

Machine
Language

Complete introduction to machine/assembly
language on the ATARI ST

By B. Grohmann, P. Seidler & H. Slibar

A Data Becker Book

Published by

Abacus IHHHllHl Software

Fourth Printing, March 1989
Printed in U.S.A.
Copyright © 1985, 1987, 1988

Germany
Copyright © 1986, 1987, 1988

Data Becker GmbH
MerowingerstraBe 30
4000 DUsseldorf, West

Abacus Software, Inc.
5370 52nd Street SE
Grand Rapids, MI 49508

This book is copyrighted. No part of this book may be
reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photcopying,
recording or otherwise without the prior written permission of
Abacus, Inc. or Data Becker GmbH.

ATARI, 520ST, ST, TOS, ST BASIC and ST LOGO are
trademarks or registered trademarks of Atari Corp.

GEM, GEM Draw and GEM Write are trademarks or registered
trademarks of Digital Research Inc.

IBM is a registered trademark of International Business
Machines.

ISBN 0-916439-48-8

Table of Contents

Preface v

1 Microcomputer Fundamentals 1
• Introduction 3
• Representation of data 5
• Logical operations and bit manipulation 28
• Program development 31

2 Hardware Fundamentals 35
• Introduction 37
• Memory 37
• Central processing unit 44
• Input/output 45

3 The 68000 Microprocessor 49
• Introduction 51
• Register structure and data organization 52
• Operating states 62
• Addressing modes 65
• Overview of the instruction set 71

4 Program and Memory Structures 73
• Introduction 75
• Procedures and functions 85
• Memory structures 89

5 Operating System and Programs 97

6 Fundamentals of Assembly Language Programming 107
• Introduction 109
• The editor 110
• The assembler 114
• The debugger 162
• Procedure conventions 166

ill

7 Programming Step by Step
• Introduction
• Example: Decimal/hexadecimal conversion

8 Solutions to Typical Problems
• Introduction
• Hexadecima1ldecimal conversion
• Decimallhexdecimal conversion
• Calculating an average
• Simple sorting
• Output: Strings
• Input: Strings with check
• Output: Date
• Factorial calculation

Appendix

IV

171
173
174

211
213
214
224
231
239
248
250
255
260

271

Preface

This book is intended especially for those new to machine language. In

general, we assume that you have mastered the fundamentals of a

programming language. Since programming in machine language requires a

solid knowledge of the construction and operation of a computer, we have

included a chapter in this book to present these primary topics.

The chapters presenting the practical examples in machine language take

up relatively little room in the book when one considers that they are really

our theme. But our purpose is not to offer as many practical examples as

possible, but to lead into our theme systematically. To a degree, we have

also" developed" our machine language examples for this purpose.

In the final analysis, programming in machine language does not differ

in principle from programming in a high-level language. The assembler and

microprocessor commands are only much less "powerful" than those of a

high-level language. By this we mean that more commands are required to

write a program in assembly language than for the equivalent in Logo, for

instance. But assembly language programs are faster and can solve

problems that are almost impossible in a high-level language.

v

This book is written especially for the Atari ST; the examples given can

be executed on this computer directly. If you use assembly tools for

assembly language programming other than those we used, you will have to

modify the programs slightly (start address, etc.). The documentation

included with your assembler will contain the necessary information. Apart

from that, you should execute the examples as TOS applications.

Last, but not least, we would like to thank all of those who helped with

the creation of this book and with its corrections, in particular Andreas

Lucht, who brought several "oversights" to our attention.

Berlin, August 1985

Bernd Grohmann

Petra Seidler

Harald Slibar

Vl

Chapter One

Microcomputer Fundamentals

-Introduction

-Representation of data

-Logical operations and bit manipulation

-Program creation

Abacus Software Machine Language for the Atari ST

(Introduction)

This chapter will describe the fundamentals of program development.

Readers who are familiar with these terms can skim through this section.

However, we believe that even the experienced programmer will find some

interesting subjects here.

What do we mean by programming?

Given a problem, we must search for a solution. We try to find a

step-by-step procedure to solve the problem. This step-by-step procedure is

called an algorithm. Often we Lry to divide the problem into smaller

sub-problems that are easy to solve.

An algorithm represents a set of rules by which a problem may be

solved step by step. It may consist of only a finite number of steps. The

algorithm can be expressed in any desired symbols or language. A simple

example of an algorithm is:

1) Turn the cassette recorder's power on.

2) Insert the cassette.

3) Select the desired volume.

4) Press the recorder's "play" button.

3

Abacus Software Machine Language for the Atari ST

As soon as a solution to a problem is described as an algorithm, it can

be translated into a set of symbols, or a "language" that a computer can

understand. English or other "natural" languages are not well-suited to

writing programs. The reason for this is that every natural language contains

many syntactic ambiguities that the computer cannot understand. An

artificial language can be created, however, with all its terms well-defined.

The terms can even be borrowed from a natural language in order to make it

easier for humans to read and understand. This type of artificial language is

called a programming language.

However, the computer usually cannot understand a programming

language. The computer knows only a something called machine language.

Utility programs are required that take programs written in a programming

language and convert them to the machine language of the computer.

It is possible to convert the algorithm directly to machine language. But

since the internal representation of the machine language instructions is not

very descriptive, something called assembly language is used. Each

assembly language instruction represents exactly one machine language

instruction. A program called an assembler takes a program written in

assembly language and converts it to machine language .. The other features

of an assembler will be described in the following chapters.

4

Abacus Software Machine Language for the Atari ST

(Data Representation)

Data is processed in some manner by every program, whether the

program interprets or creates it. Therefore data must also be converted to a

form that the computer can work with.

Reoresentin2 numerical data

In order to understand the representation of numerical data in the

computer, it makes sense to take a look at the elementary representation of

numbers. So, we will fIrst describe the decimal system.

In the decimal system, a number is expressed as a sequence of digits.

As the name decimal system implies, there are ten different digits from 0 to

9. Each of these has a specifIc value depending on the place in the number at

which the digit is located. In general, this means that a digit in the "nth"

place in the number has ten times the value of a digit in the (n-1)th place.

For example, the "1" in the number "1000" has ten times the value of the

"I" in the number "0100".

The number "12345" is just an abbreviated notation for the expression:

1*10000 + 2*1000 + 3*100 + 4*10 + 5*1

5

Abacus Software Machine Language for the Atari ST

or, written "mathematically":

It should be noted that, in the decimal system, the value of a digit is

determined by its position. The Roman numeral system, for example, does

not conform to this method.

The system of digits and positions has certain advantages when it

comes to calculations. Since each place (position) describes a certain range

of the number, the calculations can be performed place by place. For

example, an addition can be performed as follows:

235

+ 582

817

First the right column is added: 5+2=7.

Then the middle column: 3+8= 11. This can be thought of as a "1" and a

carry of " 1" .

The carry is added to the two digits in the next column: 2+5 +1=8.

6

Abacus Software Machine Language for the Atari ST

The method of solution can easily be formulated as an algorithm:

1) Add the flrst column with carry.

2) Add the following column, with carry if necessary

(and create a carry if required).

3) Repeat 2 until all columns have been processed.

This algorithm does not take into account the case when a carry occurs

in the last place. This can be accomplished as follows:

4) If a carry occurs in the last column, extend the result

by one place and write the carry in this place.

If the extension by one place is not possible (as is often the case), an

error can also be generated to indicate overflow. Several numbers can be

added by successive execution of the algorithm.

As this point we should ask ourselves if the method of solution is

mathematically valid, and if it always leads to the correct result. With this

simple example, we would hardly doubt our solution. But it is possible to

prove that our column addition is valid:

235 = 2*10 2 + 3*10 1 + 5 *1 0 °
582 = 5*102 + 8*1 01 + 2* 100

235 + 582 .. .•..... (2 *102 + 3*10 1 + 5 *10°)
+ (5 *10 2 + 8*101 + 2*10°)

7

(2+ 5)*10 2 + (3+8)*101 + (5+2)*10°=
7*10 2 + 11*101 + 7*10°=
7*10 2 + 1*102 + 1*101 + 7*10°=

8*10 2 + 1*10 1 + 7*10°=
817

Abacus Software Machine Language for the Atari ST

In this explanation we have used the commutative and associative

properties, among others. But we have proven the procedure only for this

example. The proof for other examples can be formulated similarly.

In practice, you won't prove each algorithm mathematically before

using it. Many perfectly correct algorithms cannot be so proven because

they are too complex or complicated. In other words, no one has found (or

looked for ...) a proof for these algorithms, at least as of yet. In many

instances it is reasonable to check the algorithm for mathematical

correctness. Errors (such as exception cases) can often be found this way.

Multiplication can be performed in a manner similar to addition. The

general procedure is well known:

243 * 103

729
o

+ 243

25029

In this algorithm, column-type multiplications are performed first. The

results of these multiplications are added, being valued according to the

place at which a factor stands.

Note the partial multiplications by "1" and "0". For a partial

multiplication by "0", only a zero is written down below, and by a "1",

simply the original factor "243".

8

Abacus Software Machine Language for the Atari ST

With this short introduction we wanted simply to look at the decimal

system in order to be able to recognize analogies between computation

procedures in the various number systems.

How is data represented in the computer?

There are many ways to represent data or numbers in computers. You

could assign a voltage to each number proportional to its value-such as

1.23 Volts for the number 1.23. This principle is used in analog computers.

The disadvantage of this methods is obvious-all computer components and

memory units must work very precisely. With a required calculation

accuracy of three places, the deviation must be under one-thousandth. With

a range of 4 places, voltages between 0.01 and 10 must be recognized and

processed precisely. In addition, the number range is limited. Other

disadvantages of analog computers are that they are harder to program, and

in practice can only process numerical values.

For representing numbers in a computer we must select a well-suited

number system with place notation. You might naturally choose the decimal

system. Immediately a question is raised: how is a digit represented? Again,

the problem is differentiating between the ten individual digits.

We are able to prove mathematically the number of possibilities per digit

a number system should have to be most effective. Thankfully this has been

done for us already; the number arrived at was 2.7. Rounded off we get 3.

Consequently, we have the digits 0,1, and 2 available. But limiting the

number of possibilities per digit to two is technically simpler and less prone

to error. As a result, the binary system was chosen for computers.

9

Abacus Software Machine Language for the Atari ST

In the binary system, each place has only two possible

conditions-namely "0" and "1". These two conditions can also be

represented easily. For example:

"0"

Voltage absent

No current flowing

Relay not making contact

Switch off

Lamp off

"I"

Voltage pres en t

Current flowing

Relay making contact

Switch on

Lamp on

The abbreviated term "bit" was derived from the phrase "binary digit."

A bit is therefore a two-value digit; it can be only "0" or "1".

As in the decimal system, larger numbers can be represented in place

notation. It is simple to write several bits in succession. The base in the

binary system is naturally two, and not ten as in the decimal system.

The binary number "OWl" is therefore an abbreviation of:

The principle is exactly the same as for the decimal system. Since the base is

two, it has to be "2x", and not "lOX" as in the decimal system. The binary

number "0101" can be converted to the decimal system directly:

10

Abacus Software Machine Language for the Atari ST

Naturally, larger binary numbers can also be converted to decimal

numbers. As an example we take "01101110":

0 * 27 0 * 128 0

+1 * 2 6 1 * 64 64

+1 * 2 5 1 * 32 32

+0 * 24 0 * 16 0

+1 * 2 3 1 * 8 8

+1 * 22 1 * 4 4

+1 * 21 1 * 2 2

+0 * 2 0 0 * 1 0

110

To avoid confusion concerning the base of a number, we will indicate a

binary number by placing a "%" in front of it (such as %01101110 = 110).

Decimal numbers receive no additional indication.

Naturally, you can convert a decimal number to a binary number as

well. We will use 110 as an example again. The following method can be

used:

110 / 2 55 remainder: 0

55 / 2 27 remainder: 1

27 / 2 13 remainder: 1

13 / 2 6 remainder: 1

6 / 2 3 remainder: 0

3 / 2 = 1 remainder: 1

1 / 2 1 remainder: 1

11

Abacus Software Machine Language for the Atari ST

The remainder column yields the binary number, read from bottom to

top, in our example %1101110. Clearly %1101110 = %01101110. This

also gives us the proof for our first conversion.

You can compute with binary numbers using the same procedures used

for decimal numbers. Just remember that only two digits are available. A

carry occurs "beyond" 1 already, and not first at "9" as in the decimal

system.

An addition of two binary numbers looks like this:

0110
+ 1011

10001 (6 + 11 = 17)

At this point it would be a good idea to try out some examples of this

method. Also, practice the conversions to and from the decimal system.

Multiplication of binary numbers is also performed in the same way as

decimal numbers. Since only the digits "0" and "1" occur in the binary

system, only the zero and the first factor are added. We made a

corresponding observation in the multiplication of decimal numbers. As an

example we will calculate %0110 * %1011:

0110 * 1011

0110
0110

0000
+ 0110

1000010 6 * 11 66)

12

Abacus Software Machine Language for the Atari ST

Subtraction can be perfonned as usual, but taking the different base into

account. Another way to perform subtraction is by adding a negative

number; to do this, you must first consider how a negative number is

represented in binary. We make the following consideration:

If we add % 1 to the number % 1111, without taking the carry into

account, we get %0000. The reverse would be to subtract one from %0000.

Then we clearly get % 1111 back. So % 1111 corresponds to "-1". In order

to make a clear designation, the highest order bit is defmed as the sign bit. If

it is a "1", the number is negative; if a "0", it is positive.

When computing with negative binary numbers it is important to ensure

that both numbers have the same number of digits (bits).

The negative numbers can be easily recognized:

%1100 %1101 %1110 %1111 %0000 %0001 %0010 %0011

-4 -3 -2 -1 o 1 2 3

You may have figured out that for a given number of bits, there is

always one more negative number than positive. With four bits, we can get

the numbers -8 ... 7, and with eight bits the numbers -128 ... 127.

A negative binary number easily can be converted from a negative

decimal number. First the corresponding positive decimal number is

converted to binary. Then all the bits of the binary number are reversed-a

"1" bit becomes a "0" and vice versa. The procedure is called generating the

"one's complement." To this one's complement you then add one, this

result in the negative binary number and is called the two's complement.

13

Abacus Software

Example:

-5 :
One's complement of

Result:

5 - 4 :

(5) %0101
(-4) + %1100

(1) %0001

5 %0101
%0101

-5

Machine Language for the Atari ST

= %1010
+ %0001

%1011
%1011

3 - 6

(3) %0011
(-6)+ %1010

(-3) %1101

If the carry is not taken into account in the addition (example "5 - 4"),

we get the correct result. With this type of calculation, you must limit the

number range. Since in microcomputers the number range is always limited,

this is no difficulty in practice.

Without a complete proof, we have shown here that the representation

really works-we can add and subtract (adding the negative numbers).

In order to convert a 4-bit binary number to an 8-bit binary number, we

have to take into account the value of the highest-order bit (the sign bit) of

the 4-bit number. If this bit is zero, the top four bits of the 8-bit binary

number are filled with %0000, and otherwise with" 1111". For example:

4-bit binary number

%0110
%1111
%1001
%0100

8-bit binary number

14

%00000110
%11111111
%11111001
%00000100

Abacus Software Machine Language for the Atari ST

When converting 8-bit binary numbers to 4-bit binary numbers, the top

(left-most) four bits are simply stripped off. However, a check must first be

made to see if the number will fit into four bits.

Naturally, this principle applies to more than just 4 and 8-bit binary

numbers. It can be applied to all other combinations as well.

It's obvious that representing numbers in binary makes them hard for

mere humans to read. It is much easier for us to work with a number like

110 than with its binary equivalent, %01101110. To form a direct bridge

between the numbers with which computers work, and numbers that

humans prefer (numbers with fewer places required), it makes sense to

combine several binary places together. This way the computer can continue

to work in binary internally, while we use numbers with fewer places

externally.

Unfortunately, combining places does not work with the decimal

system. This is because ten is not an integer power of two. All binary

possibilities of the combined binary places must have a correspondence with

the new digits. If we take three bits at a time, the digits 0 ... 7 can be

expressed. Since the digits 8 and 9 are not required, we cannot use the usual

decimal notation. On the other hand, if we group four binary digits together,

the bit combinations %0000 ... %1001 can be expressed by the digits 0 ... 9.

The remaining bit combinations have correspondence in the decimal system.

It becomes clear that the number systems familiar to us will not work.

For the base of the number system we are looking for, we must use a

number that is a power of two. In theory and in practice, we have only two

options: the numbers 8 and 16.

15

Abacus Software Machine Language for the Atari ST

If we want to use 8, we must group exactly three bits, since three bits

give us 23=8 combinations. The number system resulting from this

grouping is called the octal system. It found widespread use in older

mainframe computers. The reason for this is that the digits in the octal

system are only a subset of the digits in the decimal system. You need not

introduce any "new" digits, so every printer that can output decimal digits

(such as the printing mechanism of calculators) can also output octal digits.

The following table contrasts binary, octal, and decimal numbers:

Decimal Binary Octal

0 000 0
1 001 1
2 010 2
3 011 3
4 100 4
5 101 5
6 110 6
7 111 7

8 1000 10
9 1001 11

10 1010 12
11 1011 13
12 1100 14
13 1101 15
14 1110 16
15 1111 17
16 10000 20

Computations can be performed in the octal system as they would be in

any other of our number systems. If you are interested, try a few problems.

You can check your work by converting to the corresponding binary

representation and then to the decimal system, and back again.

16

Abacus Software Machine Language for the Atari ST

The main disadvantage of the octal system is that one decimal place

cannot be stored in the field for one octal digit. In other words, numbers 8

and 9 cannot be represented "one for one." To represent the digits "8" and

"9" we need a second octal digit.

This disadvantage is eliminated when we group four bits together.

Since four bits give 24=16 bit combinations, the base of the resulting

system is 16. This number system is called the hexadecimal system.

In order to represent the sixteen combinations, six new characters are

required in addition to the ten "normal" digits. For the sake of simplicity,

the letters A through F are used. The table below shows the conversion

between the various number systems:

Decimal Binary Octal Hexadecimal
--

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D

14 1110 16 E
15 1111 17 F
16 10000 20 10
23 10111 27 17
24 11000 30 18
32 100000 40 20

17

Abacus Software Machine Language for the Atari ST

The conversion from hexadecimal to decimal follows the same principle

as that from binary to decimal. Since it is used so often, here's an example.

The hexadecimal number "e57 A" is just an abbreviated notation for:

or, written another way:

12*163 + 5*16 2 + 7*16 1 + 10*160 = 50554

There are two possibilities for the conversion back to hexadecimal. The

simplest is to convert the decimal number to its binary equivalent and then

convert the binary number to hexadecimal. However, this procedure

requires a large number of computational steps.

The other procedure is more difficult, but gets the result faster:

The number to be converted is divided by the largest power

of sixteen that is smaller than the number itself. The

number after the decimal point is then multiplied by sixteen.

As an example, let's take the number 50554. The largest power of 16

smaller than 50554 is 163=4096; 164 is already 65536.

50554 / 4096 =12.34228516 ==:12 (decimal) = C (hex)

0.3442285 *16 =5.476562499 -- 5 (decimal) = 5 (hex)

0.47656 * 16 =7.624999987 7 (decimal) = 7 (hex)

0.625 * 16 =10 ==:10 (decimal) = A (hex)

18

Abacus Software Machine Language for the Atari ST

At this point we stop because we divided by the third power of 16. Our

result is (as expected) "C57 A". It should be noted that calculation does not

always "come out even." In this case we were just "lucky" with the

rounding-off. In any event, you should practice this process if you have no

other way of converting hex numbers.

We denote hexadecimal numbers by placing a $ in front of them. We

would write the hexadecimal number "C57 A" as $C57 A.

Calculations can be performed with hexadecimal numbers as with

decimal numbers. You need only note that a carry does not occur until "F",

instead of "9".

Example of "hex addition":

C5D9
+ 13EA

D9C3

At first glance this looks complicated, but it can be easily explained:

$9+$A =9+10 =19 =16+3 =(carry $1) + $3

(carry $1) +$D+$E =1+13+14 =28 =16+12 = (carry $1) +$C

(carry $1) +$5+$3 =1+5+3 =9 =$9

$C+$l =12+1 =13 =$D

You will be seeing such calculations more often, since computers work

fundamentally with bits, and these are almost always gathered into hex

numbers. The multiplication of hex numbers is usually performed as

multiplication of the binary representation of the factors.

19

Abacus Software Machine Language ror the Atari ST

Negative binary numbers in two's complement can also be written as

hex numbers, and processed as such.

Example:

-95 $A1 %1010001

The same rules applying to computation with negative binary numbers

in two's complement also apply to computation with negative hex numbers

in two's complement. In the final analysis, hexadecimal representation is

only an abbreviated notation for binary representation.

At this point we could write more about working with hex numbers, but

it would be difficult to remember everything if we explained it now. In

particular, we will explain how calculations are performed with the

MC68000 microprocessor in a later chapter.

Representation of decimal fractions

So far we haven't said anything about how decimal fractions are

represented in a computer. We will just give some examples, since we do

not have enough space to explain in detail here. But these decimal fractions

are important, especially so as we learn machine language programming.

A widely-used form of representation of decimal fractions is what's

known as the normalized exponential representation. In the number

0.0000234, four places (the four zeros after the decimal) are required just to

indicate where the decimal goes. This number can also be written as

20

...

Abacus Software Machine Language for the Atari ST

0.234*10-5. The number -100 can be written as -0.1*103,41.23 as

0.4123*102. The 0.4123 (in the last example) is usually called the

mantissa, and the 2 is called the exponent.

This method of representation can also be carried over to binary

numbers. You call also write the binary number 1010.011 as

0.1010011 *24.

Binary numbers in exponential notation can be represented in the

computer in various formats. One commonly used format is 32 bits for

representation:

S Exponen
E M

Mantissa
01

SE : sign of the exponent SM : sign of the mantissa

In this example, both the exponent and the mantissa are represented in

two's complement. The exponent can therefore accept the values -128 .. 127.

There are 24 bits available for the mantissa. Since the first bit indicates the

signJ 23 bits remain for the amount.

This is obviously just one example of representation in the normalized

exponential form. The number of bits used can be varied, of course.

Conversion errors always arise when converting from decimal to binary

or hexadecimal and back again. Binary representations are not well-suited

for applications requiring absolute accuracy (such as corporate business

21

Abacus Software Machine Language (or the Atari ST

applications, and shuttle launches). To petform such calculations, there is

another form of representation.

BCD representation

BCD is an acronym for Binary-Coded Decimal. In BCD, each four bits

represent a decimal digit. It must be note that the computation rules for

binary numbers cannot be applied to BCD numbers. BCD numbers have

the same form as binary numbers, but have other properties.

The number 735 would be represented as follows:

735 = 0111 0011 0101 (BCD)

Note that a number like 1101 0111 0101 is not a BCD number,

because 1101 doesn't represent a decimal digit (it represents 13 or D).

Additional "tricks" are often used to represent BCD numbers efficiently.

For example, the first BCD digit can indicate how many places the number

has. The second digit can determine whether the number is positive or

negative (%0000 = +, %0001 = -):

0011

3

0001 0111

7

0011

3

0101

5

This grouping would represent -735 according to this BCD convention

(3 places, negative, quantity= 735).

22

Abacus Software Machine Language for the Atari ST

Decimal fractions can be similarly represented. A BCD digit that

indicates the position of the decimal point (counting from the right) can be

inserted between the ftrst two groups of four:

0011

3

0010

2

0001 0111

7

0011

3

0101

5

This grouping would indicate -7.35 (3 places, decimal at the second

position from the right, negative, quantity = 735).

There are many similar representations, of course, but we only want to

present the principle here.

Nibbles. bytes. etc.

Often several bits are used together. Some names for vanous

"groupings" of bits have come into common use. We will not make an

attempt to explain their origin, but merely present them:

1 nibble corresponds to 4 bits

1 byte corresponds to 8 bits

1 word corresponds to 16 bits

1 long word corresponds to 32 bits

Accordingly, a byte contains two nibbles, a word contains four

nibbles, a long word contains four bytes, and so on. A nibble can be written

as one hexadecimal digit. The larger groupings are usually written as

multiple hexadecimal digits. Naturally, they can all be written as binary, but

23

Abacus Software Machine Language for the Atari ST

already at the byte level this becomes difficult to read. The octal system is

not well-suited for specifying values, since neither 4 nor 8, 16, or 32 is

divisible by 3, and the octal digits are not used efficiently.

Representin& letters

As we know, the computer always stores data in binary. In order to be

able to process letter characters (a, b, c, d ...) in the computer, we must

defme a code that assigns a unique bit combination to each character.

Such a code has been in use for a long time: the telex code. The telex

code uses 5 bits, giving a total of 32 bit combinations. Although the telex

uses only lower case letters, the number of combinations is not enough. In

addition to the 26 letters, 10 digits are required. A trick is used to represent

the digits and punctuation characters. Two code levels are used in parallel.

One contains all of the letters, while the other contains the special characters

(like ":", "=", etc.). Switching between the letters and the special characters

is done with two non-printing control characters. Two control characters,

the control character for carriage return & line feed, and the one for a space,

exist in both code levels with the same bit combinations.

If, for example, you send the bit combination %01100, an "i" is

printed if the letter code level is active. The digit and special character code

level is enabled by the control character %11011. Now the code %01100

causes the character "8" to be printed. The code %00100 represents the

space character, regardless of the active code level.

24

Abacus Software Machine Language for the Atari ST

Because of this switching of the code levels, the telex code is

inconvenient to use. Another disadvantage is that the upper case letters are

not present. But for a long time, many computer hobbyists used telex

machines for printers. In 1982 a used telex machine could be purchased for

less than $100, while a computer printer would cost at least $500. But since

printer prices have fallen so dramatically, there is little interest in trying to

cope with the disadvantages (not to mention noise and slow speed) of a

telex machine.

Another code that allows the representation of all of the usual

characters is the EBCDIC code from IBM. This would be of interest only to

those who want to work with IBM mainframes.

The most widely-used code is the ASCII code. ASCII (pronounced

as-key) is an abbreviation for American Standard Code for Information

Interchange.

Twenty-six upper-case and and 26 lower-case letters must be

represented in the English language. In addition, 10 digits and about 20

special characters are required. This results in a total number of 82

representable characters. In order to represent this many characters as bit

combinations, but without having to use code levels like the telex, 7 bits are

required. The ASCII code is in fact a 7-bit code. The remaining

combinations are used as control characters for line feed, calTiage return,

etc. In addition, there are several control codes that control the data traffic to

and from peripheral devices.

Since seven is an "uneven" number, ASCII characters are usually

represented with eight bits. Then an ASCII character is exactly as wide as a

25

Abacus Software Machine Language for the Atari ST

byte. This has decisive advantages when storing data. The eighth bit is often

used for error checking, to enable various character sets or type sizes, etc.

On the next page is a table of the ASCII code. The combinations in the

first section of the first column (0-31) represent the control characters.

Many of these are used only rarely in practice. The following are the most

important for learning machine language:

BEL Bell

BS Back space

LF Line feed

FF Form feed

CR Carriage return

The standard ASCII character set contains no foreign language

characters. Some of the unused bit combinations in the 7-bit code are

frequently used for these missing characters.

26

Abacus Software

DEC HEX ASCII CfRL
o
1
2
3

00
01
02
03

4 04
5 05
6 06
7 07
8 08
9 09
10 OA
11 OB
12 OC
13 00
14 OE

15 OF

16 10
17 11
18 12
19 13
20 14
21 15

22 16
23 17
24 18
25 19
26 1A
27 1B
28 1C
29 10
30 1E
31 1F
32 20

33 21
34 22
35 23
36 24
37 25

38 26

39 27
40 28

41 29
42 2A

NUL
SOH
STX
ETX

@

A

B

C

EOT 0
ENQ E
ACK F
BEL G
BS H
HF I

LF J

VT K

FF L
CR M

SO N

SI 0

OLE P

OCl Q
OC2 R
OC3 S
OC4 T
NAK U
SYN V
ETB W

CAN X
EM Y
SUB Z
ESC [

FS \
GS
RS

US
Space

$
%

&

(

)

*

Machine Language for the Atari ST

The ASCII CODE

DEC HEX ASCII
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57

58

59
60
61
62
63
64

65
66
67
68
69
70
71

72

73
74

75
76
77

78

79

80

81

82
83

84

2B

2C
20
2E

2F
30
31
32
33
34
35
36
37
38
39
3A

3B

3C
30
3E

3F
40

41
42

43
44
45
46
47
48
49
4A
4B
4C

40
4E

4F
50

51
52
53

54

27

+

/
o
1

2

3

4

5
6

7

8

9

<

>
?

@

A

B

C

o
E

F

G

H

I

J

K

L

M

N

o
P

Q

R

S

T

DEC HEX ASCII
85
86
87

88
89
90
91
92
93
94
95
96
97

98
99

100

101
102
103
104
105
106
107

108
109
110
111

112
113
114
115
116
117
118
119
120
121
122

123

124

125

126
127

55
56
57
58
59
SA
5B
5C

50
5E
SF
60
61
62
63

64
65
66
67
68
69
6A

6B

6C

60
6E

6F
70
71
72
73
74

75
76
77

78
79

7A

7B

7C
70

7E

7F

U

v
W

x
y

Z

[

\

a

b

c

d

e

f

g

h

i

k

1

m
n

o
p

q

r

5

t

u

v

w

x

y

z

OEL

Abacus Software Machine Language for the Atari ST

r ~ I Logical operations and bit manipulation J
~ ~

In addition to the more familiar arithmetic operations (addition,

multiplication, etc.) there are also some logical operations. Logical

operations, in contrast to arithmetic operations, affect only the individual

bits. Furthermore, a logical operation can be either unary or binary-that is,

it may have one or two operands. There are four particularly important

logical operations, as shown below:

NOT AND

A NQT A A B A AND B

0 1 0 0 0

1 0 0 1 0

1 0 0

1 1 1

OR EXOR

A B A QR B A B A EXQR B

0 0 0 0 0 0

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

28

Abacus Software Machine Language for the Atari ST

For "0" we say "false," and "true" for" 1". Then we see that the logical

operators shown here correspond to the usual logical operators in

mathematics. An example of logical operators:

An "0" in A signals that the weather is bad;

a "1" that the weather is good.

A "1" in B signals that it's the weekend;

a "0" that it is not the weekend.

If you want to go swimming on the weekend when the weather is good,

you could say that (A AND B) must be "1". The expression (A OR B)

would mean that you would go swimming if only one of the criteria were

fulfilled. The expression (A EXOR B) means that exactly one of the criteria

may be fulfilled.

Naturally, these logical operators can be combined with each other and

thereby form new logical operators. These can then combine three or more

bits with each other.

Back to our example. We do not go swimming when "NOT (A and

B)" is "1". The expression "«NOT (A» or (NOT (B»)" is equivalent to

"NOT (A and B)". This can be proven mathematically.

Logical operators can be used on bytes, words, or more generally on

multiple bits, or bit fields. The operation is simply performed bit by bit with

the corresponding bits of the operands.

29

Abacus Software Machine Language for the Atari ST

We have already seen one eXllmple. We have formed the one's

complement of a binary number. We simply "reversed" the individual bits.

This corresponds to the bitwise execution of the NOT function.

Another example:

NOT (0010) 1101

The following are examples of the other logical operations:

(0010)
OR(1011)

= 1011

(0010)
AND (10 1 1)

= 0010

(0010)
EXOR (1011)

= 1001

These operations are often used to make intentional, conditional

changes of bits. The operators are often written differently. We will explain

the notation at the appropriate point later.

Bit shift operations

In addition to the logical operations, there are operations that shift the

individual bits of a binary number. The MC68000 in your Atari ST has a

number of commands to do this. We will simply present some examples

here. We'll take the binary number %00101100.

Shifted one position to the right, it reads %00010110 (provided the free

place is filled with a zero). If we take into account the value of the number,

we see that it has been reduced by half. As a rule, shifting to the right

corresponds to a division of the binary number by two.

30

Abacus Software Machine Language for the Atari ST

Shifting one position to the left results in the original number becoming

%01011000. Now the value has doubled. As a rule, shifting to the left

corresponds to a multiplication of the binary number by two.

In addition to these bit-shifting operations, there are operations that

rotate bits. For example, %10011000 rotated one position to the left

becomes %00 11 000 1.

,.
t Program development I
~ ~

When you're starting to write a program, you first must know exactly

what you are trying to solve. Consequently, you must determine the end

result. To do this, you must first clarify what data should be printed out. It

seems quite logical, but fIrst, what do we mean by "data"? One definition:

Data: any representation of characters, symbols, and letters that are to be

processed in some manner.

In addition to this you should note that data also may represent

decisions, logical conditions, etc.

31

Abacus Software Machine Language for the Atari ST

After determining the problem and specifying the end result (data

printout), you should determine clearly the source of the data to be

processed. Next, you usually make an exact data flow plan. This data flow

plan can take almost any form, depending on the preferences of the

programmer. Whatever its form, the data flow plan must clearly determine

the course of the processing, the input/output, the storage, etc. Now the

exact algorithm should be developed. Under certain circumstances existing

algorithms that satisfactorily solve the problem can be found. Why re-invent

the wheel, after all?

When all of the above is done, a flow chart or structogram (sometimes

both) is created. (More information on flow charts and structograms can be

found in chapter 5). Here the breakdown and routing of the data flow is

refined, and sometimes the algorithm has to be reformulated.

Not until this is done should the program be formulated in the selected

programming language. Often parts of the program are written in a

high-level language (BASIC, Pascal, C etc.), while other sections are

written in machine language (assembly language). Time-critical portions are

often written in machine language because it is usually much faster than

high-level languages.

Not until the program is completely written should it be tried on the

computer. Programming by trial and error is not particularly sensible (no

matter how often it's done by the general popUlation). It is important to test

the program from as many different angles and viewpoints as possible.

Errors often occur under unexpected conditions.

32

Abacus Software Machine Language for the Atari ST

After the actual program is finished, the program documentation is

prepared. This should make it possible for the programmer, and others, to

change the program later. Without good documentation, sometimes even

you won't be able to understand your own programs after a year or two.

Also important is the creation of a user's guide. The user's guide is

important in determining the actual utility that the program has for others.

Naturally, the target audience must taken into account. A program intended

for a programmer's use must be described differently than a program to be

used by a secretary with no knowledge of computers.

Even after the program is "finished," your work on it is not done.

Errors discovered by users must be corrected; changes in other

circumstances must be taken into account (for instance, revised tax laws as

they affect your income tax program). And the actual use of the program

almost always shows that it lacks something. These post-programming

situations come under the heading Program Maintenance.

In summary, the phases of program development are as follows:

1) Exact specification of the problem

2) Creation of a data-flow plan

3) Writing a flowchart or structogram

4) Writing the program in a programming language

5) Entering program, testing it, correcting errors

6) Program documentation

7) User's guide

8) Program maintenance

33

Abacus Software Machine Language for the Atari ST

In practice, these phases/steps obviously can become blurred. But in

principle, a good programmer will try to work according to this plan. A

good programmer doesn't sit down at the computer and not get up again

until the program is done; he/she follows the above plan intelligently. Often

individual processes are carried out in your head (especially with small

programs) . This procedure divides large programs up into smaller

programs, making it possible for several people to work on the project

independently, without hindering each other. Naturally, the tasks must be

carefully defined beforehand to make this process work.

Probably the biggest problem is that only 10% of all programmers are

actually able to work with an exact concept and plan-but the other 90%

believe they belong to this 10%.

34

Chapter Two

(Hardware Fundamentals J

-In troduction

-Memory

-Central processing unit

-Input/output

Abacus Software Machine Language for the Atari ST

(Introduction)

A computer consists of three basic components:

Memory

Central processing unit

Input/output devices

However, these three components are not three neatly-packaged electronic

chips; there are considerably more than three components in the Atari ST.

Several integrated cicuits are required to perform each of the functions listed

above.

(Memory)

There are basically two types of memory:

l) Read/write memory (RAM)

and

2) Read-only memory (ROM)

37

Abacus Software Machine Language for the Atari ST

The read/write memory is also called RAM, which stands for Random

Access Memory. The primary difference between RAM and ROM is that

you can write to RAM memory, while the content of ROM is fixed and

unchangeable.

You can picture RAM as a dresser with several drawers. Let's assume

that our dresser has six drawers, organized as two rows of three drawers.

We then can picture the six drawers in two ways:

1)

0 1 2

3 4 5

This gives us drawers 0 ... 5 that we can clearly distinguish between.

(Computer scientists almost always start counting at zero, which has its

advantages when working with computers and their programs). There is

also another way to picture these drawers:

2)

o

1

0

0

Here we get the names

1

1

(0,0), (0,1), (0,2)
(1,0), (1,1), (1,2)

38

2

2

Abacus Software Machine Language for the Atari ST

Again, all of the drawers can be identified individually, with no

ambiguity. We want to remember these two methods of numbering for the

future. The first is called linear ordering; the second we will refer to as

matrix ordering.

Note that from a hardware perspective, memory is seen as a matrix of a

certain size; but from a software point of view, the memory locations are

thought of and addressed linearly. (To confuse things, matrices are also

programmed in a linear fashion-but we won't get into this).

