion of the word, meaning that no visible 

character is printed. The output functions correctly, but $00 is not a 

printable character. 

We can get around this inadequacy of the assembler by defining the 

text constant as two characters, namely a space and an ASCII character. The 

assembler then generates a word, with its lower byte containing the ASCII 

character. This trick is not very "clean," since the higher-order portion is 

always supposed to contain binary zero in order to maintain compatibility 

with future operating systems. But since we have formulated our example 

specifically for the ST, we'll overlook this minor defect. 

Lines 15 through 24 process the input of a line. The use of this function 

does not differ from out previous example. 
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Lines 26 and 27 are added at this point. Here we check if a decimal 

number was actually entered. This is done by simply testing the buffer 

pointer (A5) to see if it points to the second element in the buffer. If this is 

the case, only a single character is in the buffer. Since the last character in 

the buffer is always a CR, we can assume that if the buffer contains only 

one character, no digits have been entered. If a blank line is recognized, a 

branch is made directly to the end processing (lines 65 and 66). There the 

program is exited to the operating system in the usual manner. 

If the line entered is not blank, a delimiter is created in lines 29 to 32 

that separates the input number from the output. We again use the operating 

system function CONOUT. 

The decimal/binary conversion is executed in lines 34 to 48. Because 

we have described this function in the previous examples, we'll not repeat 

ourselves here. The same applies to the binary output in lines 50 to 61. 

In line 63 we have an unconventional branch instruction, "back to 

input." This concluded our input loop. A prompt character is printed on the 

next line and the program waits for input. The program can be ended only 

by a processor reset or by pressing <RETURN>. 

Here we'll end our "step-by-step" introduction of assembly 

programming. In the next chapter we'll present somewhat larger assembly 

language programs, but won't go into such detail of their development. 
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( Introduction) 

In this chapter we'll present some more example programs and use 

them to illustrate some programming techniques and operating system 

functions. We will also present some typical algorithms. 

We could use more "powerful" operating system functions at certain 

places and thereby make our example programs shorter. The goal of this 

book, however, is to explain the methodology of assembly language 

programming and to practice it using examples. For a more complete 

discussion of the GEM-DOS operating system routines you might want to 

refer to the Atari ST Gem Programmer's Reference from Abacus. 

Each example is divided into several parts. As an introduction we will 

familiarize you with the statement of the problem and suggest ways of 

solving it. Following this will be a flowchart and a complete assembly 

language listing. This and the algorithms used will then be explained. 

We recommend that you try to understand the examples. If you own an 

assembler, you can try out all of them with the ST. 
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~ ~) I Hexadecimal/decimal conversion 
~ 

The problem of hex/decimal conversion IS quite similar to the 

decimal/binary conversion which we presented in the previous chapter. 

Hexadecimal numbers are also just a representation form for values, using 

"16" as the number base. Corresponding to this there are also 16 digits in 

the hexadecimal system. These digits are represented by the normal digits 

0-9 and the letters A-F. 

In the next program example we'll show you how to convert hexadecimal 

numbers to decimal. Here we'll use two basic algorithms. These concern 

the conversion of a hexadecimal string to binary register contents and 

outputting the register contents as a decimal string (decimal number). 

The conversion of a hexadecimal number to register format is relatively 

easy to understand. Each digit corresponds exactly to the possible bit 

combinations of four bits within a binary number. 
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Start 

Output: 
Input Prompt 

>----8 

Hex line 
~ 

Binary Number 

Binary Number 
~ 

Decimal line 

Output: 
Decimal 

line 
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C P I M 6 BOO 0 Ass e I b I e r 
Source File: B:EXPl.S 

Revision 04.03 Page 

1 
2 
3 
4 
S 
6 
7 
8 00000000 610000C8 
9 

10 00000004 3F3C203F 
11 00000008 3F3C0002 
12 OOOOOOOC 4E41 
13 OOOOOOOE S88F 
14 
IS 00000010 2A7COOOOOOE4 
16 
17 00000016 3F3COOOI 
18 OOOOOOIA 4E41 
19 0000001C 548F 
20 
21 0000001E lACO 
22 
23 00000020 OCOOOOOO 
24 00000024 66FO 
2S 
26 00000026 BBFCOOOOOOE5 
27 0000002C 67000096 
28 
29 00000030 2A7COOOOOOE4 
30 
31 00000036 4287 
32 00000038 4286 

34 0000003A lCI0 
35 0000003C OC060030 
36 00000040 6536 
37 
38 00000042 04060030 
39 00000046 OC060009 
40 0000004A 6310 
41 0000004C 

fff'f'ff"""f'ftftttftt'ff'tf'ttfft'ttff" 

I Hexadecilal/Oecilal conversion Exa.ple II 
1IIIIIIfll14411111411111fflillfl4ffllfillfil 

loop: bsr crIf t Cursor neN line 

love.N '" ?",_(Sp) I Prolpt char 
love. iii t2,-(sp) * Code: CONOur 
trap II I Call GEHDOS 
addq.l t4,sp I Stack correction 

lIovea.1 Iline,aS I Set pointer 

in: love.'" tl,-(sp) I Codl CONIN 
trap II I Call 6E~OOS 

addq.l t2,sp I Stack correction 

love.b dO, (as) + Isave character 

capi. b 113,dO I char a ·CR"? 
bne in IN: next character 

clpa.l lline+I,a5 * Test for blank 
beq end I Y: progral end 

aovea.l Iline,a5 I Reset pointer 

clr .1 d7 Iclr. result field 
clr.l db I calc. fieId(rem) 

convet: love.b (as)+,d6 I process digit 
cllpi.b U30,db f Ctr 1. char. 
bio dec out I Y: end cony. 

subia b U30,d6 * ACCII to BCD 
clpi.b t9,db I BCD digit OK 
bls ok I Y: Nas digit 

.page 
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C P / " 68000 Ass e I b 1 e r Revision 04.03 Page 2 
Source File: B:EXP1.S 

42 0000004C 04060027 subi.b U27,d6 fBCD digit correct 
43 
44 00000050 OC06000A clllpLb Ua,d6 f Letter OK 
45 00000054 6522 blo dec out * N: convert 
46 
47 00000056 OC06000F ClPi. b Uf,d6 f Letter OK 
48 0000005A 621C bhi dec out f N: end convert 
49 
50 0000005C E98F ok: 1 s1.1 14,d7 f place shift 
51 0000005E DE86 add.l d6,d7 f add digit 
52 
53 00000060 OC870000FFFF 'Ipi.l Uffff ,d7 f test overflow 
54 00000066 63D2 bls convet f N: new digit 
55 
56 00000068 6160 bsr crlf f cursor new 
57 0000006A 3F3C2021 love.w ." I' ,- (sp) f error lessage 
58 0000006£ 3F3COO02 love. iii t2,-(sp) , Code CONQUT 
59 00000072 4E41 trap t1 f Call GE"DOS 
60 00000074 588F addq.l t4,sp * Stack correction 
61 
62 00000076 6088 bra loop f input new nUlber 
63 
64 
65 00000078 6150 decout: bsr crlf 'cursor new line 
66 
67 0000007A 3F3C203D love.1f ." =",-(sp) f result message 
68 0000007E 3F3COO02 love.w 12,-(sp) f Code: CONOUT 
69 00000082 4E41 trap t1 f Call GEtlDOS 
70 00000084 588F addq.l 14,sp f Stack correction 
71 
72 00000086 02870000FFFF andi.l Uffff,d7 f limit places 
73 
74 0000008C 2A7COOOOOOE4 lIovea.l Iline,a5 f Set pointer 
75 
76 00000092 2C07 dodec: move. I d7,d6 f process digit 
77 
78 00000094 8CFCOOOA divu.w UO,d6 f fori value/10 
79 00000098 3E06 love. III db,d7 * save results 
80 0000009A 4846 swap d6 f forI remainder 
81 0000009C 06460030 addi.1II U30,d6 f generate ASCII 
82 OOOOOOAO .page 
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C P / M b 8 0 0 0 Ass e I b 1 e r Revision 04.03 Page 3 
Source File: B:EXP1.S 

83 OOOOOOAO lAC6 love.b db, (a5)+ f digit in buffer 
84 
85 000000A2 OC470000 clpioN IO,d7 f all digits? 
86 000000A6 66EA bne dodec f V: done nell • 
87 
88 000000A8 BBFCOOOOOOE4 out: clpa.l Iline,a5 f test buffer 
89 OOOOOOAE 6700FF50 beq loop f V: done nell I 
90 
91 000000B2 lE25 lRove.b -(a5),d7 f get char acter 
92 000000B4 024700FF andi. w Uff ,d7 f norlal char. 
93 
94 000000B8 3F07 move. ill d7,-(sp) f output char 
9S OOOOOOBA 3F3COO02 lIove.'" 12,-(sp) f Code: CONOUT 
96 OOOOOOBE 4E41 trap 11 f Call GEI'IOOS 
97 OOOOOOCO S88F addq.l 14,sp f Stack correction 
98 
99 000000C2 60E4 bra out f test if done 

100 
101 
102 000000C4 3F3COOOO end: loye.1iI 10,-(sp) f Code NARI'ISTART 
103 000000C8 4E41 trap t1 f Call 6EI'I00S 
104 
105 
106 OOOOOOCA 3F3COOOO crlf: love.N 113,-(sp) f Output CR 
107 OOOOOOCE 3F3COO02 lIove.1iI 12,-(sp) f Code: CONOUT 
108 00000002 4E41 trap 11 f Call GEI'IOOS 
109 00000004 588F addQ.l 14,sp f Stack correction 
110 
111 00000006 3F3COOOA love. iii 110,-(sp) f Output LF 
112 OOOOOOOA 3F3COO02 lUove.lrI 12,-(sp) f Code: CONOUT 
113 OOOOOOOE 4E41 trap II * Call GEI'IOOS 
114 OOOOOOEO 588F addq.l 14,sp * Stack correction 
115 
116 000000E2 4E75 rts * Return 
11 7 
118 
119 000000E4 line: .ds.b 80 f 80 char buffer 
120 
121 00000134 .end 
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We need only convert the hex digit in ASCII fonn to the corresponding 

bit pattern. The orderliness of the ASCII code helps us here. 

Binary 0000 to 1001 (0-9 hexadecimal) = ASCII $30-39 

Binary 1010 to 1111 (A-F hexadecimal) = ASCII $41-$46 

We can derive a computational rule from this ordered ASCII code: 

If the hex digit is in the range from ASCII 0-9, we subtract $30 

in order to get the binary value. If the hex digit is in the range 

from ASCII code A-F, we subtract $37 in order to get the binary 

value. If the digit is not within one of these two ranges, we 

assume that the hexadecimal number is ended. If a digit occurs, 

we multiply the previous result by 16 (shift it four bits to the left) 

and add the new digit to it. 

The algorithm for binary/decimal conversion is somewhat more 

complicated in theory, but it is very easy to realize on the 68000. The 

computation rule used is based on the Horner method. Here a number to be 

converted is divided by the new base (here 10). The remainder of the 

division corresponds to a digit in the given system (0-9). This division is 

continued until the result becomes zero. An example will clarify this. 

$04D2 (I 1234) / $A (I 10) 

$007B (f 123) / $A (f 10) 

$OOOC (I 12) / $A (I 10) 

$0001 (I 1) / $A (I 10) 

$7B (1123) 

$OC(f 12) 

$01(1 1) 

$00(1 0) 
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We recognize that we get all of the places of the decimal number with 

this method, but in the reverse order. Therefore we must store all of the 

digits and then output then in the proper order after the conversion. 

We now turn to a description of the machine language program: 

In line 8, the subroutine for creating a CR/LF is called. This is 

programmed in lines 106 to 116. Its function is identical to the subroutine in 

the last example. The instructions in lines 106 to 109 output a CR on the 

screen. The GEM-DOS routine CONOUT is used for this. Lines 111 to 114 

output an LF by the same procedure. The subroutine is ended by the RTS 

instruction in line 116. 

Lines 10-13 output a ,.?,. on the screen as the input prompt. The 

GEM -DOS console output function CONOUT is again used. In line 6, the 

input buffer pointer is initialized. It then points to the first byte in this area. 

The input area itself is defined in line 119. In our example it can hold up to 

80 characters. 

Lines 15 to 24 form the input loop. The operating system is called in 

lines 17 to 19. Here we use the GEM-DOS console input function CONIN, 

with which you are already acquainted. Line 21 places the character entered 

into the input buffer. The ASCII code of the key is then passed in the lower 

byte of the DO register. The end condition for the input loop is tested in lines 

23 and 24. As long as the DO register does not contain a CR, the loop 

(input) is continued with the instruction in line 17. The next character is then 

read. 
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If the last character was a CR «RETURN> key), the program 

continues execution with the instruction in line 26. Here the input buffer is 

tested to see if it contains only one character. If this is the case, the program 

branches to the instruction in line 102. There the program is ended with the 

usual operating system call. 

