
DSP56001

24-BIT
DIGITAL SIGNAL PROCESSOR

USER’S MANUAL

Motorola, Inc.
Semiconductor Products Sector
DSP Division
6501 William Cannon Drive, West
Austin, Texas 78735-8598

SECTION 1
INTRODUCTION

The DSP56001 and DSP56000 are user-programmable, CMOS digital signal processors
(DSPs) which are optimized to execute DSP algorithms in as few operations as possible,
while maintaining a high degree of accuracy. The architecture has been designed to max-
imize throughput in data-intensive DSP applications. This design provides a dual-natured,
expandable architecture with sophisticated on-chip peripherals and general-purpose I/O.
The architecture, on-chip peripherals, and the low power consumption of the
DSP56000/DSP56001 have minimized the complexity, cost, and design time needed to
add the power of DSP to any design.

The DSP56000 is read-only memory (ROM) based, and is factory programmed with user
software for minimum cost in high-volume applications. The DSP56001 is an off-the-shelf
random-access memory (RAM) based processor designed to load its program from an ex-
ternal source. The difference between the two processors is their respective on-chip
memory resources. A secure version of the DSP56000, which prevents unauthorized ac-
cess to the internal program memory, is also available.

This manual is written for both the DSP56000 and DSP56001. Normally, the reference will
be to the DSP56000/DSP56001. However, when the two processors differ, they will be
cited individually.

1.1 ORIGIN OF THE DSP56000 ARCHITECTURE
DSP is the arithmetic processing of real-time signals sampled at regular intervals and dig-
itized. Examples of DSP processing include the following:

• Filtering of signals
• Convolution, which is the mixing of two signals
• Correlation, which is a comparison of two signals
• Rectification of a signal
• Amplification of a signal
• Transformation of a signal
All of these functions have traditionally been performed using analog circuits. Only recent-
ly has technology provided the processing power necessary to digitally perform these and
other functions using DSPs.

Figure 1-1 shows a description of analog signal processing. The circuit in the illustration
filters a signal from a sensor using an operational amplifier, and controls an actuator with
the result. Since the ideal filter is impossible to design, the engineer must design the filter
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 1 - 1

for acceptable response, considering variations in temperature, component aging, power-
supply variation, and component accuracy. The resulting circuit typically has low noise im-
munity, requires adjustments, and is difficult to modify.

The equivalent circuit using a DSP is shown in Figure 1-2. This application requires an
analog-to-digital (A/D) converter and digital-to-analog (D/A) converter in addition to the
DSP. Even with these additional parts, the component count can be lower using a DSP
due to the high integration available with current components.

Processing in this circuit begins by band-limiting the input with an antialias filter, eliminat-
ing out-of-band signals that can be aliased back into the pass band due to the sampling
process. The signal is then sampled, digitized with an A/D converter, and sent to the DSP.

.The filter implemented by the DSP is strictly a matter of software. The DSP can directly
implement any filter that can also be implemented using analog techniques. Also, adap-
tive filters can be easily implemented using DSP, whereas these filters are extremely
difficult to implement using analog techniques.

y t()
x t()

R f

Ri
------ 1

1 jwR f C f+
------------------------------–=

-

+

y(t)

OUTPUT

TO

ACTUATOR

t

x(t)

INPUT

FROM

SENSOR

x(t)

Ri

Rf

Cf

ANALOG FILTER

FREQUENCY CHARACTERISTICS

IDEAL

FILTER

f
fc

FREQUENCY

G
A

IN

y(t)

Figure 1-1 Analog Signal Processing
1 - 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

The DSP output is processed by a D/A converter and is low-pass filtered to remove the effects
of digitizing. In summary, the advantages of using the DSP include the following:

Fewer components
Stable, deterministic performance
Wide range of applications
High noise immunity and power-supply rejection
Self-test can be built in

A

DSP OPERATION

IDEAL

FILTER

f
fc

FREQUENCY

G
A

IN

FIR FILTER

FINITE IMPULSE

RESPONSE

c k() n k–()×
k 0=

n

∑A/D D/A

x(n) y(n) y(t)x(t)

ANALOG

FILTER

f
fc

FREQUENCY

G
A

IN

DIGITAL

FILTER

f
fc

FREQUENCY

G
A

IN

SAMPLER AND

ANALOG-TO-DIGITAL

CONVERTER

LOW-PASS

ANTIALIASING

FILTER

DIGITAL-TO-ANALOG

CONVERTER

RECONSTRUCTION

LOW-PASS

FILTER

A

A

Figure 1-2 Digital Signal Processing

ANALOG IN ANALOG OUT
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 1 - 3

• No filter adjustments
• Filters with much closer tolerances
• Adaptive filters easily implemented
The DSP56000/DSP5001 was not designed for a particular application but was designed
to execute commonly used DSP benchmarks in a minimum time for a single-multiplier ar-
chitecture. For example, a cascaded, 2nd-order, four-coefficient infinite impulse response
(IIR) biquad section has four multiplies for each section. For that algorithm, the theoretical
minimum number of operations for a single-multiplier architecture is four per section. Ta-
ble 1-1 shows a list of benchmarks with the number of instruction cycles the
DSP56000/DSP56001 uses compared to the number of multiplies in the algorithm.

Benchmark
DSP56000/DSP56001

Number of Cycles
Number of Algorithm

Multiplies

Real Multiply 3 1

N Real Multiplies 2N N

Real Update 4 1

N Real Updates 2N N

N Term Real Convolution (FIR) N N

N Term Real * Complex Convolution 2N N

Complex Multiply 6 4

N Complex Multiplies 4N N

Complex Update 7 4

N Complex Updates 4N 4N

N Term Complex Convolution (FIR) 4N 4N

Nth - Order Power Series 2N 2N

2nd - Order Real Biquad Filter 7 4

N Cascaded 2nd - Order Biquads 4N 4N

N Radix Two FFT Butterflies 6N 4N

Table 1-1 Benchmark Summary in Instruction Cycles
These benchmarks and others are used independently or in combination to implement
functions. The characteristics of these functions are controlled by the coefficients of the
benchmarks being executed. Useful functions using these and other benchmarks include
the following:
Digital Filtering
Finite Impulse Response (FIR)
Infinite Impulse Response (IIR)
Matched Filters (Correlators)
Hilbert Transforms
Windowing
Adaptive Filters/Equalizers
1 - 4 DSP56000/DSP
 Signal Processing
Compression (e.g., Linear Predictive
Coding of Speech Signals)
Expansion
Averaging
Energy Calculations
Homomorphic Processing
Mu-law/A-law to/from Linear Data

Conversion
56001 USER’S MANUAL MOTOROLA

 Data Processing
Encryption/Scrambling
Encoding (e.g., Trellis Coding)
Decoding (e.g., Viterbi Decoding)

 Numeric Processing
Scaler, Vector, and Matrix Arithmetic
Transcendental Function Computation

(e.g., Sin(X), Exp(X))
Other Nonlinear Functions
Pseudo-Random-Number Generation
MOTOROLA DSP56000/DSP5600
 Modulation
Amplitude
Frequency
Phase

 Spectral Analysis
Fast Fourier Transform (FFT)
Discrete Fourier Transform (DFT)
Sine/Cosine Transforms
Moving Average (MA) Modeling
Autoregressive (AR) Modeling
ARMA Modeling
Useful applications are based on combining these and other functions. DSP applications
affect almost every area in electronics because any application for analog electronic cir-
cuitry can be duplicated using DSP. The advantages in doing so are becoming more
compelling as DSPs become faster and more cost effective.

 DSPs are also being used as high-speed math processors in many purely digital comput-
er applications. Some typical applications for DSPs are presented in the following list:
 Telecommunication
Tone Generation
Dual-Tone Multifrequency (DTMF)
Subscriber Line Interface
Full-Duplex Speakerphone
Teleconferencing
Voice Mail
Adaptive Differential Pulse Code
Modulation (ADPCM) Transcoder
Medium-Rate Vocoders
Noise Cancelation
Repeaters
Integrated Services Digital Network

(ISDN) Transceivers
Secure Telephones

 Data Communication
High-Speed Modems
Multiple Bit-Rate Modems
High-Speed Facsimile

 Radio Communication
Secure Communications
Point-to-Point Communications
Broadcast Communications
Cellular Mobile Telephone

 Computer
Array Processors
Work Stations

Personal Computers
Graphics Accelerators

 Image Processing
Pattern Recognition
Optical Character Recognition
Image Restoration
Image Compression
Image Enhancement
Robot Vision

 Graphics
3-D Rendering
Computer-Aided Engineering (CAE)
Desktop Publishing
Animation

 Instrumentation
Spectral Analysis
Waveform Generation
Transient Analysis
Data Acquisition

 Speech Processing
Speech Synthesizer
Speech Recognizer
Voice Mail
Vocoder
Speaker Authentication
Speaker Verification
1 USER’S MANUAL 1 - 5

 Audio Signal Processing
Digital AM/FM Radio
Digital Hi-Fi Preamplifier
Noise Cancelation
Music Synthesis
Music Processing
Acoustic Equalizer

 High-Speed Control
Laser-Printer Servo
Hard-Disk Servo
Robotics
Motor Controller
Position and Rate Controller

 Vibration Analysis
Electric Motors
Jet Engines
Turbines
1 - 6 DSP56000/DSP5600
 Medical Electronics
Cat Scanners
Sonographs
X-Ray Analysis
Electrocardiogram
Electroencephalogram
Nuclear Magnetic Resonance Analysis

 Digital Video
Digital Television
High-Resolution Monitors

 Radar and Sonar Processing
Navigation
Oceanography
Automatic Vehicle Location
Search and Tracking

 Seismic Processing
Oil Exploration
Geological Exploration

llows:
As shown in Figure 1-3, the keys to DSP are as fo

• The Multiply/Accumulate (MAC) operation
• Fetching operands for the MAC
• Program control to provide versatile operation
• Input/Output to move data in and out of the DSP

MAC is the basic operation used in DSP. Figure 1-3 shows how the architecture of the
DSP56000/DSP56001 was designed to match the shape of the MAC operation. The two oper-
ands, C() and X(), are directed to a multiply operation, and the result is summed. This process
is built into the DSP56000/DSP56001 by using two separate memories (X and Y) to feed a sin-
gle-cycle MAC. The entire process must occur under program control to direct the correct
operands to the multiplier and save the accumulator as needed. Since the two memories and the
MAC are independent, it is possible to perform two moves (a multiply and an accumulate) in a
single operation. As a result, many of the benchmarks shown in Table 1-1 can be executed at or
near the theoretical maximum speed for a single-multiplier architecture.

Figure 1-3 shows how the MAC, memories, and program control unit in Figure 1-3 are config-
ured in the DSP56000/DSP56001. Three independent memories and memory buses move two
operands to the MAC while concurrently fetching a program instruction. The address generation
unit (AGU) is divided into two arithmetic units which independently control the X and Y memories
and feed operands to the MAC. Figure 1-3 also features an additional block labeled "I/O". Many
other DSPs need external communications circuitry to interface with peripheral circuits (such as
A/D converters, D/A converters, or host processors). The DSP56000/DSP56001 provides on-
chip serial and parallel interfaces, represented by the I/O block, to simplify this connection prob-
lem. Figure 1-4 is a block diagram of the DSP56000 showing all the major
1 USER’S MANUAL MOTOROLA

blocks with their interconnecting buses. The DSP56000 Family of processors has a dual Har-
vard architecture optimized for MAC operations

1.2 SUMMARY OF DSP56000 FAMILY FEATURES

The DSP56000 and DSP56001 are the first two members of Motorola’s Family of HCMOS,
low-power, general-purpose DSPs. The DSP56001 features 512 words of full-speed, on-
chip, program RAM, two preprogrammed data ROMs, and special on-chip bootstrap

FIR FILTER

c k() n k–()×
K 0=

n

∑A/D D/A

x(n) y(n) y(t)x(t)

X

∑

X

∑

MAC

X
MEMORY

Y
MEMORY

PROGRAM

Figure 1-3 DSP Hardware Origins

PROGRAM

MEMORY

ADDRESS

GENERATION

UNIT

X

MEMORY

MAC

I/0

Y

MEMORY

Figure 1-3 DSP Block Diagram

PROGRAM

CONTROL

UNIT
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 1 - 7

hardware to permit convenient loading of user programs into the program RAM. The DSP56001
is an off-the-shelf part, since it has no user-programmable, on-chip ROMs. The DSP56000
features 3.75K words of full-speed, on-chip, program ROM instead of 512 words of program
RAM.

The heart of the processor consists of three execution units operating in parallel: the data
arithmetic logic unit (ALU), the AGU, and the program control unit. The
DSP56000/DSP56001 has MCU-style on-chip peripherals, program memory, data mem-
ory, and a memory expansion port. The MPU-style programming model and instruction
set allow straightforward generation of efficient, compact code.

The high throughput of the DSP56000/DSP56001 makes it well-suited for communication,
high-speed control, numeric processing, computer applications, and audio applications.
The main features facilitating this throughput are as follows:

• Speed — At 10.25 million instructions per second (MIPS), the DSP56000/DSP56001
can execute a 1024-point complex Fast Fourier Transform (FFT) in 3.23 ms.
• Precision — The data paths are 24 bits wide, providing 144 dB of dynamic range;
intermediate results held in the 56-bit accumulators can range over 336 dB.
• Parallelism — Each on-chip execution unit (AGU, program control unit, data ALU),

ADDRESS

P
O

R
T

 A

PROGRAM CONTROL UNIT

YDB

XDB

PDB

GDB

YAB

MODB/IRQB

MODA/IRQA

ON-CHIP
PERIPHERALS
HOST, SSI, SCI,
PARALLEL I/O

INTERNAL DATA
BUS SWITCH

AND BIT
MANIPULATION

UNIT

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROLLER

EXTERNAL
DATA BUS
SWITCH

PROGRAM
ROM

3.75Kx24

X MEMORY
RAM

256x24

Y MEMORY
RAM

256x24

ROM
256x24

ROM
256x24

PROGRAM
ADDRESS

GENERATOR

PROGRAM
DECODE

CONTROLLER

PROGRAM
INTERRUPT

CONTROLLER

DATA ALU
24x24+56 - 56-BIT MAC

TWO 56- BIT ACCUMULATORSCLOCK
GENERATOR

EXTAL

XTAL

PORT
B OR
HOST

15

9

PORT C
AND/OR
SSI, SCI

RESET

16 BITS

24 BITS

DATA

7

XAB

PAB
ADDRESS

GENERATION
UNIT

Figure 1-4 DSP56000 Block Diagram
1 - 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

memory, and peripheral operates independently and in parallel with the other units
through a sophisticated bus system. The data ALU, AGUs, and program control unit op-
erate in parallel so that an instruction prefetch, a 24-bit x 24-bit multiplication, a 56-bit ad-
dition, two data moves, and two address-pointer updates using one of three types of arith-
metic (linear, modulo, or reverse-carry) can be executed in a single instruction cycle. This
parallelism allows a four-coefficient IIR filter section to be executed in only four cycles, the
theoretical minimum for single-multiplier architecture. At the same time, the two serial con-
trollers can send and receive full-duplex data, and the host port can send/receive simplex
data.
• Integration — In addition to the three independent execution units, the
DSP56000/DSP56001 has six on-chip memories, three on-chip MCU-style peripherals
(serial communication interface (SCI), synchronous serial interface (SSI), and host inter-
face), a clock generator, and seven buses (three address and four data), making the over-
all system low cost, low power, and compact.
• Invisible Pipeline — The three-stage instruction pipeline is essentially invisible to the
programmer, allowing straightforward program development in either assembly language
or a high-level language such as a full Kernighan and Ritchie C.
• Instruction Set — The 62 instruction mnemonics are MCU-like, making the transition
from programming microprocessors to programming the DSP56000/DSP56001 as easy
as possible. The orthogonal syntax supports controlling the parallel execution units. The
hardware DO loop instruction and the repeat (REP) instruction make writing straightline
code obsolete.
• DSP56000/DSP56001 Compatibility — The DSP56001 is identical to the DSP56000
except for the following features:

12-word x 24-bit, on-chip program RAM instead of 3.75K program ROM

32-word x 24-bit bootstrap ROM for loading the program RAM from either a byte-
wide, memory-mapped ROM or from the host interface

On-chip X and Y data ROMs preprogrammed as positive Mu-law and A-law to lin-
ear expansion tables and a full, four-quadrant sine-wave table, respectively

• Low Power — As a CMOS part, the DSP56000/DSP56001 is inherently very low
power; however, the following features can reduce power consumption to exceptionally
low levels:

The WAIT instruction shuts off the clock in the central processor portion of the
DSP56000/DSP56001.

The STOP instruction halts the internal oscillator.

Power increases linearly (approximately) with frequency; thus, reducing the clock
frequency reduces power consumption.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 1 - 9

1.3 MANUAL ORGANIZATION
This manual is intended to provide practical information to help the user:

• Understand the operation of the DSP56000 Family
• Interface the DSP56000 Family with additional memory
• Design parallel communication links
• Design serial communication links
• Code DSP algorithms
• Code communication routines
• Code data manipulation algorithms
• Locate additional support
The following list describes the contents of each section and each appendix:

Section 2. Architectural Overview and Bus Structure
This section describes each subsystem and the buses interconnecting the major
components in the DSP56000/DSP56001.

Section 3. Memory
This section describes and differentiates the memory for the DSP56000 and
DSP56001. It describes the program memories, data memories, and the operating
mode register (OMR) bits controlling the memory maps.

Section 4. Data Arithmetic Logic Unit
This section describes in detail the data ALU (one of the three execution units com-
prising the central processor) and its programming model.

Section 5. Address Generation Unit
This section specifically describes the AGU (one of the three execution units compris-
ing the central processor), its programming model, address indirect modes, and
address modifiers.

Section 6. Program Control Unit
This section describes in detail the program control unit (one of the three execution
units comprising the central processor) and its programming model.

Section 7. Instruction Set Introduction
This section presents a brief description of the syntax, instruction formats, oper-
and/memory references, data organization, addressing modes, and instruction set. A
detailed description of each instruction is given in APPENDIX A INSTRUCTION SET
DETAILS.

Section 8. Processing States
This section describes the five processing states (normal, exception, reset, wait, and
stop).
1 - 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Section 9. Port A
The Port A section describes the external memory port, its control register, and its con-
trol signals.

Section 10. Port B
This section describes the port B parallel I/O, host interface, their registers, and the
controls to enable/disable them.

Section 11. Port C
This section describes the port C parallel I/O, SCI, SSI, their registers, and the controls
to enable/disable them.

Appendix A. Instruction Set Details
 A detailed description of each DSP56000/DSP56001 instruction, its use, and its affect
on the processor are presented.

Appendix B. Benchmarks
DSP56000/DSP56001 benchmark results are listed in this appendix.

Appendix C. Additional Support
This appendix presents a brief description of current support products and services
and information on where to obtain them.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 1 - 11

1 - 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SECTION 2
ARCHITECTURAL OVERVIEW AND BUS STRUCTURE

The DSP56000/DSP56001 architecture has been designed to maximize throughput in
data-intensive digital signal processor (DSP) applications. This objective has resulted in
a dual-natured, expandable architecture with sophisticated on-chip peripherals and gen-
eral purpose I/O. The architecture is dual natured in that there are two independent,
expandable data memory spaces, two address generation units (AGUs), and a data arith-
metic logic unit (ALU) which has two accumulators and two shifter/limiter circuits.

The duality of the architecture facilitates writing software for DSP applications. For exam-
ple, data is naturally partitioned into X and Y spaces for graphics and image-processing
applications, into coefficient and data spaces for filtering applications, and into real and
imaginary spaces for performing complex arithmetic.

The major components of the DSP56000/DSP56001 are as follows:

• Data Buses

• Address Buses

• Data ALU

• AGU

• X Data Memory

• Y Data Memory

• Program Control Unit

• Program Memory

• Input/Output:

– Memory Expansion (Port A)
– General-Purpose I/O (Ports B and C)
– Host Interface
– Serial Communication Interface (SCI)
– Synchronous Serial Interface (SSI)

Figure 2-1 shows these components for the DSP56000. Figure 2-2 shows these compo-
nents for the DSP56001. The processors differ only in the on-chip memory resources.The
following paragraphs give a brief description for each component.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 2 - 1

2 - 2

DSP56000/DSP56001 USER’S MANUAL

MOTOROLA

ADDRESS

P
O

R
T

 A

PROGRAM CONTROL UNIT

YDB

XDB

PDB

GDB

YAB

MODB/IRQB

MODA/IRQA

ON-CHIP
PERIPHERALS
HOST, SSI, SCI,
PARALLEL I/O

INTERNAL DATA
BUS SWITCH

AND BIT
MANIPULATION

UNIT

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROLLER

EXTERNAL
DATA BUS
SWITCH

PROGRAM
ROM

3.75Kx24

X MEMORY
RAM

256x24

Y MEMORY
RAM

256x24

ROM
256x24

ROM
256x24

PROGRAM
ADDRESS

GENERATOR

PROGRAM
DECODE

CONTROLLER

PROGRAM
INTERRUPT

CONTROLLER

DATA ALU
24x24+56 - 56-BIT MAC

TWO 56-BIT ACCUMULATORSCLOCK
GENERATOR

EXTAL

XTAL

PORT
B OR
HOST

15

9

PORT C
AND/OR
SSI, SCI

RESET

16 BITS

24 BITS

DATA

7

XAB

PAB
ADDRESS

GENERATION
UNIT

Figure 2-1 DSP56000 Block Diagram

ADDRESS

P
O

R
T

 A

PROGRAM CONTROL UNIT

YDB

XDB

PDB

GDB

YAB

ON-CHIP
PERIPHERALS
HOST, SSI, SCI,
PARALLEL I/O

INTERNAL DATA
BUS SWITCH

AND BIT
MANIPULATION

UNIT

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROLLER

EXTERNAL
DATA BUS
SWITCH

BOOTSTRAP
ROM
32x24

PROGRAM
RAM

512x24

X MEMORY
RAM

256x24

Y MEMORY
RAM

256x24

µ/A ROM
256x24

SINE ROM
256x24

PROGRAM
ADDRESS

GENERATOR

PROGRAM
DECODE

CONTROLLER

PROGRAM
INTERRUPT

CONTROLLER

DATA ALU
24x24+56 - 56-BIT MAC

TWO 56- BIT ACCUMULATORSCLOCK
GENERATOR

PORT
B OR
HOST

15

9

PORT C
AND/OR
SSI, SCI

16 BITS

24 BITS

DATA

7

XAB

PAB
ADDRESS

GENERATION
UNIT

Figure 2-2 DSP56001 Block Diagram

MODB/IRQB

MODA/IRQA
RESET

EXTAL

XTAL

2.1 DATA BUSES
The DSP56000/DSP56001 is organized around the registers of a central processor com-
posed of three independent execution units: the program control unit, the AGU, and the
Data ALU.

Data movement on the chip occurs over four, bidirectional, 24-bit buses: the X data bus
(XDB), the Y data bus (YDB), the program data bus (PDB), and the global data bus
(GDB). The X and Y data buses may also be treated by certain instructions as one 48-bit
data bus by concatenation of XDB and YDB. Data transfers between the data ALU and
the X data memory or Y data memory occur over XDB and YDB, respectively. XDB and
YDB are kept local on the chip to maximize speed and minimize power dissipation. All oth-
er data transfers, such as I/O transfers with peripherals, occur over the GDB. Instruction
word prefetches occur in parallel over the PDB. The bus structure supports general reg-
ister-to-register, register-to-memory, and memory-to-register data movement and can
transfer up to two 24-bit words and one 56-bit word in the same instruction cycle. Trans-
fers between buses occur in the internal bus switch.

2.2 ADDRESS BUSES
Addresses are specified for internal X data memory and Y data memory on two, unidirec-
tional, 16-bit buses — X address bus (XAB) and Y address bus (YAB). Program memory
addresses are specified on the bidirectional program address bus (PAB). External mem-
ory spaces are addressed via a single 16-bit, unidirectional address bus driven by a three-
input multiplexer that can select the XAB, the YAB, or the PAB. Only one external memory
access can be made in an instruction cycle. There is no speed penalty if only one external
memory space is accessed in an instruction cycle. If two or three external memory spaces
are accessed in a single instruction, there will be a one- or two-instruction-cycle execution
delay, respectively. A bus arbitrator controls external access.

2.2.1 Internal Bus Switch
Transfers between buses occur in the internal bus switch. The internal bus switch, which
is similar to a switch matrix, can connect any two internal buses without adding any pipe-
line delays. This flexibility simplifies programming.

2.2.2 Bit Manipulation Unit
The bit manipulation unit is physically located in the internal bus switch block because the
internal data bus switch can access each memory space. The bit manipulation unit per-
forms bit manipulation operations on memory locations, address registers, control
registers, and data registers over the XDB, YDB, and GDB.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 2 - 3

2.3 Data ALU
The data ALU has been designed to process signals which have a wide dynamic range.
Special circuitry handles data overflows and roundoff errors.

The data ALU performs all of the arithmetic and logical operations on data operands. It
consists of four 24-bit input registers, two 48-bit accumulator registers, two 8-bit accumu-
lator extension registers, an accumulator shifter, two data bus shifter/limiter circuits, and
a parallel, single-cycle, nonpipelined multiply-accumulator (MAC) unit. Data ALU opera-
tions use fractional twos-complement arithmetic.

Data ALU registers may be read or written over XDB and YDB as 24- or 48-bit operands.
The data ALU can perform any of the following operations in a single instruction cycle —
multiplication, multiply-accumulate with positive or negative accumulation, convergent
rounding, multiply-accumulate with positive or negative accumulation and convergent
rounding, addition, subtraction, a divide iteration, a normalization iteration, shifting, and
logical operations.

Data ALU source operands, which may be 24, 48, or, in some cases, 56 bits, always orig-
inate from data ALU registers. Arithmetic operations always have a 56-bit result stored in
an accumulator. Logical operations are performed on 24-bit operands and yield 24-bit re-
sults in one of the two accumulators.

The 24-bit data word provides 144 dB of dynamic range, which is sufficient for most real-
world applications, since the majority of data converters are 16 bits or less — and certainly
not greater than 24 bits. The 56-bit accumulation inside the data ALU provides 336 dB of
internal dynamic range so no loss of precision occurs due to intermediate processing.

The data shifter/limiter circuits perform special postprocessing on data read from the ALU
accumulator registers A and B out to the XDB or YDB. The data shifters can shift data one
bit to the left or one bit to the right as well as pass the data unshifted. Each data shifter
has a 24-bit output with overflow indication. The data shifters are controlled by the scaling
mode bits in the status register. These shifters permit dynamic scaling of fixed-point data
without modifying the program code, which allows block floating-point algorithms to be im-
plemented in a regular fashion. For example, fast Fourier transform (FFT) routines can
use this feature to selectively scale each butterfly pass.

“Overflow” occurs when a source operand requires more bits for accurate representation
than are available in the destination. To minimize error due to overflow, the DSP56000
writes the maximum (or ‘‘limited’’) signed value the destination can assume when an over-
flow condition is detected.

In the DSP56000/DSP56001, the data ALU accumulators A and B have extension regis-
ters that are used when more than 48-bit accuracy is needed. Therefore, when the
extension registers are in use, and either A or B is the source being read over XDB or
YDB, data limiters place a ‘‘limited’’ value on XDB or YDB. Such limiting is performed on
2 - 4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

the contents of A or B after the contents have been shifted in the shifter. Two limiters allow
two-word operands to be limited independently in the same instruction cycle. The two lim-
iters can also be concatenated to form one 48-bit data limiter for long-word operands.

2.4 ADDRESS GENERATION UNIT
All of the address storage and address calculations necessary to indirectly address data
operands in memory occur in the AGU. This unit operates in parallel with other chip re-
sources to minimize address generation overhead. The AGU contains eight address
registers (R0–R7), eight offset registers (N0–N7), and eight modifier registers (M0–M7).
Rn are 16-bit registers that may contain an address or data. The contents of each Rn may
be sent to the XAB (65,536 locations), YAB (65,536 locations), or PAB (65,536 locations);
thus, 196,608 24-bit data words can be directly addressed. Nn and Mn, which are 16-bit
registers normally used in updating or modifying Rn registers, can also be used to store
16-bit data. The AGU registers may be read or written via the GDB as 16-bit operands.

The AGU has two identical address arithmetic units that can generate two 16-bit address-
es every instruction cycle — one for any two of the XAB, YAB, or PAB buses. Each of
the arithmetic units can perform three types of arithmetic: linear, modulo, and reverse-
carry.

2.5 X DATA MEMORY
The on-chip X data random-access memory (RAM), a 24-bit-wide internal static memory,
occupies the lowest 256 (0 - 255) locations in X memory space. The on-chip X data read-
only memory (ROM) occupies locations 256–511. On the DSP56001, the X data ROM has
been programmed as positive Mu-law (128 locations) and A-law (128 locations) 24-bit
companding tables useful in telecommunication applications. On the DSP56000, the X
data ROM is user defined.

Three on-chip peripherals exist on the DSP56000/DSP56001: an 8-bit parallel host micro-
processor unit/direct memory access (MPU/DMA) interface, an SCI, and an SSI. The on-
chip peripherals occupy the top 64 locations in X data memory space. Addresses are re-
ceived from the XAB, and data transfers to the data ALU occur on the XDB. X data
memory may be expanded off-chip so that a total of 65,536 locations can be addressed.

2.6 Y DATA MEMORY
The on-chip Y data RAM, a 24-bit-wide internal static memory, occupies the lowest 256
(0 - 255) locations in Y memory space. The on-chip Y data ROM occupies locations 256–
511. On the DSP56001, the Y data ROM has been programmed as a full, four-quadrant,
24-bit sine table. On the DSP56000, the Y data ROM is user defined. The off-chip periph-
eral registers should be mapped into the top 64 locations in Y data memory space.

Addresses are received from the YAB, and data transfers to the data ALU occur on the
YDB. Y memory may be expanded off-chip so that a total of 65,536 locations can be
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 2 - 5

2 - 6 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

addressed.

2.7 PROGRAM MEMORY
The on-chip program memory consists of a 3.75K-word by 24-bit ROM for the DSP56000
or a 512-word by 24-bit RAM for the DSP56001. Addresses are received from the pro-
gram control logic (usually the program counter). The interrupt vector addresses for the
on-chip resources are located in the bottom 64 locations of program memory. Program
memory may be expanded off-chip so that a total of 65,536 locations can be addressed.

Bootstrap ROM is a 32-word by 24-bit factory-programmed ROM used only in the boot-
strap mode (operating mode 1). It is available only on the DSP56001; it is not available on
the DSP56000. More detailed information on bootstrap ROM is discussed in the
DSP56001 Advance Information Data Sheet (ADI1290).

2.8 PROGRAM CONTROL UNIT
The program control unit performs instruction prefetch, instruction decoding, hardware
DO loop control, and exception processing. It contains a 15-level by 32-bit system stack
memory and the following six directly addressable registers: the program counter (PC),
loop address (LA), loop counter (LC), status register (SR), operating mode register
(OMR), and stack pointer (SP). The 16-bit PC can address 65,536 locations in program
memory space.

2.9 INPUT/OUTPUT
The I/O capability of the DSP56000/DSP56001 is extensive and advanced.Its structure
facilitates interfacing into a variety of system configurations, including multiple
DSP56000/DSP56001 systems (with or without a host processor), global bus systems
with bus arbitration, and many serial configurations, all with minimal additional ‘‘glue’’
logic.

Each I/O interface, which has its own control, status, and data registers, is treated as
memory-mapped I/O by the DSP56000/DSP56001. Each interface has several dedicated
interrupt vector addresses and control bits to enable/disable interrupts, which minimizes
the overhead associated with servicing the device. The interrupt sources can be pro-
grammed to one of three maskable priority levels.

The I/O structure consists of a flexible, 47-pin expansion port (Port A) and 24 additional
I/O pins. These pins may operate as general-purpose I/O pins, called port B and port C,
or they may be allocated to on-chip peripherals (MPU/DMA, SCI, and SSI) under software
control.

Port B is a 15-bit I/O interface that may function as general-purpose I/O pins or as host
MPU/DMA interface pins.

Port C is a 9-bit I/O interface that may be used as general-purpose I/O pins or as SCI and

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 2 - 7

SSI pins. These interfaces are described in the following paragraphs.

2.9.1 Expansion Port (Port A)
DSP56000/DSP56001 expansion port is designed to synchronously interface over a com-
mon 24-bit data bus which has a wide variety of memory and peripheral devices. These
devices include high-speed static RAMs, slower memory devices, and other DSPs and
MPUs in master/slave configurations. This variety is possible because the expansion bus
timing is programmable.

Two pins can be defined with a control bit to operate as either master processor controls
(called “bus strobe” and “bus wait” in this configuration) or as slave processor controls
(called “bus request” and “bus grant”).

The expansion bus timing can also be controlled by a bus control register (BCR). The
BCR controls the timing of bus interface signals RD and WR, as well as the data output
lines. Each of the four memory spaces, X data, Y data, program data, and I/O, has its own
4-bit register in the BCR that can be programmed for inserting up to 15 wait states (one
wait state is equal to a clock period or equivalently one-half of an instruction cycle). Thus,
external bus timing can be tailored to match the speed requirements of the different mem-
ory spaces.

2.9.2 General-Purpose I/O (Ports B and C)
Each Port B and Port C pin may be programmed as a general-purpose I/O pin or as a ded-
icated, on-chip peripheral pin under software control. A 9-bit port C control register (PCC)
allows each port C pin to be programmed for one of these two functions. The port control
register associated with port B (PBC) contains only one bit, which programs all 15 pins.
Also associated with each general-purpose port is a data direction register, which pro-
grams the direction of each pin, and a data register for data I/O. All these registers are
memory mapped and read/write, which makes the use of bit manipulation instructions ex-
tremely effective.

2.9.3 Host Interface
The host interface is a byte-wide, full-duplex, parallel port that can be connected directly
to the data bus of a host processor. The host processor may be any of a number of indus-
try-standard microcomputers or MPUs, another DSP, or DMA hardware. To control data
transfers the DSP56000/DSP56001 host interface has an 8-bit, bidirectional data bus:
H0–H7 (PB0–PB7); and seven dedicated control lines: HA0, HA1, HA2, HR/W, HEN,
HREQ, and HACK (PB8–PB14).

The host interface appears as a memory-mapped peripheral occupying eight bytes in the
host-processor address space. Separate double buffered transmit and receive data reg-
isters allow the DSP56000/DSP56001 and host processor to efficiently transfer data at
high speed. Standard, host-processor data move instructions and addressing modes fa-
cilitate communication with the host interface. Handshake flags are provided for polled or
interrupt-driven data transfers with the host processor. DMA hardware may be used with
the handshake flags to efficiently transfer data without using address lines HA0–HA2.

One of the most innovative features of the host interface is the host command feature.
With this feature, the host processor can issue vectored exception requests to the

2 - 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

DSP56000/DSP56001. The host may select any one of 32 DSP56000/DSP56001 excep-
tion routines to be executed by writing a vector address register in the host interface. This
flexibility allows the host programmer to execute up to 32 preprogrammed functions inside
the DSP56000/DSP56001. For example, host exception routines allow the host processor
to read or write DSP56000/DSP56001 registers, X, Y, or program memory locations, force
exception handlers (e.g., SSI, SCI, IRQA, IRQB exception routines), and perform control
and debugging operations.

2.9.4 Serial Communication Interface
The SCI provides a full-duplex port for 8-bit data serial communication to other DSPs,
MPUs, or peripherals such as modems. The communication can be either direct or over
RS232C-type lines. This interface uses three dedicated pins — transmit data (TXD), re-
ceive data (RXD), and SCI serial clock (SCLK). It supports industry-standard
asynchronous bit rates and protocols as well as high-speed (up to 2.5 Mbits/sec) synchro-
nous data transmission.

The asynchronous protocols include a multidrop mode for master/slave operation. The
SCI consists of separate transmit and receive sections having operations that can be
asynchronous with respect to each other by using the internal clock for one and an exter-
nal clock for the other. A programmable baud-rate generator is included to generate the
transmit and receive clocks. An enable and interrupt vector are included so that the baud-
rate generator can function as a general-purpose timer when it is not being used by the
SCI peripheral.

2.9.5 Synchronous Serial Interface
The SSI is a flexible, full-duplex serial interface that allows the DSP56000/DSP56001 to
communicate with a variety of serial devices, including one or more industry-standard co-
decs, other DSPs, MPUs, and peripherals.

The user can independently define the following characteristics of the SSI: the number of
bits per word, the protocol, the clock, and the transmit/receive synchronization.

The user can select three modes: normal, on-demand, and network. The normal mode is
typically used to interface with devices on a regular or periodic basis. The data-driven on-
demand mode is intended to be used to communicate with devices on a nonperiodic ba-
sis. The network mode provides time slots in addition to a bit clock and frame
synchronization pulse.

The SSI functions with a range of 2 to 32 words of I/O per frame in the network mode. This
mode is typically used in star or ring time division multiplex (TDM) networks with other
DSP56000s and/or codecs. The clock can be programmed to be continuous or gated.
Since the transmitter and receiver sections of the SSI are independent, they can be pro-
grammed to be synchronous (using a common clock) or asynchronous with respect to
each other.

The SSI supports a subset of the Motorola SPI. The SSI requires up to six pins, depending
on its operating mode. The most common minimum configuration is three pins: transmit
data (STD), receive data (SRD), and clock (SCK).

2.10 SIGNAL DESCRIPTION
The DSP56000/DSP56001 is available in an 88-pin pin-grid array package or surface
mount. The input and output signals are organized into the following seven functional
groups which are shown in Figure 2-1:

1. Port A Address and Data Buses
2. Port A Bus Control
3. Interrupt and Mode Control
4. Power and Clock
5. Host Interface or Port B I/O
6. SCI or Port C I/O
7. SSI or Port C I/O

The signals are discussed in the following paragraphs.

2.10.1 Port A Address and Data Bus
The following signals relate to the Port A address and data bus.

2.10.1.1 Address (A0–A15)
These three-state output pins specify the address for external program and data memory
accesses. To minimize power dissipation, A0–A15 do not change state when external
memory spaces are not being accessed.

PORT B

PORT CPORT A

(88 PINS)

RXD
TXD
SCLK
SC0
SC1
SC2
SCK
SRD
STD

A0–A15
D0–D23

PS
DS
RD
WR
X/Y

BR/WT
BG/BS

V
S

S

V
D

D

X
TA

L

E
X

TA
L

R
E

S
E

T

M
O

D
B

/IR
Q

B

M
O

D
A

/IR
Q

A

H
0–

H
7

H
A

0
H

A
1

H
A

2
H

R
/W

H
E

N
H

R
E

Q
H

A
C

K

SCI
SERIAL

SSI
SERIAL

BUS
CONTROL

ADDRESS
DATA

HOST CONTROLHOST
DATA
BUS

Figure 2-1 DSP56000/DSP56001 Functional Signal Groups
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 2 - 9

2.10.1.2 Data (D0–D23) These pins provide the bidirectional data bus for external pro-
gram and data memory accesses. D0–D23 are in the high-impedance state when the bus
grant signal is asserted.

2.10.2 Port A Bus Control The Port A bus control signals are discussed in the following
paragraphs.

2.10.2.1 Program Memory Select (PS) This three-state output is asserted only when
external program memory is referenced (see Table 2-1).

2.10.2.2 Data Memory Select (DS) This three-state output is asserted only when exter-
nal data memory is referenced (see Table 2-1).

2.10.2.3 X/Y Select (X/Y) This three-state output selects which external data memory
space (X or Y) is referenced by DS (see Table 2-1l).

2.10.2.4 Read Enable (RD) This three-state output is asserted to read external memory
on the data bus (D0–D23).

2.10.2.5 Write Enable (WR) This three-state output is asserted to write external mem-
ory on the data bus (D0–D23).

2.10.2.6 Bus Request/Wait (BR/WT) The bus request input (BR) allows another device
such as a processor or DMA controller to become the master of the external data bus (D0–
D23) and external address bus (A0–A15). When bit 7 of the operating mode register (OMR)

PS DS X/Y External Memory Reference

1 1 1 No Activity

1 0 1 X Data Memory on Data Bus

1 0 0 Y Data Memory on Data Bus

0 1 1 Program Memory on Data Bus (Not Exception)

0 1 0 External Exception Fetch: Vector or Vector +1
(Development Mode Only)

0 0 X Reserved

1 1 0 Reserved

Table 2-1 Program and Data Memory Select Encoding
2 - 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

is clear and BR is asserted, the DSP56000/DSP56001 will always release Port A, including
A0–A15, D0–D23, and the bus control pins by placing them in the high-impedance state after
execution of the current instruction has been completed.

If OMR bit 7 is set, BR/WT acts as an input that allows an external device to force wait states
during an external Port A operation for as long as WT is asserted.

2.10.2.7 Bus Grant/Bus Strobe (BG/BS) If OMR bit 7 is clear, this output is asserted
to grant an external bus request after Port A has been released. If OMR bit 7 is set, this pin
assumes bus strobe and is asserted when the DSP accesses Port A.

2.10.3 Interrupt and Mode Control

The signals described in the following paragraphs are the interrupt and mode control signals
for the DSP56000/DSP56001.

2.10.3.1 Mode Select A/External Interrupt Request A (MODA/IRQA) and Mode Se-
lect B/External Interrupt Request B (MODB/IRQB) These two inputs have dual functions:
1) to select the initial chip operating mode and 2) to receive an interrupt request from an ex-
ternal source.

MODA and MODB are read and internally latched in the DSP when the processor exits the
reset state. After leaving the reset state, the MODA and MODB pins automatically change to
external interrupt requests, IRQA and IRQB.

After leaving the reset state, the chip operating mode can be changed by software. IRQA and
IRQB can be programmed to be level sensitive or negative edge triggered. When edge trig-
gered, triggering occurs at a voltage level and is not directly related to the fall time of the
interrupt signal. However, as the fall time of the interrupt signal increases, theprobability for
noise on IRQA or IRQB to generate multiple interrupts also increases.

2.10.3.2 Reset (RESET) This Schmitt-trigger input pin is used to reset the
DSP56000/DSP56001. When RESET is asserted, the DSP56000/DSP56001 is initialized and
placed in the reset state. When RESET is deasserted, the initial chip operating mode is
latched from the MODA and MODB pins. When coming out of RESET, deassertion occurs at
a voltage level and is not directly related to the rise time of the RESET signal; however, the
probability of noise on RESET generating multiple resets increases with increasing rise time
of the RESET signal.

2.10.4 Power and Clock

The power and clock signals are presented in the following paragraphs.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 2 - 11

2.10.4.1 Power (VCC), Ground (GND)
There are five sets of power and ground pins: two pairs for internal logic; one power, and
two ground for Port A address and control pins; one power and two ground for Port A data
pins; and one pair for peripherals.

2.10.4.2 External Clock/Crystal Input (EXTAL)
EXTAL interfaces the internal crystal oscillator input to an external crystal or an external
clock.

2.10.4.3 Crystal Output (XTAL)
This output connects the internal crystal oscillator output to an external crystal. If an ex-
ternal clock is used, XTAL should not be connected.

2.10.5 Host Interface
The following paragraphs discuss the host interface signals.

2.10.5.1 Host Data Bus (H0–H7)
This bidirectional data bus transfers data between the host processor and the
DSP56000/DSP56001. This bus is an input unless enabled by a host processor read. It
is high impedance when HEN is deasserted. H0–H7 can be programmed as general-pur-
pose parallel I/O pins (PB0–PB7) when the host interface is not being used.

2.10.5.2 Host Address (HA0–HA2)
These inputs provide the address selection for each host interface register. HA0–HA2 can
be programmed as general-purpose parallel I/O pins (PB8–PB10) when the host interface
is not being used.

2.10.5.3 Host Read/Write (HR/W)
This input selects the direction of data transfer for each host processor access. HR/W can
be programmed as a general-purpose I/O pin (PB11) when the host interface is not being
used.

2.10.5.4 Host Enable (HEN)
This input enables a data transfer on the host data bus. When HEN is asserted and HR/W
is high, H0–H7 become outputs and DSP56000/DSP56001 data may be read by the host
processor. When HEN is asserted and HR/W is low, H0–H7 become inputs, and host data
is latched inside the DSP. When HEN is deasserted, the host data bus is three-stated.
Normally, a chip select signal derived from host address decoding and an enable clock
are used to generate HEN. HEN can be programmed as a general-purpose I/O pin (PB12)
when the host interface is not being used.
2 - 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

2.10.5.5 Host Request (HREQ)
This open-drain output signal is used by the DSP56000/DSP56001 host interface to re-
quest service from the host processor, DMA controller, or a simple external controller.
HREQ can be programmed as a general-purpose (not open-drain) I/O pin (PB13) when
the host interface is not being used.

2.10.5.6 Host Acknowledge (HACK)
This input has two functions: 1) to provide a host acknowledge handshake signal for DMA
transfers and 2) to receive a host interrupt acknowledge compatible with M68000 Family
processors. HACK may be programmed as a general-purpose I/O pin (PB14) when the
host interface is not being used.

2.10.6 Serial Communications Interface
The following signals relate to the SCI.

2.10.6.1 Receive Data (RXD)
This input receives byte-oriented serial data and transfers the data to the SCI receive shift
register. RXD can be programmed as a general-purpose I/O pin (PC0) when the SCI RXD
function is not being used.

2.10.6.2 Transmit Data (TXD)
This output transmits serial data from the SCI transmit shift register. TXD can be pro-
grammed as a general-purpose I/O pin (PC1) when the SCI TXD function is not being
used.

2.10.6.3 SCI Serial Clock (SCLK)
This bidirectional pin provides an input or output clock from which the transmit and/or re-
ceive baud rate is derived in the asynchronous mode, and from which data is transferred
in the synchronous mode. SCLK can be programmed as a general-purpose I/O pin (PC2)
when the SCI SCLK function is not being used.

2.10.7 Synchronous Serial Interface
The SSI signals are presented in the following paragraphs.

2.10.7.1 Serial Clock Zero (SC0)
The SSI uses this bidirectional pin for control by the SSI as a flag or receiver clock. SC0
can be programmed as a general-purpose I/O pin (PC3) when the SSI SC0 function is not
being used.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 2 - 13

2.10.7.2 Serial Control One (SC1)
The SSI uses this bidirectional pin to control flag or frame synchronization. SC1 can be
programmed as a general-purpose I/O pin (PC4) when the SSI SC1 function is not being
used.

2.10.7.3 Serial Control Two (SC2)
The SSI uses this bidirectional pin to control frame synchronization only. SC2 can be pro-
grammed as a general-purpose I/O pin (PC5) when the SSI SC2 function is not being
used.

2.10.7.4 SSI Serial Clock (SCK)
This bidirectional pin provides the serial bit rate clock for the SSI. SCK can be pro-
grammed as a general-purpose I/O pin (PC6) when SCK is not being used.

2.10.7.5 SSI Receive Data (SRD)
This input pin receives serial data into the SSI receive shift register. SRD can be pro-
grammed as a general-purpose I/O pin (PC7) when SRD is not being used.

2.10.7.6 SSI Transmit Data (STD)
This output pin transmits serial data from the SSI transmit shift register. STD can be pro-
grammed as a general-purpose I/O pin (PC8) when the SSI STD function is not being
used.
2 - 14 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SECTION 3
MEMORY SPACES

This section is divided into two major subsections, the DSP56000 and DSP56001. Each
subsection describes the memory spaces available and the operating modes that redefine
these memory spaces.

3.1 OVERVIEW
The memory of the DSP56000/DSP56001 can be partitioned in several ways to provide
high-speed parallel operation and additional off-chip memory expansion. Program and
data memory are separate, and the data memory is, in turn, divided into two separate
memory spaces, X and Y. Both the program and data memories can be expanded off-
chip. There are also two on-chip data read-only memories (ROMs) that can overlay a por-
tion of the X and Y data memories and a bootstrap ROM (DSP56001 only) that can
overlay part of the program random-access memory (RAM). The data memories are di-
vided into two independent spaces to work with the two address arithmetic logic units
(ALUs) to feed two operands simultaneously to the data ALU.

3.2 DSP56000 MEMORY INTRODUCTION
The three independent memory spaces of the DSP56001, X data, Y data, and program,
are shown in Figure 3-1. The memory spaces are configured by control bits in the operat-
ing mode register (OMR). The operating mode control bits (MA and MB) in the OMR
control the program memory map and select the reset vector address. The data ROM en-
able (DE) bit in the OMR controls the X and Y data memory maps and enables/disables
the internal X and Y data ROMs. The bootstrap memory on the DSP56000 is used only
for factory testing and should not be invoked by the user.

3.2.1 X Data Memory
The on-chip X data RAM is a 24-bit-wide, internal, static memory occupying the lowest
256 locations (0–255) in X memory space. The on-chip X data ROM (factory programmed
to user specifications like the program ROM) occupies locations 256–511 in the X data
memory space and is controlled by the DE bit in the OMR. The on-chip peripheral regis-
ters occupy the top 64 locations of the X data memory ($FFC0–$FFFF). The 16-bit
addresses are received from the XAB, and 24-bit data transfers to the data ALU occur on
the XDB. The X memory may be expanded to 64K off-chip.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 3 - 1

3.2.2 Y Data Memory
The on-chip Y data RAM is a 24-bit-wide, internal, static memory occupying the lowest
256 locations (0–255) in the Y memory space. The on-chip Y data ROM (factory pro-
grammed to user specifications like the program ROM) occupies locations 256–511 in Y
data memory space and is controlled by the DE bit in the OMR. The off-chip peripheral
registers should be mapped into the top 64 locations ($FFC0–$FFFF) to take advantage
of the move peripheral data (MOVEP) instruction. The 16-bit addresses are received from
the YAB, and 24-bit data transfers to the data ALU occur on the YDB. Y memory may be

$E000

$FFFF

$0

$EFF

$FFFF

$0

MODE 0
MB = 0 MA = 0

$FFFF

$EFF

$0

EXTERNAL

INTERNAL
ROM

RESET

MODE 2
MB = 1 MA = 0

EXTERNAL

INTERNAL
ROM

RESET

PROGRAM
MEMORY

SPACE

INTERRUPT
VECTORS

$FFFF

$3F

$0

OPERATING MODE DETERMINES
PROGRAM MEMORY AND RESET

STARTING ADDRESS

MODE 3
MB = 1 MA = 1

$FFFF

$0

EXTERNAL

RESET

INTERNAL ROM
INTERNAL RESET

INTERNAL ROM
EXTERNAL RESET

NO INTERNAL ROM
EXTERNAL RESET

$EFC0

$FFFF

$0

$1FF INTERNAL
X ROM

INTERNAL
X RAM

EXTERNAL
X DATA

MEMORY

ON-CHIP
PERIPHERALS

EXTERNAL
Y DATA

MEMORY

INTERNAL
Y ROM

INTERNAL
Y RAM

DATA ROMS ENABLED

DE = 1

$FFC0

$FFFF

$0

$0FF INTERNAL
X RAM

EXTERNAL
X DATA

MEMORY

ON-CHIP
PERIPHERALS

EXTERNAL
Y DATA

MEMORY

INTERNAL
Y RAM

DATA ROMS DISABLED

DE = 0

X DATA
MEMORY

SPACE

Y DATA
MEMORY

SPACE

$FFFF

$0

DE BIT IN THE OMR DETERMINES
THE X AND Y DATA MEMORY MAPS

$0FF

EXTERNAL
PERIPHERALS

EXTERNAL
PERIPHERALS

Figure 3-1 DSP56000 Memory Map
3 - 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

expanded to 64K off-chip.

3.2.3 Program Memory
On-chip program memory consists of a 3840-location by 24-bit, high-speed ROM (3.75K
x 24) that is enabled/disabled by the MA and MB bits in the OMR. When the on-chip pro-
gram memory is disabled, either off-chip memory or a special mode 1 ROM is selected
for program memory.

NOTE: The mode 1 ROM is used only for test purposes on the DSP56000 and should not
be invoked by the user.

Addresses are received from the program control logic (usually the program counter) over
the PAB. Off-chip program memory may be written using move program memory
(MOVEM) instructions. The interrupt vectors for the on-chip resources are located in the
bottom 64 locations ($0000–$003F) of program memory. Program memory may be ex-
panded to 64K off-chip.

3.2.4 Chip Operating Modes
The DSP operating modes determine the memory maps for program and data memories
and the startup procedure when the DSP leaves the reset state. The MODA and MODB
pins are sampled as the DSP leaves the reset state, and the initial operating mode of the
DSP is set accordingly. When the reset state is exited, the MODA and MODB pins be-
come general-purpose interrupt pins, IRQA and IRQB. One of three initial operating
modes is selected: single chip, normal expanded, or development. Chip operating modes
can be changed by writing the operating mode bits (MB, MA) in the OMR. Changing op-
erating modes does not reset the DSP. It is desirable to disable interrupts immediately
before changing the OMR to prevent an interrupt from going to the wrong memory loca-
tion. Also, one no-operation (NOP) instruction should be included after changing the OMR
to allow for remapping to occur.

Some pins on the DSP are mode independent; whereas, the use of others depends on
the particular operating mode. Specifically, external address bus, data bus, and bus con-

Operating
Mode

MOD B MODA Description

0 0 0 Single-Chip Mode

1 0 1 Single-Chip Mode

2 1 0 Normal Expanded Mode

3 1 1 Development Mode

Table 3-1 Initial DSP56000 Operating Mode Summary
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 3 - 3

trol pins are affected by the particular operating mode. Table 3-1 shows the mode
assignments.

3.2.4.1 Single-Chip Mode (Mode 0). In the single-chip mode, all internal program and data
RAM memories are enabled. A hardware reset causes the DSP to jump to internal program
memory location $0000 ($=hexadecimal notation) and resume execution. The memory map
for this mode is shown in Figure 3-2. The memory maps for mode 0 and mode 2 (see Figure
3-3) are identical. The difference between the two modes is that reset vectors to program
memory location $0000 in mode 0 and vectors to location $E000 in mode 2.

3.2.4.2 Mode 1. Mode 1 is the same as Mode 0 on the DSP56000. It is recommended that

INTERNAL
PROGRAM

ROM

$FFFF

$003F

$0000

PROGRAM
MEMORY SPACE

EXTERNAL
PROGRAM
MEMORY

INTERRUPTS

RESET

$0EFF

ON-CHIP
PERIPHERALS

$FFFF

$00FF

$0000

X DATA
MEMORY SPACE

EXTERNAL
X DATA

MEMORY

$FFC0

USER-DEFINED
ROM

INTERNAL
X RAM

$FFBF

$01FF

$FFFF

$00FF

$0000

Y DATA
MEMORY SPACE

EXTERNAL
Y DATA

MEMORY

$FFC0

USER-DEFINED
ROM

INTERNAL
Y RAM

$01FF

DE=1

ON-CHIP
PERIPHERAL MAP

RESERVED

INTERRUPT PRIORITY

BUS CONTROL

SCI INTERFACE

SSI INTERFACE

HOST INTERFACE

PARALLEL I/0 INTERFACE

$FFFF

$FFC0

$FFE0

NOTE: Addresses $FFC0–$FFFF in X data memory are NOT available externally.

EXTERNAL
PERIPHERALS

Figure 3-2 Memory Map for DSP56000 Mode 0: Single-Chip Mode

$007F

$0000

$0024

INTERRUPT MAP

SCI INTERRUPTS

SSI INTERRUPTS

EXTERNAL INTERRUPTS

SWI INTERRUPT

TRACE INTERRUPT

STACK ERROR INTERRUPT

RESET

HOST COMMANDS

$003E
$003C

$0040

$003A

ILLEGAL INSTRUCTION INT.
TIMER INTERRUPT

HOST COMMANDS
3 - 4
 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

this mode not be invoked by the user.

3.2.4.3 Normal Expanded Mode (Mode 2). Mode 2 is almost identical to mode 0 (see
3.2.4.1 Single-Chip Mode (Mode 0). In the single-chip mode, all internal program and
data RAM memories are enabled. A hardware reset causes the DSP to jump to internal
program memory location $0000 ($=hexadecimal notation) and resume execution. The
memory map for this mode is shown in Figure 3-2. The memory maps for mode 0 and
mode 2 (see Figure 3-3) are identical. The difference between the two modes is that re-
set vectors to program memory location $0000 in mode 0 and vectors to location $E000
in mode 2. for further information).

3.2.4.4 Development Mode (Mode 3). The development mode is similar to the normal ex-
panded mode except that internal program memory is disabled. All references to program
memory space are directed to external program memory, which is accessed on the external
data bus. The memory map for this mode is shown in Figure 3-4. DSP56000 chips with bad

INTERNAL
PROGRAM

ROM

$FFFF

$003F
$0000

PROGRAM
MEMORY SPACE

EXTERNAL
PROGRAM
MEMORY

INTERRUPTS

$0EFF

ON-CHIP
PERIPHERALS

$FFFF

$00FF

$0000

X DATA
MEMORY SPACE

EXTERNAL
X DATA

MEMORY

$FFC0

USER-DEFINED
ROM

INTERNAL
X RAM

$FFBF

$01FF

$FFFF

$00FF

$0000

Y DATA
MEMORY SPACE

EXTERNAL
Y DATA

MEMORY

$FFC0

USER-DEFINED
ROM

INTERNAL
Y RAM

$01FF

DE=1

ON-CHIP
PERIPHERAL MAP

RESERVED

INTERRUPT PRIORITY

BUS CONTROL

SCI INTERFACE

SSI INTERFACE

HOST INTERFACE

PARALLEL I/0 INTERFACE

$FFFF

$FFC0

$FFE0

NOTE: Addresses $FFC0–$FFFF in X data memory are NOT available externally.

RESET$E000

$017F

$FFBF

EXTERNAL
PERIPHERALS

Figure 3-3 Memory Map for DSP56000 Mode 2: Normal Expanded Mode

$007F

$0000

$0024

INTERRUPT MAP

SCI INTERRUPTS

SSI INTERRUPTS

EXTERNAL INTERRUPTS

SWI INTERRUPT

TRACE INTERRUPT

STACK ERROR INTERRUPT

RESET

HOST COMMANDS

$003E
$003C

$0040

$003A

ILLEGAL INSTRUCTION INT.
TIMER INTERRUPT

HOST COMMANDS
MOTOROLA
DSP56000/DSP56001 USER’S MANUAL 3 - 5

or obsolete internal program ROM code can be used with external program memory in the de-
velopment mode. The memory map in Figure 3-4is shown with DE arbitrarily set to zero.

3.2.5 Security ROM Version (DSP56000)1

The security ROM version of the DSP56000 is a standard DSP56000 that has been modified
to prevent unauthorized access to the program contained in the DSP program ROM. This
protection is accomplished in two ways. First, the DSP is forced into the single-chip mode
at reset. The chip powers up in single-chip mode, and it is not possible to enter any other
mode on powerup. The MODA/IRQA and MODB/IRQB pins are configured only as IRQA
and IRQB and cannot be used to change the mode. Second, the programmer must avoid
fetches from external program memory =m i.e., the user code must be placed only in internal

1. For additional information concerning this part, contact the Motorola field office.

$FFFF

$003F

$0000

PROGRAM
MEMORY SPACE

EXTERNAL
PROGRAM
MEMORY

INTERRUPTS

$01FF

ON-CHIP
PERIPHERALS

$FFFF

$00FF

$0000

X DATA
MEMORY SPACE

EXTERNAL
X DATA

MEMORY

$FFC0

INTERNAL
X RAM

$FFBF

EXTERNAL
PERIPHERALS

$FFFF

$00FF

$0000

Y DATA
MEMORY SPACE

EXTERNAL
Y DATA

MEMORY

$FFC0

INTERNAL
Y RAM

DE=0

ON-CHIP
PERIPHERAL MAP

RESERVED

INTERRUPT PRIORITY

BUS CONTROL

SCI INTERFACE

SSI INTERFACE

HOST INTERFACE

PARALLEL I/0 INTERFACE

$FFFF

$FFC0

$FFE0

NOTE: Addresses $FFC0–$FFFF in X data memory are NOT available externally.

RESET

$FFBF

Figure 3-4 Memory Map for DSP56000 Mode 3: Development Mode

$007F

$0000

$0024

INTERRUPT MAP

SCI INTERRUPTS

SSI INTERRUPTS

EXTERNAL INTERRUPTS

SWI INTERRUPT

TRACE INTERRUPT

STACK ERROR INTERRUPT

RESET

HOST COMMANDS

$003E
$003C

$0040

$003A

ILLEGAL INSTRUCTION INT.
TIMER INTERRUPT

HOST COMMANDS
3 - 6
 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

program ROM. This placement prevents the execution of unauthorized code that might be
used to dump the contents of the program ROM.

3.3 DSP56001 MEMORY INTRODUCTION

The three independent memory spaces of the DSP56001, X data, Y data, and program, are
shown in Figure 3-5. The memory spaces are configured by control bits in the OMR. The MA
and MB control bits in the OMR control the program memory map and select the reset vector
address. The DE bit in the OMR controls the X and Y data memory maps and enables/disables
the internal X and Y data ROMs. One additional memory available on the DSP56001 is the
bootstrap memory that overlays the program memory in mode 1.

3.3.1 X Data Memory

The on-chip X data RAM is a 24-bit-wide, static, internal memory occupying the lowest 256
locations (0–255) in X memory space. The on-chip X data ROM occupies locations 256–511
in the X data memory space when enabled by setting DE to one in the OMR. The X data ROM
is factory programmed with positive Mu-law and A-law expansion tables, which are useful in
telecommunication applications. The on-chip peripheral registers occupy the top 64 locations
of the X data memory (locations $FFC0–$FFFF). The 16-bit addresses are received from the
XAB, and 24-bit data transfers to the data ALU occur on the XDB. The X memory may be ex-
panded to 64K off-chip.

3.3.2 Y Data Memory
The on-chip Y data RAM is a 24-bit-wide, static, internal memory occupying the lowest
256 locations (0–255) in the Y memory space. The on-chip Y data ROM occupies lo-
cations 256–511 in Y data memory space when enabled by setting DE to one in the
OMR. The Y data ROM is factory programmed with a full, four-quadrant, sine-wave
table (see DSP56001 Advance Information Data Sheet(ADI1290)), which is useful for
fast Fourier transforms, discrete Fourier transforms, and waveform generation. The
off-chip peripheral registers should be mapped into the top 64 locations ($FFC0–
$FFFF) to take advantage of the MOVEP instruction. The 16-bit addresses are re-
ceived from the YAB, and 24-bit data transfers to the data ALU occur on the YDB. Y
memory may be expanded to 64K off-chip.

3.3.3 Program Memory
On-chip program memory consists of a 512-location by 24-bit, high-speed, static RAM
that is enabled/disabled by the MA and MB bits in the OMR. When the on-chip pro-
gram memory is disabled, either off-chip memory or a special bootstrap ROM is
selected for program memory.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 3 - 7

Addresses are received from the program control logic (usually the program counter) over
the PAB. Program memory may be written using MOVEM instructions. The interrupt vec-
tors for the on-chip resources are located in the bottom 64 locations ($0000–$003F) of
program memory. Program memory may be expanded to 64K off-chip.

Program RAM provides a method of developing code efficiently, and programs can be
changed dynamically, allowing efficient overlaying of DSP software algorithms. In this
way, the on-chip program RAM operates as a fixed cache, thereby minimizing contention
with accesses to external data memory spaces.

The bootstrap mode overlays the program memory in mode 1 and provides a convenient,

$FFFF

$0

$FFC0
$E000

$FFFF

$0

$1FF

$FFFF

$0

MODE 0
MB = 0 MA = 0

$FFFF

$1FF

$0

EXTERNAL

INTERNAL
RAM

RESET

MODE 2
MB = 1 MA = 0

EXTERNAL

INTERNAL
RAM

RESET

PROGRAM
MEMORY

SPACE

INTERRUPT
VECTORS

$FFFF

$3F

$0

OPERATING MODE DETERMINES
PROGRAM MEMORY AND RESET

STARTING ADDRESS

MODE 3
MB = 1 MA = 1

$FFFF

$0

EXTERNAL

RESET

INTERNAL PRAM
INTERNAL RESET

INTERNAL PRAM
EXTERNAL RESET

NO INTERNAL PRAM
EXTERNAL RESET

$1FF INTERNAL
X ROM

INTERNAL
X RAM

EXTERNAL
X DATA

MEMORY

ON-CHIP
PERIPHERALS

EXTERNAL
Y DATA

MEMORY

INTERNAL
Y ROM

INTERNAL
Y RAM

DATA ROMS ENABLED

DE = 1

$FFC0

$FFFF

$0

$0FF INTERNAL
X RAM

EXTERNAL
X DATA

MEMORY

ON-CHIP
PERIPHERALS

EXTERNAL
Y DATA

MEMORY

INTERNAL
Y RAM

DATA ROMS DISABLED

DE = 0

X DATA
MEMORY

SPACE

Y DATA
MEMORY

SPACE

$FFFF

$0

DE BIT IN THE OMR DETERMINES
THE X AND Y DATA MEMORY MAPS

$1FF

$0FF

Figure 3-5 DSP56001 Memory Map

EXTERNAL
PERIPHERALS

EXTERNAL
PERIPHERALS
3 - 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 3 - 9

low-cost method of loading the DSP56001 program RAM with a program after power-on
reset. The bootstrap mode also allows loading the program RAM from a single, inexpen-
sive EPROM through port A or via the host interface using a host processor.

3.3.4 Bootstrap ROM (DSP56001 Only)
Factory programmed to perform the bootstrap operation from the memory expansion port
(port A) or from the host interface, the 32-word on-chip ROM is invoked while the proces-
sor is in operating mode 1. Users have no access to the bootstrap ROM other than
through the bootstrap process.

3.3.5 Chip Operating Modes
The DSP operating modes determine the memory maps for program and data memories
and the startup procedure when the DSP leaves the reset state. The MODA and MODB
pins are sampled as the DSP leaves the reset state, and the initial operating mode of the
DSP is set accordingly. When the reset state is exited, the MODA and MODB pins be-
come general-purpose interrupt pins, IRQA and IRQB. One of four initial operating modes
is selected: single chip, special bootstrap, normal expanded, or development. Chip oper-
ating modes can be changed by writing the operating mode bits (MB, MA) in the OMR.
Changing operating modes does not reset the DSP. It is desirable to disable interrupts im-
mediately before changing the OMR to prevent an interrupt from going to the wrong
memory location. For example, if the user changed to the bootstrap mode and an interrupt
occurred, he would execute the bootstrap code out of order. Also, one NOP instruction
must be included after changing the OMR to allow for remapping to occur.

Some pins on the DSP are mode independent; whereas, others depend on the particular
operating mode. Specifically, external address bus, data bus, and bus control pins are af-
fected by the particular operating mode. Table 3-2 depicts the mode assignments.

3.3.5.1 Single-Chip Mode (Mode 0)
In the single-chip mode, all internal program and data RAM memories are enabled. A
hardware reset causes the DSP to jump to internal program memory location $0000 and

Operating
Mode

MODB MODA Description

0 0 0 Single-Chip Mode

1 0 1 Special Bootstrap Mode

2 1 0 Normal Expanded Mode

3 1 1 Development Mode

Table 3-2 Initial DSP56001 Operating Mode Summary

resume execution. The memory map for this mode is shown in Figure 3-6. The mem-
ory maps for mode 0 and mode 2 (see Figure 3-7) are identical. The difference
between the two modes is that reset vectors to program memory location $0000 in
mode 0 and vectors to location $E000 in mode 2.

3.3.5.2 Special Bootstrap Mode (Mode 1)
The bootstrap mode is a special mode that loads internal program RAM either from a
byte-wide external memory such as EPROM or from the host interface. After loading
the internal memory, the DSP switches to the single-chip mode and begins program
execution at on-chip program memory location $0000.

One method of selecting mode 1 is to assert the reset pin on the DSP56001. When the DSP
leaves the reset state (RESET goes high), the MODB and MODA pins are sampled (they
should be set to zero and one, respectively), and the initial operating mode of the DSP is

set accordingly. The following actions occur once the processor comes out of the reset state.

INTERNAL
PROGRAM

RAM

$FFFF

$003F

$0000

PROGRAM
MEMORY SPACE

EXTERNAL
PROGRAM
MEMORY

INTERRUPTS

RESET

$01FF

ON-CHIP
PERIPHERALS

$FFFF

$00FF

$0000

X DATA
MEMORY SPACE

EXTERNAL
X DATA

MEMORY

$FFC0

INTERNAL
X RAM

$FFBF

$01FF

$FFFF

$00FF

$0000

Y DATA
MEMORY SPACE

EXTERNAL
Y DATA

MEMORY

$FFC0

INTERNAL
Y RAM

$01FF

DE=1

ON-CHIP
PERIPHERAL MAP

RESERVED

INTERRUPT PRIORITY

BUS CONTROL

SCI INTERFACE

SSI INTERFACE

HOST INTERFACE

PARALLEL I/0 INTERFACE

$FFFF

$FFC0

$FFE0

NOTE: Addresses $FFC0–$FFFF in X data memory are NOT available externally.

INTERNAL
X ROM

INTERNAL
Y ROM

EXTERNAL
PERIPHERALS

Figure 3-6 Memory Map for DSP56001 Mode 0: Single-Chip

$007F

$0000

$0024

INTERRUPT MAP

SCI INTERRUPTS

SSI INTERRUPTS

EXTERNAL INTERRUPTS

SWI INTERRUPT

TRACE INTERRUPT

STACK ERROR INTERRUPT

RESET

HOST COMMANDS

$003E
$003C

$0040

$003A

ILLEGAL INSTRUCTION INT.
TIMER INTERRUPT

HOST COMMANDS
3 - 10
 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

1. The control logic maps the bootstrap ROM into the internal DSP program memory
space starting at location $0000.

2. The control logic causes program reads to come from the bootstrap ROM (only ad-
dress bits 4–0 are significant) and all writes go to the program RAM (all address bits
are significant). This condition allows the bootstrap program to load the user pro-
gram from $0000–$01FF.

3. Program execution begins at location $0000 in the bootstrap ROM. The bootstrap
ROM program can load program RAM through either the memory expansion port or
through the host interface. The choice is made by looking at bit 23 of P:$C000. The
processor loads from the host interface if bit 23 is a zero; if bit 23 is a one, it loads
from a byte-wide memory starting at P:$C000.

4. The bootstrap ROM program executes the following sequence to end the bootstrap
operation and begin executing the user program. First, operating mode 2 is entered
by writing to the OMR. This action will be timed to remove the bootstrap ROM from
the program memory map and re-enable read/write access to the program RAM.

PROGRAM
RAM

$FFFF

$003F
$0000

PROGRAM
MEMORY SPACE

EXTERNAL
PROGRAM
MEMORY

INTERRUPTS

$01FF

ON-CHIP
PERIPHERALS

$FFFF

$00FF

$0000

X DATA
MEMORY SPACE

EXTERNAL
X DATA

MEMORY

$FFC0

+A-LAW/LIN

INTERNAL
X RAM

$FFBF

$01FF

$FFFF

$00FF

$0000

Y DATA
MEMORY SPACE

EXTERNAL
Y DATA

MEMORY

$FFC0

FULL
SINE-WAVE

TABLE

INTERNAL
Y RAM

$01FF

DE=1

ON-CHIP
PERIPHERAL MAP

RESERVED

INTERRUPT PRIORITY

BUS CONTROL

SCI INTERFACE

SSI INTERFACE

HOST INTERFACE

PARALLEL I/0 INTERFACE

$FFFF

$FFC0

$FFE0

NOTE: Addresses $FFC0–$FFFF in X data memory are NOT available externally.

RESET$E000

$017F +MU-LAW/LIN

$FFBF

EXTERNAL
PERIPHERALS

Figure 3-7 Memory Map for DSP56001 Mode 2: Normal Expanded Mode

$007F

$0000

$0024

INTERRUPT MAP

SCI INTERRUPTS

SSI INTERRUPTS

EXTERNAL INTERRUPTS

SWI INTERRUPT

TRACE INTERRUPT

STACK ERROR INTERRUPT

RESET

HOST COMMANDS

$003E
$003C

$0040

$003A

ILLEGAL INSTRUCTION INT.
TIMER INTERRUPT

HOST COMMANDS
MOTOROLA
DSP56000/DSP56001 USER’S MANUAL 3 - 11

Second, the change to mode 2 is exactly timed to allow the bootstrap program to exe-
cute a single-cycle instruction (clear status register), then a JMP #<00, and begin
execution of the user program at location $0000.

The bootstrap mode may also be selected by writing zero to MB and one to MA in the OMR. This
selection initiates a timed operation to map the bootstrap ROM into the program address space
after a delay to allow execution of a single-cycle instruction and then a JMP #<00 to begin the
bootstrap process previously described. This technique allows the DSP56001 user to reboot the
system (with a different program, if desired). The code to enter the bootstrap mode is as follows:

MOVEP #0,X:$FFFF ;Disable interrupts.
MOVEC #1,OMR ;The bootstrap ROM is mapped ;into

the lowest 32 locations
;in program memory.

NOP ;Allow one cycle delay for the
;remapping.

JMP <$0 ;Begin bootstrap.
The interrupts are disabled before executing the bootstrap code; otherwise, an interrupt
could cause the DSP to execute the bootstrap code out of sequence because the boot-
strap program overlays the interrupt vectors.

The bootstrap ROM contains the bootstrap firmware program that performs initial loading
of the DSP56001 program RAM.

Written in DSP56001 assembly language, the program contains two separate methods of
initializing the program RAM: loading from a byte-wide memory starting at location
P:$C000 or loading through the host interface. The particular method used is selected by
the level of program memory location P:$C000 bit 23.

If location P:$C000 bit 23 is read as a one, the external bus version of the bootstrap pro-
gram will be selected. Typically, a byte-wide EPROM will be connected to the DSP56001
address and data bus. The data contents of the EPROM must be organized as shown in
3 - 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Table 3-3:

If location P:$C000 bit 23 is read as a zero, the host interface version of the bootstrap program will be selected. Typically, a host microprocessor will be connected to the DSP56001 host interface. The host microprocessor must write the host interface byte-

wide registers TXH, TXM, and then TXL with the desired contents of program RAM from location P:$0000 up to P:$01FF. If less than 512 words are to be loaded, the host programmer can exit the bootstrap program and force the DSP56001 to begin executing

at location P:$0000 by setting HF0 to one in the host interface control register. In most systems, the DSP56001 response is so fast that handshaking between the DSP56001 and the host is not necessary.

3.3.5.3 Normal Expanded Mode (Mode 2)
Mode 2 is almost identical to mode 0 (see 3.3.5.1 Single-Chip Mode (Mode 0) for
details).

Address of External
Byte-Wide Memory:

Contents Loaded to Internal
Program RAM at:

P:$C000 P:$0000 low byte

P:$C001 P:$0000 mid byte

P:$C002 P:$0000 high byte

• •

• •

• •

P:$C5FD P:$01FF low byte

P:$C5FE P:$01FF mid byte

P:$C5FF P:$01FF high byte

Table 3-3 Organization of EPROM Data Contents
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 3 - 13

3.3.5.4 Development Mode (Mode 3). The development mode is similar to the normal expand-
ed mode except that internal program memory is disabled. All references to program memory
space are directed to external program memory, which is accessed on the external data bus. The
reset vector points to location $0000. The memory map for this mode is shown in Figure 3-8. The
memory map in Figure 3-8 is shown with DE arbitrarily set to zero.

$FFFF

$003F

$0000

PROGRAM
MEMORY SPACE

EXTERNAL
PROGRAM
MEMORY

INTERRUPTS

$01FF

ON-CHIP
PERIPHERALS

$FFFF

$00FF

$0000

X DATA
MEMORY SPACE

EXTERNAL
X DATA

MEMORY

$FFC0

INTERNAL
X RAM

$FFBF

$FFFF

$00FF

$0000

Y DATA
MEMORY SPACE

EXTERNAL
Y DATA

MEMORY

$FFC0

INTERNAL
Y RAM

DE=0

ON-CHIP
PERIPHERAL MAP

RESERVED

INTERRUPT PRIORITY

BUS CONTROL

SCI INTERFACE

SSI INTERFACE

HOST INTERFACE

PARALLEL I/0 INTERFACE

$FFFF

$FFC0

$FFE0

NOTE: Addresses $FFC0–$FFFF in X data memory are NOT available externally.

RESET

$FFBF

Figure 3-8 Memory Map for DSP56001 Mode 3: Development Mode

EXTERNAL
PERIPHERALS

$007F

$0000

$0024

INTERRUPT MAP

SCI INTERRUPTS

SSI INTERRUPTS

EXTERNAL INTERRUPTS

SWI INTERRUPT

TRACE INTERRUPT

STACK ERROR INTERRUPT

RESET

HOST COMMANDS

$003E
$003C

$0040

$003A

ILLEGAL INSTRUCTION INT.
TIMER INTERRUPT

HOST COMMANDS
3 - 14
 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SECTION 4
DATA ARITHMETIC LOGIC UNIT

This section describes the operation of the data arithmetic logic unit (ALU) registers and
hardware. The data representation, rounding, and saturation arithmetic used within the
data ALU are also presented. This section concludes with a discussion of the program-
ming model.