In our case we have six distinct drawers we want to put to use. Let's

open drawer zero and see what is inside:

Nothing

Why nothing? Because we haven't put anything into it! But then again,

is nothing really Nothing? This question is quite philosophical. We'll stray a

bit from this topic in order to clarify three very important computer science

terms. These terms will help us answer the above question-at least for our

purposes!

The computer scientist distinguishes between three characteristics of

information:

1) the syntactic,

2) the semantic, and

3) the pragmatic aspects of information.

By first term, syntactic, we mean the primary ordered structure of

information. Take any word, say "man." If we mean "man" but instead

39

Abacus Software Machine Language for the Atari ST

write "one," no one would understand us. So we keep to the rules of

English (syntax rules) and write "man."

A traffic light provides another example. The syntax of a traffic light is:

red

yellow

green

If two of the colors were to appear simultaneously, no one would

understand the traffic light. This would be syntactically false.

By semantic we mean the content of the information, or the intended

meaning of the information. Said another way, the semantic meaning is the

effect the message has when stated. For example, the semantic aspect of the

red light is "STOP." This is the intended message of a red light.

The third way to view a piece of information is pragmatically. It

indicates the utility of the information to the end user; in other words, how

you might use the information. For example, if you see a yellow light, you

might think "No problem, I can still make it"; another mental reaction you

might have is "Whoa! better put on the brakes."

With these definitions we can answer the philosophically unanswerable

question, "We see nothing in the drawer just opened." At least for our

pragmatic purposes, the answer is: the drawer holds

Nothing that we can use

40

Abacus Software Machine Language for the Atari ST

According to our three points:

1) The syntax of the information is valid; something is

certainly in the drawer, even if it is just a vacuum.

2) The semantic meaning is also clear: we put nothing in,

so we can't get anything out.

3) Viewed pragmatically, the drawer, for us, is

empty--even though something (namely Nothing) is

in it! We can put anything we want into it. If we chose

the put something in the drawer, and neither we nor

anyone else takes it out again, we will always find it

there when we open the drawer.

Now we'll technically formulate the procedure described above. We

will call the numbers we gave to the drawers addresses.

And exactly eight bits will fit into each drawer!

Now we open a drawer, such as number 3. The process of opening a

drawer we will call addressing.

Looking into it we will call

Putting something in we call

The drawer itself is called

reading

writing

memory location

In time we'll learn to use all of these terms properly.

41

Abacus Software Machine Language for the Atari ST

So, let's address the memory location 3 and read it. What is in it?

Nothing, of course; we haven't written anything into it.

As we learned in the previous chapter, only zeros and ones can be in a

memory location, since we have only two digits. Moreover, we have just

said that nothing need not be nothing (absolutely or philosophically). It may

be that the number %01101100 ($6C) is there. Why?

Technically, this random number being in the drawer can be explained.

Due to the unevenness of the conductive traces within a computer's

electronic components, the memory contains random, arbitrary bit

combinations after power-up. These bit combinations can be any of the 256

combinations of eight zeros and ones, namely %00000000 to % 11111111.

Let's assume that we have a computer that, after being turned on,

contains the hex number $6C in memory location 3.

We can read this value at any time, since it is in the drawer. However,

the pragmatic portion of this information is negligible; we have no use for

this purely random information.

So we want to write some real data into it. We select "$D7". We

address our memory location number 3 and write the number $D7 to it.

What happens? The random number $6C leaves memory location 3 and

the $D7 is stored. When we later access memory location 3, we will

always read the number $D7 until we write a new number into the memory

location or turn the computer off. Should we write a new number into the

memory location, the $D7 obviously will be overwritten by the new

42

Abacus Software Machine Language for the Atari ST

number. If we tum the computer off, we'll again get random data when the

computer is turned back on.

Isn't there any way to retrieve stored information in RAM and protect it

from being overwritten after we tum the computer off?

For us, the answer is no-unless we modify with the circuitry of the

computer. RAM is read/write memory. If we want to have memory that

gives us useful information but cannot be overwritten, we must use

read-only memory. If we absolutely, positively have to protect the

information in RAM when the computer is turned off, the RAMs must be

supplied with current after all of the components have been turned off. For

this purpose, there are RAMs that use very little current and may be backed

up by a battery circuit. The Atari ST, however, uses "normal" RAMs.

Read-Qnly Memory

Read-only memory is called ROM. There are many types of ROM, and

these are differentiated by the letters preceding ROM: EPROM, EEROM,

EAROM, PROM, IPROM.

But all these types of ROMs have one thing in common. Without

outside tampering, the computer cannot change the information contained in

ROM. In some of the components, the information is embedded in them

when the chip is made so that it can never be altered (except, of course, by

destroying the component itself).

43

Abacus Software Machine Language for the Atari ST

~ ~J I Central processing unit
~ ~

The central processing unit manages the whole computer. It addresses

the available memory, handles data in the memory, and manages or directs

the peripherals. It is the heart of every computer; if defective, nothing in the

computer will work properly.

Generally, the CPU consists of some internal memory locations called

registers; in contrast to the usual memory, registers have the advantage that

they can be addressed almost instantly by the central processing unit. The

CPU also has circuits for controlling the memory and I/O lines, the complex

logic for computation, as well as internal temporary storage that cannot be

directly addressed.

The CPU supplies address signals for controlling the other

components, data lines for transferring data (reading or writing), and

control signals indicating the status of the CPU (such as a read/write line,

which indicates whether data is being sent or being read).

The CPU used in the Atari ST is the MC68000. This chip has 24

address lines; therefore, 224 (1, 677, 216) different bytes can theoretically

be addressed in memory. Naturally, the actual memory of the ST is not this

large--extensive areas of addressing range are unused.

44

Abacus Software Machine Language for the Atari ST

The 68000 is a 16-bit microprocessor. This means that the data bus (the

lines over which data flow to and from the microprocessor) is 16 bits wide.

Therefore, the memory is also 16 bits wide. Two bytes (one word) are

always accessed together in the memory. Each of these bytes has its own

address because the 68000 is a byte-oriented machine. But since the data

bus can transport both bytes at once, it is possible to write or read the entire

memory word in one access. There is one condition for this: a word access

can be made to even-numbered addresses only.

(Input/Output)

A computer has input/output components that allow it to communicate

with the "outside world." The keyboard is an example of an input

components; the mouse is also an input device. On the Atari ST, output

goes to the screen or to a printer. Sounds it creates and plays on the

speakers are outputs, also.

The disk drives are connected to the Atari ST via a special component

called a floppy controller, also an input/output device. The disk drives are

not counted as normal memory because the data cannot be simply addressed

as it is in the normal RAM/ROM memory.

45

Abacus Software Machine Language for the Atari ST

The data can be transferred from a peripheral to memory in two ways:

1) The processor itself reads 1the data from the peripheral device or

outputs the address itself. It usually accesses a register in the

peripheral. The access resembles that of a normal memory

location. The transmission can be initiated in one of two ways: a)

the microprocessor continually checks to see if data is available or

required (this is called "polling"); or b) while in the middle of

executing some program, it is interrupted by a hardware signal

from the peripheral that tells it when data is available or required.

The first method is like having someone constantly waiting by the

telephone. A drawback of this technique is that time is required to

see if someone is on the phone. With the second technique, no

time is wasted if the telephone isn't ringing.

2) The processor initializes 1the data transfer in a DMA controller

(DMA: Direct Memory Access). The processor determines what

data from which memory range is to be transferred to a new

memory location. The actual transfer from memory to peripheral

device (and vice versa) is performed by the DMA controller. On

a signal from the peripheral device, the DMA controller takes

over control of the system bus and performs the data transfer

itself. The main processor is relieved of this burden, and as a

result the whole system is more efficient. Not until the entire

transmission is complete is the main processor notified by the

DMA controller that the bus is free for other purposes. The main

processor can also check to see if the transfer is done. This DMA

transfer is usually made much faster than other transfer types.

46

Abacus Software Machine Language for the Atari ST

The following analogy can be made to a DMA transfer:

You ask your friend to telephone a local auto dealer and get the

prices of all late-model Porsches on the lot. You tell him that

when he has all of the information he should put it in your

mailbox, and ring the doorbell. In the meantime, you'll be having

a candlelight dinner with an intimate acquaintance. Your hear the

doorbell ring after the main course, retrieve the Porsche prices,

and impress your guest during dessert ...

47

Chapter Three

(The 68000 Microprocessor)

-In troduction

-Register structure and data organization

-Operating states

-Addressing modes

-Overview of the instruction set

Abacus Software Machine Language for the Atari ST

(Introduction)

This chapter is intended to give a brief overview of the structure of the

Atari ST's MC68000 microprocessor. First we'll explain a few terms used

throughout the remainder of the book. An exact description of all of the

68oo0's instructions is beyond the scope of this book; only the most useful

of the instructions are explained. Exceptions will be explained in principle

only, for their exact description does not belong in a book intended to teach

machine language.

We advise you to get a book on the 68000 processor and its

instructions. Even if you already know machine language programming,

you will still need a 68000 reference work; in it you will also find the

instructions not explained here. Now let's proceed wth the terminology.

The 68000 has two different addressing modes. These are called the

supervisor and the user modes. Of these two, only the supervisor mode

allows use of all instructions. The supervisor mode makes it possible to

build "exit-proof' multi-user systems.

For example, the operating system can be run in the supervisor mode at

the same time user programs run in the user mode. In the Atari ST, the

memory and peripheral area at the bottom of the address range can be

accessed only when the processor is in the supervisor mode. In the user

mode, the program is halted and an error-handling routine is called. Other

51

Abacus Software Machine Language for the Atari ST

systems have components called MMUs (Memory Management Units) that

monitor which addresses are accessed. If an attempt is made to access

"forbidden" area, the MMU interrupts the program.

r ~ I Register structure and data organization J
~ ~

The 68000 has eight data registers available to the user. Each of these

data registers has a width of 32 bits. For this reason, the 68000 is often

referred to as a 32-bit processor. But since its data bus is only 16 bits wide,

it is considered a 16-bit processor. The data registers are named DO to D7.

In addition to the data registers, there are seven address registers and a

program counter. Again, these registers are 32 bits wide. This results in an

address range of 4 gigabytes. But because the 68000's address bus is only

24 bits wide, only 16 megabytes are available. The address registers are

named AO ... A6. The program counter is referred to as PC.

Because there is a large number registers, it is possible to store many

variables in the registers and limit the number of memory accesses within a

program. Since the registers are 32 bits wide, they can also contain an entire

memory address.

52

Abacus Software Machine Language for the Atari ST

Furthermore, there are two stack pointers, one for the user mode and

one for the supervisor mode. Exactly one stack pointer is active at a time,

depending on the operating mode. The stack pointers are designated A 7 and

A 7'. From the designation it should be clear that the active stack pointer can

also be addressed as address register 7. Instructions that work with address

registers do not address the stack pointer implicitly. Only the currently

active stack pointer can be used. One exception to this is the instruction

MOVE U SP. Since two stacks are present, it is very easy to construct

separate stacks for user and supervisor.

The program counter in the 68000 is 32 bits wide. However, only 24

bits are usable via the address bus. The remaining eight bits are intended for

later expansion (anticipating such, the 68000 may one day have a 4 gigabyte

address space).

Last, but not least is a status register with a width of 16 bits. It is

divided into a user status (bits 0 ... 7) and a system status (bits 8 ... 15).

In the user mode, it is only possible to write to the user status. Only the

supervisor can change the operating mode of the CPU (which makes

sense). The flags tested by conditional branch instructions are found in the

user status. The flags give information about the results of many

instructions, whether results are zero or negative, if an overflow ocurred,

etc. A jump to another location in the program can then be made conditional,

for instance, on whether or not the previous comparison resulted in zero.

53

Abacus Software Machine Language for the Atari ST

31

31

31

31

The Re2isters of the 68000

16 15 8 7 0

16 15 8 7

User Stack Pointer

Supervisor Stack Pointer

15 8 7

D 0
D 1
D 2
D3
D 4
D5
D 6
D7

0

AO
A1
A2
A3
A4
AS
A6

0

A7

A7'

0

I PC

o

Eight
Dat a
Registers

Seven
Address
Registers

Two
Stack
Pointers

Program
counter

I
Status

~ ________ ~ ________ ~SR/CCR Register

System byte User byte

54

Abacus Software Machine Language for the Atari ST

Qperand formats

The operand format is either given implicitly by the instruction or is

contained explicitly in the instruction. The following operand formats are

defined:

1 long word

1 word

1 byte

corresponds to

corresponds to

corresponds to

32 bits

16 bits

8 bits

It is also possible to work with BCD operands. Two BCD digits are

"packed" into one byte. In addition to these there are bit manipulation

instructions.

A word is the standard operand format, because the 68000 works with

a 16-bit data bus.

All operand formats are valid for the data registers. Byte operands

occupy the lowest 8 bits, and word operands the lowest 16 bits. Long-word

operands use the entire 32 bits.

When a data register is used as a source or destination operand and the

operand format is not 32 bits, only the addressed portion of the register is

changed. The remainder is neither used nor changed.

Only word and long-word operands are allowed for the address

registers and the two stack pointers. The address registers and the stack

pointers do not work with byte and bit data. The stack pointers always point

to the last valid data and "grow" downward.

55

Abacus Software Machine Language for the Atari ST

When an address register is used as a source operand, either the entire

register or just the lower word is used, depending on the operand format

selected. If an address register is used as a destination operand, the entire

registers is affected, regardless of the operand format. If the format is of a

word, all operands are sign-extended to 32 bits.

Status re2ister

The status register consists of a user byte and a system byte.

User byte:

Bit 0:
Bit 1:
Bit 2:
Bit 3:
Bit 4:
Bit 5:
Bit 6:
Bit 7:

Carry flag
Overflow flag
Zero flag
Negative flag
Extension flag
unused
unused
unused

System byte:

Bit 8 .. 10:
Bit 11 :
Bit 12 :
Bit 13 :
Bit 14 :
Bit 15 :

15 14 13

T - S

Interrupt mask
unused
unused
Supervisor status
unused
Trace mode

12 11 10 9 8

- - I1 I2 IO

7

-

Carry C
Overflow V
Zero Z
Negative N
Extension X

10, n, 12

6 5 4 3 2 1

- - X N Z V

56

0

C

Abacus Software Machine Language for the Atari ST

Carry

The carry flag is always set to one if an arithmetic operation caused a

carry from the highest bit. It is also used to indicate a "borrow" in a

subtraction.

Overflow

The overflow flag is used to indicate the user that the number was

exceeded during an arithmetic operation. For example, this happens

when the result of the addition of two positive numbers does not fit in

the register when it represents a two's complement number. The

overflow flag is also used for division operations; it indicates that the

quotient would be larger than 16 bits, or the dividend is too large.

Zero flag

The zero flag is set if, after an operation, the highest bit of the result

is set, indicating that the number is negative in two's complement.

Extension flag

The extension flag behaves just like the carry flag. But it is not

affected by all of the instructions influencing the carry flag. For

example, it is treated like the carry flag for addition and subtraction,

but not for the rotation instructions. The instruction list indicates

which instructions affect the extension flag. The extension flag can be

used to preserve the carry for multi-byte operations. The extension

flag is unique to the 68000.

57

Abacus Software Machine Language for the Atari ST

When reading the other (unused) bits in the user byte of the status

register, zero is always returned, even if other values are written to them.

This also applies to the status register's unused bits of the system byte. The

following terms describe the bits in the system byte:

Interrupt mask

The 68000 has seven interrupt levels (numbered from 1...7). An

interrupt is allowed only when the value of the interrupt mask is

lower than the priority level of the interrupt. However, interrupt level

7 cannot be disabled; it is what's known as a Non-Maskable Interrupt

(NMI). Interrupts can be enabled and disabled by changing the

interrupt mask.

Supervisor status

This bit switches the processor between the user and supervisor

status. A zero stands for the user status, and a one for the supervisor

status. The switch makes it possible to make multi-user systems

crash -proof.

Trace-mode

If this bit is set, the 68000 is placed in the trace mode. The 68000

then processes an exception after every instruction. This makes

single-step operation of the 68000 in software possible.

58

Abacus Software Machine Language for the Atari ST

Data Qr~anization

Although the 68000 is a 16-bit processor, it works as a byte machine.

This means that every word is divided into two bytes and each of these two

bytes has its own address. Of course, both bytes of a word can be accessed

at once with the 68000, since the data bus is 16 bits wide. Each byte

occupies one address in the memory space; each word therefore occupies

two addresses. The higher-order byte of the word (the word at address n) is

located at the lower address (address n) and the lower-order byte is located

at the higher address (address n+l).

The following figures should clarify these concepts:

Byte 000000 Byte 000001

Byte 000002 Byte 000003

Byte 000004 Byte 000005

Byte FFFFFC ByteFFFFFD

Byte FFFFFE Byte FFFFFF

Even Address Odd Address

Bytes and Words in Memory

59

Word 000000

Word 000002

Word 000004

Word FFFFFC

WordFFFFFE

Abacus Software Machine Language for the Atari ST

15 12 11 8 7 43 0

I
Byte 0

I
Byte 1

I
Wordn

Byte 2 Byte 3 Wordn+2

Inha=~[Data (BIt~}

15 12 11 8 7 43 o
Word 0 Wordn

Word 1 Wordn+2

Word 2 Wordn+4

Intel:e[Data (Wo[d}

15 12 11 8 7 43 o
Upper Long Word half

Long Word 0-
Upper Long Word half

Wordn

Wordn+2

Upper long word half
Long Word 1-

Upper long word half

Wordn+4

Wordn+6

60

Abacus Software

15 12 11 8 7

BCD 7 BCD 6 BCD 5

BCD 3 BCD 2 BCD 1

BCD 7 : Highest order digit
BCD 0 : Lowest order digit

Decimal Data (BCD code)

Data Representation

Machine Language for the Atari ST

43 o
BCD 4 Wordn

BCD 0 Word n+2

The structure of the 68000 determines some rules for memory access:

1) Access to words and long words are restricted to even

addresses.

2) This means that operation codes (opcodes or

instructions) must be located at even addresses.

3) Access to bytes may be at both even a nd odd

addresses.

If these rules are not followed, normal operation is interrupted and an

exception-handling routine is called by the processor.

61

Abacus Software Machine Language for the Atari ST

(Operating states)

The 68000 works in either the supervisor mode (supervisor bit = 1) or

the user mode (supervisor bit=O). The privileged state determines which

operations are allowed. Some instructions are prohibited in the user mode,

and if you try to use them, cause an exception. The stack pointer A 7' is

always used in the supervisor mode, and the stack pointer A 7 always used

in the user mode. It makes no difference if the stack pointer is used by a

instruction implicitly (such as PEA) or if register A 7 is specified explicitly as

the source or destination in the instruction.

There are three basic operating states of the 68000:

Normal operation

Halt state

Exception handling

The normal execution of instructions represents the flrst state. A special

case of this state is the stopped condition of the CPU. This state is caused

by the STOP instruction. No further memory access is possible in this

condition.

The halt state is caused by serious errors; should this occur, we must

assume that the system is no longer capable of functioning. The processor

leaves this state only after an external RESET signal. For example, the halt

state is entered when a bus error occurs during the exception handling of a

62

Abacus Software Machine Language for the Atari ST

previous bus error (double bus error). However, the halt state is not

identical to the stopped condition.

The exception condition results from interrupts, TRAP instructions, the

trace operation, or other exception conditions. The implementation of the

exception condition makes it possible, for instance, to have the processor

react to error situations, or to unforeseen situations.

A peripheral can request the services of the processor through interrupts

to process transmitted data.

All exception handling is done in the supervisor mode. When exception

handling is begun, the processor saves the old status word on the stack and

sets the supervisor bit. All instructions are allowed in the supervisor mode.

The exception handling can be initiated internally or externally.

Examples of internal initiation would be address errors (word access to an

uneven address), division by zero, direct instructions (TRAP instruction), or

the trace mode. Externally, exceptions can be generated by interrupts, bus

errors (errors in the bus hardware), or RESET.

The 68000 has a large number of exceptions available, and this is one

of its strong points. Through exceptions it is possible to place the processor

in the exception state and allow it to react to errors. Here the 68000

surpasses CPUs in many minicomputers, and most other microprocessors.

The individual exception cases are numbered, and the processor fetches

an exception vector from memory depending on the case. This vector

represents a 32-bit address and it is stored like every other address. The

63

Abacus Software Machine Language for the Atari ST

lowest 1024 bytes (or 512 words) of the memory (address space) are used

as a table for the 256 vectors.

The status register is saved at the start of the exception handling. The

supervisor bit is then set. In addition, the trace bit is cleared, preventing

another exception from being generated after the first instruction of the

exception handling routine. If an interrupt generated the exception (possible

only when the interrupt has a higher priority than the setting in the interrupt

mask of the status register), the interrupt mask in the status register is set to

the new value. The return address and the old contents of the status register

are placed on the supervisor stack.

The processor can receive the vector number in one of two ways. It can

create it internally (such as with bus and address errors, but also with

auto-vector interrupts); or, it receives the vector number for a

non-auto-vector interrupt from the bus (directly or indirectly from the device

that generated the interrupt). The 68000 multiplies the vector number by

four (by "left-shifting" the bits of the vector number twice). It uses the

resulting number as the address. From this address it loads a long-word and

into the program counter. Then it begins execution at the instruction to

which the (new) program counter points, and so starts to process the

exception.

There are 16 special exceptions, called TRAP s, that allow operating

system routines in the supervisor mode to be called from user programs

running in the user mode. An exception is generated by the instruction

"TRAP #n" (with number "n" from 0 to 15). The appropriate operating

system functions are then performed in the routine to which the exception

vector points. In this manner, it is possible to to make carefully selected

64

Abacus Software Machine Language for the Atari ST

calls to program fragments running in the supervisor mode-leaving the

protection concept of the 68000 unbroken.

We do not want to delve any deeper into the other individual

exceptions, because they are relatively unimportant for learning and

understanding machine language.

(Addressing mOdes)

The instructions must somehow indicate which operands are to be used.

The 68000 instructions consist of two parts:

I) The type of operation to be performed

2) The address of the operand(s)

By address we do not mean only a memory address, since a register can

also supply an address.

The instructions can determine the operand address in three ways:

1) Register specification: The register number is given in the

instruction.

2) Effective address: Various addressing modes are used to obtain

65

Abacus Software Machine Language for the A tari ST

the address. the selection is made through six bits in the

instruction (the 6-bit field is referred to as the effective address).

3) Implicit reference: the operand (a register) is already given in the

instuction implicitly.

The 68000 has 14 addressing modes that serve to determine the operand

address according to the techniques named. These 14 addressing modes can

be divided into six main groups:

Register direct

A register containing the operand IS specified directly 1D the

instruction.

Register indirect

A register that contains the address of the operand in memory as

specified in the instruction.

Data absolute

The address of the operand in memory is specified explicitly in the

instruction.

Relative to program counter

An offset relative to the program counter is given. This means that a

signed word or long-word is added to the program counter. The sum

is the address of the operand. This addressing mode makes it possible

to write programs that can run at any address in the

system-programs that are relocatable.

66

Abacus Software Machine Language for the Atari ST

Data immediate

The operand is included within the instruction (one or two words).

Implicit

The operand is specified implicitly by the instruction. Stack

operations, for example, implicitly have the stack pointer as the

pointer to the operand address.

Of the 15 addressing modes, 13 create an effective address. This

effective address occupies a field of 2x3 (two times three) bits in the (frrst)

instruction word of the opcode. Additional words required by this

immediately follow the first word of the opcode, depending on the

addressing mode.

For instructions with effective addresses, the opcode consists of the

following:

Bits 0 ... 2: Contain the register field.

Bits 3 ... 5: Contain the mode field. (bits 0 ... 5 represent the

effective address).

Bits 6 ... 11: Contain either the effective address of the second

operand, or a part of the instruction specification.

Bits 12 ... 15: Contain the instruction type.

The following table represents the addressing modes that can be

selected by an effective address. We use the following abbreviations:

67

Abacus Software

ARI

An

Dn

Machine Language for the Atari ST

Address register indirect

Number of an address register (3 bits, 0 .. 7)

Number of a data register (3 bits , 0 .. 7)

Effectiye address

Mode Register Addressing mode

000 Dn Data register direct

001 An Address register direct

010 An Addres register indirect (ARI)

011 An ARI with post increment

100 An ARI with predecrement

101 An ARI with displacement

110 An ARI with displacement and index

111 000 Absolute short

111 001 Absolute long

111 010 PC relative with displacement

111 011 PC relative with displacement and index

111 100 Data immediate

Effective addressing is not needed for implicit addressing.

The following list explains addressing modes we have not yet

described. Their function will become clearer as we use them in program

examples.

68

Abacus Software Machine Language for the Atari ST

Address register indirect with post·increment

The address of the operand is found in the address register specified.

After the operation, the address register is incremented by 1,2, or 4,

depending on the length of the operand. If the address register is the

stack pointer, the address is incremented by at least 2 so that the stack

pointer retains an even value. Additional stacks can be constructed

with this addressing mode.

Address register indirect with pre-decrement

The specified register is decremented by 1, 2 or 4. If the address

register is the stack pointer, it is decremented by 2 or 4 so that it

remains even. This prevents address error exceptions. The access is

then made to the address which is found in the address register after

the subtraction.

Address register indirect with displacement

With this addressing mode, an additonal word is added to the

contents of the specified address register. An additional word

containing the 16-bit displacement follows the initial. The effective

address of the operand is the sum of the register contents and the

signed 16-bit address displacement value.

Address register indirect with displacement and index

This addressing mode is analogous to the previous mode. An

additional word follows the initial opcode. The lower byte of the

additional word represents a signed 8-bit displacement that is added.

The upper byte contains information about the type of index register

(address or data register), the size of the index (signed word or

long-word), and the register number. The effective address is the

69

Abacus Software Machine Language for the Atari ST

displacement sum of the register contentsd, the 8-bit displacement and

the index register (8- or 16-bits) contents.

Absolute short

An additional word following the initial opcode contains an absolute

signed 16-bit address. The effective address is the sum of the register

contents and this 16-bit address.

Absolute long

Two additional words follow the initial opcode. The higher-order

portion of the 32-bit address is found in the first extension word, and

the lower-order portion in the second extension word. The effective

address is the sum of the register contents and the 32-bit address.

Program counter (PC) relative with displacement

An additional word is follows the initial opcode containing the 16-bit

displacement. The effective address results is the sum of the program

counter and this signed 16-bit displacement

Program counter relative with displacement and index

This addressing mode is analogous to the previous mode. The

additional word following the opcode consists of two subfields. The

lower byte represents a signed 8-bit displacement that is added to the

Pc. The upper byte contains information regarding the type of the

index register (address or data register), the size of the index (signed

word or long word), and the register number. The effective address is

the sum of the PC contents, the 8-bit dispalcement and the index

register (8- or 16-bits) contents.

70

Abacus Software Machine Language for the Atari ST

Data immediate
One or two additional words follow the initial opcode (depending on

the length of the operand) and contain the operand. The lower-order

byte of the word is used for byte operations. For long-word

operations, the higher-order word is contained in the first word

following the initial opcode word and the lower-order in the second

word following the opcode.

Overview of the instruction set I

The assembly language instruction set of the 68000 is comprised of 56

instructions. This is a small number compared to other processors;

however, the 14 addressing modes make the 68000 very flexible and

powerful. If each instruction in all addressing modes had its own

designation, there would be over 1000 assembler instructions. The 56

instructions can be mastered only because of the open construction of the

68000 with its addressing modes. In addition, the assembly language

supports modular programming and, in particular, compiler programming.

The 68000 is a "true" two-address machine. This means that both the

source and destination of an operation can reside in memory. This means it

is possible to move data from one memory location directly to another. With

most other processors, the contents of the memory location must first be

71

Abacus Software Machine Language for the Atari . ST

moved to a processor register with one instruction, and then written to the

other memory location with a second instruction.

A 68000 instruction consists of one to five words, from two to ten

bytes. The length and type of the instruction is determined by the first

opcode word. The instructions in the 68000 are systematically constructed.

The 68ooo's instruction set can be divided into the following groups:

• arithmetic operations (with integers)'

• BCD instructions

• logical instructions

• shift and rotate instructions

• bit manipulation instructions

• data transfer instructions

• program control instructions

Many 68000 instructions can process several different data types. For

example, the MOVE instructions will move bytes, words , and long-words.

So in addition to the different addressing modes available for the

instructions, different operand lengths are also possible.

72

Chapter Four

Program and Memory Structures

• Introduction

·Procedures and functions

·~ernory structures

Abacus Software Machine Language for the Atari ST

(IntrodUCtion)

In early computers, data and program were kept separate from one

another. While the data was stored in registers and memory cells, the

program was stored from the "outside". Computers were programmed by

plug boards in many cases. Another technique of storing the program was

to use perforated paper tape.

Present-day digital computers are so-called "Von Neumann computers."

We won't bore you with the historical development of the computer. We'll

mention only the primary characteristic of a Von Neumann computer: in it

the program and the data are stored in the same memory. The central

processing unit contains only one register (the program counter) that points

to the next executable instruction in the memory. The instructions are simply

stored sequentially in memory. By changing the program counter, you can

cause the central processor to deviate from the normal sequence of

instructions.

This makes jumps in the program possible. You can write programs

that react according to the situation while the program is actually running.

This is the chief advantage of the Von Neumann computer. In older

computers the program runs as a long, single chain of instructions.

In this chapter we present some examples of the construction and

structure of programs. You'll find additional examples, especially practical

application programs, in later chapters.

75

Abacus Software Machine Language for the Atari ST

One element of conditional structures in programs is the simple

branch. A branch is made to a certain program part based on a specific

condition. If this condition is not fulfilled, execution simply continues with

the next instruction in the "instruction chain" (program). As an example,

we test to see if the variable A is zero.

Previous Command

Yes

Branch

Next Command

Flow Chart

Previous Command

is A=O
Yes No

Branch

Nassi-Shneiderman Structo2ram

76

Abacus Software Machine Language for the Atari ST

You must be asking yourself how the execution of the program can

continue. We have simply written "branch," but we haven't explained what

we meant. Here a specific program part, or segment, is performed only if

the condition (A=O) is true. After the execution of that program segment, a

branch is usually made back to the main program. Naturally, other branches

can be made within the first branch. If the condition is not true, execution

simply continues with the next instruction in line. Instead of this, a program

segment handling the case of the untrue condition can be called at this point.

The program segment called when the condition is true is called the "IF

portion"; the other segement is called the "ELSE portion." Here is a short

example in Pascal:

IF A=O THEN
BEGIN

(* Condition is fulfilled *)

END
ELSE

BEGIN
(* Condition is not fulfilled *)

END;

In a BASIC dialect that doesn't have an IF-TIffiN-ELSE (as opposed to

a simple IF-THEN), the algorithm must be formulated differently. For

example:

10 IF A=O GOTO 50
20
30 ... (Instructions, if condition not true)
40 GOTO 70
50
60 (Instructions, if condition fulfilled)
70 (next instruction, same for both)

77

Abacus Software Machine Language for the Atari ST

Command

Yes
Reaction to

>------4 "condition

No

Reaction to
"condition not

fulfilled"

Next command
for both cases

Reaction to
" condition not

fulfilled"

Command

Fulfilled"

Reaction to
"condition

Fulfilled"

Next command for both cases

78

Abacus Software Machine Language for the Atari ST

But it is also possible to construct loops in programs, in which tests

and jumps are executed only when the condition of the test is fulfilled (or

not fulfilled). This way we can specify that an action be repeated a certain

number of times in succession. There are two different types of loops:

1) The condition is tested before a pass is made through the loop. If the

condition is satisfied, the instructions in the loop are executed once

and the condition is checked again. If the condition is not satisfied,

execution jumps to the program position after the loop.

2) The condition is tested after the actual pass through the loop. The

instructions in the loop are therefore always executed at least once. If

the condition is satisfied, the next instruction in the program is

usually executed. Otherwise execution jumps to the fIrst instruction in

the loop. Another "pass" is made through the loop. The condition is

then tested again.

With all loops, care must be taken to ensure that they will actually end at

some point. If the condition is never fulfilled (as a result of an error in the

program) the execution of the loop will never end. This is referred to as the

program "hanging up." More reverent programmers call these anomalies

"eternal loops."

In many programming languages there are special instructions for

constructing loops. As an example, we could print out the multiplication

table for the number 4 using a FORINEXT loop:

10 FOR X = 1 TO 10
20 PRINT 4 * X
30 NEXT X

79

Abacus Software Machine Language for the Atari ST

,
I"

Set X = 1
No

Repeat as long as X -F- 1

Print X*4

X X + 1

Next Command

Iv v

Test before loop

80

Abacus Software Machine Language ror the Atari ST

,
Set X 1 "..,

Set X = 1

Print X*4

X X + 1

Repeat until X #= 1

Next Conunand

...,
v

X + 1

Yes

Test after loop

81

Abacus Software Machine Language for the Atari ST

The two drawings show the two basic variants of a loop. The

mUltiplication table for the number 4 is calculated and printed by the

programs symbolized there.

In looking at the examples, you can see that in one a test is made for

equality, and in the other a test for inequality. In the first example the loops

end when the condition is no longer fulfilled. If X reaches the value" 11",

thelloop must be ended. Therefore X is tested to see if it is not equal to 11.

If X is no longer not equal to 11, then X is equal to 11, and the loop is

ended.

You can think of many variations of loops all leading to the same result.

Try to develop another flowchart. You could, for example, start with x=o
and increment X by one before printing.

There are often loops in which the ending condition is tested in the

middle. However, such a loop rarely can be constructed logically. In most

cases, the program simply becomes harder to read. In addition, errors often

occur, since it is difficult to follow the current value of the index variable

(the variable that is changed). For this reason, the index variable should be

changed only at the start or end of the loop.

Within a program, a pressed key often initiates some activity. The key

pressed is usually stored in a variable. In the program all variants of the

variable (the key press) must be tested, and corresponding reactions started.

Usually specific procedures or functions are called, dependent on the key

pressed. However, a certain program segment often is executed like a

"normal" branch.

82

Abacus Software Machine Language for the Atari ST

variable "A"
keyboard

No

Reaction to
"other value"

Next Command

Yes

Yes

Yes

Reaction "1"

Reaction "2"

Reaction "3"

Read variable "A" from keyboard

Reaction

Reaction "2"

Yes

Reaction "3"

Next Command

83

No

Reaction to
"other value"

Abacus Software Machine Language for the Atari ST

Usually another reaction is defined, a reaction taken if an undefined

condition is present (when an invalid key is pressed). We also did this in

our example. Another method is to read characters until a valid character is

encountered.

As you can see, a Nassi-Shneiderman structogram can become difficult

to read very quickly. Consequently, it is very difficult or impossible to use

when creating the program on the computer. But there is another way to

draw structograms. The second method avoids using the triangle for tests.

In addition, the individual variables are listed under each other and not next

to each other, so that such structograms can be written with "normal" word

processing programs. This is an important advantage srtuctograms have

over flowcharts. Here is our last example, written differently:

A is read from keyboard

Is A = 1

Yes Reaction 1

Is A = 2
No

Yes Reaction 2

No Is A = 3

Yes Reaction 3

No Reaction other A

Next command

84

Abacus Software Machine Language for the Atari ST

There are also other techniques for clearly representing structograms.

The example we selected has the disadvantage of requiring a wide work

sheet for "nested" tests. For learning machine language, the structogram we

selected and the Nassi-Shneiderman will work well. Flowcharts are also

good for this purpose; their major disadvantage is that they can easily create

spaghetti code, because they do not force structured programming. It may

not be clear now why small programs have to be programmed "cleanly," but

it's a good idea to learn and practice the techniques for larger programs. We

will go into some structured programming approaches in the next section .

l
.,

Procedures and functions)

Clearly we can write very capable programs with the different tests ,

branches, and loops. But in practice it often occurs that a certain program

segment is needed at different locations. Here it usually doesn't make sense

to repeat the same program text in all the places it's required.

The technique of subroutine was devised for just this purpose. You

already know of these from BASIC; they work much the same way in

machine language. An example is shown on the next page.

85

Abacus Software Machine Language for the Atari ST

10 (program)
20 GOSUB 100 (subroutine call)
30 (first command after the subroutine)

100 (start of subroutine)
110 (subroutine)
120 RETURN (return to the calling program)

A subroutine call is like a normal jump to another place in the program.

But in a subroutine call, the address of the next command after the

subroutine call is placed on the system stack (we will explain what we mean

by this later). As soon as the CPU gets the command to return from the

subroutine, it gets the address from the system stack and thereby knows

exactly where it has to jump.

The return addresses can be simply stored on the system stack when

several calls are nested within each other-i.e. when one subroutine calls

another. When returning, the processor always reads the top address off the

stack, and the other data on the stack is "pulled" toward the top of the stack.

The disadvantage of this procedure is that no parameters can be passed

directly to the subroutine. In addition, the subroutine cannot pass any value

back directly to the caller.

Efficient programs can be written even with this disadvantage.

Problems will always arise when the subroutine of one program is used in

another program. In addition, programs written in this manner are almost

always hard to read because the parameters, etc., can be difficult to follow.

Moreover, leapfrogging all over the place will produce more spaghetti code;

however, in practice, the exclusive use of subroutine calls and returns is

rare.