If the line was not blank, execution continues with line 29. The 

conversion routine which converts the contents of the input buffer to a 

binary number starts here. First a pointer is set back to the fIrst byte in the 

buffer in line 29. Two data registers are initialized (set to zero) in lines 31 

and 32 according to our rule of computation for the hex/binary conversion 

and our flowchart. We will use D7 as the result field and D6 as the 

calculation field for a hex digit. 

The processing of hex digits starts at line 34 (within the loop). The 

instruction in line 34 moves a hex digit from the buffer to the calculation 

field (D6) and sets the pointer (A5) to the next fIeld. Some of the possible 

non-hex-digit characters are ftltered out by the comparison instruction in line 

35. If a character is smaller than $30, it can only be a control character or 

special character. In this case, a branch is made to the decimal output routine 

(at line 65) via the instruction in line 36. If the ASCII character is greater 

than $30, $30 is subtracted, regardless of the fact that the character still may 

not be a hex digit. The comparison instruction in line 79 determines whether 

or not the character is a digit from 0-9. If it is, a branch is made to the 

instruction in line 50 where this digit is processed. If the character is not in 

the group 0-9, the conversion in line 43 is made. Here the constant $27 is 

subtracted. Remember that we have already subtracted $30 from the original 

ASCII character. Now the result must be in the range from $A to $F, which 

corresponds to the second group of hex digits. This condition is checked in 
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lines 44 through 48. If the character is not in this group either, the program 

continues with the decimal output. Otherwise, the correctly converted digit 

is processed at line 50. 

The LSL. L instruction in line 50 shifts the previous result field four 

bits to the left. Then the new hex digit is added to the result field (line 51). 

The result is checked at the end of the end of the conversion loop (line 

53). If the result field is less than $FFFF, the conversion continues with the 

next digit. This is done by a branch back to the top of the loop (line 34). If 

an overflow occurs, the cursor is set to the to the start of the next line by a 

call to the CR/LF subroutine in line 56 and the instructions in lines 57 to 60 

print an exclamation point (!) as an error message. The conversion is not 

continued any further. The program branches to the start of the program in 

the event of an error (line 62). 

The decimal output routine starts at line 65. Here too we use the same 

algorithm which we described earlier and which we defined in the 

flowchart. First the cursor is moved down a line by a call to the CR/LF 

subroutine in line 65 and the equals sign (=) is printed in lines 67-70. 

The instructions in lines 72 and 74 prepare the output corresponding to 

our algorithm. The output value is limited to binary numbers in range 

0-65535 and the pointer (AS) is set to the start of the buffer area. This is 

now used not for entering a string, but as temporary storage for the result of 

the Homer method. 

The decimal digits are calculated starting with the instruction in line 76. 

The initial value is divided by 10 in line 78. The integer result is stored as 
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the new value in register D7, where it will remain for the next pass through 

the loop and be used as the initial value for the next digit. The upper and 

lower halves of the register are exchanged by the SWAP instruction in line 

80. The remainder of the division is stored in the higher-order portion, 

which already corresponds to a "finished" digit. The ASCII code is 

generated by adding the constant $30 (line 81). The result is placed in the 

buffer (line 83), whereby the address counter is incremented by one byte. 

A branch is made to the start of the conversion routine in line 86. The 

output of all decimal digits must be realized by the routine from lines 88 to 

99. First a test is made to see if all the characters have been printed already. 

If the buffer is empty, a execution branches to the start of the program. 

Otherwise a character is fetched from the buffer, the pointer is incremented, 

the word is masked, and the character is printed (CONOUT). The loop is 

continued by a branch to its start (line 99). It can be exited only through the 

condition in line 89. 

You will see parts of this program again and again in our examples. 

Naturally, we will not describe identical program parts each time they occur. 
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r 

I DecimaIlhexadecimal conversion ) 
~ ~ 

The problem of decimal to hexadecimal conversion is the reverse of the 

hex/decimal conversion which we presented in the previous section. Here 

again we will use two basic algorithms. These are a conversion of a decimal 

string to a binary number and outputting this binary number as a 

hexadecimal string. 

We have already explained the processing of decimal numbers entered 

via the keyboard in the previous chapter (decimal/binary conversion). The 

new part of this problem is the output of hexadecimal numbers. The 

algorithm we use is easy to understand if you recall the previous example 

(hex/decimal conversion). To output a hex number, the binary contents of a 

register are simply divided into groups of four bits. This division is 

accomplished through logical SHIFT operations. Each group of 4 bits 

corresponds to one hex digit. These hex digits 'must be converted to ASCII 

characters before they can be printed. This is done simply by adding 

constants. First $30 is added in order to generate the digits 0-9 (ASCII 

$30-$39). If the result is greater than $39, the previous result is extended to 

the hex digits A-F (ASCII $61-$66) by adding $27. 

Let us take a look at the flowchart and the assembler listing for the 

decimallhexadecimal conversion: 
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Start 

Output: 
Start 

message 

Input: 
line 

No 

Machine Language for the Atari ST 

Yes ~ 
>----~ 

Decimal line 
--7 

Binary number 

Binary Number 
--7 

HEX line 

Output: 
HEX 
line 
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C PI" 680 0 0 Ass e I b 1 e r 
Source File: B:EXP2.S 

Revision 04.03 Page 

1 
2 
3 
4 
S 
6 
7 
8 00000000 610000BC 
9 

10 00000004 3F3C203F 
11 00000008 3F3C0002 
12 OOOOOOOC 4E41 
13 OOOOOOOE S88F 
14 
lS 00000010 2A7COOOOOOD8 
16 
17 00000016 3F3C0001 
18 0000001A 4E41 
19 0000001C S48F 
20 
21 0000001E lACO 
22 
23 00000020 OCOOOOOD 
24 00000024 66FO 
2S 
26 00000026 BBFCOOOOOOD9 
27 0000002C 670000BA 
28 
29 00000030 2A7COOOOOOD8 
30 
31 00000036 4287 
32 00000038 4286 
33 
34 0000003A 1C1D 
3S 0000003C 04060030 
36 
37 00000040 OC060009 
38 00000044 621E 
39 00000046 

ffffffffffffffffffl'lfl'III'f"ffll'f"""1 

, Hexadecilal/Decimal conversion Exalple 2' 
flfflfl'III'lllllf'flfffllflf'I""'f'f"'fl 

loop: bsr crif f Cursor new line 

love.w I" ?",-(sp) I Prolpt char 
love. III 12,-(sp) , Code: CONOUT 
trap 11 f Call GEMDOS 
addq .1 14,sp f Stack correction 

lovea.l Iline,aS f Set pointer 

in: love.w Il,-(sp) f Cod: CONIN 
trap 11 f Call GEM DOS 
addq.l 12,sp f Stack correction 

love.b dO, (as)+ Isave charader 

clpi.b 113,dO I char a ·CR"? 
bne in fN: next character 

clpa.l Iline+l,aS I Test for blank 
beq end I Y: progral end 

lovea.I Iii ne, as f Reset pointer 

clr.l d7 Iclr. result field 
clr.l db , calc. field(rem) 

convet: love.b (as)+,db I process digit 
subi. b U30,d6 I ACCII to BCD 

CIlPi. b 19,d6 f BCD digit OK 
bhi hex out I Y: no more digit 
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40 00000046 CEFCOOOA lulu,1I '10,d7 f place shift 
41 0000004A DEB6 add, I d6,d7 f add digits 
42 
43 0000004C OC870000FFFF cipLI Uffff ,d7 f test overfl 011 

44 00000052 b3Eb bls convet f N: nell digit 
45 
46 00000054 6168 bsr crlf f cursor new line 
47 
48 00000056 3F3C2021 love,w I" !' ,- (sp) * error message 
49 0000005A 3F3COO02 move,w 12,-(sp ) * Code CONOUT 
50 0000005E 4E41 trap 11 * Call 6EMDOS 
51 00000060 599F addq.l 14,sp * Stack correction 
52 
53 00000062 b09C bra loop * input new number 
54 
55 
56 
57 00000064 6159 hex out : bsr crlf * cursor nell line 
58 
59 00000066 3F3C203D move,1I I" =' ,- (spl * result message 
bO 0000006A 3F3COO02 love.w 12,-(sp) * Code: CONOUT 
61 0000006E 4E41 t rap 11 * Call GE:-1DOS 
62 00000070 598F addQ.l U,sp * Stack correction 
63 
64 00000072 02870000FFFF andi.l Uffff ,d7 f lilit places 
65 
66 00000078 2A7COOOOOOD8 lovea.l Iline,a5 f Set pointer 
67 
68 0000007E 2C07 dohex: love.l d7,d6 * process digit 
69 00000080 0246000F andiow Uf,d6 f .ask value 
70 00000084 E84F 1 sr ,II 14,d7 f fora remanider 
71 00000086 06460030 addLw U30,d6 f generate ASCII 
72 
73 0000008A OC460039 capi." U39,d6 f letter 
74 OOOOOOBE 6304 bls ok * N; digit ok 
75 
76 00000090 06460027 addLw U27,d6 * correct digit 
77 00000094 ,page 
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78 00000094 lAC6 ok: love.b d6, (aSI+ I digit in buffer 
79 
80 00000096 OC470000 c:.pi.", IO,d7 f all digi ts? 
81 0000009A 66E2 bne dohex f Y: neM digit 
82 
B3 0000009C BBFCOOOOOODB out: (Ipa.l Iline,aS f test buffer 
84 000000A2 6700FFSC beq loop I Y: done neM I 
BS 
86 000000A6 1E2S love.b -(a5I,d7 I get character 
87 000000A8 024700FF andio .. I$ff ,d7 I norlal char. 
ee 
89 OOOOOOAC 3F07 love. III d7,-(spl f output char 
90 OOOOOOAE 3F3COO02 love." 12,-(sp) f Code: CONOUT 
91 000000B2 4E41 trap 11 * Call SEI1DOS 
92 000000B4 588F addq.l 14,sp * Stack correction 
93 
94 000000B6 60E4 bra out I test if done 
95 
96 
97 000000B8 3F3COOOO end: love .. " 10,-lsp) * Code WARI1START 
98 OOOOOOBC 4E41 trap 11 I Call GEI1DOS 
99 

100 
101 OOOOOOBE 3F3COOOO crlf : love.'" 113,-(sp) f Output CR 
102 000000C2 3F3COO02 love"" '2,-(sp) f Code: CONOUT 
103 OOOOOOCb 4E41 trap .1 I Call 6EI100S 
104 Ooooooca SB8F addq.l 14,sp f Stack correction 
lOS 
106 OOOOOOCA 3F3COOOA love." '10,-(sp) f Output IF 
107 OOOOOOCE 3F3COO02 love." 12,-(sp) f Code: CON OUT 
108 00000002 4E41 trap 11 f Call SEI100S 
109 00000004 S8BF addq.l 14,sp * Stack correction 
110 
111 00000006 4E75 rts f Return 
112 
113 
114 00000008 line: .ds.b 80 * BO char buffer 
115 
116 
117 00000128 .end 
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The decimal/hex conversion starts in lines 8 to 13 with the output of 

"CR/LF" and a question mark as the input prompt character. The CRiLF is 

outputted by a subroutine defined in lines 101 to 111. Lines 15 through 24 

get an input line from the keyboard into the buffer. This is defined in line 

114. The buffer is then checked (lines 26 and 27) to see if it contains a 

blank line and if so, the program is ended in lines 97 and 98. 

If characters are present in the buffer, it is converted to a binary register 

value (D7) by the routine in lines 29 to 53. 

The output of the hex number, now contained in D7, starts in line 57. 

First the cursor is set to the start of the next screen line by outputting a 

CRILF. Our subroutine at line 101 is used for this purpose. An equals sign 

is printed to indicate that the hex number follows (lines 59 to 62) and the 

contents of higher-order portion of D7 are masked out (line 64). 

A hex digit is processed in line 66. First a copy is of the number to be 

printed (D7) is placed in register D6. The all but the lower 4 bits are masked 

out of this register (line 69). The number being processed in the D7 register 

is shifted 4 bit positions to the right (line 70) because these bits are now in 

register D6. These bits are then converted to a hex digit according to our 

rule of computation. 

The constant $30 is added in line 71 and a test is made to see if the 

character is a digits from 0-9 (line 73). If this is the case, the D6 register can 

be printed as a hex digit (at line 78). Otherwise the constant $27 is added 

(line 76). 
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The output at line 78 does not go directly to the screen, but first to the 

buffer, which must then be printed in reverse order after the conversion. 