4.1 OVERVIEW AND DATA ALU ARCHITECTURE
The DSP56000/DSP56001 central processor is composed of three execution units that
operate in parallel. They are the data ALU, address generation unit (AGU), and the pro-
gram control unit (see Figure 4-1). These three units are register oriented rather than bus

PORT C
AND/OR
SSI, SCI

DATA ALU
24x24+56 - 56-BIT MAC

TWO 56- BIT ACCUMULATORS

ADDRESS

PROGRAM CONTROL UNIT

YDB

XDB

PDB

GDB

YAB

MODB/IRQB

ON-CHIP
PERIPHERALS
HOST, SSI, SCI,
PARALLEL I/O

INTERNAL DATA
BUS SWITCH

AND BIT
MANIPULATION

UNIT

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROLLER

EXTERNAL
DATA BUS
SWITCH

BOOTSTRAP
ROM
32x24

PROGRAM
RAM

512x24

X MEMORY
RAM

256x24

Y MEMORY
RAM

256x24

µ/A ROM
256x24

SINE ROM
256x24

PROGRAM
ADDRESS

GENERATOR

PROGRAM
DECODE

CONTROLLER

PROGRAM
INTERRUPT

CONTROLLERCLOCK
GENERATOR

EXTAL

XTAL

PORT
B OR
HOST

15

9

16 BITS

24 BITS

DATA

7

XAB

PAB
ADDRESS

GENERATION
UNIT

P
O

R
T

 A

MODA/IRQA

RESET

Figure 4-1 DSP56001 Block Diagram
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 4 - 1

oriented and are designed to interface over the system buses with memory and memory-
mapped I/O devices. The DSP56000/DSP56001 instruction set has been designed to
allow flexible control of these parallel processing resources. Many instructions allow the
programmer to keep each unit busy, thus enhancing performance. It was possible to
make the programming model like that of conventional microprocessor units (MPUs),
eliminating the need to refer to the detailed chip architecture when programming the
DSP56000/DSP56001 because the parallel execution units appear to execute their oper-
ations in a nonpipelined manner.

The data ALU (see Figure 4-2r) is the first of these execution units to be presented. The
data ALU, which has been designed to be fast and yet provide the capability to process
signals having a wide dynamic range, performs all the arithmetic and logical operations
on data operands in the DSP56000/DSP56001.

The data ALU registers may be read or written over the XDB and the YDB as 24- or 48-
bit operands. The source operands for the data ALU, which may be 24, 48, or 56 bits,
always originate from data ALU registers. The results of all data ALU operations are
stored in an accumulator.

The 24-bit data words provide 144 dB of dynamic range. This range is sufficient for most
real-world applications since the majority of data converters are 16 bits or less, and cer-
tainly not greater than 24 bits. The 56-bit accumulator internal to the data ALU provides
336 dB of internal dynamic range so that no loss of precision will occur due to intermedi-
ate processing. Circuitry has been provided to facilitate handling data overflows and
roundoff errors.

Any of the following operations can be performed by the data ALU in a single instruction
cycle: multiplication, multiply-accumulate with positive or negative accumulation, conver-
gent rounding, multiply-accumulate with positive or negative accumulation and conver-
gent rounding, addition, subtraction, a divide iteration, a normalization iteration, shifting,
and logical operations.

The components of the data ALU are as follows:

• Four 24-bit input registers
• A parallel, single-cycle, nonpipelined multiply-accumulator/logic unit (MAC)
• Two 48-bit accumulator registers
• Two 8-bit accumulator extension registers
• An accumulator shifter
• Two data bus shifter/limiter circuits

Each of these components is described in the following paragraphs as well as a descrip-
tion of data representation, rounding, and saturation arithmetic.
4 - 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

4.1.1 Data ALU Input Registers (X1, X0, Y1, Y0)
X1, X0, Y1, and Y0 are four 24-bit, general-purpose data registers. They can be treated
as four independent, 24-bit registers or as two 48-bit registers called X and Y, developed
by the concatenation of X1:X0 and Y1:Y0, respectively. X1 is the most significant word in
X and Y1 is the most significant word in Y. The registers serve as input buffer registers
between the XDB or YDB and the MAC unit. They are used as data ALU source oper-
ands, allowing new operands to be loaded for the next instruction while the register con-

24

24

5656

56

56

56

X DATA BUS

Y DATA BUS

2424

X0

X1

Y0

Y1

24 24

MULTIPLIER

ACCUMULATOR,
ROUNDING,

AND LOGIC UNIT

SHIFTER

A (56)

B (56)

SHIFTER/LIMITER

Figure 4-2 Data ALU
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 4 - 3

tents are used by the current instruction. The registers may also be read back out to the
appropriate data bus to implement memory-delay operations and save/restore opera-
tions for interrupt service routines.

4.1.2 MAC and Logic Unit
The MAC and logic unit comprise the main arithmetic processing unit of the DSP and
perform all of the calculations on data operands. In the case of arithmetic instructions,
the unit accepts up to three input operands and outputs one 56-bit result of the following
form, extension:most significant product:least significant product (EXT:MSP:LSP). The
operation of the MAC unit occurs independently and in parallel with XDB and YDB activ-
ity, and its registers facilitate buffering for both data ALU inputs and outputs. Latches are
provided on the MAC unit input to permit writing an input register, which is the source for
a data ALU operation in the same instruction.

The arithmetic unit contains a multiplier and two accumulators. The input to the multiplier
can only come from the X or Y registers (X1, X0, Y1, Y0). The multiplier executes 24-bit
x 24-bit, parallel, twos-complement fractional multiplies. The 48-bit product is right justi-
fied and added to the 56-bit contents of either the A or B accumulator. The 56-bit sum is
stored back in the same accumulator (see Figure 4-3r). An 8-bit adder, which is used as
an extension accumulator for the MAC array, accommodates overflow of up to 256 and
allows the two 56-bit accumulators to be added and subtracted from each other. The
extension adder output is the EXT portion of the MAC unit output. This multiply/accumu-
late operation is not pipelined but rather is a single-cycle operation. If a multiply without
accumulation (MPY) is specified in the instruction, the MAC clears the accumulator and
then adds the contents to the product.

In summary, the results of all arithmetic instructions are valid (sign-extended and zero-
filled) 56-bit operands in the form of EXT:MSP:LSP or A2:A1:A0 or B2:B1:B0. When a
56-bit result is to be stored as a 24-bit operand, the LSP can be simply truncated, or it
can be rounded (using convergent rounding) into the MSP.

Convergent rounding (round-to-nearest) is performed when adding the multiplier’s prod-
uct to the contents of the accumulator if specified in the DSP instruction (e.g., the signed
multiply-accumulate and round (MACR) instruction). The bit in the accumulator that is
rounded is specified by the scaling mode bits in the status register.

The logic unit performs the logical operations, AND, OR, EOR, and NOT, on data ALU
registers. This unit is 24 bits wide and operates on data in the MSP portion of the accu-
mulator. The LSP and EXT portions of the accumulator are not affected.

4.1.3 Data ALU Accumulator Registers (A2, A1, A0, B2, B1, B0)
The six data ALU registers (A2, A1, A0, B2, B1, and B0) form two general-purpose, 56-
4 - 4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

bit accumulators, A and B. Each of these two registers consists of three concatenated
registers (A2:A1:A0 and B2:B1:B0, respectively). The 24-bit MSP is stored in A1 or B1;
the 24-bit LSP is stored in A0 or B0. The 8-bit EXT is stored in A2 or B2.

The 8-bit extension registers offer protection against overflow. On the DSP56000/
DSP56001, the extreme values that a word operand can assume are - 1 and +

Figure 4-3 MAC Unit

24 BITS
48 BITS
56 BITS

X0,X1,

Y0, OR Y1

X0,X1,

Y0, OR Y1

X0,X1,

Y0, OR Y1

24-BITx24-BIT
FRACTIONAL
MULTIPLIER

56 - BIT
ARITHMETIC AND

LOGIC UNIT

R24

S
H
I
F
T
E
R

CONVERGENT - ROUNDING
FORCING FUNCTION

SCALING
MODE BITS

CONDITION
CODE GENERATOR

ACCUMULATOR A ACCUMULATOR B

+–
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 4 - 5

0.9999998. If the sum of two numbers is less than - 1 or greater than + 0.9999998, the
result (which cannot be represented in a word operand =m i.e., 24 bits) has underflowed
or overflowed. The 8-bit extension registers can accurately represent the result of 255
overflows or 255 underflows. Whenever the accumulator extension registers are in use,
the V bit in the status register is set.

Automatic sign extension is provided when writing to the 56-bit accumulators A or B with
a 48- or 24-bit operand. When a 24-bit operand is written, the low-order portion will be
automatically zero filled to form a valid 56-bit operand. The registers may also be written
without sign extension or zero fill by specifying the individual register name. When accu-
mulator registers A or B are read, they may be optionally scaled one bit left or one bit
right for block floating-point arithmetic.

Reading the A or B accumulators over the XDB and YDB is protected against overflow
by substituting a limiting constant for the data that is being transferred. The content of A
or B is not affected should limiting occur; only the value transferred over the XDB or YDB
is limited. This overflow protection is performed after the contents of the accumulator
have been shifted according to the scaling mode. Shifting and limiting will be performed
only when the entire 56-bit A or B register is specified as the source for a parallel data
move over the XDB or YDB. When A0, A1, A2, B0, B1, or B2 are specified as the source
for a parallel data move, shifting and limiting are not performed. The accumulator regis-
ters serve as buffer registers between the MAC unit and the XDB and/or YDB. These
registers are used as both data ALU source and destination operands.

Automatic sign extension of the 56-bit accumulators is provided when the A or B register
is written with a smaller operand. Sign extension can occur when writing A or B from the
XDB and/or YDB or with the results of certain data ALU operations (such as the transfer
conditionally (Tcc) or transfer data ALU register (TFR) instructions). If a word operand is
to be written to an accumulator register (A or B), the MSP (A1 or B1) portion of the accu-
mulator is written with the word operand, the LSP (A0 or B0) portion is zero filled, and the
EXT (A2 or B2) portion is sign extended from MSP. Long-word operands are written into
the low-order portion, MSP:LSP, of the accumulator register, and the EXT portion is sign
extended from MSP. No sign extension is performed if an individual 24-bit register is writ-
ten (A1, A0, B1, or B0). Test logic is included in each accumulator register to support
operation of the data shifter/limiter circuits. This test logic is used to detect overflows out
of the data shifter so that the limiter can substitute one of several constants to minimize
errors due to the overflow. This process is commonly referred to as saturation arithmetic.

4.1.4 Accumulator Shifter
The accumulator shifter (see Figure 4-3) is an asynchronous parallel shifter with a 56-bit
input and a 56-bit output that is implemented immediately before the MAC accumulator
4 - 6 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

input. The source accumulator shifting operations are as follows:

• No Shift (Unmodified)
• 1-Bit Left Shift (Arithmetic or Logical) ASL, LSL, ROL
• 1-Bit Right Shift (Arithmetic or Logical) ASR, LSR, ROR
• Force to zero

4.1.5 Data Shifter/Limiter
The data shifter/limiter circuits (see Figure 4-3) provide special postprocessing on data
read from the ALU accumulator registers A and B out to the XDB or YDB. There are two
independent shifter/limiter circuits (one for XDB and one for the YDB); each consists of a
shifter followed by a limiting circuit.

4.1.5.1 Limiting (Saturation Arithmetic)
In the DSP56000/DSP56001, the data ALU accumulators A and B have eight extension
bits. Limiting will occur when the extension bits are in use and either A or B is the source
being read over XDB or YDB. The limiters in the DSP56000/DSP56001 place a shifted
and limited value on XDB or YDB without changing the contents of the A or B registers.
Having two limiters allows two-word operands to be limited independently in the same in-
struction cycle. The two data limiters can also be combined to form one 48-bit data limiter
for long-word operands.

If the contents of the selected source accumulator can be represented without overflow
in the destination operand size (i.e., accumulator extension register not in use), the data
limiter is disabled, and the operand is not modified. If contents of the selected source
accumulator cannot be represented without overflow in the destination operand size, the
data limiter will substitute a limited data value having maximum magnitude (saturated)
and having the same sign as the source accumulator contents: $7FFFFF for 24-bit or
$7FFFFF FFFFFF for 48-bit positive numbers, $800000 for 24-bit or $800000 000000 for
48-bit negative numbers. This process is called saturation arithmetic. The value in the
accumulator register is not shifted and can be reused within the data ALU. When limiting
does occur, a flag is set and latched in the status register.

For example, if the source operand were 01.100 (+ 1.5 decimal) and the destination reg-
ister were only four bits, the destination register would contain 1.100 (- 1.5 decimal) after
the transfer, assuming signed fractional arithmetic. This is clearly in error as overflow has
occurred. To minimize the error due to overflow, it is preferable to write the maximum
(‘‘limited’’) value the destination can assume. In the example, the limited value would be
0.111 (+ 0.875 decimal), which is clearly closer to + 1.5 than - 1.5 and therefore intro-
duces less error.

Figure 4-4 shows the effects of saturation arithmetic on a move from register A1 to regis-
ter X0. The instruction ‘‘MOVE A1,X0’’ causes a move without limiting, and the instruc-
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 4 - 7

tion ‘‘MOVE A,X)’’ causes a move of the same 24 bits with limiting. The error without
limiting is 2.0; whereas, it is 0.0000001 with limiting. Table 4-1 shows a more complete
set of limiting situations.

4.1.5.2 Scaling
The data shifters are capable of shifting data one bit to the left or one bit to the right as

Figure 4-4 Saturation Arithmetic

55 0

7 0 23 0 23 0

0. . . 0 1 0 0 0 0 0 0 0 0

55 0

7 0 23 0 23 0

0 . . . 0 1 0 0 0 0 0 0 0 0

WITHOUT LIMITING* WITH LIMITING*

A = +1.0

1 0 0 0 0 0 1 1 1 1

23 0 23 0

MOVE A1, X0 MOVE A, X0

X0 = -1.0 X0 = +0.9999999

|ERROR| = 2.0

A = +1.0

|ERROR| = .0000001

* Limiting automatically occurs when the 56 - bit operands A or B (not A2, A1, A0, B2, B1, or B0) are read. The contents
of A or B are NOT changed.

Destination
Memory Reference

Source
Operand

Accumulator
Sign

Limited Value (Hexadecimal) Type of
Access

XDB YDB

X
X:A
X:B

+
-

7FFFFF
800000

—
—

One 24 bit

Y
Y:A
Y:B

+
-

—
—

7FFFFF
800000

One 24 bit

X and Y

X:A Y:A
X:A Y:B
X:B Y:A
X:B Y:B
L:AB
L:BA

+
-
+
-
+
-

7FFFFF
800000
7FFFFF
800000
7FFFFF
800000

7FFFFF
800000
7FFFFF
800000
7FFFFF
800000

Two 24 bit

L (X:Y)
L:A
L:B

+
-

7FFFFF
800000

FFFFFF
000000

One 48 bit

Table 4-1 Limited Data Values
4 - 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

well as passing the data unshifted. Each data shifter has a 24-bit output with overflow in-
dication and is controlled by the scaling mode bits in the status register. These shifters
permit dynamic scaling of fixed-point data without modifying the program code. For exam-
ple, this permits block floating-point algorithms such as fast Fourier transforms to be
implemented in a regular fashion.

4.2 DATA REPRESENTATION AND ROUNDING
The DSP56000/DSP56001 uses a fractional data representation for all data ALU opera-
tions. Figure 4-5 shows the bit weighting of words, long words, and accumulator oper-

ands for this representation. The decimal points are all aligned and are left justified.

Data must be converted to a fractional number by scaling before being used by the
DSP56000/DSP56001, or the user will have to be very careful in how the DSP manipu-
lates the data. Moving $3F to a 24-bit data ALU register does not result in the contents
being $00003F as might be expected. Assuming numbers are fractional, the DSP left
justifies rather than right justifies. As a result, storing $3F in a 24-bit register results in the
contents being $3F0000. The simplest example of scaling is to convert all integer num-

2–472–2420–28

2–472–24

–20 2–23

–20

*

A2, B2 A1, B1 A0, B0

SIGN EXTENSION OPERAND ZERO

DATA ALU

WORD OPERAND

X1, X0
Y1, Y0
A1, A0
B1, B0

LONG - WORD OPERAND

X1:X0 = X
Y1:Y0 = Y
A1:A0 = A10
B1:B0 = B10

ACCUMULATOR A OR B

Figure 4-5 Bit Weighting and Alignment of Operands
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 4 - 9

bers to fractional numbers by shifting the decimal 24 places to the left (see Figure 4-6).

Thus, the data has not changed; only the position of the decimal has moved.

For words and long words, the most negative number that can be represented is; -1
whose internal representation is $800000 and $800000000000, respectively. The most
positive word is $7FFFFF or 1 - 2 - 23 and the most positive long word is
$7FFFFFFFFFFF or 1 - 2 - 47. These limitations apply to all data stored in memory and
to data stored in the data ALU input buffer registers. The extension registers associated
with the accumulators allow word growth so that the most positive number that can be
used is approximately 256 and the most negative number is approximately; -256. When
the accumulator extension registers are in use, the data contained in the accumulators
cannot be stored exactly in memory or other registers. In these cases, the data must be
limited to the most positive or most negative number consistent with the size of the desti-
nation and the sign of the accumulator (the most significant bit (MSB) of the extension
register).

To maintain alignment of the binary point when a word operand is written to accumulator
A or B, the operand is written to the most significant accumulator register (A1 or B1), and
its MSB is automatically sign extended through the accumulator extension register. The
least significant accumulator register is automatically cleared. When a long-word oper-
and is written to an accumulator, the least significant word of the operand is written to the
least significant accumulator register (see Figure 4-7).

S 3F.

S. 3F

S = SIGN BIT

3F = HEXADECIMAL DATA TO BE CONVERTED

Figure 4-6 Integer-to-Fractional Data Conversion

S

S

N BITS

N BITS

–2(N–-1) TO [+2(N–1) –1]

–1 TO [+1–2–-(N–1)]

TWOS COMPLEMENT INTEGER

TWOS COMPLEMENT FRACTIONAL

FRACTIONAL = INTEGER EXCEPT FOR X AND ÷

•

•

Figure 4-7 Integer/Fractional Number Comparison
4 - 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

A comparison between integer and fractional number representation is shown in Figure
4-7. The number representation for integers is between ±2 (N-1); whereas, the fractional
representation is limited to numbers between ±1. To convert from an integer to a frac-
tional number, the integer must be multiplied by a scaling factor so the result will always
be between ±1. The representation of integer and fractional numbers is the same if the
numbers are added or subtracted but is different if the numbers are multiplied or divided.
An example of two numbers multiplied together is given in Figure 4-8. The key difference

is that the extra bit in the integer multiplication is used as a duplicate sign bit and as the
least significant bit (LSB) in the fractional multiplication. The advantages of fractional
data representation are as follows:

The MSP (left half) has the same format as the input data.

The LSP (right half) can be rounded into the MSP without shifting or updating the expo-
nent.

A significant bit is not lost through sign extension.

Conversion to floating-point representation is easier because the industry-standard float-
ing-point formats use fractional mantissas.

Coefficients for most digital filters are derived as fractions by the high-level language pro-
grams used in digital-filter design packages, which implies that the results can be used
without the extensive data conversions that other formats require.

Should integer arithmetic be required in an application, shifting a one or zero, depending
on the sign, into the MSB converts a fraction to an integer.

The data ALU MAC performs rounding of the accumulator register to single precision if

S S

...

SIGNED MULTIPLIER

S S MSP LSP •

2N — 1 PRODUCT
SIGN EXTENSION

2N BITS

S S

...

SIGNED MULTIPLIER

0S• MSP LSP

2N — 1 PRODUCT
ZERO FILL

2N BITS

INTEGER FRACTIONAL

SIGNED MULTIPLICATION N x N - 2N - 1 BITS

Figure 4-8 Integer/Fractional Multiplication Comparison
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 4 - 11

requested in the instruction (the A1 or B1 register is rounded according to the contents of
the A0 or B0 register). The rounding method used is called round-to-nearest (even) num-
ber, sometimes referred to as convergent rounding. The usual rounding method rounds
up any value above one-half and rounds down any value below one-half. The question
arises as to which way one-half should be rounded. If it is always rounded one way, the

A2 A1 A0
XX . . XX XXX . . . XXX0100 011XXX XXX
55 48 47 24 23 0

CASE I: IF A0 < $800000 (1/2), THEN ROUND DOWN (ADD NOTHING)

BEFORE ROUNDING AFTER ROUNDING

AFTER ROUNDING

AFTER ROUNDING

BEFORE ROUNDING

BEFORE ROUNDING

0

A2 A1 A0*
XX . . XX XXX . . . XXX0100 000 000
55 48 47 24 23 0

CASE II: IF A0 > $800000 (1/2), THEN ROUND UP (ADD 1 TO A1)

A2 A1 A0
XX . . XX XXX . . . XXX0100 1110XX XXX
55 48 47 24 23 0

1

A2 A1 A0*
XX . . XX XXX . . . XXX0101 000 000
55 48 47 24 23 0

CASE III: IF A0 = $800000 (1/2), AND THE LSB OF A1 = 0,THEN ROUND DOWN (ADD NOTHING)

A2 A1 A0
XX . . XX XXX . . . XXX0100 10000 000
55 48 47 24 23 0

0

A2 A1 A0*
XX . . XX XXX . . . XXX0100 000 000
55 48 47 24 23 0

CASE IV: IF A0 = $800000 (1/2), AND THE LSB = 1, THEN ROUND UP (ADD 1 TO A1)

BEFORE ROUNDING

A2 A1 A0
XX . . XX XXX . . . XXX0101 10000 000
55 48 47 24 23 0

1
AFTER ROUNDING

A2 A1 A0*
XX . . XX XXX . . . XXX0110 000 000
55 48 47 24 23 0

Figure 4-9 Convergent Rounding

*A0 is always clear; performed during RND, MPYR, MACR
4 - 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

results will eventually be a bias in that direction. Convergent rounding solves the problem
by rounding down if the number is odd (LSB=0) and rounding up if the number is even
(LSB=1). Figure 4-9 shows the four cases for rounding a number in the A1 (or B1) regis-
ter. If scaling is set in the status register, the resultant number will be rounded as it is put
on the data bus. However, the contents of the register are not scaled.

4.3 DATA ALU PROGRAMMING MODEL
The data ALU features 24-bit input/output data registers that can be concatenated to ac-
commodate 48-bit data and two 56-bit accumulators, which are segmented into three 24-
bit pieces that can be transferred over the buses. Figure 4-10 illustrates how the registers
in the programming model are grouped.

4.4 DATA ALU SUMMARY
The data ALU is optimized for arithmetic operations involving multiply and accumulate op-
erations with two separate data spaces. The data ALU, which executes all instructions in
one machine cycle, is not pipelined. The two 24-bit numbers being multiplied can come
from the X registers (X0 or X1) or Y registers (Y0 or Y1). After multiplication, they are add-
ed (or subtracted) with one of the 56-bit accumulators and can be convergently rounded
to 24 bits. The convergent-rounding forcing function detects the $800000 condition in the
LSP and makes the correction as necessary. The final result is then stored in one of the
accumulators as a valid 56-bit number. The condition code bits are set based on the
rounded output of the logic unit.

47 0

55 055 0

DATA ALU

X0
23 0 23 0

47 0
Y1 Y0

23 0 23 0

DATA ALU

* A2 A1 A0
23 8 7 0 23 0 23 0

* B2 B1 B0
23 8 7 0 23 0 23 0

X1

INPUT REGISTERS

ACCUMULATOR REGISTERS

*Read as sign extension bits, written as don’t care.

X Y

A B

Figure 4-10 DSP56000/DSP56001 Programming Model
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 4 - 13

4 - 14 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SECTION 5
ADDRESS GENERATION UNIT AND

ADDRESSING MODES
This section contains three major subsections. The first subsection describes the hard-
ware architecture of the address generation unit (AGU); the second subsection
describes the programming model. The third subsection describes the addressing
modes, illustrating how the Rn, Nn, and Mn registers work together to form a memory
address.

5.1 AGU ARCHITECTURE
The AGU is one of the three execution units on the DSP56000/DSP56001 shown in Fig-
ure 5-1. The AGU performs the effective address calculations (using integer arithmetic)

ADDRESS

P
O

R
T

 A

PROGRAM CONTROL UNIT

YDB

XDB

PDB

GDB

YAB

MODB/IRQB

MODA/IRQA

ON-CHIP
PERIPHERALS
HOST, SSI, SCI,
PARALLEL I/O

INTERNAL DATA
BUS SWITCH

AND BIT
MANIPULATION

UNIT

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROLLER

EXTERNAL
DATA BUS
SWITCH

BOOTSTRAP
ROM
32x24

PROGRAM
RAM

512x24

X MEMORY
RAM

256x24

Y MEMORY
RAM

256x24

µ/A ROM
256x24

SINE ROM
256x24

PROGRAM
ADDRESS

GENERATOR

PROGRAM
DECODE

CONTROLLER

PROGRAM
INTERRUPT

CONTROLLER

DATA ALU
24x24+56 - 56-BIT MAC

TWO 56- BIT ACCUMULATORSCLOCK
GENERATOR

EXTAL

XTAL

PORT
B OR
HOST

15

9

PORT C
AND/OR
SSI, SCI

RESET

16 BITS

24 BITS

DATA

7

XAB

PAB
ADDRESS

GENERATION
UNIT

Figure 5-1 DSP56001 Block Diagram
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 5 - 1

necessary to address data operands in memory and contains the registers used to gen-
erate the addresses. It implements three types of arithmetic, linear, modulo, and reverse-
carry, and operates in parallel with other chip resources to minimize address-generation
overhead. The AGU is divided into two identical halves, each of which has an address
arithmetic logic unit (ALU) and four sets of three registers (see Figure 5-2).

These registers are the address registers (R0 - R3 and R4 - R7), offset registers (N0 - N3
and N4 - N7), and the modifier registers (M0 - M3 and M4 - M7). The eight Rn, Nn, and
Mn registers are treated as register triplets — e.g., only N2 and M2 can be used to update
R2. The eight triplets are R0:N0:M0, R1:N1:M1, R2:N2:M2, R3:N3:M3, R4:N4:M4,
R5:N5:M5, R6:N6:M6, and R7:N7:M7.

The two arithmetic units can generate two 16-bit addresses every instruction cycle — one
for any two of the XAB, YAB, or PAB. The AGU can directly address 65,536 locations on
the XAB, 65,536 locations on the YAB, and 65,536 locations on the PAB. The two inde-
pendent address ALUs work with the two data memories to feed the data ALU two
operands in a single cycle. Each operand may be addressed by an Rn, Nn, and Mn triplet.

5.1.1 Address Register Files (Rn)
Each of the two address register files (see Figure 5-2) consists of four 16-bit registers. The
two files contain address registers R0 - R3 and R4 - R7, which usually contain addresses

GLOBAL DATA BUS

N0

N1

N2

N3 M3

M2

M1

M0

ADDRESS
ALU

ADDRESS
ALU

R0

R1

R2

R3 R7

R6

R5

R4 M4

M5

M6

M7 N7

N6

N5

N4

TRIPLE MULTIPLEXER

LOW ADDRESS ALU HIGH ADDRESS ALU

XAB YAB PAB

16 bits
24 bits

Figure 5-2 AGU Block Diagram
5 - 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

used as pointers to memory. Each register may be read or written by the global data bus
(GDB). When read by the GDB, 16-bit registers are written into the two least significant
bytes of the GBD, and the most significant byte is set to zero. When written from the GBD,
only the two least significant bytes are written, and the most significant byte is truncated.
Each address register can be used as input to its associated address ALU for a register
update calculation. Each register can also be written by the output of its respective ad-
dress ALU. One Rn register from the low address ALU and one Rn register from the high
address ALU can be accessed in a single instruction.

5.1.2 Offset Register Files (Nn)
Each of two offset register files, shown in Figure 5-2, consists of four 16-bit registers. The
two files contain offset registers N0 - N3 and N4 - N7, which contain either offset values
used to update address pointers or data. Each offset register can be read or written by the
GDB. When read by the GDB, the contents of a register are placed in the two least signif-
icant bytes, and the most significant byte on the GDB is zero extended. When a register
is written, only the least significant 16 bits of the GDB are used; the upper portion is
truncated.

5.1.3 Modifier Register Files (Mn)
Each of two modifier register files, shown in Figure 5-2, consists of four 16-bit registers.
The two files contain modifier registers M0 - M3 and M4 - M7, which specify the type of
arithmetic used during address register update calculations or contain data. Each modifier
register can be read or written by the GDB. When read by the GDB, the contents of a reg-
ister are placed in the two least significant bytes, and the most significant byte on the GDB
is zero extended. When a register is written, only the least significant 16 bits of the GDB
are used; the upper portion is truncated. Each modifier register is preset to $FFFF during
a processor reset.

5.1.4 Address ALU
The two address ALUs are identical (see Figure 5-2) in that each contains a 16-bit full
adder (called an offset adder), which can add 1) plus one, 2) minus one, 3) the contents
of the respective offset register N, or 4) the twos complement of N to the contents of the
selected address register. A second full adder (called a modulo adder) adds the summed
result of the first full adder to a modulo value, M or minus M, where M is stored in the re-
spective modifier register. A third full adder (called a reverse-carry adder) can add 1) plus
one, 2) minus one, 3) the offset N (stored in the respective offset register), or 4) minus N
to the selected address register with the carry propagating in the reverse direction — i.e.,
from the most significant bit (MSB) to the least significant bit (LSB). The offset adder and
the reverse-carry adder are in parallel and share common inputs. The only difference be-
tween them is that the carry propagates in opposite directions. Test logic determines
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 5 - 3

which of the three summed results of the full adders is output.

Each address ALU can update one address register, Rn, from its respective address reg-
ister file during one instruction cycle and is capable of performing linear, reverse-carry,
and modulo arithmetic. The contents of the selected modifier register specify the type of
arithmetic to be used in an address register update calculation. The modifier value is de-
coded in the address ALU.

The output of the offset adder gives the result of linear arithmetic (e.g., Rn ± 1; Rn ± N)
and is selected as the modulo arithmetic unit output for linear arithmetic addressing mod-
ifiers. The reverse-carry adder performs the required operation for reverse-carry
arithmetic and its result is selected as the address ALU output for reverse-carry address-
ing modifiers. Reverse-carry arithmetic is useful for 2k-point fast Fourier transform (FFT)
addressing. For modulo arithmetic, the modulo arithmetic unit will perform the function
(Rn ± N) modulo M, where N can be one, minus one, or the contents of the offset register
Nn. If the modulo operation requires wraparound for modulo arithmetic, the summed out-
put of the modulo adder gives the correct updated address register value; if wraparound
is not necessary, the output of the offset adder gives the correct result.

5.1.5 Address Output Multiplexers
The address output multiplexers (see Figure 5-2) select the source for the XAB, YAB, and
PAB. These multiplexers allow the XAB, YAB, or PAB outputs to originate from R0 - R3
or R4 - R7.

5.2 PROGRAMMING MODEL
The programmer’s view of the AGU is eight sets of three registers (see Figure 5-3). These
registers can be used as temporary data registers and indirect memory pointers. Automat-
ic updating is available when using address register indirect addressing. The Rn registers
can be programmed for linear addressing, modulo addressing, and bit-reverse
addressing.

* R7

R6

R5

R4

R3

R2

R1

R0

*
*
*
*
*
*
*

23 16 15 0
N7

N6

N5

N4

N3

N2

N1

N0

23 16 15 0

OFFSET REGISTERS

M7

M6

M5

M4

M3

M2

M1

M0

23 16 15 0

MODIFIER REGISTERS

UPPER FILE

LOWER FILE

ADDRESS REGISTERS

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

* Written as don’t care; read as zero

Figure 5-3 AGU Programming Model
5 - 4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

5.2.1 Address Register Files (R0 - R3 and R4 - R7)

The eight 16-bit address registers, R0 - R7, can contain addresses or general-purpose data.
The 16-bit address in a selected address register is used in the calculation of the effective ad-
dress of an operand. When supporting parallel X and Y data memory moves, the address
registers must be thought of as two separate files, R0 - R3 and R4 - R7. The contents of an Rn
may point directly to data or may be offset. In addition, Rn can be pre-updated or post-updated
according to the addressing mode selected. If an Rn is updated, modifier registers, Mn, are al-
ways used to specify the type of update arithmetic. Offset registers, Nn, are used for the
update-by-offset addressing modes. The address register modification is performed by one of
the two modulo arithmetic units. Most addressing modes modify the selected address register
in a read-modify-write fashion; the address register is read, its contents are modified by the as-
sociated modulo arithmetic unit, and the register is written with the appropriate output of the
modulo arithmetic unit. The form of address register modification performed by the modulo
arithmetic unit is controlled by the contents of the offset and modifier registers discussed in the
following paragraphs.

5.2.2 Offset Register Files (N0 - N3 and N4 - N7)

The eight 16-bit offset registers, N0 - N7, can contain offset values used to increment/decre-
ment address registers in address register update calculations or can be used for 16-bit
general-purpose storage. For example, the contents of an offset register can be used to step
through a table at some rate (e.g., five locations per step for waveform generation), or the con-
tents can specify the offset into a table or the base of the table for indexed addressing. Each
address register, Rn, has its own offset register, Nn, associated with it.

5.2.3 Modifier Register Files (M0 - M3 and M4 - M7)

The eight 16-bit modifier registers, M0 - M7, define the type of address arithmetic to be per-
formed for addressing mode calculations, or they can be used for general-purpose storage.
The address ALU supports linear, modulo, and reverse-carry arithmetic types for all address
register indirect addressing modes. For modulo arithmetic, the contents of Mn also specify the
modulus. Each address register, Rn, has its own modifier register, Mn, associated with it. Each
modifier register is set to $FFFF on processor reset, which specifies linear arithmetic as the de-
fault type for address register update calculations.

5.3 ADDRESSING

The DSP56000/DSP56001 provides three different addressing modes: register direct, ad-
dress register indirect, and special (see Table 5-1). Since the register direct and special
addressing modes do not necessarily use the AGU registers, they are described in SECTION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 5 - 5

7 INSTRUCTION SET SUMMARY. The address register indirect addressing modes use the
registers in the AGU and are described in the following paragraphs.

5.3.1 Address Register Indirect Modes
When an address register is used to point to a memory location, the addressing mode is
called address register indirect (see Table 5-1). The term indirect is used because the reg-
ister contents are not the operand itself, but rather the address of the operand. These
addressing modes specify that an operand is in memory and specify the effective address
of that operand.

A portion of the data bus movement field in the instruction specifies the memory space to
be referenced. The contents of specific AGU registers that determine the effective ad-
dress are modified by arithmetic operations performed in the AGU. The type of address
arithmetic used is specified by the address modifier register, Mn. The offset register, Nn,
is only used when the update specifies an offset.

Not all possible combinations are available, e.g., + (Rn). The 24-bit instruction word size
of the DSP56000/DSP56001 is not large enough to allow a completely orthogonal instruc-
tion set for all instructions used by the processor.

Address Register Indirect
Uses Mn
Modifier

Operand Reference Assembler
Syntax

S C D A P X Y L XY

No Update No X X X X X (RN)

Postincrement by 1 Yes X X X X X (RN)+

Postdecrement by 1 Yes X X X X X (RN)–

Postincrement by Offset Nn Yes X X X X X (RN)+Nn

NOTE:
S = System Stack Reference
C = Program Control Unit Register Reference
D = Data ALU Register Reference
A = Address ALU Register Reference
P = Program Memory Reference
X = X Memory Reference
Y = Y Memory Reference
L = L Memory Reference

XY = XY Memory Reference

Table 5-1 Address Register Indirect Summary
5 - 6 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

An example and description of each mode is given in the following paragraphs. SECTION
7 INSTRUCTION SET SUMMARY and APPENDIX A INSTRUCTION SET DETAILS give
a complete description of the instruction syntax used in these examples. In particular, XY:
memory references refer to instructions in which an operand in X memory and an operand
in Y memory are referenced in the same instruction.

5.3.1.1 No Update
The address of the operand is in the address register, Rn (see Table 5-1). The contents
of the Rn register are unchanged by executing the instruction. Figure 5-4 shows a MOVE
instruction using address register indirect addressing with no update. This mode can be
used for making XY: memory references.

X MEMORY
23 0

0 1 2 3 4 5 6 7 8 9 A B C D

15 0

15 0

15 0

EXAMPLE: MOVE A1,X: (R0)

BEFORE EXECUTION AFTER EXECUTION

A2 A1 A0

55 48 47 24 23 0

7 0 23 0 23 0

X MEMORY
23 0

X X X X X X$1000 $1000

A2 A1 A0

0 1 2 3 4 5 6 7 8 9 A B C D

55 48 47 24 23 0

7 0 23 0 23 0

$1000

XXXX

$FFFF

R0

N0

M0

15 0

15 0

15 0

$1000

XXXX

$FFFF

R0

N0

M0

Assembler Syntax: (Rn)
Memory Spaces: P:, X:, Y:, XY:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

$ 2 3 4 5 6 7

Figure 5-4 Address Register Indirect — No Update
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 5 - 7

5.3.1.2 Postincrement By 1
The address of the operand is in the address register, Rn (see Table 5-1 and Figure 5-5).
After the operand address is used, it is incremented by 1 and stored in the same address
register. This mode can be used for making XY: memory references and for modifying the
contents of Rn without an associated data move.

A F 6 5 4 3 2 1 F E D C B A

15 0

15 0

15 0

EXAMPLE: MOVE B0,Y: (R1)+

BEFORE EXECUTION AFTER EXECUTION

B2 B1 B0

55 48 47 24 23 0

7 0 23 0 23 0

Y MEMORY
23 0

X X X X X X$2500

Y MEMORY
23 0

$2500

$2500

XXXX

$FFFF

R1

N1

M1

15 0

15 0

15 0

$2501

XXXX

$FFFF

R1

N1

M1

Assembler Syntax: (Rn)+
Memory Spaces: P:, X:, Y:, XY:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

$ F E D C B A

A F 6 5 4 3 2 1 F E D C B A

B2 B1 B0

55 48 47 24 23 0

7 0 23 0 23 0

X X X X X X$2501 X X X X X X X$2501

Figure 5-5 Address Register Indirect — Postincrement
5 - 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

5.3.1.3 Postdecrement By 1
The address of the operand is in the address register, Rn (see Table 5-1 and Figure 5-6).
After the operand address is used, it is decremented by 1 and stored in the same address
register. This mode can be used for making XY: memory references and for modifying the
contents of Rn without an associated data move.

1 2 3 1 2 3 4 5 6 4 5 6

15 0

15 0

15 0

EXAMPLE: MOVE Y0,Y: (R3)-

BEFORE EXECUTION AFTER EXECUTION

Y1 Y0
47 24 23 0

 23 0 23 0

Y MEMORY
23 0

X X X X X X$4734

Y MEMORY
23 0

$4734

$4735

XXXX

$FFFF

R3

N3

M3

15 0

15 0

15 0

$4734

XXXX

$FFFF

R3

N3

M3

Assembler Syntax: (Rn)–
Memory Spaces: P:, X:, Y:, XY:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

X X X X X X$4735 $4735

1 2 3 1 2 3 4 5 6 4 5 6

Y1 Y0
47 24 23 0

 23 0 23 0

4 5 6 4 5 6

X X X X X X

Figure 5-6 Address Register Indirect — Postdecrement
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 5 - 9

5.3.1.4 Postincrement By Offset Nn
The address of the operand is in the address register, Rn (see Table 5-1 and Figure 5-7).
After the operand address is used, it is incremented by the contents of the Nn register and
stored in the same address register. The contents of the Nn register are unchanged. This
mode can be used for making XY: memory references and for modifying the contents of
Rn without an associated data move.

A 5 B 4 C 6 0 0 0 0 0 1

15 0

15 0

15 0

EXAMPLE: MOVE X1,X: (R2)+N2

BEFORE EXECUTION AFTER EXECUTION

X1 X0
47 24 23 0

 23 0 23 0

X MEMORY
23 0

X X X X X X$3200

X MEMORY
23 0

$3200

$3200

$FFFF

R2

N2

M2

15 0

15 0

15 0

$3204

$FFFF

R2

N2

M2

Assembler Syntax: (Rn)+Nn
Memory Spaces: P:, X:, Y:, XY:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

X X X X X X$3204 $3204 X X X X X X

A 5 B 4 C 6 0 0 0 0 0 1

X1 X0
47 24 23 0

 23 0 23 0

$0004 $0004

$ A 5 B 4 C 6

Figure 5-7 Address Register Indirect — Postincrement by Offset Nn
5 - 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

5.3.1.5 Postdecrement By Offset Nn
The address of the operand is in the address register, Rn (see Table 5-1 and Figure 5-8).
After the operand address is used, it is decremented by the contents of the Nn register
and stored in the same address register. The contents of the Nn register are unchanged.
This mode cannot be used for making XY: memory references, but it can be used to mod-
ify the contents of Rn without an associated data move.

0 F 7 4 1 0 5 A 3 F A 6 B 0

15 0

15 0

15 0

EXAMPLE: MOVE X:(R4)–N4,A0

BEFORE EXECUTION AFTER EXECUTION

A2 A1 A0

55 48 47 24 23 0

7 0 23 0 23 0

X MEMORY
23 0

X X X X X X$7703

$7706

$FFFF

R4

N4

M4

Assembler Syntax: (Rn)–Nn
Memory Spaces: P:, X:, Y:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

$7706

0 F 7 4 1 0 5 A 5 0 5 0 5 0

A2 A1 A0

55 48 47 24 23 0

7 0 23 0 23 0

$ 5 0 5 0 5 0

$0003

15 0

15 0

15 0

X MEMORY
23 0

X X X X X X$7703

$7703

$FFFF

R4

N4

M4

$7706 $ 5 0 5 0 5 0

$0003

Figure 5-8 Address Register Indirect — Postdecrement by Offset Nn
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 5 - 11

5.3.1.6 Indexed By Offset Nn
The address of the operand is the sum of the contents of the address register, Rn, and
the contents of the address offset register, Nn (see Table 5-1 and Figure 5-9). The con-
tents of the Rn and Nn registers are unchanged. This addressing mode, which requires
an extra instruction cycle, cannot be used for making XY: memory references.

+

6 2 1 0 0 9 B A 4 C 2 2

15 0

15 0

15 0

EXAMPLE: MOVE Y1,X: (R6+N6)

BEFORE EXECUTION AFTER EXECUTION

Y1 Y0
47 24 23 0

 23 0 23 0

X MEMORY
23 0

X X X X X X$6000

X MEMORY
23 0

$6000

$6000

$FFFF

R6

N6

M6

15 0

15 0

15 0

$6000

$FFFF

R6

N6

M6

Assembler Syntax: (Rn+Nn)
Memory Spaces: P:, X:, Y:, L:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 0

X X X X X X$6004 $6004

X X X X X X

6 2 1 0 0 9 B A 4 C 2 2

Y1 Y0
47 24 23 0

 23 0 23 0

$0004 $0004

$ 6 2 1 0 0 9

Figure 5-9 Address Register Indirect — Indexed by Offset Nn
5 - 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

5.3.1.7 Predecrement By 1
The address of the operand is the contents of the address register, Rn, decremented by
1 before the operand address is used (see Table 5-1 and Figure 5-10). The contents of
Rn are decremented and stored in the same address register. This addressing mode re-
quires an extra instruction cycle. This mode cannot be used for making XY: memory
references, nor can it be used for modifying the contents of Rn without an associated data
move.

15 0

15 0

15 0

EXAMPLE: MOVE X: –(R5),B1

BEFORE EXECUTION AFTER EXECUTION

B2 B1 B0

55 48 47 24 23 0

7 0 23 0 23 0

X MEMORY
23 0

$3006

$3007

$FFFF

R5

N5

M5

Assembler Syntax: –Rn
Memory Spaces: P:, X:, Y:, L:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 0

$3007

3 B 1 2 3 4 5 6 A 5 5 4 C 0

B2 B1 B0

55 48 47 24 23 0

7 0 23 0 23 0

XXXX

15 0

15 0

15 0

X MEMORY
23 0

$3006

$3006

$FFFF

R5

N5

M5

$3007 $ A B C D E F

XXXX

$ 1 2 3 4 5 6

$ A B C D E F

$ 1 2 3 4 5 6

3 B B 6 2 D 0 4 A 5 5 4 C 0

Figure 5-10 Address Register Indirect — Predecrement
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 5 - 13

5.3.2 Address Modifier Types
The DSP56000/DSP56001 address ALU supports linear, modulo, and reverse-carry arith-
metic types for all address register indirect modes. These arithmetic types easily allow the
creation of data structures in memory for FIFOs (queues), delay lines, circular buffers,
stacks, and bit-reversed FFT buffers. Data is manipulated by updating address registers
(pointers) rather than moving large blocks of data. The contents of the address modifier
register, Mn, define the type of arithmetic to be performed for addressing mode calcula-
tions; for modulo arithmetic, the contents of Mn also specify the modulus. All address
register indirect modes can be used with any address modifier. Each address register, Rn,
has its own modifier register, Mn, associated with it.

5.3.2.1 Linear Modifier (Mn=$FFFF)
Address modification is performed using normal 16-bit linear (modulo 65,536) arithmetic
(see Table 5-2). A 16-bit offset, Nn, and + or –1 can be used in the address calculations.
The range of values can be considered as signed (Nn from –32,768 to + 32,767) or un-
signed (Nn from 0 to + 65,535) since there is no arithmetic difference between these two
data representations. Addresses are normally considered unsigned, and data is normally
considered signed.

Modifier Mn
Value

Addressing Mode
Arithmetic

0 Reverse Carry (Bit Reverse)

1 Modulo 2

2 Modulo 3

: :

: Modulo (Mn+1)

: :

32766 Modulo 32767

32767 Modulo 32768

Table 5-2 Linear Address Modifiers
5 - 14 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

5.3.2.2 Modulo Modifier (Mn=MODULUS–1)
The address modification is performed modulo M, where M ranges from 2 to + 32,768 (see
Table 5-3).

 Modulo M arithmetic causes the address register value to remain within an address range
of size M, defined by a lower and upper address boundary (see Figure 5-11).

The value m=M–1 is stored in the modifier register, Mn. The lower boundary (base ad-
dress) value must have zeros in the k LSBs, where 2k ≥ M, and therefore must be a
multiple of 2k. The upper boundary is the lower boundary plus the modulo size minus one
(base address plus M–1). Since M≤2k, once M is chosen, a sequential series of memory
blocks (each of length 2k) is created where these circular buffers can be located. If M<2k,
there will be a space between sequential circular buffers of (2k)–M.

For example, to create a circular buffer of 21 stages, M is 21, and the lower address
boundary must have its five LSBs equal to zero (2k ≥ 21, thus k ≥ 5). The Mn register is
loaded with the value 20. The lower boundary may be chosen as 0, 32, 64, 96, 128, 160,
etc. The upper boundary of the buffer is then the lower boundary plus 21. There will be an
unused space of 11 memory locations between the upper address and next usable lower
address. The address pointer is not required to start at the lower address boundary or to
end on the upper address boundary; it can initially point anywhere within the defined mod-
ulo address range. Neither the lower nor the upper boundary of the modulo region is
stored; only the size of the modulo region is stored in Mn. The boundaries are determined

Modifier Mn
Value

Addressing Mode
Arithmetic

0 Reverse Carry (Bit Reverse)

1 Modulo 2

2 Modulo 3

: :

: Modulo (Mn+1)

: :

32766 Modulo 32767

32767 Modulo 32768

: Reserved

65535 Linear (Modulo 65536)

Table 5-3 Modulo Address Modifiers
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 5 - 15

by the contents of Rn. Assuming the (Rn)+ indirect addressing mode, if the address reg-
ister pointer increments past the upper boundary of the buffer (base address plus M–1),
it will wrap around through the base address (lower boundary). Alternatively, assuming
the (Rn)- indirect addressing mode, if the address decrements past the lower boundary
(base address), it will wrap around through the base address plus M–1 (upper boundary).

If an offset, Nn, is used in the address calculations, the 16-bit absolute value, |Nn|, must
be less than or equal to M for proper modulo addressing. If Nn>M, the result is data de-
pendent and unpredictable, except for the special case where Nn=P x 2k, a multiple of the
block size where P is a positive integer. For this special case, when using the (Rn)+ Nn
addressing mode, the pointer, Rn, will jump linearly to the same relative address in a new
buffer, which is P blocks forward in memory (see Figure 5-12).

 Similarly, for (Rn)–Nn, the pointer will jump P blocks backward in memory. This technique
is useful in sequentially processing multiple tables or N-dimensional arrays. The range of
values for Nn is –32,768 to + 32,767. The modulo arithmetic unit will automatically wrap
around the address pointer by the required amount. This type address modification is use-
ful for creating circular buffers for FIFOs (queues), delay lines, and sample buffers up to
32,768 words long as well as for decimation, interpolation, and waveform generation. The
special case of (Rn) ± Nn mod M with Nn=P x 2k is useful for performing the same algo-
rithm on multiple blocks of data in memory — e.g., parallel infinite impulse response (IIR)
filtering.

An example of address register indirect modulo addressing is shown in Figure 5-13 Start-
ing at location 64, a circular buffer of 21 stages is created. The addresses generated are
offset by 15 locations. The lower boundary = L x (2k) where 2k ≥ 21; therefore, k=5 and
the lower address boundary must be a multiple of 32. The lower boundary may be chosen

CIRCULAR
BUFFER

ADDRESS
POINTER M = MODULUS

UPPER BOUNDARY

LOWER BOUNDARY

Figure 5-11 Circular Buffer
5 - 16 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

as 0, 32, 64, 96, 128, 160, etc. For this example, L is arbitrarily chosen to be 2, making
the lower boundary 64. The upper boundary of the buffer is then 84 (the lower boundary
plus 20 (M–1)). The Mn register is loaded with the value 20 (M–1). The offset register is
arbitrarily chosen to be 15 (Nn≤M). The address pointer is not required to start at the lower
address boundary and can begin anywhere within the defined modulo address range —
i.e., within the lower boundary + (2k) address region. The address pointer, Rn, is arbitrarily
chosen to be 75 in this example. When R2 is postincremented by the offset by the MOVE
instruction, instead of pointing to 90 (as it would in the linear mode) it wraps around to 69.
If the address register pointer increments past the upper boundary of the buffer (base ad-
dress plus M–1), it will wrap around to the base address. If the address decrements past
the lower boundary (base address), it will wrap around to the base address plus M–1.

If Rn is outside the valid modulo buffer range and an operation occurs that causes Rn to
be updated, the contents of Rn will be updated according to modulo arithmetic rules. For
example, a MOVE B0,X:(R0)+ N0 instruction (where R0=6, M0=5, and N0=0) would ap-
parently leave R0 unchanged since N0=0. However, since R0 is above the upper
boundary, the AGU calculates R0+ N0–M0–1 for the new contents of R0 and sets R0=0.

The MOVE instruction in Figure 5-13 takes the contents of the X0 register and moves it
to a location in the X memory pointed to by (R2), and then (R2) is updated modulo 21. The

(Rn) ± Nn MOD M
WHERE Nn = 2k (i.e., P = 1)

M

M

2k

2k

Figure 5-12 Linear Addressing with a Modulo Modifier
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 5 - 17

new value of R2 is not 90 (75+ 15), which would be the case if linear arithmetic had been
used, but rather is 69 since modulo arithmetic was used.

5.3.2.3 Reverse-Carry Modifier (Mn=$0000)
Reverse carry is selected by setting the modifier register to zero (see Table 5-4). The ad-
dress modification is performed in hardware by propagating the carry in the reverse
direction — i.e., from the MSB to the LSB. Reverse carry is equivalent to bit reversing the
contents of Rn (i.e., redefining the MSB as the LSB, the next MSB as bit 1, etc.) and the
offset value, Nn, adding normally, and then bit reversing the result. If the + Nn addressing
mode is used with this address modifier and Nn contains the value 2(k–1) (a power of two),
this addressing modifier is equivalent to bit reversing the k LSBs of Rn, incrementing Rn
by 1, and bit reversing the k LSBs of Rn again. This address modification is useful for ad-
dressing the twiddle factors in 2k-point FFT addressing and to unscramble 2k-point FFT
data. The range of values for Nn is 0 to + 32K (i.e., Nn=215), which allows bit-reverse ad-
dressing for FFTs up to 65,536 points.

0..010 00000

XD BUS

(84)

R2

(69)

(75)

(90)

LET:
M2

N2

R2

EXAMPLE: MOVE X0,X:(R2)+N

00.....0010100

00.....0001111

00.....1001011

MODULUS=21

OFFSET=15

POINTER=75

N2+

(64)

21

X0

k=5

Figure 5-13 Modulo Modifier Example
5 - 18 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

To make bit-reverse addressing work correctly for a 2k point FFT, the following proce-
dures must be used:

1. Set Mn=0; this selects reverse-carry arithmetic.

2. Set Nn=2(k–1).

3. Set Rn between the lower boundary and upper boundary in the buffer mem-
ory. The lower boundary is L x (2k), where L is an arbitrary whole number. This
boundary gives a 16-bit binary number ‘‘xx . . . xx00 . . . 00’’, where xx . . . xx=L
and 00 . . . 00 equals k zeros. The upper boundary is L x (2k)+ ((2k)–1). This
boundary gives a 16-bit binary number ‘‘xx . . . xx11 . . . 11’’, where xx . . . xx=L
and 11 . . . 11 equals k ones.

4. Use the (Rn)+ Nn addressing mode.

As an example, consider a 1024-point FFT with real data stored in the X memory and
imaginary data stored in the Y memory. Since 1,024=210, k=10. The modifier register
(Mn) is zero to select bit-reverse addressing. Offset register (Nn) contains the value 512
(2(k–1)), and the pointer register (Rn) contains 3,072 (L x (2k)=3 x (210)), which is the lower
boundary of the memory buffer that holds the results of the FFT. The upper boundary is
4,095 (lower boundary + (2k)–1=3,072+ 1,023).

Postincrementing by + N generates the address sequence (0, 512, 256, 768, 128, 640,...),

Modifier Mn
Value

Addressing Mode
Arithmetic

0 Reverse Carry (Bit Reverse)

1 Modulo 2

2 Modulo 3

: :

: Modulo (Mn+1)

: :

32766 Modulo 32767

32767 Modulo 32768

: Reserved

65535 Linear (Modulo 65536)

Table 5-4 Reverse-Carry Address Modifiers
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 5 - 19

which is added to the lower boundary. This sequence (0, 512, etc.) is the scrambled FFT
data order for sequential frequency points from 0 to 2 x pi. Table 5-5 shows the successive
contents of Rn when using (Rn)+ Nn updates.

The reverse-carry modifier only works when the base address of the FFT data buffer is a

multiple of 2k, such as 1,024, 2,048, 3,072, etc. The use of addressing modes other than
postincrement by + Nn is possible but may not provide a useful result.

The term bit reverse with respect to reverse-carry arithmetic is descriptive. The lower
boundary that must be used for the bit-reverse address scheme to work is L x (2k). In the
previous example shown in Table 5-5, L=3 and k=10. The first address used is the lower
boundary (3072); the calculation of the next address is shown in Figure 5-14. The k LSBs
of the current contents of Rn (3,072) are swapped:

• Bits 0 and 9 are swapped.
• Bits 1 and 8 are swapped.
• Bits 2 and 7 are swapped.
• Bits 3 and 6 are swapped.
• Bits 4 and 5 are swapped.

The result is incremented (3,073), and then the k LSBs are swapped again:

• Bits 0 and 9 are swapped.
• Bits 1 and 8 are swapped.
• Bits 2 and 7 are swapped.
• Bits 3 and 6 are swapped.
• Bits 4 and 5 are swapped.

The result is Rn equals 3,584.

Rn Contents
Offset From

Lower Boundary

3072 0

3584 512

3328 256

3840 768

3200 128

3712 640

Table 5-5 Bit-Reverse Addressing Se-
quence Example
5 - 20 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

5.3.2.4 Address-Modifier-Type Encoding Summary
Table 5-6 is a summary of the address modifier types discussed in the previous para-
graphs. There are three modifier types:

• Linear Addressing
• Reverse-Carry Addressing
• Modulo Addressing
Bit-reverse addressing is useful for 2k-point FFT addressing. Modulo addressing is useful
for creating circular buffers for FIFOs (queues), delay lines, and sample buffers up to
32,768 words long. The linear addressing is useful for general-purpose addressing. There
is a reserved set of modifier values (from 32,768 to 65,534) that should not be used.

Figure 5-15 gives examples of the three addressing modifiers using 8-bit registers for sim-
plification (all AGU registers in the DSP56000/DSP56001 are 16 bit). The addressing
mode used in the example, postincrement by offset Nn, adds the contents of the offset
register to the contents of the address register after the address register is accessed. The

L k BITS

EACH UPDATE, (Rn)+Nn, IS EQUIVALENT TO:

1. BIT REVERSING: Rn=000011 0000000000=3072

0000000000

2. INCREMENT Rn BY 1: Rn=000011 0000000000
+1

000011 0000000001

3. BIT REVERSING AGAIN: Rn=000011 0000000001

1000000000
000011 1000000000=3584

Figure 5-14 Bit-Reverse Address Calculation Example
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 5 - 21

results of the three examples are as follows:

• The linear address modifier addresses every fifth location since the offset register
contains $5.

• Using the bit-reverse address modifier causes the postincrement by offset Nn
addressing mode to use the address register, bit reverse the four LSBs, increment by
1, and bit reverse the four LSBs again.

• The modulo address modifier has a lower boundary at a predetermined location, and
the modulo number plus the lower boundary establishes the upper boundary. This
boundary creates a circular buffer so that, if the address register is pointing within the
boundaries, addressing past a boundary causes a circular wraparound to the other
boundary.

Modifier Mn Rn Update Arithmetic

0 Reverse Carry (Bit Reverse)
Addressing

1 Modulo 2

2 Modulo 3

: :

: Modulo (Mn+1) Addressing

: :

32767 Modulo 32768

Table 5-6 Address-Modifier-Type Encoding Summary
5 - 22 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

LINEAR ADDRESS MODIFIER

M0 = 255 = 11111111 FOR LINEAR ADDRESSING WITH R0

ORIGINAL REGISTERS: N0 = 5, R0 = 75 = 0100 1011

POSTINCREMENT BY OFFSET N0: R0 = 80 = 0101 0000

POSTINCREMENT BY OFFSET N0: R0 = 85 = 0101 0101

POSTINCREMENT BY OFFSET N0: R0 = 90 = 0101 1010

MODULO ADDRESS MODIFIER

M0 = 19 = 0001 0011 FOR MODULO 20 ADDRESSING WITH R0

ORIGINAL REGISTERS: N0 = 5, R0 = 75 = 0100 1011

POSTINCREMENT BY OFFSET N0: R0 = 80 = 0101 0000

POSTINCREMENT BY OFFSET N0: R0 = 65 = 0100 0001

POSTINCREMENT BY OFFSET N0: R0 = 70 = 0100 0110

REVERSE-CARRY ADDRESS MODIFIER

M0 = 0= 0000 0000 FOR REVERSE-CARRY ADDRESSING WITH R0

ORIGINAL REGISTERS: N0 = 8, R0 = 64 = 0100 0000

POSTINCREMENT BY OFFSET N0: R0 = 72 = 0100 1000

POSTINCREMENT BY OFFSET N0: R0 = 68 = 0100 0100

POSTINCREMENT BY OFFSET N0: R0 = 76 = 0100 1100

75

80

85

90

R0

65

70

75

80

R0

64

83

UPPER
BOUNDARY

LOWER
BOUNDARY

64

68

72

76

R0

Figure 5-15 Address Modifier Summary
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 5 - 23

5 - 24 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SECTION 6
PROGRAM CONTROL UNIT

This section describes the hardware of the program control unit and concludes with a
description of the programming model. The instruction pipeline description is also
included since understanding the pipeline is particularly important in understanding the
DSP56000/DSP56001.

6.1 OVERVIEW
The program control unit (one of the three concurrent execution units in the central pro-
cessor) performs program address generation (instruction prefetch), instruction decod-
ing, hardware DO loop control, and exception processing (see Figure 6-1). The
programmer views the program control unit as consisting of six registers and a hardware
system stack (SS) as shown in Figure 6-2. In addition to the standard program flow-con-
trol resources, such as a program counter (PC), complete status register (SR), and SS,
the program control unit features registers (loop address (LA) and loop counter (LC) ded-
icated to supporting the hardware DO loop instruction.

Figure 6-1 DSP56001 Block Diagram

ADDRESS

P
O

R
T

 A

PROGRAM CONTROL UNIT

YDB

XDB

PDB

GDB

YAB

MODB/IRQB

MODA/IRQA

ON-CHIP
PERIPHERALS
HOST, SSI, SCI,
PARALLEL I/O

INTERNAL DATA
BUS SWITCH

AND BIT
MANIPULATION

UNIT

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROLLER

EXTERNAL
DATA BUS
SWITCH

BOOTSTRAP
ROM
32x24

PROGRAM
RAM

512x24

X MEMORY
RAM

256x24

Y MEMORY
RAM

256x24

µ/A ROM
256x24

SINE ROM
256x24

DATA ALU
24x24+56 - 56-BIT MAC

TWO 56- BIT ACCUMULATORSCLOCK
GENERATOR

EXTAL

XTAL

PORT
B OR
HOST

15

9

PORT C
AND/OR
SSI, SCI

RESET

16 BITS

24 BITS

DATA

7

XAB

PAB
ADDRESS

GENERATION
UNIT

PROGRAM
ADDRESS

GENERATOR

PROGRAM
DECODE

CONTROLLER

PROGRAM
INTERRUPT

CONTROLLER
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 6 - 1

The SS is a 15-level by 32-bit separate internal memory used to store the PC and SR

during subroutine calls and long interrupts. The SS will also store the LC and LA regis-
ters in addition to the PC and SR registers for program looping. Each location in the SS
is addressable as 16-bit registers, system stack high (SSH) and system stack low (SSL),
which are pointed to by the stack pointer (SP). Thus, SS management is under software
control.

All registers are read/write to facilitate system debugging. Although none of the program
control unit registers are 24 bits, they are read or written over 24-bit buses. When they are
read, the least significant bits (LSBs) are significant, and the most significant bits (MSBs)
are zeroed as appropriate. When they are written, only the appropriate LSBs are signifi-
cant, and the MSBs are written as don’t care. The program control unit implements a
three-stage (prefetch, decode, execute) pipeline and controls the five processing states
of the DSP56000/DSP56001: normal, exception, reset, wait, and stop.

6.2 PROGRAM CONTROL UNIT ARCHITECTURE
The program control unit consists of three hardware blocks: the program decode control-
ler (PDC), the program address generator (PAG), and the program interrupt controller
(PIC) (see Figure 6-1).

6.2.1 Program Decode Controller

The PDC contains the program logic array decoders, the register address bus generator,
the loop state machine, the repeat state machine, the condition code generator, the inter-

32 x 16
STACK

OMR

PC
LA
LC
SP

SR

CLOCK

INTERRUPTS

CONTROL

PAB PDB

16 24

24 24

GLOBAL DATA BUS

Figure 6-2 DSP56000/DSP56001 Program Control Unit
6 - 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

rupt state machine, the instruction latch, and the backup instruction latch. The PDC
decodes the 24-bit instruction loaded into the instruction latch and generates all signals
necessary for pipeline control. The backup instruction latch stores a duplicate of the
prefetched instruction to optimize execution of the repeat (REP) and jump (JMP)
instructions.

6.2.2 Program Address Generator

The PAG contains the PC, the SP, the SS, the operating mode register (OMR), the SR,
the LC register, and the LA register. Loops, which are frequent constructs in digital signal
processing (DSP) algorithms, are supported by dedicated hardware on the DSP56000/
DSP56001. Executing a DO instruction loads the LC register with the number of times the
loop should be executed, loads the LA register with the address of the last instruction word
in the loop (fetched during one loop pass), and asserts the loop flag in the SR. Executing
the DO instruction also causes the contents of the LA, LC, and SR to be stacked prior to
the execution of the DO instruction, thereby supporting nesting of DO loops. Under control
of the loop state machine, the address of the first instruction in the loop is also stacked so
the loop can be repeated with no overhead. While the loop flag in the SR is asserted, the
loop state machine will compare the PC contents to the contents of the LA to determine if
the last instruction word in the loop was fetched. If the last word was fetched, the LC con-
tents are tested for one. If LC is not equal to one, then it is decremented, and the SS is
read to update the PC with the address of the first instruction in the loop, effectively exe-
cuting an automatic branch. If the LC is equal to one, then the LC, LA, and the loop flag
in the SR are restored with the stack contents, while instruction fetches continue at the
incremented PC value (LA + 1).

Block data moves can be accomplished using the repeat feature. The REP instruction
loads the LC with the number of times the next instruction is to be repeated. Since the
instruction to be repeated is only fetched once, throughput is increased by reducing ex-
ternal bus contention. However, REP instructions are not interruptable since they are
fetched only once. A single-instruction DO loop can be used in place of an REP if inter-
rupts must be allowed.

6.2.3 Program Interrupt Controller

The PIC receives all interrupt requests, arbitrates among all of them each cycle, and gen-
erates the interrupt vector address. There are four external and 16 internal interrupt
sources that may generate interrupts.

The interrupts are organized in a flexible priority structure. Each interrupt has associated with it an interrupt priority level (IPL) that can be from zero to three. Levels 0 (lowest level), 1, and 2 are maskable. Level 3 is the highest IPL and is not maskable. Two interrupt

mask bits in the SR reflect the current processor IPL and indicate the level needed for an interrupt source to interrupt the processor. Interrupts are inhibited for all IPLs less than the current processor priority. Level 3 interrupts can always interrupt the processor. All

interrupt sources and their IPLs are listed in Table 6-1. Each interrupt source is vectored (one of 32 vectors) to a separate, fixed, two-word service routine located in the lowest 64 words of program memory. If some of this space is not used, it may be used for program

storage.

Upon entering the exception processing state, the current instruction in decode will execute normally, unless it is the first word of a two-word instruction, in which case it will be aborted and refetched at the completion of exception processing. The next two fetch

addresses are supplied by the PIC. During these fetches, the PC is not updated. The PIC generates an interrupt instruction fetch address, which points to the first instruction word of a two-word fast-interrupt routine. All interrupts begin as fast interrupts (Figure 6-3 (a)).

During fast interrupt servicing, the two instruction words at the interrupt vector addresses are jammed into the instruction stream without any overhead or stack usage. If one of the two words is a jump to subroutine (JSR), the fast interrupt routine becomes a long inter-

rupt routine (see Figure 6-3 (b)). The long interrupt service is the traditional context switch in which the stack is used for saving the status and return address. Subroutines and interrupts can be nested using the 15-level stack. The stack can be extended in memory by
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 6 - 3

using software to access the SSH and SSL registers. The exception processing state is described in more detail in SECTION 8 PROCESSING STATES.

Two external interrupt request inputs, IRQA and IRQB, can be defined as either level sensitive or negative edge triggered. One other external interrupt source is available. The nonmaskable interrupt (NMI) is edge sensitive and is generated on the first transition to 10

Interrupt Starting
Address

IPL Interrupt Source

P:$0000 or P:$E000 3 Hardware RESET (External)

P:$0002 3 Stack Error

P:$0004 3 Trace

P:$0006 3 SWI (Software Interrupt)

P:$0008 0-2 IRQA (External)

P:$000A 0-2 IRQB (External)

P:$000C 0-2 SSI Receive Data

P:$000E 0-2 SSI Receive Data with Exception Status

P:$0010 0-2 SSI Transmit Data

P:$0012 0-2 SSI Transmit Data with Exception Status

P:$0014 0-2 SCI Receive Data

P:$0016 0-2 SCI Receive Data with Exception Status

P:$0018 0-2 SCI Transmit Data

P:$001A 0-2 SCI Idle Line

P:$001C 0-2 SCI Timer

P:$001E 3 NMI — Reserved for Hardware Development (External)

P:$0020 0-2 Host Receive Data

P:$0022 0-2 Host Transmit Data

P:$0024 0-2 Host Command (Default)

P:$0026 0-2 Available for Host Command

P:$0028 0-2 Available for Host Command

P:$002A 0-2 Available for Host Command

P:$002C 0-2 Available for Host Command

P:$002E 0-2 Available for Host Command

P:$0030 0-2 Available for Host Command

P:$0032 0-2 Available for Host Command

P:$0034 0-2 Available for Host Command

P:$0036 0-2 Available for Host Command

P:$0038 0-2 Available for Host Command

P:$003A 0-2 Available for Host Command

P:$003C 0-2 Available for Host Command

P:$003E 0-2 Illegal Instruction

Table 6-1 Interrupt Sources
6 - 4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

V on the IRQB pin after the last time that the NMI interrupt was serviced or the chip was reset. The NMI is a priority level 3 interrupt and cannot be masked. Only RESET and Illegal Instruction have higher priority than NMI. NMI is reserved for hardware development

and should not be used as a general-purpose interrupt pin. Continued use of this interrupt can cause damage to the chip (see the DSP56001 Advance Information Data Sheet (ADI1290)). NMI has been provided strictly as an aid to the developer. The hardware reset

address vector may point to internal (P:$0000) or external (P:$E000) program memory, determined by the value of the MODA and MODB pins when the RESET pin is deasserted.

The NMI, trace, and software interrupt (SWI) instructions are used for debugging and development purposes. The SWI instruction is useful for implementing breakpoints. Tracing is entered after turning on the trace flag in the SR. During tracing, a trace interrupt will be

generated after each instruction is executed, thereby creating a single-step feature.

Internally, the peripheral registers are accessed through the global data bus. All on-chip peripherals use the same interrupt request interface mechanism. Each peripheral provides a single interrupt request line to the PIC and receives two lines: vector read and interrupt

acknowledge. Each peripheral possesses more than one interrupt source (see Table 6-1); therefore, interrupt arbitration between internal peripherals must be handled by the peripheral according to its own predefined IPL. The PIC arbitrates between the different I/O

peripherals; when one of them is selected, the peripheral supplies the correct vector address to the PIC. The host command vector in the host interface (see CHAPTER 10 PORT B) can be programmed to point to any of the 32 starting addresses, including 13 routines

designated specifically as host commands and located at locations P:$0024–P:$003C. The default value set in the host command vector register during a reset is $0024.

(a) DSP56000/DSP56001 Fast Interrupt

(b) DSP56000/DSP56001 Long Interrupt

IMPLICIT RETURN
FROM INTERRUPT
RECOGNIZED

MAIN
PROGRAM

MAIN
PROGRAM

$0100 —

$0101

$0104

$0105

$0106

MACR

REP

MAC

—

$0102

$0103

MOVE

MAC

INTERRUPT
RECOGNIZED

IMPLICIT RETURN
FROM INTERRUPT

SSI RECEIVE DATA

FAST INTERRUPT SERVICE ROUTINE

$000C

$000D

MOVEP

XXXXXX

INTERRUPT
RECOGNIZED

JSR INSTRUCTION
FORMS LONG
INTERRUPT SERVICE

$0100 —

$0101

$000E

$000F

$0104

$0105

$0106

MACR

JSR

$0300

REP

MAC

—

$0102

$0103

MOVE

MAC

SSI RECEIVE DATA
WITH EXCEPTION STATUS

LONG INTERRUPT SERVICE ROUTINE

$0300

$0301

—

DO

$0303

$0304

MOVE

RTI

Figure 6-3 Fast and Long Interrupt Examples
MOTOROLA
DSP56000/DSP56001 USER’S MANUAL 6 - 5

6.2.4 Instruction Pipeline
The program control unit implements a three-level pipelined architecture in which concur-
rent instruction fetch, decode, and execution occur. The fact that the pipelined operation
remains essentially hidden from the user makes programming straightforward. The pipe-
line is illustrated in Figure 6-4. The first instruction, I1, should be interpreted as follows:
multiply the contents of X0 by the contents of Y0, add the product to the contents already
in accumulator A, round the result to the “nearest even,” store the result back in accumu-
lator A, move the contents in X data memory (pointed to by R0) into X0; postincrement
R0; move the contents in Y data memory (pointed to by R4) into Y1; postincrement R4.
The second instruction, I2, should be interpreted as follows: clear accumulator A; move
the contents in X0 into the location in X data memory pointed to by R0; postincrement R0;
before the clear operation, move the contents in accumulator A into the location in Y data
memory pointed to by R4; postdecrement R4. The third instruction, I3, is the same as I1,
except a rounding operation is not performed. The operations of each of the execution
units and all initial conditions necessary to follow the execution of the instruction sequence
6 - 6 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

are depicted in Figure 6-4.

6.3 CLOCK OSCILLATOR
The DSP56000/DSP56001 uses a four-phase clock for instruction execution; therefore,
the clock runs at twice the instruction execution rate. The clock can be provided by an in-
ternal oscillator (see Figure 6-1) by connecting an external crystal between XTAL and
EXTAL or by an external oscillator connected to EXTAL.

6.4 PROGRAMMING MODEL
The program control unit features LA and LC registers dedicated to supporting the hard-
ware DO loop instruction in addition to the standard program flow-control resources, such
as a PC, complete SR, and SS. With the exception of the PC, all registers are read/write
to facilitate system debugging. Figure 6-5 shows the program control unit programming
model with the six registers and SS. The following paragraphs give a detailed description
of each register.

6.4.1 Program Counter
This 16-bit register contains the address of the next location to be fetched from program
memory space. The PC can point to instructions, data operands, or addresses of oper-
ands. References to this register are always inherent and are implied by most instructions.

EXAMPLE: PROGRAM SEGMENT
11 MACR X0,Y1,A X:(R0)+,X0 Y:(R4)+,Y1
12 CLR A X0,X:(R0)+ A,Y:(R4)-
13 MAC X0,Y1,A X:(R0)+,X0 Y:(R4)+,Y1

INSTRUCTION
FETCH
LOGIC

INSTRUCTION
DECODE

LOGIC

INSTRUCTION
EXECUTION

LOGIC

INSTRUCTION FETCH
INSTRUCTION DECODE

INSTRUCTION EXECUTION

11 12
11

13
12
11

14
13
12

15
14
13

PARALLEL
OPERATIONS

INITIAL
CONDITIONS

ADDRESS
UPDATE
(AGU)

R0=$0005
R4=$0008

R0=5+1
R4=8+1

R0=6+1
R4=9–1

R0=7+1
R4=8+1

INSTRUCTION
EXECUTION

(DATA ALU)

A:
A2=$00
A1=$000066
A0=$000000

X0=$400000
Y1=$000077

A:
A2=$00
A1=$0000A2
A0=$000000

X0=$000005
Y1=$000008

A:
A2=$00
A1=$000000
A0=$000000

X0=$000005
Y1=$000008

A:
A2=$00
A1=$000000
A0=$000050

X0=$000007
Y1=$000008

X MEMORY
AT ADDRESS

$0005
$0006
$0007

DATA

$000005
$000006
$000007

$000005
$000006
$000007

$000005
$000005
$000007

$000005
$000005
$000007

Y MEMORY
AT ADDRESS

$0008
$0009

DATA

$000008
$000009

$000008
$000009

$000008
$0000A2

$000008
$0000A2

Figure 6-4 Three-Stage Pipeline
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 6 - 7

This special-purpose address register is stacked when program looping is initialized,
when a JSR is performed, or when interrupts occur (except for no-overhead fast
interrupts).

6.4.2 Status Register

The 16-bit SR consists of a mode register (MR) in the high-order eight bits and a condition
code register (CCR) in the low-order eight bits. The SR is stacked when program looping
is initialized, when a JSR is performed, or when interrupts occur, (except for no-overhead
fast interrupts). The SR format is shown in Figure 6-6.

The MR is a special-purpose control register defining the current system state of the pro-
cessor. The MR bits are affected by processor reset, exception processing, the DO, end
current DO loop (ENDDO), return from interrupt (RTI), and SWI instructions and by in-
structions that directly reference the MR register =m OR immediate to control register
(ORI) and AND immediate to control register (ANDI). During processor reset, the interrupt
mask bits of the MR will be set; the scaling mode bits, loop flag, and trace bit will be
cleared.

The CCR is a special-purpose control register that defines the current user state of the
processor. The CCR bits are affected by data arithmetic logic unit (ALU) operations, par-
allel move operations, and by instructions that directly reference the CCR (ORI and
ANDI). The CCR bits are not affected by parallel move operations unless data limiting oc-
curs when reading the A or B accumulators. During processor reset, all CCR bits are

Figure 6-5 Program Control Unit Programming Model

23 6 5 0

23 1615 0

PROGRAM CONTROL UNIT

23 1615 0

23 1615 0

*
23 1615 8 7 0

*
23 8 7 6 5 3 2 1 0

*

PROGRAM
COUNTER (PC)

31 SSH 16 15 SSL 0

1

15

SYSTEM STACK

STATUS
REGISTER (SR)

OPERATING MODE
REGISTER (OMR)

MR CCR MADEMBEA SD *

LOOP ADDRESS
REGISTER (LA)

LOOP COUNTER (LC)

STACK POINTER (SP)

*

*

*

* READ AS ZERO, SHOULD BE WRITTEN
WITH ZERO FOR FUTURE COMPATIBILITY
6 - 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

cleared.

6.4.2.1 Carry (Bit 0)
The carry (C) bit is set if a carry is generated out of the MSB of the result in an addition.
This bit is also set if a borrow is generated in a subtraction. The carry or borrow is gener-
ated from bit 55 of the result. The carry bit is also affected by bit manipulation, rotate, and
shift instructions. Otherwise, this bit is cleared.