86

Abacus Software Machine Language for the Atari ST

Subroutines can be defined differently, however. In Pascal (and also in

other languages like ADA, Modula 2, C, etc.), there are structures known

as procedures and functions. A function or procedure is called like a

normal subroutine. But as part of the call, the pre-defined parameters are

passed to the subroutine. These parameters are stored in the subroutine as

local variables. They are variables that can be used only by the subroutine,

and are usually erased when execution returns to the main program. This

way, even errors resulting from the improper use of variables in large

programs can be avoided. Above all, procedures and functions can be easily

used in other programs.

When the procedure or function is ended, control is returned to the main

program as with simple subroutines. This causes the local variables (the

variables used only by the subroutine) to be erased. With a function, a

value-known as the function value-is also returned to the calling

program. Herein lies the difference between a procedure and a function-a

function always returns a value. Naturally, groups of values can also serve

as the function value. The function value can be viewed as the "result" of

the function.

Next we present a typical function and a typical procedure, both

formulated in Pascal. Example:

FUNCTION SQUARE (X: REAL): REAL;
BEGIN

SQUARE := X*X;
END;

This function calculates the square of a number. The expression

SQUARE (9) returns "81", for example.

87

Abacus Software Machine Language for the Atari ST

The next example is a procedure that outputs a given number of blank

lines. The expression LINE (10) will write 10 blank lines:

PROCEDURE LINE(N: INT);
VAR I: INTi
BEGIN

FOR 1:=1 TO N DO
WRITELNi

ENDi

The machine language of the 68000, like that of other processors, is not

fully implemented. For the most part only instructions to initiate a

subroutine call and return from the subroutine are present. But the 68000

has an advantage over other processors in that it has instructions that reserve

and free memory for local variables. Therefore, in order to be able to work

with procedures and functions in machine language, you must create a

procedure convention.

A procedure convention is an agreement; it's a statement of intent as to

how parameters will be passed to the subroutine, and how function values

will be returned. In addition, a procedure convention usually determines

which registers retain their old values when the subroutine returns. In

chapter 7 we'll present the procedure convention used in this book's

examples.

88

Abacus Software Machine Language for the Atari ST

(Memory Structures)

In the second chapter we mentioned that, from the point of view of the

software, the memory is linear, or one-dimensional. The memory appears

as an array of bytes, each byte having its own address. In hardware, bytes

are paired together, because the 68000 is a 16-bit processor. Access is

usually made only to even-numbered addresses for this reason. But the

68000 need perform only one read or write cycle for a word access.

In practice, multi-dimensional arrays are needed more often than

one-dimensional memory. Appropriate software can accomplish this easily.

To do this, the size of the array must be limited. The multi-dimensional

array can then be structured in the available memory. The following can be

done for a two-dimensional array with $100 X $100 (256 * 256) elements,

each one byte large; assume that the array will begin at address $10000.

Then the individual rows of the field begin at the following addresses:

Row $0

Row $1

Row $2

Row $FE:

Row$FF :

89

$ 10000 .. $ lOOFF

$IOIOO .. $lOlFF

$10200 .. $102FF

$lFEOO .. $IFEFF

$lFFOO .. $lFFFF

Abacus Software Machine Language for the Atari ST

Element $30 in row $2 would then be located at address $10230.

Arrays of higher dimension can be defined according to the same principle.

You must ensure that the border of a row is never exceeded, since this is

equivalent to accessing a different row.

In the last section we use a stack to store return addresses. But what

do we mean by a stack?

Another designation for stack is a LIFO structure. LIFO being an

acronym for Last-In First-Out. This name already defines the operation of a

stack quite well. The data last placed on the stack is the first to be read back

out. We can compare a stack in memory to a stack of papers. New

information is written on a sheet of paper and placed on the top of the stack.

If information is required, the last piece of paper placed on the stack is the

flrst to be removed.

In practice, a stack works like this:

A certain memory area is reserved for the stack. A CPU register, called

the stack pointer, points to a word in this memory area. If data is placed on

the stack, the stack pointer is simply decremented by the number of bytes to

be written. The data is written in the address range between the old and new

stack pointer values. Reading data from the stack is also simple. The

contents of the memory location to which the stack pointer points are read.

The data on the stack is no longer available and is made "invalid" by

incrementing the stack pointer by the number of bytes read.

90

Abacus Software

Old
Data

Current
Data

$1000
$2000
$3000
$4000
$5000
$3333 f- SP

Principle of a Stack on the 68000

Orginal Condition

Old
Data

Current
Data

$1 000
$2000
$3000
$4000
$500 0
$3333

Old
Data

f- SP La s t
Dat a

Writing to the Stack

Old
Data

Current
Data

Orginal Condition

$1000
$2000
$3000
$4000
$500 0
$3333
$7777

f- SP

Old
Da t a

Last
Data

$777
Reading from the Stack

Machine Language for the Atari ST

Decrement Stack Pointer

$1000
$20 00
$3000
$4000
$50 00
$3333
..... . f-'- ·sp

Old
Data

Current
Data

$7777

Write Data

1000
2000
3000
4000

$5000

f- SP
1-----4

Read Data Increment Stack Pointer

1000
2000
3000

f- SP
........ ---1

Old
Data

Current
Da ta
Old
Data

S 10 0 0
$2000
~3000

$4000
$5 000
$3333 r SP

$7777

Operation of the Stack on the 68000

91

Abacus Software Machine Language for the Atari ST

In the 68000, address register A 7 (or A 7' in the supervisor mode) is

defined as the system stack pointer. It is automatically used for

subroutine calls, such as those made using JSR, for storing the return

address. Other instructions also use A 7 (or A 7') as the stack pointer

implicitly. But all of the other address registers can also be used as stack

pointers for user stacks, using the addressing modes "address register

indirect with predecrement" and "address register indirect with

postdecrement."

The use of the stack pointer is implemented on the 68000 as follows:

1) The stack pointer always points to the current entry-the

entry at the very top of the stack.

2) The stack "grows" downward, to lower addresses. The stack

pointer is therefore decremented every time new entries are

placed on the stack; it is incremented every time entries are

removed from it.

In the context of this definition, data that is physically "lower" in

memory is logically "higher" on the stack. This is somewhat confusing; but

its meaning should become clearer as we begin to work with stacks.

Something called FIFO storage is often used to store data temporarily;

FIFO is an acronym for First-In First-Out. Commonly called a buffer, FIFO

storage can be used in data transfer programs, for example. It often occurs

that the receiver returns the data at regular intervals, but the receiving

program can't always process it immediately. Instead, it saves data on the

disk from time to time. In this situation you can program the data transfer

92

Abacus Software Machine Language for the Atari ST

with a buffer storage. Each time a byte is received, the processor interrupts

its normal activity and places the byte from the receiver in the buffer

storage. The main program then always gets the data from the buffer when

it is required.

Naturally, certain problems can arise, because buffers have finite

memory area. You must ensure that the data is processed quickly enough.

Also, the data must be stored in the buffer almost immediate1y-otherwise

new data may arrive while the current data is being stored, and data will be

lost.

A practical problem results from the principle of the FIFO

storagelbuffers. A stack grows in one direction, but it is always built "from

the top." One byte in the stack memory area is used again and again. In a

buffer, each byte is used only once. After this, the "chain" of data has

moved on by one position.

93

Abacus Software Machine Language for the Atari ST

i
Read Pointer--7

1-------1

· .
· . . .

i · . . .
Write Pointe~

• • • •

In practice, buffers generally are built as ring storage. Ring storage can

be imagined simply as a ring, or circle, of bytes. Each of these bytes has a

certain address. There are also two pointers, one for write and one for read,

that are required by the ring. The write pointer always points to the address

to which the next write access will go; after the write, it is incremented by

the number of bytes written. The read pointer points to the location at which

the reader (the program or programs that fetch the data from the buffer) can

find the next byte. After a byte is read, this pointer is also incremented.

One error situation can occur using this structure. If the reader and

writer operate at markedly different speeds, one may catch up to the other.

Therefore, when changing the value of one pointer, it's necessary to check

the value of the other pointer.

94

Abacus Software Machine Language for the Atari ST

You will no doubt ask yourself how a ring buffer can be made out of

linear memory. To do it, an area of memory is designated as ring storage

(FIFO storage). Once the read or write pointer reaches the highest address

in the storage area, it is reset to the starting address of the buffer on the next

increment. This requires another test when changing the pointer. Moreover,

a situation will arise where the value of the write pointer is lower than that

of the read pointer. But according to the principle of a buffer, the position

where writing will take place is after the read position. The comparisons

required to detect errors in the pointer values are not all that easy to

formulate.

95

Chapter Five

,
I Operating System and Programs)
~ ~

Abacus Software Machine Language for the Atari ST

(IntrodUCtion)

Any microcomputer requires a program to do useful work. When the

68000 is sitting idle with no devices interrupting the system bus, it tries to

execute the next instruction. The 68000 can be put in a "sleep" state wherein

it waits for an interupt, and is otherwise inactive. This state is generated by

the STOP instruction, and is called the "halt" state. If, during the operation

of the 68000, serious errors occur and it is determined that reasonable

operation can no longer continue (such as a double bus error), the halt state

is entered. This can be exited only through a processor RESET.

Since a microprocessor cannot function without a program, a program

is required as soon as the computer is turned on. This program reads the

instructions and determines what it will do next. On many computers, the

built-in BASIC interpreter (or other programming language) is simply

started after the computer is turned on. Larger systems, particularly systems

with disk drives, generally have more complex system software.

Some tasks must be performed in every program. Almost every

program requires character input/output via the keyboard, screen, and

printer. In addition, all programs are required to read from and write to the

disk drive in the same way, so that a diskette can hold multiple programs

and data. It doesn't make any sense to rewrite the necessary routines

(subroutines or procedures and functions) in every program. This is why

almost all computers have what is known as an operating system.

99

Abacus Software Machine Language for the Atari ST

The operating system contains the routines required to operate the

peripherals. The programs are usually divided into machine-dependent and

machine-independent parts. If the operating system is to be used on other

computers (ported), then only the machine-dependent parts need be

rewritten or changed for the new computer.

The actual user programs (such as word processors or BASIC) then

access the peripherals via the operating system. Since the operating system

can be the same on different computers, programs can be run on different

computers without any changes; as a result, computers with the same

operating system but different hardware can be interchanged.

Large operating systems often have the task of managing the working

memory. Programs request the required working memory from the

operating system.

The actual user does not come into contact with the heart of the

operating system, as long as he does not write any programs on the

operating system level. Another part of the operating system is the user

level. To the user level belong programs with which the user can tell the

operating system to execute a program, to erase files from the diskette,

print them out, and so on.

On the Atari ST, the TOS operating system is used with the GEM

interface for the user. TOS is in many respects identical to CP/M68K from

Digital Research. It offers routines for accessing the peripherals. Control of

screen windows, the use of the mouse, and so on are all controlled by

GEM. We won't go any further into the structure of TOS and GEM, but

will explain their operation as far as necessary in the following chapters.

100

Abacus Software Machine Language for the Atari ST

Up to now we have assumed that the computer executes only one

program. But there are operating systems that allow the computer to appear

to execute several programs simultaneously. Such operating systems are

called mulit-tasking operating systems. By simultaneous we mean that the

computer executes one program for a fraction of second, and then executes

the next one for a fraction, switching back and forth, switching back and

forth. This procedure is usually called time-sharing.

Multi-tasking can be performed in one of two ways:

1) A program runs in the foreground. The user works with the

program interactively. All other programs run in the background.

After a background program has been started, it runs on its own

without further accessing the screen or keyboard. For example, a

background program can print a file to the printer, while a

processor interacts with the user in the foreground.

2) There is no distinction made between foreground and

background. The screen can be switched from one task or

program to another by means of a simple command. A new

window can be opened for a new task. This technique is

considerably easier to use than the first, but requires a

considerably more complicated operating system. But this

actually allows use of two programs at once.

With multi-tasking you can do more than execute various programs on

the user level at the same time. Individual programs could be composed of

different programs. A word processing program could consist two parts.

The first part would be a conventional word processing program; the second

101

Abacus Software Machine Language for the Atari ST

could be a program that at regular intervals made backup copies of text

being edited. Since both programs run at the same time, the user isn't even

aware that the backup is being made.

Multiple "terminals" (screen and keyboard) can also be serviced with a

single microprocessor. Just as a multi-tasking operating system (of the

second type) executes multiple programs simultaneously on one terminal, an

operating system can also execute multiple programs on multiple terminals.

In this manner, several users can work on one computer at the same time.

Systems using this technique are called multi-user systems.

PrOl:rams

A microprocessor works only with its machine language. It does not

understand high-level programming languages (although there are

processors with a built-in programming language, such as FORTH or

BASIC). The machine language is simply a stream of bits that represent the

instructions and immediate data of a program. It is difficult for humans to

read, since there are no readily apparent connections between the machine

language instruction and the resulting code. Programming languages were

created because of the very fact that machine language is difficult to read.

"High-level" language programs can be converted to machine language by

appropriate programs.

Additional utility programs are used to write the program text, and to

test and correct the software. We would like to present a few groups of

these programs in order to clarify the terms.

102

Abacus Software Machine Language for the Atari ST

Assembler

Every machine language instruction is assigned a mnemonic by the

manufacturer of the microprocessor. The assembler translates the

mnemonics into the machine language. For example, since jumps are

possible only to addresses, and it is not yet clear when writing the

program where sections of the program will end up in memory, the

assember also inserts the proper addresses. The programmer puts

labels in the program to indicate jump destinations. In addition,

names can be given to memory locations. These memory locations

can then be used like variables. Here is a fragment of an example

assembly language program:

addbcd:

addloop:

MOVEA.L
MOVEA.L
MOVE.W
ABCD
DBF

#SOURCEPTR,AO
#DESTPTR,AI
#length-I,DO
- (AO) , - (AI)
DO,addloop

In the final analysis, writing programs in assembly language is

equivalent to writing them in machine language. But the assembler

syntax is mastered much more easily than the cryptic bit streams of

the machine language itself, because the mnemonics represent

"abbreviations" of the instructions.

Compiler

A compiler is a program that translates programs in a "high-level"

programming language into machine language. For instance, Pascal is

converted to machine language by means of a compiler. Compilers

and assemblers are based on the same principle. The difference is that

a compiler usually converts a high-level language command into

103

Abacus Software Machine Language for the Atari ST

several machine language instructions. An assembler, on the other

hand, translates each assembly language instruction into exactly one

machine language instruction. Various checks are made while the

programming is running, depending on the language. In Pascal, for

example, the array bounds may be checked for a valid range. By

contrast, almost no checks are made in C. This makes C programs

faster than Pascal programs but significant errors can easily occur.

Interpreter

An interpreter does not convert a high-level language program.

Instead, the interpreter executes an equivalent sequence of machine

language instructions for each command in the hign-Ievellanguage.

A single command is read, interpreted, and executed. A command in

a loop that's executed 100 times is completely read, interpreted and

executed 100 times. The advantage of an interpreter is that the entire

program need not be retranslated after making a change in the test

phase.

In practice, often it's hard to tell compilers from interpreters. For

example, there are Pascal compilers (such as UCSD Pascal) that do

not compile to machine language, but to a pseudo-code. This

pseudo-code resembles machine language, but must be executed by

an interpreter.

Editor

An editor is a program that writes text for programming languages. In

many programming languages (like BASIC), the editor is already

included as part of the programming language. For others (like Pascal

and C), a separate editor is used. A wordprocessing program is an

104

Abacus Software Machine Language for the Atari S!'

editor intended not for programs but for letters, books, and so on.

This book was written using a word processing program.

Monitor

A monitor is a program allowing us to view and change memory

locations and processor registers directly. In addition, a monitor has

functions to convert machine language back into mnemonics (to

"disassemble" it). A monitor program is usually used to check and

test as well as correct programs in machine language.

Debugger

A monitor is also a debugger. A debugger is a program that aids in

finding program errors. There are not only debuggers that work on

the machine language level like a monitor, but also those that work

directly with a high-level language.

Linker

A linker is a program that combines multiple, individually assembled

machine language program segments. Modules of different languages

can also be combined with a linker. For example, speed-critical

program fragments written in assembler are often combined with

Pascal programs.

There are many other tools available to the programmer in addition to

the programs named here. For example, the Atari ST development system

has a program that lets you easily develop the icons that symbolize the files.

Other tools create lists of the variables used in a program.

105

Chapter Six

" Fundamentals of Assembly Language Programming)

-Introduction

-The editor

-The assembler

-The debugger

-Procedure conventions

Abacus Software Machine Language for the Atari ST

(IntrodUCtiOn)

In this chapter we want to familiarize ourselves with the functions of a

68000 assembler. We'll explain important terms used in assembly language

programming and introduce the assembler's general operation and special

syntactical rules. We want to prepare you for assembly language

programming by showing you the full range of features.

The authors used the assembler included with the Atari 520 ST

Development System.

The Atari Development System contains the CP/M 68K assembler

(AS68) from Digital Research. You do not need an assembler in order to

understand the examples in this book. However, if you want to write your

own programs in assembly language, some kind of assembler is required.

109

Abacus Software Machine Language for the Atari ST

(The editor)

Up until now we have always spoken of a program as an abtsract

representation of instructions that the assembler translates into machine

language instructions. These instructions resemble a language-the

programming language. All programs formulated in languages are

represented in some written form. This written form is the program text.

The program text must, like every written document, be entered into the

computer by the programmer before it can be processed. A special program

is required to do this-the editor.

The program text is stored on the diskette/hard disk as a file. The editor

is in control of all the possibilities for creating and changing a text file. The

ease with which these functions can be used depends on the editor.

An editor called MINCE was used with the Atari ST Development

System. In principle, any editor that creates text files in ASCII code can be

used for entering a program. Therefore it is possible to use an editor that is

not included with the assembler. This makes sense if you have an editor that

exceeds the capabilities of the assembler editor, or if you just want to use a

single editor.

The list on the next page should give you an idea of an editor's tasks.

110

Abacus Software Machine Language for the Atari ST

• Create a text ftle on the diskettelhard disk

• Modify a test ftle

• Delete a text ftle from the diskettelhard disk

• Accept characters from the keyboard

• Display the text on the screen

• Output a text on the printer

• Execute an editor command

• Move text on the screen

• Format the text

As a general rule, the editor is started from the operating system level

(GEM or TOS). The file to be processed is identified or named when the

editor is started. If the file already exists, the editor loads the file from the

diskette/hard disk into memory and displays it on the screen. If the file is

new, a new text file is created. In addition to the text you're currently

working on, the editor displays additional information about the text.

This additional information includes statements about the amount of

memory available for additional text, descriptions of the currently available

editor functions, information such as the position of the cursor

(page/line/column), and the name of the ftle being edited.

Once the editor is started and a file is being processed (even a new,

previous empty text), the programmer is in the edit mode of the editor. On

this level the editor has three basic operating modes: Writing mode,

Movement mode, and Command mode . .

111

Abacus Software Machine Language for the Atari ST

In the Writing mode, all letters, digits, and special characters entered are

inserted into the text. The Writing mode is automatically selected by

pressing an appropriate key. A character entered always appears at the

current cursor position.

By using the cursor keys, the cursor position in the text can be

changed. The editor is automatically placed in the Movement mode when an

appropriate cursor key is pressed.

As a rule, the Command mode is activated by pressing the control key

together with a letter key. One or more of these key combinations cause the

editor to execute a certain command. There are both simple and very

complex commands that make text processing flexible and complete.

Here's an overview of the more popular editor commands:

Write mode:

Movement mode:

Command mode:

Digits, letters, special characters

Cursor left, right, up, down

Delete character (delete, backspace)

Tab

-File management: Read, write, delete file

Save (write, continue)

Rename, copy file

Display disk contents

Insert text block (from disk)

112

Abacus Software

-Movement:

-Delete:

Machine Language for the Atari ST

Word left, word right

Start of line, start of new line

Line forewards, line backwards

Page forewards, page backwards

Start of text, end of text

Word left, word right

From start of line to cursor

From cursor to end of line

From cursor to end of text

Delete line

Delete entire text

-Block commands: Mark start of block

Mark end of block

Delete marked block

Copy marked block

Move marked block

-Other:

Save marked block (disk)

Search in text

Search and replace

Print text fIle

Set or clear tabs

End program and save text

Interrupt program

Call help text

113

Abacus Software Machine Language for the Atari ST

(The assembler)

The term assembler is used to refer to a collection of programs that

allow the programmer to work with machine language on the computer. An

assembler program package has several distinct functions, and typically

includes an editor and a debugger.

In this section we'll discuss the typical components of an assembler

package such as the debugger. But first let's take a look at the actual

assembler. When we speak of an assembler, we refer to a program that

takes machine language instructions written in symbolic form and stored as

a text file, and translates them into codes that the 68000 processor can

execute.

Operation of the assembler

As you already know, an assembler is just a program that processes

data according to certain rules. The data to be processed is a series of

symbolic machine language commands (mnemonics). These instructions

comprise a file that is typically entered into the computer using an editor and

saved as a text file on diskette or hard disk for later processing. Since the

assembler creates a machine language program from this text file, it is often

designated as the source file, or source text.

114

Abacus Software Machine Language for the Atari ST

The goal of processing a source file is to create an executable machine

language program. Since this translation procedure is peformed by the

assembler, this process is also called assembly or assembling.

As a general rule, the resulting code of an assembly is stored on the

disk, again in the form of a file. Since a finished machine language program

represents only a specific arrangement of binary data, this file is called a

binary file. Other names used for it are object file, object code, absolute

file and destination file. It should be mentioned that an assembler can also

manage the source and destination files directly in the memory of the

computer. This is called memory-to-memory assembly. This has its

advantages when you're working with short programs and/or on small

computers, in that processing speed is increased considerably because no

mass storage accesses are required for the assembly.

For computer systems with the performance features of the Atari ST, a

good assembler offers the capability of creating relocatable files. In contrast

to executable machine language programs (which, as a rule, are bound to a

specific address space in the computer's memory), a relocatable file consists

of a "half-finished" machine language program missing the address space

specifications for the address space. These address specifications are stored

in a special way in a relocatable file. To create an executable machine

language program from a relocatable file, a special utility program is needed

to combine the "half-finished" conversion with the address specifications or

location. This creates an executable binary file from the machine language

program, or it loads the machine language program into memory at the same

time. Such a utility program is called a loader.

115

Abacus Software Machine Language for the Atari ST

,~~

L-..-_Ed_ito_r ---,k >
n Source text

I Assembler

I

DirectlY~
loadabl~
files

text file
(so u rce text)

Not yet assembled
additional program parts

Status
(on screen or in file)

Library function
pre-assembled modules

Status
(on screen or in file)

Execution thru the Operating System

Load to final address
and relocate there

Oyeryjew of assembly lan~ua~e pro~rammjn~

116

Abacus Software Machine Language for the Atari ST

At fIrst, working with relocatable fIles sounds complicated, but it offers

enormous advantages when considered and used carefully. Since the loader

must insert absolute addresses in the half-finished machine code, it

performs its task considerably faster than a complete assembly. The loader

does not have to make any conversions or error checks, because these were

all made by the assembler. Individual machine language programs are

usually created in a relocatable form when a program must be loaded at

different addresses. This is often the case during the test phase of a

program. As an alternative to using a loader, the programmer can write his

programs using relocatable code, in which no absolute addressing is used.

But there are also other, more significant aspects of relocatable flies. By

using another utility program-the linker-you can combine several

separately assembled, relocatable files into a single program. A new binary

or relocatable fIle then can be created by a linker.

You can use the combination of relocatable fIles and the linker for many

purposes. When you create larger programs, you will probably divide the

whole program into several small, logically distinct program modules .

These smaller programs can be developed and tested separately. When some

of the parts are finished, you can combine these modules into larger

modules and test it again until you have fmished the program.

Working this way, you will discover modules that were running

smoothly suddenly behave wildly when you add a new module. If you are

working with a single source text in such cases, you must reassemble the

entire file for each test pass-even the parts already working. This wastes

time unnecessarily. It is much better to break large programs up into smaller

source files and relocatable files . In the test phase you will have to make

117

Abacus Software Machine Language for the Atari ST

changes to and reassemble only the suspect module. You then can quickly

create an executable program with the linker.

This modularization has some interesting side effects. For example,

when working with large, complex programs, you can store the source files

of finished modules on another disk, keeping only the relocatable files on

the work diskette. This saves space on the disk that you can use for your

current source files. From experience, we have found that the ratio of the

source file size to the size of the resulting machine language program is

about 10 to 1. If you write programs as collections of individual modules,

using sensible divisions and standard procedure conventions (which we'll

talk about later), over time you will develop an entire collection of library

functions that you can use in new programs.

We should mention here that there are several such complete, tested

libraries on the market. There are, for example, comprehensive libraries for

file management or for solving special numerical problems. A professional

programmer can become considerably more efficient by using the routines

contained in such libraries.

Another important application of relocatable files is when we want to

solve some special problems in machine language, but actually write the

main program in a compiled language. The problem lies in connecting the

program parts written in machine language to those that the compiler

converted to machine language itself. As a general rule, compilers can also

be instructed to create relocatable files. The linker can then combine these

files with your own machine language programs. This lets you design

programs consisting of modules created by different high-level language

compilers.

118

Abacus Software Machine Language for the Atari ST

Let us now turn briefly to another possible component of the assembler

package. Often a debugger or a monitor is used during the development and

test phase. When looking for errors, we can view the machine language

program directly in memory, and perhaps modify it for test purposes.

The debugger or monitor is a component of most development

packages. Since the debugger or monitor displays your assembled machine

language program, it is unaware of the source file from which the

assembled code was produced. It cannot give you any information about the

variable names that you used in in the source file, for example. Therefore

the debugger or monitor becomes less and less useful, unless the

programmer can remember what variables the machine code represents.

To address this shortcoming, many assembler packages use symbol

files or label files. This file contains all of the symbolic names that the

programmer defined in high-level language. In addition, the assembler

places information in this symbOl file corresponding to the absolute values

of these symbols. When using a relocatable file, the symbol file is naturally

expanded by the linker. This makes all of the important information

available, separate from the executable machine language program. The

debugger or monitor can display the complete information about the

machine language program at any time by evaluating the symbol table.

Some systems even make the entire source text with all of the programmer's

comments available.

In conclusion, we would like to mention that the assembler also creates

a listing as it assembles. This listing contains the source file and machine

language opcodes produced by the assembler. This is very useful in the test

phase, when the assembler also creates a symbol table. All of the variable

119

Abacus Software Machine Language for the Atari ST

names (symbols) defined by the programmer, and together with their

assigned values are listed (and usually sorted) in the symbol table. A cross

reference list (or simply cross reference) showing all program lines

where the variables were found is also produced by most assemblers.

Short assembler tvpolol:Y

Here we would like to take the time to clarify some important

differences between various assembler packages. If you are considering

purchasing an assembler, you should familiarize yourself with the various

features so that you can make the right purchase decision.

The simplest form of an assembler is the direct assembler, or

line-by-line assembler. For this form of assembler there is no source file

and no editor. The programmer interacts with the assembler. He enters a

single instruction directly to the assembler. The assembler then immediately

translates the entire line into the corresponding machine code, and also

places the result directly into memory. This type of assembler does not

work with symbols. A line-by-line assembler rarely forms the heart of an

assembler package. But it is a useful tool within a monitor or debugger,

allowing quick changes to a machine language program being tested without

having to use the actual assembler. It doesn't make sense to use a

line-by-line assembler for long programs.

For more comprehensive programs a full symbolic assembler may

be used. This type of assembler allows the use of symbolic names for

constants, variables, and addresses in the source file. We'll explore the

flexibility that symbols offer later in the book. Here we'll say only that a

120

Abacus Software Machine Language for the Atari ST

symbolic assembler performs two passes through a source file in order to

create a machine language program. During the first pass the assembler

searches the source file looking for symbols and creates the values of these

symbols. The machine language code is generated during the second pass.

Because of this characteristic, this type is also known as a two-pass

assembler. Some assemblers use additional passes when assembling.

A macroassembler offers even more capabilities and options. A

macro is a sequence of several machine language instructions that can be

defined by the programmer with a macro name. Macros are usually defined

for recurring sequences of instructions in the source text. Wherever the

programmer puts a macro call in the source text, it behaves as if the

programmer had actually typed in all of the instructions for which the macro

stands. You can defme an entire library of typical instruction sequences with

macros. Since this is not a programming technique per se, macro processing

is also known as pure text substitution, a sort of programming shorthand.

For the sake of thoroughness, and to prevent confusion of terms, we'll

mention the term cross assembler. An assembler does not necessarily

have to be implemented on the machine for which it creates machine code.

The computer on which the cross assembler runs is called the host. The

computer on which the generated machine code is to run is called the target.

Machine code produced by a cross assembler usually cannot be run on the

host computers. Testing machine language program under such conditions

calls for a simulation program. Cross assemblers are mainly used in cases

where the target system does not exist yet (computers in development) or

the target system is not powerful enough to support program development

(rnicrocontrollers).

121

Abacus Software Machine Language for the Atari ST

The format of the source file

As we have already learned, a source file represents the symbolic form

of a machine language program. The text of the source file is line-oriented,

whereby each line usually contains just one instruction that the assembler

processes. The logical processing sequence within a line is from left to

right, from the first (top) line to the last (bottom). This form of

representation follows our normal style of reading written materials, i.e.

newspapers, books, etc.

In an assembly language program, we can distinguish between several

groups of instructions that perform certain tasks, and their different

syntactic rules. In this section we want to familiarize you with these groups

of instructions before we discuss them individually.

As already mentioned, in an assembly language program, machine

language instructions are represented by mnemonics and operands. A label

may be placed in front of a mnemonic and is a symbol designation of the

address at which a machine language instruction is created by the assembler.

The programmer may use this label to refer to this address elsewhere in the

program without having to know the value of the address. We'll discuss

symbols in more detail later.

A line within the source file may also contain a comment. Comments

explain the purpose of complex programs and the programmer may make

the algorithms that he uses easier to understand. We recommend that you

place comments within the source files so that it is clear what it going on in

the program. Naturally, a line within a source file may contain only a label

and/or comment. This serves only to improve the readability and appearance

122

Abacus Software Machine Language for the Atari ST

of the program text and has no other function.We can include these lines in

a source file, even though they create no machine code. The same applies to

blank lines.

Another group of assembler instructions includes all types of direct

label and symbol definitions. These lines are called declarations. Other

terms that you may encounter are value assignments and symbol or address

definitions.

A declaration is the assignment of a specific value to a symbol or label.

Declarations are used by the programmer to keep a program independent of

values as much as possible. For example, a programmer can designate a

print position as "column" and assign the constant "10" to this designation.

In the program he can always refer to the symbol "column" when he means

the print position "10". This has two useful effects. First, the

self-documenting nature of the program is increased; second, the program

becomes easier to change. If the programmer wants to change the print

position later, he need change only the constant in the declaration of the

symbol "column". The assembler then uses the new print position wherever

the symbol "column" appears.

We have already mentioned labels. In contrast to symbols, which

designate variable and constant values, labels are used exclusively for the

symbolic designation of addresses. Not every address used by the

programmer (jump destinations in particular) can be defined by a label in a

line of source code. This is because some of these jump destinations do not

lie within the assembly language program. These addresses, which must be

defined by means of a symbol declaration, are designated as external labels.

123

Abacus Software Machine Language for the Atari ST

Some assemblers are capable of textual declarations. Special reserved

symbol names are assigned text strings. Such a textual declaration could be,

for example, "DO = COUNTER" . "DO" is a reserved symbol and in the

assembler syntax designates a data register of the 68000. If the programmer

uses this declaration in his/her program, the assembler understands from

this declaration that the programmer wants to refer to the DO register as

"COUNTER". This function also has no effect on the logical operation of

the machine language program. Good programmers often write their

programs completely symbolically, as this practice leads to fewer errors.

The last group of assembly language instructions is the assembler

directives. These are often referred to as pseudo-opcodes, or simply

pseudo-ops. As a general rule, assembler directives do not create machine

code. They serve to control the assembly, to select certain options, and to

organize the machine instructions in memory. We can divide the directives

into various groups according to their function. The most important

directive in assembly language programming tells the assembler where-the

assembled code will reside in memory. In this same group are all the

directives that tell the assembler where in memory it should reserve space

for data, or where tables will be defined. Other directives are responsible for

the appearance of the listing or telling the assembler what source files it

should work with. More on this later.

124

Abacus Software Machine Language for the Atari ST

Constants and arithmetic expressions

In assembly language programming, we distinguish only between

numeric and alphanumeric constants. As you have already learned,

microprocessors work with binary data. Numerical constants can be

represented in various number systems according to the purpose they serve.

Syntax rules governing the designation of the number system make it

possible for the assembler to interpret a constant in a specific number

system.

In the decimal system, numbers are represented by the digits 0-9. In

some cases, a "#" (number sign) is placed in front of the decimal number.

Examples: 1 0 0

#100

Some assemblers recognize hexadecimal numbers by default. To

distinguish hexadecimal numbers from decimal numbers and symbols, they

must have a leading zero. This is often the case, because a programmer

almost always writes hex numbers in byte or word form. Another

possibility is to precede the number with a "$" (as we have used) or suffix

the number with the letter "H" .

Examples: OD

$FOOO

lOOOH
Some assemblers also allow the representation of octal numbers. Octal

numbers are usually indicated with an "@" sign placed before or after the

number.

125

Abacus Software

Examples: 1 7@

@10

Machine Language for the Atari ST

You can also represent binary numbers; they are indicated with a "%"

placed before or after the number.

Examples: %1000000

%1010

Independent of the representation and the number of places specified,

the assembler evaluates numbers from the right. It automatically expands or

truncates the number to fit the appropriate size of the operand. If bits are lost

during this process, a warning message is usually indicated.

Some assemblers allow the use of a variable number base. Here the

number is followed by an "X" and the number base. The number base is

specified in decimal.

Examples: 1010x2 (binary number) corresponds to decimal 10

1000x8 (octal number) corresponds to decimal 512

1250x10 (decimal number) corresponds to decimal 1250

2000x16 (hex number) corresponds to decimal 8192

An alphanumeric constant is designated as a sequence of characters

in ASCII code. It doesn't matter if the codes are printable characters or

control characters. Since some control characters cannot be processed by a

text editor, the programmer must represent these in the form of numeric

constants. In order for the assembler to be able to distinguish strings from

normal source text, the characters that form a character string are enclosed in

126

Abacus Software Machine Language for the Atari ST

delimiters. One delimiter designates the start of the string, and a matching
delimiter the end. Typical delimiters are the quotation mark ("), slash (I),

and apostrophe (').

Examples: "Hello ATARI!"

/Hello reader!/

A special rule concerns the representation of the delimiter itself within a

string. To represent the delimiter itself within a string, it must appear as two

successive delimiters.

Examples: "Hello "" reader""" corresponds to I Hello "reade r " I

/ 1 0 / / 5=2 / corresponds to "10/5=2"

An arithmetic expression is one or more constants, symbols or

functions connected by an operator. Constants andlor symbols of various

types occur in a mixed expression. Various operators and functions are

available to you depending on the capability of the assembler. These

operations are not converted to machine language instructions by the

assembler. Rather, these operations are used exclusively for calculating the

value of the operands of instructions.

Examples: 10+$OA

LINE+1

NOT 10

In general, all 68000 assemblers offer all of the basic arithmetic

operators and some of the logical operators for generating an expression.

127

Abacus Software Machine Language for the Atari ST

Symbols and system constants

We have talked about using symbols and labels. Now we'll familiarize

ourselves with the syntactic rules of symbolic assembly language

programming. The assembler must be able to clearly distinguish symbols

from the rest of the text in the source file. For this reason there are certain

rules regarding the definition of symbols. Generally, symbol names consist

of a continuous sequence of letters, digits and certain special characters.

Imbedded spaces in a symbol name are not allowed. Symbols must usually

be separated from other parts of the source file text by spaces. If the

separation can be made clear through other characters, such as with

mathematical operators, the spaces can usually be omitted. A symbol may

not begin with a digit. This distinguishes between symbols and numbers.

U sing a reserved name as a symbol is forbidden. Most assemblers,

however, allow a reserved name to appear within a label. Reserved names

include all mnemonics, assembler directives, function names, and system

constants. System constants are predefined symbol names whose value the

assembler itself manages. We'll talk more about the system constants later.

Usually the length of a symbol is limited to a maximum number of

characters. For obscure reasons, a length of 6 characters is often the

maximum for a symbol name. Some assemblers allow arbitrarily long

symbol names, but only a certain number of the leading characters are

evaluated to distinguish symbols from each other. These are called

significant characters. Because of these limitations, the programmer is often

forced to find short, easily-remembered abbreviations for his symbols.

Some assemblers allow special characters in the symbol name in order to

increase our comprehension. Typical special characters allowed are a period

(.), underline L), backslash (\), and colon (:).

128

Abacus Software

Examples: CHROUT

DATA IN

LOOP! :

SPC.20

Machine Language for the Atari ST

System constants are a special group of symbols. The symbol

names and the number of system constants are different depending on the

assembler. Here are some commonly-used system constants.

Examples: CR

TRUE, HIGH

FALSE, LOW

*

Control character ($OD)

True ($FFFF)

False ($0000)

Current address

The last system constant in our example is not really a constant at all.

The value of this symbol is always calculated by the assembler at the start of

each program line. The value always remains constant within that line. This

symbol always represents the address at which the assembler will place the

next machine instruction. Later we'll talk more about this symbol in

connection with address calculation.