But first the number in the D7 register is checked to see if all the necessary 

places have been processed (lines 80 to 81) and a branch is made to the top 

of the loop if necessary (line 68). If the number has been completely 

converted, it is printed in lines 83 to 94. A branch is made to the start of the 

program (input loop at line 8) when the output is done. 
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( Calculating an average ) 

With this example we want to explain the processing elements of a 

simple table, and so we leave the topic of simple input and output. 

Decimal numbers are entered and stored as elements of a table. When 

the first blank line is entered, the program calculates the average (integer 

value) of the previous values and outputs the result in decimal. 

First take a look at the flowchart and the assembler listing of the average 

calculation program: 
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1 
2 
3 
4 
5 
6 
7 
8 00000000 287C00000144 
9 

10 00000006 61000086 
11 
12 OOOOOOOA 3F3C203F 
13 OOOOOOOE 3F3C0002 
14 00000012 4E41 
15 00000014 588F 
16 
17 00000016 2A7COOOOOOF4 
18 
19 000000lC 3F3COOOl 
20 00000020 4E41 
21 00000022 54BF 
22 
23 00000024 lACO 
24 
25 00000026 OCOOOOOD 
26 0000002A 66FO 
27 
28 0000002C 8BFCOOOOOOFS 
29 00000032 670000A4 
30 
31 00000036 2A7COOOOOOF4 
32 
33 0000003C 4287 
34 0000003E 4286 
3S 
36 00000040 lC1D 
37 00000042 04060030 
38 
39 00000046 OCOb0009 
40 0000004A 621E 
41 0000004C 

fffflffflflflflfffffffffffillflllflflfflfilf 
I CALCULATE AVERAGE Exallple 3f 
1IIIfllflflfllfllflffffffflflllffflfffflillf 

lovea.l Itab,a4 * Data area for Is 

loop: bsr crlf I Cursor new line 

love.w I" ?",_(Sp) I Prolpt char 
/love •• 12,-(sp) I Code: CONOUT 
trap 11 I Call SEI'IDOS 
addq.l 14,sp I Stack correction 

lovea.l tline,aS I Set pointer 

in: love. iii 11 ,- (sp) I Cod: CONIN 
trap 11 f Call SEI1DOS 
addq.l 12,sp f Stack correction 

lIove.b dO,(aS)+ f save character 

CIllPi. b 113,dO I char a 'CR"? 
bne in I N: next character 

cllpa.l II ine+1 ,as I Test for blank 
beq SUI. f Y:generate sum 

lIovea.1 Iline,aS I Reset pointer 

clr.l d7 I clear result field 
clr.l d6 * calc. fieldlrelainde 

convet: love.b (aSl+,d6 f process digit 
subi. b U30,d6 I ACCI I to BCD 

c.pi. b 19,d6 I BCD di git OK 
bhi proces I Y: no lore digit 

.page 
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42 0000004C CEFCOOOA lulu.w 110 ,d7 f place shift 
43 00000050 DE86 add.l d6,d7 f add digit 
44 
45 00000052 OC870000FFFF clpLl UHff,d7 f test for carry 
46 00000058 63E6 bls con vet * N: neM digit 
47 
48 OOOOOOSA 6162 bsr crIf * cursor neM line 
49 
50 0000005C 3F3C2021 love. If I" !" ,-(sp) f error lessage 
51 00000060 3F3COO02 love. If 12,-(sp) f Code CONOUT 
52 00000064 4E41 trap 11 f Call GEHDOS 
53 00000066 58BF addq.l l4,sp f Stack correction 
54 
55 00000068 609C bra loop * enter new • 
56 
57 
58 0000006A 3BC7 proces: love.w d7,(a4)+ f value in table 
59 
60 0000006C 6098 bra loop f enter new line 
61 
62 
63 0000006E 3F3C203D decout: love.1f I" :",-(sp) * result lessage 
64 00000072 3F3COO02 love.w 12,-(sp) f Code: CONOUT 
65 00000076 4E41 trap 11 f Call SEMDOS 
66 00000078 5BBF addq.l 14,sp f Stack correction 
67 
68 0000007A 02870000FFFF andiol Uffff,d7 f !iIi t places 
69 
70 OOOOOOBO 2A7COOOOOOF4 lovea.l Iline,a5 f Set pointer 
71 
72 00000086 2C07 dodec: love. I d7,d6 f process digit 
73 OOOOOOBB BCFCOOOA divu.N 110,d6 f for. value/l0 
74 OOOOOOBC 3E06 love.1f d6,d7 * save results 
75 OOOOOOBE 4846 slfap.1f d6 f fori relainder 
76 00000090 06460030 addL w U30,d6 * generate ASCII 
77 00000094 lAC6 love.b d6, (as)+ * digit in buffer 
78 
79 00000096 OC470000 capiolf 10,d7 f all digi ts? 
80 0000009A 66EA bne dodec f Nj next digit 
B1 000OOO9C .page 
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82 0000009C BBFCOOOOOOF4 out: capa.l Iline,a5 f test buffer 
83 000000A2 6602 bne nzlf f N: all digits 
84 
85 000000A4 4E75 rts f routi ne done 
86 
87 000000A6 1E25 nzlf : love.b -(a5),d7 f get character 
88 000000A8 024700FF andia " I$ff ,d7 f norlal char. 
89 
90 OOOOOOAC 3F07 love. III d7,-(sp) f output char 
91 OOOOOOAE 3F3COO02 love. III 12,-(sp) f Code: CONOUT 
92 00000082 4E41 trap 11 f Call 6E~OOS 

93 000000B4 5BBF addq.l 14,sp f Stack correction 
94 
95 000000B6 60E4 bra out f test if done 
96 
97 
98 00000088 3F3COOOO end: love. III 10,-(sp) f Code WAR"START 
99 OOOOOOBC 4E41 trap 11 f Call GE"OOS 

100 
101 
102 OOOOOOBE 3F3COOOD crlf: love. III 113,-(sp) f Output CR 
103 000000C2 3F3COO02 love. III 12,-(sp) f Code: CONOUT 
104 000000C6 4E41 trap 11 f Call GE"DOS 
105 000000C8 588F addq.l 14,sp f Stack correction 
106 
107 OOOOOOCA 3F3COOOA love. iii 110,- (sp) f Output LF 
108 OOOOOOCE 3F3COO02 love." 12,-(sp) f Code: CONOUT 
109 00000002 4E41 trap 11 f Call 6E"00S 
110 00000004 588F addq.l 14,sp * Stack correction 
111 
112 00000006 4E75 rts * Return 
113 
114 
115 00000008 4287 sun: elr .1 d7 * Clear SUI 

116 OOOOOODA 4286 cl r.l d6 f Clear number 
117 OOOOOODC .page 
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118 OOOOOODC B9FCOOOOO144 SUI: cllpa.l ltab,a4 I Done? 
119 000000E2 6306 bls avg f Y: forI average 
120 
121 000000E4 5286 addq.l 11,d6 I incre. counter 
122 000000E6 DE64 add.1I -(a4I,d7 I Table value 
123 
124 000000E8 60F2 bra SUI I Next number 
125 
126 OOOOOOEA 8EC6 avg: divu.w d6,d7 I average 
127 
128 OOOOOOEC 61DO bsr crlf I cursor new line 
129 OOOOOOEE 6100FF7E bsr dec out I output result 
130 
131 000000F2 60C4 bra end I End progral 
132 
133 
134 000000F4 line: .ds.b 80 I 80 char buffer 
135 
136 00000144 tab: .ds.1I 100 f 100 values 
137 
138 
139 0000020C .end 
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The machine code segment that calculates the arithmetic mean is the 

only new part of this program. The mean is calculated by adding all of the 

elements and dividing this sum by the number of elements. 

A temporary storage area for the elements is not required to calculate the 

average. The numbers can be counted and summed within the input loop. 

Despite this fact, we will choose the somewhat more complicated way in 

order to more clearly illustrate how tables are processed. 

In line 8 a pointer is set to the data area TAB which is defined in line 

136. Here we will store the values entered word by word. The input loop 

starts at line 10. Here a subroutine for outputting "CRlLF" is called. This 

subroutine is defined in lines 102-112. Each input line starts with a prompt 

("?") which is created by lines 12 to 15. A decimal number is read in by 

lines 17 to 26. If a blank: line was not entered (lines 28 and 29), the input is 

converted to register format (in D7). The conversion routine from line 31 to 

line 55 is one we have used before. The converted number is placed in the 

table by the instruction in line 58 and the pointer is advanced to the next 

element. After the word is stored, another number can be entered (line 60). 

If a blank: line is entered, the program branches from line 29 to line 115. 

Now the average is actually calculated. The registers for the sum and 

number of the elements are initialized in lines 115 and 116. The table is 

processed from last to first element. In lines 118-119 the pointer (AS) is 

compared to the start of the table as the end criteria, and if the end is 

reached, a branch is made to line 126. 

Otherwise the counter is incremented by one in line 121. Remember that 

the address register A4 always points to the next element in the table. To 
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sum the elements, we access the element preceding the pointer in line 122. 

The loop is terminated by an unconditional branch to the top of the loop 

(line 124). There a check is made to see if all elements have been processed. 

If all elements have been summed (in D7) and their number determined 

(in D6), the average can be calculated by the division in line 126. The result 

is again placed in D7. 

In this example, a decimal number is printed by a subroutine located 

between lines 63 and 95. The algorithm used is the same as that in the 

previous examples. 

The output of the average value is preceded by a CR/LF in line 128. 

The result (D7) is then printed by calling the subroutine decout in line 129 

and the program is ended in the usual manner (lines 131,98 and 99). 
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r " I Simple sorting ) 
\.. .-J 

With this example we'll explain how to sort a simple table. Large 

portions of this program correspond to routines which we used for 

calculating averages. 

Decimal numbers are to be entered in an input loop and stored as 

elements of a table. When the first blank line is entered, the programs starts 

the sorting procedure and outputs all of the elements in decimal as the result. 

For the sorting we use one of the simplest algorithms, a variation of the 

bubble sort. We have chosen this sorting method because it is easy to 

understand and to program. 

In our sort procedure all of the elements are processed within two 

loops. The inner loop determines the smallest table element between the nth 

element and the end of the table. The nth element is always compared with 

all the others. If a smaller element is found, the two are exchanged. When 

the loop is done, the smallest of all the elements in the inner loop is in the 

nth element. The outer loop ensures that the inner loop is executed once for 

each element. The smallest element in the entire table is found in the first 

pass through the loop and this is stored at the first position in the table. This 

process is then repeated for the rest of the table until all elements are sorted. 

239 



Abacus Software 

Start 

o ~ Index 

No 

Output: 
"CR/LF" 
message 

Yes 

Decimal line 
~ 

Binary number 

Valu~ 

Table Index 

Index + 1 
~ Index 

Machine Language for the Atari ST 

240 

SORT 

Output: 
Table 

of 



Abacus Software Machine Language for the Atari ST 

C P I M 6 BOO 0 Ass e II b 1 e r 
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2 
3 
4 
5 
6 
7 
B 00000000 287C00000162 
9 