6.4.2.2 Overflow (Bit 1)
The overflow (V) bit is set if an arithmetic overflow occurs in the 56-bit result. This bit indi-
cates that the result cannot be represented in the accumulator register; thus, the register
has overflowed. Otherwise, this bit is cleared.

6.4.2.3 Zero (Bit 2)
The zero (Z) bit is set if the result equals zero; otherwise, this bit is cleared.

6.4.2.4 Negative (Bit 3)
The negative (N) bit is set if the MSB (bit 55) of the result is set; otherwise, this bit is
cleared.

6.4.2.5 Unnormalized (Bit 4)
The unnormalized (U) bit is set if the two MSBs of the most significant product (MSP)
portion of the result are identical. Otherwise, this bit is cleared. The MSP portion of the A
or B accumulators, which is defined by the scaling mode and the U bit, is computed as

* Written as don’t care; read as zero

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR CCR

* * *LF T S1 S0 I1 I0 L E U N Z V C

Figure 6-6 Status Register Format

CARRY
OVERFLOW

ZERO
NEGATIVE

UNNORMALIZED

EXTENSION
LIMIT
RESERVED
INTERRUPT MASK

SCALING MODE

RESERVED

TRACE MODE
RESERVED

LOOP FLAG
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 6 - 9

follows:

6.4.2.6 Extension (Bit 5)

The extension (E) bit is cleared if all the bits of the integer portion of the 56-bit result are
all ones or all zeros; otherwise, this bit is set. The integer portion, defined by the scaling
mode and the E bit, is computed as follows:

If the E bit is cleared, then the low-order fraction portion contains all the significant bits; the high-order integer portion is just sign extension. In this case, the accumulator extension register can be ignored. If the E bit is set, it indicates that the accumulator extension

register is in use.

6.4.2.7 Limit (Bit 6)

The limit (L) bit is set if the overflow bit is set. The L bit is also set if the data shifter/limiter circuits perform a limiting operation; otherwise, it is not affected. The L bit is cleared only by a processor reset or by an instruction that specifically clears it, which allows the L bit

to be used as a latching overflow bit (i.e., a “sticky” bit). L is affected by data movement operations that read the A or B accumulator registers.

6.4.2.8 Interrupt Masks (Bits 8 and 9)

The interrupt mask bits, I1 and I0, reflect the current IPL of the processor and indicate the IPL needed for an interrupt source to interrupt the processor. The current IPL of the processor can be changed under software control. The interrupt mask bits are set during

hardware reset but not during software reset.

6.4.2.9 Scaling Mode (Bits 10 and 11)

The scaling mode bits, S1 and S0, specify the scaling to be performed in the data ALU
shifter/limiter and the rounding position in the data ALU multiply-accumulator (MAC). The

S1 S0 Scaling Mode U Bit Computation

0 0 No Scaling U = (Bit 47 ⊕ Bit 46)

0 1 Scale Down U = (Bit 48 ⊕ Bit 47)

1 0 Scale Up U = (Bit 46 ⊕ Bit 45)

S1 S0 Scaling Mode Integer Portion

0 0 No Scaling Bits 55,54........48,47

0 1 Scale Down Bits 55,54........49,48

1 0 Scale Up Bits 55,54........47,46

I1 I0 Exceptions Permitted Exceptions Masked

0 0 IPL 0,1,2,3 None

0 1 IPL 1,2,3 IPL 0

1 0 IPL 2,3 IPL 0,1

1 1 IPL 3 IPL 0,1,2
6 - 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

scaling modes are shown in the following table:

The shifter/limiter scaling mode affects data read from the A or B accumulator registers out to the XDB and YDB. Different scaling modes can be used with the same program code to allow dynamic scaling. One application of dynamic scaling is to facilitate block floating-

point arithmetic. The scaling mode also affects the MAC rounding position to maintain proper rounding when different portions of the accumulator registers are read out to the XDB and YDB. The scaling mode bits, which are cleared at the start of a long interrupt service

routine, are also cleared during a processor reset.

6.4.2.10

Trace Mode (Bit 13)

The trace mode (T) bit specifies the tracing function of the DSP. If the T bit is set at the beginning of any instruction execution, a trace exception will be generated after the instruction execution is completed. If the T bit is cleared, tracing is disabled and instruction exe-

cution proceeds normally. If a long interrupt is executed during a trace exception, the SR having the trace bit set will be stacked, and the trace bit in the SR is cleared (see

SECTION 8 PROCESSING STATES

 for a complete description of a long interrupt operation).

The T bit is also cleared during processor reset.

6.4.2.11

Reserved Status (Bits 7, 12, 14)

These bits, which are reserved for future expansion, will read as zero during DSP read operations.

6.4.2.12

Loop Flag (Bit 15)

The loop flag (LF) bit, set when a program loop is in progress, enables the detection of the end of
a program loop. The LF is the only SR bit that is restored when terminating a program loop.
Stacking and restoring the LF when initiating and exiting a program loop, respectively, allow the
nesting of program loops. At the start of a long interrupt service routine, the SR (including the LF)
is pushed on the SS and the

S1 S0
Rounding

Bit
Scaling Mode

0 0 23 No Scaling

0 1 24 Scale down (1-Bit Arithmetic Right Shift)

1 0 22 Scale Up (1-Bit Arithmetic Left Shift)

1 1 — Reserved for Future Expansion
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 6 - 11

SR LF is cleared. When returning from the long interrupt with an RTI instruction, the SS is
pulled and the LF is restored. During a processor reset, the LF is cleared.

6.4.3 Operating Mode Register
The OMR is a 24-bit register (only five bits are defined) that sets the current operating mode
of the processor (i.e., the memory maps for program and data memories as well as the start-
up procedure). The OMR bits are only affected by processor reset and by instructions directly
referencing the OMR: ANDI, ORI, and MOVEC. During processor reset, the chip operating
mode bits, MB and MA, will be loaded from the external mode select pins B and A, respective-
ly. The data ROM enable (DE) bit will be cleared, disabling the X and Y on-chip lookup-table
ROMs. The OMR format is shown in Figure 6-7. Table 6-5 summarizes the DSP56000 oper-
ating modes and Table 6-3 summarizes the DSP56001 operating modes and their respective
effects on the memory map. Table 6-4 shows how the DE bit in the OMR affects the X and Y
memory maps.

EA SD DE MB MA

23 8 7 6 5 4 3 2 1 0

*

OPERATING MODE

DATA ROM ENABLE

RESERVED

STOP DELAY

EXTERNAL MEMORY ACCESS

RESERVED

* * *

Figure 6-7 OMR Format

Operating
Mode

MB MA
DSP56000 Program Memory Map

Internal ROM External Reset

0 0 0 $0000 — $0EFF $0200 — $FFFF Internal — $0000

1 0 1 Mode 1 is not a valid mode for the DSP56000. Attempting to put
the DSP56000 in mode 1 will put it into mode 0.

2 1 0 $0000 — $0EFF $0FFF — $FFFF External — $E000

3 1 1 — $0000 — $FFFF External — $0000

Table 6-5 DSP56000/DSP56001 Operating Mode Summary
6 - 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

6.4.3.1 Chip Operating Mode (Bits 0 and 1)
The chip operating mode bits, MB and MA, indicate the bus expansion mode of the
DSP56000/DSP56001. On processor reset, these bits are loaded from the external
mode select pins, MODB and MODA, respectively. After the DSP leaves the reset state,
MB and MA can be changed under program control. The “secure DSP56000” is an
exception. The external mode select pins, MODB and MODA, are disabled on the
“secure DSP56000” and are only used for interrupts as IRQA and IRQB. The operating
modes are shown in the following table:

6.4.3.2 Data ROM Enable (Bit 2)
The DE bit enables the two, on-chip, 256;ts24 data ROMs located at addresses $0100–
$01FF in the X and Y memory spaces. When DE is cleared, the $0100–$01FF address
space is part of the external X and Y data spaces, and the on-chip data ROMs are dis-

DE
Data Memory Map

Y Memory X Memory

Table 6-4 DSP56000/56001 DE Memory Control

MB MA Chip Operating Mode

0 0 Single-Chip Nonexpanded

0 1 Special Bootstrap (DSP56001 Only)

1 0 Normal Expanded

1 1 Development Expanded
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 6 - 13

abled.

6.4.3.3 Stop Delay (Bit 6)
The STOP instruction causes the DSP56000/DSP56001 to indefinitely suspend process-
ing in the middle of the STOP instruction (see SECTION 8 PROCESSING STATES).
When exiting the stop state, if the stop delay bit is zero, a 64K clock cycle delay (i.e.,
131,072 T states) is selected before continuing the stop instruction cycle. However, if the
stop delay bit is one, the delay before continuing the instruction cycle is 16 T states. The
long delay allows a clock stabilization period for the internal clock to begin oscillating and
to stabilize. When a stable external clock is used, the shorter delay allows faster start-up
of the DSP.

6.4.3.4 External Memory Access (Bit 7)
The external memory access mode bit selects the function of two of the port A control
pins. The DSP56000/DSP56001 comes out of reset with these pins defined as bus
request/bus grant (BR/BG) =m i.e., bit 7 is cleared. When bit 7 is clear, wait states are
only introduced into the port A timing by using the bus control register (BCR). Additional
information on the BCR can be found in CHAPTER 10 PORT B. When bit 7 is set under
program control (using ANDI, ORI, or MOVEC), these pins are defined as bus strobe
(BS) and wait (WT). In this mode, wait states are introduced into port A timing by using
either the BCR or asserting WT. BR and BG allow the DSP56000/DSP56001 to give the
external bus to an external device, thus preventing bus conflicts. BS and WT allow the
DSP56000/DSP56001 to work with asynchronous devices (bus arbitrators) on port A.

Operating
 Mode

MB MA
DSP56001 Program Memory Map

Internal RAM External Reset

0 0 0 $0000 — $01FF $0200 — $FFFF Internal — $0000

1 0 1 Special bootstrap mode; after program RAM loading, mode 2 is
automatically selected but PC = $0000

2 1 0 $0000 — $01FF $0200 — $FFFF External — $E000

3 1 1 — $0000 — $FFFF External — $0000

Table 6-6 DSP56001 Operating Mode Summary
6 - 14 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

The definition of the control pins is summarized in the following table:

6.4.3.5 Reserved OMR Bits (Bits 3–5 and 8–23)
These OMR bits, reserved for future expansion, will read as zero during DSP read oper-
ations.

6.4.4 Loop Address Register
The contents of the LA register indicate the location of the last instruction word in a pro-
gram loop. This register is stacked into the SSH by a DO instruction and is unstacked by
end-of-loop processing or by execution of an ENDDO instruction. When the instruction at
the address contained in this register is fetched, the contents of the LC register are
checked. If the contents are not one, the LC is decremented, and the next instruction is
taken from the address at the top of the SS; otherwise, the PC is incremented, the loop
flag is restored (pulled from the SS), the SS is purged, the LA and LC registers are pulled
from the SS and restored, and instruction execution continues normally. The LA register,
a read/write register, is written by a DO instruction and read by the SS when stacking the
register. Since the LC register can be accessed under program control, the number of
times a loop has been executed can be determined.

6.4.5 Loop Counter Register
The LC register is a special 16-bit counter used to specify the number of times a hardware
program loop is to be repeated. This register is stacked into the SSL by a DO instruction
and unstacked by end-of-loop processing or by execution of an ENDDO instruction. When
the end of a hardware program loop is reached, the contents of the LC register are tested
for one. If the LC is one, the program loop is terminated, and the LC register is loaded with
the previous LC contents stored on the SS. If LC is not one, it is decremented and the
program loop is repeated. The LC can be read under program control, which allows the
number of times a loop will be executed to be monitored/changed dynamically. The LC is
also used in the REP instruction.

6.4.6 System Stack
The SS is a separate 15x32-bit internal memory divided into two banks: SSH and SSL,
each 16 bits wide. The SSH stores the PC contents, and the SSL stores the SR contents
for subroutine calls and long interrupts. The SS will also store the LA and LC registers in
addition to the PC and SR registers for program looping. The SS is in stack memory

OMR Bit 7 BR Pin (Input) BG Pin (Output)

0 (Default) Bus Request (BR) Bus Grant (BG)

1 Wait (WT) Bus Strobe (BS)
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 6 - 15

space; its address is always inherent and implied by the current instruction.

The contents of the PC and SR register are pushed on the top location of the SS when a
subroutine call or long interrupt occurs. When a return from subroutine (RTS) occurs, the
contents of the top location in the SS are pulled and put in the PC; the SR is not affected.
When an RTI occurs, the contents of the top location in the SS are pulled to both the PC
and SR.

The SS is also used to implement no-overhead nested hardware DO loops. When the DO
instruction is executed, the LA:LC are pushed on the SS, then the PC:SR are pushed on
the SS. Since each SS location can be addressed as separate 16-bit registers (SSH and
SSL), software stacks can be created for unlimited nesting.

Up to 15 long interrupts, seven DO loops, 15 JSRs, or combinations of these can be ac-
commodated by the SS. When the SS limit is exceeded, a nonmaskable stack error
interrupt occurs, and the PC is pushed to SS location zero, which is not implemented in
hardware. The PC will be lost, and there will be no SP from the stack interrupt routine to
the program that was executing when the error occurred.

6.4.7 Stack Pointer Register
The 6-bit SP register indicates the location of the top of the SS and the status of the SS
(underflow, empty, full, and overflow). The SP register is referenced implicitly by some in-
structions (DO, REP, JSR, RTI, etc.) or directly by the MOVEC instruction. The SP
register format, shown in Figure 6-8, is described in the following paragraphs. The SP reg-
ister is implemented as a 6-bit counter that addresses (selects)a 15-location stack with its
four LSBs. The possible SP values, shown in Figure 6-9, are described in the following
paragraphs

6.4.7.1 Stack Pointer (Bits 0–3)
The SP points to the last used location on the SS. Immediately after hardware reset,

Figure 6-8 SP Register Format

5 4 3 2 1 0

STACK POINTER

STACK ERROR FLAG

UNDERFLOW FLAG

UF SE P3 P2 P1 P0
6 - 16 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

these bits are cleared (SP=0), indicating that the SS is empty.

Data is pushed onto the SS by incrementing the SP, then writing data to the location point-
ed to by the SP. An item is pulled off the stack by copying it from the location pointed to
by the SP and then by decrementing SP.

6.4.7.2 Stack Error Flag (Bit 4)
The stack error flag indicates that a stack error has occurred, and the transition of the
stack error flag from zero to one causes a priority level-3 stack error exception (see Sec-
tion 6.4.7.1 for additional information).

When the stack is completely full, the SP reads 001111, and any operation that pushes
data onto the stack will cause a stack error exception to occur. The SR will read 010000
(or 010001 if an implied double push occurs).

Any implied pull operation with SP equal to zero will cause a stack error exception, and
the SP will read 111111 (or 111110 if an implied double pull occurs). The stack error bit
is set as shown in Figure 6-9.

The stack error flag is a “sticky bit” which, once set, remains set until cleared by the user.
There is a sequence of instructions which can cause a stack overflow which, without the
sticky bit, would not be detected because the stack pointer is decremented before the
stack error interrupt is taken. The sticky bit keeps the stack error bit set until cleared by
the user by writing a zero to SP bit 4. It also latches the overflow/underflow bit so that it
cannot be changed by stack pointer increments or decrements as long as the stack error
is set. The overflow/underflow bit remains latched until the first move to SP is executed.

Note: When SP is zero (stack empty), instructions that read the stack without SP post-
decrement and instructions that write to the stack without SP preincrement do not cause

Figure 6-9 SP Register Values

UF SE P3 P2 P1 P0
1 1 1 1 1 0 STACK UNDERFLOW CONDITION AFTER DOUBLE PULL

1 1 1 1 1 1 STACK UNDERFLOW CONDITION

0 0 0 0 0 0 STACK EMPTY (RESET); PULL CAUSES UNDERFLOW

0 0 0 0 0 1 STACK LOCATION 1

• • •
• • •
• • •

0 0 1 1 1 0 STACK LOCATION 14

0 0 1 1 1 1 STACK LOCATION 15; PUSH CAUSES OVERFLOW

0 1 0 0 0 0 STACK OVERFLOW CONDITION

0 1 0 0 0 1 STACK OVERFLOW CONDITION AFTER DOUBLE PUSH
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 6 - 17

a stack error exception (i.e., 1) DO SSL,xxxx 2) REP SSL 3) MOVEC or move peripheral
data (MOVEP) when SSL is specified as a source or destination).

6.4.7.3 Underflow Flag (Bit 5)
The underflow flag is set when a stack underflow occurs. The stack underflow flag is a
“sticky bit” when the stack error flag is set i.e., when the stack error flag is set, the under-
flow flag will not change state. The combination of “underflow=1” and “stack error=0” is
an illegal combination and will not occur unless it is forced by the user. If this condition is
forced by the user, the hardware will correct itself based on the result of the next stack
operation. Also see the description for the stack error flag (Section 6.4.7.2) for additional
information.

6.4.7.4 Reserved Stack Pointer Registration (Bits 6–23)
Any unimplemented SP register bits are reserved for future expansion and will read as
zero during DSP56000/DSP56001 read operations.

6.4.8 DSP56000/DSP56001 Programming Model Summary
The complete programming model for the DSP56000/DSP56001 central processor is
shown in Figure 6-10. SECTION 9 PORT A, SECTION 10 PORT B, and SECTION 11
PORT C describe in detail the programming model for the peripherals and external mem-
ory control (number of wait states).
6 - 18 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

23 6 5 0

23 1615 0

55 B 0

55 A 0

47 Y 0

23 1615 0

*

*
*

*
*
*

*

R7

R6

R5

R4

R3

R1

R2

R0

23 1615 0

*

*
*
*

*
*
*

*

N7

N6

N5

N4

N3

N1

N2

N0

23 1615 0

*

*
*
*

*
*
*

*

M7

M6

M5

M4

M3

M1

M2

M0

UPPER FILE

LOWER FILE

MODIFIER
REGISTERS

OFFSET
REGISTERS

POINTER
REGISTERS

ADDRESS GENERATION UNIT

PROGRAM CONTROL UNIT

23 1615 0

23 1615 0

*
23 1615 8 7 0

*
23 8 7 6 5 3 2 1 0

*

PROGRAM
COUNTER (PC)

31 SSH 16 15 SSL 0

1

15

SYSTEM STACK

STATUS
REGISTER (SR)

OPERATING MODE
REGISTER (OMR)

MR CCR MADEMBEA SD *

LOOP ADDRESS
REGISTER (LA)

LOOP COUNTER (LC)

STACK POINTER (SP)

47 X 0

X1 X0

23 0 23 0

Y1 Y0

INPUT REGISTERS

ACCUMULATOR REGISTERS

23 0

B1 B0

23 8 7 0

#

23 0

B2

23 0

A1 A0

23 8 7 0

#

23 0

A2

DATA ARITHMETIC LOGIC UNIT

*

23 0 23 0

*

*

*

* READ AS ZERO, SHOULD BE WRITTEN
WITH ZERO FOR FUTURE COMPATIBILITY

READ AS SIGN EXTENSION BITS,
WRITTEN AS DON’T CARE

Figure 6-10 DSP56000/DSP56001 Central Processor Programming Model
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 6 - 19

6 - 20 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SECTION 7
INSTRUCTION SET INTRODUCTION

The programming model indicates that the DSP56000/DSP56001 central processor
architecture can be viewed as three functional units operating in parallel: data arithmetic
logic unit (ALU), address generation unit (AGU), and program control unit (see Figure 7-
1). The goal of the instruction set is to provide the capability to keep each of these units
busy each instruction cycle, achieving maximum speed and minimum program size.

This section introduces the DSP56000/DSP56001 instruction set and instruction format.
The complete range of instruction capabilities combined with the flexible addressing
modes used in this processor provide a very powerful assembly language for implement-
ing digital signal processing (DSP) algorithms. The instruction set has been designed to
allow efficient coding for DSP high-level language compilers such as the C compiler. Exe-
cution time is minimized by the hardware looping capabilities, use of an instruction
pipeline, and parallel moves.

7.1 SYNTAX
The instruction syntax is organized into four columns: opcode, operands, and two parallel-
move fields. The assembly-language source code for a typical one-word instruction is
shown in the following illustration. Because of the multiple bus structure and the parallel-
ism of the DSP, up to three data transfers can be specified in the instruction word – one
on the X data bus (XDB), one on the Y data bus (YDB), and one within the data ALU.
These transfers are explicitly specified. A fourth data transfer is implied and occurs in the
program control unit (instruction word prefetch, program looping control, etc.). Each data
transfer involves a source and a destination.

Opcode Operands XDB YDB

MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0

The opcode column indicates the data ALU, AGU, or program control unit operation to be
performed and must always be included in the source code. The operands column spec-
ifies the operands to be used by the opcode. The XDB and YDB columns specify optional
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7 - 1

data transfers over the XDB and/or YDB and the associated addressing modes. The

23 6 5 0

23 1615 0

55 B 0

55 A 0

47 Y 0

23 1615 0

*

*
*

*
*
*

*

R7

R6

R5

R4

R3

R1

R2

R0

23 1615 0

*

*
*
*

*
*
*

*

N7

N6

N5

N4

N3

N1

N2

N0

23 1615 0

*

*
*
*

*
*
*

*

M7

M6

M5

M4

M3

M1

M2

M0

UPPER FILE

LOWER FILE

MODIFIER
REGISTERS

OFFSET
REGISTERS

POINTER
REGISTERS

ADDRESS GENERATION UNIT

PROGRAM CONTROL UNIT

23 1615 0

23 1615 0

*
23 1615 8 7 0

*
23 8 7 6 5 3 2 1 0

*

PROGRAM
COUNTER (PC)

31 SSH 16 15 SSL 0

1

15

SYSTEM STACK

STATUS
REGISTER (SR)

OPERATING MODE
REGISTER (OMR)

MR CCR MADEMBEA SD *

LOOP ADDRESS
REGISTER (LA)

LOOP COUNTER (LC)

STACK POINTER (SP)

47 X 0

X1 X0

23 0 23 0

Y1 Y0

INPUT REGISTERS

ACCUMULATOR REGISTERS

23 0

B1 B0

23 8 7 0

#

23 0

B2

23 0

A1 A0

23 8 7 0

#

23 0

A2

DATA ARITHMETIC LOGIC UNIT

*

23 0 23 0

*

*

*

* READ AS ZERO, SHOULD BE WRITTEN
WITH ZERO FOR FUTURE COMPATIBILITY

READ AS SIGN EXTENSION BITS,
WRITTEN AS DON’T CARE

Figure 7-1 DSP56000/DSP56001 Central Processor Programming Model
7 - 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

address space qualifiers (X:, Y:, and L:) indicate which address space is being referenced.
Parallel moves are allowed in 30 of the 62 instructions. Additional information is presented
in APPENDIX A INSTRUCTION SET DETAILS.

7.2 INSTRUCTION FORMATS
The DSP56000/DSP56001 instructions consist of one or two 24-bit words – an operation
word and an optional effective address extension word. The general format of the opera-
tion word is shown in Figure 7-2. Most instructions specify data movement on the XDB,
YDB, and data ALU operations in the same operation word. The DSP is designed to per-
form each of these operations in parallel.

The data bus movement field provides the operand reference type, which selects the type
of memory or register reference to be made, the direction of transfer, and the effective
address(es) for data movement on the XDB and YDB. This field may require additional
information to fully specify the operand for certain addressing modes. An effective
address extension word following the operation word is used to provide immediate data
or an absolute address if required. Examples of operations that may include the extension
word include the move operations X:, X:R, Y:, R:Y, and L:. Additional information is pre-
sented in APPENDIX A INSTRUCTION SET DETAILS.

The opcode field of the operation word specifies the data ALU operation or the program
control unit operation to be performed and any additional operands required by the
instruction. Only those data ALU and program control unit operations that can accompany
data bus movement will be specified in the opcode field of the instruction. Other data ALU,
program control unit operations, and all address ALU operations will be specified in an
instruction word with a different format. These formats include operation words containing
short immediate data or short absolute addresses.

Encoding the 30 opcodes that allow up to two parallel data moves into 24 bits has used
all of the available bits and precluded adding more instructions or instruction variations.
The available operation codes form a very versatile microcontroller unit (MCU) style
instruction set, providing highly parallel operations in most programming situations.

Figure 7-2 General Format of an Instruction Operation Word

 23 8 7 0

X X X X X X X X
DATA BUS MOVEMENT

OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7 - 3

7.2.1 Operand Sizes
Operand sizes are defined as follows: a byte is 8 bits long, a short word is 16 bits long, a
word is 24 bits long, a long word is 48 bits long, and an accumulator is 56 bits long (see
Figure 7-3). The operand size for each instruction is either explicitly encoded in the
instruction or implicitly defined by the instruction operation. Implicit instructions support
some subset of these five sizes.

7.2.2 Data Organization in Registers
The ten data ALU registers support 8- or 24-bit data operands. Instructions also support
48- or 56-bit data operands by concatenating groups of specific data ALU registers. The
eight address registers in the AGU support 16-bit address or data operands. The eight
AGU offset registers support 16-bit offsets or may support 16-bit address or data oper-
ands. The eight AGU modifier registers support 16-bit modifiers or may support 16-bit
address or data operands. The program counter (PC) supports 16-bit address operands.
The status register (SR) and operating mode register (OMR) support 8- or 16-bit data
operands. Both the loop counter (LC) and loop address (LA) registers support 16-bit
address operands.

7.2.2.1 Data ALU Registers
The eight main data registers are 24 bits wide. Word operands occupy one register; long-
word operands occupy two concatenated registers. The least significant bit (LSB) is the
right-most bit (bit 0); whereas, the most significant bit (MSB) is the left-most bit (bit 23 for
word operands and bit 47 for long-word operands). The two accumulator extension regis-
ters are eight bits wide. When an accumulator extension register is used as a source
operand, it occupies the low-order portion (bits 0–7) of the word; the high-order portion
(bits 8–23) is sign extended (see Figure 7-4). When used as a destination operand, this
register receives the low-order portion of the word, and the high-order portion is not used.
Accumulator operands occupy an entire group of three registers (i.e., A2:A1:A0 or
B2:B1:B0). The LSB is the right-most bit (bit 0), and the MSB is the left-most bit (bit 55).

Figure 7-3 Operand Sizes

55 0

47 0

23 0

7 0

15 0

ACCUMULATOR

LONG WORD

WORD

SHORT WORD

BYTE
7 - 4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

7.2.2.2 AGU Registers
The 24 AGU registers, which are 16 bits wide, may be accessed as word operands for
address, address modifier, and data storage. When used as a source operand, these reg-
isters occupy the low-order portion of the 24-bit word; the high-order portion is read as
zeros (see Figure 7-5). When used as a destination operand, these registers receive the
low-order portion of the word; the high-order portion is not used. The notation Rn is used
to designate one of the eight address registers, R0–R7; the notation Nn is used to desig-
nate one of the eight address offset registers, N0–N7; and the notation Mn is used to
designate one of the eight address modifier registers, M0–M7.

7.2.2.3 Program Control Registers
The 8-bit OMR may be accessed as a word operand; however, not all eight bits are
defined. In general, undefined bits are written as ‘‘don’t care’’ and read as zero. The 16-
bit SR has the system mode register (MR) occupying the high-order eight bits and the user
condition code register (CCR) occupying the low-order eight bits. The SR may be
accessed as a word operand. The MR and CCR may be accessed individually as word
operands (see Figure 7-6(b)). The LC, LA, system stack high (SSH), and system stack
low (SSL) registers are 16 bits wide and may be accessed as word operands (see Figure
7-6(a)). When used as a source operand, these registers occupy the low-order portion of
the 24-bit word; the high-order portion is zero. When used as a destination operand, they
receive the low-order portion of the 24-bit word; the high-order portion is not used. The
system stack pointer (SP) is a 6-bit register that may be accessed as a word operand

.The PC, a special 16-bit-wide program control register, is always referenced implicitly as

Figure 7-4 Reading and Writing the ALU Extension Registers

23 8 7 0

 23 8 7 0

23 8 7 0

BUS

NOT USED

LSB OF
WORD

A2

BUS

REGISTER A2, B2 USED
AS A DESTINATION

REGISTER A2, B2
USED AS A SOURCE

SIGN EXTENSION
OF A2

CONTENTS
OF A2

NOT USED REGISTER A2, B2
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7 - 5

a short-word operand.

7.2.3 Data Organization in Memory
The 24-bit program memory can store both 24-bit instruction words and instruction exten-
sion words. The 32-bit system stack (SS) can store the concatenated PC and SR registers
(PC:SR) for subroutine calls, interrupts, and program looping. The SS also supports the
concatenated LA and LC registers (LA:LC) for program looping. The 24-bit-wide X and Y
memories can store word, short-word, and byte operands. Short-word and byte operands,
which usually occupy the low-order portion of the X or Y memory word, are either zero
extended or sign extended on the XDB or YDB.

The symbols used to abbreviate the various operands and operations in each instruction
and their respective meanings are shown in the following list:

Data ALU
Xn Input Registers X1, X0 (24 Bits)
Yn Input Registers Y1, Y0 (24 Bits)
An Accumulator Registers A2 (8 Bits), A1, A0 (24 Bits)
Bn Accumulator Registers B2 (8 Bits), B1, B0 (24 Bits)
X Input Register X (X1:X0, 48 Bits)
Y Input Register Y (Y1:Y0, 48 Bits)
A Accumulator A (A2:A1:A0, 56 Bits)*

*Data Move Operations: when specified as a source operand, shifting and limiting
are performed. When specified as a destination operand, sign extension and zero
filling are performed.

Figure 7-5 Reading and Writing the Address ALU Registers

23 0

BUS

NOT USED

 23 16 15 0
BUS

ADDRESS ALU

ADDRESS ALU REGISTERS
AS A DESTINATION

 AS A SOURCE
ADDRESS ALU REGISTERS

 15 0

ZERO FILL

REGISTERS

LSB OF
WORD
7 - 6 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

B Accumulator B (B2:B1:B0, 56 Bits)*

(b) 8 Bit

(a) 16 Bit

Figure 7-6 Reading and Writing Control Registers

23 8 7 0

23 8 7 0
BUS

NOT USED LSB

A2

BUS

MR, CCR, OMR, AND SP
AS A DESTINATION

 AS A SOURCE
MR, CCR, OMR, AND SP MR, CCR, OMR, AND SP

ZERO FILL

23 16 15 0

23 0
BUS

NOT USED
LSB OF
WORD

BUS

LC, LA, SR, SSH, AND SSL
AS A DESTINATION

 AS A SOURCE
LC, LA, SR, SSH, AND SSL

15 0

ZERO FILL

LC, LA, SR, SSH, AND SSL
MOTOROLA DSP56000/D
SP56001 USER’S MANUAL 7 - 7

AB Accumulators A and B (A1:B1, 48 Bits)*

BA Accumulators B and A (B1:A1, 48 Bits)*

A10 Accumulator A (A1:A0, 48 Bits)
B10 Accumulator B (B1:B0, 48 Bits)

Address ALU
Rn Address Registers R0–R7 (16 Bits)
Nn Address Offset Registers N0–N7 (16 Bits)
Mn Address Modifier Registers M0–M7 (16 Bits)

Program Control Unit
PC Program Counter (16 Bits)
MR Mode Register (8 Bits)
CCR Condition Code Register (8 Bits)
SR Status Register (MR:CCR, 16 Bits)
OMR Operating Mode Register (8 Bits)
LA Hardware Loop Address Register (16 Bits)
LC Hardware Loop Counter (16 Bits)
SP System Stack Pointer (6 Bits)
SS System Stack RAM (15X32 Bits)
SSH Upper 16 Bits of the Contents of the Current Top of Stack
SSL Lower 16 Bits of the Contents of the Current Top of Stack

Addresses
ea Effective Address
 xxxx Absolute Address (16 Bits)
xxx Short Jump Address (12 Bits)
aa Absolute Short Address (6 Bits Zero Extended)
pp I/O Short Address (6 Bits Ones Extended)
< . . . > Contents of the Specified Address
X: X Memory Reference
Y: Y Memory Reference
L: Long Memory Reference – X Concatenated with Y
P: Program Memory Reference

 Miscellaneous
#xx Immediate Short Data (8 Bits)
#xxx Immediate Short Data (12 Bits)
#xxxxxx Immediate Data (24 Bits)
#n Immediate Short Data (5 Bits)
S,Sn Source Operand Register
D,Dn Destination Operand Register
7 - 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

D[n] Bit n of D Affected
r Rounding Constant
I1,I0 Interrupt Priority Level in SR
LF Loop Flag in SR

7.2.4 Operand References
The DSP separates operand references into four classes: program, stack, register, and
memory references. The type of operand reference(s) required for an instruction is spec-
ified by both the opcode field and the data bus movement field of the instruction; however,
all operand reference types may not be used with all instructions. The operand size for
each instruction is either explicitly encoded in the instruction or implicitly defined by the
instruction operation. Implicit instructions support some subset of the five operand sizes.

7.2.4.1 Program References
Program (P) references, which are references to 24-bit-wide program memory space, are
usually instruction reads. Instructions or data operands may be read from or written to pro-
gram memory space using the move program memory (MOVEM) and move peripheral
data (MOVEP) instructions. Depending on the address and the chip operating mode, pro-
gram references may be internal or external memory references.

7.2.4.2 Stack References
Stack (S) references, which are references to a separate32-bit-wide internal memory
space (SS), are used implicitly to store the PC and SR for subroutine calls, interrupts, and
returns. In addition to the PC and SR, the LA and LC registers are stored on the stack
when a program loop is initiated. S references are always implied by the instruction. Data
is written to the stack memory to save the processor state and is read from the stack mem-
ory to restore the processor state. In contrast to S references, references to SSL and SSH
are always explicit.

7.2.4.3 Register References
Register (R) references are references to the data ALU, AGU, and program control unit
registers. Data can be read from one register and written into another register.

7.2.4.4 Memory References
Memory references, which are references to the 24-bit-wide X or Y memory spaces, can
be internal or external memory references, depending on the effective address of the
operand in the data bus movement field of the instruction. Data can be read or written from
any address in either memory space.

7.2.4.4.1 X Memory References
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7 - 9

The operand, which is in X memory space, is a word reference. Data can be transferred
from memory to a register or from a register to memory.

7.2.4.4.2 Y Memory References
The operand, a word reference, is in Y memory space. Data can be transferred from mem-
ory to a register or from a register to memory.

7.2.4.4.3 L Memory References
Long (L) memory space references both X and Y memory spaces with one operand
address. The data operand is a long-word reference developed by concatenating the X
and Y memory spaces (X:Y). The high-order word of the operand is in the X memory; the
low-order word of the operand is in the Y memory. Data can be read from memory to con-
catenated registers X1:X0, A1:A0, etc. or from concatenated registers to memory.

7.2.4.4.4 YX Memory References
XY memory space references both X and Y memory spaces with two operand addresses.
Two independent addresses are used to access two word operands – one word operand
is in X memory space, and one word operand is in Y memory space. Two effective
addresses in the instruction are used to derive two independent operand addresses –
one operand address may reference either X or Y memory space and the other operand
address must reference the other memory space. One of these two effective addresses
specified in the instruction must reference one of the address registers, R0–R3, and the
other effective address must reference one of the address registers, R4–R7. Addressing
modes are restricted to no-update and post-update by +1, –1, and +N addressing modes.
Each effective address provides independent read/write control for its memory space.
Data may be read from memory to a register or from a register to memory.

7.2.5 Addressing Modes
The DSP instruction set contains a full set of operand addressing modes. To minimize
execution time and loop overhead, all address calculations are performed concurrently in
the address ALU.

Addressing modes specify whether the operand(s) is in a register or in memory and pro-
vide the specific address of the operand(s). An effective address in an instruction will
specify an addressing mode, and, for some addressing modes, the effective address will
further specify an address register. In addition, address register indirect modes require
additional address modifier information that is not encoded in the instruction. The address
modifier information is specified in the selected address modifier register(s). All indirect
memory references require one address modifier, and the XY memory reference requires
two address modifiers. The definition of certain instructions implies the use of specific reg-
isters and addressing modes.
7 - 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Some address register indirect modes require an offset and a modifier register for use in
address calculations. These registers are implied by the address register specified in an
effective address in the instruction word. Each offset register (Nn) and each modifier reg-
ister (Mn) is assigned to an address register (Rn) having the same register number (n).
Thus, the assigned register triplets are R0;N0;M0, R1;N1;M1, R2;N2;M2, R3;N3;M3,
R4;N4;M4, R5;N5;M5, R6;N6;M6, and R7;N7;M7. Rn is used as the address register; Nn
is used to specify an optional offset; and Mn is used to specify the type of arithmetic used
to update the Rn.

The addressing modes are grouped into three categories: register direct, address register
indirect, and special. These addressing modes are described in the following paragraphs.
Refer to Table 7-1 for a summary of the addressing modes and allowed operand
references.

7.2.5.1 Register Direct Modes
These effective addressing modes specify that the operand source or destination is one
of the data, control, or address registers in the programming model.

7.2.5.1.1 Data or Control Register Direct
The operand is in one, two, or three data ALU register(s) as specified in a portion of the
data bus movement field in the instruction. Classified as a register reference, this address-
ing mode is also used to specify a control register operand for special instructions such
as OR immediate to control registers (ORI) and AND immediate to control registers
(ANDI).

7.2.5.1.2 Address Register Direct
Classified as a register reference, the operand is in one of the 24 address registers (Rn,
Nn, or Mn) specified by an effective address in the instruction.

NOTE: Due to instruction pipelining, if an address register (Mn, Nn, or Rn) is changed with
a MOVE instruction, the new contents will not be available for use as a pointer until the
second following instruction.

7.2.5.2 ADDRESS REGISTER INDIRECT MODES
The address register indirect mode description is presented in SECTION 5 ADDRESS
GENERATION UNIT AND ADDRESSING MODES.

7.2.5.3 SPECIAL ADDRESSING MODES
The special addressing modes do not use specific registers in specifying an effective
address. These modes specify the operand or the operand address in a field of the
instruction, or they implicitly reference an operand. Figure examples are given for each of
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7 - 11

the special addressing modes discussed in the following paragraphs.

7.2.5.3.1 Immediate Data
Classified as a program reference, this addressing mode requires one word of instruction
extension containing the immediate data. Figure 7-7 shows three examples. Example A
moves immediate data to register A0 without affecting A1 or A2. Examples B and C zero
fill register A0 and sign extend register A2

Figure 7-7 Special Addressing – Immediate Data

F F 8 0 1 2 3 4 0 0 0 0 0 0

0 0 1 2 3 4 5 6 0 0 0 0 0 0

X X X X X X X X 1 2 3 4 5 6

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

EXAMPLE A: IMMEDIATE INTO 24-BIT REGISTER
(MOVE #$123456,A0)

BEFORE EXECUTION AFTER EXECUTION

EXAMPLE B:POSITIVE IMMEDIATE INTO 56-BIT REGISTER
(MOVE #$123456,A)

AFTER EXECUTION

EXAMPLE C: NEGATIVE IMMEDIATE INTO 56-BIT REGISTER
(MOVE #$801234,A)

AFTER EXECUTION

Assembler Syntax: #XXXXXX
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 1

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0
7 - 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

7.2.5.3.2 Absolute Address
This addressing mode requires one word of instruction extension containing the absolute
address. Figure 7-8 shows that MOVE Y:$5432,B0 copies the contents of address $5432
into B0 without changing memory location $5432, register B1, or register B2. This
addressing mode is classified as both a memory reference and program reference. The
16-bit absolute address is stored in the 16 LSBs of the extension word; the eight MSBs
are zero filled.

7.2.5.3.3 Immediate Short
The 8- or 12-bit operand, which is in the instruction operation word, is classified as a pro-
gram reference. The immediate data is interpreted as an unsigned integer (low-order
portion) or signed fraction (high-order portion), depending on the destination register. Fig-
ure 7-9 shows the use of immediate short addressing in four examples.

7.2.5.3.4 Short Jump Address
The operand occupies 12 bits in the instruction operation word, which allows addresses
$0000–$0FFF to be accessed (see Figure 7-10). The address is zero extended to 16 bits
when used to address program memory. This addressing mode is classified as a program
reference.

Figure 7-8 Special Addressing – Absolute Addressing

B2 B1 B0

BEFORE EXECUTION

B2 B1 B0

AFTER EXECUTION

EXAMPLE: MOVE Y:$5432,B0

23 Y MEMORY 0

$ 5432 A B C D E F

Assembler Syntax: #XXXXXX
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 1

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0
X X X X X X X X A B C D E F

55 48 47 24 23 0

7 0 23 0 23 0

23 Y MEMORY 0

$ 5432 A B C D E F
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7 - 13

Figure 7-9 Special Addressing – Immediate Short Data

X X 0 0 0 0 F F X X X X X X

0 0 1 F 0 0 0 0 0 0 0 0 0 0

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

EXAMPLE A: IMMEDIATE SHORT INTO A0, A1, A2, B0, B1, B2, Rn, Nn
(MOVE #$FF,A1)

BEFORE EXECUTION AFTER EXECUTION

EXAMPLE B:POSITIVE IMMEDIATE SHORT INTO X0, X1, Y0, Y1, A, B
(MOVE #$1F, Y1)

AFTER EXECUTION

AFTER EXECUTION

Assembler Syntax: #XX
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

Y1 Y0
47 24 23 0

 23 0 23 0

BEFORE EXECUTION

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

 X X X X X X X X X X X X

Y1 Y0
47 24 23 0

 23 0 23 0
 1 F 0 0 0 0 X X X X X X

EXAMPLE C: POSITIVE IMMEDIATE SHORT INTO X, Y, A, B
(MOVE #$1F, A)

EXAMPLE D: NEGATIVE IMMEDIATE INTO 56-BIT REGISTER
(MOVE #$801234,A)

AFTER EXECUTION

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

F F 8 3 0 0 0 0 0 0 0 0 0 0
7 - 14 DSP56000/DSP56001 USER’S MANUAL MOTOROLA
7.2.5.3.5 Absolute Short

The address of the operand occupies six bits in the instruction operation word, allowing
addresses $0000–$003F to be accessed (see Figure 7-11). Classified as both a memory
reference and program reference, the address is zero extended to 16 bits when used to
address an operand or program memory.

7.2.5.3.6 I/O Short
Classified as a memory reference, the I/O short addressing mode is similar to absolute
short addressing. The address of the operand occupies six bits in the instruction operation
word. I/O short is used with the bit manipulation and MOVEP instructions. The I/O short
address is ones extended to 16 bits to address the I/O portion of X and Y memory
(addresses $FFC0–$FFFF – see Figure 7-12).

Figure 7-10 Special Addressing – Short Jump Address

AFTER EXECUTION

$0FFF

JMP $0123

$0123

$0000

P MEMORY

PC
NEXT INSTRUCTION

BEFORE EXECUTION

EXAMPLE: JMP $123

$0FFF

Assembler Syntax: XXX
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

P MEMORY

PC JMP $0123

$0123

$0000

SHORT
JUMP

RANGE
4,096

WORDS
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7 - 15

7.2.5.3.7 Implicit Reference
Some instructions make implicit reference to PC, SS, LA, LC, or SR. For example, the
jump instruction (JMP) implicitly references the PC; whereas, the repeat next instruction
(REP) implicitly references LC. The registers implied and their uses are defined by the

Figure 7-11 Special Addressing – Absolute Short Address

P MEMORY
23 0

AFTER EXECUTIONBEFORE EXECUTION

EXAMPLE A: MOVE P: $3200,X0

Assembler Syntax: aa
Memory Spaces: P:, X:, Y:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

X X X X X X

$0000

ABSOLUTE
SHORT

ADDRESSIN-
GRANGE

A2 A1 A0

X X 3 4 F 5 E 6 X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

X1 X0
47 24 23 0

 23 0 23 0
 X X X X X X X X X X X X

$3204

$3200 $ A 5 B 4 C 6

X1 X0
47 24 23 0

 23 0 23 0
 0 0 0 0 0 1 A 5 B 4 C 6

P MEMORY
23 0

X X X X X X$3204

$3200 $ A 5 B 4 C 6

EXAMPLE B: MOVE A1, X: $3

BEFORE EXECUTION

A2 A1 A0

X X 3 4 F 5 E 6 X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

AFTER EXECUTION

X MEMORY
23 0

X X X X X X$0003

$003F
$0040

$0000

X MEMORY
23 0

3 4 F 5 E 6$0003

$003F
$0040
7 - 16 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

individual instruction descriptions (see APPENDIX A INSTRUCTION SET DETAILS).

Figure 7-12 Special Addressing – I/O Short Address

EXAMPLE: MOVEP A1, X:<<$FFFE

Assembler Syntax: pp
Operands Referenced: X:, Y Memories
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

$FFC0

I/O SHORT
ABSOLUTE
ADDRESS

SPACE

A2 A1 A0

X X 1 2 3 4 5 6 X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

A2 A1 A0

X X 1 2 3 4 5 6 X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

AFTER EXECUTION

X MEMORY
23 0

0 0 F F F F*$FFFE
$FFFF

$FFC0

X MEMORY
23 0

0 0 3 4 5 6$FFFE
$FFFF

*Contents of Bus Control Register (X:$FFFE) After Reset
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7 - 17

7.2.5.4 Addressing Modes Summary. Table 7-1 is a summary of the address-
ing modes discussed in the previous paragraphs.

7.3 INSTRUCTION GROUPS
The instruction set is divided into the following groups:

 Arithmetic
 Logical
 Bit Manipulation
 Loop
 Move
 Program Control

Each instruction group is described in the following paragraphs; detailed information on each
instruction is given in APPENDIX A INSTRUCTION SET DETAILS.

Addressing Mode
Modifier
MMMM

Operand Reference

P S C D A X Y L XY

Register Direct
Data or Control Register
Address Register
Address Modifier Register
Address Offset Register

No
No
No
No

X X
X
X
X

Address Register Indirect
No Update
Postincrement by 1
Postdecrement by 1
Postincrement by Offset Nn
Postdecrement by Offset Nn
Indexed by Offset Nn
Predecrement by 1

No
Yes
Yes
Yes
Yes
Yes
Yes

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X

Special
Immediate Data
Absolute Address
Immediate Short Data
Short Jump Address
Absolute Short Address
I/0 Short Address
Implicit

No
No
No
No
No
No
No

X
X
X
X
X

X X X

X

X
X

X

X
X

X

X

Table 7-1 Addressing Modes Summary

Where: MMMM = Address Modifier
P = Program Reference
S = Stack Reference
C = Program Control Unit Register Reference
D = Data ALU Register Reference
A = AGU Register Reference
X = X Memory Reference
Y = Y Memory Reference
L = L Memory Reference
XY = XY Memory Reference
7 - 18 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

7.3.1 Arithmetic Instructions
The arithmetic instructions, which perform all of the arithmetic operations within the data
ALU, execute in one instruction cycle. These instructions may affect all of the CCR bits.
Arithmetic instructions are register based (register direct addressing modes used for oper-
ands) so that the data ALU operation indicated by the instruction does not use the XDB,
the YDB, or the global data bus (GDB). Optional data transfers may be specified with most
arithmetic instructions, which allows for parallel data movement over the XDB and YDB
or over the GDB during a data ALU operation. This parallel movement allows new data to
be prefetched for use in subsequent instructions and allows results calculated in previous
instructions to be stored. The following list contains the arithmetic instructions:

ABS Absolute Value
ADC Add Long with Carry
ADD Addition
ADDL Shift Left and Add
ADDR Shift Right and Add
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right
CLR Clear an Operand
CMP Compare
CMPM Compare Magnitude
DIV* Divide Iteration
MAC Signed Multiply-Accumulate
MACR Signed Multiply-Accumulate and Round
MPY Signed Multiply
MPYR Signed Multiply and Round
NEG Negate Accumulator
NORM* Normalize
RND Round
SBC Subtract Long with Carry
SUB Subtract
SUBL Shift Left and Subtract
SUBR Shift Right and Subtract
Tcc* Transfer Conditionally
TFR Transfer Data ALU Register
TST Test an Operand

7.3.2 Logical Instructions
The logical instructions, which execute in one instruction cycle, perform all of the logical

*These instructions do not allow parallel data moves.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7 - 19

operations within the data ALU (except ANDI and ORI). They may affect all of the CCR
bits and, like the arithmetic instructions, are register based. Optional data transfers may
be specified with most logical instructions, allowing parallel data movement over the XDB
and YDB or over the GDB during a data ALU operation. This parallel movement allows
new data to be prefetched for use in subsequent instructions and allows results calculated
in previous instructions to be stored. The following list includes the logical instructions:

AND Logical AND
ANDI* AND Immediate to Control Register
EOR Logical Exclusive OR
LSL Logical Shift Left
LSR Logical Shift Right
NOT Logical Complement
OR Logical Inclusive OR
ORI* OR Immediate to Control Register
ROL Rotate Left
ROR Rotate Right

7.3.3 Bit Manipulation Instructions
The bit manipulation instructions test the state of any single bit in a memory location and
then optionally set, clear, or invert the bit. The carry bit of the CCR will contain the result
of the bit test. The following list defines the bit manipulation instructions:

BCLR Bit Test and Clear
BSET Bit Test and Set
BCHG Bit Test and Change
BTST Bit Test on Memory and Registers

7.3.4 Loop Instructions
The hardware DO loop executes with no overhead cycles – i.e., it runs as fast as straight-
line code. Replacing straight-line code with DO loops can significantly reduce program
memory. The loop instructions control hardware looping by 1) initiating a program loop
and establishing looping parameters or by 2) restoring the registers by pulling the SS
when terminating a loop. Initialization includes saving registers used by a program loop
(LA and LC) on the SS so that program loops can be nested. The address of the first
instruction in a program loop is also saved to allow no-overhead looping. The loop instruc-
tions are as follows:

DO Start Hardware Loop

*These instructions do not allow parallel data moves.
7 - 20 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

ENDDO Exit from Hardware Loop
Both static and dynamic loop counts are supported in the following forms:

DO #xxx,Expr ; (Static)
DO S,Expr ; (Dynamic)

Expr is an assembler expression or absolute address, and S is a directly addressable reg-
ister such as X0.

The operation of a DO loop is shown in Figure 7-13. When a program loop is initiated with
the execution of a DO instruction, the following events occur:

1. The stack is pushed.
A. The SP is incremented.
B. The current 16-bit LA and 16-bit LC registers are pushed onto the SS to

allow nested loops.
C. The LC register is initiated with the loop count value specified in the DO

instruction.

2. The stack is pushed again.
H. The SP is incremented.
I. The address of the first instruction in the program loop (PC) and the current

SR contents are pushed onto the SS.
J. The LA register is initialized with the value specified in the DO instruction

decremented by one.

3. The LF bit in the SR is set. The LF bit is set when a program loop is in
progress and enables the end-of-loop detection.

The program loop continues execution until the program address fetched equals the LA
register contents (last address of program loop). The contents of the LC are then tested
for one. If the LC is not one, it is decremented, and the top location in the stack RAM is

Figure 7-13 Hardware DO Loop

1)SP+1 - SP; LA - SSH; LC - SSL; #xxx - LC
2)SP+1 - SP; PC - SSH; SR - SSL; Expr–1 - LA
3)1 - LF

START OF LOOP

END OF LOOP

1)SSL(LF) - SR
2)SP–1 - SP; SSH - LA; SSL - LC; SP–1 - SP
3)PC + 1 - PC

NOTE:
#xxx=Loop Count Number
Expr=Expression
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7 - 21

read (but not pulled) into the PC to return to the start of the loop. If the LC is one, the pro-
gram loop is terminated by the following sequence:

1. Reading the previous LF bit from the top location in the SS into the SR

2. Purging the SS (pulling the top location and discarding the contents), pulling
the LA and LC registers off the SS, and restoring the respective registers

3. Incrementing the PC

The LF bit (pulled from the SS when a loop is terminated) indicates if the terminated loop
was a nested loop. Figure 7-14 shows two DO loops, one nested inside the other. If the
stack is managed to prevent a stack overflow, DO loops can be stacked indefinitely.

The ENDDO instruction is not used for normal termination of a DO loop; it is only used to
terminate a DO loop before the LC has been decremented to one.

7.3.5 Move Instructions
The move instructions perform data movement over the XDB and YDB or over the GDB.
Move instructions do not affect the CCR except the limit bit L if limiting is performed when
reading a data ALU accumulator register. An address ALU instruction (LUA) is also
included in the following move instructions. The MOVE instruction is the parallel move
with a data ALU no-operation (NOP).

LUA Load Updated Address
MOVE Move Data Register
MOVEC Move Control Register
MOVEM Move Program Memory
MOVEP Move Peripheral Data

Note: Due to instruction pipelining, if an address register (Mn, Nn, or Rn) is changed
with a MOVE instruction, the new contents will not be available for use in an effective ad-
dress calculation until the second following instruction.

Figure 7-14 Nested DO Loops

DO #n1,END1
:

DO #n2,END2
:
:

MOVE A,X:(R0)+

END2 ADD A,B X:(R1)+,X0
END1
7 - 22 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

There are nine classifications of parallel data moves between registers and memory. Fig-
ure 7-15 shows seven parallel moves. The source of the data to be moved and the
destination are separated by a comma.

Examples of the other two classifications, XY and long (L) moves, are shown in Figure 7-
16.Example A illustrates the following steps: 1) register X0 is added to register A and the
result is placed in register A; 2) register X0 is moved to the X memory register location
pointed to by R3, and R3 is incremented; and 3) the contents of the Y memory location
pointed to by R7 is moved to the B register, and R7 is decremented.

Example B depicts the following sequence: 1) register X0 is added to register A and the
result is placed in register A; and 2) registers A and B are moved, respectively, to the loca-
tions in memories X and Y pointed to by R2, and then R2 is incremented by N2. The
contents of the 56-bit registers A and B were rounded to 24 bits before moving to the 24-
bit memory registers.

The DSP offers parallel processing of the data ALU, AGU, and program control unit. For
the instruction word above, the DSP will perform the designated operation (data ALU), the
data transfers specified with address register updates (AGU), and will decode the next
instruction and fetch an instruction from program memory (program control unit) all in one
instruction cycle. When an instruction is more than one word in length, an additional
instruction execution cycle is required. Most instructions involving the data ALU are reg-
ister based (all operands are in data ALU registers), thereby allowing the programmer to
keep each parallel processing unit busy. An instruction that is memory oriented (such as
a bit manipulation instruction) or that causes a control-flow change (such as a JMP) pre-
vents the use of parallel processing resources during its execution.

7.3.6 Program Control Instructions
The program control instructions include jumps, conditional jumps, and other instructions

Figure 7-15 Classifications of Parallel Data Moves

IMMEDIATE SHORT DATA ADD X0,A #$05,Y1
ADDRESS REGISTER UPDATE ADD X0,A (R0)+N0
REGISTER TO REGISTER ADD X0,A A1,Y0
X MEMORY ADD X0,A X0,X:(R3)+
X MEMORY PLUS REGISTER ADD X0,A X:(R4)–,X1 A,Y0
Y MEMORY ADD X0,A Y:(R6)+N6,X0
Y MEMORY PLUS REGISTER ADD X0,A A,X0 B,Y:(R0)

NOTE: Parallel Move Syntax—Source(Src), Destination(Dst)

OPCODE/OPERANDS PARALLEL MOVE EXAMPLES
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7 - 23

affecting the PC and SS. Program control instructions may affect the CCR bits as speci-
fied in the instruction. Optional data transfers over the XDB and YDB may be specified in
some of the program control instructions. The following list contains the program control
instructions:

II Illegal Instruction
Jcc Jump Conditionally
JMP Jump
JCLR Jump if Bit Clear
JSET Jump if Bit Set
JScc Jump to Subroutine Conditionally
JSR Jump to Subroutine
JSCLR Jump to Subroutine if Bit Clear
JSSET Jump to Subroutine if Bit Set

XY MEMORY MOVE

+1

R3

X MEMORY

X0

ADD X0,A X0,X:(R3)+ Y:(R7)-,B

R7

Y MEMORY

-1

B1 B0

B2 SIGN EXTENDED
B0 CLEARED

Example A

A2 A1 A0 B2

ADD X0,A AB,L:(R2)+N2

Y MEMORY

B1 B0

LONG MEMORY MOVE

X MEMORY

R2

+ N2

A,B ARE SHIFTED AND LIMITED

Example B

Figure 7-16 Parallel Move Examples
7 - 24 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

NOP No Operation
REP Repeat Next Instruction
RESET Reset On-Chip Peripheral Devices
RTI Return from Interrupt
RTS Return from Subroutine
STOP Stop Processing (Low-Power Standby)
SWI Software Interrupt
WAIT Wait for Interrupt (Low-Power Standby)
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 7 - 25

SECTION 8
PROCESSING STATES

The DSP is always in one of five processing states: normal, exception, reset, wait, and
stop. These states are described in the following paragraphs.

8.1 NORMAL PROCESSING STATE
The normal processing state is associated with instruction execution. Details concerning
normal processing of the individual instructions can be found in APPENDIX A INSTRUC-
TION SET DETAILS. Instructions are executed using a three-stage pipeline, which is
described in the following paragraphs.

8.1.1 Instruction Pipeline
DSP56000/DSP56001 instruction execution is performed in a three-stage pipeline,
allowing most instructions to execute at a rate of one instruction every instruction cycle.
However, certain instructions require additional time to execute: instructions longer than
one word, instructions using an addressing mode that requires more than one cycle, and
instructions causing a control-flow change. In the latter case, a cycle is needed to clear
the pipeline.

Instruction pipelining allows overlapping of instruction execution so that the fetch-
decode-execute operations of a given instruction occur concurrently with the fetch-
decode-execute operations of other instructions. Specifically, while an instruction is exe-
cuted, the next instruction to be executed is decoded, and the instruction to follow the
instruction being decoded is fetched from program memory. Only one word is fetched
per cycle so that, if an instruction is two words in length, the additional word will be
fetched before the next instruction is fetched. Table 8-1 demonstrates pipelining; F1, D1,
and E1 refer to the fetch, decode, and execute operations, respectively, of the first
instruction. The third instruction, which contains an instruction extension word, takes two
instruction cycles to execute. The extension word will be either an absolute address or
immediate data. Although it takes three instruction cycles for the pipeline to fill and the
first instruction to execute, an instruction usually executes on each instruction cycle
thereafter.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 1

Each instruction requires a minimum of three instruction cycles (12 clock phases) to be
fetched, decoded, and executed. This means that there is a delay of three instruction
cycles on powerup to fill the pipe. A new instruction may begin immediately following the
previous instruction. Two-word instructions require a minimum of four instruction cycles
to execute (three cycles for the first instruction word to move through the pipe and exe-
cute and one more cycle for the second word to execute). A new instruction may start
after two instruction cycles.

The pipeline is normally transparent to the user. However, it will affect program execution
in some situations. These situations, which are instruction-sequence dependent, are
best described by case studies. Most of these restricted sequences occur because 1) all
addresses are formed during instruction decode, or 2) they are the result of contention
for an internal resource such as the status register (SR). If the execution of an instruction
depends on the relative location of the instruction in a sequence of instructions, there is a
pipeline effect. To test for a suspected pipeline effect, compare between the execution of
the suspect instruction 1) when it directly follows the previous instruction and 2) when
four NOPs are inserted between the two. If there is a difference, it is due to a pipeline
effect. The DSP56000/DSP56001 assembler (ASM56000) is designed to flag instruction
sequences with potential pipeline effects so that the user can decide if the operation will
be as expected.

Case 1: The following two examples show similar code sequences.

1. .No pipeline effect:
ORI #xx,CCR ;Changes CCR at the end of execution time slot
Jcc xxxx ;Reads condition codes in SR in its execution time slot

The Jcc will test the bits modified by the ORI without any pipeline effect in the code seg-
ment above.

2. Instruction that started execution during decode:
ORI #04,OMR ;Sets DE bit at execution time slot
MOVE x:$100,a ;Reads external RAM instead of internal ROM

Operation
Instruction Cycle

1 2 3 4 5 6 7 • • •

Fetch F1 F2 F3 F3e F4 F5 F6 • • •

Decode D1 D2 D3 D3e D4 D5 • • •

Execute E1 E2 E3 E3e E4 • • •

Table 8-1 Instruction Pipelining
8- 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

A pipeline effect occurs in example 2 because the address of the MOVE is formed at its
decode time before the ORI changes the DE bit (which changes the memory map) in the
ORI’s execution time slot. The following code produces the expected results of reading
the internal ROM:

ORI #04,OMR ;Sets DE bit at execution time slot
NOP ;Delays the MOVE so it will read the updated OMR
MOVE x:$100,a ;Reads internal ROM

Case 2: One of the more common sequences where pipeline effects are apparent is as
follows:

• ;Move a number into register Rn (n=0; - 7).
•

MOVE #xx,Rn
MOVE X:(Rn),A ;Use the new contents of Rn to address memory.

•
•

In this case, before the first MOVE instruction has written Rn during its execution cycle,
the second MOVE has accessed the old Rn, using the old contents of Rn. This is
because the address for indirect moves is formed during the decode cycle. This overlap-
ping instruction execution in the pipeline causes the pipeline effect. One instruction cycle
should be allowed after a register has been written by a MOVE instruction before the
new contents are available for use by another MOVE instruction. The proper instruction
sequence is as follows:

• ;Move a number into register Rn.
•

MOVE X0,Rn
NOP ;Execute any instruction or instruction

• ;sequence not using Rn.
•

MOVE X:(Rn),A Use the new contents of Rn.

Case 3: A situation related to Case 2 can be seen in the boot ROM code shown in AP-
PENDIX A of the DSP56001 Advance Information Data Sheet (ADI1290). At the end of
the bootstrap operation, the operation mode register (OMR) is changed to mode #2, and
then the program that was loaded is executed. This process is accomplished in the last
three instructions:

_BOOTEND MOVEC #2,OMR ;Set the operating mode to 2
;(and trigger an exit from
;bootstrap mode).

ANDI #$0,CCR ;Clear SR as if RESET and
;introduce delay needed for
;Op. Mode change.

JMP <$0 ;Start fetching from PRAM, P:$0000
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 3

The JMP instruction generates its jump address during its decode cycle. If the JMP
instruction followed the MOVEC, the MOVEC instruction would not have changed the
OMR before the JMP instruction formed the fetch address. As a result, the jump would
fetch the instruction at P:$0000 of the bootstrap ROM (MOVE #$FFE9,R2). The OMR
would then change due to the MOVEC instruction, and the next instruction would be the
second instruction of the downloaded code at P:$0001 of the internal RAM. However, the
ANDI instruction allows the OMR to be changed before the JMP instruction uses it, and
the JMP fetches P:$0000 of the internal RAM.

Case 4: An interrupt has two additional control cycles that are executed in the interrupt
controller concurrently with the fetch, decode, and execute cycles (see 8.2 EXCEPTION
PROCESSING STATE (INTERRUPT PROCESSING) and Figure 8-2). During these two
control cycles, the interrupt is arbitrated by comparing the interrupt mask level with the in-
terrupt priority level (IPL) of the interrupt and allowing or disallowing the interrupt.
Therefore, if the interrupt mask is changed after an interrupt is arbitrated and accepted as
pending but before the interrupt is executed, the interrupt will be executed, regardless of
what the mask was changed to. The following examples show that the old interrupt mask
is in effect for up to four additional instruction cycles after the interrupt mask is changed.
All instructions shown in the examples here are one-word instructions; however, one two-
word instruction can replace two one-word instructions except where noted.

1. Program flow with no interrupts after interrupts are disabled:
•
•

ORI #03,MR ;Disable interrupts
INST 1
INST 2
INST 3
INST 4

•
•

2. The four possible variations in program flow that may occur after interrupts are
disabled:
• • • •
• • • •

ORI #03,MR ORI #03,MR ORI #03,MR ORI #03,MR
II (See Note 2) INST 1 INST 1 INST 1
II+1 II INST 2 INST 2
INST 1 II+1 ll INST 3 (See Note 1)
INST 2 INST 2 II+1 ll
INST 3 INST 3 INST 3 II+1
INST 4 INST 4 INST 4 INST 4

• • • •
• • • •
8- 4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Note 1: INST 3 may be executed at that point only if the preceding instruction (INST 2)
was a single-word instruction.

Note 2: II=Interrupt instruction from maskable interrupt.

The following program flow will not occur because the ORI instruction becomes effective
after a pipeline latency of four instruction cycles:

•
•

ORI #03,MR ;Disable interrupts.
INST 1
INST 2
INST 3
INST 4
II ;Interrupts disabled.
II+1 ;Interrupts disabled.

•
•

1. Program flow without interrupts after interrupts are re-enabled:
•
•

ANDI #00,MR ;Enable interrupts
INST 1
INST 2
INST 3
INST 4

•
•

2. Program flow with interrupts after interrupts are re-enabled:
•
•

ANDI #00,MR ;Enable interrupts
INST 1 ;Uninterruptable
INST 2 ;Uninterruptable
INST 3 ;II+1 fetched
INST 4 ;II+1 fetched
II
II+1

•
•

The DO instruction is another instruction that begins execution during the decode cycle
of the pipeline. As a result, there are a number of restrictions concerning access conten-
tion with the program controller registers accessed by the DO instruction. The ENDDO
instruction has similar restrictions. APPENDIX A INSTRUCTION SET DETAILS contains
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 5

additional information on the DO and ENDDO instruction restrictions.

Case 5: A resource contention problem can occur when one instruction is using a register
during its decode while the instruction executing is accessing the same resource. One ex-
ample of this is as follows:

MOVEC X:$100,SSH
DO #$10,END

The problem occurs because the MOVEC instruction loads the contents of X:$100 into
the system stack high (SSH) during T3 of its execution cycle. The DO instruction that fol-
lows pushes the stack (LA → SSH, LC → SSL) during T3 of its decode cycle. Therefore,
the two instructions try writing to the SSH simultaneously and conflict.

8.1.2 Summary of Pipeline-Related Restrictions
A summary of the instruction sequences that cause pipeline effects is given in the follow-
ing paragraphs. Additional information concerning the individual instructions can be
found in APPENDIX A INSTRUCTION SET DETAILS.

DO instruction restrictions:

The DO instruction must not be immediately preceded by any of the following instruc-
tions:

BCHG/BCLR/BSET LA, LC, SSH, SSL, or SP
MOVEC/MOVEM to LA, LC, SSH, SSL, or SP
MOVEC/MOVEM from SSH

Restrictions near the end of DO loops:

Proper DO loop operation is guaranteed if no instruction starting at address LA-2, LA-1,
or LA specifies the program controller registers SR, SP, SSL, LA, LC, or (implicitly) PC
as a destination register or specifies SSH as a source or a destination register. Also,
SSH can not be specified as a source register in the DO instruction.

The restricted instructions at LA-2, LA-1, and LA are as follows:

DO
BCHG/BCLR/BSET LA, LC, SR, SP, SSH, or SSL
BTST SSH
JCLR/JSET/JSCLR/JSSET SSH
MOVEC/MOVEM/MOVEP from SSH
MOVEC/MOVEM/MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI/ORI MR

The restricted instructions at LA include the following:

Any two-word instruction
8- 6 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Jcc, JMP, JScc, JSR,
 REP, RESET, RTI, RTS, STOP, WAIT

Other restrictions are

DO SSH,xxxx
JSR/JScc/JSCLR/JSSET to LA, if loop flag is set

ENDDO instruction restrictions:

The ENDDO instruction must not be immediately preceded by any of the following
instructions:

BCHG/BCLR/BSET LA, LC, SR, SSH, SSL, or SP
MOVEC/MOVEM to LA, LC, SR, SSH, SSL, or SP
MOVEC/MOVEM from SSH
ANDI/ORI MR

RTI and RTS instruction restrictions:

The RTI instruction must not be immediately preceded by any of the following instruc-
tions:

BCHG/BCLR/BSET SR, SSH, SSL, or SP
MOVEC/MOVEM to SR, SSH, SSL, or SP
MOVEC/MOVEM from SSH
ANDI MR, ANDI CCR
ORI MR, ORI CCR

The RTS instruction must not be immediately preceded by any of the following instruc-
tions:

BCHG/BCLR/BSET SSH, SSL, or SP
MOVEC/MOVEM to SSH, SSL, or SP
MOVEC/MOVEM from SSH

SP and SSH/SSL register manipulation restrictions:

In addition to all the above restrictions concerning SP, SSH, and SSL, the following
instruction sequences are illegal:

1. BCHG/BCLR/BSET SP
2. MOVEC/MOVEM/MOVEP from SSH or SSL

and
1. MOVEC/MOVEM to SP
2. MOVEC/MOVEM/MOVEP from SSH or SSL

and
1. MOVEC/MOVEM to SP
2. JCLR/JSET/JSCLR/JSSET SSH or SSL
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 7

and
1. BCHG/BCLR/BSET SP
2. JCLR/JSET/JSCLR/JSSET SSH or SSL

Also the instruction MOVEC SSH,SSH is illegal.

Rn, Nn, and Mn register restrictions:

If an address register (R0 – R7, N0 – N7, or M0 – M7) is changed with a move-type
instruction (LUA, Tcc, MOVE, MOVEM, MOVEC, or parallel move), the new contents will
not be available for use as a pointer until the second following instruction. This restriction
does not apply to registers updated as part of an indirect addressing mode.

Fast interrupt routines:

SWI, STOP, and WAIT may not be used in a fast interrupt routine.

8.2 EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)
The exception processing state is associated with interrupts that can be generated by
conditions inside the DSP or from external sources. There are many sources for inter-
rupts on the DSP56000/DSP56001; some of these sources can generate more than one
interrupt. A prioritized interrupt vector scheme with 32 vectors is used to provide fast
interrupt service. The following list outlines how interrupts are processed by the
DSP56000/DSP56001:

9. A hardware interrupt is synchronized with the DSP clock, and the interrupt
pending flag for that particular hardware interrupt is set. An interrupt source
can have only one interrupt pending at any given time.

10.All pending interrupts (external and internal) are arbitrated to select which
interrupt will be processed. The arbiter automatically ignores any interrupts
with an IPL lower than the interrupt mask level in the SR and selects the
remaining interrupt with the highest IPL.

11.The interrupt controller then freezes the program counter (PC) and fetches two
instructions at the two interrupt vector addresses associated with the selected
interrupt.

12.The interrupt controller jams the two instructions into the instruction stream
and releases the PC, which is used for the next instruction fetch. The next
interrupt arbitration is then begun.

If neither instruction is a change of program-flow instruction (i.e., a JSR), the state of the
machine is not saved on the stack, and a fast interrupt is executed. A long interrupt is
formed if one of the interrupt instructions fetched is a JSR instruction. The PC is immedi-
8- 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

ately released, the SR and the PC are saved in the stack, and the jump instruction con-
trols where the next instruction is fetched from. While either an unconditional jump or
conditional jump can be used to form a long interrupt, they do not store the PC on the
stack; therefore, there is no return path.

In digital signal processing, one of the main uses of interrupts is to transfer data between
DSP memory or registers and a peripheral device. When such an interrupt occurs, a lim-
ited context switch with minimum overhead is often desirable. This limited context switch
is accomplished by a fast interrupt. The long interrupt is used when a more complex task
must be accomplished to service the interrupt..

The second and third activities require two additional control cycles, which effectively
make the interrupt pipeline five levels deep.

8.2.1 Interrupt Sources
Exceptions may originate from any of the 32 vector addresses listed in Table 8-2. The
corresponding interrupt starting address for each interrupt source is shown. These
addresses are located in the first 64 locations of program memory. When an interrupt is
serviced, the instruction at the interrupt starting address is fetched first. Because the pro-
gram flow is directed to a different starting address for each interrupt, the interrupt struc-
ture of the DSP56000/DSP56001 is said to be vectored. A vectored interrupt structure
has low overhead execution. If it is known a priori that certain interrupts will not be used,
those interrupt vector locations can be used for program or data storage.

The 32 interrupts are prioritized into four levels. Level 3, the highest priority level, is not
maskable. Levels 0 – 2 are maskable. The interrupts within each level are prioritized
according to a predefined priority. The level-3 interrupts (reset, illegal instruction, non-
maskable interrupt (NMI), stack error, trace, and software interrupt (SWI) are discussed
individually.

8.2.1.1 Hardware Interrupt Source
There are two types of hardware interrupts in the DSP: internal and external. The internal
interrupts include all of the on-chip peripheral devices (host interface (HI), synchronous
serial interface (SSI), and serial communications interface (SCI). Each internal interrupt
source is latched and serviced if it is not masked. When it is serviced, the interrupt is
cleared. Each internal hardware source has independent enable control.

The external hardware interrupts include RESET, NMI, IRQA, and IRQB. The RESET
interrupt, which is level sensitive, is the highest level interrupt (IPL 3). The IRQA and
IRQB interrupts can be programmed to be level sensitive or edge sensitive. Since the
level-sensitive interrupts will not be cleared automatically when they are serviced, they
must be cleared by other means to prevent multiple interrupts. The edge-sensitive inter-
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 9

rupts are latched as pending on the high-to-low transition of the interrupt input and are

Interrupt
Starting Address IPL Interrupt Source

$0000 3 Hardware RESET

$0002 3 Stack Error

$0004 3 Trace

$0006 3 SWI

$0008 0 - 2 IRQA

$000A 0 - 2 IRQB

$000C 0 - 2 SSI Receive Data

$000E 0 - 2 SSI Receive Data With Exception Status

$0010 0 - 2 SSI Trasmit Data

$0012 0 - 2 SSI Transmit Data with Exception Status

$0014 0 - 2 SCI Receive Data

$0016 0 - 2 SCI Receive Data with Exception Status

$0018 0 - 2 SCI Transmit Data

$001A 0 - 2 SCI Idle Line

$001C 0 - 2 SCI Timer

$001E 3 NMI — Reserved for Hardware Development

$0020 0 - 2 Host Receive Data

$0022 0 - 2 Host Transmit Data

$0024 0 - 2 Host Command (Default)

$0026 0 - 2 Available for Host Command

$0028 0 - 2 Available for Host Command

$002A 0 - 2 Available for Host Command

$002C 0 - 2 Available for Host Command

$002E 0 - 2 Available for Host Command

$0030 0 - 2 Available for Host Command

$0032 0 - 2 Available for Host Command

$0034 0 - 2 Available for Host Command

$0036 0 - 2 Available for Host Command

$0038 0 - 2 Available for Host Command

$003A 0 - 2 Available for Host Command

$003C 0 - 2 Available for Host Command

$003E 3 Illegal Instruction

Table 8-2 Interrupt Sources
8- 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

automatically cleared when the interrupt is serviced. IRQA and IRQB can be pro-
grammed to one of three priority levels: 0, 1, or 2, all of which are maskable. Additionally,
both of these interrupts have independent enable control.

When the IRQA or IRQB interrupts are disabled in the interrupt priority register, the
pending request will be ignored, regardless of whether the interrupt input was defined as
level sensitive or edge sensitive. Additionally, if the interrupt is defined as edge sensitive,
its edge-detection latch will remain in the reset state as long as the interrupt is disabled;
if the interrupt is defined as level sensitive, its edge-detection latch will remain in the
reset state. If the level-sensitive interrupt is disabled while the interrupt is pending, the
pending interrupt will be cancelled. However, if the interrupt has been fetched, it normally
will not be cancelled.

Interrupt service, which begins by fetching the instruction word in the first vector location,
is considered finished when the instruction word in the second vector location is fetched.
In the case of an edge-triggered interrupt, the internal latch is automatically cleared when
the second vector location is fetched. The fetch of the first vector location does not guar-
antee that the second location will be fetched. Figure 8-1 illustrates the one case where
the second vector location is not fetched. In Figure 8-1, the SWI instruction discards the
fetch of the first interrupt vector to ensure that the SWI vectors will be fetched. Instruction
n4 is decoded as an SWI while ii1 is being fetched. Execution of the SWI requires that ii1
be discarded and the two SWI vectors (ii3 and ii4) be fetched instead.

INTERRUPT CONTROL CYCLE 1 i i*

INTERRUPT CONTROL CYCLE 2 i i*

FETCH n3 n4 n5 ii1 ii3 ii4 sw1 sw2 sw3 sw4

DECODE n2 n3 SWI — — — JSR — sw1 sw2 sw3

EXECUTE n1 n2 n3 SWI NOP NOP NOP JSR — sw1 sw2

INSTRUCTION BEING DECODED 1

i = INTERRUPT REQUEST
i* = INTERRUPT REQUEST GENERATED BY SWI
ii1 = FIRST VECTOR OF INTERRUPT i
ii3 = FIRST SWI VECTOR (ONE-WORD JSR)
ii4 = SECOND SWI VECTOR
n = NORMAL INSTRUCTION WORD
n4 = SWI
sw = INSTRUCTIONS PERTAINING TO THE SWI LONG INTERRUPT ROUTINE

Figure 8-1 Interrupting an SWI
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 11

CAUTION
On all level-sensitive interrupts, the interrupt must be externally released
before interrupts are internally re-enabled, or the processor will be interrupt-
ed repeatedly until the interrupt is released.

The edge-sensitive NMI is generated on the first transition to 10 V on the IRQB pin after
the last time the NMI interrupt was serviced or the DSP was reset. The NMI is a priority 3
interrupt and cannot be masked. Only RESET and illegal instruction have higher priority
than NMI. NMI is reserved for hardware development and should not be used in an appli-
cation. Repeated use may damage the integrated circuit.