129

Abacus Software Machine Language for the Atari ST

Mnemonics and mnemonic extensions

In this section we'll take a look at the syntactic rules for the mnemonics

or opcodes that detennine the actual machine language instructions.

Unfortunately, these mnemonics are not standardized. But there is a

standard set by the manufacturer and followed by assembler developers. We

will make special mention of differences.

As you can easily see on the next pages, a mnemonic is always selected

from a specific group of instructions; within it the assembler will find the

actual instruction. An instruction group includes only machine language

instructions that perform essentially the same function.

We will explain all of the instructions used in this book. The following

table serves as an overview and explains principle relationships. You do not

have to memorize all of the mnemonics.

130

Abacus Software

ABCD.B
ADD.X
ADDA.X
ADD I .X
ADDQ.X
ADDX.X
AND.X
AND I .X
ASL.X
ASR.X
Bcc.X
BCHG.X
BCLR.X
BRA.X
BSET.X
BSR.X
BTST.X
CHK.W
CLR.X
CMP.X
CMPA.X
CMPI.X
CMPM.X
DBcc.X
DIVS.W
DIVU.W
EOR.X
EORI.X
EXG.L
EXT.X
JMP
JSR
LEA.L
LINK
LSL.X
LSR.X
MOVE.X
MOVEA.X
MOVEM.X
MOVEP.X
MOVEQ.L
MULS.W
MULU.W

OPl,OP2
OPl,OP2
OPl,OP2
OPl,OP2
OPl,OP2
OPI,OP2
OPI,OP2
OPl,OP2
OPI (,OP2)
OPI (,OP2)
OPI
OPl,OP2
OP1,OP2
OPI
OPI,OP2
OPI
OPI,OP2
OPl,OP2
OPI
OPI,OP2
OPl,OP2
OPI,OP2
OPI,OP2
OPI,OP2
OPI,OP2
OPI,OP2
OPI,OP2
OPl,OP2
OPl,OP2
OPI
OPI
OPI
OPI,OP2
OPl,OP2
OPl,OP2
OPl,OP2
OPI,OP2
OPl,OP2
OPl,OP2
OPl,OP2
OPI,OP2
OPl,OP2
OP1,OP2

Machine Language for the Atari ST

Add binary-coded decimal, extend
Add binary
Add binary to address register
Add immediate
Add immediate quick
Add binary with extended
Logical AND
Logical AND with immediate value
Arithmetic shift left
Arithmetic shift right
Branch if condition code true
Test bit and change
Bit test and clear
Branch always
Bit test and set
Branch to subroutine
Bit test
Check register against bounds
Clear
Compare
Compare address register
Compare immediate
Compare in memory
Decrement and branch, conditionally
Divide signed
Divide unsigned
Logical exclusive OR
Logical exclusive OR with immediate
Exchange register
Sign extend
Jump absolute
Jump to subroutine absolute
Load effective addr to addr register
Link local base pointer
Logical shift left
Logical shift right
Move source data to destination
Move to address register
Move multiple register
Move from or to peripheral register
Move immediate quick
Multiply with sign
Multiply without sign

131

Abacus Software

NBCD . B
NEG.X
NEGX.X
NOP
NOT.X
OR.X
ORI.X
PEA.L
RESET
ROL.X
ROR . X
ROXL.X
ROXR.X
RTE
RTR
RTS
SBCD.B
Scc.B
STOP
SUB.X
SUBA . X
SUBI.X
SUBQ.X
SUBX.X
SWAP.X
TAS.B
TRAP
TRAPV
TST.X
UNLK

OPl,OP2
OPI
OPI

OPI
OPl,OP2
OPl,OP2
OPI

OPI (,OP2)
OPI (,OP2)
OPI (,OP2)
OPl(,OP2)

OPl,OP2
OPI
OPI
OPl,OP2
OPl,OP2
OPl,OP2
OPl,OP2
OPl,OP2
OPI
OPI
OPI
OPI
OPI
OPI

Machine Language for the Atari ST

Negate binary-coded decimal
Negate
Negate with extend
No operation
Logical NOT
Logical OR
Logical OR with immediate value
Push effective address
Reset external devices
Rotate left
Rotate right
Rotate left with extended bit
Rotate right with extended bit
Return from exception
Return and restore register
Return from suboutine
Subtract bin. coded dec. with extend
Set byte according to condition code
Stop with condition code loaded
Subtract binary
Subtract binary from address reg
Subtract immediate
Subtract immediate quick
Subtract binary with extend
Swap register halves
Test byte and set always bit 7
Software trap always
Trap on overflow
Test byte
Unlink local area

You probably noticed the . x, . B, . w, and . L extensions on many

of the instructions. These mnemonic extensions are used to specify the

width of the operand that the instruction will use. The extensions have the

following meanings:

132

Abacus Software Machine Language for the Atari ST

· B operand width BYTE, 8 bits, 1 byte, 112 word

• W operand width WORD, 16 bits, 2 bytes, 1 word

· L operand width LONG, 32 bits, 4 bytes, 2 words

· X any of the above operand widths

When you use an instruction in the mnemonic table labelled with .B, . W

or . L, it means that this instruction can be used only with this operand

width. Some assemblers permit the programmer to omit the extension on

these commands. Instructions having . X as the extension can be used with

any of the three operand widths. If the extension is omitted when using

these commands, the assembler assumes that programmer wants to use the

WORD operand width. Commands for which no extension is listed in the

mnemonic table have an implicit operand width.

Some instructions in the mnemonic table have a special form of

mnemonic extension in the form of two lower-case c's (c c). These are

condition codes, instructions to test for a specific condition and

performing an operation based on the result of the test. The condition code

determines the condition that the instruction will test for. The programmer

extends the mnemonic with this condition code (cc).

The second column of the table contains the specification of the

instruction operands. Some commands have no operands. In this case these

instructions specify the operand(s) implicitly. An operand specified in

parentheses is optional. We'll explain more about the operand formation

later.

133

Abacus Software Machine Language for the Atari ST

Condition codes

We won't examine all of the condition codes of the 68000 flag register.

Instead we want to give you a general understanding of the purpose of the

condition codes.

68000 instructions that test the flags always refer to one or more of the

following flags:

c carry carry for addition, borrow for subtraction

N negative result is negative (two's complement)

V overflow last operation lead to an overflow

z zero result is zero (all bits)

There are two condition codes for each of these flags, depending on

whether the programmer is interested in a set (1) or a cleared (0) flag. We'll

present these eight condition codes using a conditional branch instruction.

The general form of the instruction is Bcc OPI, where OPI is the branch

destination if a test for a specific condition is true (see addressing modes).

ee Bee OPl Branch if carry clear Jump if e = 0
es Bes OPl Branch if carry set Jump if C = 1
P L BPL OPl Branch if plus Jump if N = 0
MI BMI OPl Branch if minus Jump if N = 1
ve BVe OPl Branch if overflow clea Jump if V = 0
VS BVS OPl Branch if overflow set Jump_ if V = 1
NE BNE OPl Branch if not equal Jump if Z = 0
EQ BEQ OPl Branch if equal Jump if Z = 1

134

Abacus Software Machine Language for the Atari ST

These condition codes are used when the programmer wants to test the

state of the flags. The setting of a flag can take place as a result of a

comparison operation. For example, suppose we compare two operands:

CMP OPI, OP2

As a result of this instruction the Zero flag is set or reset. If OP 1 =op 2 ,

the Zero flag is set. If OP l::tOP2 the Zero flag is reset. Two condition

codes can be used to test the Zero flag: EQ (tests for Zero flag set) and NE

(tests for Zero flag reset).

EQ BEQ OPl Branch if equal Jump if OPl = OP2
NE BNE OPl Branch if not equal Jump if OPl ~ OP 2

To test for OP 1 greater than OP 2, OP 1 less than OP 2 or OP 1 equal to

OP2, we must recall binary number representation. Binary numbers can be

viewed as either signed or unsigned numbers. An example will clarify this:

255> 0

-1 < 0

(% 11111111 is greater than %00000000)

(%11111111 is less than %00000000)

Note how the numbers are complemented for negative numbers. The

68000 supports the processing of both types of numbers. The following

condition codes are used for unsigned numbers:

HS BHS Branch higher same Jump if >= OPI

135

Abacus Software Machine Language for the Atari ST

And for signed numbers:

L p
L p

G Branch reater
GE Branch greater/eq.

It should be noted that these comparison instructions work in

conjunction with the CMP instructions. As a result OP 1 is always compared

to OP2. We will mention two more condition codes having a special

relationship to the instructions DBcc. W OP 1, OP 2 and Sec. B OP 1.

These are special instructions that affect the execution of the instruction

depending on the condition. More on these commands later.

T ST OPl TRUE: The condition
,

always fulfilled 1S

F DBF, OP1, OP2 FALSE: The condition 1S never fulfilled

These condition codes have no meaning In connection with the

conditional branch instructions. There is another mnemonic for the

instruction BT (branch true): BRA (branch always). The variant BF is not

allowed since the corresponding opcode would be identical to that of BSR

(relative subroutine call)-and it's a little obscure anyway.

Syntax of the addressjne modes

By using the addressing modes you can determine what operands an

instruction will operate on. In the chapter describing the 68000

microprocessor, we explained the function of all 14 addressing modes.

136

Abacus Software Machine Language to,· the Atari S1'

Here we'll show you how to represent and use the individual addressing

modes in assembly language programming. If you take a look at the list of

mnemonics, you will see that there are basically four classes of instructions:

• instructions without operands

• instructions with one operand

• instructions with two operands

• instructions with one and optionally two operands

Instructions that do not need an operand represent the first and simplest

form of addressing. The instruction contains the addressing mode

implicitly. In assembler syntax, implicit addressing is represented by simply

writing the mnemonic.

Examples: NOP

RESET

RTS

no operation

reset peripherals

return from subroutine

All instructions requiring operands use one or more of the 13 other

addressing modes. In theory, any of these addressing modes can be used to

generate an opcode. In practice, however, there are some limitations on the

combination of instructions and addressing modes in the 68000 instruction

set. The instruction overview in the appendix indicates what instructions can

be used with a particular addressing mode.

One of the most important addressing modes is direct register

addressing. A distinction is made between data and address register.

137

Abacus Software Machine Language for the Atari ST

Examples: CLR.L DO * clear data register 0

ADD.L Dl,DO *DO=DO+Dl

ADDA.L DO,Al * Al =Al +DO

MOVEA.L AO,Al * Al = AO

In the above examples we always used the long-word operand width in

order to use all 32 bits. For. W, for instance, only the lower 16 bits are

used. In these examples you can also recognize the use of two operands

(separated by a comma) and the mixing of two addressing modes (address

and data register direct) .

If constants are required for an operation, the immediate addressing

mode is used. In assembler syntax, the immediate operand is written as a

"#" (number sign) followed by an arithmetic expression.

Examples: MOVE. L # 3 0 , DO

ADDI. W #$AO, D7

CMFI. B #CR, DO

* DO = 30 (load DO with 30)

*D7 =D7 + 160

* Compare 00 with CR

Many operands' addresses in memory are already known. In these

cases the programmer can access this address directly. This access is called

absolute addressing. The 68000 distinguishes between the addressing

modes absolute long and absolute short. When formulating an assembly

language program, the programmer does not need to take this difference into

consideration, because the assembler itself will chose an appropriate

addressing mode based on the size of the operand. In the assembler syntax,

we simply specify the desired address as an operand by means of an

arithmetic expression.

138

Abacus Software

Examples: MOVE . B

CLR.W

Machine Language for the Atari ST

$OOABCDEF, DO * Load byte (abs.long)

$1000 * clear word (short)

Another form of operand addressing is the address register indirect

mode. Here the absolute address is not given in the instruction, but only an

address register that contains the absolute address. In assembler syntax this

is indicated by placing the address register in parentheses.

Examples: MOVE. L DO, (AO)

MOVE.B (AO) , (Al)

* DO to address in AO

* Byte from AO to Al

Note in the last example the transfer of a byte, with address in address

register AO, to the address contained in address register AI, without

requiring an additional register.

The postincrement and predecrement modes are extensions of the

address register indirect addressing mode. As you can see in the last

example, tranferring a byte (or any other operand width) is very simple. In

practice, however, entire strings of bytes are often processed. Here you

must program a loop whereby the address register is incremented by the

number of bytes to be transferred. The addressing mode predecrement is the

opposite of postincrement. In assembler syntax these addressing modes are

represented by prefixed and suffixed addition and subtraction signs.

Examples: CLR.B (AO)+ * Clear byte and AO=AO+ I

CLR . W - (AI) * AI=AI-2 and clear word

MOVE (AO) +, (Al) + * Move word, address+2

MOVE (AO) +, (Al)- * Rotate words: AO to Al

MOVE (AO)+,DO * Word from AO to DO, AO+2

139

Abacus Software Machine Language for the Atari ST

Another variant of the address register indirect addressing is the

address register indirect addressing with displacement. With this

addressing mode, a constant value (displacement) is added to the actual

address contained in the address register. By using this addressing mode,

the programmer can easily access an element of an array without having to

change the address register for each access. In assembler syntax, the

displacement is specified as an arithmetic expression placed before the

indirect addressing.

Examples: CLR . B

CLR.B

MOVE

O(AO)

I (AO)

(AO),I(AO)

* Byte addressed via AO

* Next byte, AO unchanged

* 1st to 2nd byte of AO

The addressing mode indirect address register addressing with

displacement and index (whew!) is an extension of the indirect address

register addressing with displacement. In this addressing mode, the contents

of the address register, the displacement, and the contents of another data or

address register are all added together to form the address of the operand.

This addressing mode is also used to access elements of an array with the

help of a variable pointer (index). The operand width of the index register

(data or address register) can be specified in the instruction. Either a word

(.W) or a long word (.L, the entire register) is then used in the addition. To

represent this addressing mode in assembler syntax, the index register is

placed inside the parentheses after the address register.

Examples: NEG I (AO, DO. L) * Negate 2nd word, indexed DO

NEG 2 (AO, AI) * Neg 3rd word, word index

140

Abacus Software Machine Language for the Atari ST

Another form of addressing is the program counter relative mode, or

simply relative addressing. The relative address involves an index added

to the current program counter contents in order to get the effective memory

address. This addressing mode is used for conditional jump instructions and

for the two special instructions BSR and DBcc. Because relative

addressing is defined by the mnemonic used, the programmer need not

designate it specially in the instruction. The assembler not only recognizes

the addressing mode, it also calculates the relative address of the instruction

itself when the programmer specifies the address of the branch destination.

We'll talk more about this function of the assembler in connection with

address calculation.

Examples: BNE

BSR

DBF

NOTE QUAL

CALC

LOOP

* Jump on OP1<>OP2

* Relative subroutine jump

* Jump to the start of the loop

A special form of relative addressing is the program counter

relative addressing with displacement and the program counter

relative addressing index. These last two addressing modes function

identically to the address register indirect addressing with displacement

with or without index. These addressing modes are used to write relocatable

programs. They cannot be combined with all machine language programs,

however. In assembler syntax, these addressing modes are distinguished

from the address register indirect addressing by the specification of PC,

instead of an address register.

Examples: CLR ARRAY (PC) * Clear 1 st word in data array

CLR ARRAY (PC, AO) * Clear array, indexed AO

141

Abacus Software Machine Language for the Atari ST

In the following sections we'll talk: more about the use of these

addressing modes. We will also discuss some syntactic details of special

instructions.

As you see in the description of the last addressing modes, there are

some special reserved names to indicate the special registers of the 68000.

In the cause of program counter relative addressing, the program counter

is indicated by pc. As you have already learned, address register A7 is the

user stack pointer, or in the supervisor mode (A 7') it's the supervisor stack

pointer. To improve the readability of the program, most assemblers allow

the use of USP for the user stack pointer and SSP for the supervisor stack

pointer. One exception is the use of USP within a M 0 V E

instruction-different instructions will be created with this combination.

Another special register is the status register (SR). Part of the status

register is the condition code register (CCR). The status register can be

completely or partially set to a defined value by means of a special MOVE

instruction. A read access is possible only on the entire status register. Here

again, we refer you to your 68000 microprocessor reference book for more

information. Some examples of assembler syntax:

Examples: MOVE

MOVE

MOVE

#O,CCR

#$1000,USP

sr, '-(A7)

* Condition code register true

* Initialize stack pointer

* Save status on stack

In connection with the MOVE instruction, we make mention of a highly

specialized operand formation-the register list. Some or all of the data

and/or address registers can be stored at or loaded from an address

simultaneously. The assembler can create the appropriate opcode from the

142

Abacus Software Machine Language for the Atari ST

register list. A register list is an enumeration of registers in any order, with
the registers separated by slashes (" 1"), or a sequence of registers in which

the fIrst and last registers are given and connected by a dash (" _").

Examples: MOVEM

MOVEM

MOVEM

MOVEM

DO,-(A7)

DO/AO,-(A7)

* 1 reg on the stack

* 2 regs on the stack

(A 7) +, DO-D7 * Data regs from stack

(A 7) +, DO-D7 /AO-A 7 * All regs from the stack

In summary we would like to give you an overview of the syntax rules

for the addressing modes, and indicate any deviations in different

assemblers.

143

Abacus Software

Addressira Mode
Implicit
Data Register direct
Address Register direct
Immediate
Absolute long
Absolute short
Address register indirect
Post increment
Predecrement

Machine Language for the Atari ST

Ooerandtvoe

Dn
An
#=Data.X
Address.W
Address.L
(An)
(An)+

Adr. reg. indirect with displ.
- (An)
D16(An)
D8(An,Rn.X)
Offset
D16(PC)
D8(PC,Rn.X)

Adr. reg. indirect with displ. and index
Relative
Relative with displacement
Relative with displ. and index

Register list
User stack pointer
Supervisor stack pointer
Status register
Condition code register
Program counter

Key:

aevlar.lons:
(seldom)

Dn
An
Rn
Data
Address
Offset
D8
D16
i, j, n
.B
.W
. L
.X

SP
$
Address
Ri, Xi
D
A7

Di-Dj/Ai-Aj
USP
SSP
SR
CCR
PC

Data registers 0-7
Address registers 0-7
Dn or An
.B, .W, or .L constant
.W or .L constant
· B or . W constant
• B constant
· W constant
Register number 0-7
Byte
Word
Long word
.B, .W, or .L

corresponds to USP
corresponds to PC
corresponds to address
corresponds to Rn
corresponds to D8 or D16
corresponds to SSP

Syntax Summary for Addressing Modes

144

Abacus Software Machine Language for the Atari ST

The assembler directives

Every assembler offers a certain number of assembler directives

(pseudo-opcodes). In general, directives do not create any machine code.

For a better overview, we place the most important directives into the

following main groups:

• Address calculation, memory management, and organization

• Source text management and pass control

• Tables and data areas

• Symbol declaration

• Macro processing

• Output format and options

Directives are prefixed by a period (" .") followed by an abbreviation. The

abbreviation or mnemonic can be followed by one or more operands.

Generally, the same conditions that apply to the formation of arithmetic

expressions apply to the formation of operands.

The most important directive in the first group is the ORG directive.

This directive tells the assembler where the generated machine code will run

in memory. As a general rule, this is the first instruction in an assembly

language program. In any event, the assembler must encounter an ORG

directive before the fIrst machine instruction or table can be assembled, so

that the assembler can create the appropriate machine code for the defined

address.

Example: .ORG

.ORG

$1000

STARTADDR

145

* Absolute address specifIcation

* Symbol must be defIned

Abacus Software Machine Language for the Atari ST

Sometimes you may have to reserve space in a program-for instance,

to save temporary values. The DS . X pseudo-op is used for this purpose.

This directive reserves a specific number of bytes, words, or long words

based on the operand width (. X). A corresponding number of fill characters

is then generated at the next available address. $00 is usually used as the fill

character. At this point it should be mentioned that the programmer can also

add a label to a pseudo-op instruction. By doing this, the reserved space can

be accessed symbolically .

Examples:

TAB

. DS . B 256 * 128 words will be reserved

• DS . W 128 * 128 words will be reserved

DATA .DS.L 64

BYTE1 .DS.B 1

* 128 words will be reserved

* 1 byte will be reserved

The attentive reader will note a typical problem of defining a table in our

last example. As you have already learned, a machine language instruction

must always begin on an even address. If the programmer defined a table

that comprises an uneven number of bytes, the next machine instruction

would begin on odd address. To avoid this, the EVEN directive is used to

advance the address counter of the assembler to the next even address.

There are also some assemblers that automatically preserve the word

alignment after defining tables .

Example: DATA . DS. B 3 * Reserve 3 bytes

. EVEN * Align to word boundary

START MOVE. B DO, DATA * Fill table

146

Abacus Software Machine Language for the Atari ST

We said that the area reserved by the DS directive is filled with $00. But

there are also assemblers that permit you to fill the area with an alternate

character. The FILL directive is used to define an alternate fIll character.

Examples: .FILL $20

. FILL "A"

* Fill with spaces

* Fill with A ($41)

Another form of the DS . X directive is the DC. X directive. With this

directive, a memory area can be reserved and also filled with constants

(table). The programmer can give a list of alphanumeric expressions,

separated by commas, following the directive that are then placed in

memory.

Examples: TAB .DC.B 1, "A" * Creates $0141

.DC.W 1, "A" * Creates $000 1 ,$4100

.DC.L 1 * Creates $0000,$0001

.DC.L "AB" * Creates $4142,$0000

In the above examples, note the special treatment of strings. Strings are

filled with $00 to the full length of the operand. As a general rule, the

address counter of the assembler is not automatically advanced to the next

even address after a DC. X directive (EVEN directive), so that several DC's

can form a contiguous table. Some assemblers automatically recognize the

end of multiple DC. X directives and correct the address counter to an even

address as soon as an instruction following a DC. X is not DC . X.

Another important task of an assembler is the definition of symbols and

labels that cannot be assigned a value by the assembler (external jumps,

147

Abacus Software Machine Language for the Atari ST

constants). These definitions are made by the EQU psuedo-op. No

distinction is made as to whether the name is a symbol (data) or a label

(address). A symbol can be assigned any value, as represented by an

arithmetic expression, up to a maximum of 32 bits. A symbol may be

defined only once. If a symbol must be assigned a new value, some

assemblers offer a REDEF directive. Some examples clarify the assembler

syntax of these directives:

Examples: ADDRESS .EQU $1234 * corresponds to $0000 1234

CHAR .EQU "A" * corresponds to $0000000 1

TEXT .EQU " ABC" * corresponds to $00414243

TEXT .REDEF CR * corresponds to $00000000

Another group of directives allows the inclusion of multiple source files

(separately created) that can be combined into a single machine language

program. Multiple source files may be chained together with the FILE

psuedo-op. The directive specifies the next source file which is to be

assembled as part of the machine language program. The INCLUDE

psuedo-op is similar; it's used to insert a source file at that particular point in

the current source file.

148

Abacus Software

Example:

FILE A

Source line 1
Source Line 2
Source Line 3

•
•
•

Source Line
Include FILE
Source Line 52

•
•
•
•

File FILE

Machine Language for the Atari ST

FILE B

Source Line 100
Source Line 101

•
•
•

Source Line

FILE C

Source Line1000
Source Line 1001

•
•
•
•
•

Source Line 1999

The programmer has other directives available to alter the order of

assembly. The simplest directive is . END. This directive indicates that the

end of the source has been reached.

Example: .END * End assembly

Conditional assembly is controlled by a another group of directives.

Here a condition is tested before a designated portion of the source text is

assembled, and the assembly of this source text is perfonned only if the

condition is true. If the condition is not true, this portion of the source text

is excluded from the assembly.

149

Abacus Software Machine Language for the Atari ST

Before we go into the syntax rules for these directives, we would like to

illustrate the use of conditional assembly.

Let's assume that you are developing a program that will be used in

both English and German. You could first develop the program in English

and then make a German translation when the development is complete.

You might discover that it isn't possible to make a direct translation of the

English words. Often an entire screen needs to be changed because a single

word has become too long and no logical abbreviation or replacement can be

found. Such modifications often require a large number of subsequent

changes. When the program is finished, even an experienced programmer

might find it too difficult to coordinate the changes.

One alternative is conditional assembly. IT you're writing a segment of a

program and anticipate changes will be required for the German version,

you can then program both versions of the segment and test them. By

means of conditional assembly you can specify only the English or German

portion be assembled with the neutral language-dependent portions. In

conditional assembly, an arithmetic expression is evaluated and the result

examined. If the result is true (not zero), the condition is satisfied; if the

result is zero, the condition is not satisfied. In our example, the programmer

could define a symbol "LANGUAGE" as 0 for English and 1 for German,

and use this symbol for the conditional assembly. A portion of the source

me to be conditionally assembled is introduced by the following directives:

Examples: . IFE LANGUAGE

. IFN LANGUAGE

* Assemble if LANGUAGE=O

* Assemble if LANGUAGE <>0

150

Abacus Software Machine Language for the Atari ST

The source file to be conditionally assembled is followed with the

END IF directive. If the condition was unsatisfied, the assembly continues at

this line.

Example: . ENDIF * End of conditional assembly

Some assembler allow limited interaction with the programmer during

assembly. Two directives are used for this. The PRINT directive allows

outputting of messages to the screen. The programmer can make a keyboard

input by means of the INPUT directive. The assembler then assigns the

keyboard input to a symbol, similar to the EQU directive. The INPUT

directive is especially useful in the development and , test phase of a

program, when there are much-used variable parameters to change. This

form of programming allows you to avoid using the editor just to change a

few parameters. In reference to our previous example (English/German),

you could output a question regarding the language and assign a control

value (0 or 1) to the symbol LANGUAGE by means of keyboard input. The

following example should clarify the assembler syntax:

Example: .PRINT "English (0) or German (l)?",CR

.INPUT LANGUAGE

Another group of directives handles the format control. These directives

can control the format of the assembler listing. Moreover, the programmer

can use certain options to adapt the list to his/her needs, or make it easier to

read (program documentation). The following list illustrates the many

possibilities and explains the syntax rules:

151

Abacus Software Machine Language for the Atari ST

Examples: .NOLIST * Do not create a listing

.LIST * Create listing again

. PAGE * Move to a new page

. NOFORMAT * No formatted output

. FORMAT * Output listing formatted

.SPC 3 * Print three blank lines

.LLEN 80 * Fonnat 80 characterslline

.LINE 72 * Set page length to 72 lines

.TOP 6 * 6 blank lines between pages

.TITLE "Text" * Defme page title

.XPUNCH * No hex dump creation

. PUNCH * Create hex dump again

. NOCROSSREF * Suppress cross reference

.CROSSREF * Print cross reference

Some assemblers manage the assembly control options by means of an

OPTION directive. Here each assembly control option does not have its

own directive, but shares a common directive with all control options. The

option list behind the OPTION directive controls which controls are on or

off.

Examples: . OPTION NOLIST, NOPUNCH, NOFORMAT

.OPTION LIST, PUNCH, FORMAT

Assembler directives are generally the least standardized elements of

assembly language programming. We have tried to give you a look at the

possible range and uses of directives. You can learn the syntax rules of your

own assembler by reading your assembler manual.

152

Abacus Software Machine Language for the Atari ST

Macro processin~ with an assembler

We have already explained the possibilities that macro processing

offers. Here we would like to familiarize you with the syntax rules. The

macro definition and macro call are created with assembler instructions

similar to directives.

Example: . MACRO BYTEARRAY_ADR(XIND,YIND,ADDR)

MOVEM DO, - (SP) * Save register

MOVE. W YIND, DO * Y-index for multiplication

MULU . W #100, DO * *BYTES perline

ADD. L XIND, DO * Add X-index

ADD I. L #BASE, DO * + Table start address

MOVE.L DO,ADDR

MOVEM (SP) +, DO

.ENDM

* Save address

* Register to old value

* End of defmition

.•. BYTEARRAY_ADR (XPNT,YPNT,ST)

In our example, the address of a byte within a two-dimensional table is

calculated. It should be noted that a macro does not involve a subroutine

call, but the assembler behaves as if the source text of the macro definition

had been written at the place where the macro call occurred. Macros are

written when a given sequence of instructions are used several times in a

program.

Here the assembler must know the type of data (symbols or labels) the

macro will use. The programmer tells the assembler in the macro definition

what symbols within the macro definition should be replaced by other

153

Abacus Software Machine Language for the Atari ST

symbols in the macro call. All symbols within the macro definition have

validity only within the macro, in order to avoid multiple definition

problems in multiple macro calls. However, the programmer can use any

external symbol inside the macro.

To further clarify the function of macro processing, we'll show you

what the assembler does when a macro is called twice .

. .. BYTEARRAY ADR (XINDEX,YINDEX,ADDRESS)

MOVEM DO,-(SP) * Save register

MOVE . W YINDEX,DO * Y -index for multiplication

MULU.W #100,DO * *Bytes per line

ADD.L XINDEX,DO * Add X -index

ADDI. L #BASE,DO * + Table start address

MOVE.L DO, ADDRESS * Save address

MOVEM (SP)+,DO * Register to old value

... BYTEARRAY ADR (XPNT,YPNT,ST)

MOVEM DO,-(SP) * Save register

MOVE.W YPNT,DO * Y -index for multiplication

MULU.W #100,DO * *Bytes per line

ADD.L XPNT,DO * Add X-index

ADDI. L #BASE,DO * + Table start address

MOVE.L DO,ST * Save address

MOVEM (SP)+,DO * Register to old value

154

Abacus Software Machine Language for the Atari ST

Address calculation

To extend your understanding of assembly language programming and

the operation of the assembler, let's turn to the topic of address calculation.

Address calculation, next to the translation of mnemonics, is the most

important task of the assembler. From another angle, many typical

"beginner's" mistakes have to do with address calculation.

Most assemblers allow a source file to be written completely

symbolically. In the most extreme case, the program defines all constants

and external addresses as symbols and labels (declarations). These symbols

don't give the assembler any trouble, because their values are pre-defined.

The labels defined within a program, destinations for branches, subroutine

calls, and accesses to tables, are more difficult for the assembler to process.

To understand these difficulties, think back to the assembly operation.

The text of a source file is processed by the assembler line by line,

starting with the first line. If a symbol definition occurs within a line, the

symbol is entered into a table together with its corresponding value. This

symbol table contains all of the symbols (and their values) defined up to this

point. If a symbol is used as an operand during the assembly, the assembler

searches for the symbol in the symbol table and replaces it by the value from

the symbol table. The assembler may have difficulty in discerning between

symbols contained in the table already and those defined in a later line.

If the symbol is contained in the table, then it was definitely defined in a

previous line. This case is called a backward reference. If the symbol is not

in the table, it may be defined later in the program. This is called a forward

reference.

155

Abacus Software Machine Language for the Atari ST

These forward references form the basic problem of address

calculation. In order to translate an instruction, the assembler also needs the

value of a forward reference. The assembler uses a simple trick to overcome

these difficulties. It makes two passes through the text of the source file. In

the first pass, no machine code is generated. At the end of the first pass, all

symbols and values found are contained in the symbol table. If this is not

the case, an error message is issued with the assembly containing errors.

This is why a symbolic assembler is also called a two-pass assembler.

Yet the programmer can still easily "confuse" the assembler even

though the source code is syntactically and logically correct. Many

assemblers become "trapped" by these constructions; we want to familiarize

you with some of these errors.

The first are the programmer errors of "cyclical definitions."

Example: SYMBOL 1

SYMBOL2

SYMBOL3

.EQU SYMBOL2

.EQU SYMBOL3

.EQU SYMBOL1

* First defmition

* Second definition

* Third definition

It is easy to see why this leads to an error because, in the final analysis,

none of the symbols are defined. It behaves differently in the following

case, which is very similar to the above.

Example: SYMBOL 1

SYMBOL2

SYMBOL3

.EQU SYMBOL2

.EQU SYMBOL3

.EQU 1234567

156

* First defmition

* Second definition

* Value is known

Abacus Software Machine Language for the Atari ST

In this example we have a multiple forward reference. It is easy to see

why a simple two-pass assembler would have trouble with it if we try to the

assembly once "by hand." After pass 1, SYMBOLl and SYMBOL2 are

undefined. In pass 2, SYMBOLl cannot be defined because SYMBOL2 is

still not defined. SYMBOL2 can be defined in pass 2, since SYMBOL3 is

known in pass 1. But already in pass 2 an error is generated in the definition

of SYMBOLl (Whoa!).

Another source of errors is a phase error, although most assemblers can

no longer be "tripped up" by them. They are a deviation between the

address calculation in pass 1 and the address calculation in pass 2, which

the assembler usually recognizes and corrects. These phase errors are

created by machine language instructions that have a variable instruction

length depending on the size of the operand. If the operand is defined by a

forward reference in such an instruction, the assembler reserves the

maximum length for the instruction in pass 1 and calculates the symbolic

address accordingly. If the instruction becomes shorter in pass 2 as the

result of a smaller operand than was assumed in pass 1, all references to

following labels must be corrected corresponding to this reduction.

The assembler Jistipe

We have already talked about the assembler listing and format options.

Here we'll go into some of the details and characteristics of error handling.

On the next page you see a typical assembler listing. In the list that

follows, we do not go into the content of the example program, but we'll

explain the individual elements of the listing.

157

Abacus Software Machine Language for the Atari ST

C PI" b BOO 0 Ass e I b 1 e r
Source File: B:DEMO.S~

1

Revision 04.03 Page 1

G)

~0
4
5 0) G) b
7 00000000 7E09
B
9 00000002 2C7COO078000

10
11 00000008 469E
12
13 OOOOOOOA BDFCOOOF8000
14 00000010 65F6
15
16 00000012 2C3COO04FFFF
17
18 00000018 5386
19
20 0000001A OC8600000000
21 00000020 bbFb
22
23 00000022 51CFFFDE
24
25 00000026 3F3COOOO
26 0000002A 4E41
27
28
29 00OOOO2C

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

III FLASH SCREEN DEMO LISTING III

••••• "'.~"~'*"""""""* @
(2) 10 .1 19, d7 I nUlber of fl ashes

flash: lovea.l 1$78000,.16 I pointer to screen

loop: not.L (.16)+ I invert

clpa.l 1$78000+$80000,a6 f screen end?
blo loop I No: continue

love. I U4ffff ,d6 f delay loop

delay: subq.l 11,d6 I until d6=0

c.pi.l 10,db I test
bne delay I No: wait

dbf.w d7, f1 ash I repeat if necessary

lIIove.1f 10,-(sp) I Code: WARMSTART
trap 11 I call 6EMDOS

.end

C P 1Mb 8 0 0 0 Ass e I b I e r
Source File: BIDEMO,S

Revision 04.03 Page 2

SYlLbol Table @
delay 00000018 TEXT flash 00000002 TEXT loop 00000008 TEXT

@

158

Abacus Software Machine Language for the Atari ST

1) Title, changeable by the programmer

2) Filename of the source text being processed

3) Page numbering, running numbering

4) Source text line number, running numbering

5) Memory address of the instruction or table

6) HEX dump of the instruction or table

7) Label field, contains the label name of the line

8) Mnemonic field, contains mnemonics or directives

9) Operand field, contains operands/addressing mode

10) Comment field, contains comments

11) Comment line, comment occupies entire line

12) Symbol table, listing of all the symbols

13) Symbol value (addresses, data) of the symbols

159

Abacus Software Machine Language (or the Atari ST

The assembler error analysis distinguishes between simple errors, fatal

errors, and warnings. The last indicate possible sources of error, without

leading to an interruption of the assembly, because the programmer may

explicitly want the indicated situation under certain circumstances. As

examples, the assembler points out unreferenced symbols, or indicate that a

smaller operand width could be used for an instruction.

Fatal errors are errors that interrupt the assembly because it no longer

makes sense to continue. A missing symbol declaration is a fatal error.

Some assemblers handle normal errors, such as a branch over too long

a distance, as fatal errors. In spite of the danger of subsequent errors, it may

make sense to continue the assembly up to the first fatal error, and simply

display the errors found. This method has the advantage that many simple

errors (such as syntax errors) can be recognized in the first assembly. The

programmer can then correct more than just one error at a time. This saves a

great deal of time during development.

The error handling and the layout of the assembler listing differ widely

from assembler to assembler, so we must refer you to your assembler

documentation again. There you will find a description of all the error

messages and warnings.

Usim: the assembler

Suppose you have edited a source file and now want to translate it into

machine language using the assembler. We assume that you have created the

source file with an editor, that you have saved the source text on diskette,

160

Abacus Software Machine Language for the Atari ST

and have exited the editor program. At this point you will find yourself on

the command level of the assembler package. Usually this command level is

the TOS or GEM mode-at the operating system level. The assembler can

be started from this level.

Before the assembler can start with the conversion, it requires the

filename of the source text to be assembled. The assembler may ask you for

the name after it is called, or it may be that the programmer simply passes

the filename, together with the program name of the assembler, at the

command level (operating system). The TOS operating system passes the

filename as a parameter to the assembler.

Examples: A:ASSEM Call

File? TEXT.SRC Read parameter

A:ASSEM TEST.SRC Call with parameter

In addition to the filename, the programmer can specify assembler

options at the assembler call. These are control functions for the object code

file and the assembler listing. By means of these control parameters the

programmer can suppress generation of the object code or direct the output

of the listing to a printer or the screen.