10 00000006 61000086 
11 
12 OOOOOOOA 3F3C203F 
13 OOOOOOOE 3F3C0002 
14 00000012 4E41 
15 00000014 58BF 
16 
17 00000016 2A7COOOOOl12 
18 
19 0000001C 3F3COOOl 
20 00000020 4E41 
21 00000022 548F 
22 
23 00000024 lACO 
24 
2S 00000026 OCOOOOOD 
26 0000002A 66FO 
27 
28 0000002C BBFC00000113 
29 00000032 670000A4 
30 
31 00000036 2A7C00000112 
32 
33 0000003C 4287 
34 0000003E 4286 
35 
3b 00000040 lCID 
37 00000042 04060030 
38 
39 00000046 OC060009 
40 0000004A 621E 
41 0000004C 

fffffff*ffffffffffffffffffffffffffffffffffff 
I Si.ple nu.ber sorting Exa.ple 4f 
ffllflf"'fl""'I"'I"f",'*!"!""'f"" 

lovea.l Itab,a4 f Data area for Is 

loop: bsr crlf f Cursor neN line 

10ve.N I" ?",-(sp) , Proapt char 
·lIove." 12,-(spl , Code: CONOUT 
trap 11 , Call GEM DOS 
addq.l l4,sp , Stack correction 

lovea.l Iline,aS • Set pOinter 

in: love.'" 11,-(spl f Cod: CONIN 
trap 11 • Call GEMDOS 
addq.l t2,sp • Stack correction 

love.b dO, (a5l+ , save character 

capi. b 113,dO f char a "CR·? 
bne in I N: next character 

capa.l Iline+1,a5 f Test for blank 
beq sort , Y: sort 

lovea.l Iline,a5 , Reset pointer 

clr .1 d7 f clr. result field 
clr .1 db f calc. field(rem) 

convet: 1I0ve.b (aSH',db f process digit 
subi. b U30,db f ACCII to BCD 

cmpi. b ~9,db , BCD digit OK 
bhi proces * Y: no lItore digit 

.page 
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42 0000004C CEFCOOOA lIulu.1I 110,07 f pI ace shi ft 
43 00000050 DEB6 add.l d6,d7 f add digit 
44 
45 00000052 OC870000FFFF clpi.l Uffff ,d7 f test for carry 
46 00000058 63E6 bls can vet f N: nell digit 
47 
48 0000005A 6162 bsr crlf f cursor nell line 
49 
50 0000005C 3F3C2021 love. II I' !',-(sp) f error llessage 
51 00000060 3F3COO02 love.'" 12,-(sp) f Code CONOUl 
52 00000064 4E41 trap 11 f Call 6EMDOS 
53 00000066 5BBF addq.l 14,sp f Stack correction 
54 
55 00000068 609C bra loop f enter new I 
56 
57 0000006A 3BC7 proces: love.1f d7,(a41+ f value in table 
58 
59 0000006C 6098 bra loop f enter nelf line 
60 
61 
62 
63 0000006E 3F3C203D decout: love." .~ :',-(sp) f result .essage 
64 00000072 3F3COO02 love. II 12,-(sp) f Code: CONOUT 
65 00000076 4E41 trap II f Call GEMDOS 
66 00000078 588F addq.l 14,sp f Stack correction 
67 
6B 0000007A 02B70000FFFF andiol Uffff,d7 f hili t places 
69 
70 OOOOOOBO 2A7COOOOO112 lovea.l Iline,a5 f Set pointer 
71 
72 00000086 2C07 dodec: love. I d7,d6 f process digit 
73 00000088 8CFCOOOA divu.1I 110,d6 f fori value/l0 
74 0000008C 3E06 love.'" d6,d7 f sa'Ie resul ts 
75 0000008E 4846 slIap • ." d6 f fori relainder 
76 00000090 06460030 addLlI U30,db f generate ASCII 
77 00000094 lAC6 Ilove.b d6, (as) + f digit in buffer 
78 
79 00000096 OC470000 c.pi. iii IO,d7 f all digits? 
80 0000009A 66EA bne dodec f N; next digit 
81 0000009C .page 
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82 0000009C BBFCOOOOO112 out: capa.l Iline,a5 f test buffer 
83 000000A2 6602 bne nzlf f N: all di gits 
84 
85 000000A4 4E75 rts f routine done 
D6 
87 OOOOOOA6 1E25 nzlf: .ove.b -(a51,d7 f get character 
88 000000A8 024700FF andio II Uff,d7 t nor.al char. 
89 OOOOOOAC 3F07 love." d7,-(sp) f outputf char 
90 OOOOOOAE 3F3COO02 love.1I 12,-(spl f Code: CONOUT 
91 000000B2 4E41 trap 11 f Call 6EKOOS 
92 000000B4 58BF addq.l 14,sp f Stack correction 
93 
94 000000B6 60E4 bra out f test if done 
95 
96 
97 000000B8 3F3COOOO end: love. III 10,-(sp) f Code WARHSTART 
98 OOOOOOBC 4E41 trap 11 f Call BEHOOS 
99 

100 
101 OOOOOOBE 3F3COOOO (rlf: love." 113,-(spl f Output CR 
102 000000C2 3F3COO02 love. III 12,-(sp) f Code: CONOUT 
103 000000C6 4E41 trap 11 f Call BEtlOOS 
104 000000C8 5BBF addq.l 14,sp f Stack correction 
105 
106 OOOOOOCA 3F3COOOA love." 110,-(spl f Output LF 
107 OOOOOOCE 3F3COO02 love." 12,-(sp) f Code: CONOUT 
lOB 00000002 4E41 trap 11 f Call 6EHDOS 
109 00000004 5BBF addq.l 14,sp f Stack correction 
110 
111 00000006 4E75 rts * Return 
112 
113 
114 OOOOOOOB 267COOOOO162 sort: lovea.l Itab,a3 f 1st index 
115 
116 OOOOOODE 244B dosort: lovea.l a3,a2 f 2nd index 
117 OOOOOOEO .page 
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118 OOOOOOEO 3E13 next: lovedl (a3) ,d7 f telP register 
119 000000E2 3C12 10ve.N (a2) ,db f telP register 
120 
121 000000E4 BC47 Clp.N d7,d6 f test 
122 000000E6 6504 bID noswap f V: no exchange 
123 
124 000000E8 3487 10ve.N d7,la2) f Swap 
125 OOOOOOEA 3b86 10ve.N d6, (a3) 
126 
127 OOOOOOEC D5FCOOOOOOO2 noswap: adda.l 12,a2 f incre. 2nd index 
128 000000F2 B5CC clpa.l a4,a2 f end of table? 
129 000000F4 65EA biD next f Vi continue test 
130 
131 000000F6 D7FCOOOOOOO2 adda.l 12,a3 f incre. 1st index 
132 OOOOOOFC B7CC cllpa.l a4,a3 f Table done 
133 OOOOOOFE 65DE bID dosort f Vi continue sort 
134 
135 00000100 B9FCOOOO0162 disp: clpa.l Itab,a4 f done 
136 00000106 63BO bls end f V: end progral 
137 
138 00000108 3E24 love.w -(a4I,d7 f Table value 
139 
140 0000010A 61B2 bsr crlf f Nell line 
141 0000010C 6100FF60 bsr decout f Output value 
142 
143 00000110 60EE bra disp f next 
144 
145 
146 
147 00000112 line: .ds.b 80 f 80 char buffer 
148 
149 00000162 tab: .ds.1I 100 f 100 values 
150 
151 0000022A hip: .ds.l 1 f telP storage 
152 
153 
154 0000022E .end 
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In line 8 a pointer is set to the data area. The data entered will be stored 

there word by word. The data area is defined in line 149. The input loop 

starts at line 10. Here a subroutine to output CR/LF is called. The 

subroutine is defined in lines 101 to 111. Each input line starts with an input 

prompt ("?") which is created in lines 12 to 15. A decimal number is read in 

lines 17 through 29. If the line entered is not blank (lines 28 and 29), the 

input is converted into register format in D7. The conversion routine in lines 

31 to 55 is one we have seen before. The converted number is placed in the 

table by the instruction in line 57. The pointer is also advanced to the next 

element. After the value is stored, another number can be entered (line 59). 

If a blank: line is entered, the program branches from line 29 to line 114. 

Here the actual sorting is done. 

The sorting is done in lines 114-133. The inner loop is made up oflines 

118 through 129. In line 114 the pointer for the sort loops is set to the first 

element in the table. In line 116 this is copied as the pointer for the inner 

loop. In lines 122 to 124 the element from the outer loop is compared with 

that in the inner and the two are exchanged if requires (lines 124 and 125). 

The inner loop counter is incremented in lines 127-129, and as long as the 

last element has not been reached, the loop will be repeated at line 118. If 

the inner loop is done, the element to which A3 points contains the smallest 

value. The outer loop is then repeated by the lines in 131 to 133 until all 

elements have been processed. 

The following figure should clarify the sorting procedure. 
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A. 3 2 5 1 Both pointers point to the same element 

.L3. 2 5 1 Exchange elements 

3 4 2 5 1 Exchange elements 

2 4 3 5 1 OK, no exchange 

2 4 3 5 1 Exchange elements 

1 ..1 3 5 2 Both pointers point to the same element 

1 ..1........3. 5 2 Exchange elements 

1 3 4 5 2 OK, no exchange 

1 3 4 5 2 Exchange elements 

1 2 ..1 5 3 Both pointers point to the same element 

1 2 .1.......5. 3 OK, no exchange 

1 2 4 5 3 Exchange elements 

1 2 3 .5. 4 Both pointers point to the same element 

1 2 3 .5......A Exchange elements 

1 2 3 4 5 All elements are sorted 

Once all elements are sorted they will be printed in a loop (lines 135 to 

143). The output of a decimal number is realized in this example again 

through a subroutine which is located between lines 63 and 94. The 

algorithm used is the one we used before. 

The output of an element is preceded by the output of a CR/LF in line 

140. The element is then printed by a call to the subroutine "decout" in line 

141. In this form of output, the largest element is printed first. The loop is 

closed with the unconditional branch command in line 143. If the 

comparison in lines 135 and 136 determine that all elements have been 

printed, the program branches to line 97 where it is ended in the usual 

manner (lines 136,97 and 98). 

246 



Abacus Software 

, 
I Output: Strings I 
\.. 

Machine Language for the Atari ST 

With this and the following example we want to clarify the use of 

further operating system subroutines. 

By using GEM-DOS function 9, we can output an entire character 

string on the screen, a string which will be created as a constant in the 

assembly language program. At the end of the output the program should 

wait until a key is pressed. Here we can use GEM-DOS function 7. This 

corresponds to GEM-OOS function 2 except that the character entered is not 

echoed on the screen. This way you can input even "non-printable" 

characters (like CTRL-C, etc.) with GEM-DOS function 7. 

In line 8 the address of the string to be printed is placed on the stack as 

a long word. The function code follows in line 9. GEM-DOS is called as 

usual. The GEM-DOS routine outputs the characters found at the address 

passed. It ends its activity when it encounters a $00 character. All other 

codes are permitted, including CR or LF. The stack must be corrected by 6 

bytes in line 11 (an account of the long word). Lines 13 to 15 call a special 

form of console input in which the character entered does not appear on the 

screen, but is returned in the DO register. Lines 17 and 18 end the program. 

Lines 21 and 23 create the text to be printed. 
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C P I ~ 6 BOO 0 Ass e I b 1 e r 
Source File: B:EXP5.S 

Revision 04.03 Page 

1 
2 
3 
4 
5 
6 
7 
8 00000000 2F3COOOOOOIC 
9 00000006 3F3C0009 

10 OOOOOOOA 4E41 
11 OOOOOOOC 5CSF 
12 
13 OOOOOOOE 3F3C0007 
14 00000012 4E41 
15 00000014 54BF 
16 
17 00000016 3F3COOOO 
IS 0000001A 4E41 
19 
20 
21 0000001C 48656C6C6F2C2077 
21 00000024 6F726C6420202121 
21 0000002C 2121212100 
22 
23 00000031 ODOAOO 
24 
25 00000034 

1lllllllllfflflflflllfllllllllll'ffflllllfll 

f Output a string Exallple 5* 
fffflflffffffflffffffffffffffffflfffffffffff 

start: love.l ttext,-(sp) f Addr. of string 
love.w t9,-(sp) f Code: PRTllNE 
trap II I Call 6EMDOS 
addq.l 16,sp f Stack correction 

love.w 17,-(sp) f Code: CONIN 
trap 11 I Call SEMDOS 
addq.l 12,sp I Stack correction 

love.w 10,-(sp) f Code: WARMSTART 
trap 11 f Call 6E"DOS 

text: .dc.b "Hello, world ! ! ! ! ! ! ! Of 

.dc.b 13,10,0 I CR/lF end mark 

.end 
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C ___ ID_P_u_t_:_S_t_r_iD_g_W_i_th_c_h_eC_k_...".) 

By using GEM-DOS function 9 we can output text on tothe screen. The 

character string to be printed is defined in the assembly language program. 

At the conclusion of the output, the program will read a decimal number 

from the keyboard. Only the number keys and the return key (CR) should 

be allowed. Here we use GEM-DOS function 7 because with this input 

function, the character entered does not automatically appear on the screen. 

We can then first check the validity of the key, and ignore it in case of an 

error. We must, however, take care of the output of a valid key ourselves. 

To check to see if the input is correct, we want to output the decimal number 

once again at the conclusion of the input and end the program. 