8.2.1.2 Software Interrupt Source
There are two software interrupt sources — illegal instruction interrupt (III) and SWI.
The III is a nonmaskable interrupt (IPL 3), which is serviced immediately following the
execution of the illegal instruction or the attempted execution of an illegal instruction (any
undefined operation code). IIIs are fatal errors. Only a long interrupt routine should be
used for the III routine; RTI or RTS should not be used at the end of the interrupt routine
since return from the III to the main code should not be attempted. During the III service,
the JSR located in the III vector will normally stack the address of the illegal instruction
(this is the reason why return should not be attempted (see Figure 8-2). The user may
examine the stack (using MOVE SSH,dest) to locate the offending illegal instruction. The
illegal instruction is useful for triggering the illegal interrupt service to see if the III routine
is capable of recovery from illegal instructions.

There are two cases in which the stacked address will not point to the illegal instruction:

1. If the illegal instruction is one of the two instructions at an interrupt vector loca-
tion and is fetched during a regular interrupt service, the processor will stack
the address of the next sequential instruction in the normal instruction flow (the
regular return address of the interrupt routine that had the illegal opcode in its
vector).

2. If the illegal instruction follows an REP instruction (see Figure 8-3), the DSP
will effectively execute the illegal instruction as a repeated NOP and the inter-
rupt vector will then be inserted in the pipeline. The next instruction will be
fetched but will not be decoded or executed. The processor will stack the
address of the next sequential instruction, which is two instructions after the
illegal instruction.

In DO loops, if the illegal instruction is in the loop address (LA) location and the instruc-
tion preceding it (i.e., at LA-1) is being interrupted, the loop counter (LC) will be decre-
mented as if the loop had reached the LA instruction. When the interrupt service ends
and the instruction flow returns to the loop, the illegal instruction will be refetched (since
8- 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

it is the next sequential instruction in the flow). The loop state machine will again decre-
ment LC because the LA instruction is being executed. At this point, the illegal instruction
will trigger the III. The result is that the loop state machine decrements LC twice in one
loop due to the presence of the illegal opcode at the LA location.

SWI is a nonmaskable interrupt (IPL 3), which is serviced immediately following the SWI

I1

I2

MAIN

PROGRAM

FETCHES

II (NOP)

n6

NO FETCH

NO FETCH

INFINITE

LOOP

FAST INTERRUPT
SERVICE ROUTINE

FETCHES

Figure 8-2 Illegal Instruction Interrupt Serviced by a Fast Interrupt

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 n2 n3 n4 n5 n6 — — ii1 ii2 n5

DECODE n1 n2 n3 n4 II — — — ii1 ii2 II

EXECUTE n1 n2 n3 n4 NOP — — — ii1 ii2 NOP

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
II = ILLEGAL INSTRUCTION
n = NORMAL INSTRUCTION WORD

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

(a) Instruction Fetches from Memory

(b) Program Controller Pipeline
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 13

instruction execution. A long interrupt service routine is usually used. The difference
between an SWI and a JSR instruction is that the SWI sets the interrupt mask to prevent
interrupts below IPL 3 from being serviced. Masking out lower level interrupts makes the
SWI very useful for setting breakpoints in monitor programs. The JSR instruction does
not affect the interrupt mask.

8.2.1.3 Other Interrupt Sources
Other interrupt sources include the stack error interrupt and trace interrupt (IPL3 inter-
rupts).

An overflow or underflow of the system stack (SS) causes a stack error interrupt (see
SECTION 6 PROGRAM CONTROL UNIT for additional information on the stack error
flag). The stack error interrupt is caused by a nonrecoverable error condition and is vec-
tored to P:$0002. Since the stack error is nonrecoverable, a long interrupt should be
used to service the interrupt, and the service routine should not end in an RTI. Executing
an RTI instruction ‘‘pops’’ the stack, which has been corrupted.

The DSP56000/DSP56001 includes a facility for instruction-by-instruction tracing as a
program development aid. This trace mode (entered by setting the trace bit in the SR)
generates a trace exception after each instruction executed (see Figure 8-4), which can
be used by a debugger program to monitor the execution of a program.

The trace mode is entered by setting the trace bit in the SR. A trace exception is gener-
ated after executing each instruction executed while the trace bit is set. When servicing

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 n2 n3 n4 n5 n6 n7 — — — ii1 ii2 n8

DECODE n1 n2 n3 n4 REP II — — — — ii1 ii2 n8

EXECUTE n1 n2 n3 n4 REP REP NOP — — — ii1 ii2 n8

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
II = ILLEGAL INSTRUCTION
n = NORMAL INSTRUCTION WORD

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

Figure 8-3 Repeated Illegal Instruction
8- 14 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

the trace exception, it is expected that a JSR will be encountered in the trace vector loca-

NOP

MAIN

PROGRAM

FETCHES

n1TRACE BIT
SET IN SR

TRACE INSTRUCTION n1

n2

NOP

NOP

JSR

NOT USED

RTI

DEBUGGER
PROGRAM

NEXT TRACE
OPERATION

THREE NOP
INSTRUCTIONS INSERTED
BY TRACE MODE

FAST INTERRUPT
CAUSED BY TRACE
INTERRUPT

SET TRACE BIT IN SSL

(a) Instruction Fetches from Memory

INTERRUPT CONTROL CYCLE 1 i i

INTERRUPT CONTROL CYCLE 2 i i

FETCH n1 NOP NOP NOP JSR — TRACE PROGRAM RTI — n2 NOP NOP NOP

DECODE n1 NOP NOP NOP JSR NOP TRACE PROGRAM RTI NOP n2 NOP NOP NOP

EXECUTE n1 NOP NOP NOP JSR NOP TRACE PROGRAM RTI NOP n2 NOP NOP NOP

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
II = ILLEGAL INSTRUCTION
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

Figure 8-4 Trace Exception

(b) Program Controller Pipeline
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 15

tions, thereby forming a long interrupt routine. The JSR causes the SR to be stacked and
the trace bit in the SR to be cleared (clearing the trace bit in the SR prevents tracing
while executing the trace exception service routine). This service routine should end with
an RTI instruction, which restores the SR (with the trace bit set) from the SS, causing the
next instruction to be traced. The pipeline must be flushed to allow each sequential
instruction to be traced. Three instruction cycles are appended by the tracing facility to
the end of each instruction traced (these are the three NOP instructions shown in Figure
8-4) flushing the pipeline and allowing the next trace interrupt to follow the next sequen-
tial interrupt.

During tracing, the REP instruction and the instruction being repeated are considered a
single two-word instruction. That is, only after executing the REP instruction and all the
repeats of the next instruction will the trace exception be generated.

Fast interrupts can not be traced because they are uninterruptable. Long interrupts will
not be traced (unless the trace mode is entered in the subroutine) because the SR is
pushed on the stack and the trace bit is cleared. Tracing is resumed upon returning from
a long interrupt because the trace bit is restored when the SR is restored. Interrupts are
not likely to occur during tracing because only an interrupt with a higher IPL can interrupt
during a trace operation. While executing the program being traced, the trace interrupt
will always be pending and will win the interrupt arbitration. During the trace interrupt, the
interrupt mask is set to reject interrupts below IPL3.

8.2.2 Interrupt Priority Structure
Four levels of interrupt priority are provided. IPLs numbered 0, 1, and 2 are maskable
(level 0 is the lowest level). Level 3 (highest level) is nonmaskable. The only IPL 3 inter-
rupts are reset, III, NMI, stack error, trace, and SWI. The interrupt mask bits (I1, I0) in the
SR reflect the current processor priority level and indicate the IPL needed for an interrupt
source to interrupt the processor (see Table 8-3). Interrupts are inhibited for all priority
levels less than the current processor priority level. However, level 3 interrupts are not
maskable and therefore can always interrupt the processor.

I1 I0 Exceptions Permitted Exceptions Masked

0 0 IPL 0, 1, 2, 3 None

0 1 IPL 1, 2, 3 IPL 0

1 0 IPL 2, 3 IPL 0, 1

1 1 IPL 3 IPL 0, 1, 2

Table 8-3 Status Register Interrupt Mask Bits
8- 16 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

8.2.2.1 Interrupt Priority Levels
The IPL for each on-chip peripheral device (HI, SSI, SCI) and for each external interrupt source (IRQA, IRQB) can be programmed under software control. Each on-chip or external peripheral device can be programmed to one of the three maskable priority levels (IPL

0, 1, or 2). IPLs are set by writing to the interrupt priority register shown in Figure 8-5. This read/write register specifies the IPL for each of the interrupting devices (HI, SSI, SCI, IRQA, IRQB). In addition, this register specifies the trigger mode of both external interrupt

sources and is used to enable or disable the individual external interrupts. This register is cleared on RESET or by the reset instruction. Table 8-4 defines the IPL bits. Table 8-5 defines the external interrupt trigger mode bits.

8.2.2.2 Exception Priorities within an IPL
If more than one exception is pending when an instruction is executed, the interrupt with the highest priority level is serviced first. When multiple interrupt requests having the same IPL are pending, a second fixed-priority structure within that IPL determines which inter-

rupt is serviced. The fixed priority of interrupts within an IPL and the interrupt enable bits for all interrupts are shown in Table 8-6. The interrupt enable bits for the HI, SSI, and SCI are located in the control registers associated with their respective on-chip peripherals.

8.2.3 Instructions Preceding the Interrupt Instruction Fetch
The following one-word instructions are aborted when they are fetched in the cycle preceding the fetch of the first interrupt instruction word — REP, STOP, WAIT, RESET, RTI, RTS, Jcc, JMP, JScc, and JSR.

Two-word instructions are aborted when the first interrupt instruction word fetched will replace the fetch of the second word of the two-word instruction. Aborted instructions are refetched again when program control returns from the interrupt routine. The PC is adjusted

appropriately before the end of the decode cycle of the aborted instruction.

If the first interrupt word fetch occurs in the cycle following the fetch of a one-word instruction not previously listed or the second word of a two-word instruction, that instruction will complete normally before the start of the interrupt routine.

The following cases have been identified where service of an interrupt might encounter an extra delay:

1. If a long interrupt routine is used to service an SWI, then the processor priority
level is set to 3. Thus,all interrupts except other level-3 interrupts are disabled
until the SWI service routine terminates with an RTI (unless the SWI service
routine software lowers the processor priority level).

2. While servicing an interrupt, the next interrupt service will be delayed accord-
ing to the following rule: after the first interrupt instruction word reaches the
instruction decoder, at least three more instructions will be decoded before

IRQA MODE

IRQB MODE

RESERVED

HOST IPL

SSI IPL

SCI IPL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCL1 SCL0 SSL1 SSL0 HPL1 HPL0 0 0 0 0 IBL2 IBL1 IBL0 IAL2 IAL1 IAL0

Figure 8-5 Interrupt Priority Register (Addr X:$FFFF)

xxL1 xxL0 Enabled IPL

0 0 No —

Table 8-4 Interrupt Priority Level Table 8-5 External Interrupt
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 17

decoding the next first interrupt instruction word. If any one pair of instructions-
being counted is the REP instruction followed by an instruction to be repeated,
then the combination is counted as two instructions independent of the num-
ber of repeats done. Sequential REP combinations will cause pending inter-
rupts to be rejected and can not be interrupted until the sequence of REP

Priority Exception Enabled By Bit No.
X Data

Memory
Address

Level 3 (Nonmaskable)

Highest Hardware RESET — — —

III — — —

NMI — — —

Stack Error — — —

Trace — — —

Lowest SWI _ — —

Levels 0, 1, 2 (Maskable)

Highest IRQA (External Interrupt) IRQA Mode Bits 0 and 1 $FFFF

IRQB (External Interrupt) IRQB Mode Bits 3 and 4 $FFFF

Host Command Interrupt HCIE 2 $FFE8

Host Receive Data Interrupt HRIE 0 $FFE8

Host Transmit Data Interrupt HTIE 1 $FFE8

SSI RX Data with Exception Interrupt RIE 15 $FFED

SSI RX Data Interrupt RIE 15 $FFED

SSI TX Data with Exception Interrupt TIE 14 $FFED

SSI TX Data Interrupt TIE 14 $FFED

SCI RX Data with Exception Interrupt RIE 11 $FFF0

SCI RX Data Interrupt RIE 11 $FFF0

SCI TX Data Interrupt TIE 12 $FFF0

SCI Idle Line Interrupt ILIE 10 $FFF0

Lowest SCI Timer Interrupt TMIE 13 $FFF0

Table 8-6 Exception Priorities within an IPL
8- 18 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

combinations ends.

3. The following instructions are not interruptable: SWI, STOP, WAIT, and
RESET.

4. The REP instruction and the instruction being repeated are not interruptable.

5. If the trace bit in the SR is set, the only interrupts that will be processed are the
hardware RESET, III,NMI, stack error, and trace. Peripheral and external inter-
rupt requests will be ignored. The interrupt generated by the SWI instruction
will be ignored.

During an interrupt instruction fetch, two instruction words are fetched — the first from the interrupt starting address and the second from the interrupt starting address +1 locations.

8.2.4 Interrupt Types
Two types of interrupt routines may be used: fast and long. The fast routine consists of the two automatically inserted interrupt instruction words. These words can contain any unrestricted, single two-word instruction or any two one-word instructions (see A.8

INSTRUCTION SEQUENCE RESTRICTIONS for a list of restrictions). Fast interrupt routines are never interruptable.

CAUTION
Status is not preserved during a fast interrupt routine; therefore, instructions
that modify status should not be used at the interrupt starting address and
interrupt starting address +1.

If one of the instructions in the fast routine is a JSR, then a long interrupt routine is formed. The following actions occur during execution of the JSR instruction when it occurs in the interrupt starting address or in the interrupt starting address +1:

1. The PC (containing the return address) and the SR are stacked.

2. The loop flag is reset.

3. The scaling mode bits are reset.

4. The IPL is raised to disallow further interrupts at the same or lower levels
(except that hardware RESET, NMI, stack error, trace, and SWI can always
interrupt).

5. The trace bit in the SR is cleared.

The long interrupt routine should be terminated by an RTI. Long interrupt routines are
interruptable by higher priority interrupts.

8.2.5 Interrupt Arbitration
External interrupts are internally synchronized with the processor clock (takes up to three T cycles) before their interrupt-pending flags are set. Each external interrupt and internal interrupt has its own flag. After each instruction is executed, all interrupts are arbitrated

— i.e., all hardware interrupts that have been latched into their respective interrupt-pending flags and all internal interrupts. During arbitration, each interrupt’s IPL is compared with the interrupt mask in the SR, and the interrupt is either allowed or disallowed. The

remaining interrupts are prioritized according to the priority shown in Table 8-6, and the highest priority interrupt is chosen. The interrupt vector is then calculated so that the program interrupt controller can fetch the first interrupt instruction. Interrupt arbitration and con-

trol, which occurs concurrently with the fetch-decode-execute cycle, takes two instruction cycles. Interrupts from a given source are not buffered. The interrupt-pending flag for the chosen interrupt is not cleared until the second interrupt vector of the chosen interrupt

is being fetched. A new interrupt from the same source will not be accepted for the next interrupt arbitration until that time.

The internal interrupt acknowledge signal is used to clear the edge-triggered interrupt flags, the HC bit in the host port, the SCI timer interrupt, and the internal latches of the stack error, NMI, SWI, and trace interrupts. Peripheral interrupt requests that need a read/

write action to some register do not receive this signal, and those interrupts will remain pending until their registers are read/written. Also, level-triggered interrupts will not be cleared. The acknowledge signal will be generated after generation of the interrupt vectors,

not before.

8.2.6 Interrupt Instruction Fetch
The interrupt controller generates an interrupt instruction fetch address, which points to the first instruction word of a two-word interrupt routine. This address is used for the next instruction fetch, instead of the contents of the PC, and the interrupt instruction fetch

address +1 is used for the subsequent instruction fetch. While the interrupt instructions are being fetched, the PC is inhibited from being updated. After the two interrupt words have been fetched, the PC is used for any subsequent instruction fetches.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 19

After both interrupt vectors have been fetched, they are guaranteed to be executed. This is true even if the instruction that is currently being executed is a change-of-flow instruction (i.e., JMP, JSR, etc.) that would normally ignore the instructions in the pipe. After the

interrupt instruction fetch, the PC will point to the instruction that would have been fetched if the interrupt instructions had not been inserted.

8.2.7 Interrupt Instruction Execution
Interrupt instruction execution is considered ‘‘fast’’ if neither of the instructions of the interrupt service routine cause a change of flow. A JSR within a fast interrupt routine forms a long interrupt, which is terminated with an RTI instruction to restore the PC and SR from

the stack and return to normal program execution. Reset is a special exception, which will normally contain only a JMP instruction at the exception start address. At the programmer’s option, almost any instruction can be used in the fast interrupt routine. The restricted

instructions include SWI, STOP, and WAIT. Figure 8-6 and Figure 8-8 show the fast and the long interrupt service routines. The fast interrupt executes only two instructions and then automatically resumes execution of the main program; whereas, the long interrupt

must be told to return to the main program by executing an RTI instruction.

Figure 8-6 illustrates the effect of a fast interrupt routine in the stream of instruction fetches.

Figure 8-7 shows the sequence of instruction decodes between two fast interrupts. Four decodes occur between the two interrupt decodes (two after the first interrupt and two preceding the second interrupt). The requirement for these four decodes establishes the
8- 20 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

maximum rate at which the DSP56000/DSP56001 will respond to interrupts — namely, one interrupt every six instructions (six instruction cycles if all six instructions are one instruction cycle each). Since some instructions take more than one instruction cycle, the

ii1

ii2

MAIN

PROGRAM

MEMORY

n1

INTERRUPT SYNCHRONIZED
AND RECOGNIZED

AS PENDING

ADDITIONAL INTERRUPTS
DISABLED DURING

FAST INTERRUPT

INTERRUPTS
RE-ENABLED

ii = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

n2

n3

n4

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 n2 ii1 ii2 n3 n4

DECODE n1 n2 ii1 ii2 n3 n4

EXECUTE n1 n2 ii1 ii2 n3 n4

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

(a) Instruction Fetches from Memory

(b) Program Controller Pipeline

Figure 8-6 Fast Interrupt Service Routine
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 21

ii1

ii2

MAIN

PROGRAM

MEMORY

n1

INTERRUPT SYNCHRONIZED
AND RECOGNIZED

AS PENDING

ADDITIONAL INTERRUPTS
DISABLED DURING

FAST INTERRUPT

INTERRUPTS
RE-ENABLED

ii = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

n2

n3

n4

n5

n6

n7

n8

n9

ADDITIONAL INTERRUPTS
DISABLED DURING

FAST INTERRUPT

INTERRUPTS
RE-ENABLED

FOUR INSTRUCTION
DECODES

ii1

ii2

(a) Instruction Fetches from Memory

INTERRUPT CONTROL CYCLE 1 i i

INTERRUPT CONTROL CYCLE 2 i i

FETCH n1 n2 ii1 ii2 n3 n4 n5 n6 ii1 ii2

DECODE n1 n2 ii1 ii2 n3 n4 n5 n6 ii1 ii2

EXECUTE n1 n2 ii1 ii2 n3 n4 n5 n6 ii1 ii2

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

6 Icyc

(b) Program Controller Pipeline

Figure 8-7 Two Consecutive Fast Interrupts
8- 22 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

minimum number of instructions between two interrupts may be more than six instruction cycles.

Figure 8-8 Long Interrupt Service Routine

EXPLICIT
RETURN FROM

INTERRUPT
(SHOULD BE RTI)

ii1

ii2

MAIN

PROGRAM

FETCHES

n1

INTERRUPT
 SYNCHRONIZED

AND RECOGNIZED
AS PENDING

JSR CAN BE IN EITHER LOCATION
TO FORM A LONG INTERRUPT

n2

n3

n4
ii3

ii4

INTERRUPT
ROUTINE

ii7

RTI

LONG INTERRUPT
SERVICE ROUTINE FETCHES

(STARTS WITH A FAST INTERRUPT)

PROGRAM COUNTER
RESUMES OPERATION

INTERRUPTS
RE-ENABLED

(a) Instruction Fetches from Memory

(b) Program Controller Pipeline

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 n2 ii1 ii2 ii3 ii4 ii5 ii6 ii7 RTI — n3 n4

DECODE n1 n2 ii1 ii2 ii3 ii4 ii5 ii6 ii7 RTI NOP n3 n4

EXECUTE n1 n2 ii1 ii2 ii3 ii4 ii5 ii6 ii7 RTI NOP n3 n4

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 23

Execution of a fast interrupt routine always conforms to the following rules:

1. A JSR to the starting address of the interrupt service routine is not located at
one of the two interrupt vector addresses.

2. The processor status is not saved.

3. The fast interrupt routine may (but should not) modify the status of the normal
instruction stream.

4. The fast interrupt routine may contain any single two-word instruction or any
two one-word instructions except SWI, STOP, and WAIT.

5. The PC, which contains the address of the next instruction to be executed in
normal processing remains unchanged during a fast interrupt routine.

6. The fast interrupt returns without an RTI.

7. Normal instruction fetching resumes using the PC following the completion of
the fast interrupt routine.

8. A fast interrupt is not interruptable.

9. A JSR instruction within the fast interrupt routine forms a long interrupt routine.

10.The primary application is to move data between memory and I/O devices.

Execution of a long interrupt routine always adheres to the following rules:

1. A JSR to the starting address of the interrupt service routine is located at one
of the two interrupt vector addresses.

2. During execution of the JSR instruction, the PC and SR are stacked. The inter-
rupt mask bits of the SR are updated to mask interrupts of the same or lower
priority. The loop flag, trace bit, and scaling mode bits are reset.

3. The first instruction word of the next interrupt service (of higher IPL) will reach
the decoder only after the decoding of at least four instructions following the
decoding of the first instruction of the previous interrupt.

4. The interrupt service routine can be interrupted — i.e., nested interrupts are
supported.

5. The long interrupt routine, which can be any length, should be terminated by
an RTI, which restores the PC and SR from the stack.

Figure 8-8 illustrates the effect of a long interrupt routine on the instruction pipeline. A short JSR (a JSR with 12-bit absolute address) is used to form the long interrupt routine. For this example, word 6 of the long interrupt routine is an RTI. The point at which interrupts

are re-enabled and subsequent interrupts are allowed is shown to illustrate the noninterruptable nature of the early instructions in the long interrupt service routine.
8- 24 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Either one of the two instructions of the fast interrupt can be the JSR instruction that forms the long interrupt. Figure 8-9 and Figure 8-10 show the two possible cases. If the first fast interrupt vector instruction is the JSR, the second instruction is never used.

JSR

NOT USED

MAIN

PROGRAM

n1

n2

ii2

ii3

ii4

iin

RTI

FAST INTERRUPT
VECTOR

LONG INTERRUPT
SUBROUTINE

(a) Instruction Fetches from Memory

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 JSR — ii2 ii3 ii4 iin RTI — n2

DECODE n1 JSR NOP ii2 ii3 ii4 iin RTI NOP n2

EXECUTE n1 JSR NOP ii2 ii3 ii4 iin RTI NOP n2

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

(b) Program Controller Pipeline

Figure 8-9 JSR First Instruction of a Fast Interrupt

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 25

An REP instruction is treated as a single two-word instruction, regardless of how many times it repeats the second instruction of the pair. Instruction fetches are suspended and will be reactivated only after the LC is decremented to one (see Figure 8-11).

During the execution of n2 in Figure 8-11, no interrupts will be serviced. When LC finally decrements to one, the fetches are reinitiated, and pending interrupts can be serviced.

ii1

MAIN

PROGRAM

n1

n2

iin

RTI

FAST INTERRUPT
VECTOR

LONG INTERRUPT
SUBROUTINE

JSR

ii3

ii4

ii5

ii6

(a) Instruction Fetches from Memory

NTERRUPT CONTROL CYCLE 1 i

NTERRUPT CONTROL CYCLE 2 i

FETCH n1 ii1 JSR — ii3 ii4 ii5 iin RTI — n2

DECODE n1 ii1 JSR NOP ii3 ii4 ii5 ii6 iin RTI NOP n2

EXECUTE n1 ii1 JSR NOP ii3 ii4 ii5 ii6 iin RTI NOP n2

NSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

= INTERRUPT
i = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

(b) Program Controller Pipeline

Figure 8-10 JSR Second Instruction of a Fast Interrupt
8- 26 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Sequential REP packages will cause pending interrupts to be rejected until the sequence

n2

i1

MAIN

PROGRAM

FETCHES

n1 REP m

n2

INTERRUPT SYNCHRO-
NIZED AND RECOGNIZED

AS PENDING

ADDITIONAL INTERRUPTS
DISABLED DURING

FAST INTERRUPT

FAST INTERRUPT
SERVICE ROUTINE FETCHES
(FROM BETWEEN P:$0000
AND P:$003F)

i2

n2

n3

n4

n5

n6

INTERRUPTS
RE-ENABLED

n2
n2

INSTRUCTION n2
REPLACED PER
THE REP INSTRUCTION

i = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

Figure 8-11 Interrupting an REP Instruction

(a) Instruction Fetches from Memory

INTERRUPT CONTROL CYCLE 1 i i

INTERRUPT CONTROL CYCLE 2 i% i

FETCH REP n2 n3 n4 ii1 ii2 n5 n6

DECODE REP NOP n2 n2 n2 n2 n3 n4 ii1 ii2 n5

EXECUTE REP NOP n2 n2 n2 n2 n3 n4 ii1 ii2

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD
i% = INTERRUPT REJECTED

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

(b) Program Controller Pipeline

REPEAT
m TIMES
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 27

of REP packages ends. REP packages are not interruptable because the instruction
being repeated is not refetched. While that instruction is repeating, no instructions are
fetched or decoded, and an interrupt can not be inserted. For example, in Figure 8-12, if
n1, n3, and n5 are all REP instructions, no interrupts will be serviced until the last REP
instruction (n5 and its repeated instruction, n6) completes execution.

8.3 RESET PROCESSING STATE
The reset processing state is entered in response to the external RESET pin being
asserted (a hardware reset). Upon entering the reset state (see Figure 8-13): 1) internal
peripheral devices are reset, and their pins revert to general-purpose I/O pins; 2) the
modifier registers are set to $FFFF; 3) the interrupt priority register is cleared; 4) the BCR
is set to $FFFF, thereby inserting 15 wait states in all external memory accesses; 5) the
stack pointer is cleared; 6) the scaling mode, trace mode, loop flag, and condition code
bits of the SR are cleared, and the interrupt mask bits of the SR are set; 7) the data ROM
enable bit, the stop delay bit, and the memory strobe bit are cleared; and 8) the DSP
remains in the reset state until RESET is deasserted. Upon leaving the reset state 9), the
chip operating mode bits of the OMR are loaded from the external mode select pins
(MODA, MODB), and 10) program execution begins at program memory address $E000
in normal expanded mode or at $0000 in all other operation modes. The first instruction
must be fetched and then decoded before executing. Therefore, the first instruction exe-
cution is two instruction cycles after the first instruction fetch.

Figure 8-14 is a copy of the output from the DSP56000/DSP56001 simulator showing all
of the DSP56000/DSP56001 registers before the hardware reset and showing only the
registers that were written by the hardware reset after the reset occurred. The instruc-
tions executed are as follows:

1. Reset s — Resets the simulator.

2. Change OMR 0 — Puts the DSP56000/DSP56001 in mode 0.

3. Display all — Displays all registers. Note that OMR=$00.

4. Reset d — Is a hardware reset.

5. Display w — Causes the display command to only display the registers that
were written in the last instruction.

6. Display — Displays the contents of the registers that were written by the
hardware reset.

The OMR changed from $00 to $02, which is mode 2, because the MODA/IRQA and
MODB/IRQB pins are set to a one and zero, respectively (binary 2) in the simulator. If the
DSP had been in any other mode, the result would have been the same. The X: memory
locations written to are the memory locations of the peripheral registers. The internal
peripheral registers are memory mapped between X:$FFC0 and X:$FFFF.
8- 28 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

The internal peripheral devices (HI, SSI, SCI, and ports A, B, and C) can be reset by sev-

REPEAT m
TIMES

n6

n4
n4

n4
•••

n2

n1 REP m

ii1

MAIN

PROGRAM

FETCHES

n2

ii2

n3

n4

n5

n6

INTERRUPT
REJECTED

•

n7

n8

n9

INTERRUPT
PENDING

INTERRUPT
REJECTED

INTERRUPT
REJECTED

 REP m

 REP m

INTERRUPT
PENDING

INTERRUPT
PENDING

INTERRUPT
PENDING

n6

••
n2

n2

n6
•••

REPEAT m TIMES

(a) Instruction Fetches from Memory

INTERRUPT CONTROL CYCLE 1 i i

INTERRUPT CONTROL CYCLE 2 i% i

FETCH REP n2 REP n4 REP n6 n7 n8 ii1 ii2 n9

DECODE REP NOP n2 n2 n2 REP NOP n4 n4 n4 REP NOP n6 n6 n6 n7 n8 ii1 ii2 n9

EXECUTE REP NOP n2 n2 n2 REP NOP n4 n4 n4 REP NOP n6 n6 n6 n7 n8 ii1 ii2 n9

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD
i% = INTERRUPT REJECTED

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

(b) Program Controller Pipeline

Figure 8-12 Interrupting Sequential REP Instructions

REPEAT m
TIMES
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 29

eral methods — hardware (HW) reset, software (SW) reset, individual (I) reset, and stop

1. RESET ON-CHIP PERIPHERALS
(PERIPHERAL PINS REVERT TO
GENERAL-PURPOSE I/0 PINS).

2. SET MODIFIER REGISTERS TO $FFFF.

3. CLEAR INTERRUPT PRIORITY REGISTER.

X:$FFFF

4. SET BUS CONTROL REGISTER TO $FFFF.

X:$FFFE

5. CLEAR THE STACK POINTER.

6. INITIALIZE STATUS REGISTER.

7. CLEAR THE DATA ROM ENABLE BIT, STOP DELAY BIT, AND THE BUS STROBE
ENABLE BIT IN THE OMR REGISTER.

8. STAY IN RESET UNTIL NEGATED.

OMR

9. LOAD OPERATING MODE REGISTER FROM MODE PINS.

10. START NORMAL EXECUTION:
IF MODE 2 P:$E000
ELSE P:$0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASSERTION OF RESET

RESET PORT B AND C
SCI, SSI, HOST

$FFFFM0 - M7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCI SSI HOST RESERVED IRQB IRQA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X MEMORY PERIPHERALSY MEMORY P MEMORY

5 4 3 2 1 0

0 0 0 0 0 0

UF SE P3 P2 P1 P0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 1 0 0 E U N Z V C

LF T S1 S0 I1 I0 L

0 0 0 0 0 0 X X

ME SD DE

NEGATION OF RESET MODB MODA

Figure 8-13 Reset Sequence
8- 30 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

(ST) reset. Depending on the type of reset, the registers of these devices will be affected
differently (see SECTION 9 PORT A, SECTION 10 PORT B, and SECTION 11 PORT C
for additional information on the internal peripherals). Tables 8-7 – 8-11 show how each
bit in these registers is affected by the various resets. The HI is programmed for both the
DSP56000/DSP56001 side of the interface and the host processor side of the interface.

The symbols used are as follows:

HW – Hardware reset is caused by asserting the external pin RESET.
SW – Software reset is caused by executing the RESET instruction.

reset s
change omr 0
display all

x= $000000000000 y= $00000000000
a= $00000000000000 b= $0000000000000

x1= $000000 x0= $000000 r7= $0000 n7= $0000 m7= $FFFF
y1= $000000 y0= $000000 r6= $0000 n6= $0000 m6= $FFFF

a2= $00 a1= $000000 a0= $000000 r5= $0000 n5= $0000 m5= $FFFF
b2= $00 b1= $000000 b0= $000000 r4= $0000 n4= $0000 m4= $FFFF

r3= $0000 n3= $0000 m3= $FFFF
pc= $E00 sr= $0300 omr= $00 r2= $0000 n2= $0000 m2= $FFFF
la= $0000 lc= $0000 r1= $0000 n1= $0000 m1= $FFFF

ssh= $0000 ssl= $0000 sp= $00 r0= $0000 n0= $0000 m0= $FFFF
pbc= $0 pbddr= $0000 pbd= $0000 pcd= $0000 pcddr= $0000 pcc= $FFFF
ipr= $0000 bcr= $FFFF htx= $000000 hrx= $000000 hsr= $02 hcr= $00
icr= $00 cvr= $12 isr= $06 ivr= $0F

rxh= $00 rxm= $00 rxl= $00 txh= $00 txm= $00 txl= $00
ssr= $03 scr= $0000 stx= $00 srx= $00 sccr= $0000 stxa= $00
tsr= $00 ssisr= $40 tx= $000000 rx= $000000 cra= $0000 crb= $0000

cyc=000000 ictr= 000000 cnt1= 000000 cnt2= 000000 cnt3=000000 cnt4=000000
P:$E000 000000 =NOP

reset d
display w
display

m7= $FFFF
m6= $FFFF
m5= $FFFF
m4= $FFFF
m3= $FFFF

pc= $E000 sr= $0300 omr= $02 m2= $FFFF
m1= $FFFF

sp= $00 m0= $FFFF
pbc= $0 pbddr= $0000 pcddr= $0000 pcc= $0000
ipr= $0000 bcr= $FFFF hsr= $02 hcr= $00
icr= $00 cvr= $12 isr= $06 ivr= $0F
ssr= $03 scr= $0000 sccr= $0000

ssisr= $40 cra= $0000 crb= $0000
X:$FFE3 $000000
X:$FFE8 $000000 $000002
X:$FFEC $000000 $000000 $000040
X:$FFE0 $000000 $000003 $000000
X:$FFFF $000000
P:$E000 000000 =NOP

Figure 8-14 Reset When OMR=0
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 31

I – Individual reset is caused by all of the I/O pins for a given internal I/O device being
configured for general-purpose I/O. These I/O devices are the HI, SSI, and SCI.
The conditions for these resets are:
1. SSI individual reset occurs when port C control register bits 3 – 8 are set to

zero.

2. SCI individual reset occurs when port C control register bits 0 – 2 are set to
zero.

3. HI individual reset occurs when port B control register bit 0 is set to zero.

ST – Stop reset is caused by executing the STOP instruction.

1 – The bit is set during the xx reset.

0 – The bit is clear during the xx reset.

— – The bit is not changed during the xx reset.

The definitions for individual reset for the ports A, B, and C register settings during indi-

Register
Name

Register
Data Bits

HW Reset SW Reset I Reset ST Reset

HCR
X:$FFE8

HF(3-2) 0 0 — —

HCIE 0 0 — —

HTIE 0 0 — —

HRIE 0 0 — —

DMA 0 0 0 0

HF (1-0) 0 0 0 0

Table 8-7 HI Reset Effects — DSP56000/
DSP56001Programming Model
8- 32 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

vidual reset are shown in Table 8-11.

Register
Name

Register
Data Bits

HW Reset SW Reset I Reset ST Reset

ICR $0

INIT 0 0 0 0

HM(1-0) 0 0 0 0

TREQ 0 0 0 0

RREQ 0 0 0 0

HF(1-0) 0 0 0 0

CVR $1
HC 0 0 0 0

HV (4-0) $12 $12 $12 $12

ISR $2

HREQ 0 0 0 0

DMA 0 0 0 0

HF(3-2) 0 0 — —

TRDY 1 1 1 1

TXDE 1 1 1 1

RXDF 0 0 0 0

IVR $3 IV(7-0) $0F $0F — —

RX $5, 6, 7

RXH(23-16) — — — —

RXM(15-8) — — — —

RXL — — — —

TX $5, 6, 7

TXH(23-16) — — — —

TXM(15-8) — — — —

TXL(7-0) — — — —

Table 8-8 HI Reset Effects — Host Processor Programming Model
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 33

Register
Name

Register
Data Bits

HW Reset SW Reset I Reset ST Reset

CRA
X:$FFEC

WL(2-0) 0 0 — —

PSR 0 0 — —

DC(4-0) 0 0 — —

PM(7-0) 0 0 — —

CRB
X:$FFED

RIE 0 0 — —

TIE 0 0 — —

RE 0 0 — —

TE 0 0 — —

MOD 0 0 — —

GCK 0 0 — —

SYN 0 0 — —

FSL0 0 0 — —

FSL1 0 0 — —

SCKD 0 0 — —

SCD(2-0) 0 0 — —

OF(1-0) 0 0 — —

SR
X:$FFEE

RDF 0 0 0 0

TDE 1 1 1 1

ROE 0 0 0 0

TUE 0 0 0 0

RFS 0 0 0 0

TFS 0 0 0 0

IF(1-0) 0 0 0 0

RX
X:$FFEF RDR(23-0) — — — —

TX
X:$FFEF TDR(23-0) — — — —

SRSR* RDR(23-0) — — — —

STSR** RDR(23-0) — — — —

*SRSR—SSI serial receive shift register
**STSR—SSI serial transmit shift register

Table 8-9 SSI Reset Effects
8- 34 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Register
Name

Register
Data Bits

HW Reset SW Reset I Reset ST Reset

SCR
X:$FFF0

SCKP 0 0 — —

TMIE 0 0 — —

TIE 0 0 — —

RIE 0 0 — —

ILIE 0 0 — —

TE 0 0 — —

RE 0 0 — —

WOMS 0 0 — —

RWU 0 0 — —

WAKE 0 0 — —

SBK 0 0 — —

SSFTD 0 0 — —

WDS(2-0) 0 0 — —

SSR
X:$FFF1

R8 0 0 0 0

FE 0 0 0 0

PE 0 0 0 0

OR 0 0 0 0

IDLE 0 0 0 0

RDRF 0 0 0 0

TDRE 1 1 1 1

TRNE 1 1 1 1

SCCR
X:$FFF2

TCM 0 0 — —

RCM 0 0 — —

SCP 0 0 — —

COD 0 0 — —

CD(11-0) 0 0 — —

SRX
X:$FFF4
X:$FFF5
X:$FFF6

STX(23-0)
LOW
MID

HIGH

— — — —

STX
X:$FFF4
X:$FFF5
X:$FFF6
X:$FFF3

SRX(23-0)
LOW
MID

HIGH
STXA

— — — —

SRSH* SRSH(23-0) — — — —

STSH** STSH(23-0) — — — —

*SRSH—SCI serial receive shift register
**STSH—SCI serial transmit shift register

Table 8-10 SCI Reset Effects
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 35

8.4 WAIT PROCESSING STATE
The wait processing state is a low power-consumption state entered by execution of the WAIT instruction. In the wait state, the internal clock is disabled from all internal circuitry except the internal peripherals (e.g., the interrupt controller, the SCI, SSI, and HI). All inter-

nal processing is halted until an unmasked interrupt occurs or until the DSP is reset. The BR/BG circuits remain active during the wait state.

The wait state is one of two low power-consumption states. As a general rule, the normal operating current for the DSP56000/DSP56001 is typically less than 100 ma for a 20.5-MHz clock. The current is typically reduced to less than 10 ma (for a 20.5-MHz clock) in

the wait state and to less than 1.0 ma (independent of the clock frequency) in the stop state. See the DSP56001 Advance Information Data Sheet (ADI1290) for exact figures. There are several other ways that power can be reduced. Power consumption varies linearly

with both clock frequency and power-supply voltage. Changing clock frequency from 20 MHz[lz to 4 MHz can reduce power consumption 75 percent (i.e., linearly with decreasing frequency). Changing the memory wait states from 0 to 15 can reduce power consump-

tion by more than half during external memory accesses.

Figure 8-15 shows a WAIT instruction being fetched, decoded, and executed. It is fetched as n3 in this example and, during decode, is recognized as a WAIT instruction. The following instruction (n4) is aborted, and the internal clock is disabled from all internal circuitry

except the internal peripherals. The processor stays in this state until an interrupt or reset is recognized. The response time is variable due to the timing of the interrupt with respect to the internal clock. Figure 8-15 shows the result of a fast interrupt bringing the pro-

Register
Name

Register
Data Bits

HW Reset SW Reset I Reset ST Reset Comments

Table 8-11 Ports A, B, and C Reset Effects

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n3 n4 — ii1 ii2 n4 n5

DECODE n2 WAIT — ii1 ii2 n4

EXECUTE n1 n2 WAIT ii1 ii2

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

ONLY INTERNAL PERIPHERALS
RECEIVE CLOCK

Figure 8-15 Wait Instruction Timing
8- 36 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

cessor out of the wait state. The two appropriate interrupt vectors are fetched and put in the instruction pipe. The next instruction fetched is n4, which had been aborted earlier. Instruction execution proceeds normally from this point.

Figure 8-16 shows an example of the WAIT instruction being executed at the same time that an interrupt is pending. Instruction n4 is aborted as before. There is a five-instruction-cycle delay caused by the WAIT instruction; then the interrupt is processed normally.

The internal clocks are not turned off, and the net effect is that of executing eight NOP instructions between the execution of n2 and ii1.

During the wait state, the BR/BG circuits remain active. Before BR is asserted (see Table 8-12), all port A signals are driven. While the port is inactive, the control signals are deasserted, the data signals are inputs, and the address signals remain as the last address

read or written. The signal timing during a read or write is given in the timing diagrams in the DSP56001 Advance Information Data Sheet (ADI1290). When BG is asserted, all signals are three-stated (high impedance). Immediately after BR is deasserted, the RD and

WR signals are driven and are deasserted; all other signals remain in the high-impedance state. During the first T0 clock state following the exit from the wait state, control signals PS, DS, and X/Y are again driven; the data and address signals remain in the high-

impedance state. During the first external access, all signals return to their normal operating mode.

8.5 STOP PROCESSING STATE
The stop processing state, which is the lowest power-consumption state, is entered by the execution of the STOP instruction. In the stop state, the clock oscillator is gated off; whereas, in the wait mode, the clock oscillator remains active. The chip clears all peripheral

interrupts (HI, SSI, and SCI) and external interrupts (IRQA, IRQB, and NMI) when entering the stop state. Trace or stack errors that were pending, remain pending. The priority levels of the peripherals remain as they were before the STOP instruction was executed.

The SCI, SSI, and HI are held in their respective individual reset states while in the stop state.

All activity in the processor is halted until one of the following actions occurs:

1. A low level is applied to the IRQA pin.

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n3 n4 — — — — — — ii1 ii2 n4

DECODE n2 WAIT — — — — — — — ii1 ii2

EXECUTE n1 n2 WAIT — — — — — — — ii1

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

EQUIVALENT TO EIGHT NOPs

Figure 8-16 Simultaneous Wait Instruction and Interrupt

Signal
Before BR
Asserted

While BG
Asserted

After BR
Deasserted

After Return to
Normal State

After First
External Access

PS Driven Three-state Three-state Driven Driven

DS Driven Three-state Three-state Driven Driven

X/Y Driven Three-state Three-state Driven Driven

RD Driven Three-state Driven Driven Driven

WR Driven Three-state Driven Driven Driven

Data Driven Three-state Three-state Three-state Driven

Address Driven Three-state Three-state Three-state Driven

Table 8-12 BR/BG During WAIT
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 37

2. A low level is applied to the RESET pin.
Either of these actions will gate on the oscillator, and, after a clock stabilization delay, clocks to the processor and peripherals will be re-enabled. The clock stabilization delay period is determined by the stop delay (SD) bit in the OMR.

The stop sequence is composed of eight instruction cycles called stop cycles. These are differentiated from normal instruction cycles because the fourth cycle is stretched an indeterminant period of time while the four-phase clock is turned off.

The STOP instruction is fetched in stop cycle 1 of Figure 8-17, decoded in stop cycle 2 (which is where it is first recognized as a stop command), and executed in stop cycle 3. The next instruction (n4) is fetched during stop cycle 2 but is not decoded in stop cycle 3

because, by that time, the STOP instruction prevents the decode. The processor stops the clock and enters the stop mode. The processor will stay in the stop mode until it is restarted.

Figure 8-18 illustrates restarting the system by asserting the IRQA signal. If the exit from stop state was caused by a low level on the IRQA pin, then the processor will service the highest priority pending interrupt. If no interrupt is pending, then the processor resumes

at the instruction following the STOP instruction that caused the entry into the stop state.

An IRQA deasserted before the end of the stop cycle count will not be recognized as pending. If IRQA is asserted when the stop cycle count completes, then an IRQA interrupt will be recognized as pending and will be arbitrated with any other interrupts.

Specifically, when IRQA is asserted, the internal clock generator is started and begins a delay determined by the SD bit of the OMR. If the internal clock oscillator is used, the SD bit should be set to zero, which enables a delay count of 128K T cycles (131,072 T

cycles) to allow the clock oscillator to stabilize. If a stable external clock is used, the SD bit may be set to one, which enables a 16 T cycle delay.

The following description assumes that SD=0 (the 128K T counter is used). During the 128K T count, interrupts are ignored until the last few count cycles. At this time, the interrupts are synchronized. At the end of the 128K T cycle delay period, the chip restarts

instruction processing, stop cycle 4 is completed (interrupt arbitration occurs at this time), and stop cycles 5, 6, 7, and 8 are executed (it takes 17T from the end of the 128K T delay to the first instruction fetch). If the IRQA signal is released (pulled high) after a minimum

of 4T but less than 128K T cycles, no IRQA interrupt will occur, and the instruction fetched after stop cycle 8 will be the next sequential instruction (n4 in Figure 8-18). An IRQA interrupt will be serviced (as shown in Figure 8-18) if 1) the IRQA signal had previously

FETCH n3 n4 — — n4

DECODE n2 STOP — —

EXECUTE n1 n2 STOP —

STOP CYCLE COUNT 1 2 3 4 5 6 7 8 (9)

IRQA = INTERRUPT REQUEST A SIGNAL
n = NORMAL INSTRUCTION WORD

STOP = INTERRUPT INSTRUCTION WORD

RESUME STOP CYCLE COUNT 4,
INTERRUPTS ENABLED

131,072 T OR 16 T CYCLE COUNT STARTED

IRQA

CLOCK STOPPED

Figure 8-17 Simultaneous Wait Instruction and Interrupt

FETCH n3 n4 — — ii1

DECODE n2 STOP — —

EXECUTE n1 n2 STOP —

STOP CYCLE COUNT 1 2 3 4 5 6 7 8 (9)

IRQA = INTERRUPT REQUEST A SIGNAL
n = NORMAL INSTRUCTION WORD

STOP = INTERRUPT INSTRUCTION WORD

RESUME STOP CYCLE COUNT 4,
INTERRUPTS ENABLED

IRQA

CLOCK STOPPED

131,072 T OR 16 T CYCLE COUNT STARTED

Figure 8-18 STOP Instruction Sequence
8- 38 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

been initialized as level sensitive, 2) IRQA is held low from the end of the 128K T cycle delay counter to the end of stop cycle count 8, and 3) no interrupt with a higher interrupt level is pending. If IRQA is not asserted during the last part of the STOP instruction

sequence (6, 7, and 8) and if no interrupts are pending, the processor will refetch the next sequential instruction (n4). Since the IRQA signal is asserted (see Figure 8-18), the processor will recognize the interrupt and fetch and execute the instructions at P:$0008 and

P:$0009 (the IRQA interrupt vector locations).

To ensure servicing IRQA immediately after leaving the stop state, the following steps
must be taken before the execution of the STOP instruction:

1. Define IRQA as level sensitive.

2. Define IRQA priority as higher than the other sources and higher than the pro-
gram priority.

3. Ensure that no stack error or trace interrupts are pending.

4. Execute the STOP instruction and enter the stop state.

5. Recover from the stop state by asserting the IRQA pin and holding it asserted
for the whole clock recovery time. If it is low, the IRQA vector will be fetched.
Also, the user must ensure that NMI will not be asserted during these last
three cycles; otherwise, NMI will be serviced before IRQA because NMI prior-
ity is higher.

6. The exact elapsed time for clock recovery is unpredictable. The external
device that asserts IRQA must wait for some positive feedback, such as spe-
cific memory access or a change in some predetermined I/O pin, before deas-
serting IRQA.

The STOP sequence totals 131,104 T cycles (if SD=0) or 48 T cycles (if SD=1) in addition to the
period with no clocks from the stop fetch to the IRQA vector fetch (or next instruction). However,
there is an additional delay if the internal oscillator is used. An indeterminant period of time is
needed for the oscillator to begin oscillating and then stabilize its amplitude. The processor will
still count 131,072 T cycles (or 16 T cycles), but the period of the first oscillator cycles will be
irregular; thus, an additional period of 19,000 T cycles should be allowed for oscillator irregularity
(the specification recommends a total minimum period of 150,000 T cycles for oscillator stabiliza-
tion). If an external oscillator is used that is already stabilized, no additional time is needed.

If the STOP instruction is executed when the IRQA signal is asserted, the clock generator will not
be stopped, but the four-phase clock will be disabled for the duration of the 128K T cycle (or 16 T
cycle) delay count. In this case, the STOP looks like a 131,072 + 35 T cycle (or 51 T cycle) NOP,
since the STOP instruction itself is eight instruction cycles long (32 T) and synchronization of
IRQA is 3T which equals 35T.

A trace or stack error interrupt pending before entering the stop state is not cleared and will
remain pending. During the clock stabilization delay, all peripheral and external interrupts are
cleared and ignored (includes all SCI, SSI, HI, IRQA, IRQB, and NMI interrupts, but not trace or
stack error). If the SCI, SSI, or HI have interrupts enabled in 1) their respective control registers
and 2) in the interrupt priority register, then interrupts like SCI transmitter empty will be immedi-
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 39

ately pending after the clock recovery delay and will be serviced before continuing with the next
instruction. If peripheral interrupts must be disabled, the user should disable them with either the
control registers or the interrupt priority register before the STOP instruction is executed.

If RESET is used to restart the processor (see Figure 8-19), the 128K T cycle delay counter

would not be used, all pending interrupts would be discarded, and the processor would immedi-
ately enter the reset processing state as described in 8.3 RESET PROCESSING STATE. The
recommended stabilization time suggested in the data sheet for the clock (RESET should be
asserted for this time) is only 50 T for a stabilized external clock but is the same 150,000 T for the
internal oscillator. These stabilization times are recommended times but are not imposed by
internal timers or time delays. The DSP fetches instructions immediately after exiting reset. If the
user wishes to use the 128K T (or 16 T) delay counter, it can be started by asserting IRQA for a
short time (about two clock cycles).

During the stop mode, the port A bus is frozen. The state of each pin immediately before execut-
ing the STOP instruction will be held until the DSP leaves the stop state. Port A is not three-
stated, and the BR/BG circuits are not operational. However, port A will remain three-stated if BG
was asserted before the STOP instruction was executed. One way to release the port A bus for
use while the DSP is in the stop state is to use a port B or port C pin to initiate a bus request
before executing the STOP instruction.

INTERRUPT CONTROL CYCLE 1

INTERRUPT CONTROL CYCLE 2

FETCH n3 n4 — — nop nA nB nC nD nE

DECODE n2 STOP — — nop nop nA nB nC nD

EXECUTE n1 n2 STOP — nop nop nop nA nB nC

STOP CYCLE COUNT 1 2 3 4

IRESET = INTERRUPT
n = NORMAL INSTRUCTION WORD

nA, nB, nC = INSTRUCTIONS IN RESET ROUTINE
STOP = INTERRUPT INSTRUCTION WORD

RESET

CLOCK STOPPED

PROCESSOR LEAVES RESET STATEPROCESSOR ENTERS
RESET STATE

Figure 8-19 STOP Instruction Sequence Recovering with RESET
8- 40 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 41

8- 42 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 8 - 43

8- 44 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SECTION 9
PORT A

Port A is the memory expansion port that can be used for either memory expansion or for
memory-mapped I/O (see 2.9.1 Expansion Port (Port A)). A number of features make
port A versatile and easy to use. These features provide a low-parts-count connection
with fast memories, slow memories/devices, and multiple bus master systems.

The port A data bus is 24 bits wide with a separate 16-bit address bus capable of a sus-
tained rate of one memory access per machine cycle (using no-wait-state memory).
External memory is divided into three 64K-word X 24-bit spaces – X:, Y:, and P:. An inter-
nal wait-state generator can be programmed to insert up to15 wait states if access to
slower memory or I/O devices is required. A bus wait signal allows an external device to
control the number of wait states inserted in a bus access operation. Bus arbitration sig-
nals allow an external device (e.g., a DMA controller or another processor) use of the bus
while internal operations continue using the internal memories. Two power-reduction fea-
tures are specific to port A. The first power-reduction feature is that accessing the internal
memory spaces does not toggle the external memory signals, eliminating unneeded
switching current. The second power-reduction feature is that, if lower memory speed is
acceptable, wait states can be added to external memory accesses to significantly reduce
power while accessing those memories.

9.1 PORT A INTERFACE
One or more of the digital signal processor (DSP) memory sources (X data memory, Y
data memory, and program memory) can be accessed during the execution of an instruc-
tion. Each of these memory sources may be either internal or external to the DSP. Three
address buses (XAB, YAB, and PAB) and four data buses (XDB, YDB, PDB, and GDB)
are available for internal memory accesses during one instruction cycle, but only one
address bus and one data bus (port A) are available for external memory accesses. If all
memory sources are internal to the DSP, one or more of the three memory sources may
be accessed in one instruction cycle (i.e., program memory access or program memory
access plus an X, Y, XY, or L memory reference). However, when one or more of the
memories are external to the DSP56000/DSP56001, memory references may require
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 1

additional instruction cycles because only one external memory access can occur per
instruction cycle.

If more than one external access is required in one instruction cycle, the accesses will be
made in the following priority: X memory, Y memory, and program memory. It takes one

EXTERNAL
ADDRESS BUS

SWITCH

EXTERNAL
ADDRESS BUS

A0 - A15

X ADDRESS (XA)

Y ADDRESS (YA)

PROGRAM ADDRESS (PA)

16 - BIT INTERNAL
ADDRESS BUSES

16

EXTERNAL
DATA BUS
SWITCH

EXTERNAL
DATA BUS
D0 - D23

X DATA (XD)

Y DATA (YD)

PROGRAM DATA (PD)

24 - BIT INTERNAL
DATA BUSES

24

GLOBAL DATA (GD)

EXTERNAL
BUS CONTROL

LOGIC

BUS CONTROL SIGNALS

RD - READ ENABLE
WR - WRITE ENABLE
PS - PROGRAM MEMORY SELECT
DS - DATA MEMORY SELECT
X/Y - X/Y SELECT
BR/WT - BUS REQUEST/WAIT
BG/BS - BUS GRANT/BUS STROBE

Figure 9-1 Port A Signals
9- 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

instruction cycle for each external memory access – i.e., one access can be executed in
one instruction cycle, two accesses take two instruction cycles, etc. Since the external bus
is only 24 bits wide, one XY or long external access will take two instruction cycles.

Figure 9-1 shows the port A signals divided into their three functional groups. The bus
control signals can be subdivided into three additional groups: read/write control, address
space selection, and bus access control. The read/write controls are self-descriptive.
They can be used as decoded read and write controls, or, as seen in Figure 9-2, Figure
9-3, Figure 9-4, and Figure 9-6, the write signal can be used as the read/write control, and
the read signal can be used as an output enable (or data enable) control for the memory.
Decoding in this fashion simplifies connection to high-speed random-access memories
(RAMs). The program memory select, data memory select, and X/Y select can be consid-
ered additional address signals, which extend the addressable memory from 64K words
to 192K words

Since external logic delay is large relative to RAM timing margins, timing becomes more
difficult as faster DSPs are introduced. The separate read and write strobes used by the
DSP56000/DSP56001 are mutually exclusive, with a guard time between them to avoid
two data buffers being enabled simultaneously. Other methods using external logic gates
to generate the RAM control inputs require either faster RAM chips or external data buff-
ers to avoid data bus buffer conflicts.

VCC
+5 V

16

RD

WR

PS

DS

X/Y

BR/WT

BG/BS

24

VSS
GROUND

ADDRESS BUS
A0 - A15

DATA BUS
D0 - D23

DSP56000/DSP56001

BUS
CONTROL

OE

R/W

CS

ADDRESS

DATA

PROGRAM MEMORY

24 BIT x N WORDS

Figure 9-2 External Program Space
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 3

Additional DSP56000/DSP56001 peripherals can be memory mapped. An easy way to
interface with MC6800 and MC68000 peripherals and to have an early read/write indica-
tion is to use the X/Y output pin as an early R/W indication. The peripheral chip select
should be derived from the address lines and the data strobe so the peripheral registers
appear in both X and Y data memory spaces at the same addresses. For a read operation,
perform an X memory read:

MOVE X:PERIPHERAL,X0 ;X/Y signal is high.

For a write operation, perform a Y memory write:

MOVE X0,Y:PERIPHERAL ;X/Y signal is low.

Since the X/Y output signal has the same timing as the address lines, it provides an early
direction indication. The RD and WR signals are ANDed together to form a “data strobe”
signal. The only restriction is that X and Y memory space must be external at the same
address. Thus, the I/O short addressing mode and the MOVEP instruction cannot be used
for this application. Otherwise, the hardware and software are trivial.

VCC
+5 V

16

RD

WR

PS

DS

X/Y

BR/WT

BG/BS

24

VSS
GROUND

ADDRESS BUS
A0 - A15

DATA BUS
D0 - D23

DSP56000/DSP56001

BUS
CONTROL

DATA DATA ADDRESS ADDRESS

X DATA
MEMORY

24 BITS x N WORDS

Y DATA
MEMORY

24 BITS x N WORDS

OE R/W CS CE OE R/W CS CE

Figure 9-3 External X and Y Data Space
9- 4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Figure 9-2 shows an example of external program memory. A typical implementation of
this circuit would use three-byte-wide static memories and would not require any addi-
tional logic. The PS signal is used as the program-memory chip-select signal to enable
the program memory at the appropriate time.

Figure 9-3 shows a similar circuit using the DS signal to enable two data memories and
using the X/Y signal to select between them. The three external memory spaces (pro-
gram, X data, and Y data) do not have to reside in separate physical memories; a single
memory can be employed by using the PS, DS, and X/Y signals as additional address
lines to segment the memory into three spaces (see Figure 9-4). Table 9-1 shows how the
PS, DS, and X/Y signals are decoded. If the DSP is in the development mode, an excep-
tion fetch to any interrupt vector location will cause the X/Y signal to go low when PS is
asserted. This procedure is useful for debugging and for allowing external circuitry to track
interrupt servicing.

$2800
U3

U4

A11

A12

OE
R/W

CS

A
15

VCC
+5 V

RD

WR

PS

DS

X/Y

BR/WT

BG/BS

VSS
GROUND

ADDRESS BUS
A0 - A15

DATA BUS
D0 - D23

DSP56000/DSP56001

BUS
CONTROL

$3FFF

EXTERNAL
PROGRAM

X AND Y MEMORY

16

24

A0-A10

A
13 A

14

U1
CE

A11

4K
PROGRAM
MEMORY

$3000

$2FFF

2K
X DATA

MEMORY

$27FF

2K
Y DATA

MEMORY

$2000

24 BITS

U2

Figure 9-4 Memory Segmentation
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 5

Special provisions have been made to allow the DSP to load a program from an inexpensive
byte-wide ROM (see Figure 9-5 and the DSP56001 Advance Information Data Sheet
(ADI1290) into internal program memory during a power-on reset. On powerup, the wait-
state generator adds 15 wait states to all external memory accesses so that slow memory
can be used. If bit 23 of external memory is a logic one, the DSP will load the contents of
an external ROM into internal program memory (if bit 23 is a logic zero, it will load from the
host port). The bootstrap program uses the bytes in three consecutive memory locations in
the external ROM to build a single word in internal program memory. Figure 9-6 shows a
system that uses internal program memory loaded from an external ROM during powerup
and that splits the data memory space of a single memory bank into X: and Y: memory
spaces. Although external program memory must be 24 bits, external data memory does
not. Of course, this is application specific. However, many systems use 16 or fewer bits for
A/D and D/A conversion, since they only need to store 16, 12, or even eight bits of data.

15K15K

+5 V

MBD301

ADDRESS OF EXTERNAL
BYTE-WIDE P MEMORY

P:$C000
P:$C001
P:$C002

•
•
•

P:$C5FD
P:$C5FE
P:$C5FF

FROM
OPEN-COLLECTOR

BUFFER

FROM
RESET

FUNCTION

FROM
OPEN-COLLECTOR

BUFFER

15K 15K

+5 V

D23

DSP56001

MODA/IRQA

MODB/IRQB

RESET

PS

A11 - A15

A0 - A10

D0 - D7

CE

N.C.
5

1

8

A0 - A10

D0 - D7

MBD301

2716

CONTENTS LOADED
TO INTERNAL PRAM AT:

P:$0000 LOW BYTE
P:$0000 MID BYTE
P:$0000 HIGH BYTE

•
•
•

P:$01FF LOW BYTE
P:$01FF MID BYTE
P:$01FF HIGH BYTE

+5 V

47K

Figure 9-5 Port A Bootstrap Circuit
9- 6 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

The 24/56 bits of internal precision is usually sufficient for intermediate results. Recognizing this
fact can save cost by reducing the number of external memory chips.

All unused inputs should have pullup resistors for two reasons: 1) floating inputs draw
excessive power, and 2) a floating input can cause erroneous operation. For example,
during RESET, all signals are three-stated. Without pullup resistors, the PS and DS sig-
nals may become active, causing two or more memory chips to try to simultaneously drive
the external data bus, which can damage the memory chips. A pullup resistor in the 50K-
ohm range should be sufficient.

9.2 PORT A TIMING
The external bus timing is defined by the operation of the address bus, data bus, and bus
control pins. The transfer of data over the external data bus is synchronous with the clock.
The timing A, B, and C relative to the edges of an external clock (see Figure 9-7 and Fig-

ure 9-8) are provided in the DSP56001 Advance Information Data Sheet (ADI1290). This
timing is essential for designing synchronous multiprocessor systems. Figure 9-7 shows
the port A timing with no wait states (wait-state control is discussed in 9.2.1 Port A Wait
States). One instruction cycle equals two clock cycles or four clock phases. The clock
phases, which are numbered T0 – T3, are used for timing on the DSP. Figure 9-8 shows
the same timing with two wait states added to the external X: memory access. Four TW
clock phases have been added because one wait state adds two T phases and is equiv-

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1

ONE INSTRUCTION CYCLE

ONE CLOCK CYCLE

INTERNAL CLOCK PHASES

ADDRESS PS, DS, X/Y

A

B

C

RD

DATA IN

WR

DATA OUT

READ
CYCLE

WRITE
CYCLE

Figure 9-7 Port A Bus Operation with No Wait States
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 7

alent to repeating the T2 and T2 clock phases. The write signal is also delayed from the

A
0

-
A

9
A

10
C

S
W

E
D

E

11

15
K

15
K

+
5

V

1N
57

11

F
R

O
M

O
P

E
N

-C
O

LL
E

C
TO

R
B

U
F

F
E

R

F
R

O
M

R
E

S
E

T
F

U
N

C
T

IO
N

F
R

O
M

O
P

E
N

-C
O

LL
E

C
TO

R
B

U
F

F
E

R

15
K

+
5

D
23

D
S

P
56

00
1

M
O

D
A

/IR
Q

A

M
O

D
B

/IR
Q

B

R
E

S
E

T

R
D

A
0

-
A

10

D
0

-
D

23

C
E

8

1N
57

11

27
16

W
R

D
S

P
S

X
/Y

+
5

V 47
K

47
K

47
K

47
K

10

D
0

-D
7

A
0

-
A

10

20
18

(3
)

D
0

-D
23 24

15
K

F
ig

u
re

 9
-6

 P
o

rt
 A

 B
o

o
ts

tr
ap

 R
O

M
 w

it
h

 X
 a

n
d

 Y
 R

A
M

9- 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

T1 to the T2 state when one or more wait states are added to ease interfacing to the port.
Each external memory access requires the following procedure:

1. The external memory address is defined by the address bus (A0–A15) and the
memory reference selects (PS, DS, and X/Y). These signals change in the first
phase (T0) of the bus cycle. Since the memory reference select signals have
the same timing as the address bus, they may be used as additional address
lines. The address and memory reference signals are also used to generate
chip-select signals for the appropriate memory chips. These chip-select sig-
nals change the memory chips from low-power standby mode to active mode
and begin the read access time. This mode change allows slower memories to
be used since the chip-select signals can be address based rather than read
or write enable based. Read and write enable do not become active until after
the address is valid. See the timing diagrams in the DSP56001 Advance Infor-
mation Data Sheet (ADI1290) for detailed timing information.

2. When the address and memory reference signals are stable, the data transfer
is enabled by read enable (RD) or write enable (WR). RD or WR is asserted to
“qualify” the address and memory reference signals as stable and to perform
the read or write data transfer. RD and WR are asserted in the second phase
of the bus cycle (if there are no wait states). Read enable is typically con-

T0 T1 T2 TW TW TW TW T3 T0 T1
ONE CLOCK CYCLE

INTERNAL CLOCK PHASES

ADDRESS PS, DS, X/Y

A

B

C

RD

DATA IN

WR

DATA OUT

READ
CYCLE

WRITE
CYCLE

ONE INSTRUCTION CYCLE

TWO WAIT STATES

DATA LATCHED HERE

Figure 9-8 Port A Bus Operation with Two Wait States
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 9

nected to the output enable (OE) of the memory chips and simply controls the
output buffers of the chip-selected memory. Write enable is connected to the
write enable (WE) or write strobe (WS) of the memory chips and is the pulse
that strobes data into the selected memory. For a read operation, RD is
asserted and WR remains deasserted. Since write enable remains negated, a
memory read operation is performed. The DSP data bus becomes an input,
and the memory data bus becomes an output. For a write operation, WR is
asserted and RD remains deasserted. Since read enable remains deasserted,
the memory chip outputs remain in the high-impedance state even before write
strobe is asserted. This state assures that the DSP and the chip-selected
memory chips are not enabled onto the bus at the same time. The DSP data
bus becomes an output, and the memory data bus becomes an input.

3. Wait states are inserted into the bus cycle by a wait-state counter or by
asserting WT. The wait-state counter is loaded from the bus control register. If
the value loaded into the wait-state counter is zero, no wait states are inserted
into the bus cycle, and RD and WR are asserted as shown in Figure 9-7. If a
value W=/0 is loaded into the wait state counter, W wait states are inserted
into the bus cycle. When wait states are inserted into an external write cycle,
WR is delayed from T1 to T2. The timing for the case of two wait states (W=2)
is shown in Figure 9-8.

4. When RD or WR are deasserted at the start of T3 in a bus cycle, the data is
latched in the destination device – i.e., when RD is deasserted, the DSP
latches the data internally; when WR is deasserted, the external memory
latches the data on the positive-going edge. The address signals remain sta-
ble until the first phase of the next external bus cycle to minimize power dissi-

PS DS X/Y External Memory Reference

1 1 1 No Activity

1 0 1 X Data Memory on Data Bus

1 0 0 Y Data Memory on Data Bus

0 1 1 Program Memory on Data Bus (Not an Exception)

0 1 0 External Exception Fetch: Vector or Vector +1
(Development Mode Only)

0 0 X Reserved

1 1 0 Reserved

Table 9-1 Program and Data Memory Select Encoding
9- 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

pation. The memory reference signals (PS, DS, and X/Y) are deasserted (held
high) during periods of no bus activity, and the data signals are three-stated.
For read-modify-write instructions such as BSET, the address and memory
reference signals remain active for the complete composite (i.e., two Icyc)
instruction cycle.

Figure 9-9 shows an example of mixing different memory speeds and memory-mapped
peripherals in different address spaces. The internal memory uses no wait states, X:
memory uses two wait states, Y: memory uses four wait states, P: memory uses five wait
states, and the analog converters use 14 wait states. Controlling five different devices at
five different speeds requires only one additional logic package. Half the gates in that
package are used to map the analog converters to the top 64 memory locations in Y:
memory.

Adding wait states to external memory accesses can substantially reduce power require-
ments. Table 9-2 shows how the power was reduced during external memory and I/O
operations by changing from zero to 15 wait states at four different clock speeds in a test
circuit.

9.2.1 Port A Wait States
The DSP56000/DSP56001 features two methods to allow the user to accommodate slow
memory by changing the port A bus timing. The first method uses the bus control register
(BCR), which allows a fixed number of wait states to be inserted in a given memory
access to all locations in each of the four memory spaces: X, Y, P, and I/O. The second
method uses the bus strobe/wait (BS/WT) facility, which allows an external device to
insert an arbitrary number of wait states when accessing either a single location or multi-
ple locations of external memory or I/O space. Wait states are executed until the external
device releases the DSP to finish the external memory cycle.

9.2.2 Bus Control Register
The expansion bus timing is controlled by the BCR (see Figure 9-10) which controls the

Clock
Current for

0 Wait States
Current for

15 Wait States

4.000 MHz 19.8 mA 8.6 mA

6.5536 MHz 31.0 mA 12.8 mA

10.245 MHz 46.8 mA 18.8 mA

20.000 MHz 91.0 mA 36.6 mA

Table 9-2 Power Requirements for Minimum and
Maximum External Memory Wait States
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 11

timing of the bus interface signals, RD and WR, and the data output lines. Each of the

X:$FFFE

EXTERNAL
I/0 MEMORY

EXTERNAL
P MEMORY

EXTERNAL
Y MEMORY

EXTERNAL
X MEMORY

750 ns
(14 WAIT STATES)

A15

A15

X/Y

DS

WR

RD

PS

20.5 - MHz
DSP56000

IN
T

E
R

N
A

L
M

E
M

O
R

Y
(0

 W
A

IT
 S

TA
T

E
S

) 6242 - 15

D/A
CONVERTER

A/D
CONVERTER

CS WRD CS RDD

A0 - A15

D0 - D23

CS CS WE OE CS OE CE OE

6242 - 15

6242 - 15 2764 - 25

2764 - 25

2764 - 25

27256 - 30

27256 - 30

27256 - 30

8K x 24
X RAM
150 ns

(2 WAIT STATES)

8K x 24
Y ROM
250 ns

(4 WAIT STATES)

32K x 24
P ROM
300 ns

(5 WAIT STATES)

20.5
MHz

0010 0100 0101 1110

15 12 11 8 7 4 3 0

PORT A BUS CONTROL REGISTER (BCR)

Figure 9-9 Mixed-Speed Expanded System
9- 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

memory spaces, X data, Y data, program data, and I/O, has its own 4-bit BCR, which can
be programmed for inserting up to 15 wait states (each wait state adds one-half instruction
cycle to each memory access – i.e., 50 ns for a 20-Mhz clock). In this way, external bus
timing can be tailored to match the speed requirements of the different memory spaces.
On processor RESET, the BCR is preset to all ones (15 wait states).

Figure 9-10 illustrates which of the four BCR subregisters affect which external memory
space. The BCR is a memory-mapped register located at X:$FFFE. All the internal periph-
eral devices are memory mapped, and their control registers reside between X:$FC00
and X:$FFFF. Loading the BCR as shown in Figure 9-9 can be accomplished by execut-
ing a “MOVEP #$245E, X:$FFFE” instruction. Changing individual bits in one of the four
subregisters can be accomplished by using the BSET and BCLR instructions.

$FFC0

$FFFF

$FFC0

$FFFE

$FFFF

X:$FFFE

15 12 11 8 7 4 3 0

EXTERNAL
X MEMORY *

EXTERNAL
Y MEMORY *

EXTERNAL
P MEMORY *

EXTERNAL
I/0 MEMORY *

EXTERNAL
PROGRAM
 MEMORY

INTERNAL
PROGRAM

 ROM

$FFFF

$F00

0

EXTERNAL
X DATA

MEMORY

$200

$100

0

$200

$100

0

EXTERNAL
Y DATA

MEMORY

EXTERNAL
PERIPHERALS

INTERNAL
Y ROM

INTERNAL
Y RAM

INTERNAL
X ROM

INTERNAL
X RAM

PROGRAM
 MEMORY SPACE

X DATA
MEMORY
 SPACE

Y DATA
MEMORY
 SPACE

* Zero to 15 wait states can be inserted into each external memory access.

Figure 9-10 Bus Control Register

ON-CHIP PERIPHERALS

BUS CONTROL REGISTER
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 13

9.2.3 Bus Strobe/Wait Pins
The DSP56000/DSP56001 has two reconfigurable pins that are used as either bus
request/bus grant (BR/BG) or as bus strobe/wait (BS/WT). The ability to insert wait states
using BS/WT provides a means to connect asynchronous devices to the DSP, allows
devices with differing timing requirements to reside in the same memory space, allows a
bus arbiter to provide a fast multiprocessor bus access, and provides another means of
halting the DSP at a known program location with a fast restart. Bus strobe in the original
in-house documentation was called “memory ready strobe” and wait was called “memory
ready”. The original names have been changed to be more descriptive.

RESET initializes the DSP in the BR/BG mode for compatibility. The BS/WT mode is
selected if bit 7 in the OMR (see Figure 9-11) is set to one, which can be accomplished
by executing an “ORI #80, OMR” instruction. Because the BR/BG and BS/WT modes are
mutually exclusive, port A cannot be three-stated by an external device when in the BS/
WT mode. The BCR is still operative in the BS/WT mode and defines the minimum num-
ber of wait states that are inserted.

The timing of BS and WT pins is illustrated in Figure 9-12. Every external access, BS is
asserted concurrently with the address lines in T0. BS can be used by external wait-state
logic to establish the start of an external access. BS is deasserted in T3 of each external
bus cycle, signaling that the current bus cycle will complete. Since the WT signal is inter-
nally synchronized, it can be asserted asynchronously with respect to the system clock.
The WT signal should only be asserted while BS is asserted. Asserting WT while BS is
deasserted will give indeterminate results. However, for the number of inserted wait states
to be deterministic, WT timing must satisfy setup and hold timing with respect to the neg-
ative-going edge of EXTAL. The setup and hold times are provided in the DSP56001
Advance Information Data Sheet (ADI1290). The timing of WR is controlled by the BCR
and is independent of WT. The minimum number of wait states that can be inserted using
the WT pin is two. Table 9-3 summarizes the effect of the BCR and WT pin on the number
of wait states generated.

9.3 BUS ARBITRATION
The BR/BG and BS/WT pins provide bus arbitration controls. The BR/BG mode allows an

23 8 7 6 5 4 3 2 1 0

0 EM SD 0 0 0 DE MOD
B

MOD
A

EXTERNAL MEMORY ACCESS

0 BUS REQUEST/BUS GRANT ARBITRATION (RESET); USED BY A HOST TO THREE-STATE THE DSP56000 EXTERNAL BUS.
1 BUS STROBE/WAIT; USED BY A HOST TO DELAY OR STRETCH THE CURRENT DSP56000 BUS CYCLE

Figure 9-11 Port A Access Control
9- 14 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

external device to request and be given control of the external memory bus (port A) while
the DSP continues internal operations using internal memory spaces. This configuration
allows a bus controller to arbitrate a multiple bus-master system. (A bus master can issue

BUS
CONTROL

T0 T1 T2 TW TW TW TW T3 T0

VCC
+5 V

16

RD

WR

PS

DS

X/Y

WT

BS

24

VSS
GROUND

ADDRESS BUS
A0 - A15

DATA BUS
D0 - D23

DSP56000/DSP56001

T3

A0 - A15, D0 - D23, PS, DS, X/Y

WT IS
SAMPLED

WT IS
SAMPLED

WT IS
SAMPLED

EM SD 0 0 0 DE MB MA

7 6 5 4 3 2 1 0

SET EM = 1

OPERATING MODE REGISTER

Figure 9-12 Bus Strobe/Wait Sequence

BCR
Contents

WT Number of Wait States Generated

0 Deasserted 0

0 Asserted 2 (minimum)

> 0 Deasserted Equals value in BCR

> 0 Asserted Minimum equals 2 or value in BCR.
Maximum is determined by WT.

Table 9-3 Wait State Control
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 15

addresses on the bus; a bus slave can respond to addresses on the bus. A single device
can be both a master and a slave, but can only be one or the other at any given time.) The
BS/BW mode allows a bus arbitrator to extend the bus cycle of the DSP56000/DSP56001
to allow another bus master time to finish its bus access before allowing the DSP56000/
DSP56001 access to the bus.

9.3.1 Bus Request/Bus Grant
The BR/BG mode is selected if OMR bit 7 (see Figure 9-11) is set to zero (execute an
“ANDI #7F,OMR” instruction). When BR is asserted (see Figure 9-13), the DSP will assert
BG after the current external access cycle completes and will simultaneously three-state
the port A signals (see the DSP56001 Advance Information Data Sheet (ADI1290) for
exact timing of BR/BG). The bus is then available to be used by the bus master requesting
the bus. When BR is deasserted, BG is deasserted after the current external access, and
the port A signals are no longer three-stated. Reset clears bit 7 of the OMR. Information
on operation of the BR/BG pins after executing a WAIT or STOP instruction can be found
in 8.4 WAIT PROCESSING STATE and 8.5 STOP PROCESSING STATE.

9.3.2 Shared Memory
The bus control signals described in the previous paragraphs provide the means to con-
nect additional bus masters (which may be additional DSPs, microprocessors, direct
memory access (DMA) controllers, etc.) to the port A bus. Four arbitration examples will
be described in the following paragraphs: 1) bus arbitration using only BR/BG with internal
control, 2) bus arbitration using only BR/BG with external control, 3) bus arbitration using
BR/BG and BS/WT with no overhead, and 4) signaling using semaphores.