Examples: A:ASSEM

File? TEST.SRC

Object? ABS. OBJ

Listing? P

. Call

............... Source text

......... Object file name

......... Output to printer

A: ASSEM TEST. SRC/ABS. OBJ /p Parameters

161

Abacus Software Machine Language for the Atari ST

With some assemblers control parameters must be entered. If they are

missing, the assembler uses default values. The specific defaults your

assembler uses and how the assembler is called are explained in your

manual.

(The debUgger)

We have already mentioned the debugger/monitor. Here we'll give you

an overview of the use of these programming aids and their capabiltites.

As a general rule, the debugger is initiated much like the assembler. The

name of the machine language program to be tested is usually entered as a

parameter.

Examples: DDT Call the debugger

DDT TEST.OBJ Call and load TEST

The Atari ST's debugger is designated SID (Symbolic Instruction

Debugger). The SID is an improvement over earlier debuggers in thay it

allows symbolic processing of a program. In this section we'll explain the

basic operation of this tool.

162

Abacus Software Machine Language for the Atari ST

The tasks of a debugger/monitor program can be broken up into four

basic groups:

• Read/write program (memory area) from/to disk

• Display and/or change memory/register contents

• Test the program (trace and breakpoint)

• Aid functions (hex/dec conversion, arithmetic, etc.)

After initiating the debugger, you are at the command level. This means

that the debugger waits for you to enter a command, which must be

followed with the <RETURN> key. Keep in mind that the debugger is

usually a rather primitive and unintelligent tool. The command structure is

extremely rigid and very sensitive to input errors. Syntactic and logical

errors are acknowleged with very terse messages. The programmer should

also be very familiar with programming at the machine level, since changes

in the address space can cause the computer to crash.

In this section we won't go into each individual command of the

debugger. Instead, we'll present some interesting details that will introduce

you to the test phase. In the end, the debugger is the only tool with which a

programmer can track down a program error.

The debugger that you use may have a slightly different command

structure. In any event, you should use the documentation included with

your debugger. The following list illustrates the commands found in a

typical debugger (SID with the Atari Development System).

163

Abacus Software Machine Language for the Atari ST

Ename Load a program for testing
V Display parameters of the loaded program
Iname Generate file control block (FCB) (from the name)
Rname Load a memory area from disk
Wname,s,f Write memory area from s to f address

Ds Hex/ ASCII display of bytes at address s
Ds,f HeX/ASCII display of bytes from address s to f
DWs Hex/ASCII display of words at address s
DLs Hex/ ASCn display of long words at address s
Ls Disassemble at address s
Ls,f Disassemble from address s to address f
X Display the 68000 registers, Rn, PC, USP, SSP,ST

Xr Change a register (r=Rn,PC,USP,SSP,ST)
Ss b ... b Write bytes (b) at address s in memory
SWs w ... w Write words (w) at address s in memory
SLs 1...1 Write long word (1) at address s in memory
Fs,f,x Fill memory from s to f with byte (b)
FWs,f,x Fill memory from s to f with word (w)
FLs,f,x Fill memory from s to f with long word (1)
Ms,f,d Copy memory from s to fto d (b)

G Start program at current PC
Gs Start program at address s
GS,bl. .. b2 Start program at address s with breakpoints

T
Tn
U
Un
K

Hxl,x2

Key:

Trace program at current PC
Trace n machine language instructions at PC
Execute I machine instruction at PC
Execute program, trace n instructions
Displays symbol table information

Generate sum and difference of xl and x2

name = fIlename s
b
x
n

= start address f = end address
= word r = register

I = long word
bn = breakpoint

= byte w
= b/w/l d
= number (1..n) ...

164

= destination addr
= sequence

Abacus Software Machine Language for the Atari ST

One of the most useful functions of the debugger is disassembly.

This is the exact opposite of assembly. The disassembled program is

displayed on the screen not only as a hex dump, but in assembler notation.

The display includes mnemonics, operands and addressing modes. This

fonn of representation is very easy to read and makes it easier to find errors.

The trace function is probably the debugger's most important test aid.

It allows a machine language program to be executed in the single-step

mode, one instruction at a time. The program being tested can be so

processed, except for certain limitations involving the operating system

routines and particularly time-critical program segments (interrupts). In the

single-step mode, the current register-set contents are displayed after each

instruction.

Breakpoints are another extension of the trace mode. Here the

program under test is not processed step-by-step. However, the

programmer has the option of interrupting the program at a given address

(breakpoint). The debugger watches the machine language program and

interrupts execution when the processor comes to the address of a

breakpoint. At this point the current register contents of the processor are

displayed. In addition to the other manipulation commands of the debugger,

you can check the output of your program up to the breakpoint.

165

Abacus Software Machine Language for the Atari ST

I Procedure conventions "1
"

As a general rule, machine language programs will run on a computer

without any additional help; the operating system supports the essential

functions of a computer. You will not have to program all of the functions

yourself in machine language programming. Instead, you can use operating

system routines (to output a character on the screen, for example) without

having to consider the hardware-dependent aspects of these functions.

These operating system functions are standardized. Therefore,

programs that access operating system routines can run on any computer

using the same microprocessor and operating system. One or more

parameters are passed to the function when using an operating system

function. After execution of the function, a result is passed back to the

calling program. Procedure conventions refer to how parameters are passed,

how the function is called, and where the result will be expected.

Another form of procedure convention relates to the machine language

program. The object program must be provided with a specific identification

code and information about the executable program (start address, program

length, etc.), so that it can be executed from the operating system.

The procedure conventions are rigidly specified as far as the operating

system is concerned. We urge you adhere to certain procedure conventions,

and also to the modularization of your own machine language programs.

166

Abacus Software Machine Language for the Atari ST

The simplest form is passing parameters through registers. Here all

parameters are passed in the data and/or address registers. The results are

also returned in certain registers. As a general rule, unused registers are not

changed. If additional registers are required by a function, they are saved at

the start of the function and restored again at the end. The registers are

usually saved on the stack.

In our examples we'll usually pass parameters in registers. When other

forms are used (programming recursion, etc.), we'll point them out.

Another form of parameters passing is the defmition of specific memory

ranges for passing values. After execution of the function, the results are

made available at a defined location in the parameter block. A parameter

block can reside at a predetermined address in memory. As a general rule,

the programmer passes the start of the parameter block to the function in an

address register.

The most elegant way of passing parameters is by the user stack, or

self-defined stacks using the address registers. This method is also

supported by the 68000 instructions LINK and UNLINK. This parameter

passing is similar to the parameter block. However, the parameter area is

not stored at a set address in memory, but it is dynamically managed on the

stack. We'll use this form of parameter passing when talking about

recursive programming.

When using procedures and operating system routines, input and output

parameters are defined by procedure conventions. Distinctions are made

between the following types of calls:

167

Abacus Software Machine Language for the Atari ST

• Subroutine call with start address of the routine

• Subroutine call via a jump table. Here a complete sequence of

branch instructions are defined in memory one after the other. The

individual branch instructions branch to the actual routines that

perform the function. The programmer uses only the address of

the branch instruction in the jump table when calling the

subroutine.

• Subroutine call of a defmed routine in which the function is passed

by means of a function number. The actual function is called by

means of the function number in the called routine.

• Function call via traps. A function number is usually passed. The

actual routine that performs the functions is defined in the vector

table of the 68000. The operating system in the Atari ST uses this

form of function call extensively.

When programming in a high-level language, often problems are

encountered that can only be solved with an assembly language routine, or

can be performed much faster in assembly language. For example, many

compilers generate c0de for graphics programs-a slow process. To

accelerate such programs, we might write routines in assembly language

that accomplish the same graphics, but are considerably faster.

168

Abacus Software Machine Language for the Atari ST

But now we encounter the problem of combining the assembly

language module with the high-level language program. Even with

"classically" interpreted languages like BASIC, we can write time-critical

segments of the program in assembly language.

To do so, we must follow the procedure conventions of the high-level

language exactly (however painful) in the assembly language programs.

Here are some important guidelines for doing this.

• are the parameters passed correctly?

• is the result returned properly?

• is the stack changed?

• are the registers used (to the degree required by the convention)

saved and reloaded?

• does the stack ever grow beyond a set boundary in the program?

• are data moved to illegal areas?

• will the assembly language program be interrupted by interrupts?

• will the memory area processed by the assembly language

program be changed by a DMA operation?

A linker is used to merge assembly language routines with high-level

language compiled programs. The assembly language routine is then called

by name in the high-level language program. The linker ensures that the

addresses in the assembly language program are known by the high-level

language program.

In BASIC programs, the assembly language routine is usually called by

the command "CALL address" (or SYS ... , USR ...). The user must

ensure that the machine language routine is loaded at the correct address.

169

Chapter Seven

(~
~ Programming Step by Step)
~ ~

-Introduction

-Example "Decimal/binary conversion"

Abacus Software

, .,
I Introduction J

" ~

Machine Language for the Atari ST

This chapter will introduce you to practical assembly language

programming, step by step. At this point we assume you know the material

in Chapter 3 and Chapter 6 of this book. If you do not understand the layout

of the 68000 microprocessor, or the use of your assembler, we suggest you

turn to Chapter 3 and Chapter 6 first.

Our example is intended to show you the step-by-step development of a

short decimal to binary conversion routine. We have taken care to avoid any

"tricks" concerning existing operating system functions . On one hand, we

would like to slowly introduce you to the capabilities of the 68000; on the

other hand, we don't want to "spoil" you with all of the comforts of the

operating system. In this way we hope that what you learn here will be

easily applied to other computer systems.

173

Abacus Software Machine Language for the Atari ST

Decimal/binary conversion

Problem description

Here's our problem: convert a decimal number to a binary number in a

machine language program. As you know, a decimal number is equal to its

binary equivalent in value; only the representation (number base) is

different.

First let's clarify what data the program will work with. In our example

the decimal number is the input, and the binary number is the output. For

the time being let's just group the individual steps of the conversion under

the heading "conversion." Now that we have all of the information, we can

draw a data flow plan.

174

Abacus Software Machine Language for the Atari ST

Data flow plan

On this page you see the data flow plan of our example program. The

data flow shows the path and type of data. It shows what and when

something happens with the data. Because of the simplicity of our example,

we make no futher comment

Input Decimal

Decimal/Binary
Conversion

175

ATARI ST keyboard input

machine language program
"Step by step"

ATARI ST screen output

A bacus Software Machine Language for the Atari ST

Flowchart

By using the flowchart, we can clarify how the data is processed. You

can refine the problem step by step until an exact description of all the

instructions for the processor is finally created. The process is called

Top-Down programming; the flowchart should illustrate this method.

Start

Input
Decimal Number

Decimal/Binary
conversion

Output
Binary Number

176

Yes

Abacus Software Machine Language for the Atari ST

The first step: character output

We tum now to the first step of fonnulating the algorithm. We want to

represent an ASCII character on the screen. The screen doesn't recognize

any letters or characters as we recognize them. The picture we see on the

monitor is an exact copy of a 32K memory area in the Atari ST. Each bit in

the memory is assigned to a point on the screen. A set bit appears dark and a

cleared bit is illuminated (on a monochrome monitor).

There is a table in the operating system that determines, bit-by-bit, the

appearance of all of the printable characters (the character generator). You

can imagine the work involved when outputting an ASCII character. The

address of a character in the character generator is calculated, the address of

the character pattern onscreen is determined, and the character is copied

from the character generator to the screen. Alternatively, the operating

system may have to perfonn special functions for special control characters.

A programmer would have a lot of work to do if the operating system

did not perfonn these elementary functions. As we have already explained,

the ST's operating system is a large, complex program. After the operating

system is loaded and has started a program, the loaded program takes

responsibility for all subsequent actions. The machine language programmer

is faced with the problem of how to pass control back and forth between the

program and the operating system, to accomplish certain tasks (such as

character input and output) using the operating system routines. The authors

of the operating system specify these conventions, or individual operating

system routines.

177

Abacus Software Machine Language (or the Atari ST

C P / ~ 6 8 0 0 0 Ass e I b I e r
Source File: B:STEP1.S

Revision 04.03 Page

1
2
3
4
5
6
7
8 00000000 3F3C0041
9 00000004 3F3C0002

10 00000008 4E41
11 OOOOOOOA 588F
12
13 OOOOOOOC 3F3COOOD
14 00000010 3F3C0002
15 00000014 4E41
16 00000016 588F
17
18 00000018 3F3COOOA
19 0000001C 3F3C0002
20 00000020 4E41
21 00000022 588F
22
23 00000024 3F3COOOO
24 00000028 4E41
25
26 0000002A

ffffff,f,f,f",f,f,ffff",ff,fffffffff,ff,f.,ff

ff Output of an ASCII character step 1 ff
Ifffffflffffffffffffffffffflfffffffffffflflfiff

love.N 165,-(sp) I output 'A U

love,N 12,-(sp) I Code: CONOUT
trap 11 f call SE~DOS

addq,1 14,sp f stack correction

love,1iI 113,-(sp) I output CR
love,N 12,-(sp) f Code: CONOUT
trap 11 f call SElmOS
addq.1 14,sp f stack correction

love,N IIO,-(sp) f output LF
love,N 12,-(sp) I Code: CON OUT
trap II f call SEMDOS
addq,l l4,sp f stack correction

love. iii IO,-(sp) f Code: NARMSTART
trap 11 f call SE~DOS

. end

Here's our first short machine language program. It demonstrates

outputting an ASCII character on the screen using an operating system

routine. Basically, we are using the GEM-DOS interface of the ST.

Complete compatibility with later releases of the ST is guaranteed only by

using the GEM-DOS interface.

178

Abacus Software Machine Language for the Atari ST

In our example, no starting address is defined in the assembly language

program. Later, the linker is used to combine several assembled programs

into one file. Then, the relocating modifier program creates a program to

run in any memory space prior to execution.In any case, the programs we

present in this book are directly executable under GEM or TOS.

Lines 8-10 output a character (ASCII character A) to the screen. The

screen position of the output is always the current cursor position. After

outputting the character (or control character), the new cursor position is

calculated by the operating system and saved for the subsequent output.

Let's take a close look at how the operating system is used. Basically,

one or more parameters are passed to GEM-DOS. These parameters are

passed via the stack. Let's follow what happens here. The first parameter

passed is the character to be printed (line 8). The operand width is one

word. As you know, the ASCII code contains a maximum of 256

characters. For the ST, each different character requires one byte. Parameter

passing via the stack is always done in words, since the stack data always

begins with an even byte address. The upper half of the ASCII word has no

function. But in order to maintain compatibility with possible new character

sets (which may exceed 256 characters), we recommend that you ignore the

high-order half and keep it filled with binary zeros.

A second parameter is placed on the stack in line 9. This is a function

number-it tells the operating system what it should do with the data on

the stack. The number of parameters is also stated implicitly by the function

code. The collection of parameters and function numbers is called a

parameter block. Our example's parameter block consists of two words

(one representing the character, and one the GEM-DOS function code).

179

Abacus Software Machine Language for the Atari ST

The operating system (GEM-DOS) is called by the TRAP instruction in

line 10. We aren't really interested in all of the details of this call. However,

the sketch below clarifies exactly what must happen in the preparation of the

operating system call. Note that, internally, the operating system always

works with the supervisor stack. The 68000 is placed into the supervisor

mode after a TRAP, an exception. It gets data from the stack that was active

when the function is called. This usually involves the user stack, because

user programs are executed in the user mode.

You must ensure that all parameters are removed from the stack again

after calling an operating system routine. This is done in our example by the

ADDQ. L instruction to the stack pointer.

The TRAP instruction works here like a subroutine call. The address of

this subroutine is defined by the TRAP number. The processor finds the

address of the operating system routine to be called by the TRAP instruction

in the vector table of the 68000 system. Once the operating system routine

has been executed, the machine language program continues with the next

instruction (line 13).

Adr.
n+2 old old old old old

old f- SP n old SP old old old
~ $004 n-2 ~O 0 4 f- SP $004 $0041

n-4 $0002 f- SP $0002 f- SP $0002
n-6

Start 5i tuation MOVE.W t$41,-(5p) MOVE. W +2, - (5p) TRAP t1 ADDQ.L t4,5P

Abacus Software Machine Language for the Atari ST

Lines 13 thm 21 repeat the function just described, but here we do not

output a printable character. These are the control characters carriage return

(CR) and linefeed (LF). A carriage return causes the cursor to be set to the

start of the current line. A linefeed moves the cursor down one line. The

cursor remains in the same column. If the cursor is already in the last line,

the screen is "scrolled." This means that all of the screen lines are moved up

one line. The top line disappears from the screen and a blank line is inserted

at the lowest line position. In effect, the screen behaves like a sheet of paper

in a typewriter.

The instructions in lines 23 and 24 of our example return control to the

operating system. This operating system call requires no additional

parameters besides the function number.

With this short example we have already told you three basic things

about machine language programming. We have explained the principle of

operating system calls, outputting characters, and returning to the operating

system. To solve our example problem we must still explain how

characters are passed from keyboard to the program (character input)

through the operating system.(By the way, this method of problem-solving

is called Bottom-Up programming, as opposed to the Top-Down method

mentioned earlier). Let's take a look at another example program, on the

following page.

181

Abacus Software Machine Language for the Atari ST

C PI" 6 8 000 Ass e I b 1 e r
Source File: B:STEP2.S

Revision 04.03 Page

1
2
3
4
5
6
7
8 00000000 3F3C0001
9 00000004 4E41

10 00000006 548F
11
12 00000008 3EOO
13
14 OOOOOOOA 3F3COOOD
15 OOOOOOOE 3F3C0002
16 00000012 4E41
17 00000014 S88F
18
19 00000016 3F3COOOA
20 0000001A 3F3C0002
21 0000001E 4E41
22 00000020 SB8F
23
24 00000022 CE7COOFF
25
26 00000026 3F07
27 00000028 3F3C0002
28 0000002C 4E41
29 0000002E 588F
30
31 00000030 3F3COOOO
32 00000034 4E41
33
34 00000036

1IIIIffffflfffflflflllfflfflfflffffffffffl'I'ff

If Input of an ASCII character step 2 fl
Ifillfllllllllllllllillfllillflfllllllllllllill

love ... Il,-(sp) I Code: CONIN
trap Il I call 6E"D05
addq.l 12,sp I stack correction

love." dO,d7 I save character

love." 1l3,-(sp) I output CR
love." 12,-(sp) I Code: CONOUT
trap 11 I call 6E"D05
addq.l 14,sp I stack correction

love. II IIO,-(sp) I output LF
love.1I 12,-(sp) I Code: CONOUT
trap 11 I call 6E"D05
addq .1 14,sp I stack correction

and ... Uff ,d7 , lask character

love.1I d7,-(sp) I output character
love. II 12,-(sp) I Code: CONOUT
trap Il I call GE"D05
addq.l l4,sp I stack correction

love.'" 10,-(sp) , Code: WARH5TART
trap 11 f call 6EKDOS

.end

182

Abacus Software Machine Language for the Atari ST

The second step: character input

In STEP 2 on the previous page, we demonstrate inputting a character

from the keyboard. As a check to see if the routine really works, we

echo-that is, immediately output the character to the screen.

Lines 8-9 call the operating system function CONIN (function code 1).

This function has no additional parameters. After the routine is called, the

operating system waits until a key is pressed on the keyboard. If a key is

pressed, the ASCII code is determined and passed to the calling program in

the DO register. For further processing we correct the stack (line 10) and

copy the contents of the DO register to the D7 register with the MOVE

instruction (line 12). Lines 14 to 22 you recognize from our ftrst example.

These lines reposition the cursor to the frrst column of the next line.

When calling the character output routine, the contents of the DO

register are changed. Therefore we created a copy of the character entered in

the D7 register in line 12. Before we echo the character again, we make sure

that the high-order byte is set to zero. Here we use the AND operation (in

line 24). In this logical function, all the bits of the constant $FF are

combined with the corresponding bits of the D7 register.

Example of AND Instruction

3 3 0 2 9 · . . 9 8 7 6 5 4 3 2 1 0
BIT

0 0 0 0 0 1 1 1 1 1 1 1 1 · . . rONS'T'A N'T'

X X X X x A A A A A A A A · . . CHARACTER
0 0 0 0 0 A A A A A A A A · . . RESULT

183

Abacus Software Machine Language for the Atari ST

The above illustration clearly shows what happens in an AND operation.

The bit positions containing a zero in the constant always yield a zero in the

corresponding RESULT bit position. The bit positions containing a one in

the CONSTANT and original CHARACTER always yield a one in the

corresponding RESULT bit positions. The use of the AND instruction is

sometimes called masking.

At this point we would also like to clarify the conventions we have used

in our examples. In our examples we'll define only one simple register

convention. All parameters are passed via address or data registers. The

registers are used in descending order according to their fIrst use (D7, D6,

D5, ... D3 and A5) They are saved and restored again after use. This

eliminates any conflict in register use among subroutines. We would like to

point out that this a very simple convention that may not be appropriate for

more complex programs.

Back to our second example. The masked character is printed on the

screen by calling the operating system routine CONOUT (console output) in

lines 26-29. Lines 31 and 32 end the program as before.

With our two examples we already have the important information

about the operating system that we need to convert decimal numbers to

binary. We won't concern ourselves with additional operating system

routines in this chapter.

Our next example brings us one step closer to the problem solution. We

want to show you how to work with character strings.

184

Abacus Software Machine Language for the Atari ST

C PI" 6 800 0 Ass e I b I e r
Source File: B:STEP3.S

Revision 04.03 Page

1
2
3
4
5
6
7
8 00000000 3E3C0030
9

10 00000004 3F07
11 00000006 3F3C0002
12 OOOOOOOA 4E41
13 OOOOOOOC 588F
14
15 OOOOOOOE 5207
16
17 00000010 OC070039
18 00000014 63EE
19
20 00000016 3F3COOOD
21 0000001A 3F3C0002
22 0000001E 4E41
23 00000020 588F
24
25 00000022 3F3COOOA
26 00000026 3F3C0002
27 0000002A 4E41
28 0000002C 588F
29
30 0000002E 3F3COOOO
31 00000032 4E41
32
33 00000034

fff

ff Output of an ASCII line step 3 ff
ffffffffff'ffffffffffffffffffffff'fffffffffffff

lovedi U30,d7 , ASCII null

out: love. iii d7,-(sp) , character output
lIove.N 12,-(sp) f Code: CONOUT
trap 11 , call GE"DOS
addq.l 14,sp f stack correction

addq.b 11,d7 f new ASCII character

clpi. b 1$39,d7 f = "9" (ASCIIl
bls out f Yes: next character

love. iii 113,-(sp) , output CR
love. iii 12,-(sp) f Code: CONOUT
trap 11 f call 6E"DOS
addq .1 '4,sp f stack correction

love.w '10,-(sp) f output LF
love.w 12,-(sp) f Code: CONOUT
trap 11 f call GE"DOS
addq .1 14,sp f stack correction

love. iii 10,-(sp) f Code: WARMSTART
trap 11 f call GEM DOS

.end

185

Abacus Software Machine Language for the Atari ST

The third step: loop processin2

In our third example, we'll output several ASCII characters in a loop,

and thereby become acquainted with loop structures within a machine

language program.

"0" ~ D7

D7 + 1 ~ D7

186

Abacus Software Machine Language for the Atari ST ,
Let's output the digits 0 through 9 as a character string. To do this, in

line 8 we first form the constant $30 (ASCn character zero) in data register

D7. In lines 10-13 the character in D7 (still zero) is printed.

Next we form the next character (ASCn 1...9). Here we use the ADDQ

(Add Quick) instruction of the 68000. This instruction allows the addition

of a constant in the range 0-7 to the given destination. This instruction is

comparable to the increment instruction of other processors. After execution

of line 15, D7 contains the next ASCn value. Before we output this digit,

we check to see if we have printed them all already. In the simplest form,

we formulate a loop condition of "Repeat output as long as the digit is less

than or equal to nine." We can see this logic in the flowchart.

In the machine language program, the loop condition is provided by

lines 17 and 18. The comparison is made in line 17, wherein $39

corresponds to ASCII character 9 and the new ASCII value is in D7. The

result of the comparison operation is tested in line 18 (for less than or equal

to) and a branch is made to the label OUT if true, where a character is again

printed. As you know, the BLS instruction is a relative branch instruction.

you need not be concerned with the distance calculation, however. The

assembler calculates the relative jump from the BLS instruction to the jump

destination OUT itself.

The additional lines output a CRILF and end the program.

187

Abacus Software Machine Language for the Atari ST

The fourth step: line input and output

Our fourth example is an extension of the previous one, and a summary

of everything we have learned so far. Here we want to read a line from the

keyboard and output it again to the screen. New to this example is the

temporary storage area to contain the string. This demonstrates the layout

and management of variables. Take a look at the following flowchart and

the machine language program pertaining to it.

Index+l
----) Index 11

Yes

NO

188

No

0----) Index

Output
Char.
from
buffer

Index+l
Index

Abacus Software Machine Language for the Atari ST

C P / M 6 BOO 0 Ass e I b I e r
Source File: B:STEP4.S

Revision 04.03 Page

1
2
3
4
S
6
7
B 00000000 2A7C0000004C
9

10 00000006 3F3COOOl
11 OOOOOOOA 4E41
12 OOOOOOOC 548F
13
14 OOOOOOOE lACO
15
16 00000010 OCOOOOOD
17 00000014 66FO
18
19 00000016 3F3COOOD
20 0000001A 3F3C0002
21 0000001E 4E41
22 00000020 saaF
23
24 00000022 3F3COOOA
25 00000026 3F3C0002
26 0000002A 4E41
27 0000002C SaaF
2a
29 0000002E 2A7C0000004C
30
31 00000034 1E1D
32
33 00000036 3F07
34 00000038 3F3C0002
35 0000003C 4E41
36 0000003E S8aF
37
38 00000040 OC07000D
39 00000044 66EE
40 00000046

flflillflflffllfillflflfffll""'!"'fff'f'f'"

" Input ~ Output of an ASCII char. step 4 f'

"""'f""""'f"f""""""""""""'f

in:

lovea.l Iline,a5

love. iii 11,-(sp)
trap 11
addq.l '2,sp

ClpLb 113,dO
bne in

love. iii
love. iii
trap
addq.l

love.w
love."
trap
addq.l

113,-(sp)
12,-(sp)
11
14,sp

110,-(sp)
12,-(sp)
11
14,sp

lovea.l Iline,a5

out: love.b (a5)+,d7

.page

love." d7,-(sp)
love." 12,-(sp)
trap 11
addq.l 14,sp

ClpLb 113,d7
bne out

189

, set pointer

, Code: CONIN
, call GEMDOS
, stack correction

, save character

, was character a CR
, No: next character

, output CR
, Code: CONOUT
, call GEMDOS
, stack correction

, output LF
, Code: CONOUT
, call GEMDOS
, stack correction

, reset pointer

f character frol buffer

, output
, Code: CONOUT
I call GEMDOS
, stack correction

f liIas character a CR
I No: lore output

Abacus Software

C P I M 680 0 0 Ass e I b 1 e r
Source File: B:STEP4.S

41 00000046 3F3COOOO
42 0000004A 4E41
43

Machine Language for the Atari ST

Revision 04.03 Page 2

love.w 10,-(sp)
tr ap 11

f Code: NARMSTART
f call 6EMDOS

44 0000004C
45

line: .ds.b 80 f 80 character buffer

46 0000009C .end

Let's start with line 44 of this example. Here an 80-byte memory area is

reserved by the DS.B directive. We'll store the characters entered from the

keyboard in this area, before we output them again. At the same time, in line

44 the symbol LINE is assigned the starting address of the storage area.

Remember, this storage area is also called a buffer.

In line 8, a pointer is assigned to the start of this buffer. Address

register AS is loaded with the address of the buffer. We 11 access the

individual elements in the buffer by means of some instructions explained

in the rest of this section.

First we'll concern ourselves with the input from the keyboard. A

single character is read using the operating system function CONIN

(console input, lines 10-12). The character is transferred to the buffer by the

MOVE instruction in line 14. The addressing mode "address register indirect

with postincrement" is used. The first character is placed at the address to

which address register AS indirectly points. After this transfer, AS is

incremented by 1 because we have selected "byte" as the operand format.

The contents of the address register then point to the first free position

within the line buffer after the ftrst character is moved.

190

Abacus Software Machine Language for the Atari ST

Since we want to input several characters, we must again make a loop

for the console input. Please note that no output of the keyboard input is

necessary within this loop in order to make the input immediately visible.

The operating system function used automatically outputs the corresponding

character on the screen. But still we must define suitable ending criteria for

our loop.

As a general rule, input is always concluded with the <RETURN> key.

When this key is pressed it returns the non-printable ASCII code CR, which

we know from the previous examples. This also corresponds to the actual

function of the key. In our example, this key should be interpreted as

ending the input line. Correspondingly, we programmed the loop

termination condition in lines 16 and 17 with this key. As long as the key

pressed is not the <RETURN> key (ASCn code 13), the character is placed

in the buffer and another character is read.

You might have noticed that we haven't expressly checked to see if the

buffer is full. We have purposely avoided this question in order to keep the

program simple. To avoid the problem of buffer overflow, we simply made

the buffer somewhat larger than we expect we'll need. You may want to

check this condition yourself.

Lines 19 to 27 output a CRiLF so that the cursor is set to the start of the

next line before the buffer contents are printed.

Before we can output the buffer character by character, we must reset

the buffer pointer to its first position (with line 29). This is again done with

a MOVE instruction, in which address register A5 is loaded with the address

of the buffer.

191

Abacus Software Machine Language for the Atari ST

The instructions in lines 31 to 36 get a character from the buffer and

print it on the screen using the operation system function CONOUT (console

output).

Lines 31 through 36 deserve special consideration. A character,

indirectly indicated by the address in address register A5, is moved from the

buffer into data register D7 by the MOVE instruction in line 31. The address

in address register A5 is incremented by 1 at the same time, in order to point

to the next character in the buffer. The character is pushed onto the stack by

the MOVE instruction in line 33 so that it can be printed by an operating

system call in lines 34 and 36. It is not possible to move the character

directly from the buffer to the stack with one instruction. As you know,

only words or long words can be placed on the stack. But the characters are

read byte by byte from our buffer. Since the 68000 requires that the operand

width be the same for both the source and destination, you must process

different data widths separately.

The output of the buffer area is again programmed in a loop. The CR

character is again used as the end criterium, since it was also stored in the

buffer during the input (lines 38 and 39). The instructions following end the

program as usual.

192

Abacus Software Machine Language for the Atari ST

The fifth steD: binary QutDut

Our next example represents another partial solution to our problem.

We want to convert a binary number into an Ascn string. We assume that

the number to be printed is found in data register D7. This number should

be printed bit-by-bit as ASCII zeros and ones. Let's take a look at the

flowchart for this problem and the machine language program below.

C P I M 680 0 0 Ass e I b 1 e r
Source File: 8:STEP5.S

Revision 04.03 Page

1
2
3
4
5
6
7
8 00000000 2E3COOOOFOFO
9

10 00000006 7CIF
11
12 00000008 3A3C0018
13 OOOOOOOC E38F
14 OOOOOOOE D805
15
16 00000010 3F05
17 00000012 3F3C0002
18 00000016 4E41
19 00000018 588F
20

••••••••••••••••• f.f ••••••••••••• f.f.fff.l.f.l.

f* Output of an Binary NUlber step 5 **
*11*1*11111*111111111*11'11111111*111*1*111*1*1

love.l UfOfO,d7 I nUlber to output

binout: love.l 131,d6 I place counter

out: love. II 1$18,d5 I ASCI I zero/2
151.1 11,d7 I i sol ate bit
addx.b d5,d5 • fori 011 ASCII

love. II d5,-(sp) * output
love." 12,-(sp) I Code: CONOUT
trap 11 I call GEHDOS
addq .1 14,sp I stack correction

21 000000lA 51CEFFEC
22

dbf db,out f counter-1, test for

23 0000001E 3F3COOOO
24 00000022 4E41
25
26 00000024

love.'"
trap

.end

193

=-1
10,-(sp) f Code: NARMSTART
11 • call 6EHDOS

Abacus Software

Start

Constant
~ number

31 ~ number

$30~ character
number left-shift
carry~ X

Character + X
~ character

Machine Language for the Atari ST

Counter - 1
~ counter

In line 8 we load a binary value into data register D7. Next we define a

counter so that we can process the number bit by bit within the loop. This is

necessary to determine when a binary number is completely printed. In

binary representation it is normal to include leading zeros. Therefore we use

D6 for the counter and set it to the constant 31 in line 10 of the program.

The constant 31 was chosen to enable us to use a special kind of loop.

We actually want to process 32 bits. You might be tempted to use a counter

from 0 to 32. But there is a special machine language instruction to

decrement a data register (dx=dx-l) and compare the result. As long as the

result is not -1, a branch is made to the top of the loop (line 12 and line 21).

Another characteristic of the DBcc instruction is the conditional execution of

194

Abacus Software Machine Language for the Atari ST

the instruction. A condition code is first checked before the instruction is

executed (similar to the DBcc instruction). The DBcc instruction is

executed only as long as the cc-defined condition is not true. Since we

won't be using this possibility in our example, we use F (false=never) as

the condition code.

To output to the screen (which will be executed 32 times), we want to

output one bit at a time within the loop. We'll output the most-significant bit

first, and the least-significant bit last (let to right). The ASCII character is

printed by lines 16 to 19 in the usual manner via an operating system call.

The ASCII character printed (0 or 1) is dependent on the individual bits in

data register D7. The generation the ASCII character is performed in lines

12-14, whereby the following computation rule is used.

The constant $18 is loaded into data register D5. This corresponds to

one-half of ASCII zero ($3012=$18). The reason we chose this constant

will be made clear by the next instructions. We use the LSL instruction to

prepare the next bit for output. This instruction shifts the bits within the

register a given number of places. Zero bits are placed in the low order end

of the register, and the left-most bits are shifted out the other end.

The last bit shifted is always copied to the X and C flags. Since we

always want to output the next highest bit in the loop, we have chosen a

shift left. We specify that we want to shift the register one place to the left.

After execution of the instruction, our bit (0 or 1) is found in the

processor X flag. We use this to form our ASCII character. The ASCII

code for zero is $30, and for one is $31. We can therefore form the ASCII

code by adding the X flag to the constant $30. Unfortunately, there is no

195

Abacus Software Machine Language for the Atari ST

instruction that explicitly executes this operation. But there is an instruction

that adds a source, a destination, and the X flag together. In this case the X

flag is used as the carry bit in addition.

We fonn the constant $30 in line 12 and add $30 (in register D5), the

constant $00, and the contents of the X-flag in line 14, by means of the

ADDX instruction. To do this we must still fonn the constant $00 in the

addition instruction. However, it would be much more practical to use the

same register as both the source and destination. So we add $18, $18 again

(=$30), and the X flag. The advantage is that the program is shorter and the

instruction executes somewhat faster. The problem can be solved differently

at program portions not requiring fast execution time, of course.

The sixth step: decimal to binary conversion

Except for inputting a decimal number, we have solved all problems of

decimal to binary conversion. Before we tie all of the steps together into a

complete program, we want to develop a method that processes decimal

digits . As you have already noticed, we can enter a decimal number as

strings of characters consisting of ASCII digits. For further processing,

including the binary output, we must convert the input buffer to binary

fonnat. Here we use a simple rule of computation that we'll ftrst present as

a flowchart.

196

Abacus Software Machine Language for the Atari ST

r """"I
I

Convert ,
Index + 1

O~ Index ~ Index

O~ Result
O~ Digit

Results * 10
~ Result

Buffer index
- $30 ~
digit Result

+ digit
~ result

Yes

Digit>9? Done)

Before we take a look at the corresponding program, we want to clarify

decimal to binary conversion. Let's take a look at a single decimal digit. It

can be assigned the value 0 to 9. This corresponds to its binary coded

decimal (BCD) value. An ASCII digit can be converted to BCD simply by

subtracting the constant $30.

digit 0-9 = ASCII character $30-$39 = BCD value $00-$09

After converting the fIrst digit we can view this as a temporary result. If

a "non-digit character" follows the digit, we view the decimal number as

197

Abacus Software Machine Language for the Atari ST

ended. To understand the conversion routine, let's take another look at the

construction of a decimal number.

123 1 * 1000 + result o * 10 + 1

1 * 10 + 2

1

12 2 * 100 +

3 * 10 +

4 * 1 +

result

result

result

12 * 10 + 3 = 123

123 * 10 + 4 = 1234

We recognize that we need only multiply the previous conversion result

(start=O) by 10, and then add the new digit, in order to get the converted

number so far.

No.# 1234 digit 1 ASCII $31 BCD $01 result $0001

234 digit 2 ASCII $32 BCD $02 result $OOOC

34 digit 3 ASCII $33 BCD $03 result $OO7B

4 digit 4 ASCII $34 BCD $04 result $04D2

This procedure is used in our example in lines 28 to 42. We'll describe

the machine language procedure at the conclusion of the next listing.