On the following pages are the flowchart and assembly language 

program listing. 
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Yes 

Yes 

Char. ~ 
Line index 

Index + 1 
~ Index 

Machine Language for the Atari ST 

250 



Abacus Software Machine Language for the Atari ST 

C P / 11 6 8 0 0 0 Ass e I b 1 e r Revision 04.03 Page 
Source File: B:EXP6.S 

1 
2 
3 111111 •• I".I.I""' •••• I""' ••• I'fl.I ••• I • 

4 • Input with check EXilple 6' 
5 1.1.lf •••• III.lf ••• fll'I.I ••• II •• 11111111111 

6 
7 
B 00000000 2F3COOOOO05A start: love.l ltext,-{sp) I Addr. of string 
9 00000006 3F3COO09 love.w 19,-(sp) I Code: PRTLINE 

10 OOOOOOOA 4E41 trap 11 I Call GEI1DOS 
11 OOOOOOOC 5C8F addq.l 16,sp I Stack correction 
12 
13 OOOOOOOE 2A7COOOOO068 love.l Itexbuf,a5 • Pointer to text buf 
14 
15 00000014 3F3COO07 in: love." 17,-(sp) I Code: CONIN 
16 00000018 4E41 trap 11 • Call GE"DOS 
17 0000001A 548F addq.l 12,sp I Stack correction 
18 
19 0000001C OCOOOOOD ciPi. b UOd,dO I char a CR? 
20 00000020 671A beq out • Vj output line 
21 
22 00000022 OCOOO039 clpi.b U39,dO I char > 9? 
23 00000026 62EC bhi in • Vj ingore 
24 
25 00000028 OCOOO030 CIPi. b U30,dO I char < O? 
26 0000002C 65E6 blo in • Vj ingore 
27 
28 0000002E lACO love.b dO,(a5)+ I store char. 
29 
30 00000030 3FOO love." dO,-{sp) • output char 
31 00000032 3F3COO02 love." 12,-(sp) • Code: CONOUT 
32 00000036 4E41 trap 11 I Call GEI1DOS 
33 00000038 5B8F addq.l 14,sp I Stack correction 
34 
3S 0000003A 6008 bra in I next character 
36 
37 00OOO03C .page 
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C PI" 6 8 0 0 0 Ass e I b 1 e r Revision 04.03 Page 2 
Source File: B:EXP6.S 

38 0000003C 4215 out: clr .b (a5) , lark end of line 
39 
40 0000003E 2F3COOOOO066 love.l loutbuf,-(sp) 'addr. of buff 
41 00000044 3F3COO09 love. III 19,-(sp) , Code: PRTLINE 
42 00000048 4E41 trap 11 , Call GE"OOS 
43 0000004A 5C8F addq.l 16,sp , Stack correction 
44 
45 0000004C 3F3COO07 love. III 17,-(sp) , Code: CONIN 
46 00000050 4E41 trap 11 , Call SEI'IDOS 
47 00000052 548F addq.l 12,sp , Stack correction 
48 
49 00000054 3F3COOOO love. III 10,-(sp) f Code: NAR"START 
50 00000058 4E41 trap 11 , Call 6E"OOS 
51 
52 
53 0000005A OOOA496E70757420 text: .dc.b $OO,$OA,'Input 1:",$0 
53 00000062 20233AOO 
54 
55 00000066 OOOA outbuf: .dc.b $Od,fOa 
56 
57 00000068 hxbuf: .ds.b 40 
58 
59 
60 00000090 .end 

252 



Abacus Software Machine Language for the Atari ST 

Lines 8 to 11 output the initial text on the screen; in line 13 the input 

buffer pointer is set up. Lines 15 to 17 read a character, but without 

displaying it on the screen. If the character was a CR, the input is tenninated 

and the input buffer is printed at line 38. 

Lines 22 to 26 check to see if the character entered is valid. If not, the 

program branches to the top of the input loop (line 15). Only if the character 

is valid is it placed in the input buffer and the pointer incremented (line 28). 

The valid character must then be printed on the screen so that the user sees 

that the input was accepted (lines 30 to 33). Once this is done, execution 

branches back to the top of the input loop (line 35). 

The decimal number in the input buffer is printed by the code starting in 

line 38. Here we again use the output function for a whole character string. 

But first we must mark the end of the input buffer with a $00 (line 38). 

Note that for the output (lines 40 to 43) we do not specify the address of the 

input buffer, but that of the output buffer (lines 55 and 57). Here we use a 

simple trick to output another CR/LF before the actual output. If you look at 

the declarations at line 53, you will see that the output buffer and the input 

buffer overlap, because the output buffer is not marked with a $00 to 

indicate its end. 

Another keyboard input is expected in lines 45 to 47 before the 

instructions in lines 49 and 50 are executed to end the program. 
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( Output: Date) 

With this example we want to illustrate GEM-DOS function 42, which 

allows you to use the date (month, day, year) in your programs. 

The program in our example should simply read the current date and 

display it in the form MM/DD/YY in decimal on the screen. Here we use our 

old subroutine for outputting a decimal number and for creating a linefeed. 

First we will briefly explain how the date is read. After calling the 

DATE function, GEM-DOS returns the date coded in binary in the DO 

register. The bits have the following significance: 

Bits 0 to 4 

Bits 5 to 8 

Bits 9 to 15 

day 
month 

year 

Range: binary 1 to 31 

Range: binary 1 to 12 

Range: binary 0 to 119 

The year refers to the years since 1980. In order to get the correct year 

value, the constant 1980 must be added to the year field. 

The following pages contain the program flowchart and the assembly 

language program listing. 
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Start 

/ output! 
"CR/LF" 
message 

Get date 
(operating system) 

I 

I Month ~ value 

I 

Output 

I 
Day --7 value 

I 
Output 

I 
Year + 1980 
~ value 

I 
Output 

End 

Machine Language for the Atari ST 
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Convert 
value to 

decimal number 
(string) 

Decimal 
number 
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C P I M 6 8 0 0 0 Ass e I b 1 e r 
Source File: B:EXP7.S 

Revision 04.03 Page 

1 
2 
3 
4 
5 
6 
7 
8 00000000 61000094 
9 

10 00000004 3F3C002A 
11 00000008 4E41 
12 OOOOOOOA 548F 
13 
14 OOOOOOOC 33C000000100 
15 
16 00000012 0280000001EO 
17 00000018 EA88 
18 0000001A 2EOO 
19 
20 0000001C 6128 
21 
22 0000001E 3E3900000100 
23 
24 00000024 02870000001F 
25 0000002A 611A 
26 
27 0000002C 3E3900000100 
28 
29 00000032 02800000FEOO 
30 00000038 7C09 
31 0000003A ECAF 
32 0000003C 06870000078C 
33 00000042 6102 
34 
35 00000044 604A 
36 
37 
38 00000046 3F3C2020 
39 0000004A 3F3C0002 
40 0000004E 4E41 
41 00000050 588F 
42 00000052 

ffffffffffff'f'fff ••• ff •• f.fff.f.f.f.f.fl.11 

I OUTPUT DATE Exallple 7f 
fflffffffffflffffff.fflf.flfffffflfflff'ffll 

jsr crlf 

love." 1$2a,-(sp) 
trap 11 
addq.l 12,sp 

love.w dO,hip 

andi.l l$leO,dO 
1 sr.l 15, dO 
love.l dO,d7 

bsr decout 

love. iii hip,d7 

andLl Ulf,d7 
bsr decout 

love." 

andi.l 
love.l 
1 sr.l 
addLl 
bsr 

bra 

hip,d7 

UfeOO,dO 
19,d6 
db,d7 
11980,d7 
decout 

end 

decout: love." '" ·,-Isp) 
love.N 12,-(sp) 
trap 11 
addq.l 14,sp 

.page 
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f Cursor neN line 

f Code: 6ETDATE 
• Call GEMDOS 
I Stack correction 

f Save date 

f process lonth 

f prepare output 

I and output 

I Get data 

f isolate day 
I and output 

f Get data 

I isolate year 
I set number shift 
I and norm (9x) 
f constant 1980 
I and output 

f end program 

f space as seperator 
I Code: CONOUT 
f Call GEI1DOS 
I Stack correction 
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C P / M 6 BOO 0 Ass e I b I e r Revision 04.03 Page 2 
Source File: 8:EXP7.S 

43 00000052 02870000FFFF andiol Uffff,d7 f Iilit places 
44 
45 00000058 2A7COOOOOOBO lovea.l Iline,a5 f Set pointer 
46 
47 0000005E 2C07 dodec:: love.l d7,d6 f process digit 
48 00000060 BCFCOOOA divu.w 110,d6 f fori value/l0 
49 00000064 3E06 love.w d6,d7 f save results 
50 00000066 4846 swap.w d6 f fori relainder 
51 00000068 06460030 addi. w U30,d6 f generate ASCII 
52 0000006C lAC6 love.b d6, (a5)+ f in buffer 
53 
54 0000006E OC470000 ClPi. " to,d7 f all di gits? 
55 00000072 66EA bne dodec f Nj next digit 
56 
57 00000074 BBFCOOOOOOBO out: capa.l tline,a5 f test buffer 
5B 0000007A 6602 bne nzlf f N: all digits 
59 
60 0000007C 4E75 rts f routine done 
61 
62 0000007E 1E25 nzlf: love.b -(a5),d7 f get character 
63 00000080 024700FF andi. " Uff ,d7 f noraal char. 
64 
65 00000084 3F07 love. Ii d7,-(sp) f output char 
66 00000086 3F3COO02 love." t2,-(sp) f Code: CONOUT 
67 OOOOOOBA 4E41 trap 11 f Call GEMDOS 
6B OOOOOOBC 5B8F addq.l l4,sp f Stack correction 
69 
70 0000008E 60E4 bra out f test if done 
71 
72 
73 00000090 3F3COOOO end: love." 10,-(sp) f Code WARMSTART 
74 00000094 4E41 trap 11 f Call 6E"DOS 
75 
76 
77 00000096 3F3COOOD crlf: love." 113,-(sp ) f Output CR 
78 0000009A 3F3COOO2 love." 12,-(sp) f Code: CONOUT 
79 0000009E 4E41 trap 11 f Call GEMDOS 
80 OOOOOOAO 588F addq.l 14,sp f Stack correction 
81 00OOOOA2 .page 
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C P /" b 8 0 0 0 Ass e I b 1 e r 
Source File: B:EXP7.S 

82 000000A2 3F3COOOA 
83 OOOOOOAb 3F3COOO2 
84 OOOOOOAA 4E41 
85 OOOOOOAC 588F 
8b 
87 OOOOOOAE 4E75 
88 
89 
90 00000080 line: 
91 
92 00000100 hip: 
93 
94 00000104 

Machine Language for the Atari ST 

Revision 04.03 Page 3 

love. II 110,-lsp) f Output LF 
love.1I 12,-(sp) f Code: CONOUT 
trap 11 * Call GEI'IDOS 
addq.l 14,sp f Stack correction 

rts f Return 

.ds.b 80 f 80 char buffer 

.ds.l f Date temp. store 

.end 

The routines to output a decimal number (lines 38 to 70) and the 

subroutine for CR/LF (lines 77 to 87) are familiar to us already. The output 

of the date stretches from line 8 to line 35. 

First a CR/LF is output and the GEM-DOS function for reading the date 

is called (lines 8-12). The date in DO is saved before it is processed (line 

14). The day is printed in lines 16 to 19. The day is formed through simple 

masking (line 16). Outputting the month is just as simple (lines 21 to 25), 

only the result must be shifted right to put it in the right part of the word 

after the rest of the number is masked out in line 23. The month is then 

printed (line 25). 

Forming the year is somewhat more complicated. After the other parts 

of the data are masked out in line 29, the number must averaged through 

multiple right-shifts (lines 30 and 31) since a shift cannot move a value 

more than 7 bits at a time. After this we add the constant 1980 in line 32 in 

order to get the correct the year. Lines 35, 73, and 64 end the program in 

the usual manner. 
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( Factorial calculation) 

The factorial of n (where n is an integer) is defined as the product of the 

first n natural numbers: 

n! = 1 * 2 * 3 * ... * n, where O! is defined to be 1. 

Examples: 

O! 

1 ! 

2! 

3 ! 

4! 

1 

1*0! 

2*1! 

3*2! 

4*3! 

1 

1 

2 

6 

24 (etc.) 

Clearly, we can also define the factorial of the number "n" in a different 

manner: 

O! 1 and n! = (n-l)! 

This form of the definition is called recursive. Each following element can 

be determined through its predecessors, and has great application in 

computer science. We speak of a recursive program (in contrast to iterative) 

if a routine calls itself directly or indirectly. Naturally you must ensure that 

this cycle of self-calls ends at some point. 
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Recursive representations have the advantage of being proven relatively 

easily. We will not calculate a factorial iteratively, because it represents a 

relatively simple example of recursion-although it is still the most difficult 

concept presented in this book. 
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Calculate Factorial 
Repeat: 

Write start 
Enter a line 

Blank line? 