9.3.2.1 Bus Arbitration Using Only BR/BG With Internal Control
Perhaps the simplest example of a shared memory system using a DSP56000/DSP56001
is shown in Figure 9-14. The bus arbitration is performed internal to the DSP#2 by using

DSP56000
BUS MASTER

A0 - A15, D0 - D23, PS,
DS, X/Y, RD, WR

BR

BG

A DIFFERENT
BUS MASTER

DSP56000
BUS MASTER

Figure 9-13 Bus Request/Bus Grant Sequence
9- 16 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

software. DSP#2 controls all bus operations by using I/O pin OUT2 to three-state its own
port A and by never accessing port A without first calling the subroutine that arbitrates the
bus. When the DSP#2 needs to use external memory, it uses I/O pin OUT1 to request bus
access and I/O pin IN1 to read bus grant. DSP#1 does not need any extra code for bus
arbitration since the BR/BG hardware handles its bus arbitration automatically. The pro-
tocol for bus arbitration is as follows:

At RESET: DSP#2 sets OUT2=0 (BR#2=0) and OUT1=1 (BR#1=1), which gives DSP#1
access to the bus and suspends DSP#2 bus access.

When DSP#2 wants control of the memory, the following steps are performed (see Figure
9-15):

1. DSP# 2 sets OUT1=0 (BR#1=0).

2. DSP# 2 waits for IN1=0 (BG#1=0 and DSP#1 off the bus). This takes at most
13T+4T*WS+20 ns (about 400 ns at 20 MHz) where T is Icyc/4 and WS is the
number of wait states used by DSP# 1. If DSP#1 is not using any read/modify/
write instructions in its external space, the maximum becomes only
9T+2T*WS+20 ns (about 250 ns at 20 MHz).

BR

BG

CONTROL

A0 - A15

D0 - D23

BR

OUT2

OUT1

IN1

CONTROL

A0 - A15

D0 - D23

C A D

MEMORY
BANK

DSP56000/DSP56001 #1 DSP56000/DSP56001 #2
BUS ARBITER

Figure 9-14 Bus Arbitration Using Only BR/BG with Internal Control
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 17

3. DSP#2 sets OUT2=1 (BR#2=1 to let DSP#2 on the bus).

4. DSP#2 accesses the bus for block transfers, etc. at full speed.

5. To release the bus, DSP#2 sets OUT2=0 (BR#2=0) after the last external
access.

6. DSP#2 then sets OUT1=1 (BR#1=1) to return control of the bus to DSP#1.

7. DSP#1 then acknowledges mastership by deasserting BG#1.

9.3.2.2 Bus Arbitration Using Only BR/BG With External Control
Figure 9-16 can be implemented with external bus arbitration logic, which will save pro-
cessing capacity on the DSPs and can make bus access much faster at a cost of
additional hardware. Operation is similar to the system shown in Figure 9-14. The bus
arbitration logic takes control of the external bus by deasserting an enable signal (E1, E2,
and E3) to all DSPs, which will then acknowledge by granting the bus (BG=0). When a
DSP (DSP#1 in Figure 9-16) wants the bus, it will jump to a subroutine, which will set
PC3=1. When the arbitration logic grants the bus to a DSP, it will issue a BG1 (BG2 for
DSP#2; BG3 for DSP#3) to let the DSP know that it can have the bus. Arbitration logic will
then enable the bus by asserting the appropriate enable (E1=1). When the DSP is ready
to relinquish the bus, it deasserts PC3, and the arbiter deasserts E1 and BG1.

9.3.2.3 Bus Arbitration Using BR/BG and BS/WT With No Overhead
By using the circuit shown in Figure 9-17, two DSPs can share memory with hardware
arbitration that requires no software on the part of the DSPs. In Figure 9-17, DSP#1 has
EM=1 in its OMR, and DSP#2 has EM=0 in its OMR. The protocol for bus arbitration in
Figure 9-17 is as follows:

At RESET: BG of DSP#2 is deasserted, which three-states the buffers, giving DSP#2 con-
trol of the memory. Reset causes DSP#1 to initially be in the BR/BG mode. DSP#1 OMR
bit 7 must be set by software during initialization to change BR/BG to BS/WT.

DATA
TRANSFERRED

OUT1

1 2 3 4 5 6 7

IN1

OUT2

Figure 9-15 Two DSPs with External Bus Arbitration Timing

HERE
9- 18 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

When DSP#1 wants control of the memory the following steps are performed (see Figure
9-18):

1. DSP#1 makes an external access, thereby asserting BS, which asserts WT
(causing DSP#1 to execute wait states in the current cycle) and asserts
DSP#2 BR (requesting that DSP#2 release the bus).

2. When DSP#2 finishes its present bus cycle, it three-states its bus drivers and
asserts BG. Asserting BG enables the three-state buffers, placing the DSP#1
signals on the memory bus. Asserting BG also deasserts WT, which allows
DSP#1 to finish its bus cycle.

3. When DSP#1’s memory cycle is complete, it releases BS, which deasserts
BR. DSP#2 then deasserts BG, three-stating the buffers and allowing DSP#2
to access the memory bus.

16

SYSTEM MEMORY
32K x 24 X DATA RAM
32K x 24 Y DATA RAM

32K x 24 PROGRAM RAM

ADDRESS DATA CONTROL

ADDRESS

DATA

CONTROL

24

5

A D C A D C A D C

DSP56000/DSP56001
#1

DSP56000/DSP56001
#2

DSP56000/DSP56001
#3

BG BR PC3 PC4 BG BR PC3 PC4 BG BR PC3 PC4

BUS ARBITRATION LOGIC

A1 E1 BR1 BG1 A2 E2 BR2 BG2 A3 E3 BR3 BG3

Figure 9-16 Bus Arbitration Using Only BR/BG with External Control
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 19

MEMORY

D A C

DSP #1

D0 - D23

A0 - A15

RD, WR,

DS, PS, X/Y

BS WT

THREE-STATE
BUFFER

DIR

ENABLE

DSP #2

D0 - 23

A0 - A15

RD, WR,

DS, PS, X/Y

BG BR

Figure 9-17 Bus Arbitration Using BR/BG and BS/WT with No Overhead

BS

WT

DATA TRANSFERRED
HERE

BR

BG

1 2 3

Figure 9-18 Two DSPs with External Bus Arbitration Timing
9- 20 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

9.3.2.4 Signaling Using Semaphores
Figure 9-19 shows a more sophisticated shared memory system that uses external arbi-
tration with both local external memory and shared memory. The four semaphores are bits
in one of the words in each shared memory bank used by software to arbitrate memory
use. Semaphores are commonly used to indicate that the contents of the semaphore’s
memory blocks are being used by one processor and are not available for use by another
processor. Typically, if the semaphore is cleared, the block is not allocated to a processor;
if the semaphore is set, the block is allocated to a processor.

Without semaphores, one processor may try to use data while it is being changed by
another processor, which may cause errors. This problem can occur in a shared memory
system when separate test and set instructions are used to “lock” a data block for use by
a single processor.

The correct procedure is to test the semaphore and then set the semaphore if it was clear
to lock and gain exclusive use of the data block. The problem occurs when the second
processor acquires the bus and tests the semaphore after the first processor tests the
semaphore but before the first processor can lock the data block. The incorrect sequence
is 1) the first processor tests the semaphore and sees that the block is available; 2) the
second processor then tests the bit and also sees that the block is available; 3) both pro-
cessors then set the bit to lock the data; and 4) both proceed to use the data on the
assumption that the data cannot be changed by another processor.

The DSP56000/DSP56001 has a group of instructions designed to prevent this problem.
They perform an indivisible read-modify-write operation and do not release the bus
between the read and write (specifically, A0–A15, DS, PS, and X/Y do not change state).
Not releasing the bus allows these instructions to test the semaphore and then to set,
clear, or change the semaphore without the possibility of another processor testing the
semaphore before it is changed. The instructions are bit test and change (BCHG), bit test
and clear (BCLR), and bit test and set (BSET). The proper way to set the semaphore to
gain exclusive access to a memory block is to use BSET to test the semaphore and to set
it to one. After the bit is set, the result of the test operation will reveal if the semaphore
was clear before it was set by BSET and if the memory block is available. If the bit was
already set and the block is in use by another processor, the DSP will wait to access the
memory block.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 21

ADDRESS
DATA AND
CONTROL

BUSES

ADDRESS
DATA AND
CONTROL

BUSES

SEMAPHORE 3

SEMAPHORE 2

SEMAPHORE 1

SEMAPHORE 0

1

1

0

0

BANK 3

BANK 2

BANK 1

BANK 0

DSP56000/
DSP56001

PROCESSOR
OR DMA

DSP56000
LOCAL

MEMORY

PROCESSOR
LOCAL

MEMORY

ARBITRATION
LOGIC

BUS
BUFFER

BUS
BUFFER

Figure 9-19 Signaling Using Semaphores
9- 22 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 23

9- 24 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 9 - 25

9- 26 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SECTION 10
PORT B

Port B is a dual-purpose I/O port that can be used as 1) 15 general-purpose pins individ-
ually configurable as either inputs or outputs or as 2) an 8-bit bidirectional host interface
(HI) (see Figure 10-1). When configured as general-purpose I/O, port B can be used for
device control. When configured as the HI, port B provides a convenient connection to
another processor. This section describes both port B configurations, including examples
of how to configure and use the port.

EXTERNAL ADDRESS
SWITCH

EXTERNAL DATA
SWITCH

BUS
CONTROL

HOST/DMA
PARALLEL

INTERFACE

SCI
INTERFACE

SSI
INTERFACE

PORT
A
I/0

(47)

PORT
C
I/0
(9)

PORT
B
I/0

(15)

A0 - A15

D0 - D23

PS

DS

X/Y

RD

WR

BR/WT

BG/BS

—

—

—
—
—
—
—
—
—

PB0 - PB7
PB8
PB9
PB10
PB11
PB12
PB13
PB14

PC0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

H0 - H7
HA0
HA1
HA2
HR/W
HEN
HREQ
HACK

RXD

TXD

SCLK

SC0

SC1

SC2

SCK

SRD

STD

DEFAULT
FUNCTION

ALTERNATE
FUNCTION

88

24

16

Figure 10-1 Port B Interface
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 1

10.1 GENERAL PURPOSE I/O
When it is configured as general-purpose I/O, port B can be viewed as three memory-
mapped registers (see Figure 10-2) that control 15 I/O pins (see Figure 10-3). The soft-
ware and hardware reset configure port B as general-purpose I/O with all 15 pins as inputs
by clearing all three registers (external circuitry connected to these pins may need pullups
until the pins are configured for operation). These registers are the port B control register
(PBC), port B data direction register (PBDDR), and port B data register (PBD). Selection
between general-purpose I/O and HI is made by setting PBC bit 0 (memory location
X:$FFE0) to zero for general-purpose I/O or to one for HI. The PBDDR (memory location
X:$FFE2) selects each corresponding pin in the PBD (memory location X:$FFE4), as an
input pin if the PBDDR bit equals zero or as an output pin if the PBDDR bit equals one.

The port B I/O pin control logic is shown in Figure 10-4. Writing to PBD will write data to
the pins designated as outputs by the PBDDR; reading the PBD will read the level on the
pins designated as inputs by the PBDDR. When a pin is designated as an output and the
PBD is read, the output of the output data bit latch is read, not the logic level on the pin

BC Function

0 Parallel I/O (Reset Condition)

1 Host Interface

0 BC
0

23 0

X:$FFE0
PORT B CONTROL
REGISTER (PBC)

BD
0

23 0

X:$FFE2
PORT B DATA
DIRECTION
REGISTER (PBDDR)

BDx Data Direction

0 Input (Reset Condition)

1 Output

0 0 0 0 0 0 0 0 0 BD
1

BD
2

BD
3

BD
4

BD
5

BD
6

BD
7

BD
8

BD
9

BD
11

BD
10

BD
12

BD
13

BD
14

PB
0

23 0

X:$FFE4
PORT B DATA
REGISTER (PBD)0 0 0 0 0 0 0 0 0 PB

1
PB
2

PB
3

PB
4

PB
5

PB
6

PB
7

PB
8

PB
9

PB
11

PB
10

PB
12

PB
13

PB
14

Figure 10-2 Parallel Port B Registers
10- 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

itself. When the port is configured as the HI and the bit in the PBDDR is zero (input), then

P
O
R
T

B

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PB8
PB9

PB10
PB11
PB12
PB13
PB14

BC0
BC0
BC0
BC0
BC0
BC0
BC0
BC0
BC0
BC0
BC0
BC0
BC0
BC0
BC0

BD0
BD1
BD2
BD3
BD4
BD5
BD6
BD7
BD8
BD9

BD10
BD11
BD12
BD13
BD14

ENABLED BY
BIT IN

X:$FFE0

DIRECTION
SELECTED BY

X:$FFE2

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PB8
PB9

PB10
PB11
PB12
PB13
PB14

INPUT/OUTPUT
DATA

X:$FFE4

Figure 10-3 Parallel Port B Pinout

PORT
REGISTERS

HI INPUT DATA BIT

HI DATA DIRECTION BIT

HI OUTPUT DATA BIT

PORT INPUT DATA BIT

Port Control
Register Bit

Data Direction
Register Bit

Pin Function

0 0 Port Input Pin

PINLATCHED OUTPUT
DATA BIT

DATA DIRECTION
REGISTER (DDR) BIT

PORT CONTROL
REGISTER (CR) BIT

(PARALLEL
I/O POSITION)

(INPUT
 POSITION)

PERIPHERAL
LOGIC

Figure 10-4 Port B I/O Pin Control Logic
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 3

reading the PBD will show the logic level on the pin even though port B is configured as
the HI. The HI function may be using the pin as an input or an output. This feature can be
very useful when debugging the HI.

10.1.1 Programming Parallel I/O
Port B is a memory-mapped peripheral as are all of the DSP56000/DSP56001 peripherals
(see Figure 10-5). The standard MOVE instruction transfers data between port B and a
register; as a result, MOVE takes two instructions to perform a memory-to-memory data
transfer and uses a temporary holding register. The MOVEP instruction is specifically
designed for I/O data transfer as shown in Figure 10-6. Although the MOVEP instruction
may take twice as long to execute as a MOVE instruction, only one MOVEP is required
for a memory-to-memory data transfer, and MOVEP does not use a temporary register.
Using the MOVEP instruction allows a fast interrupt to move data to/from a peripheral to
memory and execute one other instruction or move the data to an absolute address.
MOVEP is the only memory-to-memory move instruction; however, one of the operands
must be in the top 64 locations of either X: or Y: memory.

The bit-oriented instructions that use I/O short addressing (BCHG, BCLR, BSET, BTST,
JCLR, JSCLR, JSET, and JSSET) can also be used to address individual bits for faster
I/O processing. The digital signal processor (DSP) does not have a hardware data strobe
to strobe data out of the parallel I/O port. If a strobe is needed, it can be implemented
using software to toggle one of the parallel I/O pins. The process of programming port B
as general-purpose I/O is shown in Figure 10-7 and detailed in Figure 10-8. Normally, it
is not good programming practice to activate a peripheral before programming it. How-
ever, reset activates the port B general-purpose I/O as all inputs; the alternative is to
configure port B as an HI, which may not be desirable. In this case, it is probably better to
insure that port B is initially configured for general-purpose I/O, and then configure the
data direction and data registers. It may be better in some situations to program the data
direction or the data registers first to prevent two devices from driving one signal. The
order of steps 1, 2, and 3 in Figure 10-7 is optional and can be changed as needed.

•
MOVEP #$0,X:$FFE0 ;Select Port B to be general-purpose I/O

MOVE #$7F00,X:$FFE2 ;Select pins PB0–PB7 to be inputs
 • ;and pins PB8–PB14 to be outputs

•
MOVEP #data_out,X:$FFE4 ;Put bits 8–14 of ‘‘data_out’’ on pins

;PB8–PB14 bits 0–7 are ignored.
MOVEP X:$FFE4,#data_in ;Put PB0–PB7 in bits 0–7 of ‘‘data_in’’

Figure 10-6 Write/Read Parallel Data with Port B
10- 4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

X:$FFFF

X:$FFFE

X:$FFFD

X:$FFFC

X:$FFFB

X:$FFFA

X:$FFF9

X:$FFF8

X:$FFF7

X:$FFF6

X:$FFF5

X:$FFF4

X:$FFF3

X:$FFF2

X:$FFF1

X:$FFF0

X:$FFEF

X:$FFEE

X:$FFED

X:$FFEC

X:$FFEB

X:$FFEA

X:$FFE9

X:$FFE8

X:$FFE7

X:$FFE6

X:$FFE5

X:$FFE4

X:$FFE3

X:$FFE2

X:$FFE1

X:$FFE0

X:$FFDF

INTERRUPT PRIORITY REGISTER (IPR)

PORT A — BUS CONTROL REGISTER (BCR)

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

SCI HI - REC/XMIT DATA REGISTER (SRX/STX)

SCI MID - REC/XMIT DATA REGISTER (SRX/STX)

SCI LOW - REC/XMIT DATA REGISTER (SRX/STX)

SCI TRANSMIT DATA ADDRESS REGISTER (STXA)

SCI CONTROL REGISTER (SCCR)

SCI INTERFACE STATUS REGISTER (SSR)

SCI INTERFACE CONTROL REGISTER (SCR)

SSI RECIEVE/TRANSMIT DATA REGISTER (RX/TX)

SSI STATUS/TIME SLOT REGISTER (SSISR/TSR)

SSI CONTROL REGISTER B (CRB)

SSI CONTROL REGISTER A (CRA)

HOST RECEIVE/TRANSMIT REGISTER (HRX/HTX)

RESERVED

HOST STATUS REGISTER (HSR)

HOST CONTROL REGISTER (HCR)

RESERVED

RESERVED

PORT C — DATA REGISTER (PCD)

PORT B — DATA REGISTER (PBD)

PORT C — DATA DIRECTION REGISTER (PCDDR)

PORT B — DATA DIRECTION REGISTER (PBDDR)

PORT C — CONTROL REGISTER (PCC)

PORT B — BUS CONTROL REGISTER (PBC)

RESERVED

X:$FFC0 RESERVED

= Read as random number; write as don’t care.

23 16 15 8 7 0

Figure 10-5 On-Chip Peripheral Memory Map
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 5

10.1.2 Port B Parallel I/O Timing
Parallel data written to port B is synchronized to the central processing unit (CPU) but

STEP 1
ACTIVATE PORT B CONTROL REGISTER

ADDR X:$FFE0

STEP 2
SELECT DATA DIRECTION (IN/OUT)

ADDR X:$FFE2

STEP 3
READ/WRITE PORT B DATA

ADDR X:$FFE4

Figure 10-7 Port B Configuration Flowchart

* * * * * * * * * * * * * *
BC
0

BD
0

BD
1

BD
2

BD
3

BD
4

BD
5

BD
6

BD
7

BD
8

BD
9

BD
10

BD
11

BD
12

BD
13

*

*
BD
14

PB
0

PB
1

PB
2

PB
3

PB
4

PB
5

PB
6

PB
7

PB
8

PB
9

PB
10

PB
11

PB
12

PB
13*

PB
14

STEP 1. ACITIVATE PORT B FOR GENERAL - PURPOSE I/O:
SET BIT 0 TO ZERO

X:$FFE0

15 0

PORT B
CONTROL REGISTER (PBC)

X:$FFE2
PORT B DATA DIRECTION
REGISTER (PBDDR)

15 0

STEP 2. SET INDIVIDUAL PINS TO INPUT OR OUTPUT:
BDxx = 0 INPUT

OR

BDxx = 1 OUTPUT

15 0

X:$FFE4
PORT B DATA
REGISTER (PBD)

*Reserved; write as zero.

STEP 3. WRITE OR READ DATA:
PBxx INPUT IF BDxx = 0

OR

PBxx OUTPUT IF BDxx = 1

Figure 10-8 I/O Port B Configuration
10- 6 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

delayed by one instruction cycle. For example, the instruction

MOVE DATA15,X:PORTB DATA24,Y:EXTERN

1) writes15 bits of data to the port B register, but the output pins do not change until the
following instruction cycle, and 2) writes 24 bits of data to the external Y memory, which
appears on port A during T2 and T3 of the current instruction.

As a result, if it is desirable to synchronize port A and port B outputs, two instructions must be
used:

MOVE DATA15,X:PORTB
NOP DATA24,Y:EXTERN

The NOP can be replaced by any instruction that allows parallel moves. Inserting one or more
‘‘MOVE DATA15,X:PORTB DATA24,Y:EXTERN’’ instructions between the first and second
instruction effectively produces an external 39-bit write each instruction cycle with only one
instruction cycle lost in setup time:

MOVE DATA15,X:PORTB
MOVE DATA15,X:PORTB DATA24,Y:EXTERN
MOVE DATA15,X:PORTB DATA24,Y:EXTERN
:
:
MOVE DATA15,X:PORTB DATA24,Y:EXTERN
NOP DATA24,Y:EXTERN

One application of this technique is to create an extended address for port A by concatenating the port A address bits (instead of data bits) to the port B general-purpose output bits. The port B general-purpose I/O register would then work as a base address register,

allowing the address space to be extended from 64K words (16 bits) to two billion words (16 bits+15 bits=31 bits).

Port B uses the DSP CPU four-phase clock for its operation. Therefore, if wait states are inserted in the DSP CPU timing, they also affect Port B timing. The result is that ports A and B in the previous synchronization example will always stay synchronized, regardless

of how many wait states are used.

10.2 HOST INTERFACE (HI)
The HI is a byte-wide, full-duplex, double-buffered, parallel port which may be connected directly to the data bus of a host processor. The host processor may be any of a number of industry standard microcomputers or microprocessors, another DSP, or DMA hardware

because this interface looks like static memory. The HI is asynchronous and consists of two banks of registers – one bank accessible to the host processor and a second bank accessible to the DSP CPU (see Figure 10-9). A brief description of the HI features is

presented in the following listing:

Speed
8 Mbyte/Sec Burst Data Transfer Rate
1.71 Million Word/Sec Interrupt Driven Data Transfer Rate (This is the maximum inter-
rupt rate for theDSP56000/DSP56001 running at 20.5 MHz – i.e., one interrupt every
six instruction cycles.)

Signals (15 Pins)
H0–H7 Host Data Bus
HA0-HA2 Host Address Select
HR/W Host Read/Write Control
HEN Host Transfer Enable
HREQ Host Request
HACK Host Acknowledge

Interface – DSP CPU Side
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 7

Mapping: Three X: Memory Locations
Data Word: 24 Bits

Transfer Modes:
DSP to Host
Host to DSP
Host Command

Handshaking Protocols:
Software Polled
Interrupt Driven (Fast or Long)
Direct Memory Access

Instructions:
Memory-mapped registers allow the standard MOVE instruction to be used.
Special MOVEP instruction provides for I/O service capability using fast interrupts.
Bit addressing instructions (BCHG, BCLR, BSET, BTST, JCLR, JSCLR, JSET, JS-
SET) simplify I/O service routines.
I/O short addressing provides faster execution with fewer instruction words.

Interface – Host Side
Mapping:

Eight Consecutive Memory Locations
Memory-Mapped Peripheral for Microprocessors, DMA Controllers, etc.

Data Word: Eight Bits

Transfer Modes:
DSP to Host
Host to DSP
Host Command
Mixed 8-, 16-, and 24-Bit Data Transfers

Handshaking Protocols:
Software Polled
Interrupt Driven and Compatible with MC68000
Cycle Stealing DMA with Initialization

Dedicated Interrupts:
Separate Interrupt Vectors for Each Interrupt Source
Special host commands force DSP CPU interrupts under host processor control,
which are useful for:

Real-Time Production Diagnostics
Debugging Window for Program Development
Host Control Protocols and DMA Setup

Figure 10-9 is a block diagram showing the registers in the HI. These registers can be divided vertically down the middle into registers visible to the host processor on the left and registers visible to the DSP on the right. They can also be divided horizontally into control

at the top, DSP-to-host data transfer in the middle (HTX, RXH, RXM, and RXL), and host-to-DSP data transfer at the bottom (THX, TXM, TXL, and HRX).

10.2.1 Host Interface – DSP CPU Viewpoint
The DSP CPU views the HI as a memory-mapped peripheral occupying three 24-bit words in data memory space. The DSP may use the HI as a normal memory-mapped peripheral, using either standard polled or interrupt programming techniques. Separate transmit

and receive data registers are double buffered to allow the DSP and host processor to efficiently transfer data at high speed. Memory mapping allows DSP CPU communication with the HI registers to be accomplished using standard instructions and addressing modes.

In addition, the MOVEP instruction allows HI-to-memory and memory-to-HI data transfers without going through an intermediate register. Both hardware and software reset disable the HI and change port B to general-purpose I/O with all pins designated as inputs.
10- 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

10.2.2 Programming Model – DSP CPU Viewpoint
The HI has two programming models: one for the DSP programmer and one for the host processor
programmer. In most cases, the notation used reflects the DSP perspective. The HI – DSP pro-
gramming model is shown in Figure 10-10. There are three registers: a control register (HCR), a
status register (HSR), and a data transmit/receive register (HTX/HRX). These registers can only
be accessed by the DSP56000/DSP56001; they can not be accessed by the host processor. The
HI host processor programming model is shown in Figure 10-13.

The following paragraphs describe the purpose and operation of each bit in each register of the
HI visible to the DSP CPU. The effects of the different types of reset on these registers are
shown. A brief discussion of interrupts and operation of the DSP side of the HI complete the pro-
gramming model from the DSP viewpoint. The programming model from the host viewpoint

RECEIVE BYTE
REGISTERS

 (READ ONLY)

TRANSMIT BYTE
REGISTERS

(WRITE ONLY)

INTERRUPT CONTROL
REGISTER
(READ/WRITE)

DSP CPU GLOBAL
DATA BUS

$0
ICR

$1
CVR

HCR

HSR

$2
ISR

$3
IVR

CONTROL

LOGIC

HTX

HRX

$5
RXH

$6
RXM

$7
RXL

$5
TXH

$6
TXM

$7
TXL

X:$FFE8

X:$FFE9

X:$FFEB

X:$FFEB

HOST CONTROL REGISTER
(READ/WRITE)

HOST STATUS REGISTER
(READ ONLY)

HOST TRANSMIT
DATA REGISTER
(WRITE ONLY)

HOST RECIEVE
DATA REGISTER
(READ ONLY)

COMMAND VECTOR
REGISTER
(READ/WRITE)

INTERRUPT STATUS
REGISTER
(READ ONLY)

INTERRUPT VECTOR
REGISTER
(READ/WRITE)

24

24

24

8

HOST MPU
DATA BUS

H0 - H7

Figure 10-9 HI Block Diagram
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 9

0 0 0
HF3

(0)

HF2

(0)

HCIE

(0)

HTIE

(0)

HRIE

(0)
X:$FFE8

7 0

DSP CPU HI FLAGS
HOST FLAG 3
HOST FLAG 2

INTERRUPT ENABLES
HOST RECEIVE
HOST TRANSMIT
HOST COMMAND

HOST CONTROL REGISTER (HCR)
(READ/WRITE)

0 0
HF1

(0)

HF0

(0)

HCP

(0)

HTDE

(1)

HRDF

(0)
X:$FFE9

7 0

HOST HI FLAGS
HOST FLAG 1
HOST FLAG 0

HOST RECEIVE DATA FULL
HOST TRANSMIT DATA EMPTY
HOST COMMAND PENDING

HOST STATUS REGISTER (HSR)
(READ ONLY)

DMA

(0)

X:$FFEB

X:$FFEB

RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE

TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE

HOST RECEIVE DATA REGISTER
(HRX) (READ ONLY)

HOST TRANSMIT DATA REGISTER
(HTX) (WRITE ONLY)

7 0 7 0 7 0

23 16 15 8 7 0

NOTE: The numbers in parentheses are reset values.

Figure 10-10 Host Interface Programming Model – DSP Viewpoint
10- 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

begins at 10.2.3.1 Programming Model – Host Processor Viewpoint.

10.2.2.1 Host Control Register (HCR)
The HCR is an 8-bit read/write control register used by the DSP to control the HI interrupts and flags. The HCR cannot be accessed by the host processor. The HCR occupies the low-order byte of the internal data bus; the high-order portion is zero filled. HCR is a

read/write register to allow individual control register bits to be set or cleared. Any reserved bits are read as zeros and should be programmed as zeros for future compatibility. The bit manipulation instructions are useful for accessing the individual bits. The contents

of HCR are cleared on hardware or software reset. The control bits are described in the following paragraphs.

10.2.2.1.1 HCR Host Receive Interrupt Enable (HRIE) Bit 0
The HRIE bit is used to enable a DSP interrupt when the host receive data full (HRDF) status bit in the host status register (HSR) is set. When HRIE is cleared, HRDF interrupts are disabled. When HRIE is set, a host receive data interrupt request will occur if HRDF

is set. Hardware and software resets clear HRIE.

10.2.2.1.2 HCR Host Transmit Interrupt Enable (HTIE) Bit 1
The HTIE bit is used to enable a DSP interrupt when the host transmit data empty (HTDE) status bit in the HSR is set. When HTIE is cleared, HTDE interrupts are disabled. When HTIE is set, a host transmit data interrupt request will occur if HTDE is set. Hardware

and software resets clear the HTIE.

10.2.2.1.3 HCR Host Command Interrupt Enable (HCIE) Bit 2
The HCIE bit is used to enable a vectored DSP interrupt when the host command pending (HCP) status bit in the HSR is set. When HCIE is cleared, HCP interrupts are disabled. When HCIE is set, a host command interrupt request will occur if HCP is set. The starting

address of this interrupt is determined by the host vector (HV). Hardware and software resets clear the HCIE.

10.2.2.1.4 HCR Host Flag 2 (HF2) Bit 3
The HF2 bit is used as a general-purpose flag for DSP-to-host communication. HF2 may be set or cleared by the DSP. HF2 is visible in the interrupt status register (ISR) on the host processor side (see Figure 10-11). Hardware and software resets clear HF2.

There are four host flags: two used by the host to signal the DSP (HF0 and HF1) and two used by the DSP to signal the host processor (HF2 and HF3). These flags are not designated for any specific purpose but are general-purpose flags. The host flags do not cause

interrupts; they must be polled to see if they have changed. These flags can be used individually or as encoded pairs. See 10.2.2.7 Host Port Usage Considerations – DSP Side for additional information. An example of the usage of host flags is the bootstrap loader,which

is listed in the DSP56001 Advance Information Data Sheet (ADI1290). Host flags are used to tell the bootstrap program whether or not to terminate early.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 11

10.2.2.1.5 HCR Host Flag 3 (HF3) Bit 4
The HF3 bit is used as a general-purpose flag for DSP-to-host communication. HF3 may be set
or cleared by the DSP. HF3 is visible in the ISR on the host processor side (see Figure 10-11).
Hardware and software resets clear HF3.
10- 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

10.2.2.1.6 HCR Reserved Control (Bits 5, 6, and 7). These unused bits are reserved
for future expansion and should be written with zeros for upward compatibility.

10.2.2.2 Host Status Register (HSR). The HSR is an 8-bit read-only status register
used by the DSP to interrogate status and flags of the HI. It can not be directly accessed by
the host processor. When the HSR is read to the internal data bus, the register contents
occupy the low-order byte of the data bus; the high-order portion is zero filled. The status bits
are described in the following paragraphs.

10.2.2.2.1 HSR Host Receive Data Full (HRDF) Bit 0. The HRDF bit indicates that the
host receive data register (HRX) contains data from the host processor. HRDF is set when
data is transferred from the TXH:TXM:TXL registers to the HRX register. HRDF is cleared
when HRX is read by the DSP. HRDF can also be cleared by the host processor using the
initialize function. Hardware, software, individual, and STOP resets clear HRDF.

10.2.2.2.2 HSR Host Transmit Data Empty (HTDE) Bit 1. The HTDE bit indicates that
the host transmit data register (HTX) is empty and can be written by the DSP. HTDE is set
when the HTX register is transferred to the RXH:RXM:RXL registers. HTDE is cleared when
HTX is written by the DSP. HTDE can also be set by the host processor using the initialize
function. Hardware, software, individual, and STOP sets HTDE.

INIT HM1 HM0 HF1 HF0 0 TREQ RREQ

HOST TO DSP56000 STATUS FLAGS

7 0

$0HOST
INTERRUPT CONTROL REGISTER (ICR)
(READ/WRITE)

DMA 0 0 HF1 HF0 HCP HTDE HRDF

7 0

X:$FFE9
HOST STATUS REGISTER (HSR)
(READ ONLY)DSP56000

HREQ DMA 0 HF3 HF2 TRDY TXDE RXDF

DSP56000 TO HOST STATUS FLAGS

7 0

$2HOST
INTERRUPT STATUS REGISTER (ISR)
(READ ONLY)

0 0 0 HF3 HF2 HCIE HTIE HRIE

7 0

X:$FFE8
HOST CONTROL REGISTER (HCR)
(READ/WRITE)DSP56000

Figure 10-11 Host Flag Operation
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 13

10.2.2.2.3 HSR Host Command Pending (HCP) Bit 2
The HCP bit indicates that the host has set the HC bit and that a host command interrupt
is pending. The HCP bit reflects the status of the HC bit in the command vector register
(CVR). HC and HCP are cleared by the DSP exception hardware when the exception is
taken. The host can clear HC, which also clears HCP. Hardware, software, individual,
and STOP resets clear HCP.

10.2.2.2.4 HSR Host Flag 0 (HF0) Bit 3
The HF0 bit in the HSR indicates the state of host flag 0 in the ICR on the host processor
side. HF0 can only be changed by the host processor (see Figure 10-11). Hardware,
software, individual, and STOP resets clear HF0.

10.2.2.2.5 HSR Host Flag 1 (HF1) Bit 4
The HF1 bit in the HSR indicates the state of host flag 1 in the ICR on the host processor
side. HF1 can only be changed by the host processor (see Figure 10-11). Hardware,
software, individual, and STOP resets clear HF1.

10.2.2.2.6 HSR Reserved Status (Bits 5 and 6)
These status bits are reserved for future expansion and read as zero during DSP read
operations.

10.2.2.2.7 HSR DMA Status (DMA) Bit 7
The DMA bit indicates that the host processor has enabled the DMA mode of the HI by
setting HM1 or HM0 to one. When DMA bit is zero, it indicates that the DMA mode is dis-
abled by the HM0 and HM1 bits in the ICR and that no DMA operations are pending.
When DMA bit is set, the DMA mode has been enabled by one or more of the host mode
bits being set to one. The channel not in use can be used for polled or interrupt operation
by the DSP. Hardware, software, individual, and STOP resets clear the DMA bit.

10.2.2.3 Host Receive Data Register (HRX)
The HRX register is used for host-to-DSP data transfers. The HRX register is viewed as
a 24-bit read-only register by the DSP CPU. The HRX register is loaded with 24-bit data
from the transmit data registers (TXH:TXM:TXL) on the host processor side when both
the transmit data register empty TXDE (host processor side) and DSP host receive data
full (HRDF) bits are cleared. This transfer operation sets TXDE and HRDF. The HRX reg-
ister contains valid data when the HRDF bit is set. Reading HRX clears HRDF. The DSP
may program the HRIE bit to cause a host receive data interrupt when HRDF is set.
Resets do not affect HRX.
10- 14 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

10.2.2.4 Host Transmit Data Register (HTX)
The HTX register is used for DSP-to-host data transfers. The HTX register is viewed as a
24-bit write-only register by the DSP CPU. Writing the HTX register clears HTDE. The
DSP may program the HTIE bit to cause a host transmit data interrupt when HTDE is set.
The HTX register is transferred as 24-bit data to the receive byte registers
(RXH:RXM:RXL) if both the HTDE bit (DSP CPU side) and receive data full (RXDF) status
bits (host processor side) are cleared. This transfer operation sets RXDF and HTDE. Data
should not be written to the HTX until HTDE is set to prevent the previous data from being
overwritten. Resets do not affect HTX.

10.2.2.5 Register Contents After Reset
Table 10-1 shows the results of four reset types on bits in each of the HI registers seen
by the DSP CPU. The hardware reset (HW) is caused by the RESET signal; the software
reset (SW) is caused by executing the RESET instruction; the individual reset (IR) is
caused by clearing the PBC register bit 0, and the stop reset (ST) is caused by executing
the STOP instruction.

10.2.2.6 Host Interface DSP CPU Interrupts
The HI may request interrupt service from either the DSP or the host processor. The DSP
CPU interrupts are internal and do not require the use of an external interrupt pin (see Fig-
ure 10-12). When the appropriate mask bit in the HCR is set, an interrupt condition caused

Register
Name

Register
Data

Reset Type

HW
Reset

SW
Reset

IR
Reset

ST
Reset

HCR

HF(3 - 2) 0 0 — —

HCIE 0 0 — —

HTIE 0 0 — —

HRIE 0 0 — —

HSR

DMA 0 0 0 0

HF(1 - 0) 0 0 0 0

HCP 0 0 0 0

HTDE 1 1 1 1

HRDF 0 0 0 0

HRX HRX (23 - 0) — — — —

HTX HTX (23 - 0) — — — —

Table 10-1 Host Registers after
Reset–DSP CPU Side
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 15

by the host processor sets the appropriate bit in the HSR, which generates an interrupt
request to the DSP CPU. The DSP acknowledges interrupts caused by the host processor
by jumping to the appropriate interrupt service routine. The three possible interrupts are
1) receive data register full, 2) transmit data register empty, and 3) host command. The
host command can access any interrupt vector in the interrupt vector table although it has
a set of vectors reserved for host command use. The DSP interrupt service routine must
read or write the appropriate HI register (clearing HRDF or HTDE, for example) to clear
the interrupt. In the case of host command interrupts, the interrupt acknowledge from the
program controller will clear the pending interrupt condition.

10.2.2.7 Host Port Usage Considerations – DSP Side
Careful synchronization is required when reading multibit registers that are written by
another asynchronous system. This is a common problem when two asynchronous sys-
tems are connected. The situation exists in the HI. However, if the HI is used in the way
it was designed, proper operation is guaranteed. The considerations for proper operation
on the DSP CPU side are discussed in the following paragraphs, and considerations for
the host processor side are discussed in 10.2.6.5 Host Port Usage Considerations–Host
Side. Careful synchronization is required when reading multi-bit registers that are written
by another asynchronous system. Synchronization is a common problem when two asyn-
chronous systems are connected. The situation exists in the host port. However, if the port
is used in the way it was designed, proper operation is guaranteed. The considerations
for proper operation are discussed below..

7 0

0 0 0 HF3 HF2 HCIE HTIE HRIE

MASK

HCR

DMA 0 0 HF1 HF2 HCP HTDE HRDF

7 0

X:$FFE

X:$FFE

DSP CPU INTERRUPTS

RECIEVE DATA FULL
P:$0020

TRANSMIT DATA EMPTY
P:$0022

HOST COMMAND
P:(2XHV ➞ $0000 - $003E)
RESET ➞ HV = $0012

HCR

STATUS

Figure 10-12 HSR–HCR Operation
10- 16 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

DMA, HF1, HF0, HCP, HTDE, and HRDF status bits are set or cleared by the host pro-
cessor side of the interface. These bits are individually synchronized to the DSP clock.

The only system problem with reading status occurs with HF1 and HF0 if they are
encoded as a pair because the four combinations (00, 01, 10, and 11) each have signifi-
cance. This problem occurs because there is a very small probability that the DSP will
read the status bits during the transition. The solution to this potential problem is to read
the bits twice for consensus (See 10.2.6.5 Host Port Usage Considerations–Host Side.
Careful synchronization is required when reading multi-bit registers that are written by
another asynchronous system. Synchronization is a common problem when two asyn-
chronous systems are connected. The situation exists in the host port. However, if the port
is used in the way it was designed, proper operation is guaranteed. The considerations
for proper operation are discussed below. for additional information).

10.2.3 Host Interface – Host Processor Viewpoint
The HI appears to the host processor as eight words of byte-wide static memory. The host
may access the HI asynchronously by using polling techniques or interrupt-based tech-
niques. Separate transmit and receive data registers are double buffered to allow the DSP
CPU and host processor to transfer data efficiently at high speed. The HI contains a rudi-
mentary DMA controller, which makes generating addresses (HA0–HA2) for the TX/RX
registers in the HI unnecessary.

10.2.3.1 Programming Model – Host Processor Viewpoint
The HI appears to the host processor as a memory-apped peripheral occupying eight
bytes in the host processor address space (see Figures 10-13 and 10-14). These regis-
ters can be viewed as one control register (ICR), one status register (ISR), three data
registers (RXH/TXH, RXM/TXM, and RXL/TXL), and two vector registers (IVR and CVR).
The CVR is a special command register that is used by the host processor to issue com-
mands to the DSP. These registers can be accessed only by the host processor; they can
not be accessed by the DSP CPU. Host processors may use standard host processor
instructions (e.g., byte move) and addressing modes to communicate with the HI regis-
ters. The HI registers are addressed so that 8-bit MC6801-type host processors can use
16-bit load (LDD) and store (STD) instructions for data transfers. The 16-bit
MC68000/MC68010 host processor can address the HI using the special MOVEP instruc-
tion for word (16-bit) or long-word (32-bit) transfers. The 32-bit MC68020 host processor
can use its dynamic bus sizing feature to address the HI using standard MOVE word (16-
bit), long-word (32-bit) or quad-word (64-bit) instructions. The HREQ and HACK hand-
shake flags are provided for polled or interrupt-driven data transfers with the host
processor. Because the DSP interrupt response is sufficiently fast, most host micropro-
cessors can load or store data at their maximum programmed I/O (non-DMA) instruction
rate without testing the handshake flags for each transfer. If the full handshake is not
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 17

needed, the host processor can treat the DSP as fast memory, and data can be trans-
ferred between the host processor and the DSP at the fastest host processor data rate.
DMA hardware may be used with the handshake flags to transfer data without host pro-
cessor intervention.

One of the most innovative features of the host interface is the host command feature.
With this feature, the host processor can issue vectored exception requests to the
DSP56000/DSP56001. The host may select any one of 32 DSP56000/DSP56001 excep-
tion routines to be executed by writing a vector address register in the HI. This flexibility
allows the host programmer to execute up to 32 preprogrammed functions inside the
DSP56000/DSP56001. For example, host exceptions can allow the host processor to
read or write DSP56000/DSP56001 registers (X, Y, or program memory locations), force
exception handlers (e.g., SSI, SCI, IRQA, IRQB exception routines), and perform control
and debugging operations if exception routines are implemented in the
DSP56000/DSP56001 to perform these tasks.

10.2.3.2 Interrupt Control Register (ICR)
The ICR is an 8-bit read/write control register used by the host processor to control the HI
interrupts and flags. ICR cannot be accessed by the DSP CPU. ICR is a read/write regis-
ter, which allows the use of bit manipulation instructions on control register bits. The
control bits are described in the following paragraphs.

10.2.3.2.1 ICR Receive Request Enable (RREQ) Bit 0
The RREQ bit is used to control the HREQ pin for host receive data transfers.

In interrupt mode (DMA off), RREQ is used to enable interrupt requests via the external

ICR

CVR

ISR

IVR

0 0 0 0 0 0 0 0

RXH/TXH

RXM/TXM

RXL/TXL

INTERRUPT CONTROL

COMMAND VECTOR

INTERRUPT STATUS

INTERRUPT VECTOR

UNUSED

RECEIVE/TRANSMIT
BYTES

HOST DATA BUS
H0 - H7

0

1

2

3

4

5

6

7

H
O
S
T

A
D
D
R
E
S
S

HA0 - HA2

Figure 10-14 HI Register Map
10- 18 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

host request (HREQ) pin when the receive data register full (RXDF) status bit in the ISR
is set. When RREQ is cleared, RXDF interrupts are disabled. When RREQ is set, the
external HREQ pin will be asserted if RXDF is set.

HF1

(0)

HF0

(0) 0
TREQ

(0)

RREQ

(0)
$0

7 0

INTERRUPT CONTROL REGISTER (ICR)
(READ/WRITE)

INTERRUPT VECTOR NUMBER

($0F)

7 0

FLAGS

INTERRUPT VECTOR REGISTER (IVR)
(READ/WRITE)

0 0 0 0 0 0 0 0
RXH

RECEIVE HIGH BYTE
RXM

RECEIVE MIDDLE BYTE

NOT USED
TXH

TRANSMIT HIGH BYTE
TXM

TRANSMIT MIDDLE BYTE

7 0 7 0 7 0 7 0

NOTE: The numbers in parentheses are reset values.

HM1

(0)

HM0

(0)

INIT

(0)

MODES

0 0 Interrupt Mode (DMA Off)

0 1 24-Bit DMA Mode

1 0 16-Bit DMA Mode

1 1 8-Bit DMA Mode

0 0
HOST VECTOR

($12)

7 4 0

COMMAND VECTOR REGISTER (CVR)
(READ/WRITE)

HC

(0)
$1

HF3

(0)

HF2

(0)0
TXDE

(1)

RXDF

(0)
$2

7 0

INTERRUPT STATUS REGISTER (ISR)
(READ ONLY)

STATUS

DMA

(0)

HREQ

(0)

FLAGS

TRDY

(1)

$3

RXL
RECEIVE LOW BYTE

TXL
TRANSMIT LOW BYTE

31 $4 24 23 $5 16 15 $6 8 7 $7 0

RECEIVE BYTE REGISTERS (RXH:RXM:RXL)
(READ ONLY)

TRANSMIT BYTE REGISTERS (TXH:TXM:TXL)
(WRITE ONLY)

Figure 10-13 Host Processor Programming Model–Host Side
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 19

In DMA modes, RREQ must be set or cleared by software to select the direction of DMA
transfers. Setting RREQ sets the direction of DMA transfer to be DSP to host and enables
the HREQ pin to request data transfer. Hardware, software, individual, and STOP resets
clear RREQ.

10.2.3.2.2 ICR Transmit Request Enable (TREQ) Bit 1
The TREQ bit is used to control the HREQ pin for host transmit data transfers.

In interrupt mode (DMA off), TREQ is used to enable interrupt requests via the external HREQ pin when the transmit data register empty (TXDE) status bit in the ISR is set. When TREQ is cleared, TXDE interrupts are disabled. When TREQ is set, the external HREQ

pin will be asserted if TXDE is set.

In DMA modes, TREQ must be set or cleared by software to select the direction of DMA transfers. Setting TREQ sets the direction of DMA transfer to be host to DSP and enables the HREQ pin to request data transfer. Hardware, software, individual, and STOP resets

clear TREQ.

Table 10-2 summarizes the effect of RREQ and TREQ on the HREQ pin.

10.2.3.2.3 ICR Reserved Bit (Bit 2)
This bit, which is reserved and unused, reads as a logic zero.

10.2.3.2.4 ICR Host Flag 0 (HF0) Bit 3
The HF0 bit is used as a general-purpose flag for host-to-DSP communication. HF0 may be set or cleared by the host processor and cannot be changed by the DSP. HF0 is visible in the HSR on the DSP CPU side of the HI (see Figure 10-11). Hardware, software,

individual, and STOP resets clear HF0.

10.2.3.2.5 ICR Host Flag 1 (HF1) Bit 4
The HF1 bit is used as a general-purpose flag for host-to-DSP communication. HF1 may be set or cleared by the host processor and cannot be changed by the DSP. Hardware, software, individual, and STOP resets clear HF1.

10.2.3.2.6 ICR Host Mode Control (HM1 and HM0 bits) Bits 5 and 6
The HM0 and HM1 bits select the transfer mode of the HI (see Table 10-3). HM1 and HM0 enable the DMA mode of operation or interrupt (non-DMA) mode of operation.

When both HM1 and HM0 are cleared, the DMA mode is disabled, and the TREQ and RREQ control bits are used for host processor interrupt control via the external HREQ output pin. Also, in the non-DMA mode, the HACK input pin is used for the MC68000 Family

vectored interrupt acknowledge input.

TREQ RREQ HREQ Pin

Interrupt Mode

0 0 No Interrupts (Polling)

0 1 RXDF Request (Interrupt)

1 0 TXDE Request (Interrupt)

1 1 RXDF and TXDE Request (Interrupts)

DMA Mode

0 0 No DMA

0 1 DSP to Host Request (RX)

1 0 Host to DSP Request (TX)

1 1 Undefined (Illegal)

Table 10-2 HREQ Pin Definition
10- 20 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

When HM1 or HM0 are set, the DMA mode is enabled, and the HREQ pin is used to request DMA transfers. When the DMA mode is enabled, the TREQ and RREQ bits select the direction of DMA transfers. The HACK input pin is used as a DMA transfer acknowledge

input. If the DMA direction is from DSP to host, the contents of the selected register are enabled onto the host data bus when HACK is asserted. If the DMA direction is from host to DSP, the selected register is written from the host data bus when HACK is asserted.

The size of the DMA word to be transferred is determined by the DMA control bits, HM0 and HM1. The HI register selected during a DMA transfer is determined by a 2-bit address counter, which is preloaded with the value in HM1 and HM0. The address counter

substitutes for the HA1 and HA0 bits of the HI during a DMA transfer. The host address bit (HA2) is forced to one during each DMA transfer. The address counter can be initialized with the INIT bit feature. After each DMA transfer on the host data bus, the address

counter is incremented to the next register. When the address counter reaches the highest register (RXL or TXL), the address counter is not incremented but is loaded with the value in HM1 and HM0. This allows 8-, 16- or 24-bit data to be transferred in a circular

fashion and eliminates the need for the DMA controller to supply the HA2, HA1, and HA0 pins. For 16- or 24-bit data transfers, the DSP CPU interrupt rate is reduced by a factor of 2 or 3, respectively, from the host request rate – i.e., for every two or three host processor

data transfers of one byte each, there is only one 24-bit DSP CPU interrupt.

Hardware, software, individual, and STOP resets clear HM1 and HM0.

10.2.3.2.7 ICR Initialize Bit (INIT) Bit 7
The INIT bit is used by the host processor to force initialization of the HI hardware. Initialization consists of configuring the HI transmit and receive control bits and loading HM1 and HM0 into the internal DMA address counter. Loading HM1 and HM0 into the DMA

address counter causes the HI to begin transferring data on a word boundary rather than transferring only part of the first data word.

There are two methods of initialization: 1) allowing the DMA address counter to be automatically set after transferring a word, and 2) setting the INIT bit, which sets the DMA address counter. Using the INIT bit to initialize the HI hardware may or may not be necessary,

depending on the software design of the interface.

The type of initialization done when the INIT bit is set depends on the state of TREQ and RREQ in the HI. The INIT command, which is local to the HI, is designed to conveniently configure the HI into the desired data transfer mode. The commands are described in

the following paragraphs and in Table 10-4. The host sets the INIT bit, which causes the HI hardware to execute the INIT command. The interface hardware clears the INIT bit when the command has been executed. Hardware, software, individual, and STOP resets

clear INIT.

INIT execution always loads the DMA address counter and clears the channel according to TREQ and RREQ. INIT execution is not affected by HM1 and HM0.

HM1 HM0 Mode

0 0 Interrupt Mode (DMA Off)

0 1 DMA Mode (24 Bit)

1 0 DMA Mode (16 Bit)

1 1 DMA Mode (8 Bit)

Table 10-3 Host Mode Bit Definition
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 21

TREQ RREQ After INIT Execution
Transfer
Direction
Initialized

Interrupt Mode (HM1 = 0, HM0 = 0) INIT Execution

0 0 INIT = 0; Address Counter = 00 None

0 1 INIT = 0; RXDF = 0; HTDE = 1; Address
Counter = 00

DSP to Host

1 0 INIT = 0; TXDE = 1; HRDF = 0; Address
Counter = 00

Host to DSP

1 1 INIT = 0; RXDF = 0; HTDE = 1; TXDE =
1; HRDF = 0; Address Counter = 00

Host to/from DSP

DMA Mode (HM1 or HM0 = 1) INIT Execution

0 0 INIT = 0; Address Counter = HM1, HM0 None

0 1 INIT = 0; RXDF = 0; HTDE = 1; Address
Counter = HM1, HM0

DSP to Host

1 0 INIT = 0; TXDE = 1; HRDF = 0; Address
Counter = HM1, HM0

Host to DSP

1 1 Undefined (Illegal) Undefined

Table 10-4 HREQ Pin Definition
10- 22 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

The internal DMA counter is incremented with each DMA transfer (each HACK pulse) until it
reaches the last data register (RXL or TXL). When the DMA transfer is completed, the counter is
loaded with the value of the HM1 and HM0 bits. When changing the size of the DMA word (chang-
ing HM0 and HM1 in the ICR), the DMA counter is not automatically updated, and, as a result, the
DMA counter will point to the wrong data register immediately after HM1 and HM0 are changed.
The INIT function must be used to preset the internal DMA counter correctly. Always set INIT after
changing HM0 and HM1. However, the DMA counter can not be initialized in the middle of a DMA
transfer. Even though the INIT bit is set, the internal DMA controller will wait until after completing
the data transfer in progress before executing the initialization.

10.2.3.3 Command Vector Register (CVR). The CVR is used by the host processor to
cause the DSP to execute a vectored interrupt. The host command feature is independent of any
of the data transfer mechanisms in the HI. It can be used to cause any of the 32 possible inter-
rupt routines in the DSP CPU to be executed.

10.2.3.3.1 CVR Host Vector (HV) Bits 0–4. The five HV bits select the host command
exception address to be used by the host command exception logic. When the host command
exception is recognized by the DSP interrupt control logic, the starting address of the exception
taken is 2×HV. The host can write HC and HV in the same write cycle, if desired.

The host processor can select any of the 32 possible exception routine starting addresses in the
DSP by writing the exception routine starting address divided by 2 into HV. This means that the
host processor can force any of the existing exception handlers (SSI, SCI, IRQA, IRQB, etc.) and
can use any of the reserved or otherwise unused starting addresses provided they have been pre-
programmed in the DSP. HV is set to $12 (vector location $0024) by hardware, software,
individual, and STOP resets. Vector location $0024 is the first of thirteen special host command
vectors.

CAUTION
The HV should not be used with a value of zero because the reset location is nor-
mally programmed with a JMP instruction. Doing so will cause an improper fast in-
terrupt.

10.2.3.3.2 CVR Reserved Bits (Bits 5 and 6). Reserved bits are unused and are
read by the host processor as zeros.

10.2.3.3.3 CVR Host Command Bit (HC) Bit 7. The HC bit is used by the host processor to
handshake the execution of host command exceptions. Normally, the host processor sets HC=1
to request the host command exception from the DSP. When the host command exception is
acknowledged by the DSP, the HC bit is cleared by the HI hardware. The host processor can
read the state of HC to determine when the host command has been accepted. The host proces-
sor may elect to clear the HC bit, canceling the host command exception request at any time
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 23

before it is accepted by the DSP CPU.

CAUTION
The command exception might be recognized by the DSP and executed be-
fore it can be canceled by the host, even if the host clears the HC bit.

Setting HC causes host command pending (HCP) to be set in the HSR. The host can write
HC and HV in the same write cycle if desired. Hardware, software, individual, and STOP
resets clear HC.

10.2.3.4 Interrupt Status Register (ISR)
The ISR is an 8-bit read-only status register used by the host processor to interrogate the
status and flags of the HI. The host processor can write this address without affecting the
internal state of the HI, which is useful if the user desires to access all of the HI registers
by stepping through the HI addresses. The ISR can not be accessed by the DSP. The sta-
tus bits are described in the following paragraphs.

10.2.3.4.1 ISR Receive Data Register Full (RXDF) Bit 0
The RXDF bit indicates that the receive byte registers (RXH, RXM, and RXL) contain
data from the DSP CPU and may be read by the host processor. RXDF is set when the
HTX is transferred to the receive byte registers. RXDF is cleared when the receive data
low (RXL) register is read by the host processor. RXL is normally the last byte of the
receive byte registers to be read by the host processor. RXDF can be cleared by the host
processor using the initialize function. RXDF may be used to assert the external HREQ
pin if the RREQ bit is set. Regardless of whether the RXDF interrupt is enabled, RXDF
provides valid status so that polling techniques may be used by the host processor.
Hardware, software, individual, and STOP resets clear RXDF.

10.2.3.4.2 ISR Transmit Data Register Empty (TXDE) Bit 1
The TXDE bit indicates that the transmit byte registers (TXH, TXM, and TXL) are empty
and can be written by the host processor. TXDE is set when the transmit byte registers
are transferred to the HRX register. TXDE is cleared when the transmit byte low (TXL)
register is written by the host processor. TXL is normally the last byte of the transmit byte
registers to be written by the host processor. TXDE can be set by the host processor
using the initialize feature. TXDE may be used to assert the external HREQ pin if the
TREQ bit is set. Regardless of whether the TXDE interrupt is enabled, TXDE provides
valid status so that polling techniques may be used by the host processor. Hardware,
software, individual, and STOP resets set TXDE.

10.2.3.4.3 ISR Transmitter Ready (TRDY) Bit 2
The TRDY status bit indicates that both the TXH,TXM,TXL and the HRX registers are
10- 24 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

empty.

TRDY=TXDE • HRDF

When TRDY is set to one, the data that the host processor writes to TXH,TXM, and TXL
will be immediately transferred to the DSP CPU side of the HI. This has many applica-
tions. For example, if the host processor issues a host command which causes the DSP
CPU to read the HRX, the host processor can be guaranteed that the data it just trans-
ferred to the HI is what is being received by the DSP CPU.

Hardware, software, individual, and STOP resets set TRDY.

10.2.3.4.4 ISR Host Flag 2 (HF2) Bit 3
The HF2 bit in the ISR indicates the state of host flag 2 in the HCR on the CPU side. HF2
can only be changed by the DSP (see Figure 10-11). HF2 is cleared by a hardware or
software reset.

10.2.3.4.5 ISR Host Flag 3 (HF3) Bit 4
The HF3 bit in the ISR indicates the state of host flag 3 in the HCR on the CPU side. HF3
can only be changed by the DSP (see Figure 10-11). HF3 is cleared by a hardware or
software reset.

10.2.3.4.6 ISR Reserved Bit (Bit 5)
 This status bit is reserved for future expansion and will read as zero during host proces-
sor read operations.

10.2.3.4.7 ISR DMA Status (DMA) Bit 6
The DMA status bit indicates that the host processor has enabled the DMA mode of the
HI (HM1 or HM0=1). When the DMA status bit is clear, it indicates that the DMA mode is
disabled (HM0=HM1=0) and no DMA operations are pending. When DMA is set, it indi-
cates that the DMA mode is enabled and the host processor should not use the active
DMA channel (RXH, RXM, RXL or TXH, TXM, TXL depending on DMA direction) to
avoid conflicts with the DMA data transfers. The channel not in use can be used for
polled operation by the host and operates in the interrupt mode for internal DSP excep-
tions or polling. Hardware, software, individual, and STOP resets clear the DMA status
bit.

10.2.3.4.8 ISR Host Request (HREQ) Bit 7
The HREQ bit indicates the status of the external host request output pin (HREQ). When
the HREQ status bit is cleared, it indicates that the external HREQ pin is deasserted and
no host processor interrupts or DMA transfers are being requested. When the HREQ sta-
tus bit is set, it indicates that the external HREQ pin is asserted, indicating that the DSP
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 25

is interrupting the host processor or that a DMA transfer request is occurring. The HREQ
interrupt request may originate from either or both of two sources – the receive byte reg-
isters are full or the transmit byte registers are empty. These conditions are indicated by
the ISR RXDF and TXDE status bits, respectively. If the interrupt source has been
enabled by the associated request enable bit in the ICR, HREQ will be set if one or more
of the two enabled interrupt sources is set. Hardware, software, individual, and STOP
resets clear HREQ.

10.2.3.5 Interrupt Vector Register (IVR)
The IVR is an 8-bit read/write register which typically contains the exception vector num-
ber used with MC68000 Family processor vectored interrupts. Only the host processor
can read and write this register. The contents of IVR are placed on the host data bus
(H0–H7) when both the HREQ and HACK pins are asserted and the DMA mode is dis-
abled. The contents of this register are initialized to $0F by a hardware or software reset,
which corresponds to the uninitialized exception vector in the MC68000 Family.

10.2.3.6 Receive Byte Registers (RXH, RXM, RXL)
The receive byte registers are viewed as three 8-bit read-only registers by the host pro-
cessor. These registers are called receive high (RXH), receive middle (RXM), and receive
low (RXL). These three registers receive data from the high byte, middle byte, and low
byte, respectively, of the HTX register and are selected by three external host address
inputs (HA2, HA1, and HA0) during a host processor read operation or by an on-chip
address counter in DMA operations. The receive byte registers (at least RXL) contain
valid data when the receive data register full (RXDF) bit is set. The host processor may
program the RREQ bit to assert the external HREQ pin when RXDF is set. This informs
the host processor or DMA controller that the receive byte registers are full. These regis-
ters may be read in any order to transfer 8-, 16-, or 24-bit data. However, reading RXL
clears the receive data full RXDF bit. Because reading RXL clears the RXDF status bit, it
is normally the last register read during a 16- or 24-bit data transfer. Reset does not affect
RXH, RXM, or RXL.

10.2.3.7 Transmit Byte Registers (TXH, TXM, TXL)
The transmit byte registers are viewed as three 8-bit write-only registers by the host pro-
cessor. These registers are called transmit high (TXH), transmit middle (TXM), and
transmit low (TXL). These three registers send data to the high byte, middle byte and low
byte, respectively, of the HRX register and are selected by three external host address
inputs (HA2, HA1, and HA0) during a host processor write operation. Data may be written
into the transmit byte registers when the transmit data register empty (TXDE) bit is set.
The host processor may program the TREQ bit to assert the external HREQ pin when
TXDE is set. This informs the host processor or DMA controller that the transmit byte reg-
10- 26 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

isters are empty. These registers may be written in any order to transfer 8-, 16-, or 24-bit
data. However, writing TXL clears the TXDE bit. Because writing the TXL register clears
the TXDE status bit, TXL is normally the last register written during a 16- or 24-bit data
transfer. The transmit byte registers are transferred as 24-bit data to the HRX register
when both TXDE and the HRDF bit are cleared. This transfer operation sets TXDE and
HRDF. Reset does not affect TXH, TXM, or TXL.

10.2.3.8 Registers After Reset
Table 10-5 shows the result of four kinds of reset on bits in each of the HI registers seen
by the host processor. The hardware reset is caused by asserting the RESET pin; the soft-
ware reset is caused by executing the RESET instruction; the individual reset is caused
by clearing the PBC register bit 0; and the stop reset is caused by executing the STOP
instruction.

10.2.4 Host Interface Pins
The 15 HI pins are described here for convenience. Additional information, including tim-
ing, is given in the DSP56001 Advance Information Data Sheet (ADI1290).

10.2.4.1 Host Data Bus (H0-H7)
This bidirectional data bus is used to transfer data between the host processor and the
DSP56000/DSP56001. This bus is an input unless enabled by a host processor read. H0-
H7 may be programmed as general purpose parallel I/O pins called PB0-PB7 when the
HI is not being used.

10.2.4.2 Host Address (HA0–HA2)
These inputs provide the address selection for each HI register. These inputs are stable
when HEN is asserted. HA0-HA2 may be programmed as general purpose parallel I/O
pins called PB8-PB10 when the HI is not being used.

10.2.4.3 Host Read/Write (HR/W)
This input selects the direction of data transfer for each host processor access. If HR/W
is high and HEN is asserted, H0-H7 are outputs and DSP data is transferred to the host
processor. If HR/W is low and HEN is asserted, H0-H7 are inputs and host data is trans-
ferred to the DSP. HR/W is stable when HEN is asserted. HR/W may be programmed as
a general purpose I/O pin called PB11 when the HI is not being used.

10.2.4.4 Host Enable (HEN)
This input enables a data transfer on the host data bus. When HEN is asserted and HR/W
is high, H0-H7 become outputs and DSP data may be latched by the host processor.
When HEN is asserted and HR/W is low, H0-H7 become inputs and host data is latched
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 27

inside the DSP when HEN is deasserted. When HEN is deasserted, H0-H7 are three-
stated. Normally a chip select signal derived from host address decoding and an enable
clock, is used to generate HEN. HEN may be programmed as a general purpose I/O pin
called PB12 when the HI is not being used.

10.2.4.5 Host Request (HREQ)
This open-drain output signal is used by the DSP56000/DSP56001 HI to request service
from the host processor, DMA controller, or a simple external controller. HREQ may be

Register
Name

Register
Data

Reset Type

HW
Reset

SW
Reset

IR
Reset

ST
Reset

ICR

INIT 0 0 0 0

HM (1 - 0) 0 0 0 0

TREQ 0 0 0 0

RREQ 0 0 0 0

HF (1 - 0) 0 0 0 0

CVR
HC 0 0 0 0

HV (4 - 0) $12 $12 $12 $12

ISR

HREQ 0 0 0 0

DMA 0 0 0 0

HF (3 - 2) 0 0 — —

TRDY 1 1 1 1

TXDE 1 1 1 1

RXDF 0 0 0 0

IVR IV (7 - 0) $0F $0F — —

RX

RXH (23 - 16) — — — —

RXM (15 - 8) — — — —

RXL (7 - 0) — — — —

TX

TXH (23 - 21) — — — —

TXM (15 - 8) — — — —

TXL (7 - 0) — — — —

Table 10-5 Host Registers after Reset
(Host Side)
10- 28 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

connected to an interrupt request pin of a host processor, a transfer request of a DMA
controller or a control input of external circuitry. HREQ is asserted when an enabled
request occurs in the host interface. HREQ is deasserted when the enabled request is
cleared or masked, DMA HACK is asserted, or the DSP is reset. HREQ may be pro-
grammed as a general purpose I/O pin (not open-drain) called PB13 when the HI is not
being used.

10.2.4.6 Host Acknowledge (HACK)
This input has two functions: 1) to provide a Host Acknowledge handshake signal for DMA
transfers and, 2) to receive a Host Interrupt Acknowledge compatible with MC68000 Fam-
ily processors. If programmed as a host acknowledge signal, HACK may be used as a
data strobe for HI DMA data transfers. If programmed as a MC68000 host interrupt
acknowledge, HACK is used to enable the HI interrupt vector register (IVR) onto the host
data bus H0-H7 if HREQ is asserted. In this case, all other HI control pins are ignored and
the state of the HI is not affected. HACK may be programmed as a general purpose I/O
pin called PB14 when the HI is not being used.

10.2.5 Servicing the Host Interface
The HI can be serviced by using one of the following protocols:

1. Polling, or
2. Interrupts, which can be either

a. non-DMA or
b. DMA.

From the host processor viewpoint, the service consists of making a data transfer since
this is the only way to reset the appropriate status bits.

10.2.5.1 HI Host Processor Data Transfer
The HI looks like static RAM to the host processor. Accordingly, in order to transfer data
with the HI, the host processor

1. asserts the HI address (HA0, HA1, HA2) to select the register to be read or
written;

2. asserts HR/W to select the direction of the data transfer;
3. strobes the data transfer using HEN. When data is being written to the HI by

the host processor, the positive-going edge of HEN latches the data in the HI
register selected. When data is being read by the host processor, the nega-
tive-going edge of HEN strobes the data onto the data bus H0-H7.

This process is illustrated inFigure 10-15. The specified timing relationships are given in
the DSP56001 Advance Information Data Sheet (ADI1290).
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 29

10.2.5.2 HI Interrupts Host Request (HREQ)
The host processor interrupts are external and use the HREQ pin. HREQ is normally con-
nected to the host processor maskable interrupt (IPL0 or IPL1 or IPL2 in Figure 10-16)
input. The host processor acknowledges host interrupts by executing an interrupt service
routine. The most significant bit (HREQ) of the ISR may be tested by the host processor
to determine if the DSP is the interrupting device and the two least significant bits (RXDF
and TXDE) may be tested to determine the interrupt source (see Figure 10-17). The host
processor interrupt service routine must read or write the appropriate HI register to clear
the interrupt. HREQ is deasserted when1) the enabled request is cleared or masked, 2)
DMA HACK is asserted, or 3) the DSP is reset.

10.2.5.3 Polling
In the polling mode of operation, the HREQ pin is not connected to the host processor and
HACK must be deasserted to insure DMA data or IVR data is not being output on H0-H7
when other registers are being polled.

The host processor first performs a data read transfer to read the ISR (see Figure 10-17)
to determine, whether:

1. RXDF=1, signifying the receive data register is full and therefore a data read
should be performed.

2. TXDE=1, signifying the transmit data register is empty so that a data write can

HA0 - HA2

HR/W

HEN

H0 - H7

DSP56000

HA0 - HA2

HR/W

HEN

H0 - H7

HREQ

HACK

WRITE READDATA
LATCHED

IN HI

8

3

+5 V

+5 V

Figure 10-15 Host Processor Transfer Timing
10- 30 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

be performed.
3. TRDY=1, signifying the transmit data register is empty and that the receive

data register on the DSP CPU side is also empty so that the data written by
the host processor will be transferred directly to the DSP side.

4. HF2 • HF3 ≠ 0, signifying an application-specific state within the DSP CPU
has been reached, which requires action on the part of the host processor.

5. DMA=1, signifying the HI is currently being used for DMA transfers. If DMA
transfers are possible in the system, care must be exercised to deactivate
HACK prior to reading the ISR so both DMA data and the contents of ISR are
not simultaneously output on H0- H7.

6. If HREQ=1, the HREQ pin has been asserted, and one of the previous five
conditions exists.

Generally, after the appropriate data transfer has been made, the corresponding status
bit will toggle.

If the host processor has issued a command to the DSP by writing the CVR and setting
the HC bit, it can read the HC bit in the CVR to determine when the command has been
accepted by the interrupt controller in the DSP CPU. When the command has been
accepted for execution, the HC bit will be reset to zero by the interrupt controller in the

2. THE HOST PROCESSOR ASSERTS HACK WITH ITS INTERRUPT
ACKNOWLEDGE CYCLE.

1K

7 0

DSP56000

A1 - A31

FC0 - FC2

AS

IPL2
IPL1
IPL0

D0 - D7

HREQ

HACK

H0 - H7

IACK
LOGIC

$0F

$3

+5 V

INTERRUPT VECTOR NUMBER
INTERRUPT VECTOR REGISTER (IVR)
(READ/WRITE)

MC68000 1. THE DSP56000 ASERTS HREQ TO INTERRUPT THE HOST PROCESSOR.

3. WHEN HREQ AND HACK ARE SIMULTANEOUSLY ASSERTED, THE
CONTENTS OF THE IVR ARE PLACED ON THE HOST DATA BUS.

IACK

INTERRUPT
VECTOR
REGISTER
(IVR)

Figure 10-16 Interrupt Vector Register Read Timing
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 31

DSP CPU.

10.2.5.4 Servicing Non-DMA Interrupts
When HM0=HM1=0 (i.e., non-DMA) and HREQ is connected to the host processor inter-
rupt input, the HI can request service from the host processor by asserting HREQ. In the
non-DMA mode, HREQ will be asserted when TXDE=1 and/or RXDF=1 and the corre-
sponding mask bit (TREQ or RREQ, respectively) is set. This is depicted in Figure 10-17.

Generally, servicing the interrupt starts with reading the ISR, as described in the previous
section on polling, to determine which DSP has generated the interrupt and why. When
multiple DSPs occur in a system, the HREQ bit in the ISR will normally be read first to
determine the interrupting device. The host processor interrupt service routine must read
or write the appropriate HI register to clear the interrupt. HREQ is deasserted when the
enabled request is cleared or masked.

In the case where the host processor is a member of the MC680XX Family, servicing the
interrupt will start by asserting HREQ to interrupt the processor (see Figure 10-17). The
host processor then acknowledges the interrupt by asserting HACK. While HREQ and
HACK are simultaneously asserted, the contents of the IVR are placed on the host data
bus. This vector will tell the host processor which routine to use to service the HREQ
interrupt.

The HREQ pin is an open-drain output pin so that it can be wire-ORed with the HREQ pins
from other DSP56000/DSP56001 processors in the system. When one of the
DSP56000/DSP56001 processors generates an interrupt request the host processor can
poll the HREQ bit in each of the ISRs to determine which device generated the interrupt.

7 0

HREQ DMA 0 HF3 HF2 TRDY TXDE RXDF

STATUS

ISR

INIT HM1 HM0 HF1 HF0 0 TREQ RREQ

7 0

$3

$2

ICR

MASK

EXCEPTION

HREQ ASSERTED

HREQ

Figure 10-17 HI Interrupt Structure
10- 32 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

10.2.5.5 Servicing DMA Interrupts
When HM0≠0 and/or HM1≠0, HREQ will be asserted to request a DMA transfer. Gener-
ally the HREQ pin will be connected to the REQ input of a DMA controller. The HA0-2,
HEN, and HR/W pins are not used during DMA transfers; DMA transfers only use the
HREQ and HACK pins after the DMA channel has been initialized. HACK is used to strobe
the data transfer as shown in Figure 10-20 where an MC68440 is used as the DMA con-
troller. DMA transfers to and from the HI are considered in more detail in 10.2.6 HI
Application Examples.

10.2.6 HI Application Examples
In the sections that follow, examples of initializing the HI, transferring data with the HI,
bootstrapping via the HI, and performing DMA transfers through the HI are described.

DMA ACK GATED OFF

FAST 56001 INTERRUPT
TO TRANSFER 24-BIT WORD

HIGH
BYTE

MC68440

IRQ

ACK0

+5 V

DSP56001

TO IRQB

+5 V

+5 V

HREQ

HACK

REQ0

CI

QD

A0
A1
AS
OWN

BURST
REQ0

HACK
HIGH
BYTE

MIDDLE
BYTE

LOW
BYTE

1 DMA CYCLE = 8T = 4 DMA CLOCK CYCLES
MAX. MC68440 CLOCK = 10 MHz = > T = 50 ns

Figure 10-18 DMA Transfer Logic and Timing

8T
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 33

10.2.6.1 HI Initialization
Initializing the HI takes two steps (see Figure 10-19). The first step is to initialize the DSP

side of the HI, which requires that the options for interrupts and flags be selected and then
the HI be selected (see Figure 10-20). The second step is for the host processor to clear
the HC bit by writing the CVR, select the data transfer method - polling, interrupts, or DMA
(see figures 10-21 and10-23), and write the IVR in the case of a MC680XX Family host
processor.Figures 10-19 through 10-22 provide a genera description of how to initialize
the HI. Later paragraphs in this section provide more detailed descriptions for specific
examples.These subsections include some code fragments illustrating how to initialize
and transfer data using the HI.

10.2.6.2 Polling/Interrupt Controlled Data Transfer
Handshake flags are provided lfor polled or interrupt-driven data transfers. Because the
DSP interrupt response is sufficiently fast, most host microprocessors can load or store
data at their maximum programmed I/O (non-DMA) instruction rate without testing the
handshake flags for each transfer. If the full handshake is not needed, the host processor
can treat the DSP as fast memory, and data can be transferred between the host and DSP
at the fastest host processor rate. DMA hardware may be used with the external host
request and host acknowledge pins to transfer data at the maximum DSP interrupt rate.

The basic data transfer process from the host processor’s view (see Figure 10-15) is for
the host to

1. Assert HREQ when the HI is ready to transfer data.
2. Assert HACK If the interface is using HACK.
3. Assert HR/W to select whether this operation will read or write a register.
4. Assert the HI address (HA2, HA1, and HA0) to select the register to be read or

STEP 1
THE DSP CPU INITIALIZES THE DSP SIDE OF
THE HI BY WRITING:
1) HCE AT X:$FFE8 AND
2) PBC AT X:$FFE0

STEP 2
THE HOST PROCESOR INITIALIZES THE
HOST SIDE OF THE HI BY WRITING:
1) ICR AT $0 AND/OR
2) CVR AT $1 AND/OR
3) IVR AT $3

Figure 10-19 HI Initialization Flowchart
10- 34 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

written.
5. Assert HEN to enable the HI.
6. When HEN is deasserted, the data can be latched or read as appropriate if the

timing requirements have been observed.
7. HREQ will be deasserted if the operation is complete.

The previous transfer description is an overview. Specific and exact information for the HI

STEP 1 OF HOST PORT CONFIGURATION

1. ENABLE/DISABLE
HOST RECEIVE DATA FULL INTERRUPT
ENABLE INTERRUPT: BIT 0 = 1
DISABLE INTERRUPT: BIT 0 = 0

2, ENABLE/DISABLE
HOST TRANSMIT DATA EMPTY INTERRUPT
ENABLE INTERRUPT: BIT 1 = 1
DISABLE INTERRUPT: BIT 1 = 0

3. ENABLE/DISABLE
HOST COMMAND PENDING INTERRUPT
ENABLE INTERRUPT: BIT 2 = 1
DISABLE INTERRUPT: BIT 2 = 0

4. SET/CLEAR
HOST FLAG 2 (OPTIONAL)
ENABLE FLAG: BIT 3 = 1
DISABLE FLAG: BIT 3 = 0

5. SET/CLEAR
HOST FLAG 3 (OPTIONAL)
ENABLE FLAG: BIT 4 = 1
DISABLE FLAG: BIT 4 = 0

X:$FFE8 HF3 HF2 HCIE HTIE HRIE

7 6 5 4 3 2 1 0
HOST CONTROL REGISTER (HCR)
(READ/WRITE)

6. SELECT PORT B FOR HOST PORT OPERATION:
BIT 0 TO ONE

* * * * * * * * * * * * * * *
BC
0

X:$FFE0

15 0

* Reserved; write as zero.

NOTE: The host flags are general-purpose semaphores. They are not required for host port operation but
may be used in some applications.

* * *

Figure 10-20 HI Initialization–DSP Side
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 35

data transfers and their timing can be found in 10.2.6.3 DMA Data Transfer and in the
DSP5600l Advance Information Data Sheet (ADI1290).