198

Abacus Software

Input:
Decimal
Number

Machine Language for the Atari ST

Yes

Decmial/Binary
Conversion

199

Abacus Software Machine Language for the Atari ST

C P 1Mb 8 0 0 0 Ass e I b I e r
Source File: B:STEP6.S

Revision 04.03 Page

1
2
3
4
5
6
7
8 00000000 2A7C0000006A
9

10 00000006 3F3COOOI
11 OOOOOOOA 4E41
12 OOOOOOOC 54BF
13 OOOOOOOE IACO
14
15 00000010 OCOOOOOD
16 00000014 66FO
17
18 00000016 3F3COOOD
19 OOOOOOIA 3F3C0002
20 OOOOOOIE 4E41
21 00000020 588F
22
23 00000022 3F3COOOA
24 00000026 3F3C0002
25 0000002A 4E41
26 0000002C S88F
27
28 0000002E 2A7C0000006A
29
30 00000034 4287
31 00000036 4286
32
33 0000003B ICID
34 0000003A 04060030
35
36 0000003E OC060009
37 00000042 620B
38
39 00000044 CEFCOOOA
40 00000048 DE86
41 0000004A

fff

fl decinal/binary conversion step b ff
fff

in:

lovea.l 'line,a5

love." II,-(sp)
trap II
addq.l '2,sp
love.b dO,(aS)+

clpLb '13,dO
bne in

love." 113,-(sp)
love." 12,-(sp)
trap II
addq.l l4,sp

love." 'IO,-(sp)
love." 12,-(sp)
trap II
addq.l '4,sp

.ovea.l 'line,aS

clr.l d7
dr.l d6

convet: love.b (as)+,d6
subi.b U30,d6

.page

clpi.b 19,d6
bhi bi nout

lIulu.w 'lO,d7
add.l db,d7

200

f set up pointer

f Code: CONIN
f call 6EMDOS
f stack correction
f save character

f was character a CR
f No: next character

f output CR
f Code: CONOUT
f call GEMDOS
f stack correction

f output LF
f Code: CONOUT
f call GEMDOS
f stack correction

f reset pointer

f clear result field
f clear digit

f process digit
f ACIl to BCD

f BCD digit too large
f Yes: no lore digits

+ shift places
f add digit

Abacus Software Machine Language for the Atari ST

The above listing is the complete solution to our problem of

decimal/binary conversion. We have three coherent function groups in our

program:

• input of a line (lines 8 to 26)

• conversion ASCII-binary (lines 28 to 42)

• output a binary number (lines 44 to 55)

201

Abacus Software Machine Language for the Atari ST

Let's look at all the instructions in context. In line 8 a pointer (AS) is set

to the input buffer. Lines 10-16 comprise the input loop. A character is read

from the keyboard in lines 10 to 12. The function code (1) for the operating

system function CONIN (console input) is placed on the stack by means of

the MOVE instruction. The operating system is called by the TRAP

instruction in the next line. The character is placed in the DO register and

moved to the buffer area by the next MOVE instruction, as long as a CR was

not entered. Note that the buffer pointer is incremented to the next position

in the buffer by the MOVE instruction.

Lines 18 to 26 set the cursor to the next line of the screen. A CRILF

control character is outputted in the usual way by means of the CONOUT

(console output) function. First the control character is placed on the stack,

followed by the function code for CONOUT (2). The operating system is

called by the TRAP instruction. The parameters are subsequently removed

from the stack by the manipulation of the stack pointer.

The number represented as an ASCn string and contained in the buffer

is converted to a binary number (result in D7) in lines 28 to 42. The

conversion rule is used to do this. First the pointer is set back to the first

element in the buffer in line 28. Registers D7 and D6 are cleared (set to

zero) in lines 30 and 31 . The actual conversion loop begins at line 33.

A character is transferred from the input buffer to register D6, whereby

the buffer pointer (AS) is simultaneously incremented by one byte. The

ASCII digit is converted to a BCD number by subtracting the constant $30

in line 34. The result is checked for validity (line 36). If the result is greater

than 9, the character is not a digit and the conversion is terminated (line 37).

The previous result is increased by a power 10 as a result of a multiplication

202

Abacus Software Machine Language for the Atari ST

by 10 in line 39. The just-calculated position is added to the previous result

in D7 (line 40). An absolute branch is made to the top of the loop with the

BRA instruction in line 42.

The decimal/binary conversion is ended by the branch instruction in line

37. The program is continued in line 44. The decimal number entered is in

register D7. This number is outputted as a binary number in the program

segment from lines 44 to 55. Because our decimal conversion routine only

works in the range 0 .. 65535 ($O-$FFFF, determined by the multiplication

instruction, which processes only words), we'll output only 16 places of

the result. We have already explained how the output of a binary number

works. We'll explain the function again after the last assembler listing.

In line 44 the counter in data register D6 is set to 15. The counter is then

decremented by one until it becomes less then zero (DBF instruction in line

55). This corresponds to exactly 16 passes through the loop. Within this

loop, the highest-order bit from the lower-order word in D7 is shifted into

the X flag by means of the LSL instruction in line 47. In line 46 the constant

$18, which corresponds to half of ASCII zero ($30/2=$18), is formed.

This constant is added to itself by the addition in line 48, which corresponds

to a multiplication by two. The contents of the X flag are also added in.

Since the bit to be printed is contained in the X flag, the addition results in

either a $30 or $31 in the D5 register. These values correspond to the ASCII

characters for zero and one.

The result of this conversion in the D5 register is output to the screen in

lines 50 to 53. With the instruction in line 50, the contents of the D5 register

are pushed onto the stack. The function code 2 for the operating system

function CONOUT is then formed. The operating system is called by means

203

Abacus Software Machine Language for the Atari ST

of the TRAP instruction and the character is printed. Finally, the stack

pointer is corrected.

Once the loop is ended, the program continues with line 57. Here the

function code for a warm start is generated and the operating system is

called (line 58). This then ends the execution of the program.

Line 60 of the assembler listing contains the defmition of the buffer area

for the input loop.

The seventh step; the input loop

At the conclusion of this chapter, we want to refine our program. First

we want to output a start message (prompt character) for input of the

decimal number, and second, the whole routine should run in an input loop.

This means that after one decimal/binary conversion is performed, another

number is requested. Only when no number is entered will the program

end.

On the following pages you find an extended flowchart and the

assembler listing of the extended example program. We then will describe

the assembler listing again.

204

Abacus Software

Subroutine
"CR/LF"
Output

Character
Buf f er inde

Index + 1
index

yeS

8

>

Machine Language for the Atari ST

o Index
o Result
o Digit

Buffer inde
$30
digit

Result * 10
result

Result
+ digit

result

205

Results
shift-left

$30 + overflow
digit

Counter - 1
counter

Abacus Software Machine Language for the Atari ST

C P I M 6 BOO 0 Ass e I b I e r
Source File: B:STEP7.S

Revision 04.03 Page

1
2
3
4
5
6
7
B 00000000 6174
9

10 00000002 3F3C203F
11 00000006 3F3C0002
12 OOOOOOOA 4E41
13 OOOOOOOC 5BBF
14
15 OOOOOOOE 2A7C00000090
16
17 00000014 3F3COOOl
18 00000018 4E41
19 0000001A 548F
20
21 0000001C lACO
22
23 0000001E OCOOOOOD
24 00000022 66FO
25
26 00000024 BBFC00000091
27 0000002A 6744
28
29 0000002C 3F3C203D
30 00000030 3F3C0002
31 00000034 4E41
32 00000036 588F
33
34 00000038 2A7C00000090
35
36 0000003E 4287
37 00000040 4286
38
39 00000042 lClD
40 00000044 04060030
41 00000048

fffffffffffffffffffffffffffffffflflfflflffllfff

If decilal/binary conversion & loop step 7 ff
1IIIfffflffffffffffffflffffflfllfffffffffffffff

loop: bsr crlf f nell line

love. II I" ?",-(spl f prolpt character
love •• 12,-(spl I Code: CONOUT
trap 11 I call SEI1D05
addq.l 14,sp f stack correction

lovea.l IIine,aS f set up pointer

in: love •• Il,-(sp) f Code: CONIN
trap 11 f call 6EI'ID05
addq.l 12,sp f stack correction

love.b dO, (as)+ f save character

clpi.b 113,dO f is character a CR
bne in f No: next character

capa.l Iline+l,a5 f test for blank
beq end f Yes: end progral

love. II I" =",-(sp) f delileter
love. II 12,-(spl f Code: CONOUT
trap 11 f call 6EI1D05
addq.l l4,sp f stack correction

lovea.l Iline,aS f reset pointer

elr.l d7 f result field
clr .1 d6 f calc. field (relain

convet: love.b (a5)+,d6 f process digit
5ubi. b 1$30,d6 f ASCII to BCD

.page

206

Abacus Software

C P I M 6 8 0 0 0 Ass e I b I e r
Source File: B:SrEP7.S

42 00000048 OC060009
43 0000004C 6208
44
45 0000004E CEFCOOOA
46 00000052 DE86
47
48 00000054 60EC
49

Machine Language for the Atari ST

Revision 04.03 Page 2

clpLb 19,d6 I BCD digit too large
bhi binout I Yes: no lore digits

lulu.1I IlO,d7 f shi ft places
add.1 d6,d7 f add digits

bra con vet f new digit

50 00000056 7COF binout: love.1 115,d6 f plate counter
51
52 00000058 3A3C0018 out: love. II U18,d5 f ASCII zero/2
53 0000005C E34F 151 ... 11 ,d7 f i sol ate bit
54 0000005E DB05 addx.b d5,d5 f fori ASCII OIl
55
56 00000060 3F05 love." d5,-lspl f output
57 00000062 3F3COO02 love." 12,-lsp) f Code: CONOUT
58 00000066 4E41 trap 11 f tall 6EMDOS
59 00000068 588F addq .1 14,sp f stack correction
60
61 0000006A 51CEFFEC dbf d6,out f counter-I, test for
62
63 0000006E 6090 bra loop f new input
64
65 00000070 3F3COOOO end: love. II 10,-lsp) f Code: WARMSTART
66 00000074 4E41 trap 11 f call 6EtlDOS
67
68 00000076 3F3COOOD crlf: love.1I 113,-lsp) f output CR
69 0000007A 3F3COO02 love. II 12,-lspl f Code: CONOUr
70 0000007E 4E41 trap 11 f call GEtlDOS
71 00000080 588F addq.l 14,sp f statk correttion
72
73 00000082 3F3COOOA love. II 110,-(sp) f output LF
74 00000086 3F3COO02 !'love. II 12,-(sp) f Code: CONOUT
75 0000008A 4E41 trap 11 f call GEMDOS
76 OOOOOOBC 5BBF addq.l 14,sp f stack correction
77
78 0000008E 4E75 rts f return
79
80 00000090 line: .ds.b 80 f 80 character buffer
81
82 OOOOOOEO . end

207

Abacus Software Machine Language for the Atari ST

The frrst visible change in our program concerns the output of CR/LF.

We have used this function as a subroutine. The subroutine is defined in

lines 68 to 78; its function is identical to that in our previous examples.

This subroutine is called in line 8. It is not used at any other place in the

program; it serves only to demonstrate the BSR and RTS instructions. The

prompt character (?) is printed with lines 10 to 13. The CON OUT function

of the operating system again is used to do this. A special feature is found in

line 10, where we define the character to be printed by means of a text

constant. Here we have to get around an inadequacy of the assembler. The

operand width of the MOVE instruction is defined as "word." If you specify

only an ASCII character, it is expanded to word width by the assembler. It

does this by appending a $00 on the right. But this means that character is

no longer in the lower-order portion of the word, meaning that no visible

character is printed. The output functions correctly, but $00 is not a

printable character.

We can get around this inadequacy of the assembler by defining the

text constant as two characters, namely a space and an ASCII character. The

assembler then generates a word, with its lower byte containing the ASCII

character. This trick is not very "clean," since the higher-order portion is

always supposed to contain binary zero in order to maintain compatibility

with future operating systems. But since we have formulated our example

specifically for the ST, we'll overlook this minor defect.

Lines 15 through 24 process the input of a line. The use of this function

does not differ from out previous example.

208

Abacus Software Machine Language for the Atari ST

Lines 26 and 27 are added at this point. Here we check if a decimal

number was actually entered. This is done by simply testing the buffer

pointer (A5) to see if it points to the second element in the buffer. If this is

the case, only a single character is in the buffer. Since the last character in

the buffer is always a CR, we can assume that if the buffer contains only

one character, no digits have been entered. If a blank line is recognized, a

branch is made directly to the end processing (lines 65 and 66). There the

program is exited to the operating system in the usual manner.

If the line entered is not blank, a delimiter is created in lines 29 to 32

that separates the input number from the output. We again use the operating

system function CONOUT.

The decimal/binary conversion is executed in lines 34 to 48. Because

we have described this function in the previous examples, we'll not repeat

ourselves here. The same applies to the binary output in lines 50 to 61.

In line 63 we have an unconventional branch instruction, "back to

input." This concluded our input loop. A prompt character is printed on the

next line and the program waits for input. The program can be ended only

by a processor reset or by pressing <RETURN>.

Here we'll end our "step-by-step" introduction of assembly

programming. In the next chapter we'll present somewhat larger assembly

language programs, but won't go into such detail of their development.

209

Chapter Eight

t Solutions to Typical Problems 1 , ~

-Introduction

-Hexadecimal/decimal conversion

-Decimal/hexadecimal conversion

-Calculating an average

-Simple sorting

-Output: Strings

-Input: Strings with check

-Output: Date

-Factorial calculation

Abacus Software Machine Language for the Atari ST

(Introduction)

In this chapter we'll present some more example programs and use

them to illustrate some programming techniques and operating system

functions. We will also present some typical algorithms.

We could use more "powerful" operating system functions at certain

places and thereby make our example programs shorter. The goal of this

book, however, is to explain the methodology of assembly language

programming and to practice it using examples. For a more complete

discussion of the GEM-DOS operating system routines you might want to

refer to the Atari ST Gem Programmer's Reference from Abacus.

Each example is divided into several parts. As an introduction we will

familiarize you with the statement of the problem and suggest ways of

solving it. Following this will be a flowchart and a complete assembly

language listing. This and the algorithms used will then be explained.

We recommend that you try to understand the examples. If you own an

assembler, you can try out all of them with the ST.

213

Abacus Software Machine Language ror the Atari ST

~ ~) I Hexadecimal/decimal conversion
~

The problem of hex/decimal conversion IS quite similar to the

decimal/binary conversion which we presented in the previous chapter.

Hexadecimal numbers are also just a representation form for values, using

"16" as the number base. Corresponding to this there are also 16 digits in

the hexadecimal system. These digits are represented by the normal digits

0-9 and the letters A-F.

In the next program example we'll show you how to convert hexadecimal

numbers to decimal. Here we'll use two basic algorithms. These concern

the conversion of a hexadecimal string to binary register contents and

outputting the register contents as a decimal string (decimal number).

The conversion of a hexadecimal number to register format is relatively

easy to understand. Each digit corresponds exactly to the possible bit

combinations of four bits within a binary number.

214

Abacus Software Machine Language for the Atari ST

Start

Output:
Input Prompt

>----8

Hex line
~

Binary Number

Binary Number
~

Decimal line

Output:
Decimal

line

215

Abacus Software Machine Language for the Atari ST

C P I M 6 BOO 0 Ass e I b I e r
Source File: B:EXPl.S

Revision 04.03 Page

1
2
3
4
S
6
7
8 00000000 610000C8
9

10 00000004 3F3C203F
11 00000008 3F3C0002
12 OOOOOOOC 4E41
13 OOOOOOOE S88F
14
IS 00000010 2A7COOOOOOE4
16
17 00000016 3F3COOOI
18 OOOOOOIA 4E41
19 0000001C 548F
20
21 0000001E lACO
22
23 00000020 OCOOOOOO
24 00000024 66FO
2S
26 00000026 BBFCOOOOOOE5
27 0000002C 67000096
28
29 00000030 2A7COOOOOOE4
30
31 00000036 4287
32 00000038 4286

34 0000003A lCI0
35 0000003C OC060030
36 00000040 6536
37
38 00000042 04060030
39 00000046 OC060009
40 0000004A 6310
41 0000004C

fff'f'ff"""f'ftftttftt'ff'tf'ttfft'ttff"

I Hexadecilal/Oecilal conversion Exa.ple II
1IIIIIIfll14411111411111fflillfl4ffllfillfil

loop: bsr crIf t Cursor neN line

love.N '" ?",_(Sp) I Prolpt char
love. iii t2,-(sp) * Code: CONOur
trap II I Call GEHDOS
addq.l t4,sp I Stack correction

lIovea.1 Iline,aS I Set pointer

in: love.'" tl,-(sp) I Codl CONIN
trap II I Call 6E~OOS

addq.l t2,sp I Stack correction

love.b dO, (as) + Isave character

capi. b 113,dO I char a ·CR"?
bne in IN: next character

clpa.l lline+I,a5 * Test for blank
beq end I Y: progral end

aovea.l Iline,a5 I Reset pointer

clr .1 d7 Iclr. result field
clr.l db I calc. fieId(rem)

convet: love.b (as)+,d6 I process digit
cllpi.b U30,db f Ctr 1. char.
bio dec out I Y: end cony.

subia b U30,d6 * ACCII to BCD
clpi.b t9,db I BCD digit OK
bls ok I Y: Nas digit

.page

216

Abacus Software Machine Language for the Atari ST

C P / " 68000 Ass e I b 1 e r Revision 04.03 Page 2
Source File: B:EXP1.S

42 0000004C 04060027 subi.b U27,d6 fBCD digit correct
43
44 00000050 OC06000A clllpLb Ua,d6 f Letter OK
45 00000054 6522 blo dec out * N: convert
46
47 00000056 OC06000F ClPi. b Uf,d6 f Letter OK
48 0000005A 621C bhi dec out f N: end convert
49
50 0000005C E98F ok: 1 s1.1 14,d7 f place shift
51 0000005E DE86 add.l d6,d7 f add digit
52
53 00000060 OC870000FFFF 'Ipi.l Uffff ,d7 f test overflow
54 00000066 63D2 bls convet f N: new digit
55
56 00000068 6160 bsr crlf f cursor new
57 0000006A 3F3C2021 love.w ." I' ,- (sp) f error lessage
58 0000006£ 3F3COO02 love. iii t2,-(sp) , Code CONQUT
59 00000072 4E41 trap t1 f Call GE"DOS
60 00000074 588F addq.l t4,sp * Stack correction
61
62 00000076 6088 bra loop f input new nUlber
63
64
65 00000078 6150 decout: bsr crlf 'cursor new line
66
67 0000007A 3F3C203D love.1f ." =",-(sp) f result message
68 0000007E 3F3COO02 love.w 12,-(sp) f Code: CONOUT
69 00000082 4E41 trap t1 f Call GEtlDOS
70 00000084 588F addq.l 14,sp f Stack correction
71
72 00000086 02870000FFFF andi.l Uffff,d7 f limit places
73
74 0000008C 2A7COOOOOOE4 lIovea.l Iline,a5 f Set pointer
75
76 00000092 2C07 dodec: move. I d7,d6 f process digit
77
78 00000094 8CFCOOOA divu.w UO,d6 f fori value/10
79 00000098 3E06 love. III db,d7 * save results
80 0000009A 4846 swap d6 f forI remainder
81 0000009C 06460030 addi.1II U30,d6 f generate ASCII
82 OOOOOOAO .page

217

Abacus Software Machine Language for the Atari ST

C P / M b 8 0 0 0 Ass e I b 1 e r Revision 04.03 Page 3
Source File: B:EXP1.S

83 OOOOOOAO lAC6 love.b db, (a5)+ f digit in buffer
84
85 000000A2 OC470000 clpioN IO,d7 f all digits?
86 000000A6 66EA bne dodec f V: done nell •
87
88 000000A8 BBFCOOOOOOE4 out: clpa.l Iline,a5 f test buffer
89 OOOOOOAE 6700FF50 beq loop f V: done nell I
90
91 000000B2 lE25 lRove.b -(a5),d7 f get char acter
92 000000B4 024700FF andi. w Uff ,d7 f norlal char.
93
94 000000B8 3F07 move. ill d7,-(sp) f output char
9S OOOOOOBA 3F3COO02 lIove.'" 12,-(sp) f Code: CONOUT
96 OOOOOOBE 4E41 trap 11 f Call GEI'IOOS
97 OOOOOOCO S88F addq.l 14,sp f Stack correction
98
99 000000C2 60E4 bra out f test if done

100
101
102 000000C4 3F3COOOO end: loye.1iI 10,-(sp) f Code NARI'ISTART
103 000000C8 4E41 trap t1 f Call 6EI'I00S
104
105
106 OOOOOOCA 3F3COOOO crlf: love.N 113,-(sp) f Output CR
107 OOOOOOCE 3F3COO02 lIove.1iI 12,-(sp) f Code: CONOUT
108 00000002 4E41 trap 11 f Call GEI'IOOS
109 00000004 588F addQ.l 14,sp f Stack correction
110
111 00000006 3F3COOOA love. iii 110,-(sp) f Output LF
112 OOOOOOOA 3F3COO02 lUove.lrI 12,-(sp) f Code: CONOUT
113 OOOOOOOE 4E41 trap II * Call GEI'IOOS
114 OOOOOOEO 588F addq.l 14,sp * Stack correction
115
116 000000E2 4E75 rts * Return
11 7
118
119 000000E4 line: .ds.b 80 f 80 char buffer
120
121 00000134 .end

218

Abacus Software Machine Language for the Atari ST

We need only convert the hex digit in ASCII fonn to the corresponding

bit pattern. The orderliness of the ASCII code helps us here.

Binary 0000 to 1001 (0-9 hexadecimal) = ASCII $30-39

Binary 1010 to 1111 (A-F hexadecimal) = ASCII $41-$46

We can derive a computational rule from this ordered ASCII code:

If the hex digit is in the range from ASCII 0-9, we subtract $30

in order to get the binary value. If the hex digit is in the range

from ASCII code A-F, we subtract $37 in order to get the binary

value. If the digit is not within one of these two ranges, we

assume that the hexadecimal number is ended. If a digit occurs,

we multiply the previous result by 16 (shift it four bits to the left)

and add the new digit to it.

The algorithm for binary/decimal conversion is somewhat more

complicated in theory, but it is very easy to realize on the 68000. The

computation rule used is based on the Horner method. Here a number to be

converted is divided by the new base (here 10). The remainder of the

division corresponds to a digit in the given system (0-9). This division is

continued until the result becomes zero. An example will clarify this.

$04D2 (I 1234) / $A (I 10)

$007B (f 123) / $A (f 10)

$OOOC (I 12) / $A (I 10)

$0001 (I 1) / $A (I 10)

$7B (1123)

$OC(f 12)

$01(1 1)

$00(1 0)

219

rem 4

rem 3

rem 2

rem 1

Abacus Software Machine Language for the Atari ST

We recognize that we get all of the places of the decimal number with

this method, but in the reverse order. Therefore we must store all of the

digits and then output then in the proper order after the conversion.

We now turn to a description of the machine language program:

In line 8, the subroutine for creating a CR/LF is called. This is

programmed in lines 106 to 116. Its function is identical to the subroutine in

the last example. The instructions in lines 106 to 109 output a CR on the

screen. The GEM-DOS routine CONOUT is used for this. Lines 111 to 114

output an LF by the same procedure. The subroutine is ended by the RTS

instruction in line 116.

Lines 10-13 output a ,.?,. on the screen as the input prompt. The

GEM -DOS console output function CONOUT is again used. In line 6, the

input buffer pointer is initialized. It then points to the first byte in this area.

The input area itself is defined in line 119. In our example it can hold up to

80 characters.

Lines 15 to 24 form the input loop. The operating system is called in

lines 17 to 19. Here we use the GEM-DOS console input function CONIN,

with which you are already acquainted. Line 21 places the character entered

into the input buffer. The ASCII code of the key is then passed in the lower

byte of the DO register. The end condition for the input loop is tested in lines

23 and 24. As long as the DO register does not contain a CR, the loop

(input) is continued with the instruction in line 17. The next character is then

read.

220

Abacus Software Machine Language for the Atari ST

If the last character was a CR «RETURN> key), the program

continues execution with the instruction in line 26. Here the input buffer is

tested to see if it contains only one character. If this is the case, the program

branches to the instruction in line 102. There the program is ended with the

usual operating system call.

If the line was not blank, execution continues with line 29. The

conversion routine which converts the contents of the input buffer to a

binary number starts here. First a pointer is set back to the fIrst byte in the

buffer in line 29. Two data registers are initialized (set to zero) in lines 31

and 32 according to our rule of computation for the hex/binary conversion

and our flowchart. We will use D7 as the result field and D6 as the

calculation field for a hex digit.

The processing of hex digits starts at line 34 (within the loop). The

instruction in line 34 moves a hex digit from the buffer to the calculation

field (D6) and sets the pointer (A5) to the next fIeld. Some of the possible

non-hex-digit characters are ftltered out by the comparison instruction in line

35. If a character is smaller than $30, it can only be a control character or

special character. In this case, a branch is made to the decimal output routine

(at line 65) via the instruction in line 36. If the ASCII character is greater

than $30, $30 is subtracted, regardless of the fact that the character still may

not be a hex digit. The comparison instruction in line 79 determines whether

or not the character is a digit from 0-9. If it is, a branch is made to the

instruction in line 50 where this digit is processed. If the character is not in

the group 0-9, the conversion in line 43 is made. Here the constant $27 is

subtracted. Remember that we have already subtracted $30 from the original

ASCII character. Now the result must be in the range from $A to $F, which

corresponds to the second group of hex digits. This condition is checked in

221

Abacus Software Machine Language for the Atari ST

lines 44 through 48. If the character is not in this group either, the program

continues with the decimal output. Otherwise, the correctly converted digit

is processed at line 50.

The LSL. L instruction in line 50 shifts the previous result field four

bits to the left. Then the new hex digit is added to the result field (line 51).

The result is checked at the end of the end of the conversion loop (line

53). If the result field is less than $FFFF, the conversion continues with the

next digit. This is done by a branch back to the top of the loop (line 34). If

an overflow occurs, the cursor is set to the to the start of the next line by a

call to the CR/LF subroutine in line 56 and the instructions in lines 57 to 60

print an exclamation point (!) as an error message. The conversion is not

continued any further. The program branches to the start of the program in

the event of an error (line 62).

The decimal output routine starts at line 65. Here too we use the same

algorithm which we described earlier and which we defined in the

flowchart. First the cursor is moved down a line by a call to the CR/LF

subroutine in line 65 and the equals sign (=) is printed in lines 67-70.

The instructions in lines 72 and 74 prepare the output corresponding to

our algorithm. The output value is limited to binary numbers in range

0-65535 and the pointer (AS) is set to the start of the buffer area. This is

now used not for entering a string, but as temporary storage for the result of

the Homer method.

The decimal digits are calculated starting with the instruction in line 76.

The initial value is divided by 10 in line 78. The integer result is stored as

222

Abacus Software Machine Language for the Atari ST

the new value in register D7, where it will remain for the next pass through

the loop and be used as the initial value for the next digit. The upper and

lower halves of the register are exchanged by the SWAP instruction in line

80. The remainder of the division is stored in the higher-order portion,

which already corresponds to a "finished" digit. The ASCII code is

generated by adding the constant $30 (line 81). The result is placed in the

buffer (line 83), whereby the address counter is incremented by one byte.

A branch is made to the start of the conversion routine in line 86. The

output of all decimal digits must be realized by the routine from lines 88 to

99. First a test is made to see if all the characters have been printed already.

If the buffer is empty, a execution branches to the start of the program.

Otherwise a character is fetched from the buffer, the pointer is incremented,

the word is masked, and the character is printed (CONOUT). The loop is

continued by a branch to its start (line 99). It can be exited only through the

condition in line 89.

You will see parts of this program again and again in our examples.

Naturally, we will not describe identical program parts each time they occur.

223

Abacus Software Machine Language for the Atari ST

r

I DecimaIlhexadecimal conversion)
~ ~

The problem of decimal to hexadecimal conversion is the reverse of the

hex/decimal conversion which we presented in the previous section. Here

again we will use two basic algorithms. These are a conversion of a decimal

string to a binary number and outputting this binary number as a

hexadecimal string.

We have already explained the processing of decimal numbers entered

via the keyboard in the previous chapter (decimal/binary conversion). The

new part of this problem is the output of hexadecimal numbers. The

algorithm we use is easy to understand if you recall the previous example

(hex/decimal conversion). To output a hex number, the binary contents of a

register are simply divided into groups of four bits. This division is

accomplished through logical SHIFT operations. Each group of 4 bits

corresponds to one hex digit. These hex digits 'must be converted to ASCII

characters before they can be printed. This is done simply by adding

constants. First $30 is added in order to generate the digits 0-9 (ASCII

$30-$39). If the result is greater than $39, the previous result is extended to

the hex digits A-F (ASCII $61-$66) by adding $27.

Let us take a look at the flowchart and the assembler listing for the

decimallhexadecimal conversion:

224

Abacus Software

Start

Output:
Start

message

Input:
line

No

Machine Language for the Atari ST

Yes ~
>----~

Decimal line
--7

Binary number

Binary Number
--7

HEX line

Output:
HEX
line

225

Abacus Software Machine Language for the Atari ST

C PI" 680 0 0 Ass e I b 1 e r
Source File: B:EXP2.S

Revision 04.03 Page

1
2
3
4
S
6
7
8 00000000 610000BC
9

10 00000004 3F3C203F
11 00000008 3F3C0002
12 OOOOOOOC 4E41
13 OOOOOOOE S88F
14
lS 00000010 2A7COOOOOOD8
16
17 00000016 3F3C0001
18 0000001A 4E41
19 0000001C S48F
20
21 0000001E lACO
22
23 00000020 OCOOOOOD
24 00000024 66FO
2S
26 00000026 BBFCOOOOOOD9
27 0000002C 670000BA
28
29 00000030 2A7COOOOOOD8
30
31 00000036 4287
32 00000038 4286
33
34 0000003A 1C1D
3S 0000003C 04060030
36
37 00000040 OC060009
38 00000044 621E
39 00000046

ffffffffffffffffffl'lfl'III'f"ffll'f"""1

, Hexadecilal/Decimal conversion Exalple 2'
flfflfl'III'lllllf'flfffllflf'I""'f'f"'fl

loop: bsr crif f Cursor new line

love.w I" ?",-(sp) I Prolpt char
love. III 12,-(sp) , Code: CONOUT
trap 11 f Call GEMDOS
addq .1 14,sp f Stack correction

lovea.l Iline,aS f Set pointer

in: love.w Il,-(sp) f Cod: CONIN
trap 11 f Call GEM DOS
addq.l 12,sp f Stack correction

love.b dO, (as)+ Isave charader

clpi.b 113,dO I char a ·CR"?
bne in fN: next character

clpa.l Iline+l,aS I Test for blank
beq end I Y: progral end

lovea.I Iii ne, as f Reset pointer

clr.l d7 Iclr. result field
clr.l db , calc. field(rem)

convet: love.b (as)+,db I process digit
subi. b U30,d6 I ACCII to BCD

CIlPi. b 19,d6 f BCD digit OK
bhi hex out I Y: no more digit

.page

226

Abacus Software Machine Language for the Atari ST

C P I 11 6 8 0 0 0 Ass e I b 1 e r Revision 04,03 Page 2
Source File: B:EXP2,S

40 00000046 CEFCOOOA lulu,1I '10,d7 f place shift
41 0000004A DEB6 add, I d6,d7 f add digits
42
43 0000004C OC870000FFFF cipLI Uffff ,d7 f test overfl 011

44 00000052 b3Eb bls convet f N: nell digit
45
46 00000054 6168 bsr crlf f cursor new line
47
48 00000056 3F3C2021 love,w I" !' ,- (sp) * error message
49 0000005A 3F3COO02 move,w 12,-(sp) * Code CONOUT
50 0000005E 4E41 trap 11 * Call 6EMDOS
51 00000060 599F addq.l 14,sp * Stack correction
52
53 00000062 b09C bra loop * input new number
54
55
56
57 00000064 6159 hex out : bsr crlf * cursor nell line
58
59 00000066 3F3C203D move,1I I" =' ,- (spl * result message
bO 0000006A 3F3COO02 love.w 12,-(sp) * Code: CONOUT
61 0000006E 4E41 t rap 11 * Call GE:-1DOS
62 00000070 598F addQ.l U,sp * Stack correction
63
64 00000072 02870000FFFF andi.l Uffff ,d7 f lilit places
65
66 00000078 2A7COOOOOOD8 lovea.l Iline,a5 f Set pointer
67
68 0000007E 2C07 dohex: love.l d7,d6 * process digit
69 00000080 0246000F andiow Uf,d6 f .ask value
70 00000084 E84F 1 sr ,II 14,d7 f fora remanider
71 00000086 06460030 addLw U30,d6 f generate ASCII
72
73 0000008A OC460039 capi." U39,d6 f letter
74 OOOOOOBE 6304 bls ok * N; digit ok
75
76 00000090 06460027 addLw U27,d6 * correct digit
77 00000094 ,page

227

Abacus Software Machine Language for the Atari ST

C PI" 6 8 0 0 0 Ass e I b I e r Revision 04.03 Page 3
Source File: B:EXP2.S

78 00000094 lAC6 ok: love.b d6, (aSI+ I digit in buffer
79
80 00000096 OC470000 c:.pi.", IO,d7 f all digi ts?
81 0000009A 66E2 bne dohex f Y: neM digit
82
B3 0000009C BBFCOOOOOODB out: (Ipa.l Iline,aS f test buffer
84 000000A2 6700FFSC beq loop I Y: done neM I
BS
86 000000A6 1E2S love.b -(a5I,d7 I get character
87 000000A8 024700FF andio .. I$ff ,d7 I norlal char.
ee
89 OOOOOOAC 3F07 love. III d7,-(spl f output char
90 OOOOOOAE 3F3COO02 love." 12,-(sp) f Code: CONOUT
91 000000B2 4E41 trap 11 * Call SEI1DOS
92 000000B4 588F addq.l 14,sp * Stack correction
93
94 000000B6 60E4 bra out I test if done
95
96
97 000000B8 3F3COOOO end: love .. " 10,-lsp) * Code WARI1START
98 OOOOOOBC 4E41 trap 11 I Call GEI1DOS
99

100
101 OOOOOOBE 3F3COOOO crlf : love.'" 113,-(sp) f Output CR
102 000000C2 3F3COO02 love"" '2,-(sp) f Code: CONOUT
103 OOOOOOCb 4E41 trap .1 I Call 6EI100S
104 Ooooooca SB8F addq.l 14,sp f Stack correction
lOS
106 OOOOOOCA 3F3COOOA love." '10,-(sp) f Output IF
107 OOOOOOCE 3F3COO02 love." 12,-(sp) f Code: CON OUT
108 00000002 4E41 trap 11 f Call SEI100S
109 00000004 S8BF addq.l 14,sp * Stack correction
110
111 00000006 4E75 rts f Return
112
113
114 00000008 line: .ds.b 80 * BO char buffer
115
116
117 00000128 .end

228

Abacus Software Machine Language for the Atari ST

The decimal/hex conversion starts in lines 8 to 13 with the output of

"CR/LF" and a question mark as the input prompt character. The CRiLF is

outputted by a subroutine defined in lines 101 to 111. Lines 15 through 24

get an input line from the keyboard into the buffer. This is defined in line

114. The buffer is then checked (lines 26 and 27) to see if it contains a

blank line and if so, the program is ended in lines 97 and 98.

If characters are present in the buffer, it is converted to a binary register

value (D7) by the routine in lines 29 to 53.

The output of the hex number, now contained in D7, starts in line 57.

First the cursor is set to the start of the next screen line by outputting a

CRILF. Our subroutine at line 101 is used for this purpose. An equals sign

is printed to indicate that the hex number follows (lines 59 to 62) and the

contents of higher-order portion of D7 are masked out (line 64).

A hex digit is processed in line 66. First a copy is of the number to be

printed (D7) is placed in register D6. The all but the lower 4 bits are masked

out of this register (line 69). The number being processed in the D7 register

is shifted 4 bit positions to the right (line 70) because these bits are now in

register D6. These bits are then converted to a hex digit according to our

rule of computation.

The constant $30 is added in line 71 and a test is made to see if the

character is a digits from 0-9 (line 73). If this is the case, the D6 register can

be printed as a hex digit (at line 78). Otherwise the constant $27 is added

(line 76).

229

Abacus Software Machine Language for the Atari ST

The output at line 78 does not go directly to the screen, but first to the

buffer, which must then be printed in reverse order after the conversion.

But first the number in the D7 register is checked to see if all the necessary

places have been processed (lines 80 to 81) and a branch is made to the top

of the loop if necessary (line 68). If the number has been completely

converted, it is printed in lines 83 to 94. A branch is made to the start of the

program (input loop at line 8) when the output is done.

230

Abacus Software Machine Language for the Atari ST

(Calculating an average)

With this example we want to explain the processing elements of a

simple table, and so we leave the topic of simple input and output.

Decimal numbers are entered and stored as elements of a table. When

the first blank line is entered, the program calculates the average (integer

value) of the previous values and outputs the result in decimal.