Yes No 

Exit program ------

Convert input line to binary line 

Call factorial 

Output result 

Factorial 

Save register as needed 
Get parameters 

~me~ 
Yes No 

Save parameter in register 

decrement parameter and 
Set return call factorial with this 
value to 1 parameter 

Delete parameter from stack 

Multiply return value of 
factorial by register 

-4 new return value 
restore saved registers 

return to caller 
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C P I M 6 BOO 0 Ass e I b I e r 
Source File: 8:EXPB.S 

Revision 04.03 Page 

1 
2 
3 
4 
5 
6 
7 
8 00000000 610000E6 
9 

10 00000004 3F3C203F 
11 00000008 3F3C0002 
12 OOOOOOOC 4E41 
13 OOOOOOOE 58BF 
14 
15 00000010 2A7COOOOOI02 
16 
17 00000016 3F3C0001 
18 0000001A 4E41 
19 0000001C lACO 
20 0000001E 54BF 
21 
22 00000020 OCOOOOOD 
23 00000024 66FO 
24 
25 00000026 BBFCOOOOOI03 
26 0000002C 67000084 
27 
28 00000030 2A7COOOOOI02 
29 
30 00000036 4287 
31 00000038 4286 
32 
33 0000003A 1CID 
34 0000003C 04060030 
35 
36 00000040 OC060009 
37 00000044 6220 
38 
39 00000046 CEFCOOOA 
40 0000004A DEa6 
41 0000004C 

1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIflillflfllil 
I CALCULATE FACTORIAl Exalple Sf 
11111111.1.""lllfllllllllllfllll.lflllflfl 

loop: bsr crlf f Cursor new line 

love.w '" ?·,-(sp) I ProlPt char 
love. II 12,-(sp) I Code: CONOUT 
trap U f Call GEI'IDOS 
addq.l 14,sp I Stack correction 

lovea.l Iline,a5 , Set pointer 

in: love.w 11,- (sp) I Cod: CONIN 
trap 11 I Call SEMOOS 
love.b dO, (as) + I store char 
addq.l 12,sp I Stack correction 

clpi.b 113,dO I char a 'CR"? 
bne in IN: next character 

clpa.l Iline+1,a5 I Test for blank 
beq end I V:end progru 

lovu.l Iii ne, as I Reset poi nter 

clr.l d7 Iclr. result field 
clr.l d6 I calc. field(relainder) 

convet: love.b (a5)+,d6 • process digit 
subi.b U30,d6 f ACCII to BCD 

ClPi. b t9,d6 f BCD digit OK 
bhi proces I V: no ~ore digit 

lulu.1I 110,07 f place shift 
add.l d6,d7 I add digit 

.page 
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c P / M 6 8 0 0 0 Ass e ~ b 1 e r 
Source File: B:EXP8.S 

42 0000004C OCB70000FFFF 
43 00000052 63E6 
44 
45 00000054 61000092 
46 
47 00000058 3F3C2021 
48 0000005C 3F3COO02 
49 00000060 4E41 
SO 00000062 588F 
51 
52 00000064 b09A 
53 
54 
55 00000066 2F07 proees: 
56 00000068 61 04 
57 0000006A 588F 
58 OOOOOObC 6028 
59 
60 
61 0000006E 4E540000 he: 
62 00000072 2F05 

Clip i.l 
bls 

bsr 

move.w 
move. iii 
trap 
addq.l 

bra 

move. l 
bsr 
addq.l 
bra 

link 
love.l 

Revision 04.03 Page 2 

Uffff ,d7 f test for carry 
con vet f N: new digit 

crlf f cursor new line 

." !., -(sp I f error message 
12,- (spl f Code CONOUT 
11 f Call 6EMDOS 
14,sp f Stack correction 

loop f E! nt ar new I 

d7,-(spl f hctori al 
he f calculate 
14,sp f paral,frol stack 
deeout I and output 

a4,10 f local stack 
d5,-(spl I save register 

63 00000074 2A2COO08 love.l 8(a41,d5 f get parameter 
64 00000078 OC8500000000 clpi.l '0,d5 I check end 
65 0000007E 6712 beq endfac f Y: done 
66 00000080 2C05 move.l d5,d6 ICOpy for dec. 
67 00000082 5386 subq.l Il,d6 f dec. counter 
68 00000084 2F06 love. 1 d6,-(sp) f new paralleter 
69 00000086 61E6 bsr hc f recursion 
70 00000088 5BBF addq.l 14,sp I par.. fro. stack 
71 0000008A CEC5 lulu." d5,d7 f calc. n-l 
72 
73 0000008C 2A1F savhc: love.l (sp)+,d5 f relove frl stack 
74 0000008E 4E5C unlk a4 f rerlease stack 
75 00000090 4E75 rts free. level done 
76 
77 00000092 7EOl endfac: 1I0ve.l It,d7 I recursion done 
78 00000094 60F6 bra savfac lend processing 
79 00000096 .page 
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C P / " 6 BOO 0 Ass e I b 1 e r Revision 04.03 Page or 
" 

Source File: B:EXPB,S 

BO 
Bl 
82 00000096 61S0 decout: bsr crif 'cursor new line 
B3 
84 0000009B 3F3C2030 love. III . " : ",-(sp) , result lessage 
8S 0000009C 3F3COO02 love,1iI 12,-(sp) , Code: CONOUT 
86 OOOOOOAO 4E41 trap 11 , Call SEMODS 
B7 000000A2 SBBF addq,l 14,sp , Stack correction 
BB 
89 000000A4 02B70000FFFF andi,l Uffff ,d7 f limit places 
90 OOOOOOAA 2A7COOOOOI02 lovea.l Iline,aS , Set pointer 
91 
92 OOOOOOBO 2C07 dodec: love,l d7,db , process digit 
93 000000B2 BCFCOOOA divu,1iI ItO,db f fori value/l0 
94 000000B6 3E06 love, iii db,d7 f save results 
9S 000000B8 4B46 SNap db , form re~ainder 

96 OOOOOOBA 06460030 addis iii U30,d6 'gener ate ASC I I 
97 OOOOOOBE tAC6 love,b db,(aS). f digit in buffer 
9B OOOOOOCO OC470000 tiPi. iii to,d7 , all digits 
99 000000C4 b6EA bne dodet , N; next digit 

100 
101 000000C6 BBFCOOOOOI02 out: tAlpa, I Iline,aS , test buffer 
102 OOOOOOCC 6700FF32 beq loop f Y: all digits 
103 
t04 00000000 lE25 love,b - (as) ,d7 f get char ader 
105 00000002 024700FF andio iii Uff ,d7 , norlal char, 
106 
107 00000006 3F07 love.w d7 ,-(sp) f output char 
108 OOOOOODB 3F3COO02 love,w 12,-(sp) , Code: CONOUT 
109 OOOOOODC 4E41 trap 11 , Call 6EMODS 
110 OOOOOOOE S8BF addq,l l4 ,sp , Stack correction 
111 
112 OOOOOOEO 60E4 bra out f test if done 
113 
114 
115 000000E2 3F3COOOO end: love,w 10,-(sp ) f Code WARMSTART 
lib 000000E6 4E41 trap 11 , Call GEI'IOOS 
117 
118 000000E8 .page 
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C P / M 6 BOO 0 Ass e I b 1 e r Revision 04.03 Page 4 
Source File: B:EXPB.S 

119 OOOOOOEB 3F3COOOD crlf: love. iii 113, - (sp) f Output CR 
120 OOOOOOEC 3F3COOO2 love." 12,-(sp) f Code: CONOUT 
121 OOOOOOFO 4E41 trap II f Call SEMDOS 
122 000000F2 5BBF addq.l 14,sp f Stack correction 
123 
124 000000F4 3F3COOOA !love." 110,-(spJ f Output LF 
125 OOOOOOFB 3F3COO02 love." 12,-(sp) f Code: CONOUT 
126 OOOOOOFC 4E41 trap 11 f Call SEMDOS 
127 OOOOOOFE 5BBF addq.l 14,sp f Stack correction 
128 
129 00000100 4E75 rts f Return 
130 
131 
132 00000102 line: .ds.b BO f BO char buffer 
133 
134 
135 00000152 .end 
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This example contains four elements used in previous examples. Only 

the factorial calculation is new. 

The subroutine for output of CRILF, defined in lines 119 to 129, is 

called in line 8. Each input line starts with an input prompt ("?") created in 

lines 10-13. A decimal number is read in by lines 15 to 23. If a blank line 

was not entered (lines 25 and 26), the input is converted to a binary 

number. The conversion routine from line 28 to line 52 is one we have used 

before. The converted number is (line 55) passed to the factorial routine via 

the stack. After the factorial calculation the stack will be corrected, the result 

printed in decimal (lines 82 to 112), and new data is requested (line 8). 

If a blank line is entered, the program branches from line 26 to line 115. 

Here the program ends with a jump back to GEM. The actual factorial 

calculation is performed in lines 61 to 78. 

Then a so-called local base is established with the L INK instruction. 

Several operations are performed when this instruction is executed. First the 

contents of the A4 register are placed on the stack; then the current stack 

pointer value is copied into the address register just saved (A4); and the 

stack pointer is changed by the value given as the destination operand. 

If a negative offset is given, the stack pointer is moved down. This 

creates a "local" address space within the stack area. We do not need any 

local stack space for the factorial calculation, so we specified a #0 in the 

L INK instruction. 

We use the LINK/UNLK mechanism here in order to simplify the stack 

management. 
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The current parameter, found in D5, is saved by the MOVE instruction in 

line 62. In line 63, the last argument of the factorial function is read from 

the stack over the local base. If 0 is given as the argument, if the last 

recursion level is reached, the recursion can be resolved in reverse order 

(jump to line 77). 

If the last recursion level is not reached, the argument decremented by 

one is pushed on the stack as the new argument by the instructions in lines 

66 to 68, and the factorial is called again. If the last recursion level is 

reached, we have the stack picture (for calculation of 2!) illustrated on the 

following page. 

The recursion is then resolved and the stack is reconstructed, in which a 

" I" (O! = 1) is passed as the function value in D7 back to the calling location 

as the result of the last recursion level (lines 77 and 78). The stack is 

constructed at line 73, in which the argument of the caller is restored in D5 

and the local stack is released through UNLK. The function is ended by 

RTS. 

The result in D7 will by multiplied by the argument and the stack 

corrected for as long as the function had called itself (lines 70 and 71). 
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Higher 
Address 

L 

Argument "2" 

Return address 
to caller 

Machine Language for the Atari ST 

Address 
Address 
Address 

"n" 
"n+2" 
"n+4" 

A4 (save as E Local base 1 
V 1 
E 
L 

L 
E 
V 
E 
L 

L 
E 
V 
E 
L 

2 

3 

Lower 
Address 

-

local base) 

Data register DS 

Argument "1" 

return address 

A4 (save as Local base 2 
local base) 

with contents "2" 

Argument "0" 

return address 

A4 (save as Local base 3 
local base) 

DS with contents "1" User stack pointer 

At the conclusion of this chapter, we have one small practice suggestion 

to recommend: play with the processor yourself! You can duplicate the 

example of the factorial calculation with paper and pencil. Draw a stack 

picture showing how the factorial calculation reconstructs the stack, and 

create a list showing how the values in the registers change. This is not only 

interesting to observe-it will also deepen your understanding of the last 

example. 
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Flowchart Symbols 

Program flowchart: 

General processiong: 

Branch: 

Subroutine: 

Input/Output: 

Start/End: 

(--) 
Transfer/Continuation: o 
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Condition Codes 

Abbreviations for testing the condition codes: 

CC if carry clear 
CS if carry set 
PL if plus 
MI if minus 
VC if overflow clear 
VS if overflow set 
NE if not equal 
EQ ifequal 

Mter comparison: 

EQ ifequal 
NE if not equal 

ifC=O 
ifC=l 
ifN=O 
ifN=1 
ifV=O 
ifV=1 
ifZ=O 
ifZ=1 

ifOPl =OP2 
ifOPI ::!;OP2 

Mter comparing unsigned values: 

LO if lower 
LS if lower or same 
HI if higher 
HS if higher or same 

Mter comparing signed values: 

LT 
LE 
GT 
GE 

less than 
less than or equal 
greater than 
greater than or equal 

Additional: 

ifOP2 <OPI 
ifOP2 ~OPI 
ifOP2 > OPI 
ifOP2~OPI 

ifOP2 <OPI 
ifOP2 ~OPI 
ifOP2 >OPI 
ifOP2~OPI 

T True: The condition is always fulfilled 
F False: The condition is never fulfilled 
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68000 ADDRESSING MODES 

No. Description Syntax Example 
------------------------------------------------------------------------------------------

1) Data register direct Dn D3 

2) Address register direct An A3 

3) Address register indirect (An) (A3) 

4) Address register indirect (An)+ (A5)+ 
with postincrement (SP)+ 

5) Address register indirect -(An) -(A5) 
with predecrement -(SP) 