10.2.6.2.1 Host to DSP - Data Transfer
Figure 10-23 shows the bits in the ISR and ICR registers used by the host processor and
the bits in the HSR and HCR registers used by the DSP to transfer data from the host
processor to the DSP. The registers shown are the status register and control register
seen by the host processor and status register and control register seen by the DSP.
Only the registers used to transmit data from the host processor to the DSP are
described. Figure 10-24 illustrates the process of that data transfer. The steps in Figure
10-24 can be summarized as follows:

STEP 2 OF HOST PORT CONFIGURATION

1. CLEAR HOST COMMAND BIT (HC):

BIT 7 = 0

$1

7 6 5 4 0

HC HV

2. OPTION 1: SELECT HOST VECTOR (HV)
(OPTIONAL SINCE HV CAN BE SET ANY TIME BEFORE THE HOST COMMAND IS EXECUTED. DSP INTERRUPT VECTOR = THE HOST
VECTOR MULTIPLIED BY 2. DEFAULT (UPON DSP RESET): HV = $12 ➞ DSP INTERRUPT VECTOR $0024

* *

*Reserved; write as zero.

COMMAND VECTOR REGISTER (CVR)
(READ/WRITE)

Figure 10-21(a) HI Configuration–Host Side

INIT HM1 HM0 HF1 HF0 TREQ RREQ$0

*Reserved; write as zero.

STEP 2 OF HOST PORT CONFIGURATION

2. OPTION 2: SELECT POLLING MODE FOR HOST TO DSP COMMUNICATION

7 6 5 4 3 2 1 0

INITIALIZE DSP
AND HOST PORT

DMA OFF
BIT 5 = 0
BIT 6 = 0 OPTIONAL

DISABLE INTERRUPTS
BIT 0 = 0
BIT 1 = 0

INTERRUPT CONTROL REGISTER (ICR)
(READ/WRITE)*

Figure 10-21(b) HI Initialization–Host Side, Polling Mode
10- 36 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

1. When the TXDE bit in the ISR is set, it indicates that the HI is ready to receive
a data byte from the host processor because the transmit byte registers (TXH,
TXM, TXL) are empty.

2. The host processor can either poll or
3. use interrupts to determine the status of this bit. Setting the TREQ bit in the

ICR causes the HREQ pin to interrupt the host processor when TXDE is set.
4. Once the TXDE bit is set, the host can write data to the HI. It does this by writ-

ing three bytes to TXH, TXM, and TXL, respectively, or two bytes to TXM and
TXL, respectively, or one byte to TXL.

5. Writing data to TXL clears TXDE in the ISR.
6. From the DSP’s viewpoint, the HRDF bit (when set) in the HSR indicates that

data is waiting in the HI for the DSP.
7. When the DSP reads the HRX, the HRDF bit is automatically cleared and

TXDE in the ISR is set.
8. When TXDE=0 and HRDF=0, data is automatically transferred from TBR to

HRX which sets HRDF.

INIT HM1 HM0 HF1 HF0 TREQ RREQ$0

*Reserved; write as zero.

7 6 5 4 3 2 1 0

INITIALIZE DSP
INITIALIZE HI**

BIT 7 = 1

OPTIONAL

INTERRUPT CONTROL REGISTER (ICR)
(READ/WRITE)

DMA OFF
BIT 5 = 0
BIT 6 = 0

STEP 2 OF HOST PORT CONFIGURATION

2. OPTION 3: SELECT INTERRUPT MODE FOR

ENABLE
RECEIVE DATA FULL INTERRUPT

BIT 0 = 1
BIT 1 = 0

ENABLE
TRANSMIT DATA EMPTY INTERRUPT

BIT 0 = 0
BIT 1 = 1

DSP TO HOST

OR

HOST TO DSP

OR

DSP TO HOST
AND

HOST TO DSP

IV7 IV6 IV5 IV4 IV3 IV2 IV1 IV0$3

7 6 5 4 3 2 1 0
INTERRUPT VECTOR REGISTER (IVR)
(READ/WRITE)

2. OPTION 4: LOAD HOST INTERRUPT VECTOR IF USING THE INTERRUPT MODE AND THE HOST PROCESSOR REQUIRES AN
INTERRUPT VECTOR.

**See Figure 10 - 23.

ENABLE
RECEIVE DATA FULL INTERRUPT AND

TRANSMIT DATA EMPTY INTERRUPT
BIT 0 = 1
BIT 1 = 1

*

Figure 10-21(c) HI Initialization–Host Side, Interrupt Mode
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 37

9. The DSP can poll HRDF to see when data has arrived, or it can use interrupts.
10. If HRIE (in the HCR) and HRDF are set, exception processing is started using

interrupt vector P:$0020.

The code shown in Figure 10-25 is an excerpt from the Host I/O Port Technical Bulletin
(in-house document). The MAIN PROGRAM initializes the HI and then hangs in a wait
loop and allows interrupts to transfer data from the host processor to the DSP. The first
three MOVEP instructions enable the HI and configure the interrupts. The following two
moves enable the interrupts (this should always be done after the interrupt programs and
hardware are completely initialized) and prepare the DSP CPU to look for the host flag,
HF0=1. LOOP is a polling loop that looks for HF0=1, which indicates that the host proces-
sor is ready. When the host processor is ready to transfer data to the DSP, the DSP
enables HRIE in the HCR, which allows the interrupt routine to receive data from the host
processor. The jump-to-self instruction that follows is for test purposes only, it can be
replaced by any other code in normal operation.

The receive routine in Figure 10-26 was implemented as a long interrupt (the instruction
at the interrupt vector location, which is not shown, is a JSR). Since there is only one
instruction, this could have been implemented as a fast interrupt. The MOVEP instruction
moves data from the HI to a buffer area in memory and increments the buffer pointer so

16-BIT DMA
BIT 5 = 0
BIT 6 = 1

INIT HM1 HM0 HF1 HF0 TREQ RREQ$0

*Reserved; write as zero.

7 6 5 4 3 2 1 0

INITIALIZE DSP
INITIALIZE HI**

BIT 7 = 1

OPTIONAL

INTERRUPT CONTROL REGISTER (ICR)
(READ/WRITE)

DMA OFF
BIT 5 = 1
BIT 6 = 1

STEP 2 OF HOST PORT CONFIGURATION

2. OPTION 5: SELECT DMA MODE FOR

ENABLE
RECEIVE DATA FULL INTERRUPT

BIT 0 = 1
BIT 1 = 0

ENABLE
TRANSMIT DATA EMPTY INTERRUPT

BIT 0 = 0
BIT 1 = 1

DSP TO HOST

OR

HOST TO DSP

**See Figure 10-23.

24-BIT DMA
BIT 5 = 1
BIT 6 = 0

*

OR

OR

Figure 10-21(d) HI Initialization–Host Side, DMA Mode
10- 38 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

that the next word received will be put in the next sequential location.

10.2.6.2.2 Host to DSP – Command Vector
The host processor can cause three types of interrupts in the DSP (see Figure 10-26).
These are host receive data (P:$0020), host transmit data (P:$0022), and host command
(P:$0024 - P:$003C). The host command (HC) can be used to control the DSP by forcing
it to execute any of thirteen subroutines that can be used to run tests, transfer data, pro-
cess data, etc. In addition, the HC can cause any of the other 19 interrupt routines in the
DSP to be executed. The process to execute a HC (see Figure 10-28) is as follows:

1. The host processor writes the CVR with the desired HV (the HV is the DSP’s
interrupt vector (IV) location divided by two - i.e. if HV=$12, IV=$24).

2. The HC is then set.
3. The HCP bit in the HSR is set when HC is set.
4. If the HCIE bit in the HCR has been set by the DSP, the HC exception pro-

cessing will start. The HV is multiplied by 2 and the result is used by the DSP

TREQ RREQ INIT Execution

0 0 INIT = 0; Address Counter = 00

0 1 INIT = 0; RXDF = 0; HTDE = 1;

Address Counter = 00

1 0 INIT = 0; TXDE = 1; HRDF = 0;

Address Counter = 00

INIT HM1 HM0 HF1 HF0 0 TREQ RREQHOST SETS INIT BIT 1

7 0
INTERRUPT CONTROL REGISTER (ICR)
(READ/WRITE)

MODES

0 0 Interrupt Mode (DMA Off)

0 1 24 Bit DMA Mode

1 0 16 Bit DMA Mode

1 1 8 Bit DMA Mode

RESET CONDITION

INTERRUPT MODE (DMA OFF)

TREQ RREQ INIT Execution

0 0 INIT = 0; Address Counter = HM1, HM0

0 1 INIT = 0; RXDF = 0; HTDE = 1;

Address Counter = HM1, HM0

1 0 INIT = 0; TXDE = 1; HRDF = 0;

Address Counter = HM1, HM0

1 1 Undefined (Illegal)

DMA MODE

INIT is used by the HOST to force initialization of the HI hardware.
The HI hardware automatically clears INIT when the command is executed.
INIT is cleared by DSP RESET.

Figure 10-22 Host Mode and INIT Bits
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 39

as the interrupt vector.

0
0

In
te

rr
up

t M
od

e
(D

M
A

 O
ff)

0
1

24
 B

it
D

M
A

 M
od

e

1
0

16
 B

it
D

M
A

 M
od

e

1
1

8
B

it
D

M
A

 M
od

e

H
R

E
Q

D
M

A
0

H
F

3
H

F
2

T
R

D
Y

T
X

D
E

R
X

D
F

$2

7
0

IN
TE

R
R

U
PT

 S
TA

TU
S

R
EG

IS
TE

R
 (I

SR
)

(R
EA

D
 O

N
LY

)

IN
IT

H
M

1
H

M
0

H
F

1
H

F
0

0
T

R
E

Q
R

R
E

Q
$0

7
0

M
O

D
E

S

H
O

S
T

D
S

P
56

00
0

T
X

D
E

 —
 T

R
A

N
S

M
IT

 D
AT

A
 R

E
G

IS
T

E
R

 E
M

P
T

Y
1

=
 IN

D
IC

AT
E

S
 T

H
E

 T
R

A
N

S
M

IT
 B

Y
T

E
 R

E
G

IS
T

E
R

S
 (

T
X

H
, T

X
M

, T
X

L)
 A

R
E

 E
M

P
T

Y.
0

=
 C

LE
A

R
E

D
 B

Y
 W

R
IT

IN
G

 T
O

 T
X

L;
 T

X
D

E
 C

A
N

 B
E

 U
S

E
D

 T
O

 A
S

S
E

R
T

 T
H

E

H
R

E
Q

 P
IN

.

T
R

D
Y

 —
 T

R
A

N
S

M
IT

T
E

R
 R

E
A

D
Y

 =
 T

X
D

E
 •

 H
R

D
F

1
=

 B
O

T
H

 T
H

E
 T

R
A

N
S

M
IT

 B
Y

T
E

 R
E

G
IS

T
E

R
S

 A
N

D
 T

H
E

 H
O

S
T

 R
E

C
E

IV
E

 D
AT

A
 R

E
G

IS
T

E
R

S
 A

R
E

 E
M

P
T

Y.
0

=
 O

N
E

 O
R

 B
O

T
H

 R
E

G
IS

T
E

R
S

 A
R

E
 F

U
LL

.

D
M

A
0

0
H

F
1

H
F

0
H

C
P

H
T

D
E

H
R

D
F

X
:$

F
F

E
9

7
0

H
O

S
T

 S
TA

T
U

S
R

E
G

IS
T

E
R

 (
H

S
R

)
(R

E
A

D
 O

N
LY

)

H
R

D
F

 —
 H

O
S

T
 R

E
C

E
IV

E
 D

AT
A

 F
U

LL
1

=
 T

H
E

 H
O

S
T

 R
E

C
E

IV
E

 R
E

G
IS

T
E

R
 (

H
R

X
)

C
O

N
TA

IN
S

 D
AT

A
 F

R
O

M
 T

H
E

H

O
S

T
 P

R
O

C
E

S
S

O
R

.
0

=
 H

R
X

 IS
 E

M
P

T
Y.

D
M

A
 —

IN
D

IC
AT

E
S

 T
H

E
 H

O
S

T
 P

R
O

C
E

S
S

O
R

 H
A

S
 E

N
A

B
LE

D
 T

H
E

 D
M

A
 M

O
D

E
1

=
 D

M
A

 O
N

.
0

=
 H

O
S

T
 M

O
D

E
.

0
0

0
H

F
3

H
F

2
H

C
IE

H
T

IE
H

R
IE

7
0

H
O

S
T

 C
O

N
T

R
O

L
R

E
G

IS
T

E
R

 (
H

C
R

)
(R

E
A

D
/W

R
IT

E
)

H
R

IE
 —

 H
O

S
T

 R
E

C
E

IV
E

 IN
T

E
R

R
U

P
T

 E
N

A
B

LE
E

N
A

B
LE

S
 IN

T
E

R
R

U
P

T
 A

T
 P

:$
00

20
D

S
P

 IN
T

E
R

R
U

P
T

 IS
 C

A
U

S
E

D
 B

Y
 H

R
D

F
 =

 1
1

=
 IN

T
E

R
R

U
P

T
 P

:$
00

20
 E

N
A

B
LE

D
.

0
=

 IN
T

E
R

R
U

P
T

 P
:$

00
20

 D
IS

A
B

LE
D

.

T
R

E
Q

 —
 T

R
A

N
S

M
IT

 R
E

Q
U

E
S

T
 E

N
A

B
LE

U
S

E
D

 T
O

 E
N

A
B

LE
 IN

T
E

R
R

U
P

T
S

 T
H

AT
 C

O
M

E
 F

R
O

M
 T

X
D

E
 T

O
 T

H
E

 H
O

S
T

V
IA

 T
H

E
 H

R
E

Q
 P

IN
.

1
=

 T
X

D
E

 IN
T

E
R

R
U

P
T

S
 P

A
S

S
 T

O
 H

R
E

Q
.

0
=

 T
X

D
E

 IN
T

E
R

R
U

P
T

S
 A

R
E

 M
A

S
K

E
D

. F
ig

u
re

 1
0-

23
 B

it
s

U
se

d
 f

o
r

H
o

st
-t

o
-D

S
P

 T
ra

n
sf

er

IN
TE

R
R

U
PT

 C
O

N
TR

O
L

R
EG

IS
TE

R
 (I

C
R

)
(R

EA
D

/W
R

IT
E)

X
:$

F
F

E
8

10- 40 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

5. When the HC exception is acknowledged, the HC bit (and therefore the HCP

T
R

A
N

S
F

E
R

H
R

E
Q

D
M

A
0

H
F

3
H

F
2

T
R

D
Y

1
R

X
D

F
$2

7
0

IN
TE

R
R

U
PT

 S
TA

TU
S

R
EG

IS
TE

R
 (I

SR
)

IN
IT

0
0

H
F

1
H

F
0

0
1

R
R

E
Q

$0

7
0

V
IE

W
 F

R
O

M
 H

O
S

T
V

IE
W

 F
R

O
M

 D
S

P
56

00
0

1.
 W

H
E

N
 T

X
D

E
 =

 1
, T

D
R

 IS
 E

M
P

T
Y.

0
0

0
H

F
1

H
F

0
H

C
P

H
T

D
E

0
X

:$
F

F
E

9

7
0

H
O

S
T

 S
TA

T
U

S
R

E
G

IS
T

E
R

 (
H

S
R

)

0
0

0
H

F
3

H
F

2
H

C
IE

H
T

IE
1

X
:$

F
F

E
8

7
0

H
O

S
T

 C
O

N
T

R
O

L
R

E
G

IS
T

E
R

 (
H

C
R

)

T
X

D
E

T
R

A
N

S
M

IT
 D

AT
A

 R
E

G
IS

T
E

R
 E

M
P

T
Y

IN
TE

R
R

U
PT

 C
O

N
TR

O
L

R
EG

IS
TE

R
 (I

C
R

)

2.
 H

O
S

T
 M

AY
 P

O
LL

 T
X

D
E

.

T
R

E
Q

T
R

A
N

S
M

IT
 R

E
Q

U
E

S
T

 E
N

A
B

LE

H
M

1
H

M
0

3.
 IF

 T
R

E
Q

 =
 1

, T
H

E
N

 H
R

E
Q

 P
IN

 IS
 A

S
S

E
R

T
E

D
 T

O
 IN

T
E

R
R

U
P

T
 H

O
S

T.

H
R

E
Q

P
IN

4.
 H

O
S

T
 W

R
IT

E
S

 D
AT

A
 T

O
 T

R
A

N
S

M
IT

 B
Y

T
E

 R
E

G
IS

T
E

R
S

.

5.
 W

R
IT

E
 T

O
 T

X
L

C
LE

A
R

S
 T

X
D

E
 IN

 IS
R

.

6.
 IF

 D
S

P
56

00
00

 H
A

S
 O

LD
 D

AT
A

 IN
 H

R
X

, T
H

E
N

 H
R

D
F

 =
 1

.

T
X

H

T
X

M

T
X

L

7
0

$5 $6

LA
S

T
 W

R
IT

E
 $

7

T
R

A
N

S
M

IT
 B

Y
T

E
R

E
G

IS
T

E
R

S
 (

T
B

R
)

7.
 W

H
E

N
 D

S
P

56
00

0
R

E
A

D
S

 H
R

X
, T

H
E

N
 H

R
D

F
 =

 0
.

8.
 W

H
E

N
 T

X
D

E
 =

 0
 A

N
D

 H
R

D
F

 =
 0

, T
H

E
N

 T
R

A
N

S
F

E
R

 O
C

C
U

R
S

.

H
R

D
F

H
O

S
T

 R
E

C
E

IV
E

 D
AT

A
 F

U
LL

D
M

A H
IG

H
 B

Y
T

E
M

ID
D

LE
 B

Y
T

E
LO

W
 B

Y
T

E
X

:$
F

F
E

B

23
0

H
O

S
T

 R
E

C
E

IV
E

D
AT

A
R

E
G

IS
T

E
R

 (H
R

X
)

9.
 T

H
E

 T
R

A
N

S
F

E
R

 S
E

T
S

 H
R

D
F

 F
O

R
 T

H
E

 D
S

P
56

00
0

TO
 P

O
LL

.

10
. I

F
 H

R
D

F
 =

 1
 A

N
D

 IN
T

E
R

R
U

P
T

S
 A

R
E

 E
N

A
B

LE
D

, T
H

E
N

 E
X

C
E

P
T

IO
N

P
R

O
C

E
S

S
IN

G
 B

E
G

IN
S

.

H
R

IE
H

O
S

T
 R

E
C

E
IV

E
 IN

T
E

R
R

U
P

T
 E

N
A

B
LE

P
:$

00
20

H
O

S
T

 R
E

C
E

IV
E

 D
AT

A
 V

E
C

TO
R

FA
S

T
 IN

T
E

R
R

U
P

T
O

R
LO

N
G

 IN
T

E
R

R
U

P
T

F
ig

u
re

 1
0-

24
 D

at
a

T
ra

n
sf

er
 f

ro
m

 H
o

st
 t

o
 D

S
P

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 41

bit) is cleared by the HC logic. HC can be read by the host processor as a sta-
tus bit to determine when the command is accepted. Similarly, the HCP bit can
be read by the DSP CPU to determine if an HCis pending.

To guarantee a stable interrupt vector, write HV only when HC is clear. The HC bit and
HV can be written simultaneously. The host processor can clear the HC bit to cancel a
host command at any time before the DSP exception is accepted. Although the HV can
be programmed to any exception vector, it is not recommended that HV=0 (RESET) be
used because it does not reset the DSP hardware. DMA must be disabled to use the host
exception .

;**
; MAIN PROGRAM ... receive data from host

;**
ORG P:$40
MOVE #0,R0
MOVE #3,M0

MOVEP #1,X:PBC ;Turn on Host Port
MOVEP #0,X:HCR ;Turn off XMT and RCV interrupts
MOVEP #$0C00,X:IPR ;Turn on host interrupt

MOVE #0,SR ;Unmask interrupts
MOVE #>$8,X0 ;Host flag mask for HF0

LOOP MOVEP X:HSR,A ;Wait for HF0 (from host) set to 1
AND X0,A
JEQ LOOP

MOVEP #$1,X:HGR ;Enable host receive interrupt

JMP * ;Now wait for interrupt

Figure 10-25 Receive Data from Host–Main Program

;************************************
; Receive from Host Interrupt Routine

;************************************

RCV MOVEP X:HRX,X:(R0)+ ;Receive data.
RTI

END

Figure 10-26 Receive Data from Host Interrupt Routine
10- 42 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

10.2.6.2.3 Host to DSP - Bootstrap Loading Using the HI
The circuit shown in Figure 10-27 will cause the DSP to boot through the HI on power
up. During the bootstrap program, the DSP looks at P:$C000 data bit 23. If D23 is high, it

PROGRAM MEMORY SPACE

EXCEPTION SOURCE

EXCEPTION
STARTING
ADDRESS

$0000 HARDWARE RESET

$0002 STACK ERROR

$0004 TRACE

$0006 SWI (SOFTWARE INTERRUPT)

$0008 IRQA EXTERNAL HARDWARE INTERRUPT

$000A IRQB EXTERNAL HARDWARE INTERRUPT

$000C SSI RECEIVE DATA

$000E SSI RECEIVE DATA WITH EXCEPTION STATUS

$0010 SSI TRANSMIT DATA

$0012 SSI TRANSMIT DATA WITH EXCEPTION STATUS

$0014 SCI RECEIVE DATA

$0016 SCI RECEIVE DATA WITH EXCEPTION STATUS

$0018 SCI TRANSMIT DATA

$001A SCI IDLE LINE

$001C SCI TIMER

$001E RESERVED FOR HARDWARE DEVELOPMENT

$0020 HOST RECEIVE DATA

$0022 HOST TRANSMIT DATA

$0024 HOST COMMAND (DEFAULT)

$0026 AVAILABLE FOR HOST COMMAND

$0028 AVAILABLE FOR HOST COMMAND

$002A AVAILABLE FOR HOST COMMAND

$002C AVAILABLE FOR HOST COMMAND

$002E AVAILABLE FOR HOST COMMAND

$0030 AVAILABLE FOR HOST COMMAND

$0032 AVAILABLE FOR HOST COMMAND

$0034 AVAILABLE FOR HOST COMMAND

$0036 AVAILABLE FOR HOST COMMAND

$0038 AVAILABLE FOR HOST COMMAND

$003A AVAILABLE FOR HOST COMMAND

$003C AVAILABLE FOR HOST COMMAND

$003E ILLEGAL INSTRUCTION

HOST
INTERFACE

INTERNAL
INTERRUPTS

SERIAL
COMMUNICATIONS

INTERFACE

SYNCHRONOUS
SERIAL

INTERFACE

INTERNAL
INTERRUPTS

EXTERNAL
INTERRUPTS

NONMASKABLE
INTERRUPTS

TWO WORDS PER VECTOR

Figure 10-26 Vector Table of Exception Sources
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 43

will boot from an external memory location. If it is low, as shown in Figure 10-27, it will

$1
2

—
 D

E
FA

U
LT

1
0

0
H

O
S

T
 V

E
C

TO
R

 (
H

V
)

$1

7
0

C
O

M
M

A
N

D
 V

E
C

TO
R

R

E
G

IS
T

E
R

 (
C

V
R

)

V
IE

W
 F

R
O

M
 H

O
S

T
V

IE
W

 F
R

O
M

 D
S

P
56

00
0

1.
 W

R
IT

E
 C

V
R

 W
IT

H
 D

E
S

IR
E

D
 H

V.

D
M

A
0

0
H

F
1

H
F

0
1

H
T

D
E

H
R

D
F

X
:$

F
F

E
9

7
0

H
O

S
T

 S
TA

T
U

S
R

E
G

IS
T

E
R

 (
H

S
R

)

0
0

0
H

F
3

H
F

2
1

H
T

IE
H

R
IE

X
:$

F
F

E
8

7
0

H
O

S
T

 C
O

N
T

R
O

L
R

E
G

IS
T

E
R

 (
H

C
R

)

H
C

H
O

S
T

 C
O

M
M

A
N

D

2.
 S

E
T

 H
C

 =
 1

.

3.
 H

C
P

 IS
 S

E
T

 U
N

T
IL

 E
X

C
E

P
T

IO
N

 IS
 A

C
K

N
O

W
LE

D
G

E
D

.

4.
 H

O
S

T
 C

O
M

M
A

N
D

 IS
 M

A
S

K
E

D
 U

N
T

IL
 H

C
IE

 =
 1

.

5.
 W

H
E

N
 T

H
E

 H
O

S
T

 C
O

M
M

A
N

D
 E

X
C

E
P

T
IO

N
 IS

 A
C

K
N

O
W

LE
D

G
E

D
, T

H
E

 H
C

B
IT

 IS
 C

LE
A

R
E

D
 B

Y
 T

H
E

 H
O

S
T

 C
O

M
M

A
N

D
 L

O
G

IC
. H

C
 C

A
N

 B
E

 R
E

A
D

 A
S

A
 S

TA
T

U
S

 B
IT

.

H
C

P
H

O
S

T
 C

O
M

M
A

N
D

 P
E

N
D

IN
G

E
X

C
E

P
T

IO
N

 V
E

C
TO

R
 T

A
B

LE

H
C

IE
H

O
S

T
 C

O
M

M
A

N
D

 IN
T

E
R

R
U

P
T

 E
N

A
B

LE

P
:$

00
3C

A
V

A
IL

A
B

LE
 F

O
R

 H
O

S
T

 C
O

M
M

A
N

D

FA
S

T
 IN

T
E

R
R

U
P

T
O

R
LO

N
G

 IN
T

E
R

R
U

P
T

0
0

0
H

O
S

T
 V

E
C

TO
R

 (
H

V
)

$1

7
0

C
O

M
M

A
N

D
 V

E
C

TO
R

R

E
G

IS
T

E
R

 (
C

V
R

)

H
C

 —
 H

O
S

T
 C

O
M

M
A

N
D

 (
S

TA
T

U
S

)

P
:$

00
00

H
O

S
T

 C
O

M
M

A
N

D
 D

E
FA

U
LT

 V
E

C
TO

R
P

:$
00

24

A
V

A
IL

A
B

LE
 F

O
R

 H
O

S
T

 C
O

M
M

A
N

D

A
V

A
IL

A
B

LE
 F

O
R

 H
O

S
T

 C
O

M
M

A
N

D

E
X

C
E

P
T

IO
N

 V
E

C
TO

R
A

D
D

R
E

S
S

 =
 H

V
 x

 2

F
ig

u
re

 1
0-

28
 H

o
st

 C
o

m
m

an
d

10- 44 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

load from the HI. Data is written by the host processor in a pattern of four bytes, with the
high byte being a dummy and the low byte being the low byte of the DSP word (see Fig-
ure 10-27 and Figure 10-30. Figure 10-30 shows how an 8-,16-, 24-, or 32-bit word in the
host processor maps into the HI registers. The HI register at address $4 is not used and
will read as zero. It is not necessary to use address $4, but since many host processors

•

•

+5V

15K 15K 15K

+5V

8

IN5711

LDS

3

AS

A4 - A23

MC68000
(12.5 MHz)

DTACK

R/W

D0 - D7

A1 - A3

F32 F32

F32

F32

LS09

ADDRESS
CODE

HEN

HACK

HR/W

H0 - H7

HA0 - HA2

DSP56001

MODB/IRQB

D23

RESET

MODA/IRQA
FROM OPEN-
COLLECTOR
BUFFER

FROM
RESET
FUNCTION

FROM OPEN-
COLLECTOR
BUFFER

+5V

15K

1K

INIT HM1 HM0 HF1 HF0 0 TREQ RREQ

7 0HOST

$0
INTERRUPT CONTROL REGISTER (ICR)

(READ/WRITE)

SETTING HF0 TERMINATES BOOTSTRAP LOADING AND STARTS
EXECUTION AT LOCATION P:$0000.

HOST ADDRESS CONTENTS LOADED
WRITTEN TO INTERNAL PRAM AT:

4 (DUMMY)
5 P:$0000 HIGH BYTE
6 P:$0000 MID BYTE
7 P:$0000 LOW BYTE
• •
• •
• •
4 (DUMMY) •
5 P:$01FF HIGH BYTE
6 P:$01FF MID BYTE
7 P:$01FF LOW BYTE

SET HF0 FOR EARLY TERMINATION

• Because the DSP56000 is so fast, host handshaking is generally not required.

Figure 10-27 Bootstrap Using the HI

•

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 45

are 16- or 32-bit processors, address $4 will often be used as part of the 16- or 32-bit
word. The low order byte (at $7) should always be written last since writing to it causes
the HI to initiate the transfer of the word to the HRX. Data is then transferred from the
HRX to the DSP program memory. If the host processor needs to terminate the boot-
strap loading before 512 words have been down loaded, it can set the HF0 bit in the ICR.
The DSP will then terminate the down load and start executing at location P:$0000.
Since the DSP56000/DSP56001 is typically faster than the host processor, hand shaking
during the data transfer is normally not required.

The actual code used in the bootstrap program is given in the DSP56001 Advance Infor-
mation Data Sheet (ADI1290). The portion of the code that loads from the HI is shown in
Figure 10-31. The BSET instruction configures Port B as the HI and the first JCLR looks
for a flag (HF0) to indicate an early termination of the download. The second JCLR
instruction causes the DSP to wait for a complete word to be received and then two
MOVEs are used to move the data from the HI to memory through an intermediate regis-
ter, A1.

HOST
DATA

HIGH MIDDLE LOWREAD - 00000000
WRITE - XXXXXXXX

HOST
TRANSMIT/RECEIVE
BYTE REGISTERS

7 0
HOST BYTE
ADDRESS

4

5

6

7

0 0 0 0 0 0 0 0

TXH/RXH
HIGH BYTE

TXM/RXM
MIDDLE BYTE

TXL/RXL
LOW BYTE

31 24 23 16 15 8 7 0

8-BIT TRANSFER

16-BIT TRANSFER

24-BIT TRANSFER

32-BIT TRANSFER, LS 24 BITS ARE SIGNIFICANT

ACCESS TO
LOW BYTE
INITIATES

TRANSFER

NOTE: Access low byte last

Figure 10-30 Transmit/Receive Byte Registers
10- 46 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

10.2.6.2.4 DSP-to-Host Data Transfer
Data is transferred from the DSP to the host processor in a similar manner as from the
host processor to the DSP. Figure 10-32 shows the bits in the status registers (ISR and
HSR) and control registers (ICR and HCR) used by the host processor and DSP CPU,
respectively. The DSP CPU (see Figure 10-33) can poll the HTDE bit in the HSR (1) to
see when it can send data to the host, or it can use interrupts enabled by the HTIE bit in
the HCR (2). If HTIE=1 and interrupts are enabled, exception processing begins at inter-
rupt vector P:$0022 (3). The interrupt routine should write data to the HTX (4), which will
clear HTDE in the HSR. From the host’s viewpoint, (5) reading the RXL clears RXDF in
the ISR. When RXDF=0 and HTDE=0 (6) the contents of the HTX will be transferred to
the receive byte registers (RXH:RXM:RXL). This transfer sets RXDF in the ISR (7),
which the host processor can poll to see if data is available or, if the RREQ bit in the ICR
is set, the HI will interrupt the host processor with HREQ (8).

The code shown in Figure 10-34 is essentially the same as the MAIN PROGRAM in Fig-
ure 10-25 except that, since this code will transmit instead of receive data, the HTIE bit is
set in the HCR instead of the HRIE bit.

The transmit routine used by the code in Figure 10-34 is shown in Figure 10-35. The inter-
rupt vector contains a JSR, which makes it a long interrupt. The code (shown in Figure
10-38) sends a fixed test pattern ($123456) and then resets the HI for the next interrupt.

10.2.6.3 DMA Data Transfer
The DMA mode allows the transfer of 8-, 16- or 24-bit data through the DSP HI under the
control of an external DMA controller. The HI provides the pipeline data registers and the

INLOOP DO #512,_LOOP1 ;Load 512 instruction words.
•
•
•

_HOSTLD BSET #0,X:$FFE0 ;Configure Port B as Host Interface
_LBLA JCLR #3,X:$FFE9,_LBLB ;If HF0=1, stop loading data.

ENDDO ;Must terminate the DO loop
JMP <_BOOTEND ;Boot complete, go to exit handler

_LBLB JCLR #0,X:(R2),_LBLA ;Wait for HRDF to go high
;(meaning 24-bit data is present)

MOVE X:$FFEB,A1 ;Put 24-bit host data in A1
_STORE MOVE A1,P:(R0)+ ;Store 24-bit result in PRAM
_LOOP1 ;Return for another 24-bit word

Figure 10-31 Bootstrap Code Fragment
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 47

synchronization logic between the two asynchronous processor systems. The DSP host

H
O

S
T

D
S

P
56

00
0

R
X

D
F

 —
 R

E
C

E
IV

E
 D

AT
A

 R
E

G
IS

T
E

R
 F

U
LL

1
=

 IN
D

IC
AT

E
S

 T
H

E
 R

E
C

IE
V

E
 B

Y
T

E
 R

E
G

IS
T

E
R

S
 (

R
X

H
, R

X
M

, R
X

L)
C

O
N

TA
IN

 D
AT

A
 F

R
O

M
 T

H
E

 D
S

P.
0

=
 C

LE
A

R
E

D
 B

Y
 R

E
A

D
IN

G
 R

X
L.

D
M

A
0

0
H

F
1

H
F

0
H

C
P

H
T

D
E

H
R

D
F

X
:$

F
F

E
9

7
0

H
O

S
T

 S
TA

T
U

S
R

E
G

IS
T

E
R

 (
H

S
R

)
(R

E
A

D
 O

N
LY

)

H
T

D
E

 —
 H

O
S

T
 T

R
A

N
S

M
IT

 D
AT

A
 E

M
P

T
Y

1
=

 H
T

X
 IS

 E
M

P
T

Y
 A

N
D

 C
A

N
 B

E
 W

R
IT

T
E

N
 B

Y
 D

S
P.

0
=

 H
T

X
 IS

 F
U

LL
.

0
0

0
H

F
3

H
F

2
H

C
IE

H
T

IE
H

R
IE

X
:$

F
F

E
8

7
0

H
O

S
T

 C
O

N
T

R
O

L
R

E
G

IS
T

E
R

 (
H

C
R

)
(R

E
A

D
/W

R
IT

E
)

H
T

IE
 —

 H
O

S
T

 T
R

A
N

S
M

IT
 IN

T
E

R
R

U
P

T
 E

N
A

B
LE

1
=

 E
N

A
B

LE
 T

H
E

 D
S

P
 IN

T
E

R
R

U
P

T
 T

O
 P

:$
00

22
.

0
=

 D
IS

A
B

LE
 T

H
E

 D
S

P
 IN

T
E

R
R

U
P

T
 T

O
 P

:$
00

22
.

D
S

P
 IN

T
E

R
R

U
P

T
 IS

 C
A

U
S

E
D

 B
Y

 H
T

D
E

 =
 1

IN
IT

H
M

1
H

M
0

H
F

1
H

F
0

0
T

R
E

Q
R

R
E

Q
$0

7
0

M
O

D
E

S

R
R

E
Q

 —
R

E
C

E
IV

E
 R

E
Q

U
E

S
T

 E
N

A
B

LE
 (

U
S

E
D

 T
O

 C
O

N
T

R
O

L
T

H
E

 H
R

E
Q

 P
IN

)
1

=
 E

N
A

B
LE

 IN
T

E
R

R
U

P
T

 R
E

Q
U

E
S

T
S

 C
R

E
AT

E
D

 B
Y

 R
X

D
F.

0
=

 D
IS

A
B

LE
 IN

T
E

R
R

U
P

T
 R

E
Q

U
E

S
T

S
.

IN
TE

R
R

U
P

T
C

O
N

TR
O

L
R

E
G

IS
TE

R
 (H

C
R

)
(R

E
A

D
/W

R
IT

E
)

H
R

E
Q

D
M

A
0

H
F

3
H

F
2

T
R

D
Y

T
X

D
E

R
X

D
F

$2

7
0

IN
TE

R
R

U
PT

 S
TA

TU
S

R
EG

IS
TE

R
 (I

SR
)

(R
EA

D
 O

N
LY

)

F
ig

u
re

 1
0-

32
 B

it
s

U
se

d
 f

o
r

D
S

P
 t

o
 H

o
st

 T
ra

n
sf

er
10- 48 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

exceptions provide cycle-stealing data transfers with the DSP internal or external mem-

V
IE

W
 F

R
O

M
 H

O
S

T

D
M

A
0

0
H

F
1

H
F

0
H

C
P

1
H

R
D

F
X

:$
F

F
E

9

7
0

H
O

S
T

S
TA

TU
S

R
E

G
IS

TE
R

 (H
S

R
)

0
0

0
H

F
3

H
F

2
H

C
IE

1
H

R
IE

X
:$

F
F

E
8

7
0

H
O

S
T

C
O

N
TR

O
L

R
E

G
IS

TE
R

 (H
C

R
)

1.
W

H
E

N
 H

T
D

E
 =

 1
, T

H
E

N
 H

T
X

 IS
 E

M
P

T
Y.

2.
D

S
P

56
00

0
M

AY
 P

O
LL

 H
T

D
E

.

7.
T

H
E

 T
R

A
N

S
F

E
R

 S
E

T
S

 R
X

D
F

 F
O

R
 T

H
E

 H
O

S
T

 T
O

 P
O

LL
.

H
T

D
E

H
O

S
T

 T
R

A
N

S
M

IT
 D

AT
A

 E
M

P
T

Y

H
T

IE
H

O
S

T
 T

R
A

N
S

M
IT

 IN
T

E
R

R
U

P
T

 E
N

A
B

LE

P
:$

00
3E

IL
LE

G
A

L
IN

S
T

R
U

C
T

IO
N

 V
E

C
TO

R

FA
S

T
 IN

T
E

R
R

U
P

T
O

R
LO

N
G

 IN
T

E
R

R
U

P
T

P
:$

00
00

H
O

S
T

 T
R

A
N

S
M

IT
 D

AT
A

 V
E

C
TO

R
P

:$
00

22

5.
R

E
A

D
 O

F
 R

X
L

B
Y

 H
O

S
T

 C
LE

A
R

S
 R

X
D

F
 IN

 IS
R

.

6.
W

H
E

N
 R

X
D

F
 =

 0
 A

N
D

 H
T

D
E

 =
 0

, T
H

E
N

 T
R

A
N

S
F

E
R

 O
C

C
U

R
S

.

R
X

H

R
X

M

R
X

L

7
0

$5 $6

LA
S

T
 R

E
A

D
 $

7

R
E

C
E

IV
E

 B
Y

T
E

R
E

G
IS

T
E

R
S

 (
R

B
R

)

H
R

E
Q

D
M

A
0

H
F

3
H

F
2

T
R

D
Y

T
X

D
E

1
$2

7
0

IN
TE

R
R

U
PT

ST

AT
U

S
R

EG
IS

TE
R

 (I
SR

)

R
X

D
F

R
E

C
E

IV
E

D
AT

A
 F

U
LL

IN
IT

H
M

1
H

M
0

H
F

1
H

F
0

0
T

R
E

Q
1

$0

7
0

IN
TE

R
R

U
PT

C
O

N
TR

O
L

R
EG

IS
TE

R
 (I

C
R

)

R
R

E
Q

R
E

C
E

IV
E

R
E

Q
U

E
S

T
 E

N
A

B
LE

8.
IF

 R
R

E
Q

 =
 1

, T
H

E
N

 H
R

E
Q

 P
IN

 IS
 A

S
S

E
R

T
E

D
 T

O
 IN

T
E

R
R

U
P

T
 H

O
S

T.

H
R

E
Q

P
IN

V
IE

W
 F

R
O

M
 H

O
S

T

3.
IF

 H
T

IE
 =

 1
, A

N
D

 IN
T

E
R

R
U

P
T

S
 A

R
E

 E
N

A
B

LE
D

, T
H

E
N

 E
X

C
E

P
T

IO
N

P

R
O

C
E

S
S

IN
G

 B
E

G
IN

S
.

4.
D

S
P

56
00

0
W

R
IT

E
S

 D
AT

A
 T

O
 H

T
X

, W
H

IC
H

 C
LE

A
R

S
 H

T
D

E
 IN

 H
S

R
.

H
IG

H
 B

Y
T

E
M

ID
D

LE
 B

Y
T

E
LO

W
 B

Y
T

E
X

:$
F

F
E

B

23
0

H
O

S
T

R
E

C
E

IV
E

D
AT

A
R

E
G

IS
TE

R
 (H

S
R

)
F

ig
u

re
 1

0-
33

 D
at

a
T

ra
n

sf
er

 f
ro

m
 D

S
P

 t
o

 H
o

st
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 49

ory. This technique allows the DSP memory address to be generated using any of the
DSP addressing modes and modifiers. Queues and circular sample buffers are easily cre-
ated for DMA transfer regions. The host exceptions can be programmed as high priority
fast or long exception service routines. The external DMA controller provides the transfers
between the DSP HI registers and the external DMA memory. The external DMA control-
ler must provide the address to the external DMA memory; however, the address of the
selected HI register is provided by a DMA address counter in the HI.

DMA transfers can only be in one direction at a time; however, the host processor can
access any of the registers not in use during the DMA transfer by deasserting HACK and

;**
; MAIN PROGRAM ... transmit 24-bit data to host

;**
ORG P:$40

MOVEP #1,X:PBC ;Turn on Host Port
MOVEP #$0C00,X:IPR ;Turn on host interrupt
MOVEP #0,X:HCR ;Turn off XMT and RCV interrupts

MOVE #0,SR ;Unmask interrupts
MOVE #>$8,X0 ;Host flag mask for HF0

LOOP MOVEP X:HSR,A ;Wait for HF0 (from host) set to 1
AND X0,A
JEQ LOOP

MOVEP #$2,X:HCR ;Enable host transmit interrupt

JMP * ;Now wait for interrupt

Figure 10-34 Main Program - Transmit 24-Bit Data to Host

;***********************************
;TRANSMIT to Host Interrupt Routine

;************************************

XMT MOVEP #$123456,X:HTX ;Test value to transmit
MOVEP #0,X:HCR ;Turn off XMT Interrupt
RTI

END

Figure 10-35 Transmit to HI Routine
10- 50 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

using HEN and HA0-HA2 to transfer data. The host can therefore transfer data in the other
direction during the DMA operation using polling techniques.

10.2.6.3.1 Host To DSP Internal Processing
The following procedure outlines the steps that the HI hardware takes to transfer DMA
data from the host data bus to DSP memory (see Figures 10-36 and 10-37).

11.HI asserts the HREQ pin (see Figure 10-36 and Figure 10-37) when TXDE=1.
12. DMA controller enables data on H0-H7 and asserts HACK.
13. When HACK is asserted, the HI deasserts HREQ.
14. When the DMA controller deasserts HACK, the data on H0-H7 is latched into

the TXH, TXM, TXL registers.
15. If the byte register written was not TXL (i.e., not $7) the DMA address counter

internal to the HI increments and HREQ is again asserted. Steps 2-5 are then
repeated.

16. If TXL ($7) was written, TXDE will be set to zero and the address counter in
the HI will be loaded with the contents of HM1 and HM0. When TXDE=0, the
contents of TXH:TXM:TXL are transferred to HRX provided HRDF=0. After the

+5 V

DMA
CONTROLLER

TRANSFER REQUEST

TRANSFER
ACKNOWLEDGE

DSP56000/DSP56001
HOST INTERFACE

HREQ

HACK

INTERNAL
ADDRESS
COUNTER

H0 - H7

1K

MEMORY

R/W

CONTROL

ADDRESS DATA

Characteristics of Host DMA Mode

• The HREQ pin is NOT available for host processor interrupts.

• TREQ and RREQ select the direction of DMA transfer.
— DMA to DSP56000
— DSP56000 to DMA
— Simultaneous bidirectional DMA transfers are not permitted.

• Host processor software polled transfers are permitted in the opposite direction of the DMA transfer.

• 8-, 16-, or 24-bit transfers are supported.
— 16-, or 24-bit transfers reduce the DSP interrupt rate by a factor of 2 or 3, respectively.

Figure 10-36 HI Hardware–DMA Mode
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 51

transfer to HRX, TXDE will be set to one, and HREQ will be asserted to start
the transfer of another word from external memory to the HI.

17.When the transfer to HRX occurs within the HI, HRDF is set to one. Assuming
HRIE=1, a host receive exception will be generated. The exception routine
must read the HRX to clear HRDF.

Note: The transfer of data from the TXH, TXM, TXL registers to the HRX register auto-
matically loads the DMA address counter from the HM1 and HM0 bits in the DMA host to
DSP mode. This DMA address is used with the HI to place the received byte in the correct
register (TXH, TXM, or TXL).

Figure 10-37 shows the differences between 24-, 16-, and 8-bit DMA data transfers. The
interrupt rate is three times faster for 8-bit data transfers than for 24-bit transfers. TXL is
always loaded last.

10.2.6.3.2 Host-to-DSP DMA Procedure
The following procedure outlines the typical steps that the host processor must take to
setup and terminate a host-to-DSP DMA transfer (see Figure 10-38).

1. Set up the external DMA controller (1) source address, byte count, direction,
and other control registers. Enable the DMA controller channel.

2. Initialize the HI (2) by writing the ICR to select the word size (HM0 and HM1),
to select the direction (TREQ=1, RREQ=0), and to initialize the channel setting

XFEREQ

XFERACK

DMA
CONTROLLER

HREQ

HACK

DSP56000/
DSP56001

24-BIT TRANSFER
(INTERNAL COUNTER)

16-BIT TRANSFER
(INTERNAL COUNTER)

8-BIT TRANSFER
(INTERNAL COUNTER)

H
(01)

M
(10)

M
(10)

M
(10)

M
(10)

M
(10)

H
(01)

L
(11)

L
(11)

L
(11)

L
(11)

L
(11)

L
(11)

L
(11)

L
(11)

L
(11)

L
(11)

L
(11)

HOST
RECEIVE

INTERRUPT

FAST INTERRUPT ROUTINE
P:$0020 MOVE X:$FFE8,A READ HRX
P:$0021 MOVE A, Y:(R7)+ ;AND PUT INTO Y MEMORY

Figure 10-37 DMA Transfer and Host Interrupts
10- 52 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

INIT=1 (see Figure 10-39).

W
R

IT
E

 IC
R

H
O

S
T

 P
R

O
C

E
S

S
O

R

1
0

1
H

F
1

H
F

0
0

1
0

$0

7
0

IN
TE

R
R

U
P

T
C

O
N

TR
O

L
R

E
G

IS
TE

R
 (I

C
R

)

X
:$

F
F

E
8

H
O

S
T

C
O

N
TR

O
L

R
E

G
IS

TE
R

 (H
C

R
)

4.
A

S
S

E
R

T
 H

R
E

Q
 T

O
 S

TA
R

T
 D

M
A

 T
R

A
N

S
F

E
R

.

P
:$

00
3E

IL
LE

G
A

L
IN

S
T

R
U

C
T

IO
N

FA
S

T
 IN

T
E

R
R

U
P

T
O

R
LO

N
G

 IN
T

E
R

R
U

P
T

P
:$

00
00

H
O

S
T

 R
E

C
E

IV
E

 D
AT

A
 V

E
C

TO
R

P
:$

00
20

1.
P

R
O

G
R

A
M

 D
M

A
 C

O
N

T
R

O
LL

E
R

.
—

S
TA

R
T

 A
D

D
R

E
S

S
—

B
Y

T
E

 C
O

U
N

T
—

T
R

A
N

S
F

E
R

 D
IR

E
C

T
IO

N
—

S
TA

R
T

 D
M

A
 C

H
A

N
N

E
L

T
X

H

T
X

M

T
X

L

T
X

H

T
X

M

T
X

L • • •

T
X

H

T
X

M

T
X

L

01 10 11 01 10 11 01 10 11

D
S

P
56

00
0

D
M

A
 C

O
N

T
R

O
L

L
E

R

2.
IN

IT
IA

LI
Z

E
 D

S
P

56
00

0
H

O
S

T
 IN

T
E

R
FA

C
E

.
—

M
O

D
E

 2
4

B
IT

 D
M

A
—

H
O

S
T

 T
O

 D
S

P
—

U
S

E
 IN

IT
 B

IT
 T

O
:

S
E

T
 T

X
D

E
C

LE
A

R
 H

R
D

F
LO

A
D

 D
M

A
 C

O
U

N
T

E
R

3.
T

E
LL

 D
S

P
56

00
0

—
W

H
E

R
E

 T
O

 S
TO

R
E

 D
AT

A
 (

i.e
.,

P
R

O
G

R
A

M

A
D

D
R

E
S

S
 R

E
G

IS
T

E
R

 R
7)

.
—

E
N

A
B

LE
 IN

T
E

R
R

U
P

T
 H

R
IE

 (
C

A
N

 B
E

D

O
N

E
 W

IT
H

 A
 H

O
S

T
 C

O
M

M
A

N
D

).

5.
H

O
S

T
 IS

 F
R

E
E

 T
O

 P
E

R
F

O
R

M

O
T

H
E

R
 T

A
S

K
S

 (
i.e

.,
D

S
P

 T
O

 H
O

S
T

T

R
A

N
S

F
E

R
 O

N
 A

 P
O

LL
E

D
 B

A
S

IS
).

8.
T

E
R

M
IN

AT
E

 D
M

A
 C

H
A

N
N

E
L.

9.
T

E
R

M
IN

AT
E

 D
S

P
 D

M
A

 M
O

D
E

 B
Y

C

LE
A

R
IN

G
 H

M
1,

 H
M

0,
 A

N
D

 T
R

E
Q

.

6.
D

M
A

 C
O

N
T

R
O

LL
E

R
 P

E
R

F
O

R
M

S
 W

R
IT

E
S

.

7.
D

M
A

 C
O

N
T

R
O

LL
E

R
 IN

T
E

R
R

U
P

T
S

 H
O

S
T

W

H
E

N
 T

R
A

N
S

F
E

R
S

 A
R

E
 D

O
N

E
.

IN
IT

H
M

1
H

M
0

T
R

E
Q

R
R

E
Q

0
0

0
H

F
3

H
F

2
H

C
IE

H
T

IE
1

7
0

H
R

IE

H
R

E
Q

P
IN

E
X

C
E

P
T

IO
N

 V
E

C
TO

R
 T

A
B

LE

F
ig

u
re

 1
0-

38
 H

o
st

-t
o

-D
S

P
 D

M
A

 P
ro

ce
d

u
re
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 53

3. The DSP’s destination pointer (3) used in the DMA exception handler (an
address register, for example) must be initialized and HRIE must be set to
enable the HRDF interrupt to the DSP CPU. This procedure can be done with
a separate host command exception routine in the DSP. HREQ will be
asserted (4) immediately by the HI to begin the DMA transfer.

4. Perform other tasks (5) while the DMA controller transfers data (6) until inter-
rupted by the DMA controller DMA transfer complete interrupt (7). The DSP
interrupt control register (ICR), the interrupt status register (ISR), and RXH,
RXM, and RXL registers may be accessed at any time by the host processor
but the TXH, TXM and TXL registers may not be accessed until the DMA
mode is disabled.

HREQ DMA 0 HF3 HF2 TRDY TXDE RXDF$2

7 0
INTERRUPT STATUS
REGISTER (ISR)
(READ ONLY)

0 0 Interrupt Mode (DMA Off)

0 1 24 Bit DMA Mode

1 0 16 Bit DMA Mode

1 1 8 Bit DMA Mode

INIT HM1 HM0 HF1 HF0 0 TREQ RREQ$0

7 0

MODES

DMA 0 0 HF1 HF0 HCP HTDE HRDFX:$FFE9

7 0
HOST STATUS
REGISTER (HSR)
(READ ONLY)

TREQ RREQ HREQ PIN

0 0 No Interrupts (Polling)

0 1 RXDF Request (Interrupt)

1 0 XDE Request (Interrupt)

1 1 XDF and TXDE Request (Interrupts)

INTERRUPT CONTROL REGISTER (ICR)
(READ/WRITE)

TREQ RREQ HREQ PIN

0 0 No DMA

0 1 DSP to Host Request (RX)

1 0 Host to DSP Request (TX)

1 1 Undefined (Illegal)

INTERRUPT MODE (DMA OFF) DMA MODE

Figure 10-39 Host Bits with TREQ and RREQ

RESET CONDITION
10- 54 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

5. Terminate the DMA controller channel (8) to disable DMA transfers.
6. Terminate the DSP HI DMA mode (9) in the ICR by clearing the HM1 and HM0

bits and clearing TREQ.

The HREQ will be active immediately after initialization is completed (depending on hard-
ware) because the data direction is host to DSP and TXH, TXM, and TXL registers are
empty. When the host writes data to TXH, TXM, and TXL, this data will be immediately
transferred to HRX. If the DSP is due to work in interrupt mode, HRIE must be enabled.

10.2.6.3.3 DSP-to-Host Internal Processing
The following procedure outlines the steps that the HI hardware takes to transfer DMA
data from DSP memory to the host data bus.

1. On the DSP side of the HI, a host transmit exception will be generated when HTDE=1 and HTIE=1. The exception routine must write HTX, thereby setting HTDE=0.

2. If RXDF=0 and HTDE=0, the contents of HTX will be automatically transferred to RXH:RXM:RXL, thereby setting RXDF=1 and HTDE=1. Since HTDE=1 again on the initial transfer, a second host transmit exception will be generated

immediately, and HTX will be written, which will clear HTDE again.

3. When RXDF is set to one, the HI’s internal DMA address counter is loaded (from HM1 and HM0) and HREQ is asserted.

4. The DMA controller enables the data from the appropriate byte register onto H0-H7 by asserting HACK. When HACK is asserted, HREQ is deasserted by the HI.

5. The DMA controller latches the data presented on H0-H7 and deasserts HACK. If the byte register read was not RXL (i.e., not $7), the HI’s internal DMA counter increments, and HREQ is again asserted. Steps 3, 4, and 5 are repeated

until RXL is read.

6. If RXL was read, RXDF will be set to zero and, since HTDE=0, the contents of HTX will be automatically transferred to RXH:RXM:RXL, and RXFD will be set to one. Steps 3, 4, and 5 are repeated until RXL is read again.

Note: The transfer of data from the HTX register to the RXH:RXM:RXL registers automatically loads the DMA address counter from the HM1 and HM0 bits when in the DMA DSP--HOST mode. This DMA address is used within the HI

to place the appropriate byte on H0-H7.

10.2.6.3.4 DSP-to-Host DMA Procedure
The following procedure outlines the typical steps that the host processor must take to setup and terminate a DSP-to-host DMA transfer (see Figure 10-40).

1. Set up the DMA controller (1) destination address, byte count, direction, and other control registers. Enable the DMA controller channel.

2. Initialize the HI (2) by writing the ICR to select the word size (HM0 and HM1), the direction (TREQ=0, RREQ=1), and setting INIT=1 (see Figure10-40 for additional information on these bits).

3. The DSP’s source pointer (3) used in the DMA exception handler (an address register, for example) must be initialized, and HTIE must be set to enable the DSP host transmit interrupt. This could be done by the host processor with a

host command exception routine.

The DSP host transmit exception will be activated immediately after HTIE is set. The DSP CPU will move data to HTX. The HI circuitry will transfer the contents of HTX to RXH:RXM:RXL, setting RXDF which asserts HREQ. Asserting

HREQ (4) starts the DMA transfer from RXH, RXM, and RXL to the host processor.

4. Perform other tasks (5) while the DMA controller transfers data (6) until interrupted by the DMA controller DMA complete interrupt (7). The DSP interrupt control register (ICR), the interrupt status register (ISR), and TXH, TXM, and TXL

may be accessed at any time by the host processor but the RXH, RXM and RXL registers may not be accessed until the DMA mode is disabled.

5. Terminate the DMA controller channel (8) to disable DMA transfers.

6. Terminate the DSP HI DMA mode (9) in the Interrupt Control Register (ICR) by clearing the HM1 and HM0 bits and clearing RREQ.

10.2.6.4 Example Circuits
Figure 10-41, Figure 10-43, and Figure 10-42 illustrate the simplicity of the HI. The MC68HC11 in Figure 10-41 has a multiplexed address and data bus which
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 55

W
R

IT
E

 IC
R

H
O

S
T

 P
R

O
C

E
S

S
O

R

X
:$

F
F

E
8

H
O

S
T

C
O

N
TR

O
L

R
E

G
IS

TE
R

 (H
C

R
)

P
:$

00
3E

IL
LE

G
A

L
IN

S
T

R
U

C
T

IO
N

FA
S

T
 IN

T
E

R
R

U
P

T
O

R
LO

N
G

 IN
T

E
R

R
U

P
T

P
:$

00
00

H
O

S
T

 T
R

A
N

S
M

IT
 D

AT
A

 V
E

C
TO

R
P

:$
00

22

1.
P

R
O

G
R

A
M

 D
M

A
 C

O
N

T
R

O
LL

E
R

.
—

S
TA

R
T

 A
D

D
R

E
S

S
—

B
Y

T
E

 C
O

U
N

T
—

T
R

A
N

S
F

E
R

 D
IR

E
C

T
IO

N
—

S
TA

R
T

 D
M

A
 C

H
A

N
N

E
L

R
X

H

R
X

M

R
X

L

R
X

H

R
X

M

R
X

L

• • •

R
X

H

R
X

M

R
X

L

01 10 11 01 10 11 01 10 11

D
S

P
56

00
0

D
M

A
 C

O
N

T
R

O
L

L
E

R

2.
IN

IT
IA

LI
Z

E
 D

S
P

56
00

0
H

O
S

T
 IN

T
E

R
FA

C
E

.
—

M
O

D
E

 2
4

B
IT

 D
M

A
—

H
O

S
T

 T
O

 D
S

P
—

U
S

E
 IN

IT
 B

IT
 T

O
:

C
LE

A
R

 T
X

D
E

S
E

T
 H

R
D

F
LO

A
D

 D
M

A
 C

O
U

N
T

E
R

5.
H

O
S

T
 IS

 F
R

E
E

 T
O

 P
E

R
F

O
R

M

O
T

H
E

R
 T

A
S

K
S

 (
i.e

.,
D

S
P

 T
O

 H
O

S
T

T

R
A

N
S

F
E

R
 O

N
 A

 P
O

LL
E

D
 B

A
S

IS
).

8.
T

E
R

M
IN

AT
E

 D
M

A
 C

H
A

N
N

E
L.

9.
T

E
R

M
IN

AT
E

 D
S

P
 D

M
A

 M
O

D
E

 B
Y

C

LE
A

R
IN

G
 H

M
1,

 H
M

0,
 A

N
D

 T
R

E
Q

.

7.
D

M
A

 C
O

N
T

R
O

LL
E

R
 IN

T
E

R
R

U
P

T
S

 H
O

S
T

W

H
E

N
 T

R
A

N
S

F
E

R
S

 A
R

E
 D

O
N

E
.

0
0

0
H

F
3

H
F

2
H

C
IE

1
H

T
IE

7
0

H
R

IE

H
R

E
Q

6.
D

M
A

 C
O

N
T

R
O

LL
E

R
 P

E
R

F
O

R
M

S
 R

E
A

D
S

.

1
0

1
H

F
1

H
F

0
0

0
1

$0

7
0

IN
TE

R
R

U
P

T
C

O
N

TR
O

L
R

E
G

IS
TE

R
 (I

C
R

)
IN

IT
H

M
1

H
M

0
T

R
E

Q
R

R
E

Q

4.
A

S
S

E
R

T
 H

R
E

Q
 T

O
 S

TA
R

T
 D

M
A

 T
R

A
N

S
F

E
R

.

E
X

C
E

P
T

IO
N

 V
E

C
TO

R
 T

A
B

LE

3.
T

E
LL

 D
S

P
56

00
0.

—
S

O
U

R
C

E
 P

O
IN

T
E

R
 A

D
D

R
E

S
S

—
E

N
A

B
LE

 H
T

IE
 (

C
A

N
 B

E
 D

O
N

E
W

IT
H

 A
 H

O
S

T
 C

O
M

M
A

N
D

).

F
ig

u
re

 1
0-

40
 D

S
P

 t
o

 H
o

st
 D

M
A

 P
ro

ce
d

u
re
10- 56 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

requires that the address be latched. Although the HACK is not used in this circuit, it is pulled up.
All unused input pins should be terminated to prevent erroneous signals. When determining
whether a pin is an input, keep in mind that it may change during reset or while changing port B
between general purpose I/O and HI functions.

The MC68000 (see Figure 10-43) can use a MOVEP instruction with word and long-word data size
to transfer multiple bytes. If an MC68020 or MC68030 is used, dynamic bus sizing can be used to
transfer multiple bytes with any instruction.

Figure 10-42 is a high level block diagram of a system using a single host to control multiple DSPs.
In addition, the DSPs use the SSI to network together the DSPs and multiple codecs. This system,
as shown with four DSPs, can process 41 million instructions per second and can be easily
expanded if more processing power is needed.

10.2.6.5 Host Port Usage Considerations–Host Side. Careful synchronization is
required when reading multi-bit registers that are written by another asynchronous system.
Synchronization is a common problem when two asynchronous systems are connected. The

A0 - A2

+5 V
DSP56000MC68HC11

IRQ

A8 - A15

E

R/W

AS

A0/D0 - A7/D7

HACK
(HOST ACKNOWLEDGE)

HREQ
(HOST REQUEST)

HEN

(HOST ENABLE)

HR/W
(HOST READ/WRITE)

HA0 - HA2
(HOST ADDRESS)

H0 - H7
(HOST DATA)

ADDRESS
DECODE

LE
ADDRESS

LATCH

+5 V

A3 - A7

Use LDA and STA for 8-Bit Transfers.
Use LDD and STD for 16-Bit Transfers.

Figure 10-41 MC68HC11 to DSP56000 Host Interface
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 57

situation exists in the host port. However, if the port is used in the way it was designed, proper

DATA

ADDRESS

RD/WR

REQ

SELECT

F
LA

G
 0

F
LA

G
 1

C
LO

C
K

F
R

A
M

E
 S

Y
N

C

S
E

R
IA

L
D

AT
A

ANALOG
INPUT

HOST SSI

DSP56000/DSP56001

HOST SSI

DSP56000/DSP56001

HOST SSI

DSP56000/DSP56001

HOST SSI

DSP56000/DSP56001

HOST

CODEC

CODEC

ANALOG
OUTPUT

ANALOG
INPUT

ANALOG
OUTPUT

R
E

Q

R
D

/W
R

A
D

D
R

E
S

S
 B

U
S

D
AT

A
 B

U
S

SELECT

SELECT

SELECT

RX

TX

RX

TX

RX

TX

RX

Figure 10-42 Multi-DSP Network Example
10- 58 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

operation is guaranteed. The considerations for proper operation are discussed below.
1. Unsynchronized Reading of Receive Byte Registers:

When reading receive byte registers, RXH, RXM, or RXL, the host processor
should use interrupts or poll the RXDF flag which indicates that data is avail-
able. This guarantees that the data in the receive byte registers will be stable.

2. Overwriting Transmit Byte Registers:
The host processor should not write to the transmit byte registers, TXH, TXM,
or TXL, unless the TXDE bit is set, indicating that the transmit byte registers are
empty. This guarantees that the DSP will read stable data when it reads the
HRX register.

3. Synchronization of Status Bits from DSP to Host:
HC, HREQ, DMA, HF3, HF2, TRDY, TXDE, and RXDF status bits are set or
cleared from inside the HI and read by the host processor. The host can read
these status bits very quickly without regard to the clock rate used by the DSP,
but there is a chance that the state of the bit could be changing during the read

+5 V
DSP56000MC68000

IPL0 - IPL2

A4 - A23

FC0 - FC2

LDS

AS

DTACK

BERR

R/W

A1 - A3

D0 - D7

HREQ

HEN

HACK

HR/W

HA0 - HA2

H0 - H7

ADDRESS
DECODE

INTERRUPT
VECTOR
DECODE

MC68000 — USE MOVEP for multiple byte transfers.
MC68020 or MC68030 — Any Memory references will work due to dynamic bus sizing.

INTERRUPT
ENCODER

DTACK
TIMING

GENERATOR

Figure 10-43 MC68000 to DSP56000 Host Interface
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 59

operation. This possible change is generally not a system problem, since the
bit will be read correctly in the next pass of any host polling routine.

However, if the host holds the HEN for the minimum assert time plus 1.5 clock
cycle, the status data is guaranteed to be stable. The 1.5 clock cycle is used to
synchronize the HEN signal and block internal updates of the status bits.There
is no other minimum HEN assert time relationship to DSP clocks.

There is a minimum HEN deassert time of 1.5 clock cycle so that the blocking
latch can be updated if host is in a tight polling loop. This minimum time only
applies to reading status bits.

The only potential problem with the host processor reading status bits is read-
ing HF3 and HF2 as an encoded pair. For example, if the DSP changes HF3
and HF2 from ‘‘00’’ to ‘‘11’’ there is a very small probability that the host could
read the bits during the transition and receive ‘‘01’’ or ‘‘10’’ instead of ‘‘11’’. If
the combination of HF3 and HF2 has significance, the host processor would
potentially read the wrong combination. Two solutions would be to 1) read the
bits twice and check for consensus, and 2) hold HEN access for HEN +1.5 clock
cycle so that status bit transitions are stabilized

4. Overwriting the Host Vector:
The host programmer should change the host vector register only when the HC
bit is clear. This will guarantee that the DSP interrupt control logic will receive
a stable vector.

5. Cancelling a Pending Host Command Exception:
The host processor may elect to clear the HC bit to cancel the host command
exception request at any time before it is recognized by the DSP. The DSP CPU
may execute the host exception after the HC bit is cleared because the host
processor does not know exactly when the exception will be recognized. This
uncertainty in timing is due to differences in synchronization between the host
processor and DSP CPU and the uncertainties of pipelined exception process-
ing. For this reason, the HV should not be changed at the same time the HC bit
is cleared. However, the HV can be changed when the HC bit is set.

6. When using the HREQ pin for handshaking, wait until HREQ is asserted and
then start writing/reading data using the HEN pin or the HACK pin.

When not using HREQ for handshaking, poll the INIT bit in the ICR to make
sure it is cleared by the hardware (which means the INIT execution is com-
pleted). Then, start writing/reading data.

If using neither HREQ for handshaking, nor polling the INIT bit, wait at least 6T
10- 60 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

after negation of HEN that wrote ICR, before writing/reading data. This wait
ensures that the INIT is completed, because it needs 3T for synchronization
(worst case) plus 3T for executing the INIT.

7. All unused input pins should be terminated. Also, any pin that is temporarily
not driven by an output1) during reset, 2) when reprogramming a port or pin, 3)
when a bus is not driven, or 4) at any other time, should be pulled up or down
with a resistor. For example, the HEN is capable of reacting to 2-ns noise
spikes when it is not terminated. Allowing HACK to float may cause problems
even though it is not needed in the circuit.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 10 - 61

10- 62 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SECTION 11
PORT C

Port C is a triple-function I/O port with nine pins (see Figure 11-1). Three of the nine pins
can be configured as general-purpose I/O or as the serial communications interface
(SCI) pins, and the other six pins can be configured as general-purpose I/O or as the
synchronous serial interface (SSI) pins. When configured as general-purpose I/O, port C
can be used for device control. When the pins are configured as serial interfaces, port C
provides a convenient connection to other DSPs, processors, codecs, digital-to-analog
and analog-to-digital converters, and any of several transducers. This section describes
all three port C functions as well as examples of how to configure and use each function.

11.1 GENERAL-PURPOSE I/O (PORT C)
When configured as general-purpose I/O, port C can be viewed as nine I/O pins (see
Figure 11-2), which are controlled by three memory-mapped registers (see Figure 11-3).
RESET configures port C as general-purpose I/O with all nine pins as inputs by clearing
all three registers (external circuitry connected to these pins may need pullups until the
pins are configured for operation). These registers are the port C control register (PCC),
port C data direction register (PCDDR), and port C data register (PCD). Each port C pin
may be individually programmed as a general-purpose I/O pin or as a dedicated on-chip
peripheral pin under software control. Pin selection between general-purpose I/O and
SCI or SSI is made by setting the appropriate PCC bit (memory location X:$FFE1) to
zero for general-purpose I/O or to one for serial interface. The PCDDR (memory location
X:$FFE3) programs each pin corresponding to a bit in the PCD (memory location
X:$FFE5) as an input pin (if PCDDR=0) or as an output pin (if PCDDR=1). Writing to the
PCD will write data to the pins designated as outputs by the PCDDR; reading the PCD
will read the pins designated as inputs by the PCDDR.

The port C I/O pin control logic is shown in Figure 11-4. When a pin is designated as an
output and the PCD is read, the output of the output data bit latch is read, not the logic
level on the pin itself. When a port pin is configured as an SCI or SSI pin and the bit in
the PCDDR is zero (input), then reading the PCD will show the logic level on the pin even
though the pin is configured as a peripheral pin. The SCI or SSI function may be using
the pin as an input or an output, which can be very useful when debugging the SCI or
SSI.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 1

EXTERNAL ADDRESS
SWITCH

EXTERNAL DATA
SWITCH

BUS
CONTROL

HOST/DMA
PARALLEL

INTERFACE

SCI
INTERFACE

SSI
INTERFACE

PORT
A
I/0

(47)

PORT
C
I/0
(9)

PORT
B
I/0

(15)

A0 - A15

D0 - D23

PS

DS

X/Y

RD

WR

BR/WT

BG/BS

—

—

—
—
—
—
—
—
—

PB0 - PB7
PB8
PB9
PB10
PB11
PB12
PB13
PB14

PC0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

H0 - H7
HA0
HA1
HA2
HR/W
HEN
HREQ
HACK

RXD

TXD

SCLK

SC0

SC1

SC2

SCK

SRD

STD

DEFAULT
FUNCTION

ALTERNATE
FUNCTION

88

24

16

Figure 11-1 Port C Interface

P
O
R
T

C

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7
PC8

CC0
CC1
CC2
CC3
CC4
CC5
CC6
CC7
CC8

CD0
CD1
CD2
CD3
CD4
CD5
CD6
CD7
CD8

ENABLED BY
BITS IN
X:$FFE1

DIRECTION
SELECTED BY

X:$FFE3

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7
PC8

INPUT/OUTPUT
DATA REGISTER

X:$FFE5

Figure 11-2 Parallel Port C Pinout
11- 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Programming Parallel I/O
Port C and all the DSP56000/DSP56001 peripherals are memory mapped (see Figure
11-5). The standard MOVE instruction transfers data between port C and a register; as a
result, performing a memory-to-memory data transfer takes two MOVE instructions and
a register. The MOVEP instruction is specifically designed for I/O data transfer as shown
in Figure 11-6. Although the MOVEP instruction may take twice as long to execute as a
MOVE instruction, only one MOVEP is required for a memory-to-memory data transfer,
and MOVEP does not use a temporary register. Using the MOVEP instruction allows a
fast interrupt to move data to/from a peripheral to memory and execute one other instruc-
tion or to move the data to an absolute address. MOVEP is the only memory-to-memory
move instruction; however, one of the operands must be in the top 64 locations of either

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CC
0

23 0

X:$FFE1
PORT C CONTROL
REGISTER (PCC)

CCx Function

0 Parallel I/O

1 Serial Interface

CD
0

23 0

X:$FFE3
PORT C DATA
DIRECTION
REGISTER (PCDDR)

CDx Data Direction

0 Input

1 Output

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD
1

CD
2

CD
3

CD
4

CD
5

CD
6

CD
7

CD
8

PD
0

23 0

X:$FFE5
PORT B DATA
REGISTER (PBD)0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PD

1
PD
2

PD
3

PD
4

PD
5

PD
6

PD
7

PD
8

CC
1

CC
2

CC
3

CC
4

CC
5

CC
6

CC
7

CC
8

STD
SRD
SCK
SC2
SC1
SC0

SCLK
TXD
RXD

SSI

SCI

NOTE: Hardware and software reset clears PCC and PCDDR.

Figure 11-3 Parallel Port C Registers
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 3

X: or Y: memory. The bit-oriented instructions using I/O short addressing (BCHG, BCLR,
BSET, BTST, JCLR, JSCLR, JSET, and JSSET) can also be used to address individual
bits for faster I/O processing. The DSP does not have a hardware data strobe to strobe
data out of the parallel I/O port. If a data strobe is needed, it can be implemented using
software to toggle one of the parallel I/O pins. The process of programming port C as
general-purpose I/O is shown as a flowchart in Figure 11-7 and detailed in Figure 11-8.
Normally, it is not good programming practice to activate a peripheral before program-
ming it. However, reset activates the port C general-purpose I/O as all inputs, and the
alternative is to configure the port as an SCI and/or SSI, which may not be desirable. In
this case, it is probably better to insure that port C is initially configured for general-pur-
pose I/O and then configure the data direction and data registers. It may be better in
some situations to program the data direction or the data registers first to prevent two
devices from driving one signal. The order of steps 1, 2, and 3 in Figure 11-7 is optional
and can be changed as needed.

PORT
REGISTERS

INPUT DATA BIT

DATA DIRECTION BIT

OUTPUT DATA BIT

PORT INPUT DATA BIT

Port Control
Register Bit

Data Direction
Register Bit

Pin Function

0 0 Port Input Pin

PINLATCHED OUTPUT
DATA BIT

DATA DIRECTION
REGISTER (DDR) BIT

PORT CONTROL
REGISTER (CR) BIT

(PARALLEL
I/O POSITION)

(INPUT
 POSITION)

PERIPHERAL
LOGIC

Figure 11-4 Port C I/O Pin Control Logic
11- 4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

X:$FFFF

X:$FFFE

X:$FFFD

X:$FFFC

X:$FFFB

X:$FFFA

X:$FFF9

X:$FFF8

X:$FFF7

X:$FFF6

X:$FFF5

X:$FFF4

X:$FFF3

X:$FFF2

X:$FFF1

X:$FFF0

X:$FFEF

X:$FFEE

X:$FFED

X:$FFEC

X:$FFEB

X:$FFEA

X:$FFE9

X:$FFE8

X:$FFE7

X:$FFE6

X:$FFE5

X:$FFE4

X:$FFE3

X:$FFE2

X:$FFE1

X:$FFE0

X:$FFDF

INTERRUPT PRIORITY REGISTER (IPR)

PORT A — BUS CONTROL REGISTER (BCR)

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

SCI HI - REC/XMIT DATA REGISTER (SRX/STX)

SCI MID - REC/XMIT DATA REGISTER (SRX/STX)

SCI LOW - REC/XMIT DATA REGISTER (SRX/STX)

SCI TRANSMIT DATA ADDRESS REGISTER (STXA)

SCI CONTROL REGISTER (SCCR)

SCI INTERFACE STATUS REGISTER (SSR)

SCI INTERFACE CONTROL REGISTER (SCR)

SCI RECIEVE/TRANSMIT DATA REGISTER (RX/TX)

SSI STATUS/TIME SLOT REGISTER (SSISR/TSR)

SSI CONTROL REGISTER B (CRB)

SSI CONTROL REGISTER A (CRA)

HOST RECEIVE/TRANSMIT REGISTER (HRX/HTX)

UNUSED

HOST STATUS REGISTER (HSR)

HOST CONTROL REGISTER (HCR)

RESERVED

RESERVED

PORT C — DATA REGISTER (PCD)

PORT B — DATA REGISTER (PBD)

PORT C — DATA DIRECTION REGISTER (PCDDR)

PORT B — DATA DIRECTION REGISTER (PBDDR)

PORT C — CONTROL REGISTER (PCC)

PORT B — BUS CONTROL REGISTER (PBC)

RESERVED

X:$FFC0 RESERVED

= Read as random number; write as don’t care.

23 16 15 8 7 0

Figure 11-5 On-Chip Peripheral Memory Map
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 5

:
:

MOVEP #$0,X:$FFE1 ;Select port C to be general-purpose I/O
MOVEP #$01F0,X:$FFE3 ;Select pins PC0–PC3 to be inputs

;and pins PC4–PC8 to be outputs
:
:

MOVEP #data_out,X:$FFE5 ;Put bits 4–8 of “data_out” on pins
;PB4–PB8 bits 0–3 are ignored.

MOVEP X:$FFE0,#data_in ;Put PB0–PB3 in bits 0–3 of “data_in”
Figure 11-6 Write/Read Parallel Data with Port C

STEP 1
ACTIVATE PORT C CONTROL REGISTER

ADDR X:$FFE1

STEP 2
SELECT DATA DIRECTION (IN/OUT)

ADDR X:$FFE3

STEP 3
READ/WRITE PORT C DATA

ADDR X:$FFE5

Figure 11-7 Port C Configuration Flowchart
11- 6 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

11.1.1 Port C Parallel I/O Timing
Parallel data written to port C is delayed by one instruction cycle – i.e., the following
instruction

MOVE DATA9,X:PORTC DATA24,Y:EXTERN

1. writes nine bits of data to the port C register, but the output pins do not change
until the following instruction cycle, and

2. writes 24 bits of data to the external Y memory, which appears on port A dur-
ing T2 and T3 of the current instruction.