First take a look at the flowchart and the assembler listing of the average

calculation program:

231

Abacus Software

o ~ Index

Yes

Decimal line
~

Binary number

Value ~
Table Index

Index + 1
~ Index

Machine Language for the Atari ST

232

Calculate
average
value

Output:
Average

value

Abacus Software Machine Language for the Atari ST

C P I M 6 8 0 0 0 Ass e I b 1 e r
Source File: B:EXP3.S

Revision 04.03 Page

1
2
3
4
5
6
7
8 00000000 287C00000144
9

10 00000006 61000086
11
12 OOOOOOOA 3F3C203F
13 OOOOOOOE 3F3C0002
14 00000012 4E41
15 00000014 588F
16
17 00000016 2A7COOOOOOF4
18
19 000000lC 3F3COOOl
20 00000020 4E41
21 00000022 54BF
22
23 00000024 lACO
24
25 00000026 OCOOOOOD
26 0000002A 66FO
27
28 0000002C 8BFCOOOOOOFS
29 00000032 670000A4
30
31 00000036 2A7COOOOOOF4
32
33 0000003C 4287
34 0000003E 4286
3S
36 00000040 lC1D
37 00000042 04060030
38
39 00000046 OCOb0009
40 0000004A 621E
41 0000004C

fffflffflflflflfffffffffffillflllflflfflfilf
I CALCULATE AVERAGE Exallple 3f
1IIIfllflflfllfllflffffffflflllffflfffflillf

lovea.l Itab,a4 * Data area for Is

loop: bsr crlf I Cursor new line

love.w I" ?",_(Sp) I Prolpt char
/love •• 12,-(sp) I Code: CONOUT
trap 11 I Call SEI'IDOS
addq.l 14,sp I Stack correction

lovea.l tline,aS I Set pointer

in: love. iii 11 ,- (sp) I Cod: CONIN
trap 11 f Call SEI1DOS
addq.l 12,sp f Stack correction

lIove.b dO,(aS)+ f save character

CIllPi. b 113,dO I char a 'CR"?
bne in I N: next character

cllpa.l II ine+1 ,as I Test for blank
beq SUI. f Y:generate sum

lIovea.1 Iline,aS I Reset pointer

clr.l d7 I clear result field
clr.l d6 * calc. fieldlrelainde

convet: love.b (aSl+,d6 f process digit
subi. b U30,d6 I ACCI I to BCD

c.pi. b 19,d6 I BCD di git OK
bhi proces I Y: no lore digit

.page

233

Abacus Software Machine Language for the Atari ST

C P / " 68000 Ass e I b 1 e r Revision 04.03 Page 2
Source File: B:EXP3.S

42 0000004C CEFCOOOA lulu.w 110 ,d7 f place shift
43 00000050 DE86 add.l d6,d7 f add digit
44
45 00000052 OC870000FFFF clpLl UHff,d7 f test for carry
46 00000058 63E6 bls con vet * N: neM digit
47
48 OOOOOOSA 6162 bsr crIf * cursor neM line
49
50 0000005C 3F3C2021 love. If I" !" ,-(sp) f error lessage
51 00000060 3F3COO02 love. If 12,-(sp) f Code CONOUT
52 00000064 4E41 trap 11 f Call GEHDOS
53 00000066 58BF addq.l l4,sp f Stack correction
54
55 00000068 609C bra loop * enter new •
56
57
58 0000006A 3BC7 proces: love.w d7,(a4)+ f value in table
59
60 0000006C 6098 bra loop f enter new line
61
62
63 0000006E 3F3C203D decout: love.1f I" :",-(sp) * result lessage
64 00000072 3F3COO02 love.w 12,-(sp) f Code: CONOUT
65 00000076 4E41 trap 11 f Call SEMDOS
66 00000078 5BBF addq.l 14,sp f Stack correction
67
68 0000007A 02870000FFFF andiol Uffff,d7 f !iIi t places
69
70 OOOOOOBO 2A7COOOOOOF4 lovea.l Iline,a5 f Set pointer
71
72 00000086 2C07 dodec: love. I d7,d6 f process digit
73 OOOOOOBB BCFCOOOA divu.N 110,d6 f for. value/l0
74 OOOOOOBC 3E06 love.1f d6,d7 * save results
75 OOOOOOBE 4846 slfap.1f d6 f fori relainder
76 00000090 06460030 addL w U30,d6 * generate ASCII
77 00000094 lAC6 love.b d6, (as)+ * digit in buffer
78
79 00000096 OC470000 capiolf 10,d7 f all digi ts?
80 0000009A 66EA bne dodec f Nj next digit
B1 000OOO9C .page

234

Abacus Software Machine Language for the Atari ST

C P I ~ 6 8 0 0 0 Ass e a b 1 e r Revision 04.03 Page 3
Source File: B:EXP3.S

82 0000009C BBFCOOOOOOF4 out: capa.l Iline,a5 f test buffer
83 000000A2 6602 bne nzlf f N: all digits
84
85 000000A4 4E75 rts f routi ne done
86
87 000000A6 1E25 nzlf : love.b -(a5),d7 f get character
88 000000A8 024700FF andia " I$ff ,d7 f norlal char.
89
90 OOOOOOAC 3F07 love. III d7,-(sp) f output char
91 OOOOOOAE 3F3COO02 love. III 12,-(sp) f Code: CONOUT
92 00000082 4E41 trap 11 f Call 6E~OOS

93 000000B4 5BBF addq.l 14,sp f Stack correction
94
95 000000B6 60E4 bra out f test if done
96
97
98 00000088 3F3COOOO end: love. III 10,-(sp) f Code WAR"START
99 OOOOOOBC 4E41 trap 11 f Call GE"OOS

100
101
102 OOOOOOBE 3F3COOOD crlf: love. III 113,-(sp) f Output CR
103 000000C2 3F3COO02 love. III 12,-(sp) f Code: CONOUT
104 000000C6 4E41 trap 11 f Call GE"DOS
105 000000C8 588F addq.l 14,sp f Stack correction
106
107 OOOOOOCA 3F3COOOA love. iii 110,- (sp) f Output LF
108 OOOOOOCE 3F3COO02 love." 12,-(sp) f Code: CONOUT
109 00000002 4E41 trap 11 f Call 6E"00S
110 00000004 588F addq.l 14,sp * Stack correction
111
112 00000006 4E75 rts * Return
113
114
115 00000008 4287 sun: elr .1 d7 * Clear SUI

116 OOOOOODA 4286 cl r.l d6 f Clear number
117 OOOOOODC .page

235

Abacus Software Machine Language for the Atari ST

C P I M 6 8 0 0 0 Ass e ~ b 1 e r Revision 04.03 Page 4
Source File: B:EXP3.S

118 OOOOOODC B9FCOOOOO144 SUI: cllpa.l ltab,a4 I Done?
119 000000E2 6306 bls avg f Y: forI average
120
121 000000E4 5286 addq.l 11,d6 I incre. counter
122 000000E6 DE64 add.1I -(a4I,d7 I Table value
123
124 000000E8 60F2 bra SUI I Next number
125
126 OOOOOOEA 8EC6 avg: divu.w d6,d7 I average
127
128 OOOOOOEC 61DO bsr crlf I cursor new line
129 OOOOOOEE 6100FF7E bsr dec out I output result
130
131 000000F2 60C4 bra end I End progral
132
133
134 000000F4 line: .ds.b 80 I 80 char buffer
135
136 00000144 tab: .ds.1I 100 f 100 values
137
138
139 0000020C .end

236

Abacus Software Machine Language for the Atari ST

The machine code segment that calculates the arithmetic mean is the

only new part of this program. The mean is calculated by adding all of the

elements and dividing this sum by the number of elements.

A temporary storage area for the elements is not required to calculate the

average. The numbers can be counted and summed within the input loop.

Despite this fact, we will choose the somewhat more complicated way in

order to more clearly illustrate how tables are processed.

In line 8 a pointer is set to the data area TAB which is defined in line

136. Here we will store the values entered word by word. The input loop

starts at line 10. Here a subroutine for outputting "CRlLF" is called. This

subroutine is defined in lines 102-112. Each input line starts with a prompt

("?") which is created by lines 12 to 15. A decimal number is read in by

lines 17 to 26. If a blank: line was not entered (lines 28 and 29), the input is

converted to register format (in D7). The conversion routine from line 31 to

line 55 is one we have used before. The converted number is placed in the

table by the instruction in line 58 and the pointer is advanced to the next

element. After the word is stored, another number can be entered (line 60).

If a blank: line is entered, the program branches from line 29 to line 115.

Now the average is actually calculated. The registers for the sum and

number of the elements are initialized in lines 115 and 116. The table is

processed from last to first element. In lines 118-119 the pointer (AS) is

compared to the start of the table as the end criteria, and if the end is

reached, a branch is made to line 126.

Otherwise the counter is incremented by one in line 121. Remember that

the address register A4 always points to the next element in the table. To

237

Abacus Software Machine Language for the Atari ST

sum the elements, we access the element preceding the pointer in line 122.

The loop is terminated by an unconditional branch to the top of the loop

(line 124). There a check is made to see if all elements have been processed.

If all elements have been summed (in D7) and their number determined

(in D6), the average can be calculated by the division in line 126. The result

is again placed in D7.

In this example, a decimal number is printed by a subroutine located

between lines 63 and 95. The algorithm used is the same as that in the

previous examples.

The output of the average value is preceded by a CR/LF in line 128.

The result (D7) is then printed by calling the subroutine decout in line 129

and the program is ended in the usual manner (lines 131,98 and 99).

238

Abacus Software Machine Language for the Atari ST

r " I Simple sorting)
\.. .-J

With this example we'll explain how to sort a simple table. Large

portions of this program correspond to routines which we used for

calculating averages.

Decimal numbers are to be entered in an input loop and stored as

elements of a table. When the first blank line is entered, the programs starts

the sorting procedure and outputs all of the elements in decimal as the result.

For the sorting we use one of the simplest algorithms, a variation of the

bubble sort. We have chosen this sorting method because it is easy to

understand and to program.

In our sort procedure all of the elements are processed within two

loops. The inner loop determines the smallest table element between the nth

element and the end of the table. The nth element is always compared with

all the others. If a smaller element is found, the two are exchanged. When

the loop is done, the smallest of all the elements in the inner loop is in the

nth element. The outer loop ensures that the inner loop is executed once for

each element. The smallest element in the entire table is found in the first

pass through the loop and this is stored at the first position in the table. This

process is then repeated for the rest of the table until all elements are sorted.

239

Abacus Software

Start

o ~ Index

No

Output:
"CR/LF"
message

Yes

Decimal line
~

Binary number

Valu~

Table Index

Index + 1
~ Index

Machine Language for the Atari ST

240

SORT

Output:
Table

of

Abacus Software Machine Language for the Atari ST

C P I M 6 BOO 0 Ass e II b 1 e r
Source File: B:EXP4.S

Revision 04.03 Page

2
3
4
5
6
7
B 00000000 287C00000162
9

10 00000006 61000086
11
12 OOOOOOOA 3F3C203F
13 OOOOOOOE 3F3C0002
14 00000012 4E41
15 00000014 58BF
16
17 00000016 2A7COOOOOl12
18
19 0000001C 3F3COOOl
20 00000020 4E41
21 00000022 548F
22
23 00000024 lACO
24
2S 00000026 OCOOOOOD
26 0000002A 66FO
27
28 0000002C BBFC00000113
29 00000032 670000A4
30
31 00000036 2A7C00000112
32
33 0000003C 4287
34 0000003E 4286
35
3b 00000040 lCID
37 00000042 04060030
38
39 00000046 OC060009
40 0000004A 621E
41 0000004C

fffffff*ffffffffffffffffffffffffffffffffffff
I Si.ple nu.ber sorting Exa.ple 4f
ffllflf"'fl""'I"'I"f",'*!"!""'f""

lovea.l Itab,a4 f Data area for Is

loop: bsr crlf f Cursor neN line

10ve.N I" ?",-(sp) , Proapt char
·lIove." 12,-(spl , Code: CONOUT
trap 11 , Call GEM DOS
addq.l l4,sp , Stack correction

lovea.l Iline,aS • Set pOinter

in: love.'" 11,-(spl f Cod: CONIN
trap 11 • Call GEMDOS
addq.l t2,sp • Stack correction

love.b dO, (a5l+ , save character

capi. b 113,dO f char a "CR·?
bne in I N: next character

capa.l Iline+1,a5 f Test for blank
beq sort , Y: sort

lovea.l Iline,a5 , Reset pointer

clr .1 d7 f clr. result field
clr .1 db f calc. field(rem)

convet: 1I0ve.b (aSH',db f process digit
subi. b U30,db f ACCII to BCD

cmpi. b ~9,db , BCD digit OK
bhi proces * Y: no lItore digit

.page

241

Abacus Software Machine Language for the Atari ST

C PI" b 8 0 0 0 Ass e I b 1 e r Revision 04.03 Page 2
Source File: B:EXP4.S

42 0000004C CEFCOOOA lIulu.1I 110,07 f pI ace shi ft
43 00000050 DEB6 add.l d6,d7 f add digit
44
45 00000052 OC870000FFFF clpi.l Uffff ,d7 f test for carry
46 00000058 63E6 bls can vet f N: nell digit
47
48 0000005A 6162 bsr crlf f cursor nell line
49
50 0000005C 3F3C2021 love. II I' !',-(sp) f error llessage
51 00000060 3F3COO02 love.'" 12,-(sp) f Code CONOUl
52 00000064 4E41 trap 11 f Call 6EMDOS
53 00000066 5BBF addq.l 14,sp f Stack correction
54
55 00000068 609C bra loop f enter new I
56
57 0000006A 3BC7 proces: love.1f d7,(a41+ f value in table
58
59 0000006C 6098 bra loop f enter nelf line
60
61
62
63 0000006E 3F3C203D decout: love." .~ :',-(sp) f result .essage
64 00000072 3F3COO02 love. II 12,-(sp) f Code: CONOUT
65 00000076 4E41 trap II f Call GEMDOS
66 00000078 588F addq.l 14,sp f Stack correction
67
6B 0000007A 02B70000FFFF andiol Uffff,d7 f hili t places
69
70 OOOOOOBO 2A7COOOOO112 lovea.l Iline,a5 f Set pointer
71
72 00000086 2C07 dodec: love. I d7,d6 f process digit
73 00000088 8CFCOOOA divu.1I 110,d6 f fori value/l0
74 0000008C 3E06 love.'" d6,d7 f sa'Ie resul ts
75 0000008E 4846 slIap • ." d6 f fori relainder
76 00000090 06460030 addLlI U30,db f generate ASCII
77 00000094 lAC6 Ilove.b d6, (as) + f digit in buffer
78
79 00000096 OC470000 c.pi. iii IO,d7 f all digits?
80 0000009A 66EA bne dodec f N; next digit
81 0000009C .page

242

Abacus Software Machine Language for the Atari ST

C P I M 6 8 0 0 0 Ass e • b I e r Revision 04.03 Page 3
Source File: B:EXP4.S

82 0000009C BBFCOOOOO112 out: capa.l Iline,a5 f test buffer
83 000000A2 6602 bne nzlf f N: all di gits
84
85 000000A4 4E75 rts f routine done
D6
87 OOOOOOA6 1E25 nzlf: .ove.b -(a51,d7 f get character
88 000000A8 024700FF andio II Uff,d7 t nor.al char.
89 OOOOOOAC 3F07 love." d7,-(sp) f outputf char
90 OOOOOOAE 3F3COO02 love.1I 12,-(spl f Code: CONOUT
91 000000B2 4E41 trap 11 f Call 6EKOOS
92 000000B4 58BF addq.l 14,sp f Stack correction
93
94 000000B6 60E4 bra out f test if done
95
96
97 000000B8 3F3COOOO end: love. III 10,-(sp) f Code WARHSTART
98 OOOOOOBC 4E41 trap 11 f Call BEHOOS
99

100
101 OOOOOOBE 3F3COOOO (rlf: love." 113,-(spl f Output CR
102 000000C2 3F3COO02 love. III 12,-(sp) f Code: CONOUT
103 000000C6 4E41 trap 11 f Call BEtlOOS
104 000000C8 5BBF addq.l 14,sp f Stack correction
105
106 OOOOOOCA 3F3COOOA love." 110,-(spl f Output LF
107 OOOOOOCE 3F3COO02 love." 12,-(sp) f Code: CONOUT
lOB 00000002 4E41 trap 11 f Call 6EHDOS
109 00000004 5BBF addq.l 14,sp f Stack correction
110
111 00000006 4E75 rts * Return
112
113
114 OOOOOOOB 267COOOOO162 sort: lovea.l Itab,a3 f 1st index
115
116 OOOOOODE 244B dosort: lovea.l a3,a2 f 2nd index
117 OOOOOOEO .page

243

Abacus Software Machine Language for the Atari ST

C PI" b 8 0 0 0 Ass e I b 1 e r Revision 04.03 Page 4
Source File: B:EXP4.S

118 OOOOOOEO 3E13 next: lovedl (a3) ,d7 f telP register
119 000000E2 3C12 10ve.N (a2) ,db f telP register
120
121 000000E4 BC47 Clp.N d7,d6 f test
122 000000E6 6504 bID noswap f V: no exchange
123
124 000000E8 3487 10ve.N d7,la2) f Swap
125 OOOOOOEA 3b86 10ve.N d6, (a3)
126
127 OOOOOOEC D5FCOOOOOOO2 noswap: adda.l 12,a2 f incre. 2nd index
128 000000F2 B5CC clpa.l a4,a2 f end of table?
129 000000F4 65EA biD next f Vi continue test
130
131 000000F6 D7FCOOOOOOO2 adda.l 12,a3 f incre. 1st index
132 OOOOOOFC B7CC cllpa.l a4,a3 f Table done
133 OOOOOOFE 65DE bID dosort f Vi continue sort
134
135 00000100 B9FCOOOO0162 disp: clpa.l Itab,a4 f done
136 00000106 63BO bls end f V: end progral
137
138 00000108 3E24 love.w -(a4I,d7 f Table value
139
140 0000010A 61B2 bsr crlf f Nell line
141 0000010C 6100FF60 bsr decout f Output value
142
143 00000110 60EE bra disp f next
144
145
146
147 00000112 line: .ds.b 80 f 80 char buffer
148
149 00000162 tab: .ds.1I 100 f 100 values
150
151 0000022A hip: .ds.l 1 f telP storage
152
153
154 0000022E .end

244

Abacus Software Machine Language for the Atari ST

In line 8 a pointer is set to the data area. The data entered will be stored

there word by word. The data area is defined in line 149. The input loop

starts at line 10. Here a subroutine to output CR/LF is called. The

subroutine is defined in lines 101 to 111. Each input line starts with an input

prompt ("?") which is created in lines 12 to 15. A decimal number is read in

lines 17 through 29. If the line entered is not blank (lines 28 and 29), the

input is converted into register format in D7. The conversion routine in lines

31 to 55 is one we have seen before. The converted number is placed in the

table by the instruction in line 57. The pointer is also advanced to the next

element. After the value is stored, another number can be entered (line 59).

If a blank: line is entered, the program branches from line 29 to line 114.

Here the actual sorting is done.

The sorting is done in lines 114-133. The inner loop is made up oflines

118 through 129. In line 114 the pointer for the sort loops is set to the first

element in the table. In line 116 this is copied as the pointer for the inner

loop. In lines 122 to 124 the element from the outer loop is compared with

that in the inner and the two are exchanged if requires (lines 124 and 125).

The inner loop counter is incremented in lines 127-129, and as long as the

last element has not been reached, the loop will be repeated at line 118. If

the inner loop is done, the element to which A3 points contains the smallest

value. The outer loop is then repeated by the lines in 131 to 133 until all

elements have been processed.

The following figure should clarify the sorting procedure.

245

Abacus Software Machine Language for the Atari ST

A. 3 2 5 1 Both pointers point to the same element

.L3. 2 5 1 Exchange elements

3 4 2 5 1 Exchange elements

2 4 3 5 1 OK, no exchange

2 4 3 5 1 Exchange elements

1 ..1 3 5 2 Both pointers point to the same element

1 ..1........3. 5 2 Exchange elements

1 3 4 5 2 OK, no exchange

1 3 4 5 2 Exchange elements

1 2 ..1 5 3 Both pointers point to the same element

1 2 .1.......5. 3 OK, no exchange

1 2 4 5 3 Exchange elements

1 2 3 .5. 4 Both pointers point to the same element

1 2 3 .5......A Exchange elements

1 2 3 4 5 All elements are sorted

Once all elements are sorted they will be printed in a loop (lines 135 to

143). The output of a decimal number is realized in this example again

through a subroutine which is located between lines 63 and 94. The

algorithm used is the one we used before.

The output of an element is preceded by the output of a CR/LF in line

140. The element is then printed by a call to the subroutine "decout" in line

141. In this form of output, the largest element is printed first. The loop is

closed with the unconditional branch command in line 143. If the

comparison in lines 135 and 136 determine that all elements have been

printed, the program branches to line 97 where it is ended in the usual

manner (lines 136,97 and 98).

246

Abacus Software

,
I Output: Strings I
\..

Machine Language for the Atari ST

With this and the following example we want to clarify the use of

further operating system subroutines.

By using GEM-DOS function 9, we can output an entire character

string on the screen, a string which will be created as a constant in the

assembly language program. At the end of the output the program should

wait until a key is pressed. Here we can use GEM-DOS function 7. This

corresponds to GEM-OOS function 2 except that the character entered is not

echoed on the screen. This way you can input even "non-printable"

characters (like CTRL-C, etc.) with GEM-DOS function 7.

In line 8 the address of the string to be printed is placed on the stack as

a long word. The function code follows in line 9. GEM-DOS is called as

usual. The GEM-DOS routine outputs the characters found at the address

passed. It ends its activity when it encounters a $00 character. All other

codes are permitted, including CR or LF. The stack must be corrected by 6

bytes in line 11 (an account of the long word). Lines 13 to 15 call a special

form of console input in which the character entered does not appear on the

screen, but is returned in the DO register. Lines 17 and 18 end the program.

Lines 21 and 23 create the text to be printed.

247

Abacus Software Machine Language for the Atari ST

C P I ~ 6 BOO 0 Ass e I b 1 e r
Source File: B:EXP5.S

Revision 04.03 Page

1
2
3
4
5
6
7
8 00000000 2F3COOOOOOIC
9 00000006 3F3C0009

10 OOOOOOOA 4E41
11 OOOOOOOC 5CSF
12
13 OOOOOOOE 3F3C0007
14 00000012 4E41
15 00000014 54BF
16
17 00000016 3F3COOOO
IS 0000001A 4E41
19
20
21 0000001C 48656C6C6F2C2077
21 00000024 6F726C6420202121
21 0000002C 2121212100
22
23 00000031 ODOAOO
24
25 00000034

1lllllllllfflflflflllfllllllllll'ffflllllfll

f Output a string Exallple 5*
fffflflffffffflffffffffffffffffflfffffffffff

start: love.l ttext,-(sp) f Addr. of string
love.w t9,-(sp) f Code: PRTllNE
trap II I Call 6EMDOS
addq.l 16,sp f Stack correction

love.w 17,-(sp) f Code: CONIN
trap 11 I Call SEMDOS
addq.l 12,sp I Stack correction

love.w 10,-(sp) f Code: WARMSTART
trap 11 f Call 6E"DOS

text: .dc.b "Hello, world ! ! ! ! ! ! ! Of

.dc.b 13,10,0 I CR/lF end mark

.end

248

Abacus Software Machine Language for the Atari ST

C ___ ID_P_u_t_:_S_t_r_iD_g_W_i_th_c_h_eC_k_...".)

By using GEM-DOS function 9 we can output text on tothe screen. The

character string to be printed is defined in the assembly language program.

At the conclusion of the output, the program will read a decimal number

from the keyboard. Only the number keys and the return key (CR) should

be allowed. Here we use GEM-DOS function 7 because with this input

function, the character entered does not automatically appear on the screen.

We can then first check the validity of the key, and ignore it in case of an

error. We must, however, take care of the output of a valid key ourselves.

To check to see if the input is correct, we want to output the decimal number

once again at the conclusion of the input and end the program.

On the following pages are the flowchart and assembly language

program listing.

249

Abacus Software

Yes

Yes

Char. ~
Line index

Index + 1
~ Index

Machine Language for the Atari ST

250

Abacus Software Machine Language for the Atari ST

C P / 11 6 8 0 0 0 Ass e I b 1 e r Revision 04.03 Page
Source File: B:EXP6.S

1
2
3 111111 •• I".I.I""' •••• I""' ••• I'fl.I ••• I •

4 • Input with check EXilple 6'
5 1.1.lf •••• III.lf ••• fll'I.I ••• II •• 11111111111

6
7
B 00000000 2F3COOOOO05A start: love.l ltext,-{sp) I Addr. of string
9 00000006 3F3COO09 love.w 19,-(sp) I Code: PRTLINE

10 OOOOOOOA 4E41 trap 11 I Call GEI1DOS
11 OOOOOOOC 5C8F addq.l 16,sp I Stack correction
12
13 OOOOOOOE 2A7COOOOO068 love.l Itexbuf,a5 • Pointer to text buf
14
15 00000014 3F3COO07 in: love." 17,-(sp) I Code: CONIN
16 00000018 4E41 trap 11 • Call GE"DOS
17 0000001A 548F addq.l 12,sp I Stack correction
18
19 0000001C OCOOOOOD ciPi. b UOd,dO I char a CR?
20 00000020 671A beq out • Vj output line
21
22 00000022 OCOOO039 clpi.b U39,dO I char > 9?
23 00000026 62EC bhi in • Vj ingore
24
25 00000028 OCOOO030 CIPi. b U30,dO I char < O?
26 0000002C 65E6 blo in • Vj ingore
27
28 0000002E lACO love.b dO,(a5)+ I store char.
29
30 00000030 3FOO love." dO,-{sp) • output char
31 00000032 3F3COO02 love." 12,-(sp) • Code: CONOUT
32 00000036 4E41 trap 11 I Call GEI1DOS
33 00000038 5B8F addq.l 14,sp I Stack correction
34
3S 0000003A 6008 bra in I next character
36
37 00OOO03C .page

251

Abacus Software Machine Language for the Atari ST

C PI" 6 8 0 0 0 Ass e I b 1 e r Revision 04.03 Page 2
Source File: B:EXP6.S

38 0000003C 4215 out: clr .b (a5) , lark end of line
39
40 0000003E 2F3COOOOO066 love.l loutbuf,-(sp) 'addr. of buff
41 00000044 3F3COO09 love. III 19,-(sp) , Code: PRTLINE
42 00000048 4E41 trap 11 , Call GE"OOS
43 0000004A 5C8F addq.l 16,sp , Stack correction
44
45 0000004C 3F3COO07 love. III 17,-(sp) , Code: CONIN
46 00000050 4E41 trap 11 , Call SEI'IDOS
47 00000052 548F addq.l 12,sp , Stack correction
48
49 00000054 3F3COOOO love. III 10,-(sp) f Code: NAR"START
50 00000058 4E41 trap 11 , Call 6E"OOS
51
52
53 0000005A OOOA496E70757420 text: .dc.b $OO,$OA,'Input 1:",$0
53 00000062 20233AOO
54
55 00000066 OOOA outbuf: .dc.b $Od,fOa
56
57 00000068 hxbuf: .ds.b 40
58
59
60 00000090 .end

252

Abacus Software Machine Language for the Atari ST

Lines 8 to 11 output the initial text on the screen; in line 13 the input

buffer pointer is set up. Lines 15 to 17 read a character, but without

displaying it on the screen. If the character was a CR, the input is tenninated

and the input buffer is printed at line 38.

Lines 22 to 26 check to see if the character entered is valid. If not, the

program branches to the top of the input loop (line 15). Only if the character

is valid is it placed in the input buffer and the pointer incremented (line 28).

The valid character must then be printed on the screen so that the user sees

that the input was accepted (lines 30 to 33). Once this is done, execution

branches back to the top of the input loop (line 35).

The decimal number in the input buffer is printed by the code starting in

line 38. Here we again use the output function for a whole character string.

But first we must mark the end of the input buffer with a $00 (line 38).

Note that for the output (lines 40 to 43) we do not specify the address of the

input buffer, but that of the output buffer (lines 55 and 57). Here we use a

simple trick to output another CR/LF before the actual output. If you look at

the declarations at line 53, you will see that the output buffer and the input

buffer overlap, because the output buffer is not marked with a $00 to

indicate its end.

Another keyboard input is expected in lines 45 to 47 before the

instructions in lines 49 and 50 are executed to end the program.

253

Abacus Software Machine Language for the Atari ST

(Output: Date)

With this example we want to illustrate GEM-DOS function 42, which

allows you to use the date (month, day, year) in your programs.

The program in our example should simply read the current date and

display it in the form MM/DD/YY in decimal on the screen. Here we use our

old subroutine for outputting a decimal number and for creating a linefeed.

First we will briefly explain how the date is read. After calling the

DATE function, GEM-DOS returns the date coded in binary in the DO

register. The bits have the following significance:

Bits 0 to 4

Bits 5 to 8

Bits 9 to 15

day
month

year

Range: binary 1 to 31

Range: binary 1 to 12

Range: binary 0 to 119

The year refers to the years since 1980. In order to get the correct year

value, the constant 1980 must be added to the year field.

The following pages contain the program flowchart and the assembly

language program listing.

254

Abacus Software

Start

/ output!
"CR/LF"
message

Get date
(operating system)

I

I Month ~ value

I

Output

I
Day --7 value

I
Output

I
Year + 1980
~ value

I
Output

End

Machine Language for the Atari ST

255

Output

Convert
value to

decimal number
(string)

Decimal
number

RETURN

Abacus Software Machine Language for the Atari ST

C P I M 6 8 0 0 0 Ass e I b 1 e r
Source File: B:EXP7.S

Revision 04.03 Page

1
2
3
4
5
6
7
8 00000000 61000094
9

10 00000004 3F3C002A
11 00000008 4E41
12 OOOOOOOA 548F
13
14 OOOOOOOC 33C000000100
15
16 00000012 0280000001EO
17 00000018 EA88
18 0000001A 2EOO
19
20 0000001C 6128
21
22 0000001E 3E3900000100
23
24 00000024 02870000001F
25 0000002A 611A
26
27 0000002C 3E3900000100
28
29 00000032 02800000FEOO
30 00000038 7C09
31 0000003A ECAF
32 0000003C 06870000078C
33 00000042 6102
34
35 00000044 604A
36
37
38 00000046 3F3C2020
39 0000004A 3F3C0002
40 0000004E 4E41
41 00000050 588F
42 00000052

ffffffffffff'f'fff ••• ff •• f.fff.f.f.f.f.fl.11

I OUTPUT DATE Exallple 7f
fflffffffffflffffff.fflf.flfffffflfflff'ffll

jsr crlf

love." 1$2a,-(sp)
trap 11
addq.l 12,sp

love.w dO,hip

andi.l l$leO,dO
1 sr.l 15, dO
love.l dO,d7

bsr decout

love. iii hip,d7

andLl Ulf,d7
bsr decout

love."

andi.l
love.l
1 sr.l
addLl
bsr

bra

hip,d7

UfeOO,dO
19,d6
db,d7
11980,d7
decout

end

decout: love." '" ·,-Isp)
love.N 12,-(sp)
trap 11
addq.l 14,sp

.page
256

f Cursor neN line

f Code: 6ETDATE
• Call GEMDOS
I Stack correction

f Save date

f process lonth

f prepare output

I and output

I Get data

f isolate day
I and output

f Get data

I isolate year
I set number shift
I and norm (9x)
f constant 1980
I and output

f end program

f space as seperator
I Code: CONOUT
f Call GEI1DOS
I Stack correction

Abacus Software Machine Language for the Atari ST

C P / M 6 BOO 0 Ass e I b I e r Revision 04.03 Page 2
Source File: 8:EXP7.S

43 00000052 02870000FFFF andiol Uffff,d7 f Iilit places
44
45 00000058 2A7COOOOOOBO lovea.l Iline,a5 f Set pointer
46
47 0000005E 2C07 dodec:: love.l d7,d6 f process digit
48 00000060 BCFCOOOA divu.w 110,d6 f fori value/l0
49 00000064 3E06 love.w d6,d7 f save results
50 00000066 4846 swap.w d6 f fori relainder
51 00000068 06460030 addi. w U30,d6 f generate ASCII
52 0000006C lAC6 love.b d6, (a5)+ f in buffer
53
54 0000006E OC470000 ClPi. " to,d7 f all di gits?
55 00000072 66EA bne dodec f Nj next digit
56
57 00000074 BBFCOOOOOOBO out: capa.l tline,a5 f test buffer
5B 0000007A 6602 bne nzlf f N: all digits
59
60 0000007C 4E75 rts f routine done
61
62 0000007E 1E25 nzlf: love.b -(a5),d7 f get character
63 00000080 024700FF andi. " Uff ,d7 f noraal char.
64
65 00000084 3F07 love. Ii d7,-(sp) f output char
66 00000086 3F3COO02 love." t2,-(sp) f Code: CONOUT
67 OOOOOOBA 4E41 trap 11 f Call GEMDOS
6B OOOOOOBC 5B8F addq.l l4,sp f Stack correction
69
70 0000008E 60E4 bra out f test if done
71
72
73 00000090 3F3COOOO end: love." 10,-(sp) f Code WARMSTART
74 00000094 4E41 trap 11 f Call 6E"DOS
75
76
77 00000096 3F3COOOD crlf: love." 113,-(sp) f Output CR
78 0000009A 3F3COOO2 love." 12,-(sp) f Code: CONOUT
79 0000009E 4E41 trap 11 f Call GEMDOS
80 OOOOOOAO 588F addq.l 14,sp f Stack correction
81 00OOOOA2 .page

257

Abacus Software

C P /" b 8 0 0 0 Ass e I b 1 e r
Source File: B:EXP7.S

82 000000A2 3F3COOOA
83 OOOOOOAb 3F3COOO2
84 OOOOOOAA 4E41
85 OOOOOOAC 588F
8b
87 OOOOOOAE 4E75
88
89
90 00000080 line:
91
92 00000100 hip:
93
94 00000104

Machine Language for the Atari ST

Revision 04.03 Page 3

love. II 110,-lsp) f Output LF
love.1I 12,-(sp) f Code: CONOUT
trap 11 * Call GEI'IDOS
addq.l 14,sp f Stack correction

rts f Return

.ds.b 80 f 80 char buffer

.ds.l f Date temp. store

.end

The routines to output a decimal number (lines 38 to 70) and the

subroutine for CR/LF (lines 77 to 87) are familiar to us already. The output

of the date stretches from line 8 to line 35.

First a CR/LF is output and the GEM-DOS function for reading the date

is called (lines 8-12). The date in DO is saved before it is processed (line

14). The day is printed in lines 16 to 19. The day is formed through simple

masking (line 16). Outputting the month is just as simple (lines 21 to 25),

only the result must be shifted right to put it in the right part of the word

after the rest of the number is masked out in line 23. The month is then

printed (line 25).

Forming the year is somewhat more complicated. After the other parts

of the data are masked out in line 29, the number must averaged through

multiple right-shifts (lines 30 and 31) since a shift cannot move a value

more than 7 bits at a time. After this we add the constant 1980 in line 32 in

order to get the correct the year. Lines 35, 73, and 64 end the program in

the usual manner.

258

Abacus Software Machine Language for the Atari ST

(Factorial calculation)

The factorial of n (where n is an integer) is defined as the product of the

first n natural numbers:

n! = 1 * 2 * 3 * ... * n, where O! is defined to be 1.

Examples:

O!

1 !

2!

3 !

4!

1

1*0!

2*1!

3*2!

4*3!

1

1

2

6

24 (etc.)

Clearly, we can also define the factorial of the number "n" in a different

manner:

O! 1 and n! = (n-l)!

This form of the definition is called recursive. Each following element can

be determined through its predecessors, and has great application in

computer science. We speak of a recursive program (in contrast to iterative)

if a routine calls itself directly or indirectly. Naturally you must ensure that

this cycle of self-calls ends at some point.

259

Abacus Software Machine Language for the Atari ST

Recursive representations have the advantage of being proven relatively

easily. We will not calculate a factorial iteratively, because it represents a

relatively simple example of recursion-although it is still the most difficult

concept presented in this book.

260

Abacus Software Machine Language for the Atari ST

Calculate Factorial
Repeat:

Write start
Enter a line

Blank line?