6) Address register indirect d16(An) $1234(A5) 

with 16-bit distance value 

7) Address register indirect d8(An,Rn) $CO(Al,Dl) 

with 8-bit distance value 

8) Absolute short $xxxx.W $3000 

9) Absolute long $x .. x.L $12345678 

10) Immediate #"data" #$Od 

11) Program counter indirect d 16(PC) $l000(PC) 

with 16-bit distance value 

12) Program counter indirect d8(PC) $1000(PC) 

with 8-bit distance and 
index (register) 

Rn: any data or address register 
Dn: any data register 
An: any address register 
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Mnemonic 

ABCD.X 
ADD.X 
ADD.W/L 
ADDLX 
ADDQ.X 
ADDX.X 

Instruction Overview 

Valid addressing modes FLAGS 
Function oPt 1 2 3 4 5 6 7 8 9 10 11 12 XNZVC 

Add BCD with extend 2 
Add binary 2 
Add binary to address reg 2 
Add immediate 
Add immediate quick 
Add binary with extend 

2 
2 

2 

x x *u*u* 
s s x x x x x x x s s s ••••• 

x x x x x x x x x x x x -----
x x x x x x x x 
x x x x x x x x x 
x x 

••••• 

..... 
AND.X Logical AND 2 s x x x x x x x s s s -**00 
ANDI.X Logical AND immediate 2 x 

1/2 x 
1 

x x x x x x x ---00 
ASL,ASR.X Arith . shift left/right 
Bcc 
BCHG.X 

BCLR.X 
BRA 
BSET . X 
BSR 
BTST.X 
CHK.W 
CLR .X 
CMP . X 
CMPA.X 
CMPLX 
CMPM.X 
DBcc.W 
DIVS.W 
DIVU.W 
EOR . X 
EORI.X 
EXG.L 
EXT.X 
JMP 

JSR 
LEA.L 
LINK 
LSL,LSR .X 
MOVE.X 
MOVEA.W/L 
MOVE. X 
MOVE.X 
MOVE.X 
MOVE.X 
MOVEM.X 

Branch conditional 
Test bit and change 
Clear bit 
Branch always 
Bit TEST and SET 

2 

2 

1 

2 

Branch to subroutine 1 
Bit TEST 2 
Check reg against bounds 2 
Clear 1 
Compare 2 
Compare address register 2 
Compare immediate 
Compare with memory 
Decrement and branch 
Divide signed 
Divide unsigned 
Logical exclusive OR 
EOR immediate 
Exchange registers 
Sign extend 
Jump absolute 

2 

2 

2 

2 

2 
2 

2 

2 

2 

1 
Jump to subroutine 1 
Load Effective Address 2 
Link local base pointer 2 
Logical shift left/right 1/2 
Move 
Move to address register 
Move to CCR 
Move from SR 
Move to SR 
Move user stack pointer 
Move multiple registers 

2 
2 

1 

1 

1 

1 
2 

x 
x 

x 

x 
x 

x x x x x x x ••••• 

x x x x x x x 

x x x x x x x 

x x x x x x x 

x x x x x x x 
x x x x x x x x x 

--*--

--*--

--*--

--UUU 

x x x x x x x x -0100 
x x x x x x x x x x x x _ •••• 
x x x x x x x x x x x x _ •••• 

x 

x 
x 
x 
x 
x x 
x 

x 
x 
x 
x 
x 
x 
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x 

s 
x 

x 

x x x x x x x 
x x x x x 

_ .... 
x x _ •••• 

x x x x x x x x x x -***0 

x x x x x x x x x x ----0 
x x x x x x x 
x x x x x x x 

x 
x 
x 

x 
x 
x 

x 

x 
x 

x 

x 

x 
x 
x 
x 

x 

s 

x 
x 
x 
x 

x 

x 

d 

x x x x 
x 

x 

x 
x 
x 
x 

x 

x 

x 

x x 
x x 

x x 
x x 
x 
x 

x 

x 

x 

x 
x 

x 

x 

x 

x 
x 

x 
x 
x 

x 

x 

x 

x 

s 

x 

x 

x 

---00 
---0 0 

---00 
x x 
x 
x 

s 
x 
x 

x 

s 

x 

x 

s ---0 0 
x -----
x 

x 

s 
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Valid addressinq modes FLAGS 

Mne monic Function oPt 1 2 3 4 5 6 7 8 9 10 11 12 XNZVC 

- ----------------------------------------------------------------------------------
MOVEP.W/ L 
MOVEQ.L 
MULS.W 
MULU.W 
NBCD.B 
NEG .X 
NEGX.X 
NOP 
NOT.X 
OR .X 
ORI.X 
PEA.L 
RE SET 
ROL ,ROR.X 

Move peripheral 
Move immediate quick 
Mult iply siqned 
Multiply unsiqned 
Negate BCD byte 
Negate 
Negate with extend 
No operation 
Logical NOT 
Logical OR 
Logical OR immediate 
Push effective address 

Reset 
Rotate left/right 

2 

1 

2 

2 

1 

1 

1 

1 

2 

2 
1 

ROX L,ROXR.X Rotate L/R with extend 

1/2 

1/2 

RTE Return from exception 

RT R 
RT S 
SBCD.B 
Scc .B 
STOP.X 
SUB.X 
SUBA.W/ L 

SUBI.X 
SUBQ.X 
SUBX.X 

SWAP 
TAS.B 
TRAP 
TRAPV 
TST .X 
UNL K 

Return and restore CCR 
Return from subroutine 
Subtract BCD with extend 2 
Set byte according to cc 
Stop with CCR loaded 
Subtract binary 
Subt. bin from addr reg 

Subtract immediate 
Subtract quick 
Subtract with extend 
Swap register halves 
Test byte and SET 
Trap 
Trap on overflow 
Test byte 
Unlink local area 

1 
1 

2 

2 

2 
2 

2 

1 

1 

1 

1 

1 

x 
d 

x 
x 
x 
x 

x 

x 
x 
x 

x 
x 
x 

x 
x 
x 

x 

x 
x 
x 

x 
x 
x 

x 
x 
x 

x 
x 
x 

x x x x x x x 
x x x x x x x 

x 
x 

x 
x 

-**00 
x -**00 
x -**00 

*u·u· 
***** 
***** 

x 
x 
x 

x x x x x x x -** 00 
x x x x x x x s s s -**00 

x 
x 

x 
x 

s 
x 
x 

x x x x x x x 
x x x x x 

x x x x x x x 
x x x x x x x 

x 

x x x x x x x 

s x x x x x x x 
x x x x x x x x 

x x x x x x x 
x x x x x x x x x 

x 
x 
x 

x 

x x x x x x x 

x x x x x x x x 

x 
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-**00 
x x -----

x 
s s 
x x 

x 

-**0· 

***0* 

***** 
*.*** 

*u·u· 

****. 
s ***** 
x -----

***** 
***** 
***.* 
-**00 
-**0 0 

- **00 
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Optional Diskette 

ATARI ST 
Machine language 

Optional diskette 

For your convenience, the program listings contained in this book are 

available on an SF354 formatted floppy disk. You should order the diskette 

if you want to use the programs, but don't want to type them in from the 

listings in the book. 

All programs on the diskette have been fully tested. You can change the 

programs for your particular needs. The diskette is available for $14.95 plus 

$2.00 ($5.00 foreign) for postage and handling. 

When ordering, please give your name and shipping address. Enclose a 

check, money order or credit card information. Mail your order to: 

Abacus Software 
5370 52nd Street SE 

Grand Rapids, MI 49508 

Or for fast service, call 616/698-0330. 
Credit Card orders only 1-800-451-4319. 
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REQUIREDR~ 

INTERNALS 
EssentIal guide to learntng the 
Inside Information of the ST. 
Detailed descriptions of sound 
& graphics chips, Internal 
hardware. various ports, GEM. 
Commented BIOS lisling. An 
Indispensible reference for 
your library. 45Opp. $19.95 

GEM Prog,.mmor'. Ref. 
For serious programmers in 
need 01 detailed information 
on GEM . Written with an 
easy4o-understand format. All 
GEM ex~18s are written in 
C and assembly. Required 
reading for the serlous pro
grammer. 45Opp. $19.95 

TRICKS & TIPS 
Fantastic collection of pro
grams and info for the ST. 
Complete programs include: 
super-fast RAM disk; time
saving printer spooler; color 
print hardcopy; plottsr output 
hardcopy. Money saving tricks 
and l ips. 200 pp. $19.95 

GRAPHCS & SOUND 
Detailed guide 10 understand
ing graphics & sound on the 
ST. 20 & 3D function planers, 
Moire panerns, various reso
lut ions and graphic memory, 
fradals , waveform generation. 
ExafTl)1es written in C, lOGO. 
BASIC and Modula2. $19.95 

BASIC T,.lnlng Gutde 
Indispensible handbook lor 
beginning BASIC program
mers. Learn fundamentals of 
programming. Flowchart ing, 
numbering system, log ical 
operators. program structures, 
bits & bytes, disk use, chapter 
qu izzes. 200pp. $ 16.95 

PRESENTING THE ST 
Gives you an in-depth 
look at this sensational 
new computer. Discusses 
the architecture of the 
ST, working wtth GEM, 
the mouse, operat ing 
system, all the various 
interfaces, the 68000 
chip and its instructions, 
LOGO. $t6.95 

MACHINE LANGUAGE lOGO PEEKS & POKES BEGINNER'S GUIDE BASIC TO C 
Program in the fastest Take control of your Enhance your programs Fina ll y a book lor those If you are already familiar 
language for your Atari ATARI ST by learning with the examples found new to the ST wanting to With BASIC, learning C 
ST. learn the 68000 LOGO-the easy-to-use, within this book. Explores understanding ST caSICS. Will be all thai much 
assembly language, its yet powerful language. using the different lang- Thoroughly understand easier. Shows the trans
numbering system, use Topics covered include uages BASIC, C, LOGO your ST and Its many it ion f rom a BASIC 
of registers, the structure structured programming, and machine language, devices. Learn the funda- program, translated step 
& important details of the graphic movement, hie using various interfaces, mentals of BASIC, LOGO by step. to the Imal C 
instruction set, and use of handling and more. An memory usage, reading and more. Complete with program. For all users 
the internal system excellent book for kids as and saving trom and to index, glossary and IItUS- interested in taking the 
routines. 280pp $19.95 weUasadutts. $19.95 disk, mora. $t6.96 Iralions . • 200pp $16.95 next step. $19.96 

5370 52nd Street SE Grand Rapids, MI 49508 Phone (616) 698-0330 
Optional diskettes are available for all book titles at $14.95 
Call now for the name of your nearest dealer. Or order directly from ABACUS with your MasterCard, VISA, or Amex card. Add 
$4.00 per order for postage and handling. Foreign add $10.00 per book. Other software and books coming soon. Call or 
write for your free catalog. Dealer inquiries welcome-<>ver 1400 dealers nationwide. 



We have the software 
you've been looking for! 

Data Trieve 
The electronic 

filing system 
~r.eafor the ST 

ST DataTrleve 
Data management was never this 
easy. Online help screens; lightning
fast operation ; tailorable display; user
definable edit masks; up to 64,000 
records. Supports multiple files . In
cludes RAM-disk programs. Complete 
search , sort and file subsetting. Inter
faces to TextPro . Easy yet powerful 
printer control. Includes five common 
database setups. $49.95 

ST Forth/MT 
Powerful, multi-tasking Forth for the ST. 
A complete, 32 -bit implementation 
based on Forth-83 standard. Develop
ment aids : full screen editor, monitor, 
macro assembler. 1500+ word library. 
TOS/LiNEA commands. Floating point 
and complex arithmetic. $49.95 

Word processor for the ST 

STTextPro 
Word processor with professional 
features and easy-to-use! Full-screen 
editing with mouse or keyboard 
shortcuts. High speed input, scrolling 
and editing ; sideways printing; 
multi-column output; flex ible printer 
installation; automatic index and table 
of contents; up to 180 chars/line ; 30 
definable function keys ; metafile 
output; much more. $49.95 

AssemPro 
The complete 68000 

assembler development 
package for the ST 

ST AssemPro 
Professional developer's package 
includes editor, two-pass interactive 
assembler w~h error locator, online help 
including instruction address mode and 
GEM parameter information, 
monitor-debugger, disassembler and 
68020 simulator, more. $59.95 

ST PalntPro 
Friendly, but powerful design and paint
ing program. A must for everyone's 
artistic and graphics needs. Up to three 
windows . Cut & paste between win
dows. 36 user-defined fill patterns; 
definable line patterns ; works in hi
med- & lo-res; accepts GDOS fonts. 
Double-sized picture format. $49.95 
PaintPro Library '1 5 fonts , 300+ electronic, 
architectual , borders & d ip art designs. 519.95 

PowerPlan ST 
Full-powered Spreadsheet 
37 math functions · 1" dgit precision 
Large size. owr " .2 billion cells 
Multiple windows · ~ to 7 
Graphics - 7 types of graphs 

PowerPlan ST 
Powerful analysis package. Large 
spreadsheet (65536 X 65536 cells) , 
built-in calculator, notepad, and inte
grated graphics. 37 math functions, 14 
digit-precision. Seven windows to show 
one of seven types of charts or another 
section of your spreadsheet. $79.95 

ST and l040ST arolradomar1<o 01 Alati Corp. 