As a result, if it is desirable to synchronize the port A and port C outputs, two instructions
must be used:

MOVE DATA9,X:PORTC
NOP DATA24,Y:EXTERN

The NOP can be replaced by any instruction that allows parallel moves. Inserting one or

CC
1

CD
0

CD
1

CD
2

CD
3

CD
4

CD
5

CD
6

CD
7

CD
8

PC
0

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PC
8

STEP 1. SELECT EACH PIN TO BE GENERAL-PURPOSE I/O OR AN ON-CHIP PERIPHERAL PIN:
CCx = 0 GENERAL- PURPOSE I/O
CCx = 1 ON-CHIP PERIPHERAL

X:$FFE1

8 0

PORT C CONTROL REGISTER (PCC)

X:$FFE3 PORT C DATA DIRECTION REGISTER (PCDDR)

8 0

STEP 2. SET EACH GENERAL - PURPOSE I/O PIN (SELECTED ABOVE) AS INPUT OR OUTPUT:
CDx = 0 INPUT PIN

OR
CDx = 1 OUTPUT PIN

8 0

X:$FFE5 PORT C DATA REGISTER (PCD)

STEP 3. READ/WRITE GENERAL - PURPOSE I/O PINS:
PCx = OUTPUT DATA IF SELECTED FOR GENERAL - PURPOSE I/O AND OUTPUT IN STEPS 1 AND 2.

OR
PCx = INPUT DATA IF SELECTED FOR GENERAL - PURPOSE I/O AND INPUT IN STEPS 1 AND 2.

CC
2

CC
3

CC
4

CC
5

CC
6

CC
7

CC
8

CC
0

Figure 11-8 I/O Port C Configuration
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 7

more “MOVE DATA15,X:PORTC DATA24,Y:EXTERN” instructions between the first and
second instruction produces an external 33-bit write each instruction cycle with only one
instruction cycle lost in setup time:

MOVE DATA15,X:PORTC
MOVE DATA15,X:PORTC DATA24,Y:EXTERN
MOVE DATA15,X:PORTC DATA24,Y:EXTERN

:
:

MOVE DATA15,X:PORTC DATA24,Y:EXTERN
NOP DATA24,Y:EXTERN

One application of this technique is to create an extended address for port A by concate-
nating the port A address bits (instead of data bits) to the port C general-purpose output
bits. The port C general-purpose I/O register would then work as a base address regis-
ter, allowing the address space to be extended from 64K words (16 bits) to 33.5 million
words (16 bits+ 9 bits=25 bits).

Port C uses the DSP central processing unit (CPU) four-phase clock for its operation.
Therefore, if wait states are inserted in the DSP CPU timing, they also affect port C tim-
ing. The result is that port A and port C in the previous synchronization example will
always stay synchronized, regardless of how many wait states are used.

11.2 SERIAL COMMUNICATION INTERFACE (SCI)
The SCI provides a full-duplex port for serial communication to other DSPs, microprocessors, or peripherals such as modems. The communication can be TTL-level signals or, with additional logic, RS232C, RS422, etc. This interface uses three dedicated pins: trans-

mit data (TXD), receive data (RXD), and SCI serial clock (SCLK). It supports industry-standard asynchronous bit rates and protocols as well as high-speed (up to 3.375 Mbps for a 27-MHz clock) synchronous data transmission. The asynchronous protocols include a

multidrop mode for master/slave operation with wakeup on idle line and wakeup on address bit capability. The SCI consists of separate transmit and receive sections whose operations can be asynchronous with respect to each other. A programmable baud-rate gen-

erator is included to generate the transmit and receive clocks. An enable vector and an interrupt vector have been included so that the baud-rate generator can function as a general-purpose timer when it is not being used by the SCI peripheral or when the interrupt

timing is the same as that used by the SCI. The following is a short list of SCI features:

• Three-Pin Interface:
TXD – Transmit Data

RXD – Receive Data

SCLK – Serial Clock

• 422 Kbps NRZ Asynchronous Communications Interface (27-MHz System Clock)
• 3.375 Mbps Synchronous Serial Mode (27-MHz System Clock)
• Multidrop Mode for Multiprocessor Systems:

Two Wakeup Modes: Idle Line and Address Bit

Wired-OR Mode

• On-Chip or External Baud Rate Generation/Interrupt Timer
• Four Interrupt Priority Levels
• Fast or Long Interrupts
11- 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

11.2.1 SCI I/O Pins

The SCI has three I/O pins, which can be configured as either general-purpose I/O or as a
specific SCI pin. Each pin is independent of the other two, which means that if only TXD is
needed, RXD and SCLK can be programmed for general-purpose I/O. At least one of the
three pins must be selected as an SCI pin to release the SCI from SCI reset.

However, the SCI interrupts may be enabled by programming the SCI control registers
before any of the SCI pins are programmed as SCI functions. In this case, only one transmit
interrupt can be generated because the transmit data register is empty. The timer and timer
interrupt do not require that any SCI pins be configured for SCI use to operate.

11.2.1.1 Receive Data (RXD). This input receives byte-oriented serial data and trans-
fers the data to the SCI receive shift register. Asynchronous input data is sampled on the
positive edge of the receive clock (1 × SCLK) if SCKP equals zero. See the DSP56001
Advance Information Data Sheet (DSP56001/D) for detailed timing information. RXD may be
programmed as a general-purpose I/O pin (PC0) when the SCI RXD function is not being
used.

11.2.1.2 Transmit Data (TXD). This output transmits serial data from the SCI transmit
shift register. Data changes on the negative edge of the asynchronous transmit clock (SCLK)
if SCKP equals zero. This output is stable on the positive edge of the transmit clock. See the
DSP56001 Advance Information Data Sheet (ADI1290) for detailed timing information. TXD
may be programmed as a general-purpose I/O pin (PC1) when the SCI TXD function is not
being used.

11.2.1.3 SCI Serial Clock (SCLK). This bidirectional pin provides an input or output
clock from which the transmit and/or receive baud rate is derived in the asynchronous mode
and from which data is transferred in the synchronous mode. SCLK may be programmed as
a general-purpose I/O pin (PC2) when the SCI SCLK function is not being used. This pin
may be programmed as PC2 when data is being transmitted on TXD since, in the asynchro-
nous mode, the clock need not be transmitted. There is no connection between programming
the PC2 pin as SCLK and data coming out the TXD pin because SCLK is independent of SCI
data I/O.

11.2.2 Programming Model

The resources available in the SCI are described before discussing specific examples of
how the SCI is used. The registers comprising the SCI are shown in Figure 11-9 and Figure
11-10. These registers are the SCI control register (SCR), SCI status register (SSR), SCI
clock control register (SCCR), SCI receive data registers (SRX), SCI transmit data registers
(STX), and the SCI transmit data address register (STXA). The SCI programming model
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 9

can be viewed as three types of registers: 1) control – SCR and SCCR in Figure 11-9; 2) status

X
:$

F
F

F
0

23
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

0
S

C
K

P
(0

)
0

T
M

IE
T

IE
R

IE
IL

IE
T

E
R

E
W

O
M

S
R

W
U

W
A

K
E

S
B

K
S

S
F

T
D

W
D

S
2

W
D

S
1

W
D

S
0

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

S
C

I C
O

N
TR

O
L

R
E

G
IS

TE
R

 (S
C

R
)

(R
E

A
D

/W
R

IT
E

)

S
C

I C
LO

C
K

 P
O

LA
R

IT
Y

T
IM

E
R

 IN
T

E
R

R
U

P
T

 E
N

A
B

LE
T

R
A

N
S

M
IT

 IN
T

E
R

R
U

P
T

 E
N

A
B

LE
R

E
C

E
IV

E
 IN

T
E

R
R

U
P

T
 E

N
A

B
LE

ID
LE

 L
IN

E
 IN

T
E

R
R

U
P

T
 E

N
A

B
LE

T
R

A
N

S
M

IT
T

E
R

 E
N

A
B

LE

W
O

R
D

 S
E

LE
C

T
 B

IT
S

S
C

I S
H

IF
T

 D
IR

E
C

T
IO

N
S

E
N

D
 B

R
E

A
K

W
A

K
E

U
P

 M
O

D
E

 S
E

LE
C

T
R

E
C

E
IV

E
R

 W
A

K
E

U
P

 E
N

A
B

LE
W

IR
E

D
 -

 O
R

 M
O

D
E

 S
E

LE
C

T
R

E
C

E
IV

E
R

 E
N

A
B

LE

X
:$

F
F

F
1

23
8

7
6

5
4

3
2

1
0

0
R

8
F

E
P

E
O

R
ID

LE
R

D
R

F
T

D
R

E
T

R
N

E
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(1

)
(1

)
S

C
I S

TA
TU

S
 R

E
G

IS
TE

R
 (S

S
R

)
(R

E
A

D
 O

N
LY

)

R
E

C
E

IV
E

D
 B

IT
 8

F
R

A
M

IN
G

 E
R

R
O

R
 F

LA
G

PA
R

IT
Y

 E
R

R
O

R
 F

LA
G

O
V

E
R

R
U

N
 E

R
R

O
R

 F
LA

G

T
R

A
N

S
M

IT
T

E
R

 E
M

P
T

Y
T

R
A

N
S

M
IT

T
E

R
 D

AT
A

 R
E

G
IS

T
E

R
 E

M
P

T
Y

R
E

C
E

IV
E

 D
AT

A
 R

E
G

IS
T

E
R

 F
U

LL
ID

LE
 L

IN
E

 F
LA

G

X
:$

F
F

F
2

23
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

0
T

C
M

R
C

M
S

C
P

C
O

D
C

D
11

C
D

10
C

D
9

C
D

8
C

D
7

C
D

6
C

D
5

C
D

4
C

D
3

C
D

2
C

D
1

C
D

0
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)

S
C

I C
LO

C
K

 C
O

N
TR

O
L

R
E

G
IS

TE
R

 (S
C

C
R

)
(R

E
A

D
/W

R
IT

E
)

C
LO

C
K

 D
IV

ID
E

R
 B

IT
S

T
R

A
N

S
M

IT
 C

LO
C

K
 S

O
U

R
C

E
 B

IT
R

E
C

E
IV

E
 C

LO
C

K
 S

O
U

R
C

E
 B

IT
C

LO
C

K
 P

R
E

S
C

A
LE

R
C

LO
C

K
 O

U
T

P
U

T
 D

IV
ID

E
R

N
O

T
E

: T
he

 n
um

be
r

in
 p

ar
en

th
es

es
 is

 th
e

co
nd

iti
on

 o
f t

he
 b

it
af

te
r

ha
rd

w
ar

e
re

se
t.

F
ig

u
re

 1
1-

9
 S

C
I P

ro
g

ra
m

m
in

g
 M

o
d

el
 –

 C
o

n
tr

o
l a

n
d

 S
ta

tu
s

R
eg

is
te

rs
11- 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

– SSR in Figure 11-9; and 3) data transfer – SRX, STX, and STXA in Figure 11-10. The follow-
ing paragraphs describe each bit in the programming model.

11.2.2.1 SCI Control Register (SCR)
The SCR is a 16-bit read/write register that controls the serial interface operation. Fifteen
of the 16 bits are currently defined. Each bit is described in the following paragraphs.

11.2.2.1.1 SCR Word Select (WDS0, WDS1, WDS2) Bits 0, 1, and 2
The three word-select bits (WDS0, WDS1, WDS2) select the format of the transmit and
receive data. The formats include three asynchronous and one multidrop asynchronous

23 16 15 8 7 0

X:$FFF6

X:$FFF5

X:$FFF4

SRX

SRX

SRX

SCI RECIEVE DATA REGISTER HIGH (READ ONLY)

SCI RECIEVE DATA REGISTER MID (READ ONLY)

SCI RECEIVE DATA REGISTER LOW (READ ONLY)

RXD SCI RECEIVE DATA SHIFT REGISTER

NOTE: SRX is the same register decoded at three different addresses.

23 16 15 8 7 0

23 16 15 8 7 0

X:$FFF6

X:$FFF5

X:$FFF4

STX

STX

STX

SCI TRANSMIT DATA REGISTER HIG (WRITE ONLY)

SCI TRANSMIT DATA REGISTER MID (WRITE ONLY)

SCI TRANSMIT DATA REGISTER LOW (WRITE ONLY)

TXDSCI TRANSMITDATA SHIFT REGISTER

NOTES:
1. Bytes are masked on the fly.
2. STX is the same register decoded at three different addresses.

STXAX:$FFF3 SCI TRANSMITDATA ADDRESS REGISTER
(WRITE ONLY)

(a) Receive Data Register

(b) Transmit Data Register

Figure 11-10 SCI Programming Model
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 11

mode as well as an 8-bit synchronous (shift register) mode. The asynchronous modes
are compatible with most UART-type serial devices. Standard RS232C communication
links are supported by these modes.

The multidrop asynchronous modes are compatible with the MC68681 DUART, the
M68HC11 SCI interface, and the Intel 8051 serial interface.

The synchronous data mode is essentially a high-speed shift register used for I/O expan-
sion and stream-mode channel interfaces. Data synchronization is accomplished by the
use of a gated transmit and receive clock that is compatible with the Intel 8051 serial
interface mode 0. These formats are indicated below (also see Figure 11-11).

The word-select bits are cleared by hardware reset.

When odd parity is selected, the transmitter will count the number of bits in the data
word; if the total is not an odd number, the parity bit is made equal to one and thus pro-
duces an odd number. If the receiver counts an even number of ones, an error in trans-
mission has occurred. When even parity is selected, an even number must result from
the calculation performed at both ends of the line or an error in transmission has
occurred. The three word-select bits are cleared by hardware and software reset.

11.2.2.1.2 SCR SCI Shift Direction (SSFTD) Bit 3
The SCI data shift registers can be programmed to shift data in/out either LSB first if
SSFTD equals zero or MSB first if SSFTD equals one. The parity and data type bits do
not change position and remain adjacent to the stop bit. SSFTD should be cleared for
compatibility with early versions of the DSP56000/DSP56001. SSFTD is cleared by
hardware and software reset.

11.2.2.1.3 SCR Send Break (SBK) Bit 4
A break is an all-zero word frame – a start bit zero, a character of all zeros (including any

WDS2 WDS1 WDS0 Word Formats

0 0 0 8-Bit Synchronous Data (shift register mode)

0 0 1 Reserved

0 1 0 10-Bit Asynchronous (1 start, 8 data, 1 stop)

0 1 1 Reserved

1 0 0 11-Bit Asynchronous (1 start, 8 data, 1 even parity, 1 stop)

1 0 1 11-Bit Asynchronous (1 start, 8 data, 1 odd parity, 1 stop)

1 1 0 11-Bit Multidrop (1 start, 8 data, 1 data type, 1 stop)

1 1 1 Reserved
11- 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

parity), and a stop bit zero: i.e., 10 or 11 zeros depending on the WDS mode selected. If

MODE 0

2 1 0

0 0 0

WDS2 WDS1 WDS0

X:$FFF0 8-BIT SYNCHRONOUS DATA (SHIFT REGISTER MODE)

TX
(SSFTD = 0) D0 D1 D2 D3 D4 D5 D6 D7

ONE BYTE FROM SHIFT REGISTER

MODE 2

2 1 0

0 1 0

WDS2 WDS1 WDS0

X:$FFF0 10-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 STOP)

TX
(SSFTD = 0) D0 D1 D2 D3 D4 D5 D6

START
BIT

D7 OR
DATA
TYPE

STOP
BIT

MODE 4

2 1 0

1 0 0

WDS2 WDS1 WDS0

X:$FFF0 11-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 EVEN PARITY, 1 STOP)

TX
(SSFTD = 0) D0 D1 D2 D3 D4 D5 D6

START
BIT

D7 OR
DATA
TYPE

STOP
BIT

EVEN
PARITY

MODE 5

2 1 0

1 0 1

WDS2 WDS1 WDS0

X:$FFF0 11-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 ODD PARITY, 1 STOP)

TX
(SSFTD = 0) D0 D1 D2 D3 D4 D5 D6

START
BIT

D7 OR
DATA
TYPE

STOP
BIT

ODD
PARITY

MODE 6

2 1 0

1 1 0

WDS2 WDS1 WDS0

X:$FFF0 11-BIT ASYNCHRONOUS MULTIDROP (1 START, 8 DATA, 1 DATA TYPE, 1 STOP)

TX
(SSFTD = 0) D0 D1 D2 D3 D4 D5 D6

START
BIT D7

STOP
BIT

DATA
TYPE

Data Type: 1 = Address Byte
0 = Data Byte

NOTES:
1. Modes1, 3, and 7 are reserved.
2. D0 =LDS;D7 = MSB
3. Data is transmitted and received LSB first if SSFTD = 0 or MSB first if SSFTD = 1.

Figure 11-11 Serial Formats (Sheet 1 of 2)

(a) SSFTD = 0
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 13

SBK is set and then cleared, the transmitter completes transmission of any data, sends

MODE 0

2 1 0

0 0 0

WDS2 WDS1 WDS0

X:$FFF0 8-BIT SYNCHRONOUS DATA (SHIFT REGISTER MODE)

TX
(SSFTD = 1) D7 D6 D5 D4 D3 D2 D1 D0

ONE BYTE FROM SHIFT REGISTER

MODE 2

2 1 0

0 1 0

WDS2 WDS1 WDS0

X:$FFF0 10-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 STOP)

TX
(SSFTD = 1) D6 D5 D4 D3 D2 D1 D0

START
BIT

D7 OR
DATA
TYPE

STOP
BIT

MODE 4

2 1 0

1 0 0

WDS2 WDS1 WDS0

X:$FFF0 11-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 EVEN PARITY, 1 STOP)

TX
(SSFTD = 1)

START
BIT

D7 OR
DATA
TYPE

STOP
BIT

EVEN
PARITY

MODE 5

2 1 0

1 0 1

WDS2 WDS1 WDS0

X:$FFF0 11-BIT ASYNCHRONOUS (1 START, 8 DATA, 1 ODD PARITY, 1 STOP)

TX
(SSFTD = 1)

START
BIT

D7 OR
DATA
TYPE

STOP
BIT

ODD
PARITY

MODE 6

2 1 0

1 1 0

WDS2 WDS1 WDS0

X:$FFF0 11-BIT ASYNCHRONOUS MULTIDROP (1 START, 8 DATA, 1 DATA TYPE, 1 STOP)

TX
(SSFTD = 1)

START
BIT

STOP
BIT

DATA
TYPE

Data Type: 1 = Address Byte
0 = Data Byte

NOTES:
1. Modes 1, 3, and 7 are reserved.
2. D0 = LSB;D7 = MSB
3. Data is transmitted and received LSB first if SSFTD = 0 or MSB first if SSFTD = 1.

D6 D5 D4 D3 D2 D1 D0

D6 D5 D4 D3 D2 D1 D0

D7 D6 D5 D4 D3 D2 D1 D0

(b) SSFTD = 1

Figure 11-11 Serial Formats (Sheet 2 of 2)
11- 14 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

10 or 11 zeros, and reverts to idle or sending data. If SBK remains set, the transmitter
will continually send whole frames of zeros (10 or 11 bits with no stop bit). At the comple-
tion of the break code, the transmitter sends at least one high bit before transmitting any
data to guarantee recognition of a valid start bit. Break can be used to signal an unusual
condition, message, etc. by forcing a frame error, which is caused by a missing stop bit.
Hardware and software reset clear SBK.

11.2.2.1.4 SCR Wakeup Mode Select (WAKE) Bit 5
When WAKE equals zero, an idle line wakeup is selected. In the idle line wakeup mode,
the SCI receiver is re-enabled by an idle string of at least 10 or 11 (depending on WDS
mode) consecutive ones. The transmitter’s software must provide this idle string
between consecutive messages. The idle string cannot occur within a valid message
because each word frame contains a start bit that is a zero.

When WAKE equals one, an address bit wakeup is selected. In the address bit wakeup
mode, the SCI receiver is re-enabled when the last (eighth or ninth) data bit received in a
character (frame) is one. The ninth data bit is the address bit (R8) in the 11-bit multidrop
mode; the eighth data bit is the address bit in the 10-bit asynchronous and 11-bit asyn-
chronous with parity modes. Thus, the received character is an address that has to be
processed by all sleeping processors – i.e., each processor has to compare the received
character with its own address and decide whether to receive or ignore all following char-
acters. WAKE is cleared by hardware and software reset.

11.2.2.1.5 SCR Receiver Wakeup Enable (RWU) Bit 6
When RWU equals one and the SCI is in an asynchronous mode, the wakeup function is
enabled – i.e., the SCI is put to sleep waiting for a reason (defined by the WAKE bit) to
wakeup. In the sleeping state, all receive flags, except IDLE, and interrupts are disabled.
When the receiver wakes up, this bit is cleared by the wakeup hardware. The program-
mer may also clear the RWU bit to wake up the receiver.

RWU can be used by the programmer to ignore messages that are for other devices on a
multidrop serial network. Wakeup on idle line (WAKE=0) or wakeup on address bit
(WAKE=1) must be chosen.

1. When WAKE equals zero and RWU equals one, the receiver will not respond
to data on the data line until an idle line is detected.

2. When WAKE equals one and RWU equals one, the receiver will not respond
to data on the data line until a data byte with bit 9 equal to one is detected.

When the receiver wakes up, the RWU bit is cleared, and the first byte of data is
received. If interrupts are enabled, the CPU will be interrupted, and the interrupt routine
will read the message header to determine if the message is intended for this DSP.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 15

1. If the message is for this DSP, the message will be received, and RWU will
again be set to one to wait for the next message.

2. If the message is not for this DSP, the DSP will immediately set RWU to one.
Setting RWU to one causes the DSP to ignore the remainder of the message
and wait for the next message.

RWU is cleared by hardware and software reset. RWU is a don’t care in the synchronous
mode.

11.2.2.1.6 SCR Wired-OR Mode Select (WOMS) Bit 7
When the WOMS bit is set, the SCI TXD driver is programmed to function as an open-
drain output and may be wired together with other TXD pins in an appropriate bus config-
uration such as a master-slave multidrop configuration. An external pullup resistor is
required on the bus. When the WOMS is cleared, the TXD pin uses an active internal
pullup. This bit is cleared by hardware and software reset.

11.2.2.1.7 SCR Receiver Enable (RE) Bit 8
When RE is set, the receiver is enabled. When RE is cleared, the receiver is disabled,
and data transfer is inhibited to the receive data register (SRX) from the receive shift reg-
ister. If RE is cleared while a character is being received, the reception of the character
will be completed before the receiver is disabled. RE does not inhibit RDRF or receive
interrupts. RE is cleared by a hardware and software reset.

11.2.2.1.8 SCR Transmitter Enable (TE) Bit 9
When TE is set, the transmitter is enabled. When TE is cleared, the transmitter will com-
plete transmission of data in the SCI transmit data shift register; then the serial output is
forced high (idle). Data present in the SCI transmit data register (STX) will not be trans-
mitted. STX may be written and TDRE will be cleared, but the data will not be transferred
into the shift register. TE does not inhibit TDRE or transmit interrupts. TE is cleared by a
hardware and software reset.

Setting TE will cause the transmitter to send a preamble of 10 or 11 consecutive ones
(depending on WDS). This procedure gives the programmer a convenient way to ensure
that the line goes idle before starting a new message. To force this separation of mes-
sages by the minimum idle line time, the following sequence is recommended:

1. Write the last byte of the first message to STX.

2. Wait for TDRE to go high, indicating the last byte has been transferred to the
transmit shift register.

3. Clear TE and set TE back to one. This queues an idle line preamble to imme-
11- 16 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

diately follow the transmission of the last character of the message (including
the stop bit).

4. Write the first byte of the second message to STX.

In this sequence, if the first byte of the second message is not transferred to the STX
prior to the finish of the preamble transmission, then the transmit data line will simply
mark idle until STX is finally written.

11.2.2.1.9 SCR Idle Line Interrupt Enable (ILIE) Bit 10
When ILIE is set, the SCI interrupt occurs when IDLE is set. When ILIE is clear, the IDLE
interrupt is disabled. ILIE is cleared by hardware and software reset.

An internal flag, the shift register idle interrupt (SRIINT) flag, is the interrupt request to
the interrupt controller. SRIINT is not directly accessible to the user.

When a valid start bit has been received, an idle interrupt will be generated if both IDLE
(SCI Status Register bit 3) and ILIE equals one. The idle interrupt acknowledge from the
interrupt controller clears this interrupt request. The idle interrupt will not be asserted
again until at least one character has been received. The result is as follows:

1. The IDLE bit shows the real status of the receive line at all times.

2. Idle interrupt is generated once for each idle state, no matter how long the idle
state lasts.

11.2.2.1.10 SCR SCI Receive Interrupt Enable (RIE) Bit 11
The RIE bit is used to enable the SCI receive data interrupt. If RIE is cleared, receive
interrupts are disabled, and the RDRF bit in the SCI status register must be polled to
determine if the receive data register is full. If both RIE and RDRF are set, the SCI will
request an SCI receive data interrupt from the interrupt controller.

One of two possible receive data interrupts will be requested:

1. Receive without exception will be requested if PE, FE, and OR are all clear
(i.e., a normal received character).

2. Receive with exception will be requested if PE, FE, and OR are not all clear
(i.e., a received character with an error condition).

RIE is cleared by hardware and software reset.

11.2.2.1.11 SCR SCI Transmit Interrupt Enable (TIE) Bit 12
The TIE bit is used to enable the SCI transmit data interrupt. If TIE is cleared, transmit
data interrupts are disabled, and the transmit data register empty (TDRE) bit in the SCI
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 17

status register must be polled to determine if the transmit data register is empty. If both
TIE and TDRE are set, the SCI will request an SCI transmit data interrupt from the inter-
rupt controller. TIE is cleared by hardware and software reset.

11.2.2.1.12 SCR Timer Interrupt Enable (TMIE) Bit 13
The TMIE bit is used to enable the SCI timer interrupt. If TMIE is set (enabled), the timer
interrupt requests will be made to the interrupt controller at the rate set by the SCI clock
register. The timer interrupt is automatically cleared by the timer interrupt acknowledge
from the interrupt controller. This feature allows DSP programmers to use the SCI baud
clock generator as a simple periodic interrupt generator if the SCI is not in use, if external
clocks are used for the SCI, or if periodic interrupts are needed at the SCI baud rate. The
SCI internal clock is divided by 16 (to match the 1 × SCI baud rate) for timer interrupt
generation. This timer does not require that any SCI pins be configured for SCI use to
operate. TMIE is cleared by hardware and software reset.

11.2.2.1.13 SCR Reserved (Bit 14)
This unused bit is reserved and should be written with a zero for upward compatibility. It
is read as a zero.

11.2.2.1.14 SCR SCI Clock Polarity (SCKP) Bit 15
The clock polarity, sourced or received on the clock pin (SCLK), can be inverted using
this bit, eliminating the need for an external inverter. When bit 15 equals zero, the clock
polarity is positive; when bit 15 equals one, the clock polarity is negative. In the synchro-
nous mode, positive polarity means that the clock is normally positive and transitions
negative during data valid; whereas, negative polarity means that the clock is normally
negative and transitions positive during valid data. In the asynchronous mode, positive
polarity means that the rising edge of the clock occurs in the center of the period that
data is valid; negative polarity means that the falling edge of the clock occurs during the
center of the period that data is valid. This bit should be cleared for compatibility with
early versions of the DSP56000/DSP56001. SCKP is cleared on hardware and software
reset.

11.2.2.2 SCI Status Register (SSR)
The SSR is an 8-bit read-only register used by the DSP CPU to determine the status of
the SCI. When the SSR is read onto the internal data bus, the register contents occupy
the low-order byte of the data bus and all high-order portions are zero filled. The status
bits are described in the following paragraphs.

11.2.2.2.1 SSR Transmitter Empty (TRNE) Bit 0
The TRNE flag is set when both the transmit shift register and data register are empty to indicate that there is no data in the transmitter. When TRNE is set, data written to one of the three STX locations or to the STXA will be transferred to the transmit shift register

and be the first data transmitted. TRNE is cleared when TDRE is cleared by writing data into the transmit data register (STX) or the transmit data address register (STXA), or when an idle, preamble, or break is transmitted. The purpose of this bit is to indicate that the

transmitter is empty; therefore, the data written to STX or STXA will be transmitted next – i.e., there is not a word in the transmit shift register presently being transmitted. This procedure is useful when initiating the transfer of a message (i.e., a string of characters).
11- 18 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

TRNE is set by the hardware, software, SCI individual, and stop reset.

11.2.2.2.2 SSR Transmit Data Register Empty (TDRE) Bit 1
The TDRE bit is set when the SCI transmit data register is empty. When TDRE is set, new data may be written to one of the SCI transmit data registers (STX) or transmit data address register (STXA). TDRE is cleared when the SCI transmit data register is written.

TDRE is set by the hardware, software, SCI individual, and stop reset.

In the SCI synchronous mode, when using the internal SCI clock, there is a delay of up to 5.5 serial clock cycles between the time that STX is written until TDRE is set, indicating the data has been transferred from the STX to the transmit shift register. There is a two

to four serial clock cycle delay between writing STX and loading the transmit shift register; in addition, TDRE is set in the middle of transmitting the second bit. When using an external serial transmit clock, if the clock stops, the SCI transmitter stops. TDRE will not be

set until the middle of the second bit transmitted after the external clock starts. Gating the external clock off after the first bit has been transmitted will delay TDRE indefinitely.

In the SCI asynchronous mode, the TDRE flag is not set immediately after a word is transferred from the STX or STXA to the transmit shift register nor when the word first begins to be shifted out. TDRE is set two cycles of the 16 × clock after the start bit – i.e., two

16 × clock cycles into to transmission time of the first data bit.

11.2.2.2.3 SSR Receive Data Register Full (RDRF) Bit 2
The RDRF bit is set when a valid character is transferred to the SCI receive data register
from the SCI receive shift register. RDRF is cleared when the SCI receive data register is
read or by the hardware, software, SCI individual, and stop reset.

11.2.2.2.4 SSR Idle Line Flag (IDLE) Bit 3
IDLE is set when 10 (or 11) consecutive ones are received. IDLE is cleared by a start-bit detection. The IDLE status bit represents the status of the receive line. The transition of IDLE from zero to one can cause an IDLE interrupt (ILIE). IDLE is cleared by the hard-

ware, software, SCI individual, and stop reset.

11.2.2.2.5 SSR Overrun Error Flag (OR) Bit 4
The OR flag is set when a byte is ready to be transferred from the receive shift register to
the receive data register (SRX) that is already full (RDRF=1). The receive shift register
data is not transferred to the SRX. The OR flag indicates that character(s) in the receive
data stream may have been lost. The only valid data is located in the SRX. OR is cleared
when the SCI status register is read, followed by a read of SRX. The OR bit clears the
FE and PE bits – i.e., overrun error has higher priority than FE or PE. OR is cleared by
the hardware, software, SCI individual, and stop reset.

11.2.2.2.6 SSR Parity Error (PE) Bit 5
In the 11-bit asynchronous modes, the PE bit is set when an incorrect parity bit has been
detected in the received character. It is set simultaneously with RDRF for the byte which
contains the parity error – i.e., when the received word is transferred to the SRX. If PE is
set, it does not inhibit further data transfer into the SRX. PE is cleared when the SCI sta-
tus register is read, followed by a read of SRX. PE is also cleared by the hardware, soft-
ware, SCI individual, or stop reset. In the 10-bit asynchronous mode, the 11-bit multidrop
mode, and the 8-bit synchronous mode, the PE bit is always cleared since there is no
parity bit in these modes. If the byte received causes both parity and overrun errors, the
SCI receiver will only recognize the overrun error.

11.2.2.2.7 SSR Framing Error Flag (FE) Bit 6
The FE bit is set in the asynchronous modes when no stop bit is detected in the data
string received. FE and RDRE are set simultaneously – i.e., when the received word is
transferred to the SRX. However, the FE flag inhibits further transfer of data into the SRX
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 19

until it is cleared. FE is cleared when the SCI status register is read followed by reading
the SRX. The hardware, software, SCI individual, and stop reset also clear FE. In the 8-
bit synchronous mode, FE is always cleared. If the byte received causes both framing
and overrun errors, the SCI receiver will only recognize the overrun error.

11.2.2.2.8 SSR Received Bit 8 (R8) Address Bit 7
In the 11-bit asynchronous multidrop mode, the R8 bit is used to indicate whether the
received byte is an address or data. R8 is not affected by reading the SRX or status reg-
ister. The hardware, software, SCI individual, and stop reset clear R8.

11.2.2.3 SCI Clock Control Register (SCCR)
The SCCR is a 16-bit read/write register, which controls the selection of the clock modes and baud rates for the transmit and receive sections of the SCI interface. The control bits are described in the following paragraphs. The SCCR is cleared by hardware reset.

The basic points of the clock generator are as follows:

1. The SCI core always uses a 16 × internal clock in the asynchronous modes
and always uses a 2 × internal clock in the synchronous mode. The maximum
internal clock available to the SCI peripheral block is the oscillator frequency
divided by 4. With a 20-MHz crystal, this gives a maximum data rate of 312.5
Kbps for asynchonous data and 2.5 Mbps for synchronous data. These maxi-
mum rates are the same for internally or externally supplied clocks.

2. The 16 × clock is necessary for the asynchronous modes to synchronize the
SCI to the incoming data (see Figure 11-12).

3. For the asynchronous modes, the user must provide a 16 × clock if he wishes
to use an external baud rate generator (i.e., SCLK input).

4. For the asynchronous modes, the user may select either 1 × or 16 × for the
output clock when using internal TX and RX clocks (TCM=0 and RCM=0).

RX, TX DATA
(SSFTD = 0)

IDLE LINE

START STOP START

0 1 2 3 4 5 6 7 8

SELECT 8-OR 9-BIT WORDS

x1 CLOCK

x16 CLOCK
(SCKP = 0)

Figure 11-12 16 x Serial Clock
11- 20 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

5. The transmit data on the TXD pin changes on the negative edge of the 1 ×
serial clock and is stable on the positive edge (SCKP=0). For SCKP equals
one, the data changes on the positive edge and is stable on the negative
edge.

6. The receive data on the RXD pin is sampled on the positive edge (if SCKP=0)
or on the negative edge (if SCKP=1) of the 1 × serial clock.

7. For the asynchronous mode, the output clock is continuous.

8. For the synchronous mode, a 1 × clock is used for the output or input baud
rate. The maximum 1 × clock is the crystal frequency divided by 8.

9. For the synchronous mode, the clock is gated.

10.For both the asynchronous and synchronous modes, the transmitter and
receiver are synchronous with each other.

11.2.2.3.1 SCCR Clock Divider (CD11–CD0) Bits 11–0
The clock divider bits (CD11–CD0) are used to preset a 12-bit counter, which is decremented at the Icyc rate (crystal frequency divided by 2). The counter is not accessible to the user. When the counter reaches zero, it is reloaded from the clock divider bits. Thus, a

value of 0000 0000 0000 in CD11–CD0 produces the maximum rate of Icyc, and a value of 0000 0000 0001 produces a rate of Icyc/2. The lowest rate available is Icyc/4096. Figure 11-13 and Figure 11-36 show the clock dividers. Bits CD11–CD0 are cleared by hard-

ware and software reset.

11.2.2.3.2 SCCR Clock Out Divider (COD) Bit 12
Figure 11-13 and Figure 11-36 show the clock divider circuit. The output divider is controlled by COD and the SCI mode. If the SCI mode is synchronous, the output divider is fixed at divide by 2; if the SCI mode is asynchronous, and

1. If COD equals zero and SCLK is an output (i.e., TCM and RCM=0), the SCI
clock is divided by 16 before being output to the SCLK pin; thus, the SCLK out-
put is a 1 × clock.

2. If COD equals one and SCLK is an output, the SCI clock is fed directly out to
the SCLK pin; thus, the SCLK output is a 16 × baud clock.

The COD bit is cleared by hardware and software reset.

11.2.2.3.3 SCCR SCI Clock Prescaler (SCP) Bit 13
The SCI SCP bit selects a divide by 1 (SCP=0) or divide by 8 (SCP=1) prescaler for the clock divider. The output of the prescaler is further divided by 2 to form the SCI clock. Hardware and software reset clear SCP. Figure 11-13 and Figure 11-36 show the clock

divider diagram.

11.2.2.3.4 SCCR Receive Clock Mode Source Bit (RCM) Bit 14
RCM selects internal or external clock for the receiver (see Figure 11-36). RCM equals zero selects the internal clock; RCM equals one selects the external clock from the SCLK pin. Hardware and software reset clear RCM.

11.2.2.3.5 SCCR Transmit Clock Source Bit (TCM) Bit 15
The TCM bit selects internal or external clock for the transmitter (see Figure 11-36). TCM equals zero selects the internal clock; TCM equals one selects the external clock from the SCLK pin. Hardware and software reset clear TCM.

11.2.2.4 SCI Data Registers
The SCI data registers are divided into two groups: receive and transmit. There are two receive registers – a receive data register (SRX) and a serial-to-parallel receive shift register. There are also two transmit registers – a transmit data register (called either STX or

STXA) and a parallel-to-serial transmit shift register.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 21

11.2.2.4.1 SCI Receive Registers
Data words received on the RXD pin are shifted into the SCI receive shift register. When the complete word has been received, the data portion of the word is transferred to the byte-wide SRX. This process converts the serial data to parallel data and provides double

buffering. Double buffering provides flexibility to the programmer and increased throughput since the programmer can save the previous word while the current word is being received.

The SRX can be read at three locations: X:$FFF4, X:$FFF5, and X:$FFF6 (see Figure 11-14). When location X:$FFF4 is read, the contents of the SRX are placed in the lower byte of the data bus and the remaining bits on the data bus are written as zeros. Similarly,

when X:$FFF5 is read, the contents of SRX are placed in the middle byte of the bus, and when X:$FFF6 is read, the contents of SRX are placed in the high byte with the remaining bits zeroed. Mapping SRX as described allows three bytes to be efficiently packed into

one 24-bit word by ORing three data bytes read from the three addresses. The following code fragment requires that R0 initially points to X:$FFF4, register A is initially cleared, and R3 points to a data buffer. The only programming trick is using BCLR to test bit 1 of

the packing pointer to see if it is pointing to X:$FFF6 and clearing bit 1 to point to X:$FFF4 if it had been pointing to X:$FFF6. This procedure resets the packing pointer after receiving three bytes.

fosc

DIVIDE
BY 2 12-BIT COUNTER PRESCALER:

DIVIDE BY
1 or 8

DIVIDE
BY 2

CD11 - CD0
SCP

INTERNAL CLOCK

DIVIDE
BY 16

TIMER
INTERRUPT

(STMINT)

SCI CORE LOGIC
USES DIVIDE BY 16 FOR

ASYNCHRONOUS
USES DIVIDE BY 2 FOR

SYNCHRONOUS

COD

SCKP

IF ASYNCHRONOUS
DIVIDE BY 1 OR 16
IF SYNCHRONOUS

DIVIDE BY 2

SCKP = 0 +
SCKP = 1 -

TO SCLK

fo
BPS = 64 x (7(SCP) + 1) x CD + 1)

where: SCP = 0 or 1
CD = 0 to $FFF

TCM RCM TX Clock RX Clock SCLK Pin Mode

0 0 Internal Internal Output Synchronous/Asynchronous

0 1 Internal External Input Asynchronous Only

1 0 External Internal Input Asynchronous Only

1 1 External External Input Synchronous/Asynchronous

Figure 11-13 SCI Baud Rate Generator
11- 22 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

MOVE X:(R0),X0 ;Copy received data to temporary register
BCLR #$1,R0 ;Test for last byte

;reset pointer if it is the last byte
OR X0,A ;Pack the data into register A
MOVE (R0)+ ;and increment the packing pointer
JCS FLAG ;Jump to clean up routine if last byte
RTI ;Else return until next byte is received

FLAG MOVE A,(R3)+ ;Move the packed data to memory
CLR A ;Prepare A for packing next three bytes
RTI ;Return until the next byte is received

The length and format of the serial word is defined by the WDS0, WDS1, and WDS2 control bits in the SCI control register. In the synchronous modes, the start bit, the eight data bits with LSB first, the address/data indicator bit and/or the parity bit, and the stop bit are

received in that order for SSFTD equals zero (see Figure 11-11 (a)). For SSFTD equals one, the data bits are transmitted MSB first (see Figure 11-11(b)). The clock source is defined by the receive clock mode (RCM) select bit in the SCR. In the synchronous mode,

the synchronization is provided by gating the clock. In either mode, when a complete word has been clocked in, the contents of the shift register can be transferred to the SRX and the flags; RDRF, FE, PE, and OR are changed appropriately. Because the operation

of the SCI receive shift register is transparent to the DSP, the contents of this register are not directly accessible to the programmer.

11.2.2.4.2 SCI Transmit Registers
The transmit data register is one byte-wide register mapped into four addresses: X:$FFF3, X:$FFF4, X:$FFF5, and X:$FFF6. In the asynchronous mode, when data is to be transmitted, X:$FFF4, X:$FFF5, and X:$FFF6 are used, and the register is called STX. When

23 16 15 8 7 0

X:$FFF6

X:$FFF5

X:$FFF4

STX

STX

STX

MOVE X0, X:$FFF6; TRANSMIT CHARACTER “A”

MOVE X0, X:$FFF5; TRANSMIT CHARACTER “B”

MOVE X0, X:$FFF4; TRANSMIT CHARACTER “C”

NOTE: STX is the same register decoded at three different addresses.

X0 “A” “B” “C”

23 16 15 8 7 0

X:$FFF6

X:$FFF5

X:$FFF4

SRX

SRX

SRX

MOVE X0, X:$FFF6; RECEIVE CHARACTER “A”

MOVE X0, X:$FFF5; RECEIVE CHARACTER “B”

MOVE X0, X:$FFF4; RECEIVE CHARACTER “C”

NOTE: SRX is the same register decoded at three different addresses.

X0 “A” “B” “C”

(a) Unpacking

(b) Packing

Figure 11-14 Data Packing and Unpacking
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 23

X:$FFF4 is written, the low byte on the data bus is transferred to the STX; when X:$FFF5 is written, the middle byte is transferred to the STX; and when X:$FFF6 is written, the high byte is transferred to the STX. This structure (see Figure 11-10) makes it easy for the

programmer to unpack the bytes in a 24-bit word for transmission. Location X:$FFF3 should be written in the 11-bit asynchronous multidrop mode when the data is an address and it is desired that the ninth bit (the address bit) be set. When X:$FFF3 is written, the

transmit data register is called STXA, and data from the low byte on the data bus is stored in STXA. The address data bit will be cleared in the 11-bit asynchronous multidrop mode when any of X:$FFF4, X:$FFF5, or X:$FFF6 is written. When either STX or STXA is

written, TDRE is cleared.

The transfer from either STX or STXA to the transmit shift register occurs automatically, but not immediately, when the last bit from the previous word has been shifted out – i.e., the transmit shift register is empty. Like the receiver, the transmitter is double buffered.

However, there will be a two to four serial clock cycle delay between when the data is transferred from either STX or STXA to the transmit shift register and when the first bit appears on the TXD pin. (A serial clock cycle is the time required to transmit one data bit). The

transmit shift register is not directly addressable, and a dedicated flag for this register does not exist. Because of this fact and the two to four cycle delay, two bytes cannot be written consecutively to STX or STXA without polling. The second byte will overwrite the first

byte. The TDRE flag should always be polled prior to writing STX or STXA to prevent overruns unless transmit interrupts have been enabled. Either STX or STXA is usually written as part of the interrupt service routine. Of course, the interrupt will only be generated if

TDRE equals one. The transmit shift register is indirectly visible via the TRNE bit in the SSR.

In the synchronous modes, data is clocked synchronously with the transmit clock, which may have either an internal or external source as defined by the TCM bit in the SCCR. The length and format of the serial word is defined by the WDS0, WDS1, and WDS2 control

bits in the SCR. In the asynchronous modes, the start bit, the eight data bits (with the LSB first if SSFTD=0 and the MSB first if SSFTD=1), the address/data indicator bit or parity bit, and the stop bit are transmitted in that order (see Figure 11-11).

The data to be transmitted can be written to any one of the three STX addresses. If SCKP equals one and SSHTD equals one, the SCI synchronous mode is equivalent to the SSI operation in the 8-bit data on-demand mode.

11.2.2.5 PREAMBLE, BREAK, AND DATA TRANSMISSION PRIORITY. It is possible
that two or three transmission commands are set simultaneously:

1. A preamble (TE was toggled).
2. A break (SBK was set or was toggled).
3. There is data for transmission (TDRE=0).

After the current character transmission, if two or more of these commands are set, the transmit-
ter will execute them in the following priority:

1. Preamble

2. Break

3. Data

11.2.3 Register Contents After Reset

Four different methods of resetting the SCI exist. Hardware or software reset clears the port control register bits, which configure all I/O as general-purpose input. The SCI will remain in the reset state while all SCI pins are programmed as general-purpose I/O (CC2,

CC1, and CC0=0); the SCI will become active only when at least one of the SCI I/O pins is programmed as not general-purpose I/O.

During program execution, the CC2, CC1, and CC0 bits may be cleared (individual reset), which will cause the SCI to stop serial activity and enter the reset state. All SCI status bits will be set to their reset state; however, the contents of the interface control register

are not affected, allowing the DSP program to reset the SCI separately from the other internal peripherals.

Executing the STOP instruction halts operation of the SCI until the DSP is restarted, causing the SSR to be reset. No other SCI registers are affected by the STOP instruction. Table 11-1 illustrates how each type of reset affects each register in the SCI.

11.2.4 SCI Initialization
The correct way to initialize the SCI is as follows:

1. Hardware or software reset.

2. Program SCI control registers.

3. Configure SCI pins (at least one) as not general-purpose I/O.

Figure 11-15 and Figure 11-16 show how to configure the bits in the SCI registers. Figure 11-15 is the basic initialization procedure showing which registers must be configured. (1) A hardware or software reset should be used to reset the SCI and prevent it from doing

anything unexpected while it is being programmed. (2) Both the SCI interface control register and the clock control register must be configured for any operation using the SCI. (3) The pins to be used must then be selected to release the SCI from reset and (4) begin

operation. If interrupts are to be used, the pins must be selected, and interrupts must be enabled and unmasked before the SCI will operate. The order does not matter; any one of these three requirements for interrupts can be used to finally enable the SCI. Figure 11-

16 shows the meaning of the individual bits in the SCR and SCCR. The figures below do not assume that interrupts will be used; they recommend selecting the appropriate pins to enable the SCI. Programs shown in Figures 11-21, 11-22, 11-29, 11-35, and 11-37 use

interrupts and control the SCI by enabling and disabling interrupts. Either method is acceptable.

Table 11-2(a) and Table 11-3(a) provide the settings for common baud rates for the SCI. The asynchronous SCI baud rates show a baud rate error for the fixed oscillator frequency (see Table 11-2(a)(a)). These small-percentage baud rate errors should allow most

UARTs to synchronize. The synchronous applications usually require exact frequencies, which require that the crystal frequency be chosen carefully (see Table 11-3(a)(a) and Table 11-3(b)(b)). An alternative to selecting the system clock to accommodate the SCI

requirements is to provide an external clock to the SCI.
11- 24 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Register
 Bit

Bit
Mnemonic

Bit Number
Reset Type

HW Reset SW Reset IR Reset ST Reset

SCKP 15 0 0 – –

TMIE 13 0 0 – –

TIE 12 0 0 – –

RIE 11 0 0 – –

ILIE 10 0 0 – –

TE 9 0 0 – –

SCR RE 8 0 0 – –

WOMS 7 0 0 – –

RWU 6 0 0 – –

WAKE 5 0 0 – –

SBK 4 0 0 – –

SSFTD 3 0 0 – –

WDS (2–0) 2–0 0 0 – –

R8 7 0 0 0 0

FE 6 0 0 0 0

PE 5 0 0 0 0

SSR OR 4 0 0 0 0

IDLE 3 0 0 0 0

RDRF 2 0 0 0 0

TDRE 1 1 1 1 1

TRNE 0 1 1 1 1

TCM 15 0 0 – –

RCM 14 0 0 – –

SCCR SCP 13 0 0 – –

COD 12 0 0 – –

CD (11–0) 11–0 0 0 – –

SRX SRX (23–0) 23–16, 15–8, 7–0 – – – –

STX STX (23–0) 23–0 – – – –

SRSH SRS (8–0) 8–0 – – – –

STSH STS (8–0) 8–0 – – – –

NOTES:
SRSH – SCI receive shift register
STSH – SCI transmit shift register
HW – Hardware reset is caused by asserting the external RESET pin.
SW – Software reset is caused by executing the RESET instruction.
IR – Individual reset is caused by clearing PCC (bits 0–2) (configured for general-purpose I/O).
ST – Stop reset is caused by executing the STOP instruction.
1 – The bit is set during the xx reset.
0 – The bit is cleared during the xx reset

Table 11-1 SCI Registers after Reset
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 25

11.2.5 SCI Exceptions
The SCI can cause five different exceptions in the DSP (see Figure 11-17). These
exceptions are as follows:

1. SCI Receive Data – caused by receive data register full with no receive error
conditions existing. This error-free interrupt may use a fast interrupt service
routine for minimum overhead. This interrupt is enabled by SCR bit 11 (RIE).

2. SCI Receive Data with Exception Status – caused by receive data register full
with a receiver error (parity, framing, or overrun error). The SCI status register
must be read to clear the receiver error flag. A long interrupt service routine
should be used to handle the error condition. This interrupt is enabled by SCR
bit 11 (RIE).

3. SCI Transmit Data – caused by transmit data register empty. This error-free
interrupt may use a fast interrupt service routine for minimum overhead. This
interrupt is enabled by SCR bit 12 (TIE).

4. SCI Idle Line – caused by the receive line entering the idle state (10 or 11 bits
of ones). This interrupt is latched and then automatically reset when the inter-
rupt is accepted. This interrupt is enabled by SCR bit 10 (ILIE).

5. SCI Timer – caused by the baud rate counter underflowing. This interrupt is
automatically reset when the interrupt is accepted. This interrupt is enabled by
SCR bit 13 (TMIE).

1. PERFORM HARDWARE OR SOFTWARE RESET.

2. PROGRAM SCI CONTROL REGISTERS:
a) SCI INTERFACE CONTROL REGISTER — X:$FFF0
b) SCI CLOCK CONTROL REGISTER — X:$FFF2

3. CONFIGURE AT LEAST ONE PORT C CONTROL BIT AS SCI.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CC
0

23 0

X:$FFE1
PORT C CONTROL
REGISTER (PCC)

CCx Function

0 Parallel I/O

1 Serial Interface

CC
1

CC
2

CC
3

CC
4

CC
5

CC
6

CC
7

CC
8

SCLK
TXD
RXD

SCI

4. SCI IS NOW ACTIVE.

Figure 11-15 SCI Initialization Procedure
11- 26 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Baud
Rate(BPS)

SCP
Bit

Divider Bits
(CD0–CD11)

Baud Rate
Error, Percent

320.0K 0 $000 0

56.0K 0 $005 4.762

38.4K 0 $007 4.167

19.2K 0 $010 1.961

9600 0 $020 1.010

8000 0 $027 0

4800 0 $042 0.498

2400 0 $084 0.251

1200 1 $020 1.010

600 1 $042 0.498

300 1 $084 0.251

BPS= f0 ÷ (64 × (7(SCP) + 1) × (CD + 1)); f0=20.48 MHz
SCP=0 or 1
CD=0 to $FFF

Table 11-2(a) Asynchronous SCI Baud Rates for a 20.48-MHz Crystal

Baud Rate
(BPS)

SCP Bit
Divider Bits
(CD0–CD11)

Crystal
Frequency

9600 0 $021 20,500,000

4800 0 $042 20,275,200

2400 0 $084 20,275,200

1200 0 $108 20,275,200

300 0 $420 20,275,200

9600 1 $004 19,660,800

4800 1 $008 19,660,800

2400 1 $010 19,660,800

1200 1 $020 19,660,800

300 1 $080 19,660,800

Table 11-2(b) Frequencies for Exact Asynchronous SCI Baud Rates

f0=BPS × 64 × (7(SCP) + 1) × (CD + 1)
SCP=0 or 1
CD=0 to $FFF
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 27

Baud Rate
(BPS)

SCP Bit
Divider Bits
(CD0–CD11)

Baud Rate
Error,

Percent

2.56M 0 $000 0

128K 0 $014 0

64K 0 $027 0

56K 0 $02E 0.621

32K 0 $04F 0

16K 0 $09F 0

8000 0 $140 0

4000 0 $27F 0

2000 0 $4FF 0

1000 0 $9FF 0

Table 11-3(a) Synchronous SCI Baud Rates for a 20.48-MHz Crystal

BPS= f0 ÷ (64 × (7(SCP) + 1) × (CD + 1)); f0=20.48 MHz
SCP=0 or 1
CD=0 to $FFF

Baud
Rate
(BPS)

SCP Bit
Divider

Bits (CD0–
CD11)

Baud Rate
Error, MHz

2.048M 0 $000 16.384

1.544M 0 $001 24.576

1.536M 0 $001 24.704

Table 11-3(b) Frequencies for Exact Synchronous SCI Baud Rates

f0=BPS × 64 × (7(SCP) + 1) × (CD + 1)
SCP=0 or 1
CD=0 to $FFF
11- 28 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

X
:$

F
F

F
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

S
C

K
P

*
T

M
IE

T
IE

R
IE

IL
IE

T
E

R
E

W
O

M
S

R
W

U
W

A
K

E
S

B
K

S
S

F
T

D
W

D
S

2
W

D
S

1
W

D
S

0
S

C
I IN

TE
R

FA
C

E
 C

O
N

TR
O

L
R

E
G

IS
TE

R
 (S

C
R

)
(R

E
A

D
/W

R
IT

E
)

00
0

=
 8

-B
IT

 S
Y

N
C

H
R

O
N

O
U

S
 D

AT
A

 (
S

H
IF

T
 R

E
G

IS
T

E
R

 M
O

D
E

)
00

1
=

 R
E

S
E

R
V

E
D

01
0

=
 1

0-
B

IT
 A

S
Y

N
C

H
R

O
N

O
U

S
 (

1
S

TA
R

T,
 8

 D
AT

A
, 1

 S
TO

P
)

01
1

=
 R

E
S

E
R

V
E

D
10

0
=

 1
1-

B
IT

 A
S

Y
N

C
H

R
O

N
O

U
S

 (
1

S
TA

R
T,

 8
 D

AT
A

, E
V

E
N

 P
A

R
IT

Y,
 1

 S
TO

P
)

10
1

=
 1

1-
B

IT
 A

S
Y

N
C

H
R

O
N

O
U

S
 (

1
S

TA
R

T,
 8

 D
AT

A
, O

D
D

 P
A

R
IT

Y,
 1

 S
TO

P
)

11
0

=
 1

1-
B

IT
 M

U
LT

ID
R

O
P

 (
1

S
TA

R
T,

 8
 D

AT
A

, E
V

E
N

 P
A

R
IT

Y,
 1

 S
TO

P
)

11
1

=
 R

E
S

E
R

V
E

D

S
T

E
P

 2
a.

S
E

LE
C

T
 S

C
I O

P
E

R
AT

IO
N

:
F

O
R

 A
 B

A
S

IC
 C

O
N

F
IG

U
R

AT
IO

N
, S

E
T

:

S
C

K
P

—
B

IT
 1

5
=

 0
T

M
IE

—
B

IT
 1

3
=

 0
IL

IE
—

B
IT

 1
0

=
 0

R
W

U
—

B
IT

6
=

 0
W

A
K

E
—

B
IT

5
=

 0
S

B
K

—
B

IT
4

=
 0

S
S

F
T

D
—

B
IT

3
=

 0

E
N

A
B

LE
/D

IS
A

B
LE

T
R

A
N

S
M

IT
 IN

T
E

R
R

U
P

T
E

N
A

B
LE

 =
 1

D
IS

A
B

LE
 =

 0

E
N

A
B

LE
/D

IS
A

B
LE

R
E

C
E

IV
E

 IN
T

E
R

R
U

P
T

E
N

A
B

LE
 =

 1
D

IS
A

B
LE

 =
 0

E
N

A
B

LE
/D

IS
A

B
LE

T
R

A
N

S
M

IT
 D

AT
A

E
N

A
B

LE
 =

 1
D

IS
A

B
LE

 =
 0

E
N

A
B

LE
/D

IS
A

B
LE

R
E

C
E

IV
E

 D
AT

A
E

N
A

B
LE

 =
 1

D
IS

A
B

LE
 =

 0

W
IR

E
D

 -
 O

R
 M

O
D

E

M
U

LT
ID

R
O

P
 =

 1
P

O
IN

T
 T

O
 P

O
IN

T
 =

 0

*R
es

er
ve

d;
 w

rit
e

as
 0

.

F
ig

u
re

 1
1-

16
 S

C
I G

en
er

al
 In

it
ia

liz
at

io
n

 D
et

ai
l –

 S
te

p
 2

 (
S

h
ee

t
1

o
f

2)

S
te

p
 2

a

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 29

X
:$

F
F

F
2

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

T
C

M
S

C
P

C
O

D
C

D
11

C
D

10
C

D
9

C
D

8
C

D
7

C
D

6
C

D
5

C
D

4
C

D
3

C
D

2
C

D
1

C
D

0
S

C
I C

LO
C

K
 C

O
N

TR
O

L
R

E
G

IS
TE

R
 (S

C
C

R
)

(R
E

A
D

/W
R

IT
E

)

S
T

E
P

 2
b.

S
E

LE
C

T
 C

LO
C

K
 A

N
D

 D
AT

A
 R

AT
E

:
S

E
T

 T
H

E
 C

LO
C

K
 D

IV
ID

E
R

 B
IT

S
 (

C
D

0
-

C
D

11
)

A
C

C
O

R
D

IN
G

 T
O

 T
A

B
LE

S
 1

1
-

2
O

R
 1

1
-

3.
S

E
T

 T
H

E
 S

C
I C

LO
C

K
 P

R
E

S
C

A
LE

R
 B

IT
 (

S
C

P,
 B

IT
 1

3)
 A

C
C

O
R

D
IN

G
 T

O
 T

A
B

LE
S

 1
1

-
2

O
R

 1
1

-
3. S
E

T
T

R
A

N
S

M
IT

 C
LO

C
K

 S
O

U
R

C
E

E
X

T
E

R
N

A
L

C
LO

C
K

 =
 1

IN
T

E
R

N
A

L
C

LO
C

K
 =

 0

S
E

T
R

E
C

E
IV

E
 C

LO
C

K
 S

O
U

R
C

E
E

X
T

E
R

N
A

L
C

LO
C

K
 =

 1
IN

T
E

R
N

A
L

C
LO

C
K

 =
 0

S
E

T
S

C
I C

LO
C

K
 P

R
E

S
C

A
LE

R
D

IV
ID

E
 B

Y
 8

 =
 1

D
IV

ID
E

 B
Y

 1
 =

 0

S
E

T
C

LO
C

K
 O

U
T

 D
IV

ID
E

R
IF

 S
C

LK
 P

IN
 IS

 A
N

 O
T

U
P

U
T

 A
N

D

C
O

D
 =

 1
S

C
LK

 O
U

T
P

U
T

 =
 1

6×
C

O
D

 =
 0

S
C

LK
 O

U
T

P
U

T
 =

1×

R
C

M

F
ig

u
re

 1
1-

16
 S

C
I G

en
er

al
 In

it
ia

liz
at

io
n

 D
et

ai
l –

 S
te

p
 2

 (
S

h
ee

t
2

o
f

2)

S
te

p
 2

b

11- 30 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

$0000

$0002

$0004

$0006

$0008

$000A

$000C

$000E

$0010

$0012

$0014

$0016

$0018

$001A

$001C

$001E

$0020

$0022

$0024

$0026

$0028

$002A

$002C

$002E

$0030

$0032

$0034

$0038

$003A

$003C

$003E

HARDWARE RESET

STACK ERROR

TRACE

SWI (SOFTWARE INTERRUPT)

IRQA EXTERNAL HARDWARE INTERRUPT

IRQB EXTERNAL HARDWARE INTERRUPT

SSI RECEIVE DATA

SSI RECEIVE DATA WITH EXCEPTION STATUS

SSI TRANSMIT DATA

SSI TRANSMIT DATA WITH EXCEPTION STATUS

SCI RECEIVE DATA

SCI RECEIVE DTA WITH EXCEPTION STATUS

SCI TRANSMIT DATA

SCI IDLE LINE

SCI TIMER

RESERVED FOR HARDWARE DEVELOPEMENT

HOST RECEIVE DATA

HOST TRANSMIT DATA

HOST COMMAND (DEFAULT)

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

ILLEGAL INSTRUCTION

EXCEPTION
STARTING
ADDRESS

PROGRAM MEMORY SPACE

EXCEPTION SOURCE

SERIAL
COMMUNICATIONS

INTERFACE

TWO WORDS PER VECTOR

EXTERNAL
INTERRUPTS

INTERNAL
INTERRUPTS

INTERNAL
INTERRUPTS

HOST
INTERFACE

SYNCHRONOUS
SERIAL

INTERFACE

Figure 11-17 SCI Exception Vector Locations
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 31

11.2.6 Synchronous Data
The synchronous mode (WDS=0, shift register mode) is designed to implement serial-to-
parallel and parallel-to-serial conversions. This mode will directly interface to 8051/8096
synchronous (mode 0) buses as both a controller (master) or a peripheral (slave) and is
compatible with the SSI mode if SCKP equals one. In synchronous mode, the clock is
always common to the transmit and receive shift registers.

As a controller (synchronous master) shown in Figure 11-18, the DSP outputs a clock on
the SCLK pin when data is present in the transmit shift register (a gated clock mode).
The master mode is selected by choosing internal transmit and receive clocks (setting
TCM and RCM=0). The example shows a 74HC165 parallel-to-serial shift register and
74HC164 serial-to-parallel shift register being used to convert eight bits of serial I/O to
eight bits of parallel I/O. The load pulse latches eight bits into the 74HC165 and then
SCLK shifts the RXD data into the SCI (these data bits are sample bits 0-7 in the timing
diagram). At the same time, TXD shifts data out (B0-B7) to the 74HC164. When using
the internal clock, data is transmitted when the transmit shift register is full. Data is valid
on both edges of the output clock, which is compatible with an 8051 microprocessor.
Received data is sampled in the middle of the clock low time if SCKP equals zero or in
the middle of the clock high time if SCKP equals one. There is a window during which
STX must be written with the next byte to be transmitted to prevent a gap between
words. This window is from the time TDRE goes high halfway into transmission of bit 1
until the middle of bit 6 (see Figure 11-20(a)).

As a peripheral (synchronous slave) shown in Figure 11-19, the DSP accepts an input
clock from the SCLK pin. If SCKP equals zero, data is clocked in on the rising edge of
SCLK, and data is clocked out on the falling edge of SCLK. If SCKP equals one, data is
clocked in on the falling edge of SCLK, and data is clocked out on the rising edge of
SCLK. The slave mode is selected by choosing external transmit and receive clocks
(TCM and RCM=1). Since there is no frame signal, if a clock is missed due to noise or
any other reason, the receiver will lose synchronization with the data without any error
signal being generated. Detecting an error of this type can be done with an error detect-
ing protocol or with external circuitry such as a watchdog timer. The simplest way to
recover synchronization is to reset the SCI.

The timing diagram in Figure 11-19 shows transmit data in the normal driven mode. Bit
B7 is essentially one-half SCI clock long (TSCI/2 + 1.5 TEXTAL) The last data bit is trun-
cated so that the pin is guaranteed to go to its reset state before the start of the next data
word, thereby delimiting data words. The 1.5 crystal clock cycles provide sufficient hold
time to satisfy most external logic requirements. The example diagram requires that the
WOMS bit be set in the SCR to wired-OR RXD and TXD, which causes TXD to be three-
stated when not transmitting. Collisions (two devices transmitting simultaneously) must
be avoided with this circuit by using a protocol such as alternating transmit and receive
11- 32 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

periods. In the example, the 8051 is the master device because it controls the clock.

X
:$

F
F

F
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

S
C

K
P

T
M

IE
T

IE
R

IE
IL

IE
T

E
R

E
W

O
M

S
R

W
U

W
A

K
E

S
B

K
0

0
0

0
S

C
I C

O
N

TR
O

L
R

E
G

IS
TE

R
 (S

C
R

)
(R

E
A

D
/W

R
IT

E
)

0

X
:$

F
F

F
2

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

0
S

C
P

C
O

D
C

D
11

C
D

10
C

D
9

C
D

8
C

D
7

C
D

6
C

D
5

C
D

4
C

D
3

C
D

2
C

D
1

C
D

0
S

C
I C

LO
C

K
 C

O
N

TR
O

L
R

E
G

IS
TE

R
 (S

C
C

R
)

(R
E

A
D

/W
R

IT
E

)
0

T
C

M
R

C
M

C
LO

C
K

 O
U

T
P

U
T

(S
C

P
 =

 0
)

B
0

B
1

B
2

B
3

B
4

B
5

B
6

B
7

T
R

A
N

S
M

IT
 D

AT
A

(S
S

F
T

D
 =

 0
)

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
R

E
C

E
IV

E
 D

AT
A

W
R

IT
E

 S
T

X

0
1

2
3

4
5

6
7

S
A

M
P

LE

E
X

A
M

P
LE

: S
H

IF
T

 R
E

G
IS

T
E

R
 I/

O

D
S

P
56

00
0

R
X

D

S
C

LK

T
X

D

74
H

C
16

5
D L

C
LK

Q

C
LK

D
Q

74
H

C
16

4
S

/P

8
PA

R
A

LL
E

L
IN

P
U

T
S

LO
A

D
 P

U
LS

E

8
PA

R
A

LL
E

L
O

U
T

P
U

T
S

S
S

F
T

D
W

D
S

2
W

D
S

1
W

D
S

0

F
ig

u
re

 1
1-

18
 S

yn
ch

ro
n

o
u

s
M

as
te

r

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 33

There is a window during which STX must be written with the next byte to be transmitted

X
:$

F
F

F
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

S
C

K
P

T
M

IE
T

IE
R

IE
IL

IE
T

E
R

E
W

O
M

S
R

W
U

W
A

K
E

S
B

K
0

0
0

0
S

C
I C

O
N

TR
O

L
R

E
G

IS
TE

R
 (S

C
R

)
(R

E
A

D
/W

R
IT

E
)

0

X
:$

F
F

F
2

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

1
S

C
P

C
O

D
C

D
11

C
D

10
C

D
9

C
D

8
C

D
7

C
D

6
C

D
5

C
D

4
C

D
3

C
D

2
C

D
1

C
D

0
S

C
I C

LO
C

K
 C

O
N

TR
O

L
R

E
G

IS
TE

R
 (S

C
C

R
)

(R
E

A
D

/W
R

IT
E

)
1

T
C

M
R

C
M

C
LO

C
K

 IN
P

U
T

(S
K

P
 =

 0
)

B
0

B
1

B
2

B
3

B
4

B
5

B
6

B
7

T
R

A
N

S
M

IT
 D

AT
A

(S
S

F
T

D
 =

 0
)

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
R

E
C

E
IV

E
 D

AT
A

W
R

IT
E

 S
T

X

0
1

2
3

4
5

6
7

S
A

M
P

LE

E
X

A
M

P
LE

: I
N

T
E

R
FA

C
E

 T
O

 S
Y

N
C

H
R

O
N

O
U

S
 M

IC
R

O
C

O
M

P
U

T
E

R
 B

U
S

E
S

D
S

P
56

00
0

R
X

D

T
X

D

S
C

LK

S
S

F
T

D
W

D
S

2
W

D
S

1
W

D
S

0

80
51

O
R

80
96

P
3.

0

P
3.

1

1.
5

t c
yc

F
ig

u
re

 1
1-

19
 S

yn
ch

ro
n

o
u

s
S

la
ve
11- 34 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

to prevent the current word from being retransmitted. This window is from the time TDRE
goes high, which is halfway into the transmission of bit 1 until the middle of bit 6 (see Fig-
ure 11-20(b)). Of course, this assumes the clock remains continuous – i.e., there is a
second word. If the clock stops, the SCI stops.

The DSP is initially configured according to the protocol to either receive data or transmit
data. If the protocol determines that the next data transfer will be a DSP transmit, the
DSP will configure the SCI for transmit and load STX (or STXA). When the master starts
SCLK, data will be ready and waiting. If the protocol determines that the next data trans-
fer will be a DSP receive, the DSP will configure the SCI for receive and will either poll
the SCI or enable interrupts. This methodology allows multiple slave processors to use
the same data line. Selection of individual slave processors can be under protocol con-
trol or by multiplexing SCLK.

Note: TCM=0, RCM=1 and TCM=1,RCM=0 are not allowed in the synchronous mode.
The results are undefined.

The assembly program shown in Figure 11-21 uses the SCI synchronous mode to trans-
mit only the low byte of the Y data ROM contents. The program sets the reset vector to
run the program after a hardware reset, puts the MOVEP instruction at the SCI transmit
interrupt vector location, sets the memory wait states to zero, and configures the memory
pointers, operating mode register, and the IPR. The SCI is then configured and the inter-
rupts are unmasked, which starts the data transfer. The jump-to-self instruction (LAB0
JMP LAB0) is used to wait while interrupts transfer the data.

ORG P:0 ;Reset vector
JMP $40 ;

ORG P:$18 ;SCI transmit interrupt vector
MOVEP Y:(R0)+,X:$FFF4 ;Transmit low byte of data

ORG P:$40
MOVEP #0,X:$FFFE ;Clear BCR
MOVE #$100,R0 ;Data ROM start address
MOVE #$FF,M0 ;Size of data ROM - Wraps around at $200
MOVEC #6,OMR ;Change operating mode to enable data ROM
MOVEP #$C000,X:$FFFF ;Interrupt priority register
MOVEP #$1200,X:$FFF0 ;8-bit synchronous mode
MOVEP #7,X:$FFE1 ;Port C control register – enable SCI
MOVEC #0,SR ;Unmask interrupts

LAB0 JMP LAB0 ;Wait in loop for interrupts

Figure 11-21 SCI Synchronous Transmit
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 35

The program shown in Figure 11-22 is the program for receiving data from the program

S
E

R
IA

L
C

LO
C

K
(I

N
T

)

S
T

X
W

R
IT

E
R

A
N

G
E

F
IR

S
T

 W
O

R
D

N
O

T
E

:
In

 in
te

rn
al

 c
lo

ck
 m

od
e,

 if
 d

at
a

2
is

 w
rit

te
n

af
te

r
th

e
m

id
dl

e
of

 b
it

6
of

 d
at

a
1,

 th
en

 a
 g

ap
 o

f a
t l

ea
st

 tw
o

se
ria

l b
its

 is
 in

se
rt

ed

be
tw

ee
n

w
or

d
1

an
d

w
or

d
2.

 T
he

 g
ap

 is
 b

ig
ge

r
as

 S
T

X
 is

 w
rit

te
n

la
te

r.

S
Y

N
C

H
R

O
N

O
U

S
 M

O
D

E
, I

N
T

E
R

N
A

L
C

LO
C

K
 (

M
A

S
T

E
R

)

S
T

X
 W

R
IT

E
 R

A
N

G
E

M
A

X
 5

.5
 S

E
R

IA
L

C
LO

C
K

 C
Y

C
LE

S

S
T

X
 W

R
IT

E
 R

A
N

G
E

 F
O

R
 N

O
G

A
P

 B
E

T
W

E
E

N
 W

O
R

D
S

 1
 A

N
D

 2

T
R

D
E

T
D

R
E

0
B

Y
 S

T
X

 W
R

IT
E

T
X

D
(T

R
A

N
S

-
M

IT
 D

AT
A

)
B

IT
 0

B
IT

 1
B

IT
 2

B
IT

 3
B

IT
 4

B
IT

 5
B

IT
 6

B
IT

 7
B

IT
 0

B
IT

 1
B

IT
 2

S
E

C
O

N
D

 W
O

R
D

S
E

R
IA

L
C

LO
C

K
(E

X
T

)

S
T

X
W

R
IT

E
R

A
N

G
E

F
IR

S
T

 W
O

R
D

N
O

T
E

:
In

 e
xt

er
na

l c
lo

ck
 m

od
e,

 if
 d

at
a

2
is

 w
rit

te
n

af
te

r
th

e
m

id
dl

e
of

 b
it

6
of

 d
at

a
1,

 th
en

 th
e

pr
ev

io
us

 d
at

a
is

 r
et

ra
ns

m
itt

ed
 a

nd

da
ta

 2
 is

 tr
an

sm
itt

ed
 a

fte
r

th
e

re
tr

an
sm

is
si

on
 o

f d
at

a
1.

S
Y

N
C

H
R

O
N

O
U

S
 M

O
D

E
, I

N
T

E
R

N
A

L
C

LO
C

K
 (

S
LA

V
E

)

S
T

X
 W

R
IT

E
 R

A
N

G
E

T
R

D
E

T
D

R
E

0
B

Y
 S

T
X

 W
R

IT
E

T
X

D
(T

R
A

N
S

-
M

IT
 D

AT
A

)
B

IT
 0

B
IT

 1
B

IT
 2

B
IT

 3
B

IT
 4

B
IT

 5
B

IT
 6

B
IT

 7
B

IT
 0

B
IT

 1
B

IT
 2

S
E

C
O

N
D

 W
O

R
D

S
T

X
 W

R
IT

E
 R

A
N

G
E

F
ig

u
re

 1
1-

20
 S

yn
ch

ro
n

o
u

s
T

im
in

g

(a
)

M
as

te
r

(b
)

S
la

ve
11- 36 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

presented in Figure 11-21. The program sets the reset vector to run the program after
hardware reset, puts the MOVEP instruction to store the data in a circular buffer starting
at $100 at the SCI receive interrupt vector location, puts another MOVEP instruction at
the SCI receive interrupt vector location, sets the memory wait states to zero, and config-
ures the memory pointers and IPR. The SCI is then configured and the interrupts are
unmasked, which starts the data transfer. The jump-to-self instruction (LAB0 JMP LAB0)
is used to wait while interrupts transfer the data.

ORG P:0 ;Reset vector
JMP $40 ;

ORG P:$14 ;SCI receive data vector
MOVEP X:$FFF4,Y:(R0)+ ;Receive low byte of data
NOP ;Fast interrupt response

MOVEP X:$FFF1,X0 ;Receive with exception. Read status register
MOVEP X:$FFF4,Y:(R0)+ ;Receive low byte of data

ORG P:$40
MOVEP #0,X:$FFFE ;Clear BCR
MOVE #$100,R0 ;Data ROM start address
MOVE #$FF,M0 ; Size of data ROM – wraps around at $200
MOVEP #$C000,X:$FFFF ;Interrupt priority register
MOVEP #$900,X:$FFF0 ; 8-bit synchronous mode receive only
MOVEP #$C000,X:$FFF2 ;Clock control register external clock
MOVEP #7,X:$FFE1 ;Port C control register – enable SCI
MOVEC #0,SR ;Unmask interrupts

LAB0 JMP LAB0 ;Wait in loop for interrupts

Figure 11-22 SCI Synchronous Receive

11.2.7 Asynchronous Data
Asynchronous data uses a data format with embedded word sync, which allows an
unsynchronized data clock to be synchronized with the word if the clock rate and number
of bits per word is known. Thus, the clock can be generated by the receiver rather than
requiring a separate clock signal. The transmitter and receiver both use an internal clock
that is 16 × the data rate to allow the SCI to synchronize the data. The data format
requires that each data byte have an additional start bit and stop bit. In addition, two of
the word formats have a parity bit. The multidrop mode used when SCIs are on a com-
mon bus has an additional data type bit. The SCI can operate in full-duplex or half-duplex
modes since the transmitter and receiver are independent. The SCI transmitter and
receiver can use either the internal clock (TCM=0 and/or RCM=0) or an external clock
(TCM=1 and/or RCM=1) or a combination. If a combination is used, the transmitter and
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 37

receiver can run at different data rates.

11.2.7.1 Asynchronous Data Reception
Figure 11-23 illustrates initializing the SCI data receiver for asynchronous data. The first
step (1) resets the SCI to prevent the SCI from transmitting or receiving data. Step two
(2) selects the desired operation by programming the SCR. As a minimum, the word for-
mat (WDS2, WDS1, and WDS0) must be selected, and (3) the receiver must be enabled
(RE=1). If (4) interrupts are to be used, set RIE equals one. Use Tables 11-2 and 11-3 to
set (5) the baud rate (SCP and CD0–CD11 in the SCCR). Once the SCI is completely
configured, it is enabled by (6) setting the RXD bit in the PCC.

The receiver is continually sampling RDX at the 16 × clock rate to find the idle-start-bit
transition edge. When that edge is detected (1) the following eight or nine bits, depend-
ing on the mode, are clocked into the receive shift register (see Figure 11-24). Once a
complete byte is received, (2) the character is latched into the SRX, and RDRF is set as
well as the error flags, OR, PE, and FE. If (3) interrupts are enabled, an interrupt is gen-
erated. The interrupt service routine, which can be a fast interrupt or a long interrupt, (4)
reads the received character. Reading the SRX (5) automatically clears RDFR in the
SSR and makes the SRX ready to receive another byte.

If (1) an FE, PE, or OR occurs while receiving data (see Figure 11-25), (2) RDRF is set
because a character has been received; FE, PE, or OR is set in the SSR to indicate that
an error was detected. Either (3) the SSR can be polled by software to look for errors, or
(4) interrupts can be used to execute an interrupt service routine. This interrupt is differ-
ent from the normal receive interrupt and is caused only by receive errors. The long
interrupt service routine should (5) read the SSR to determine what error was detected
and then (6) read the SRX to clear RDRF and all three error flags.