Yes No

Exit program ------

Convert input line to binary line

Call factorial

Output result

Factorial

Save register as needed
Get parameters

~me~
Yes No

Save parameter in register

decrement parameter and
Set return call factorial with this
value to 1 parameter

Delete parameter from stack

Multiply return value of
factorial by register

-4 new return value
restore saved registers

return to caller

261

Abacus Software Machine Language for the Atari ST

C P I M 6 BOO 0 Ass e I b I e r
Source File: 8:EXPB.S

Revision 04.03 Page

1
2
3
4
5
6
7
8 00000000 610000E6
9

10 00000004 3F3C203F
11 00000008 3F3C0002
12 OOOOOOOC 4E41
13 OOOOOOOE 58BF
14
15 00000010 2A7COOOOOI02
16
17 00000016 3F3C0001
18 0000001A 4E41
19 0000001C lACO
20 0000001E 54BF
21
22 00000020 OCOOOOOD
23 00000024 66FO
24
25 00000026 BBFCOOOOOI03
26 0000002C 67000084
27
28 00000030 2A7COOOOOI02
29
30 00000036 4287
31 00000038 4286
32
33 0000003A 1CID
34 0000003C 04060030
35
36 00000040 OC060009
37 00000044 6220
38
39 00000046 CEFCOOOA
40 0000004A DEa6
41 0000004C

1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIflillflfllil
I CALCULATE FACTORIAl Exalple Sf
11111111.1.""lllfllllllllllfllll.lflllflfl

loop: bsr crlf f Cursor new line

love.w '" ?·,-(sp) I ProlPt char
love. II 12,-(sp) I Code: CONOUT
trap U f Call GEI'IDOS
addq.l 14,sp I Stack correction

lovea.l Iline,a5 , Set pointer

in: love.w 11,- (sp) I Cod: CONIN
trap 11 I Call SEMOOS
love.b dO, (as) + I store char
addq.l 12,sp I Stack correction

clpi.b 113,dO I char a 'CR"?
bne in IN: next character

clpa.l Iline+1,a5 I Test for blank
beq end I V:end progru

lovu.l Iii ne, as I Reset poi nter

clr.l d7 Iclr. result field
clr.l d6 I calc. field(relainder)

convet: love.b (a5)+,d6 • process digit
subi.b U30,d6 f ACCII to BCD

ClPi. b t9,d6 f BCD digit OK
bhi proces I V: no ~ore digit

lulu.1I 110,07 f place shift
add.l d6,d7 I add digit

.page

262

Abacus Software Machine Language for the Atari ST

c P / M 6 8 0 0 0 Ass e ~ b 1 e r
Source File: B:EXP8.S

42 0000004C OCB70000FFFF
43 00000052 63E6
44
45 00000054 61000092
46
47 00000058 3F3C2021
48 0000005C 3F3COO02
49 00000060 4E41
SO 00000062 588F
51
52 00000064 b09A
53
54
55 00000066 2F07 proees:
56 00000068 61 04
57 0000006A 588F
58 OOOOOObC 6028
59
60
61 0000006E 4E540000 he:
62 00000072 2F05

Clip i.l
bls

bsr

move.w
move. iii
trap
addq.l

bra

move. l
bsr
addq.l
bra

link
love.l

Revision 04.03 Page 2

Uffff ,d7 f test for carry
con vet f N: new digit

crlf f cursor new line

." !., -(sp I f error message
12,- (spl f Code CONOUT
11 f Call 6EMDOS
14,sp f Stack correction

loop f E! nt ar new I

d7,-(spl f hctori al
he f calculate
14,sp f paral,frol stack
deeout I and output

a4,10 f local stack
d5,-(spl I save register

63 00000074 2A2COO08 love.l 8(a41,d5 f get parameter
64 00000078 OC8500000000 clpi.l '0,d5 I check end
65 0000007E 6712 beq endfac f Y: done
66 00000080 2C05 move.l d5,d6 ICOpy for dec.
67 00000082 5386 subq.l Il,d6 f dec. counter
68 00000084 2F06 love. 1 d6,-(sp) f new paralleter
69 00000086 61E6 bsr hc f recursion
70 00000088 5BBF addq.l 14,sp I par.. fro. stack
71 0000008A CEC5 lulu." d5,d7 f calc. n-l
72
73 0000008C 2A1F savhc: love.l (sp)+,d5 f relove frl stack
74 0000008E 4E5C unlk a4 f rerlease stack
75 00000090 4E75 rts free. level done
76
77 00000092 7EOl endfac: 1I0ve.l It,d7 I recursion done
78 00000094 60F6 bra savfac lend processing
79 00000096 .page

263

Abacus Software Machine Language for the Atari ST

C P / " 6 BOO 0 Ass e I b 1 e r Revision 04.03 Page or
"

Source File: B:EXPB,S

BO
Bl
82 00000096 61S0 decout: bsr crif 'cursor new line
B3
84 0000009B 3F3C2030 love. III . " : ",-(sp) , result lessage
8S 0000009C 3F3COO02 love,1iI 12,-(sp) , Code: CONOUT
86 OOOOOOAO 4E41 trap 11 , Call SEMODS
B7 000000A2 SBBF addq,l 14,sp , Stack correction
BB
89 000000A4 02B70000FFFF andi,l Uffff ,d7 f limit places
90 OOOOOOAA 2A7COOOOOI02 lovea.l Iline,aS , Set pointer
91
92 OOOOOOBO 2C07 dodec: love,l d7,db , process digit
93 000000B2 BCFCOOOA divu,1iI ItO,db f fori value/l0
94 000000B6 3E06 love, iii db,d7 f save results
9S 000000B8 4B46 SNap db , form re~ainder

96 OOOOOOBA 06460030 addis iii U30,d6 'gener ate ASC I I
97 OOOOOOBE tAC6 love,b db,(aS). f digit in buffer
9B OOOOOOCO OC470000 tiPi. iii to,d7 , all digits
99 000000C4 b6EA bne dodet , N; next digit

100
101 000000C6 BBFCOOOOOI02 out: tAlpa, I Iline,aS , test buffer
102 OOOOOOCC 6700FF32 beq loop f Y: all digits
103
t04 00000000 lE25 love,b - (as) ,d7 f get char ader
105 00000002 024700FF andio iii Uff ,d7 , norlal char,
106
107 00000006 3F07 love.w d7 ,-(sp) f output char
108 OOOOOODB 3F3COO02 love,w 12,-(sp) , Code: CONOUT
109 OOOOOODC 4E41 trap 11 , Call 6EMODS
110 OOOOOOOE S8BF addq,l l4 ,sp , Stack correction
111
112 OOOOOOEO 60E4 bra out f test if done
113
114
115 000000E2 3F3COOOO end: love,w 10,-(sp) f Code WARMSTART
lib 000000E6 4E41 trap 11 , Call GEI'IOOS
117
118 000000E8 .page

264

Abacus Software Machine Language for the Atari ST

C P / M 6 BOO 0 Ass e I b 1 e r Revision 04.03 Page 4
Source File: B:EXPB.S

119 OOOOOOEB 3F3COOOD crlf: love. iii 113, - (sp) f Output CR
120 OOOOOOEC 3F3COOO2 love." 12,-(sp) f Code: CONOUT
121 OOOOOOFO 4E41 trap II f Call SEMDOS
122 000000F2 5BBF addq.l 14,sp f Stack correction
123
124 000000F4 3F3COOOA !love." 110,-(spJ f Output LF
125 OOOOOOFB 3F3COO02 love." 12,-(sp) f Code: CONOUT
126 OOOOOOFC 4E41 trap 11 f Call SEMDOS
127 OOOOOOFE 5BBF addq.l 14,sp f Stack correction
128
129 00000100 4E75 rts f Return
130
131
132 00000102 line: .ds.b BO f BO char buffer
133
134
135 00000152 .end

265

Abacus Software Machine Language for the Atari ST

This example contains four elements used in previous examples. Only

the factorial calculation is new.

The subroutine for output of CRILF, defined in lines 119 to 129, is

called in line 8. Each input line starts with an input prompt ("?") created in

lines 10-13. A decimal number is read in by lines 15 to 23. If a blank line

was not entered (lines 25 and 26), the input is converted to a binary

number. The conversion routine from line 28 to line 52 is one we have used

before. The converted number is (line 55) passed to the factorial routine via

the stack. After the factorial calculation the stack will be corrected, the result

printed in decimal (lines 82 to 112), and new data is requested (line 8).

If a blank line is entered, the program branches from line 26 to line 115.

Here the program ends with a jump back to GEM. The actual factorial

calculation is performed in lines 61 to 78.

Then a so-called local base is established with the L INK instruction.

Several operations are performed when this instruction is executed. First the

contents of the A4 register are placed on the stack; then the current stack

pointer value is copied into the address register just saved (A4); and the

stack pointer is changed by the value given as the destination operand.

If a negative offset is given, the stack pointer is moved down. This

creates a "local" address space within the stack area. We do not need any

local stack space for the factorial calculation, so we specified a #0 in the

L INK instruction.

We use the LINK/UNLK mechanism here in order to simplify the stack

management.

266

Abacus Software Machine Language for the Atari ST

The current parameter, found in D5, is saved by the MOVE instruction in

line 62. In line 63, the last argument of the factorial function is read from

the stack over the local base. If 0 is given as the argument, if the last

recursion level is reached, the recursion can be resolved in reverse order

(jump to line 77).

If the last recursion level is not reached, the argument decremented by

one is pushed on the stack as the new argument by the instructions in lines

66 to 68, and the factorial is called again. If the last recursion level is

reached, we have the stack picture (for calculation of 2!) illustrated on the

following page.

The recursion is then resolved and the stack is reconstructed, in which a

" I" (O! = 1) is passed as the function value in D7 back to the calling location

as the result of the last recursion level (lines 77 and 78). The stack is

constructed at line 73, in which the argument of the caller is restored in D5

and the local stack is released through UNLK. The function is ended by

RTS.

The result in D7 will by multiplied by the argument and the stack

corrected for as long as the function had called itself (lines 70 and 71).

267

Abacus Software

Higher
Address

L

Argument "2"

Return address
to caller

Machine Language for the Atari ST

Address
Address
Address

"n"
"n+2"
"n+4"

A4 (save as E Local base 1
V 1
E
L

L
E
V
E
L

L
E
V
E
L

2

3

Lower
Address

-

local base)

Data register DS

Argument "1"

return address

A4 (save as Local base 2
local base)

with contents "2"

Argument "0"

return address

A4 (save as Local base 3
local base)

DS with contents "1" User stack pointer

At the conclusion of this chapter, we have one small practice suggestion

to recommend: play with the processor yourself! You can duplicate the

example of the factorial calculation with paper and pencil. Draw a stack

picture showing how the factorial calculation reconstructs the stack, and

create a list showing how the values in the registers change. This is not only

interesting to observe-it will also deepen your understanding of the last

example.

268

(APPENDIX)

Abacus Software Machine Language for the Atari ST

Flowchart Symbols

Program flowchart:

General processiong:

Branch:

Subroutine:

Input/Output:

Start/End:

(--)
Transfer/Continuation: o

270

Abacus Software Machine Language (or the Atari ST

Condition Codes

Abbreviations for testing the condition codes:

CC if carry clear
CS if carry set
PL if plus
MI if minus
VC if overflow clear
VS if overflow set
NE if not equal
EQ ifequal

Mter comparison:

EQ ifequal
NE if not equal

ifC=O
ifC=l
ifN=O
ifN=1
ifV=O
ifV=1
ifZ=O
ifZ=1

ifOPl =OP2
ifOPI ::!;OP2

Mter comparing unsigned values:

LO if lower
LS if lower or same
HI if higher
HS if higher or same

Mter comparing signed values:

LT
LE
GT
GE

less than
less than or equal
greater than
greater than or equal

Additional:

ifOP2 <OPI
ifOP2 ~OPI
ifOP2 > OPI
ifOP2~OPI

ifOP2 <OPI
ifOP2 ~OPI
ifOP2 >OPI
ifOP2~OPI

T True: The condition is always fulfilled
F False: The condition is never fulfilled

271

Abacus Software Machine Language for the Atari ST

68000 ADDRESSING MODES

No. Description Syntax Example
--

1) Data register direct Dn D3

2) Address register direct An A3

3) Address register indirect (An) (A3)

4) Address register indirect (An)+ (A5)+
with postincrement (SP)+

5) Address register indirect -(An) -(A5)
with predecrement -(SP)

6) Address register indirect d16(An) $1234(A5)

with 16-bit distance value

7) Address register indirect d8(An,Rn) $CO(Al,Dl)

with 8-bit distance value

8) Absolute short $xxxx.W $3000

9) Absolute long $x .. x.L $12345678

10) Immediate #"data" #$Od

11) Program counter indirect d 16(PC) $l000(PC)

with 16-bit distance value

12) Program counter indirect d8(PC) $1000(PC)

with 8-bit distance and
index (register)

Rn: any data or address register
Dn: any data register
An: any address register

272

Abacus Software Machine Language for the Atari ST

Mnemonic

ABCD.X
ADD.X
ADD.W/L
ADDLX
ADDQ.X
ADDX.X

Instruction Overview

Valid addressing modes FLAGS
Function oPt 1 2 3 4 5 6 7 8 9 10 11 12 XNZVC

Add BCD with extend 2
Add binary 2
Add binary to address reg 2
Add immediate
Add immediate quick
Add binary with extend

2
2

2

x x *u*u*
s s x x x x x x x s s s •••••

x x x x x x x x x x x x -----
x x x x x x x x
x x x x x x x x x
x x

•••••

.....
AND.X Logical AND 2 s x x x x x x x s s s -**00
ANDI.X Logical AND immediate 2 x

1/2 x
1

x x x x x x x ---00
ASL,ASR.X Arith . shift left/right
Bcc
BCHG.X

BCLR.X
BRA
BSET . X
BSR
BTST.X
CHK.W
CLR .X
CMP . X
CMPA.X
CMPLX
CMPM.X
DBcc.W
DIVS.W
DIVU.W
EOR . X
EORI.X
EXG.L
EXT.X
JMP

JSR
LEA.L
LINK
LSL,LSR .X
MOVE.X
MOVEA.W/L
MOVE. X
MOVE.X
MOVE.X
MOVE.X
MOVEM.X

Branch conditional
Test bit and change
Clear bit
Branch always
Bit TEST and SET

2

2

1

2

Branch to subroutine 1
Bit TEST 2
Check reg against bounds 2
Clear 1
Compare 2
Compare address register 2
Compare immediate
Compare with memory
Decrement and branch
Divide signed
Divide unsigned
Logical exclusive OR
EOR immediate
Exchange registers
Sign extend
Jump absolute

2

2

2

2

2
2

2

2

2

1
Jump to subroutine 1
Load Effective Address 2
Link local base pointer 2
Logical shift left/right 1/2
Move
Move to address register
Move to CCR
Move from SR
Move to SR
Move user stack pointer
Move multiple registers

2
2

1

1

1

1
2

x
x

x

x
x

x x x x x x x •••••

x x x x x x x

x x x x x x x

x x x x x x x

x x x x x x x
x x x x x x x x x

--*--

--*--

--*--

--UUU

x x x x x x x x -0100
x x x x x x x x x x x x _ ••••
x x x x x x x x x x x x _ ••••

x

x
x
x
x
x x
x

x
x
x
x
x
x

273

x

s
x

x

x x x x x x x
x x x x x

_
x x _ ••••

x x x x x x x x x x -***0

x x x x x x x x x x ----0
x x x x x x x
x x x x x x x

x
x
x

x
x
x

x

x
x

x

x

x
x
x
x

x

s

x
x
x
x

x

x

d

x x x x
x

x

x
x
x
x

x

x

x

x x
x x

x x
x x
x
x

x

x

x

x
x

x

x

x

x
x

x
x
x

x

x

x

x

s

x

x

x

---00
---0 0

---00
x x
x
x

s
x
x

x

s

x

x

s ---0 0
x -----
x

x

s

Abacus Software Machine Language for the Atari ST

Valid addressinq modes FLAGS

Mne monic Function oPt 1 2 3 4 5 6 7 8 9 10 11 12 XNZVC

- --
MOVEP.W/ L
MOVEQ.L
MULS.W
MULU.W
NBCD.B
NEG .X
NEGX.X
NOP
NOT.X
OR .X
ORI.X
PEA.L
RE SET
ROL ,ROR.X

Move peripheral
Move immediate quick
Mult iply siqned
Multiply unsiqned
Negate BCD byte
Negate
Negate with extend
No operation
Logical NOT
Logical OR
Logical OR immediate
Push effective address

Reset
Rotate left/right

2

1

2

2

1

1

1

1

2

2
1

ROX L,ROXR.X Rotate L/R with extend

1/2

1/2

RTE Return from exception

RT R
RT S
SBCD.B
Scc .B
STOP.X
SUB.X
SUBA.W/ L

SUBI.X
SUBQ.X
SUBX.X

SWAP
TAS.B
TRAP
TRAPV
TST .X
UNL K

Return and restore CCR
Return from subroutine
Subtract BCD with extend 2
Set byte according to cc
Stop with CCR loaded
Subtract binary
Subt. bin from addr reg

Subtract immediate
Subtract quick
Subtract with extend
Swap register halves
Test byte and SET
Trap
Trap on overflow
Test byte
Unlink local area

1
1

2

2

2
2

2

1

1

1

1

1

x
d

x
x
x
x

x

x
x
x

x
x
x

x
x
x

x

x
x
x

x
x
x

x
x
x

x
x
x

x x x x x x x
x x x x x x x

x
x

x
x

-**00
x -**00
x -**00

*u·u·

x
x
x

x x x x x x x -** 00
x x x x x x x s s s -**00

x
x

x
x

s
x
x

x x x x x x x
x x x x x

x x x x x x x
x x x x x x x

x

x x x x x x x

s x x x x x x x
x x x x x x x x

x x x x x x x
x x x x x x x x x

x
x
x

x

x x x x x x x

x x x x x x x x

x

274

-**00
x x -----

x
s s
x x

x

-**0·

***0*

*.***

*u·u·

****.
s *****
x -----

***.*
-**00
-**0 0

- **00

Abacus Software Machine Language for the Atari ST

Optional Diskette

ATARI ST
Machine language

Optional diskette

For your convenience, the program listings contained in this book are

available on an SF354 formatted floppy disk. You should order the diskette

if you want to use the programs, but don't want to type them in from the

listings in the book.

All programs on the diskette have been fully tested. You can change the

programs for your particular needs. The diskette is available for $14.95 plus

$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a

check, money order or credit card information. Mail your order to:

Abacus Software
5370 52nd Street SE

Grand Rapids, MI 49508

Or for fast service, call 616/698-0330.
Credit Card orders only 1-800-451-4319.

275

REQUIREDR~

INTERNALS
EssentIal guide to learntng the
Inside Information of the ST.
Detailed descriptions of sound
& graphics chips, Internal
hardware. various ports, GEM.
Commented BIOS lisling. An
Indispensible reference for
your library. 45Opp. $19.95

GEM Prog,.mmor'. Ref.
For serious programmers in
need 01 detailed information
on GEM . Written with an
easy4o-understand format. All
GEM ex~18s are written in
C and assembly. Required
reading for the serlous pro
grammer. 45Opp. $19.95

TRICKS & TIPS
Fantastic collection of pro
grams and info for the ST.
Complete programs include:
super-fast RAM disk; time
saving printer spooler; color
print hardcopy; plottsr output
hardcopy. Money saving tricks
and l ips. 200 pp. $19.95

GRAPHCS & SOUND
Detailed guide 10 understand
ing graphics & sound on the
ST. 20 & 3D function planers,
Moire panerns, various reso
lut ions and graphic memory,
fradals , waveform generation.
ExafTl)1es written in C, lOGO.
BASIC and Modula2. $19.95

BASIC T,.lnlng Gutde
Indispensible handbook lor
beginning BASIC program
mers. Learn fundamentals of
programming. Flowchart ing,
numbering system, log ical
operators. program structures,
bits & bytes, disk use, chapter
qu izzes. 200pp. $ 16.95

PRESENTING THE ST
Gives you an in-depth
look at this sensational
new computer. Discusses
the architecture of the
ST, working wtth GEM,
the mouse, operat ing
system, all the various
interfaces, the 68000
chip and its instructions,
LOGO. $t6.95

MACHINE LANGUAGE lOGO PEEKS & POKES BEGINNER'S GUIDE BASIC TO C
Program in the fastest Take control of your Enhance your programs Fina ll y a book lor those If you are already familiar
language for your Atari ATARI ST by learning with the examples found new to the ST wanting to With BASIC, learning C
ST. learn the 68000 LOGO-the easy-to-use, within this book. Explores understanding ST caSICS. Will be all thai much
assembly language, its yet powerful language. using the different lang- Thoroughly understand easier. Shows the trans
numbering system, use Topics covered include uages BASIC, C, LOGO your ST and Its many it ion f rom a BASIC
of registers, the structure structured programming, and machine language, devices. Learn the funda- program, translated step
& important details of the graphic movement, hie using various interfaces, mentals of BASIC, LOGO by step. to the Imal C
instruction set, and use of handling and more. An memory usage, reading and more. Complete with program. For all users
the internal system excellent book for kids as and saving trom and to index, glossary and IItUS- interested in taking the
routines. 280pp $19.95 weUasadutts. $19.95 disk, mora. $t6.96 Iralions . • 200pp $16.95 next step. $19.96

5370 52nd Street SE Grand Rapids, MI 49508 Phone (616) 698-0330
Optional diskettes are available for all book titles at $14.95
Call now for the name of your nearest dealer. Or order directly from ABACUS with your MasterCard, VISA, or Amex card. Add
$4.00 per order for postage and handling. Foreign add $10.00 per book. Other software and books coming soon. Call or
write for your free catalog. Dealer inquiries welcome-<>ver 1400 dealers nationwide.

We have the software
you've been looking for!

Data Trieve
The electronic

filing system
~r.eafor the ST

ST DataTrleve
Data management was never this
easy. Online help screens; lightning
fast operation ; tailorable display; user
definable edit masks; up to 64,000
records. Supports multiple files . In
cludes RAM-disk programs. Complete
search , sort and file subsetting. Inter
faces to TextPro . Easy yet powerful
printer control. Includes five common
database setups. $49.95

ST Forth/MT
Powerful, multi-tasking Forth for the ST.
A complete, 32 -bit implementation
based on Forth-83 standard. Develop
ment aids : full screen editor, monitor,
macro assembler. 1500+ word library.
TOS/LiNEA commands. Floating point
and complex arithmetic. $49.95

Word processor for the ST

STTextPro
Word processor with professional
features and easy-to-use! Full-screen
editing with mouse or keyboard
shortcuts. High speed input, scrolling
and editing ; sideways printing;
multi-column output; flex ible printer
installation; automatic index and table
of contents; up to 180 chars/line ; 30
definable function keys ; metafile
output; much more. $49.95

AssemPro
The complete 68000

assembler development
package for the ST

ST AssemPro
Professional developer's package
includes editor, two-pass interactive
assembler w~h error locator, online help
including instruction address mode and
GEM parameter information,
monitor-debugger, disassembler and
68020 simulator, more. $59.95

ST PalntPro
Friendly, but powerful design and paint
ing program. A must for everyone's
artistic and graphics needs. Up to three
windows . Cut & paste between win
dows. 36 user-defined fill patterns;
definable line patterns ; works in hi
med- & lo-res; accepts GDOS fonts.
Double-sized picture format. $49.95
PaintPro Library '1 5 fonts , 300+ electronic,
architectual , borders & d ip art designs. 519.95

PowerPlan ST
Full-powered Spreadsheet
37 math functions · 1" dgit precision
Large size. owr " .2 billion cells
Multiple windows · ~ to 7
Graphics - 7 types of graphs

PowerPlan ST
Powerful analysis package. Large
spreadsheet (65536 X 65536 cells) ,
built-in calculator, notepad, and inte
grated graphics. 37 math functions, 14
digit-precision. Seven windows to show
one of seven types of charts or another
section of your spreadsheet. $79.95

ST and l040ST arolradomar1<o 01 Alati Corp.

Other software and books also available. Call or write
for your free catalog or the name of your nearest
dealer. Or order directly using your VISA, MC or Amex
card . Add $4.00 per order for shipping and handling.
Foreign orders add $10.00 per item. 30-day money
back guarantee on software. Dealers inqu ires
welcome-over 1500 dealers nationwide.

Abacus li'iUinU!il IUUiUU!1
Abacus Software • 5370 52nd Street SE
Grand Rapids, MI 49508· Phone (616) 698-0330

Selected Abacus Products for the ~trAA~ ~ ~

DataRetrieve
(formerly FilePro S1)

Database management package
for the Atari ST

"DatoRetrieve is the most versatile. and yet simple.
data base manager available for the Atari 520STli 040ST
on the market to date."

-Bruce Mittleman
Atari Journal

DataRetrieve is one of Abacus' best-selling software
packages for the Atari ST computers-it's received
highest ratings from many leading computer magazines.
DataRetrieve is perfect for your customm; who need a
powerful, yet easy to use database system at a moderate
price of $49.95.

DataRetrieve's drop-down menus let the user quickly and
easily defme a file and enter information through screen
templates. But even though it's easy to use,
DataRetrieve is also powerful. DataRetrieve has fast
search and sorting capabilities, a capacity of up to
64,000 records, and allows numeric values with up to
15 significant digits. DataRetrieve lets the user access
data from up to four fIles simultaneously, indexes up to
20 different fields per fIle, supports multiple fIles, and
has an integral editor for complete reporting capabilities.

DataRetrieve's screen templates are paintable for
enhanced appearance on the screen and when printed, and
data items may be displayed in multiple type styles and
font sizes.

The package includes six predefmed databases for
mailing list, record/video albums, stamp and coin
collection, recipes, home inventory and auto
maintenance that users can customize to their own
requirements. The templates may be printed on Rolodex
cards, as well as 3 x 5 and 4 x 5 index cards.
DataRetrieve's built-in RAM disks support lightning
fast operation on the I040ST. DataRetrieve interfaces to
TextPro fIles, features easy printer control, many help
screens, and a complete manual.

DataRetrieve works with Atari ST systems with one or
more single- or double-sided disk drives. Works with
either monochrome or color monitors. Printer optional.

DataRetrieve Suggested Retail Price: $49.95

DataRetrieve

~J]
The electronic

filing system

nt ~;:.1 for the ST
~i

DataRetrieve Features:

• Easily define your fIles using drop-down menus
• Design screen mask size to 5000 by 5000 pixels
• Choose from six font sizes and six text styles
• Add circles, boxes and lines to screen masks
• Fast search and sort capabilities
• Handles records up to 64,000 characters in length
• Organize fIles with up to 20 indexes
• Access up to four files simultaneously
• Cut, past and copy data to other fIles
• Change fIle defmitions and format
• Create subsets of fIles
• Interfaces with TextPro fIles
• Complete built-in reporting capabilities
• Change setup to support virtually any printer
• Add header, footer and page number to reports
• Defme printer masks for all reporting needs
• Send output to screen, printer, disk or modem
• Includes and supports RAM disk for high-speed

1040ST operation
• Capacities: max. 2 billion characters per file

max. 64,000 records per fIle
max. 64,000 characters per record
max. fields: limited only by record size
max. 32,000 text characters per field
max. 20 index fields per fIle

• Index precision: 3 to 20 characters
• Numeric precision: to 15 digits

Numeric range ±1O-30g ti ±10308

AIari Sf, 520ST, J04OST, TOS, ST BASIC and Sf I.JX)() are IrIdcmub or rqisllered tndernlIts of Atari Corp.

OEM Is 10 ___ ofDi,;toI RCICtidIInc.

Selected Abacus Products for the A1rM~ ~ ~

TextPro
Wordprocessing package

for the Atari ST

'TextPro seems to be well thought out, easy, flexible
an! fast . The program maJces excellent use of the GEM
interface and provides lots of small enhancements to
make your work go more easily ... if you have an ST
and haven't moved up to a GEM word processor, pick
up this one and become a text pro."

-John Kintz
ANTIC

'TextPro is the best word processor available for the ST'
-Randy McSorley

Pacus Report

TextPro is a first-class word processor for the Atari ST
that boasts dozens of features for the writer. It was
designed by three writers to incorporate features that
~ wanted in a wordprocessor-the result is a superior
package that suits the needs of all ST owners.

TextPro combines its "extra" features with easy
operation, flexibility, and speed-but at a very
reasonable price. The two-fmgered typist will find
TextPro to be a friendly, user-oriented program, with all
the capabilities needed for fine writing and good-looking
printouts. Textpro offers full-screen editing with mouse
or keyboard shortcuts, as well as high-speed input,
scrolling and editing. TextPro includes a number of easy
to use fonnatting commands, fast and practical cursor
positioning and multiple text styles.

Two of TextPro's advanced features are automatic table
of contents generation and index generation
-capabilities usually found only on wordprocessing
packages costing hundreds of dollars. TextPro can also
print text horizontally (nonnal typewriter mode) or
vertically (sideways). For that professional newsletter
look, TextPro can print the text in columns--up to six
columns per page in sideways mode.

The user can write fonn letters using the convenient
Mail Merge option. TextPro also supports GEM
oriented fonts and type styles--text can be bold,
underlined, italic, superscript, ouilimIcdl, etc., and in a
number of point sizes. TextPro even has advanced
features for the programmer for development with its
Non-document and C-sourcecode modes.

TextPro Suggested Retail Price: $49.95

511,

.. I __ tot-.

D .. r COfIllut.r ("tlwllllt,

Hut ' . II,. I.tl,tut.l",.·
t.'nl"l.ll.'M'lIt .. t -
tI.ttl ,

~I,," •• ftul"''''t ,-II. " .. t nil_II ""tIlMr'
'" til, " Itr. "IthlUr • • 11111
M""'I urlllll II" Sllttl rllI.t,
tlon 'II tlltn. "r, If ,It'
(IIIt""rUIl,to • .

W, n .. t.nsl" 1I.ltl, If
bl.s , ... soft .. .,.. ,tdr.llti .

TextPro ST Features:

""",ttl

• Full screen editing with either mouse or keyboard
• Automatic index generation
• Automatic table of contents generation
• Up to 30 user-defined function keys, max. 160

characters per key
• Lines up to 180 characters using horizontal scrolling
• Automatic hyphenation
• Automatic wordwrap
• Variable number of tab stops
• Multiple-column output (maximum 5 columns)
• Sideways printing on Epson FX and compatibles
• Performs mail merge and document chaining
• Flexible and adaptable printer driver
• Supports RS-232 file transfer (computer-to-computer

transfer possible)
• Detailed 65+ page manual

TextPro works with Atari ST systems with one or more
single- or double-sided disk drives. Works with either
monochrome or color ST monitors.

TexPro allows for flexible printer configurations with
most popular dot-matrix printers.

AIori ST, sum-. 1040ST. lOS. ST BASIC ODd ST LOOO on: ..-or rqio or AWi Carp. ------------'

OEM it. reail~ tndcmart of DiJitli Rmearch IDe.

Selected Abacus Products for the A1rAA~ c:4l ~
PaintPro

Design and graphics software for the ST

PaintPro is a very friendly and very powerful package
for drawing and design on the Atari ST computers that
has many features other ST graphic programs don't
have. Based on GEMTM, PaintPro supports up to three
active windows in all three resolutions-up to 64Ox400
or 640x800 (full page) on monochrome monitor, and
320 x 200 or 320 x 400 on a color monitor.

PaintPro's complete toolkit of functions includes text,
fonts, brushes, spraypaint, pattern fills, boxes, circles
and ellipses, copy, paste and zoom and others. Text can
be typed in one of four directions-even upside down
and in one of six GEM fonts and eight sizes. PaintPro
can even load pictures from "foreign" fOrmats (ST
LOGO, DEGAS, Neochrome and Doodle) for
enhancement using PaintPro's double-sized picture
format. Hardcopy can be sent to most popular dot
matrix printers.

PaintPro Features :
• Works in all 3 resolutions (mono, low and medium)
• Four character modes (replace, transparent, inverse

XOR)
• Four line thicknesses and user-definable line pattern
• Uses all standard ST fill patterns and user definable

fill patterns
• Max. three windows (dependng on available memory)
• Resolution to 640 x400 or 640x800 pixels

(mono version only)
Up to six GOOS type fonts , in 8-, 9-, 10-, 14-, 16-,
18-, 24- and 36-point sizes
Text can be printed in four directions

• Handles other GOOS compatible fonts, such as those
in PaintPro Library # 1

• Blocks can be cut and pasted; mirrored horizontally
and vertically; marked, saved in LOGO format, and
recalled in LOGO

• Accepts ST LOGO, DEGAS, Doodle & Neocbrome
graphics
Features help menus, full-screen display, and UNDO
using the right mouse button

• Most dot-matrix printers can be easily adapted

PaintPro works with Atari ST systems with one or
more single- or double-sided disk drives. Works with
either monochrome or color ST monitors. Printer
optional.

PaintPro Suggested Retail Price: $49.95

A1ari sr, S2OST. 1040ST. lOS, ST BASIC and ST 1..000 are trademuts ex' regisltTed trldemarks of Atari Corp. ---- - - ----'

OBM it. rea:ililmd tradema.rt of Diaitll Research Im:.

Selected Abacus Products for the ~1rM~ ~ 01r

Chartpak ST
Professional-quality charts and graphs

on the Atari ST

In the past few years, Roy Wainwright has earned a
deserved reputation as a topnotch software author.
Cbartpak ST may well be his best work yet Cbartpak
ST combines the features of his Cbartpak programs for
Commodore computers with the efficiency and power of
GEM on the Atari ST.

Cbartpak ST is a versatile package for the ST that lets
the user make professional quality charts and graphs
fast. Since it takes advantage of the STs GEM
functions, Cbartpak ST combines speed and ease of use
that was unimaginable til now.

The user flfSt inputs, saves and recalls his data using
-Cbartpak ST's menus, then defines the data positioning,
scaling and labels. Cbartpak ST also has routines for
standard deviation, least squares and averaging if they are
needed. Then, with a single command, your chart is
drawn instantly in any of 8 different formats-and the
user can change the format or resize it immediately to
draw a different type of chart.

In addition to direct data input, Cbartpak ST interfaces
with ST spreadsheet programs spreadsheet programs
(such as Power Ledger ST). Artwork can be imported
from PaintPro ST or DEGAS. Hardcopy of the fmshed
graphic can be sent most dot-matrix printers. The results
on both screen and paper are documents of truly
professional qUality.

Your customers will be amazed by the versatile,
powerful graphing and charting capabilities of Cbartpak
ST .

Cbartpak ST works with Atari ST systems with one or
more single- or double-sided disk drives. Works with
either monochrome or color'ST monitors. Works with
most popular dot-matrix printers (optional).

Cbartpak ST Suggested Retail Price: $49.95

• • ••• :> •• : : ••• :::.~., •. "':~'

11

IS.IJ .". ISKI1Mn. 15."""_
-- lUI •• - VIJII}

fildli Siock Performance

rtSlfINlEI11· IU'

f i II I ~I I 1\ pI\1i c ~ II/lUIS

S.li4 Ii .. il Itul I ~n ll "t'ulin

OuJrlJiiu lFt Ill"tti , /j"Ii.t1

VlJfI1

--- 1[1" _. 1/11111

Selected Abacus Products for the ~1fAAW ~ ~M

AssemPro
Machine language development system

for the Atari ST

" .. .1 wish I had (AssemPro) a year and a half ago ... it
could have saved me hours and hours and hours."

-Kurt Madden
STWorld

'The whole system is well designed and rruJkes the rapid
development 0/68000 assembler programs very easy."

-leffLewis
Input

AssemPro is a complete machine language development
package for the Atari ST. It offers the user a single,
comprehensive package for writing high speed ST
programs in machine language, all at a very reasonable
price.

AssemPro is completely GEM-based-this makes it
easy to use. The powerful integrated editor is a breeze to
use and even has helpful search, replace, block,
upper!lower case conversion functions and user defmable
function keys. AssemPro's extensive help menus
summarizes hundreds of pages of reference material.

The fast macro assembler assembles object code to

either disk or memo!),. If it fmds an error, it lets you
correct it (if possible) and continue. This feature alone
can save the programmer countless hours of debugging.

The debugger is a pleasure to work with. It features
single-step, breakpoint, disassembly, reassembly and
68020 emulation. It lets users thoroughly and
conveniently test their programs immediately after
assembly.

AssemPro Features:

• Full screen editor with dozens of powerful features
• Fast 68000 macro assembler assembles to disk or

memory
• Powerful debugger with single-step, breakpoint,

68020 emulator, more
• Helpful tools such as disassembler and reassernbler
• Includes comprehensive 175-page manual

AssemPro Suggested retail price: $59.95

Desk rlh filu8Ibhr Dl!bulIl!r Uttor Surtll IlDtk Mel,
hUflble,.

X ' RlJI :

A1ari ST, S2OST, 1040ST. IDS, ST BASIC m1 Sf 1.000 are trad.emarks CI' regutertd trademarks of Atari Corp. ------------'

OEM iJ. rqiattm1 trademItt of Diaitll Research Inc.

	f
	Binder1
	Document
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)
	Document (71)
	Document (72)
	Document (73)
	Document (74)
	Document (75)
	Document (76)
	Document
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)
	Document (71)
	Document (72)
	Document (73)
	Document (74)
	Document
	Document (2)
	Document (3)
	Document (4)
	Document (5)
	Document (6)
	Document (7)
	Document (8)
	Document (9)
	Document (10)
	Document (11)
	Document (12)
	Document (13)
	Document (14)
	Document (15)
	Document (16)
	Document (17)
	Document (18)
	Document (19)
	Document (20)
	Document (21)
	Document (22)
	Document (23)
	Document (24)
	Document (25)
	Document (26)
	Document (27)
	Document (28)
	Document (29)
	Document (30)
	Document (31)
	Document (32)
	Document (33)
	Document (34)
	Document (35)
	Document (36)
	Document (37)
	Document (38)
	Document (39)
	Document (40)
	Document (41)
	Document (42)
	Document (43)
	Document (44)
	Document (45)
	Document (46)
	Document (47)
	Document (48)
	Document (49)
	Document (50)
	Document (51)
	Document (52)
	Document (53)
	Document (54)
	Document (55)
	Document (56)
	Document (57)
	Document (58)
	Document (59)
	Document (60)
	Document (61)
	Document (62)
	Document (63)
	Document (64)
	Document (65)
	Document (66)
	Document (67)
	Document (68)
	Document (69)
	Document (70)
	Document (71)
	Document (72)
	Document (73)
	Document (74)

	b