Other software and books also available. Call or write 
for your free catalog or the name of your nearest 
dealer. Or order directly using your VISA, MC or Amex 
card . Add $4.00 per order for shipping and handling. 
Foreign orders add $10.00 per item. 30-day money 
back guarantee on software. Dealers inqu ires 
welcome-over 1500 dealers nationwide. 

Abacus li'iUinU!il IUUiUU!1 
Abacus Software • 5370 52nd Street SE 
Grand Rapids, MI 49508· Phone (616) 698-0330 



Selected Abacus Products for the ~trAA~ ~ ~ 

DataRetrieve 
(formerly FilePro S1) 

Database management package 
for the Atari ST 

"DatoRetrieve is the most versatile. and yet simple. 
data base manager available for the Atari 520STli 040ST 
on the market to date." 

-Bruce Mittleman 
Atari Journal 

DataRetrieve is one of Abacus' best-selling software 
packages for the Atari ST computers-it's received 
highest ratings from many leading computer magazines. 
DataRetrieve is perfect for your customm; who need a 
powerful, yet easy to use database system at a moderate 
price of $49.95. 

DataRetrieve's drop-down menus let the user quickly and 
easily defme a file and enter information through screen 
templates. But even though it's easy to use, 
DataRetrieve is also powerful. DataRetrieve has fast 
search and sorting capabilities, a capacity of up to 
64,000 records, and allows numeric values with up to 
15 significant digits. DataRetrieve lets the user access 
data from up to four fIles simultaneously, indexes up to 
20 different fields per fIle, supports multiple fIles, and 
has an integral editor for complete reporting capabilities. 

DataRetrieve's screen templates are paintable for 
enhanced appearance on the screen and when printed, and 
data items may be displayed in multiple type styles and 
font sizes. 

The package includes six predefmed databases for 
mailing list, record/video albums, stamp and coin 
collection, recipes, home inventory and auto 
maintenance that users can customize to their own 
requirements. The templates may be printed on Rolodex 
cards, as well as 3 x 5 and 4 x 5 index cards. 
DataRetrieve's built-in RAM disks support lightning
fast operation on the I040ST. DataRetrieve interfaces to 
TextPro fIles, features easy printer control, many help 
screens, and a complete manual. 

DataRetrieve works with Atari ST systems with one or 
more single- or double-sided disk drives. Works with 
either monochrome or color monitors. Printer optional. 

DataRetrieve Suggested Retail Price: $49.95 

DataRetrieve 

~J ] 
The electronic 

filing system 

nt ~;:.1 for the ST 
~i 

DataRetrieve Features: 

• Easily define your fIles using drop-down menus 
• Design screen mask size to 5000 by 5000 pixels 
• Choose from six font sizes and six text styles 
• Add circles, boxes and lines to screen masks 
• Fast search and sort capabilities 
• Handles records up to 64,000 characters in length 
• Organize fIles with up to 20 indexes 
• Access up to four files simultaneously 
• Cut, past and copy data to other fIles 
• Change fIle defmitions and format 
• Create subsets of fIles 
• Interfaces with TextPro fIles 
• Complete built-in reporting capabilities 
• Change setup to support virtually any printer 
• Add header, footer and page number to reports 
• Defme printer masks for all reporting needs 
• Send output to screen, printer, disk or modem 
• Includes and supports RAM disk for high-speed 

1040ST operation 
• Capacities: max. 2 billion characters per file 

max. 64,000 records per fIle 
max. 64,000 characters per record 
max. fields: limited only by record size 
max. 32,000 text characters per field 
max. 20 index fields per fIle 

• Index precision: 3 to 20 characters 
• Numeric precision: to 15 digits 

Numeric range ±1O-30g ti ±10308 

AIari Sf, 520ST, J04OST, TOS, ST BASIC and Sf I.JX)() are IrIdcmub or rqisllered tndernlIts of Atari Corp. 

OEM Is ..... 10 ___ ofDi,;toI RCICtidIInc. 



Selected Abacus Products for the A1rM~ ~ ~ 

TextPro 
Wordprocessing package 

for the Atari ST 

'TextPro seems to be well thought out, easy, flexible 
an! fast . The program maJces excellent use of the GEM 
interface and provides lots of small enhancements to 
make your work go more easily ... if you have an ST 
and haven't moved up to a GEM word processor, pick 
up this one and become a text pro." 

-John Kintz 
ANTIC 

'TextPro is the best word processor available for the ST' 
-Randy McSorley 

Pacus Report 

TextPro is a first-class word processor for the Atari ST 
that boasts dozens of features for the writer. It was 
designed by three writers to incorporate features that 
~ wanted in a wordprocessor-the result is a superior 
package that suits the needs of all ST owners. 

TextPro combines its "extra" features with easy 
operation, flexibility, and speed-but at a very 
reasonable price. The two-fmgered typist will find 
TextPro to be a friendly, user-oriented program, with all 
the capabilities needed for fine writing and good-looking 
printouts. Textpro offers full-screen editing with mouse 
or keyboard shortcuts, as well as high-speed input, 
scrolling and editing. TextPro includes a number of easy 
to use fonnatting commands, fast and practical cursor 
positioning and multiple text styles. 

Two of TextPro's advanced features are automatic table 
of contents generation and index generation 
-capabilities usually found only on wordprocessing 
packages costing hundreds of dollars. TextPro can also 
print text horizontally (nonnal typewriter mode) or 
vertically (sideways). For that professional newsletter 
look, TextPro can print the text in columns--up to six 
columns per page in sideways mode. 

The user can write fonn letters using the convenient 
Mail Merge option. TextPro also supports GEM
oriented fonts and type styles--text can be bold, 
underlined, italic, superscript, ouilimIcdl, etc., and in a 
number of point sizes. TextPro even has advanced 
features for the programmer for development with its 
Non-document and C-sourcecode modes. 

TextPro Suggested Retail Price: $49.95 
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• Full screen editing with either mouse or keyboard 
• Automatic index generation 
• Automatic table of contents generation 
• Up to 30 user-defined function keys, max. 160 

characters per key 
• Lines up to 180 characters using horizontal scrolling 
• Automatic hyphenation 
• Automatic wordwrap 
• Variable number of tab stops 
• Multiple-column output (maximum 5 columns) 
• Sideways printing on Epson FX and compatibles 
• Performs mail merge and document chaining 
• Flexible and adaptable printer driver 
• Supports RS-232 file transfer (computer-to-computer 

transfer possible) 
• Detailed 65+ page manual 

TextPro works with Atari ST systems with one or more 
single- or double-sided disk drives. Works with either 
monochrome or color ST monitors. 

TexPro allows for flexible printer configurations with 
most popular dot-matrix printers. 
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Selected Abacus Products for the A1rAA~ c:4l ~ 
PaintPro 

Design and graphics software for the ST 

PaintPro is a very friendly and very powerful package 
for drawing and design on the Atari ST computers that 
has many features other ST graphic programs don't 
have. Based on GEMTM, PaintPro supports up to three 
active windows in all three resolutions-up to 64Ox400 
or 640x800 (full page) on monochrome monitor, and 
320 x 200 or 320 x 400 on a color monitor. 

PaintPro's complete toolkit of functions includes text, 
fonts, brushes, spraypaint, pattern fills, boxes, circles 
and ellipses, copy, paste and zoom and others. Text can 
be typed in one of four directions-even upside down
and in one of six GEM fonts and eight sizes. PaintPro 
can even load pictures from "foreign" fOrmats (ST 
LOGO, DEGAS, Neochrome and Doodle) for 
enhancement using PaintPro's double-sized picture 
format. Hardcopy can be sent to most popular dot
matrix printers. 

PaintPro Features : 
• Works in all 3 resolutions (mono, low and medium) 
• Four character modes (replace, transparent, inverse 

XOR) 
• Four line thicknesses and user-definable line pattern 
• Uses all standard ST fill patterns and user definable 

fill patterns 
• Max. three windows (dependng on available memory) 
• Resolution to 640 x400 or 640x800 pixels 

(mono version only) 
Up to six GOOS type fonts , in 8-, 9-, 10-, 14-, 16-, 
18-, 24- and 36-point sizes 
Text can be printed in four directions 

• Handles other GOOS compatible fonts, such as those 
in PaintPro Library # 1 

• Blocks can be cut and pasted; mirrored horizontally 
and vertically; marked, saved in LOGO format, and 
recalled in LOGO 

• Accepts ST LOGO, DEGAS, Doodle & Neocbrome 
graphics 
Features help menus, full-screen display, and UNDO 
using the right mouse button 

• Most dot-matrix printers can be easily adapted 

PaintPro works with Atari ST systems with one or 
more single- or double-sided disk drives. Works with 
either monochrome or color ST monitors. Printer 
optional. 

PaintPro Suggested Retail Price: $49.95 
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Chartpak ST 
Professional-quality charts and graphs 

on the Atari ST 

In the past few years, Roy Wainwright has earned a 
deserved reputation as a topnotch software author. 
Cbartpak ST may well be his best work yet Cbartpak 
ST combines the features of his Cbartpak programs for 
Commodore computers with the efficiency and power of 
GEM on the Atari ST. 

Cbartpak ST is a versatile package for the ST that lets 
the user make professional quality charts and graphs 
fast. Since it takes advantage of the STs GEM 
functions, Cbartpak ST combines speed and ease of use 
that was unimaginable til now. 

The user flfSt inputs, saves and recalls his data using 
-Cbartpak ST's menus, then defines the data positioning, 
scaling and labels. Cbartpak ST also has routines for 
standard deviation, least squares and averaging if they are 
needed. Then, with a single command, your chart is 
drawn instantly in any of 8 different formats-and the 
user can change the format or resize it immediately to 
draw a different type of chart. 

In addition to direct data input, Cbartpak ST interfaces 
with ST spreadsheet programs spreadsheet programs 
(such as Power Ledger ST). Artwork can be imported 
from PaintPro ST or DEGAS. Hardcopy of the fmshed 
graphic can be sent most dot-matrix printers. The results 
on both screen and paper are documents of truly 
professional qUality. 

Your customers will be amazed by the versatile, 
powerful graphing and charting capabilities of Cbartpak 
ST . 

Cbartpak ST works with Atari ST systems with one or 
more single- or double-sided disk drives. Works with 
either monochrome or color'ST monitors. Works with 
most popular dot-matrix printers (optional). 

Cbartpak ST Suggested Retail Price: $49.95 
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Selected Abacus Products for the ~1fAAW ~ ~M 

AssemPro 
Machine language development system 

for the Atari ST 

" .. .1 wish I had (AssemPro) a year and a half ago ... it 
could have saved me hours and hours and hours." 

-Kurt Madden 
STWorld 

'The whole system is well designed and rruJkes the rapid 
development 0/68000 assembler programs very easy." 

-leffLewis 
Input 

AssemPro is a complete machine language development 
package for the Atari ST. It offers the user a single, 
comprehensive package for writing high speed ST 
programs in machine language, all at a very reasonable 
price. 

AssemPro is completely GEM-based-this makes it 
easy to use. The powerful integrated editor is a breeze to 
use and even has helpful search, replace, block, 
upper!lower case conversion functions and user defmable 
function keys. AssemPro's extensive help menus 
summarizes hundreds of pages of reference material. 

The fast macro assembler assembles object code to 

either disk or memo!),. If it fmds an error, it lets you 
correct it (if possible) and continue. This feature alone 
can save the programmer countless hours of debugging. 

The debugger is a pleasure to work with. It features 
single-step, breakpoint, disassembly, reassembly and 
68020 emulation. It lets users thoroughly and 
conveniently test their programs immediately after 
assembly. 

AssemPro Features: 

• Full screen editor with dozens of powerful features 
• Fast 68000 macro assembler assembles to disk or 

memory 
• Powerful debugger with single-step, breakpoint, 

68020 emulator, more 
• Helpful tools such as disassembler and reassernbler 
• Includes comprehensive 175-page manual 

AssemPro Suggested retail price: $59.95 

Desk rlh filu8Ibhr Dl!bulIl!r Uttor Surtll IlDtk Mel, 
hUflble,. 
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