11.2.7.2 Asynchronous Data Transmission
Figure 11-26 illustrates initializing the SCI data transmitter for asynchronous data. The
first step (1) resets the SCI to prevent the SCI from transmitting or receiving data. Step
two (2) selects the desired operation by programming the SCR. As a minimum, the word
format (WDS2, WDS1, and WDS0) must be selected, and (3) the transmitter must be
enabled (TE=1). If (4) interrupts are to be used, set TIE equals one. Use Tables 11-2 and
11-3 to set (5) the baud rate (SCP and CD0–CD11 in the SCCR). Once the SCI is com-
pletely configured, it can be enabled by (6) setting the TXD bit in the PCC. Transmission
begins with (7) a preamble of ones.

If polling is used to transmit data (see Figure 11-27), the polling routine can look at either
TDRE or TRNE to determine when to load another byte into STX. If TDRE is used (1),
one byte may be loaded into STX. If TRNE is used (2), two bytes may be loaded into
STX if enough time is allowed for the first byte to begin transmission (see 11.2.2.4.2 SCI
11- 38 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Transmit Registers). If interrupts are used (3), then an interrupt is generated when STX

X
:$

F
F

F
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

S
C

K
P

T
M

IE
T

IE
1

IL
IE

T
E

1
W

O
M

S
R

W
U

W
A

K
E

S
B

K
S

S
F

T
D

W
D

S
2

W
D

S
1

W
D

S
0

S
C

I C
O

N
TR

O
L

R
E

G
IS

TE
R

 (S
C

R
)

(R
E

A
D

/W
R

IT
E

)
0

X
:$

F
F

F
2

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

T
C

M
S

C
P

C
O

D
C

D
11

C
D

10
C

D
9

C
D

8
C

D
7

C
D

6
C

D
5

C
D

4
C

D
3

C
D

2
C

D
1

C
D

0
S

C
I C

O
N

TR
O

L
R

E
G

IS
TE

R
 (S

C
C

R
)

(R
E

A
D

/W
R

IT
E

)
R

C
M

1.
H

A
R

D
W

A
R

E
 O

R
 S

O
F

T
W

A
R

E
 R

E
S

E
T

2.
P

R
O

G
R

A
M

 S
C

R
 W

IT
H

 D
E

S
IR

E
D

 M
O

D
E

 A
N

D
 F

E
AT

U
R

E
S

.
3.

T
U

R
N

 O
N

 R
E

C
E

IV
E

R
 (

R
E

 =
 1

).
4.

O
P

T
IO

N
A

LL
Y

 E
N

A
B

LE
 R

E
C

E
IV

E
R

 IN
T

E
R

R
U

P
T

S
 (

R
IE

 =
 1

).

R
IE

R
E

5.
S

E
T

 T
H

E
 B

A
U

D
 R

AT
E

 B
Y

 P
R

O
G

R
A

M
M

IN
G

 T
H

E
 S

C
C

R
.

C
C

x
F

u
n

ct
io

n

0
P

ar
al

le
l I

/O

1
S

er
ia

l I
nt

er
fa

ce

P
R

E
S

C
A

LE
R

IF
 S

C
P

 =
 1

, T
H

E
N

 D
IV

ID
E

 B
Y

 8
IF

 S
C

P
 =

 0
, T

H
E

N
 D

IV
ID

E
 B

Y
 1

D
IV

ID
E

 B
Y

 1
TO

 4
09

6

6.
S

E
T

 T
H

E
 R

X
D

 B
IT

 IN
 P

C
C

 T
O

 E
N

A
B

LE
 T

H
E

 S
C

I R
E

C
E

IV
E

R
 S

Y
S

T
E

M
.

X
:$

F
F

E
1

23
9

8
7

6
5

4
3

2
1

0

C
C

8
C

C
7

C
C

6
C

C
5

C
C

4
C

C
3

C
C

2
C

C
1

1
P

O
R

T
C

 C
O

N
TR

O
L

R
E

G
IS

TE
R

 (P
C

C
)

0

S
C

I

R
X

D

N
O

T
E

:
If

R
E

 is
 c

le
ar

ed
 w

hi
le

 a
 v

al
id

 c
ha

ra
ct

er
 is

 b
ei

ng
 r

ec
ei

ve
d,

 th
e

re
ce

pt
io

n
of

 th
e

ch
ar

ac
te

r
w

ill
 b

e
co

m
pl

et
ed

 b
ef

or
e

th
e

re
ce

iv
er

 is
 d

is
ab

le
d.

F
ig

u
re

 1
1-

23
 A

sy
n

ch
ro

n
o

u
s

S
C

I R
ec

ei
ve

r
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 39

R
8

F
E

P
E

O
R

ID
LE

1
T

D
R

E
T

R
N

E

1.
T

H
E

 R
E

C
E

IV
E

R
 IS

 ID
LE

 U
N

T
IL

 A
 C

H
A

R
A

C
T

E
R

 IS
 R

E
C

E
IV

E
D

 IN
 T

H
E

 D
AT

A
 S

H
IF

T
 R

E
G

IS
T

E
R

.

23
16

15
8

7
0

X
:$

F
F

F
6

X
:$

F
F

F
5

X
:$

F
F

F
4

S
R

X

S
R

X

S
R

X

R
X

D

2.
T

R
A

N
S

F
E

R
R

IN
G

 T
H

E
 R

E
C

E
IV

E
D

 C
H

A
R

A
C

T
E

R
 IN

TO
 S

R
X

 S
E

T
S

 R
D

R
F

 IN
 T

H
E

 S
S

R
.

7
6

5
4

3
2

1
0

R
D

R
F

X
:$

F
F

F
1

S
TA

T
U

S
 R

E
G

IS
T

E
R

 (
S

S
R

)
(R

E
A

D
 O

N
LY

)

3.
IF

 R
IE

 =
 1

 IN
 S

C
R

, T
H

E
N

 A
N

 IN
T

E
R

R
U

P
T

 IS
 G

E
N

E
R

AT
E

D
.

S
C

I R
E

C
E

IV
E

 D
AT

A

R
E

C
E

IV
E

IN
T

E
R

R
U

P
T

S
E

R
V

IC
E

R
O

U
T

IN
E

P
:$

00
14

IN
T

E
R

R
U

P
T

V
E

C
TO

R
TA

B
LE

4.
T

H
E

 R
E

C
E

IV
E

 IN
T

E
R

R
U

P
T

 S
E

R
V

IC
E

 R
O

U
T

IN
E

 R
E

A
D

S
 T

H
E

 R
E

C
E

IV
E

D
 C

H
A

R
A

C
T

E
R

.

5.
R

E
A

D
IN

G
 S

R
X

 C
LE

A
R

S
 R

D
R

F
 IN

 T
H

E
 S

S
R

.

F
ig

u
re

 1
1-

24
 S

C
I C

h
ar

ac
te

r
R

ec
ep

ti
o

n

11- 40 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

is empty. The interrupt routine, which can be a fast interrupt or a long interrupt, writes (4)

R
8

F
E

P
E

O
R

ID
LE

1
T

D
R

E
T

R
N

E

3.
S

S
R

 C
A

N
 B

E
 P

O
LL

E
D

 B
Y

 S
O

F
T

W
A

R
E

.

4.
IF

 R
IE

 =
 1

 IN
 S

C
R

, T
H

E
N

 A
N

 IN
T

E
R

R
U

P
T

 W
IT

H
 E

R
R

O
R

 IS
 G

E
N

E
R

AT
E

D
.

1.
A

 C
H

A
R

A
C

T
E

R
 IS

 R
E

C
E

IV
E

D
 W

IT
H

 A
T

 L
E

A
S

T
 O

N
E

 O
F

 T
H

E
 F

O
LL

O
W

IN
G

 E
R

R
O

R
S

:
—

F
R

A
M

IN
G

 E
R

R
O

R
 (

F
E

 =
 B

IT
 6

 IN
 S

S
R

—
PA

R
IT

Y
 E

R
R

O
R

 (
P

E
 =

 B
IT

 5
 IN

 S
S

R
)

—
O

V
E

R
R

U
N

 E
R

R
O

R
 (

O
R

 =
 B

IT
 4

 IN
 S

S
R

)

23
16

15
8

7
0

X
:$

F
F

F
6

X
:$

F
F

F
5

X
:$

F
F

F
4

S
R

X

S
R

X

S
R

X

R
X

D

2.
T

H
IS

 S
E

T
S

 R
D

R
F

 A
N

D
 S

E
T

 O
R

, P
E

, O
R

 F
E

 IN
 S

S
R

.

7
6

5
4

3
2

1
0

R
D

R
F

X
:$

F
F

F
1

S
C

I S
TA

T
U

S
 R

E
G

IS
T

E
R

 (
S

S
R

)
(R

E
A

D
 O

N
LY

)

S
C

I R
E

C
E

IV
E

 D
AT

A

R
E

C
E

IV
E

 W
IT

H

E
X

C
E

P
T

IO
N

IN
T

E
R

R
U

P
T

S
E

R
V

IC
E

R
O

U
T

IN
E

P
:$

00
16

IN
T

E
R

R
U

P
T

V
E

C
TO

R
TA

B
LE

5.
R

E
A

D
 S

S
R

, F
O

LL
O

W
E

D
 B

Y

S
E

R
IA

L
S

T
R

IN
G

 O
F

 B
A

D
 D

AT
A

X
X

X
X

X
X

X
X

AT
 L

E
A

S
T

 O
N

E
 B

IT
 S

E
T

7
6

5
4

3
2

1
0

R
8

F
E

P
E

O
R

ID
LE

1
T

D
R

E
T

R
N

E

R
D

R
F

X
:$

F
F

F
1

S
C

I S
TA

T
U

S
 R

E
G

IS
T

E
R

 (
S

S
R

)
(R

E
A

D
 O

N
LY

)

R
IE

IN
T

E
R

R
U

P
T

 W
IT

H
 E

X
C

E
P

T
IO

N

6.
R

E
A

D
IN

G
 S

R
X

. T
H

IS
 C

LE
A

R
S

 R
D

R
F

 IN
 T

H
E

 S
S

R
 A

N
D

 C
LE

A
R

S
 T

H
E

 O
R

, P
E

, A
N

D

F
E

 F
LA

G
S

.

F
ig

u
re

 1
1-

25
 S

C
I C

h
ar

ac
te

r
R

ec
ep

ti
o

n
 w

it
h

 E
xc

ep
ti

o
n

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 41

one byte into STX. If multidrop mode is being used and this byte is an address, STXA

X
:$

F
F

F
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

S
C

K
P

T
M

IE
1

R
IE

IL
IE

1
R

E
W

O
M

S
R

W
U

W
A

K
E

S
B

K
S

S
F

T
D

W
D

S
2

W
D

S
1

W
D

S
0

S
C

I C
O

N
TR

O
L

R
E

G
IS

TE
R

 (S
C

R
)

(R
E

A
D

/W
R

IT
E

)
0

1.
H

A
R

D
W

A
R

E
 O

R
 S

O
F

T
W

A
R

E
 R

E
S

E
T

2.
P

R
O

G
R

A
M

 S
C

R
 W

IT
H

 D
E

S
IR

E
D

 M
O

D
E

 A
N

D
 F

E
AT

U
R

E
S

.
3.

T
U

R
N

 O
N

 T
R

A
N

S
M

IT
T

E
R

 (
T

E
 =

 1
).

4.
O

P
T

IO
N

A
LL

Y
 E

N
A

B
LE

 T
R

A
N

S
M

IT
T

E
R

 IN
T

E
R

R
U

P
T

S
 (

T
IE

 =
 1

).

T
IE

T
E

5.
S

E
T

 T
H

E
S

C
I C

LO
C

K
 P

R
E

S
C

A
LE

R
 B

IT
 A

N
D

 T
H

E
 C

LO
C

K
 D

IV
ID

E
R

 B
IT

S
 IN

 T
H

E
 S

C
C

R
.

6.
S

E
T

 T
H

E
 T

X
D

 B
IT

 IN
 P

C
C

 T
O

 E
N

A
B

LE
 T

H
E

 S
C

I T
R

A
N

S
M

IT
T

E
R

 S
Y

S
T

E
M

.

C
C

x
F

u
n

ct
io

n

0
P

ar
al

le
l I

/O

1
S

er
ia

l I
nt

er
fa

ce

7.
T

H
E

 T
R

A
N

S
M

IT
T

E
R

 W
IL

L
F

IR
S

T
 B

R
O

A
D

C
A

S
T

 A
 P

R
E

A
M

B
LE

 O
F

 O
N

E
S

 B
E

F
O

R
E

 B
E

G
IN

N
IN

G
 D

AT
A

 T
R

A
N

S
M

IS
S

IO
N

:
10

 O
N

E
S

 W
IL

L
B

E
 T

R
A

N
S

M
IT

T
E

D
 F

O
R

 T
H

E
 1

0-
B

IT
 A

S
Y

N
C

H
R

O
N

O
U

S
 M

O
D

E
.

11
 O

N
E

S
 W

IL
L

B
E

 T
R

A
N

S
M

IT
T

E
D

 F
O

R
 T

H
E

 1
1-

B
IT

 A
S

Y
N

C
H

R
O

N
O

U
S

 M
O

D
E

.

X
:$

F
F

E
1

23
9

8
7

6
5

4
3

2
1

0

C
C

8
C

C
7

C
C

6
C

C
5

C
C

4
C

C
3

C
C

2
1

C
C

0
P

O
R

T
C

 C
O

N
TR

O
L

R
E

G
IS

TE
R

 (P
C

C
)

0

S
C

I

T
X

D

N
O

T
E

:
If

T
E

 is
 c

le
ar

ed
 w

hi
le

 tr
an

sm
itt

in
g

a
ch

ar
ac

te
r,

th
e

tr
an

sm
is

si
on

 o
f t

he
 c

ha
ra

ct
er

 w
ill

 b
e

co
m

pl
et

ed
 b

ef
or

e
th

e
tr

an
sm

itt
er

 is
 d

is
ab

le
d.

F
ig

u
re

 1
1-

26
 A

sy
n

ch
ro

n
o

u
s

S
C

I T
ra

n
sm

it
te

r
In

it
ia

liz
at

io
n

11- 42 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

should be used instead of STX. Writing STX or STXA (5) clears TDRE in the SSR. When

X
:$

F
F

F
1

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

0
0

0
0

0
0

0
R

8
F

E
P

E
O

R
ID

LE
R

D
R

F
1

1
S

C
I S

TA
TU

S
 R

E
G

IS
TE

R
 (S

S
R

)
(R

E
A

D
/W

R
IT

E
)

0

1.
W

H
E

N
 S

T
X

 IS
 E

M
P

T
Y,

 T
H

E
N

 T
D

R
E

 =
 1

.
2.

W
H

E
N

 S
T

X
 IS

 E
M

P
T

Y
 A

N
D

 T
H

E
 T

R
A

N
S

M
IT

 D
AT

A
 S

H
IF

T
 R

E
G

IS
T

E
R

 IS
 E

M
P

T
Y

 T
H

E
N

 T
R

N
E

 =
 1

.
3.

IF
 T

IE
 =

 1
 IN

 S
C

R
 A

N
D

 T
D

R
E

 =
 1

 IN
 S

S
R

, T
H

E
N

 A
N

 IN
T

E
R

R
U

P
T

 IS
 G

E
N

E
R

AT
E

D
.

T
D

R
E

6.
T

H
E

 C
H

A
R

A
C

T
E

R
 IN

 S
T

X
 IS

 C
O

P
IE

D
 IN

TO
 T

R
A

N
S

M
IT

 D
AT

A
 S

H
IF

T
 R

E
G

IS
T

E
R

.
T

R
N

E
 IS

 C
LE

A
R

E
D

.
T

D
R

E
 IS

 S
E

T.
G

O
 T

O
 S

T
E

P
 2

.

T
R

N
E

23
16

15
8

7
0

X
:$

F
F

F
6

X
:$

F
F

F
5

X
:$

F
F

F
4

S
T

X

S
T

X

S
T

X
S

C
I T

R
A

N
S

M
IT

 D
AT

A
P

:$
00

18

IN
T

E
R

R
U

P
T

 V
E

C
TO

R
 T

A
B

LE

A
V

A
IL

A
B

LE
 F

O
R

 H
O

S
T

 C
O

M
M

A
N

D

T
R

A
N

S
M

IT
IN

T
E

R
R

U
P

T
S

E
R

V
IC

E
R

O
U

T
IN

E

4.
S

TO
R

E
 O

N
E

C
H

A
R

A
C

T
E

R
IN

TO
 S

T
X

 (
A

)

5.
T

H
IS

 C
LE

A
R

S
T

D
R

E
 IN

 S
S

R
.

T
X

D

X
:$

F
F

F
3

S
T

X
A

F
ig

u
re

 1
1-

27
 A

sy
n

ch
ro

n
o

u
s

S
C

I C
h

ar
ac

te
r

T
ra

n
sm

is
si

o
n

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 43

the transmit data shift register is empty (6), the byte in STX (or STXA) is latched into the
transmit data shift register, TRNE is cleared, and TDRE is set.

There is a provision to send a break or preamble. A break (space) consists of a period of
zeros with no start or stop bits that is as long or longer than a character frame. A pream-
ble (mark) is an inverted break. A preamble of 10 or 11 ones (depending on the word
length selected by WDS2, WDS1, and WDS0) can be sent with the following procedure
(see Figure 11-28). (1) Write the last byte to STX and (2) wait for TDRE equals one. This
is the byte that will be transmitted immediately before the preamble. (3) Clear TE and
then again set it to one. Momentarily clearing TE causes the output to go high for one
character frame. If TE remains cleared for a longer period, the output will remain high for
an even number of character frames until TE is set. (4) Write the first byte to follow the
preamble into SRX before the preamble is complete and resume normal transmission.
Sending a break follows the same procedure except that instead of clearing TE, SBK is
set in the SCR to send breaks and then reset to resume normal data transmission.

The example presented in Figure 11-29 uses the SCI in the asynchronous mode to
transfer data into buffers. Interrupts are used, allowing the DSP to perform other tasks
while the data transfer is occurring. This program can be tested by connecting the SCI
transmit and receive pins. Equates are used for convenience and readability.

The program sets the reset vector to run the program after reset, puts a MOVEP instruc-
tion at the SCI receive interrupt vector location, and puts a MOVEP and BCLR at the SCI
transmit interrupt vector location so that, after transmitting a byte, the transmitter is dis-
abled until another byte is ready for transmission. The SCI is initialized by setting the
interrupt level, which configures the SCR and SCCR, and then is enabled by writing the
PCC. The main program begins by enabling interrupts, which allows data to be received.
Data is transmitted by moving a byte of data to the transmit register and by enabling
interrupts. The jump-to-self instruction (SEND JMP SEND) is used to wait while inter-
rupts transfer the data.

;***
; SCI ASYNC WITH INTERRUPTS AND SINGLE BYTE BUFFERS *

;***

;***
; SCI and other EQUATES *

;***

START EQU $0040 ;Start of program
PCC EQU $FFE1 ;Port C control register
SCR EQU $FFF0 ;SCI interface control register
SCCR EQU $FFF2 ;SCI clock control register
SRX EQU $FFF4 ;SCI receive register
11- 44 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

1
2

3
4

5
6

7
8

9
10

1
2

9
10

1
2

3
4

5
6

7
8

9
10

S
B

K
 =

 0
S

B
K

 =
 1

S
B

K
 =

 1
S

B
K

 =
 1

S
B

K
 =

 0

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

S
TO

P
ID

LE
 L

IN
E

S
T•

10
 O

R
 1

1
O

N
E

S
/Z

E
R

O
S

 W
IL

L
B

E
 S

E
N

T
 D

E
P

E
N

D
IN

G
 O

N
 T

H
E

 W
O

R
D

 L
E

N
G

T
H

 S
P

E
C

IF
IE

D
 B

Y
 W

D
S

2,
 W

D
S

1,
 W

D
S

0.

1.
W

R
IT

E
 T

H
E

 L
A

S
T

 B
Y

T
E

 T
O

 S
T

X
.

2.
W

A
IT

 F
O

R
 T

R
D

E
 =

 1
. T

H
E

 L
A

S
T

 B
Y

T
E

 IS
 N

O
W

 IN
 T

H
E

 T
R

A
N

S
M

IT
 S

H
IF

T
 R

E
G

IS
T

E
R

.
3.

C
LE

A
R

 T
E

 A
N

D
 S

E
T

 B
A

C
K

 T
O

 O
N

E
. T

H
IS

 Q
U

E
U

E
S

 T
H

E
 P

R
E

A
M

B
LE

 T
O

 F
O

LL
O

W
 T

H
E

 L
A

S
T

 B
Y

T
E

.
4.

W
R

IT
E

 T
H

E
 F

IR
S

T
 B

Y
T

E
 T

O
 F

O
LL

O
W

 T
H

E
 P

R
E

A
M

B
LE

 IN
TO

 S
R

X
.

X
:$

F
F

F
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

S
C

K
P

T
M

IE
T

IE
R

IE
IL

IE
T

E
R

E
W

O
M

S
R

W
U

W
A

K
E

S
B

K
S

S
F

T
D

W
D

S
2

W
D

S
1

W
D

S
0

S
C

I IN
TE

R
FA

C
E

 C
O

N
TR

O
L

R
E

G
IS

TE
R

 (S
C

R
)

(R
E

A
D

/W
R

IT
E

)
0

TO
G

G
LE

 (
1

-
0

-
1)

 T
O

 S
E

N
D

 A
C

H
A

R
A

C
T

E
R

 T
IM

E
 O

F
 A

LL
O

N
E

S
 (

M
A

R
K

S
)

TO
G

G
LE

 (
0

-
1

-
0)

 T
O

 S
E

N
D

 A
C

H
A

R
A

C
T

E
R

 T
IM

E
 O

F
 A

LL
Z

E
R

O
S

 (
S

PA
C

E
S

)

M
A

R
K

S
 (

O
N

E
S

)

S
T

0
1

2
3

4
5

6
7

S
TO

P
S

T

LA
S

T
 C

H
A

R
A

C
T

E
R

P
R

E
A

M
B

LE
 O

F
 1

0
O

N
E

S
F

IR
S

T
 C

H
A

R
A

C
T

E
R

S
PA

C
E

S
 (

Z
E

R
O

S
)

D
4

D
5

D
6

D
7

S
TO

P
S

TO
P

S
T

D
0

D
1

C
H

A
R

A
C

T
E

R
 E

N
D

S
B

E
F

O
R

E
 B

R
E

A
K

 B
E

G
IN

S
.

S
TA

R
T

O

F
B

R
E

A
K

B
R

E
A

K
 P

E
R

IO
D

 IS
 A

N
 E

X
A

C
T

 M
U

LT
IP

LE
 O

F

C
H

A
R

A
C

T
E

R
 T

IM
E

S
.

S
TA

R
T

O

F
B

R
E

A
K

F
IR

S
T

C
H

A
R

A
C

T
E

R
A

F
T

E
R

 B
R

E
A

K

A
 S

TO
P

 B
IT

 A
T

 T
H

E
 E

N
D

 O
F

 T
H

E
 B

R
E

A
K

 W
IL

L
 B

E

IN
S

E
R

T
E

D
 B

E
F

O
R

E
 T

H
E

 N
E

X
T

 C
H

A
R

A
C

T
E

R
 S

TA
R

T
S

F
ig

u
re

 1
1-

28
 T

ra
n

sm
it

ti
n

g
 M

ar
ks

 a
n

d
 S

p
ac

es
11- 45 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

STX EQU $FFF4 ;SCI transmit register
BCR EQU $FFFE ;Bus control register
IPR EQU $FFFF ;Interrupt priority register
RXBUF EQU $100 ;Receive buffer
TXBUF EQU $200 ;Transmit buffer

;***
; RESET VECTOR *

;***

ORG P:$0000
JMP START

;***
; SCI RECEIVE INTERRUPT VECTOR *

;***

ORG P:$0014 ;Load the SCI RX interrupt vectors
MOVEP X:SRX,Y:(R0)+ ;Put the received byte in the receive

;buffer. This receive routine is
;implemented as a fast interrupt.

;***
; SCI TRANSMIT INTERRUPT VECTOR *

;***

ORG P:$0018 ;Load the SCI TX interrupt vectors
MOVEP X:(R3)+,X:STX ;Transmit a byte and

;increment the pointer in the
;transmit buffer.

BCLR #12,X:SCR ;Disable transmit interrupts

;***
; INITIALIZE THE SCI PORT AND RX, TX BUFFER POINTERS *

;***

ORG P:START ;Start the program at location $40
ORI #$03,MR ;Mask interrupts temporarily
MOVEP #$C000,X:IPR ;Set interrupt priority to 2
MOVEP #$0B02,X:SCR ;Disable TX, enable RX interrupts

;Enable transmitter, receiver
;Point to point
;10-bit asynchronous
11- 46 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

;(1 start, 8 data, 1 stop)
MOVEP #$0022,X:SCCR ;Use internal TX, RX clocks

;9600 BPS
MOVEP #>$03,X:PCC ;Select pins TXD and RXD for SCI

MOVE RXBUF,R0 ;Initialize the receive buffer
MOVE TXBUF,R3 ;Initialize the transmit buffer

;***
; MAIN PROGRAM *

;***

ANDI #$FC,MR ;Re-enable interrupts
MOVE #>$41,X:(R3) ;Move a byte to the transmit buffer
MOVE R0,X:(R3)
BSET #12,X:SCR ;and enable interrupts so it

;will be transmitted
SEND JMP SEND ;Normally something more useful

;would be put here.
END ;=+End of example.

Figure 11-29 SCI Asynchronous Transmit/Receive Example

11.2.8 Multidrop
Multidrop is a special case of asynchronous data transfer. The key difference is that a
protocol is used to allow networking transmitters and receivers on a single data-trans-
mission line. Interprocessor messages in a multidrop network typically begin with a desti-
nation address. All receivers check for an address match at the start of each message.
Receivers with no address match can ignore the remainder of the message and use a
wakeup mode to enable the receiver at the start of the next message. Receivers with an
address match can receive the message and optionally transmit an acknowledgment to
the sender. The particular message format and protocol used are determined by the
user’s software. These message formats include point-to-point, bus, token-ring, and cus-
tom configurations. The SCI multidrop network is compatible with other leading micropro-
cessors.

Figure 11-30 shows a multidrop system with one master and N slaves. The multidrop
mode is selected by setting WDS2 equals one, WDS1 equals one, and WDS0 equals
zero. One possible protocol is to have a preamble or idle line between messages, fol-
lowed by an address and then a message. The idle line causes the slaves to wake up
and compare the address with their own address. If the addresses match, the slave
receives the message. If the addresses do not match, the slave ignores the message
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 47

10
9

8
7

6
5

4
3

2
1

0

IL
IE

T
E

R
E

W
O

M
S

R
W

U
W

A
K

E
S

B
K

S
S

F
T

D
1

1
0

S
C

I C
O

N
TR

O
L

R
E

G
IS

TE
R

 (S
C

C
R

)
(R

E
A

D
/W

R
IT

E
)

W
D

S
2

W
D

S
1

W
D

S
0

H
E

A
D

E
R

A
D

D
R

E
S

S
 1

LO
N

G
 M

E
S

S
A

G
E

 F
O

R
 M

P
U

 1
ID

LE
 L

IN
E

R
X

D
D

S
P

56
00

0
A

D
D

R
E

S
S

 2

R
X

D
M

C
68

H
C

11
A

D
D

R
E

S
S

 3

R
X

D
O

T
H

E
R

S

E
R

IA
L

D
E

V
IC

E
A

D
D

R
E

S
S

 N

T
X

D
D

S
P

56
00

0

D
E

V
IC

E
S

 IG
N

O
R

IN
G

 M
E

S
S

A
G

E
S

R
E

C
E

IV
E

R
 IN

T
E

R
R

U
P

T

D
O

E
S

H
E

A
D

E
R

 E
Q

U
A

L
M

Y
 A

D
D

R
E

S
S

?

N
O

Y
E

S
IG

N
O

R
E

 R
E

S
T

O
F

 M
E

S
S

A
G

E
.

D
IS

A
B

LE
 R

E
C

E
IV

E
R

A
N

D
 IT

S
 IN

T
E

R
R

U
P

T
S

 B
Y

S
E

T
T

IN
G

 R
W

U
 =

 1
.

E
X

IT

g
u

re
 1

1-
30

 1
1-

B
it

 M
u

lt
id

ro
p

 M
o

d
e

11- 48 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

and goes back to sleep. It is also possible to generate an interrupt when an address is
received, eliminating the need for idle time between consecutive messages and
addresses. It is also possible for each slave to look for more than one address, which
allows each slave to respond to individual messages as well as broadcast messages
(e.g., a global reset).

11.2.8.1 Transmitting Data and Address Characters
Transmitting data and address when the multidrop mode is selected is shown in Figure
11-31. The output sequence shown is idle line, data/address, and the next character. In
both cases, an “A” is being transmitted. To send data, TE must be toggled to send the
idle line, and then “A” must be sent to STX. Sending the “A” to the STX sets the ninth bit
in the frame to zero, which indicates that this frame contains data. If the “A” is sent to
STXA instead, the ninth bit in the frame is set to a one, which indicates that this frame
contains an address.

11.2.8.2 Wired-OR Mode
Building a multidrop bus network requires connecting multiple transmitters to a common
wire. The wired-OR mode allows this to be done without damaging the transmitters when
the transmitters are not in use. A protocol is still needed to prevent two transmitters from
simultaneously driving the bus. The SCI multidrop word format provides an address field
to support this protocol. Figure 11-32 shows a multidrop configuration using wired-OR
(set bit 7 of the SCR). The protocol shown consists of an idle line between messages;
each message begins with an address character. The message can be any length,
depending on the protocol. Each processor in this system has one address that it
responds to although each processor can be programmed to respond to more than one
address.

11.2.8.3 Idle Line Wakeup
The purpose of a wakeup mode is to free a DSP from reading messages intended for
other processors. The usual operational procedure is for each DSP to suspend SCI
reception (the DSP can continue processing) until the beginning of a message. Each
DSP compares the address in the message header with the DSPs address. If the
addresses do not match, the SCI again suspends reception until the next address. If the
address matches, the DSP will read and process the message and then suspend recep-
tion until the next address.

The idle line wakeup mode wakes up the SCI to read a message before the first charac-
ter arrives. This mode allows the message to be in any format.

Figure 11-33 shows how to configure the SCI to detect and respond to an idle line. The
word format chosen (WDS2, WDS1, and WDS0 in the SCR) must be asynchronous. The
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 49

S
T

1
0

0
0

0
0

1
0

1
S

TO
P

S
T

S
T

1
0

0
0

0
0

1
0

0
S

TO
P

S
T

D
AT

A

N
E

X
T

C
H

A
R

A
C

T
E

R

23
16

15
8

7
0

X
:$

F
F

F
6

X
:$

F
F

F
5

X
:$

F
F

F
4

S
T

X

S
T

X

S
T

X

S
C

I T
R

A
N

S
M

IT
 D

AT
A

 R
E

G
IS

T
E

R
 H

IG
H

 (
W

R
IT

E
 O

N
LY

)

S
C

I T
R

A
N

S
M

IT
 D

AT
A

 R
E

G
IS

T
E

R
 M

ID
 (

W
R

IT
E

 O
N

Y
)

S
C

I T
R

A
N

S
M

IT
 D

AT
A

 R
E

G
IS

T
E

R
 L

O
W

 (
W

R
IT

E
 O

N
LY

)

X
:$

F
F

F
3

23
16

15
8

7
0

X
:$

F
F

F
6

X
:$

F
F

F
5

X
:$

F
F

F
4

S
T

X

S
T

X

S
T

X

T
X

D

T
X

D

S
T

X
A

S
C

I T
R

A
N

S
M

IT
 D

AT
A

 S
H

IF
T

 R
E

G
IS

T
E

R

23
16

15
8

7
0

“A
”

$4
1

01
00

00
01

D
A

TA

A
D

D
R

E
S

S

S
C

I T
R

A
N

S
M

IT
 D

AT
A

 S
H

IF
T

 R
E

G
IS

T
E

R

X
:$

F
F

F
3

S
T

X
A

23
16

15
8

7
0

ID
LE

 L
IN

E

A
D

D
R

E
S

S

N
E

X
T

C
H

A
R

A
C

T
E

R

ID
LE

 L
IN

E

S
C

I T
R

A
N

S
M

IT
 D

AT
A

 R
E

G
IS

T
E

R
 (

W
R

IT
E

 O
N

LY
)

“A
”

F
ig

u
re

 1
1-

31
 T

ra
n

sm
it

ti
n

g
 D

at
a

an
d

 A
d

d
re

ss

11- 50 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

N
0

N
1

N
2

N
3

N
4

N
5

N
6

N
7

1
D

0
D

1
D

2
D

3
D

4
D

5
D

6
D

7
0

D
0

D
1

X
:$

F
F

F
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

S
C

K
P

T
M

IE
T

IE
R

IE
IL

IE
T

E
R

E
1

R
W

U
W

A
K

E
S

B
K

S
S

F
T

D
1

1
0

S
C

I C
O

N
TR

O
L

R
E

G
IS

TE
R

 (S
C

R
)

(R
E

A
D

/W
R

IT
E

)
0

W
O

M
S

W
D

S
2

W
D

S
1

W
D

S
0

D
S

P
56

00
0

S
C

I P
O

R
T

A
D

D
R

E
S

S
 1

X
M

IT
R

E
C

D
S

P
56

00
0

S
C

I P
O

R
T

A
D

D
R

E
S

S
 2

X
M

IT
R

E
C

O
T

H
E

R
S

E
R

IA
L

P
O

R
T

A
D

D
R

E
S

S
 3

X
M

IT
R

E
C

D
S

P
56

00
0

S
C

I P
O

R
T

A
D

D
R

E
S

S
 N

-1

X
M

IT
R

E
C

D
S

P
56

00
0

S
C

I P
O

R
T

A
D

D
R

E
S

S
 N

X
M

IT
R

E
C

A
2

M
E

S
S

A
G

E
 A

A
3

M
E

S
S

A
G

E
 C

A
1

M
E

S
S

A
G

E
 B

A
D

D
R

E
S

S
 C

H
A

R
A

C
T

E
R

 W
A

K
E

U
P

A
N

D
/O

R
 IN

T
E

R
R

U
P

T

ID
LE

ID
LE

 L
IN

E
 W

A
K

E
U

P
A

N
D

/O
R

 IN
T

E
R

R
U

P
T

F
IR

S
T

 C
H

A
R

A
C

T
E

R
S

E
C

O
N

D
 C

H
A

R
A

C
T

E
R

T
H

IR
D

 C
H

A
R

A
C

T
E

R

ID
LE

A
D

D
R

E
S

S
 N

F
IR

S
T

 C
H

A
R

A
C

T
E

R
 O

F
 M

E
S

S
A

G
E

 D
S

E
C

O
N

D
 C

H
A

R
A

C
T

E
R

O
F

 M
E

S
S

A
G

E
 D

IN
D

IC
AT

E
S

 A
N

 A
D

D
R

E
S

S
 C

H
A

R
A

C
T

E
R

IN
D

IC
AT

E
S

 A
 D

AT
A

 C
H

A
R

A
C

T
E

R

1K

A
N

M
E

S
S

A
G

E
 D

F
ig

u
re

 1
1-

32
 W

ir
ed

-O
R

 M
o

d
e

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 51

WAKE bit must be clear to select idle line wakeup, and RWU must be set to put the SCI

X
:$

F
F

F
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

S
C

K
P

T
M

IE
T

IE
1

1
T

E
R

E
W

O
M

S
1

0
S

B
K

S
S

F
T

D
W

D
S

2
W

D
S

1
W

D
S

0
S

C
I C

O
N

TR
O

L
R

E
G

IS
TE

R
 (S

C
R

)
(R

E
A

D
/W

R
IT

E
)

0

R
IE

IL
IE

R
W

U
W

A
K

E

7
6

5
4

3
2

1
0

R
8

F
E

P
E

O
R

1
R

D
R

F
T

D
R

E
T

R
N

E
X

:$
F

F
F

1
S

C
I S

TA
T

U
S

 R
E

G
IS

T
E

R
 (

S
S

R
)

(R
E

A
D

 O
N

LY
)

S
C

I I
D

LE
 L

IN
E

P
:$

00
1A

IN
T

E
R

R
U

P
T

V
E

C
TO

R
TA

B
LE

A
1

M
E

S
S

A
G

E
 A

A
2

M
E

S
S

A
G

E
 B

LI
N

E
 IS

 ID
LE

 F
O

R
 1

0
O

R
 1

1
S

TO
P

 B
IT

S

1.
R

W
U

 IS
 C

LE
A

R
E

D
; T

H
E

 R
E

C
E

IV
E

R
 IS

 E
N

A
B

LE
D

.
2.

ID
LE

 IS
 S

E
T

 IN
 S

S
R

, I
N

D
IC

AT
IN

G
 T

H
E

 L
IN

E
 IS

 ID
LE

.
3.

A
N

 IN
T

E
R

N
A

L
F

LA
G

 S
R

IIN
T

 IS
 G

E
N

E
R

AT
E

D
 O

N
C

E
 E

A
C

H
 ID

LE
 S

TA
T

E
, N

O
 M

AT
T

E
R

 H
O

W
 L

O
N

G
 IT

 L
A

S
T

S
.

ID
LE

 (
S

R
IIN

T
)

4.
IF

 IL
IE

 =
 1

 IN
 S

C
R

, T
H

E
N

 A
N

 S
C

I I
D

LE
 L

IN
E

 IN
T

E
R

R
U

P
T

 IS
 P

E
N

D
IN

G
.

5.
W

H
E

N
 ID

LE
 L

IN
E

 IN
T

E
R

R
U

P
T

 IS
 A

C
C

E
P

T
E

D
, S

R
IIN

T
 IS

 A
U

TO
M

AT
IC

A
LL

Y
 C

LE
A

R
E

D
.

ID
LE

 L
IN

E
IN

T
E

R
R

U
P

T
 S

E
R

V
IC

E
R

O
U

T
IN

E
(F

A
S

T
 O

R
 L

O
N

G
)

F
ig

u
re

 1
1-

33
 I

d
le

 L
in

e
W

ak
eu

p

11- 52 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

to “sleep” and enable the wakeup function. RIE should be set if interrupts are to be used
to receive data. If processing must occur when the idle line is first detected, ILIE should
be set. The current message is followed by one or more data frames of ones (10 or 11
bits each, depending on which word format is used), which are detected as an idle line. If
the word format is multidrop (an 11-bit code), after the 11 ones, the receiver determines
the line is idle and (1) clears the RWU, enabling the receiver. The IDLE bit (2) and an
internal flag SRIINT (3) are set, indicating the line is idle. The SCI is now ready to receive
messages; however, nothing more will happen until the next start bit unless (4) ILIE is
set. If ILIE is set, an SCI idle line interrupt will be recognized as pending. When the idle
line interrupt is recognized (5), SRIINT is automatically cleared, and the SCI waits for the
first start bit of the next character. Since RIE was set, when the first character is
received, an SCI receive data interrupt (or SCI receive data with exception status inter-
rupt if an error is detected) will be recognized as pending. When the receiver has pro-
cessed the message and is ready to wait for another idle line, RWU must be set to one
again.

11.2.8.4 Address Mode Wakeup
The purpose and basic operational procedure for address mode wakeup is the same as
idle line wakeup. The difference is that address mode wakeup re-enables the SCI when
the ninth bit in a character is set to one (if cleared, this bit marks a character as data; if
set, an address). As a result, an idle line is not needed, which eliminates the dead time
between messages. If the protocol is such that the address byte is not needed or is not
wanted in the first byte of the message, a data byte can be written to STXA at the begin-
ning of each message. It is not essential that the first byte of the message contain an
address; it is essential that the start of a new message is indicated by setting the ninth bit
to one using STXA.

Figure 11-34 shows how to configure the SCI to detect and respond to an address char-
acter. The word format chosen (WDS2, WDS1, and WDS0 in the SCR) must be an asyn-
chronous word format. The WAKE bit must be set to select address mode wakeup and
RWU must be set to put the SCI to “sleep” and enable the wakeup function. RIE should
be set if interrupts are to be used to receive data. (1) When an address character (ninth
bit=1) is received, then R8 is set to one in the SSR, and RWU is cleared. Clearing RWU
re-enables the SCI receiver. Since (2) RIE was set in this example, when the first charac-
ter is received, an SCI receive data interrupt (or SCI receive data with exception status
interrupt if an error is detected) will be recognized as pending. When the receiver is
ready to wait for another address character, RWU must be set to one again.

11.2.8.5 Multidrop Example
The program shown in Figure 11-35 configures the SCI as a multidrop master transmitter
and slave receiver (using wakeup on address bit) that uses interrupts to transmit data
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 53

from a circular buffer and to receive data into a different circular buffer. This program can

X
:$

F
F

F
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

S
C

K
P

T
M

IE
T

IE
1

IL
IE

T
E

R
E

W
O

M
S

1
1

S
B

K
S

S
F

T
D

W
D

S
2

W
D

S
1

W
D

S
0

S
C

I C
O

N
T

R
O

L
R

E
G

IS
T

E
R

 (S
C

R
)

(R
E

A
D

/W
R

IT
E

)
0

R
IE

R
W

U
W

A
K

E

7
0

1
F

E
P

E
O

R
1

R
D

R
F

T
D

R
E

T
R

N
E

X
:$

F
F

F
1

S
C

I S
TA

T
U

S
 R

E
G

IS
T

E
R

 (
S

S
R

)
(R

E
A

D
 O

N
LY

)

S
C

I R
E

C
E

IV
E

 D
AT

A
P

:$
00

14

IN
T

E
R

R
U

P
T

V
E

C
TO

R
TA

B
LE

A
1

M
E

S
S

A
G

E
 A

A
2

M
E

S
S

A
G

E
 B

1.
W

H
E

N
 A

D
D

R
E

S
S

 C
H

A
R

A
C

T
E

R
 IS

 R
E

C
E

IV
E

D
, T

H
E

N
 R

8
=

 1
 IN

 S
S

R
 A

N
D

 R
W

U
 IS

 C
LE

A
R

E
D

. T
H

E
 R

E
C

E
IV

E
R

 W
A

K
E

S
 U

P.

2.
IF

 R
IE

 =
 1

 IN
 S

C
R

, T
H

E
N

 A
N

 S
C

I R
E

C
E

IV
E

 D
AT

A
 IN

T
E

R
R

U
P

T
 IS

 P
R

O
C

E
S

S
E

D
.

R
E

C
E

IV
E

 D
AT

A
IN

T
E

R
R

U
P

T
 S

E
R

V
IC

E
R

O
U

T
IN

E
(F

A
S

T
 O

R
 L

O
N

G
)

A
3

M
E

S
S

A
G

E
 C

A
4

M
E

S
S

A
G

E
 D

R
8

F
ig

u
re

 1
1-

34
 A

d
d

re
ss

 M
o

d
e

W
ak

eu
p

11- 54 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

be run with the I/O pins (RXD and TXD) connected and with a pullup resistor for test pur-
poses.

The program starts by setting equates for convenience and clarity and then points the
reset vector to the start of the program. The receive and transmit interrupt vector loca-
tions have JSRs forming long interrupts because the multidrop protocol and circular buff-
ers require more than two instructions for maintenance. Byte packing and unpacking are
not used in this example. The SRX and STX registers are equated to $FFF4, causing
only the LSB of the 24-bit DSP word to be used for SCI data. The SCI is then initialized
as wired-OR, multidrop, and using interrupts. The SCI is enabled but the interrupts are
masked, which prevents the SCI from transmitting or receiving data at this time.

The circular buffers used have two pointers. The first points to the first data byte; the sec-
ond points to the last data byte. This configuration allows the transmit buffer to act as a
first-in first-out (FIFO) memory. The FIFO can be loaded by a program and emptied by
the SCI in real time. As long as the number of data bytes never exceeds the buffer size,
there will be no overflow or underflow of the buffer. Registers M0-M3 must be loaded
with the buffer size minus one to make pointer registers R0-R3 work as circular pointers.
Register N2 is used as a constant to clear the receive buffer empty flag.

The main program starts by filling the transmit buffer with a data packet. When the trans-
mit buffer is full, it calls the subroutine that transmits the slave’s address and then jumps
to self (SEND jmp SEND), allowing interrupts to transmit and receive the data.

The receive subroutine first checks each byte to see if it is address or data. If it is an
address, it compares the address with its own. If the addresses do not match, the SCI is
put back to sleep. If the addresses match, the SCI is left awake, and control is returned
to the main program. If the byte is data, it is placed in the receive buffer, and the receive
buffer empty flag is cleared. Although this flag is not used in this program, it can be used
by another program as a simple test to see if data is available. Using N2 as the constant
$0 allows the flag to be cleared with a single-word instruction, which can be part of a fast
interrupt.

The transmit subroutine transmits a byte and then checks to see if the transmit buffer is
empty. If the buffer is not empty, control is returned to the main program, and interrupts
are allowed to continue emptying the buffer. If the buffer is empty, the transmit buffer
empty flag is set, the transmit interrupt is disabled, and control is returned to the main
program.

The wakeup subroutine transmits the slave’s address by writing the address to the STXA
register and by enabling the transmit interrupt to allow interrupts to empty the transmit
buffer. Control is then returned to the main program.

;***
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 55

; MULTIDROP MASTER/SLAVE WITH INTERRUPTS AND CIRCULAR BUFFERS *

;***

;***
; SCI and other EQUATES *

;***

START EQU $0040 ;Start of program
TX_BUFF EQU $0010 ;Transmit buffer location
RX_BUFF EQU $0020 ;Receive buffer location
B_SIZE EQU $000E ;Transmit and receive buffer size

;(don’t allow the TX buffer and RX
;buffers to overlap).

TX_MTY EQU $0000 ;Transmit buffer empty
RX_MTY EQU $0001 ;Receive buffer empty
PCC EQU $FFE1 ;Port C control register
SCR EQU $FFF0 ;SCI interface control register
SCCR EQU $FFF2 ;SCI clock control register
STXA EQU $FFF3 ;SCI transmit address register
SRX EQU $FFF4 ;SCI receive register
STX EQU $FFF4 ;SCI transmit register
BCR EQU $FFFE ;Bus control register
IPR EQU $FFFF ;Interrupt priority register

;***
; RESET VECTOR *

;***

ORG P:$0000
JMP START

;***
; SCI RECEIVE INTERRUPT VECTOR *

;***

ORG P:$0014 ;Load the SCI RX interrupt vectors
JSR RX ;Jump to the receive routine that

;puts data packet in a circular
;buffer if it is for this address.

NOP ;Second word of fast interrupt not
;needed

ORG P:$0016 ;This interrupt occurs when data is
;received with errors. This example
11- 56 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

NOP ;does not trap errors so this
NOP ;interrupt is not used.

;***
; SCI TRANSMIT INTERRUPT VECTOR *

;***

ORG P:$0018 ;Load the SCI TX interrupt vectors
JSR TX ;Transmit next byte in buffer
NOP

;***
; INITIALIZE THE SCI PORT *

;***

ORG P:START ;Start the program at location $40
ORI #$03,MR ;Mask interrupts temporarily
MOVEP #$C000,X:IPR ;Set interrupt priority to 2

MOVEP #$0BE6,X:SCR ;Disable TX, enable RX interrupts
;Enable transmitter and receiver,
;Wired-OR mode, Rec. wakeup
;mode,11-bit multidrop (1 start,
;8 data,1 data type, 1 stop)

MOVEP #$0000,X:SCCR ;Use internal TX, RX clocks
;320K BPS

MOVEP #>$03,X:PCC ;Select pins TXD and RXD for SCI

;**
;INITIALIZE INTERRUPTS, REGISTERS, ETC.*
;**

MOVEP #$0,X:BCR ;No wait states

MOVE #TX_BUFF,R0 ;Load start pointer of transmit
;buffer

MOVE #TX_BUFF,R1 ;Load end pointer of transmit
;buffer

MOVE #RX_BUFF,R2 ;Load start pointer of receive
;buffer

MOVE #RX_BUFF,R3 ;Load end pointer of receive
;buffer

MOVE #>$41,R5 ;Init data register... R5 contains
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 57

;the data that will be sent in this
;example; it is initialized to an
;ASCII A.

MOVE #B_SIZE,M0 ;Load transmit buffer size
MOVE #B_SIZE,M1 ;Load transmit buffer size
MOVE #B_SIZE,M2 ;Load receive buffer size
MOVE #B_SIZE,M3 ;Load receive buffer size
MOVE #>$1,N0 ;Load receive address
MOVE #>$1,N1 ;Load first slave address
MOVE #0,N2 ;Load a constant (0) into N2
MOVEP X:SRX,X:(R0) ;Clear receive register

;**
; MAIN PROGRAM *

;**

ANDI #$FC,MR ;Re-enable interrupts

MOVE (R1)+ ;Temporarily increment the tail
;pointer
;Build a packet

LOOP MOVE R1,A ;Check to see if the TX buffer is
;full

MOVE (R1)- ;(fix tail pointer now that we’ve
;used it)

MOVE R0,B ;by comparing the head and tail
;pointers

CMP A,B ;of the circular transmit buffer.
JEQ SND_BUF ;if equal, transmit completed packet
MOVE R5,X:(R1)+ ;if not, put next character in

;transmit buffer and
MOVE (R5)+ ;increment the pointers.
MOVE (R1)+ ;Temporarily increment the tail

;pointer to test buffer again
JMP LOOP

SND_BUF JSR WAKE_UP ;Wake up proper slave and send
;packet

SEND JMP SEND ;and allow interrupts to drain
;the transmit buffer.

;***
;SUBROUTINE TO READ SCI AND STORE IN BUFFER USING A LONG INTERRUPT*
11- 58 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

;***

RX JCLR #7,X:$FFF1,RX_DATA ;Check if this is address or data.
MOVEP X:SRX,A ;Compare the received address
MOVE N1,B ;with the slave address.
CMP A,B
JEQ END_RX ;If address OK, use interrupts to Rx

;packet
BSET #6,X:$FFF0 ;if not, go back to sleep
JMP END_RX ;and return to previous program.

RX_DATA MOVEP X:SRX,X:(R3)+ ;Put data in buffer,
MOVE N2,X:RX_MTY ;and clear the Rx buffer empty flag

END_RX RTI ;Return to previous program

;***
; SUBROUTINE TO WRITE BUFFER TO SCI USING A LONG INTERRUPT *

;***

TX MOVEP X:(R0)+,X:STX ;Transmit a byte and increment the
;pointer

MOVE R0,A ;Check to see if the TX buffer is
;empty

MOVE R1,B
CMP A,B
JNE END_TX ;If not, return to main
MOVE #$000001,X0 ;If it is, set the TX buffer empty

;flag
MOVE X0,X:TX_MTY
BCLR #12,X:SCR ;disable transmit interrupts, and

END_TX RTI ;return to main

;***
; SUBROUTINE TO WAKE UP THE ADDRESSED SLAVE *

;***

WAKE_UP MOVEP N1,X:STXA ;Transmit slave address using STXA
;not STX

BSET #12,X:SCR ;Enable transmit interrupts to send
;packet

AWAKE RTI

END ;End of example.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 59

Figure 11-35 Multidrop Transmit/Receive Example

11.2.9 SCI Timer
The SCI clock used to determine the data transmission rate can also be used to cause a
periodic interrupt. This interrupt can be used as an event timer or for any other timing
function. Figure 11-36 illustrates how the SCI timer is programmed. Only bits CD11–CD0
and SCP in the SCCR are used to determine the time base. The crystal oscillator fosc is
first divided by 2 and then divided by the number CD11–CD0 in the SCCR. The oscillator
is then divided by 1 (if SCP=0) or eight (if SCP=1). Finally, it is divided by 2 and then by
16. If TMIE in the SCR is set (1) when the periodic timeout occurs, the SCI timer interrupt
is recognized and pending. The SCI timer interrupt is automatically cleared when the
interrupt is serviced. This interrupt will occur every time the periodic timer times out. If
only the timer function is being used (i.e., PC0, PC1, and PC2 pins have been pro-
grammed as parallel I/O pins), the transmit interrupts should be turned off (TIE=0).
Under individual reset, TDRE will remain set, continuously generating interrupts.

Figure 11-36 shows that an external clock can be used for SCI receive and/or transmit,
which frees the SCI timer to be programmed for a different interrupt rate. In addition, both
the SCI timer interrupt and the SCI can use the internal time base if the SCI receiver and/
or transmitter require the same clock period as the SCI timer.

The following program (see Figure 11-37) configures the SCI to interrupt the DSP at
fixed intervals. The program starts by setting equates for convenience and clarity and
then points the reset vector to the start of the program. The SCI timer interrupt vector
location contains “move (R0)+”, incrementing the contents of R0, which serves as an
elapsed time counter.

The timer initialization consists of enabling the SCI timer interrupt, setting the SCI baud
rate counters for the desired interrupt rate, setting the interrupt mask, enabling the inter-
rupt, and then enabling the SCI state machine.

;***
; TIMER USING SCI TIMER INTERRUPT *

;***

;***
; SCI and other EQUATES *

;***

START EQU $0040 ;Start of program
SCR EQU $FFF0 ;SCI control register
SCCR EQU $FFF2 ;SCI clock control register
IPR EQU $FFFF ;Interrupt priority register
11- 60 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

1

0

X:$FFF2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCM SCP COD CD11 CD10 CD9 CD8 CD7 CD6 CD5 CD4 CD3 CD2 CD1 CD0RCM

SCI CONTROL REGISTER (SCCR)
(READ/WRITE)

SCLK

SCI TIMERP:$001C

INTERRUPT
VECTOR
TABLE

DIVIDE
BY 2

PRESCALER
IF SCP = 1, THEN DIVIDE BY 8
IF SCP = 0, THEN DIVIDE BY 1

DIVIDE BY 1
TO 4096

DIVIDE
BY 2

fosc

X:$FFF0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 TIE RIE ILIE TE RE WOMS RWU WAKE SBK 0 WDS2 WDS1 WDS00

OUTPUT DIVIDER
IF SYNC, THEN DIVIDE BY 2

IF ASYNC THEN:
COD = 1, DIVIDE BY 1
COD = 0, DIVIDE BY 16

TRANSMIT CONTROL
IF ASYNC, THEN DIVIDE BY 16

IF SYNC THEN:
MASTER, DIVIDE BY 2
SLAVE, DIVIDE BY 1

RECEIVE CONTROL
IF ASYNC, THEN DIVIDE BY 16

IF SYNC THEN:
MASTER, DIVIDE BY 2
SLAVE, DIVIDE BY 1

PERIODIC TIMER
DIVIDE BY 16

COD

RCM

TCM

SCKP

SCKP

TCM

TRANSMIT CLOCK

RECEIVE CLOCK

E
X
T
E
R
N
A
L

C
L
O
C
K

I
N
T
E
R
N
A
L

C
L
O
C
K

1

0

SCI CONTROL REGISTER (SCR)
(READ/WRITE)

TMIE
1. WHEN PERIODIC TIMEOUT OCCURS AND TMIE = 1 IN SCR, THEN AN SCI TIMER EXCEPTION IS TAKEN.

SCI TIMER
INTERRUPT

SERVICE
ROUTINE

(FAST OR LONG)

2. PENDING TIMER INTERRUPT IS AUTOMATICALLY CLEARED WHEN INTERRUPT IS SERVICED.

Figure 11-36 SCI Timer Operation
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 61

;***
; RESET VECTOR *

;***

ORG P:$0000
JMP START

;***
; SCI TIMER INTERRUPT VECTOR *

;***

ORG P:$001C ;Load the SCI timer interrupt vectors
MOVE (R0)+ ;Increment the timer interrupt counter
NOP ;This timer routine is implemented

;as a fast interrupt.

;***
; INITIALIZE THE SCI PORT *

;***

ORG P:START ;Start the program at location $40
MOVE #0,R0 ;Initialize the timer interrupt counter
MOVEP #$2000,X:SCR ;Select the timer interrupt
MOVEP #$013F,X:SCCR ;Set the interrupt rate at 1 ms.

;(arbitrarily chosen).
;Interrupts/second =
;fosc/(64×(7(SCP)-+1)×(CD+1))
;Note that this is the same equation
;as for SCI async baud rate.
;For 1 ms, SCP=0,
;CD=0001 0011 1111.

MOVEP #$C000,X:IPR ;Set the interrupt priority level–
;application specific.

ANDI #$FC,MR ;Enable interrupts, set MR bits I1 and
;I0=0

END JMP END ;Normally something more useful
;would be put here.

END ;End of example.

Figure 11-37 SCI Timer Example
11- 62 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

11.2.10 Example Circuits
The SCI can be used in a number of configurations to connect multiple processors. The
synchronous mode shown in Figure 11-38 shows the DSP acting as a slave. The 8051
provides the clock that clocks data in and out of the SCI, which is possible because the
SCI shift register mode timing is compatible with the timing for 8051/8096 processors.
Transmit data is changed on the negative edge of the clock, and receive data is latched
on the positive edge of the clock. A protocol must be used to prevent both processors
from transmitting simultaneously. The DSP is also capable of being the master device.

A multimaster system can be configured (see Figure 11-39) using a single transmit/
receive line, multidrop word format, and wired-OR. The use of wired-OR requires a pul-
lup resistor as shown. A protocol must be used to prevent collisions. This scheme is
physically the simplest multiple DSP interconnection because it uses only one wire and
one resistor.

The master-slave system shown in Figure 11-40 is different in that it is full duplex. The
clock pin is not required; thus, it is configured as a parallel I/O pin. Communication is
asynchronous. The slave’s transmitters must be wire-ORed because more than one
transmitter is on one line. The master’s transmitter does not need to be wire-ORed.

CLOCK INPUT

TRANSMIT DATA

RECEIVE DATA

1.5 Ccyc

B0 B1 B2 B3 B4 B5 B6 B7

XXXXXX XX XX XX XX XX XX XX XXXXXXX

SAMPLE 0 1 2 3 4 5 6 7

DSP56000 8051

RXD

TXD

SCLK

P3.0

P3.1

Figure 11-38 Synchronous Mode Example
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 63

11.3 SYNCHRONOUS SERIAL INTERFACE (SSI)
The synchronous serial interface (SSI) provides a full-duplex serial port for serial com-
munication with a variety of serial devices including one or more industry-standard
codecs, other DSPs, microprocessors, and peripherals which implement the Motorola
SPI. The SSI consists of independent transmitter and receiver sections and a common
SSI clock generator. Three to six pins are required for operation, depending on the oper-
ating mode selected.

The following is a short list of SSI features:

DSP56000/DSP56001
MASTER

TXD

RXD

PC2

DSP56000/DSP56001
MASTER

TXD

RXD

PC2

Figure 11-39 Multimaster System Example

MC68HC11
MASTER

RXD

TXD

PC2

MASTER RECEIVE

MASTER TRANSMIT

DSP56000/DSP56001
SLAVE

RXD

TXD

PC2

DSP56000/DSP56001
SLAVE

RXD

TXD

PC2

DSP56000/DSP56001
SLAVE

RXD

TXD

PC2

Figure 11-40 Master-Slave System Example
11- 64 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

• A 6.75 Mbps at 27 MHz (fosc/4) serial interface
• Double Buffered
• User Programmable
• Separate Transmit and Receive Sections
• Control and Status Bits
• Interface to a Variety of Serial Devices, Including:

Codecs (usually without additional logic)
MC145500
MC145501
MC145502
MC145503
MC145505
MC145402 (13-bit linear codec)
MC145554 Family of Codecs

Serial Peripherals (A/D, D/A)
Most Industry-Standard A/D, D/A
DSP56ADC16 (16-bit linear A/D)

DSP56000 to DSP56000 Networks
Motorola SPI Peripherals and Processors
Shift Registers

• Interface to Time Division Multiplexed Networks without Additional Logic

• Six Pins:
STD SSI Transmit Data
SRD SSI Receive Data
SCK SSI Serial Clock
SC0 Serial Control 0 (defined by SSI mode)
SC1 Serial Control 1 (defined by SSI mode)
SC2 Serial Control 2 (defined by SSI mode)

• On-chip Programmable Functions Include:
Clock – Continuous, Gated, Internal, External
Synchronization Signals:

– Bit Length
– Word Length

TX/RX Timing – Synchronous, Asynchronous
Operating Modes – Normal, Network, On-Demand
Word Length – 8, 12, 16, 24 Bits
Serial Clock and Frame Sync Generator
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 65

• Four Interrupt Vectors:
Receive
Receive with Exception
Transmit
Transmit with Exception

This interface is named synchronous because all serial transfers are synchronized to a
clock. Additional synchronization signals are used to delineate the word frames. The nor-
mal mode of operation is used to transfer data at a periodic rate, but only one word per
period. The network mode is similar in that it is also intended for periodic transfers; how-
ever, it will support up to 32 words (time slots) per period. This mode can be used to
build time division multiplexed (TDM) networks. In contrast, the on-demand mode is
intended for nonperiodic transfers of data. This mode can be used to transfer data seri-
ally at high speed when the data becomes available. This mode offers a subset of the
SPI protocol.

11.3.1 SSI Data and Control Pins
The SSI has three dedicated I/O pins (see Figure 11-1), which are used for transmit data (STD), receive data (SRD), and serial clock (SCK), where SCK may be used by both the transmitter and the receiver for synchronous data transfers or by the transmitter only for

asynchronous data transfers. Three other pins may also be used, depending on the mode selected; they are serial control pins SC0, SC1, and SC2. These serial control pins may be programmed as SSI control pins in the port C control register. Table 11-4 shows the

definition of SC0, SC1, SC2, and SCK in the various configurations. The following paragraphs describe the uses of these pins for each of the SSI operating modes.

Figure 11-41 and Figure 11-42 show the internal clock path connections in block diagram form. The receiver and transmitter clocks can be internal or external depending on the SYN, SCD0, and SCKD bits in CRB.

11.3.1.1 Serial Transmit Data Pin (STD)
STD is used for transmitting data from the serial transmit shift register. STD is an output when data is being transmitted. Data changes on the positive edge of the bit clock. STD goes to high impedance on the negative edge of the bit clock of the last data bit of the

word (i.e., during the second half of the last data bit period) with external gated clock, regardless of the mode. With an internally generated bit clock, the STD pin becomes high impedance after the last data bit has been transmitted for a full clock period, assuming

another data word does not follow immediately. If a data word follows immediately, there will not be a high-impedance interval.

Codecs label the MSB as bit 0; whereas, the DSP labels the LSB as bit 0. Therefore, when using a standard codec, the DSP MSB (or codec bit 0) is shifted out first when SHFD=0, and the DSP LSB (or codec bit 7) is shifted out first when SHFD=1. STD may be pro-

grammed as a general-purpose pin called PC8 when the SSI STD function is not being used.
11- 66 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Table 11-4 Definition of SC0, SC1, SC2, and SCK

TXC – Transmitter Clock
RXC – Receiver Clock
*XC – Transmitter/Receiver Clock (synchronous operation)
FST – Transmitter Frame Sync
FSR – Receiver Frame Sync
FS* – Transmitter/Receiver Frame Sync (synchronous operation)
PF0 – Flag 0
F1 – Flag 1

SSI Pin Name
(Control Bit Name)

Asynchronous (SYN=0) Synchronous (SYN=1)

Continuous Clock
 (GCK=0)

Gated Clock
(GCK=1)

Continuous Clock
 (GCK=0)

Gated Clock
(GCK=1)

SC0=0 (in) RXC External RXC External Input F0 Input F0

SC0=1 (out)
(SCD0)

RXC Internal RXC Internal Output F0 Output F0

SC1=0 (in) FSR External Not Used Input F1 Input F1

SC1=1 (out)
(SCD1)

FSR Internal FSR Internal Output F1 Output F1

SC2=0 (in) FST External Not Used FS* External Not Used

SC2=1 (out)
(SCD2)

FST Internal FST Internal FS* Internal FS* Internal

SCK=0 (in) TXC External TXC External *XC External *XC External

SCK=1 (out
(SCKD)

TXC Internal TXC Internal) *XC Internal *XC Internal
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 67

11.3.1.2 Serial Receive Data Pin (SRD). SRD receives serial data and transfers the data
to the SSI receive shift register. SRD may be programmed as a general-purpose I/O pin called
PC7 when the SSI SRD function is not being used. Data is sampled on the negative edge of the
bit clock.

11.3.1.3 Serial Clock (SCK). SCK is a bidirectional pin providing the serial bit rate clock
for the SSI interface. The SCK is a clock input or output used by both the transmitter and receiver
in synchronous modes or by the transmitter in asynchronous modes (see Table11-5).

NOTE

Although an external serial clock can be independent of and asynchronous to the
DSP system clock, it must exceed the minimum clock cycle time of at least 3.6
times the external SSI clock frequency. Using a ratio of 3.6:1 allows for a clock
skew between two SSIs of up to +5%.

FLAG0 OUT
(SYNC MODE)

FLAG0 IN
(SYNC MODE)

SC0

SCK

SCD0

SCKD

SYN = 1 SYN = 0

SCD0 = 0

RCLOCK

TCLOCKINTERNAL BIT CLOCK

SYN = 1

WL1, WL0

WL1, WL0

RX WORD
LENGTH DIVIDER

TX WORD
LENGTH DIVIDER

RX SHIFT REGISTER

TX SHIFT REGISTER

DIVIDE
BY 2

DIVIDE
BY 2

PRESCALE
DIVIDE BY 1

OR
DIVIDE BY 8

DIVIDER
DIVIDE BY 1
TO DIVIDE

BY 256

FOSC PSR PM0 - PM7

RX WORD
CLOCK

TX WORD
CLOCK

SYN = 0 SCD0 = 1

Figure 11-41 SSI Clock Generator Functional Block Diagram
11- 68 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

11.3.1.4 Serial Control Pin (SC0)
The function of this pin is determined solely on the selection of either synchronous or
asynchronous mode (see Tables 11-4 and 11-5). For asynchronous mode, this pin
will be used for the receive clock I/O. For synchronous mode, this pin is used for
serial flag I/O. A typical application of flag I/O would be multiple device selection for
addressing in codec systems. The direction of this pin is determined by the SCD0 bit
in the CRB as described in the following table. When configured as an output, this pin
will be either serial output flag 0, based on control bit OF0 in CRB, or a receive shift
register clock output. When configured as an input, this pin may be used either as
serial input flag 0, which will control status bit IF0 in the SSISR, or as a receive shift

FRAME SYNC

TRANSMIT

FRAME SYNC

RECEIVE

RX WORD
CLOCK

TX WORD
CLOCK

DC0 - DC4

DC0 - DC4

RECEIVER
FRAME RATE

DIVIDER

TRANSMITTER
FRAME RATE

DIVIDER

RECEIVE
CONTROL

LOGIC

TRANSMIT
CONTROL

LOGIC

FSL0, FSL1

FSL0, FSL1

SYNC
TYPE

SYNC
TYPE

SYN = 0

SYN = 1

INTERNAL RX FRAME CLOCK

SCD1 = 1

SYN = 1SCD1 = 0

SYN = 0
SCD1

SC1

SCD2

SC2
INTERNAL TX FRAME CLOCK

FLAG1 IN
(SYNC MODE)

FLAG1OUT
(SYNC MODE)

Figure 11-42 SSI Frame Sync Generator Functional Block Diagram
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 69

register clock input.

11.3.1.5 Serial Control Pin (SC1)
The function of this pin is determined solely on the selection of either synchronous or
asynchronous mode (see Table 11-4). In asynchronous mode (such as a single codec
with asynchronous transmit and receive), this pin is the receiver frame sync I/O. For syn-
chronous mode with continuous clock, this pin is serial flag SC1 and operates like the
previously described SC0. SC0 and SC1 are independent serial I/O flags but may be
used together for multiple serial device selection. SC0 and SC1 can be used unencoded
to select up to two codecs or may be decoded externally to select up to four codecs.
The direction of this pin is determined by the SCD1 bit in the CRB. When configured as

Table 11-5 SSI Clock Sources, Inputs, and Outputs

EXT – External Pin Name
INT – Internal Bit Clock

SYN SCKD SCD0
R Clock
Source

RX Clock
Out

T Clock Source TX Clock Out

Asynchronous

0 0 0 EXT, SC0 – EXT, SCK –

0 0 1 INT SC0 EXT, SCK –

0 1 0 EXT, SC0 – INT SCK

0 1 1 INT SC0 EXT SCK

Synchronous

1 0 0 EXT, SCK – EXT, SCK –

1 0 1 EXT, SCK – EXT, SCK –

1 1 0 INT SCK INT SCK

1 1 1 INT SCK INT SCK

SYN GCK SCD0 Operation

Synchronous Continuous Input Flag 0 Input

Synchronous Continuous Output Flag 0 Output

Synchronous Gated Input Flag 0 Input

Synchronous Gated Output Flag 0 Output

Asynchronous Continuous Input Rx Clock – External

Asynchronous Continuous Output Rx Clock – Internal

Asynchronous Gated Input Rx Clock – External

Asynchronous Gated Output Rx Clock – Internal
11- 70 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

an output, this pin will be either a serial output flag, based on control bit OF1, or it will
make the receive frame sync signal available. When configured as an input, this pin may
be used as a serial input flag, which will control status bit IF1 in the SSI status register, or
as a receive frame sync from an external source for continuous clock mode. In the gated
clock mode, external frame sync signals are not used.

11.3.1.6 Serial Control Pin (SC2)
This pin is used for frame sync I/O (see Table 11-4). SC2 is the frame sync for both the
transmitter and receiver in synchronous mode and for the transmitter only in asynchro-
nous mode. The direction of this pin is determined by the SCD2 bit in CRB. When config-
ured as an output, this pin is the internally generated frame sync signal. When
configured as an input, this pin receives an external frame sync signal for the transmitter
(and the receiver in synchronous operation). In the gated clock mode, external frame
sync signals are not used.

SYN GCK SCD1 Operation

Synchronous Continuous Input Flag 1 Input

Synchronous Continuous Output Flag 1 Output

Synchronous Gated Input Flag 1 Input

Synchronous Gated Output Flag 1 Output

Asynchronous Continuous Input RX Frame Sync – External

Asynchronous Continuous Output RX Frame Sync – Internal

Asynchronous Gated Input –

Asynchronous Gated Output RX Frame Sync – Internal

SYN GCK SCD2 Operation

Synchronous Continuous Input TX and RX Frame Sync

Synchronous Continuous Output TX and RX Frame Sync

Synchronous Gated Input –

Synchronous Gated Output TX and RX Frame Sync

Asynchronous Continuous Input TX Frame Sync – External

Asynchronous Continuous Output TX Frame Sync – Internal

Asynchronous Gated Input –

Asynchronous Gated Output TX Frame Sync – Internal
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 71

11.3.2 SSI Interface Programming Model
The SSI can be viewed as two control registers, one status register, a transmit register, a receive register, and special-purpose time slot register. These registers are illustrated in Figure 11-43 and Figure 11-44. The following paragraphs give detailed descriptions and

operations of each of the bits in the SSI registers. The SSI registers are not prefaced with an “S” (for serial) as are the SCI registers.

11.3.2.1 SSI Control Register A (CRA)
CRA is one of two 16-bit read/write control registers used to direct the operation of the SSI. The CRA controls the SSI clock generator bit and frame sync rates, word length, and number of words per frame for the serial data. The high-order bits of CRA are read as

zeros by the DSP CPU. The CRA control bits are described in the following paragraphs.

11.3.2.1.1 CRA Prescale Modulus Select (PM7–PM0) Bits 0–7
The PM0–PM7 bits specify the divide ratio of the prescale divider in the SSI clock generator. A divide ratio from 1 to 256 (PM=0 to $FF) may be selected. The bit clock output is available at the transmit clock (SCK) and/or the receive clock (SC0) pins of the DSP. The

bit clock output is also available internally for use as the bit clock to shift the transmit and receive shift registers. Careful choice of the crystal oscillator frequency and the prescaler modulus will allow the industry-standard codec master clock frequencies of 2.048 MHz,

1.544 MHz, and 1.536 MHz to be generated. Hardware and software reset clear PM0–PM7.

11.3.2.1.2 CRA Frame Rate Divider Control (DC4–DC0) Bits 8–12
The DC4–DC0 bits control the divide ratio for the programmable frame rate dividers used to generate the frame clocks (see Figure 11-42). In network mode, this ratio may be interpreted as the number of words per frame minus one. In normal mode, this ratio deter-

mines the word transfer rate. The divide ratio may range from 1 to 32 (DC=00000 to 11111) for normal mode and 2 to 32 (DC=00001 to 11111) for network mode.

A divide ratio of one (DC=00000) in network mode is a special case (see 11.3.7.4 ON-DEMAND MODE). In normal mode, a divide ratio of one (DC=00000) provides continuous periodic data word transfers. A bit-length sync (FSL1=1, FSL0=0) must be used in this

case. Hardware and software reset clear DC4–DC0.

11.3.2.1.3 CRA Word Length Control (WL0, WL1) Bits 13 and 14
The WL1 and WL0 bits are used to select the length of the data words being transferred via the SSI. Word lengths of 8, 12, 16, or 24 bits may be selected according to the following assignments:

These bits control the number of active clock transitions in the gated clock modes and control the word length divider (see Figure 11-41 and Figure 11-42), which is part of the frame rate signal generator for continuous clock modes. The WL control bits also control the

frame sync pulse length when FSL0 and FSL1 select a WL bit clock (see Figure 11-41). Hardware and software reset clear WL0 and WL1.

11.3.2.1.4 CRA Prescaler Range (PSR) Bit 15
The PSR controls a fixed divide-by-eight prescaler in series with the variable prescaler. This bit is used to extend the range of the prescaler for those cases where a slower bit clock is desired (see Figure 11-41). When PSR is cleared, the fixed prescaler is bypassed.

When PSR is set, the fixed divide-by-eight prescaler is operational. This allows a 128-kHz master clock to be generated for MC14550x series codecs.

The maximum internally generated bit clock frequency is fosc/4, the minimum internally generated bit clock frequency is fosc/4/8/256=fosc/8192. Hardware and software reset clear PSR.

11.3.2.2 SSI Control Register B (CRB)
The CRB is one of two 16-bit read/write control registers used to direct the operation of
the SSI. CRB controls the SSI multifunction pins, SC2, SC1, and SC0, which can be
used as clock inputs or outputs, frame synchronization pins, or serial I/O flag pins. The
serial output flag control bits and the direction control bits

WL1 WL0 Number of Bits/Word

0 0 8

0 1 12

1 0 16

1 1 24
11- 72 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

X
:$

F
F

E
C

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

P
S

R
W

L1
W

L0
D

C
4

D
C

3
D

C
2

D
C

1
D

C
0

P
M

7
P

M
6

P
M

5
P

M
4

P
M

3
P

M
2

P
M

1
P

M
0

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

S
S

I C
O

N
T

R
O

L
R

E
G

IS
T

E
R

 A
 (C

R
A

)
(R

E
A

D
/W

R
IT

E
)

7
6

5
4

3
2

1
0

•
•

•
•

•
•

•
•

X
:$

F
F

E
E

S
S

I T
IM

E
 S

LO
T

 R
E

G
IS

T
E

R
 (

T
S

R
)

(W
R

IT
E

)

R
D

F
T

D
E

R
O

E
T

U
E

R
F

S
T

F
S

IF
1

IF
0

(0
)

(1
)

(0
)

(0
)

(0
)

(0
)

(0
)

(0
)

X
:$

F
F

E
E

S
S

I S
TA

T
U

S
 R

E
G

IS
T

E
R

 (
S

S
IS

R
)

(R
E

A
D

)

X
:$

F
F

E
D

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

R
IE (0
)

R
E

T
E

M
O

D
G

C
K

S
Y

N
F

S
L1

F
S

L0
S

H
F

D
S

C
K

D
S

C
D

2
S

C
D

1
S

C
D

0
O

F
1

O
F

0
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
(0

)
S

S
I C

O
N

T
R

O
L

R
E

G
IS

T
E

R
 B

 (C
R

B
)

(R
E

A
D

/W
R

IT
E

)

R
E

C
E

IV
E

 D
AT

A
 R

E
G

IS
T

E
R

 F
U

LL

T
R

A
N

S
M

IT
 D

AT
A

 R
E

G
IS

T
E

R
 E

M
P

T
Y

R
E

C
E

IV
E

R
 O

V
E

R
R

U
N

 E
R

R
O

R
 F

LA
G

IN
P

U
T

 F
LA

G
S

T
R

A
N

S
M

IT
 F

R
A

M
E

 S
Y

N
C

R
E

C
E

IV
E

 F
R

A
M

E
 S

Y
N

C

T
R

A
N

S
M

IT
T

E
R

 U
N

D
E

R
R

U
N

 E
R

R
O

R
 F

LA
G

T
IE (0
)

O
U

T
P

U
T

 F
LA

G
S

S
E

R
IA

L
C

O
N

T
R

O
L

D
IR

E
C

T
IO

N
R

E
C

E
IV

E
 IN

T
E

R
R

U
P

T
 E

N
A

B
LE

T
R

A
N

S
M

IT
 IN

T
E

R
R

U
P

T
 E

N
A

B
LE

R
E

C
E

IV
E

R
 E

N
A

B
LE

T
R

A
N

S
M

IT
T

E
R

 E
N

A
B

LE

M
O

D
E

 S
E

LE
C

T
 (

N
E

T
W

O
R

K
/N

O
R

M
A

L)

S
H

IF
T

 D
IR

E
C

T
IO

N

F
R

A
M

E
 S

Y
N

C
 L

E
N

G
T

H
 0

 (M
IX

E
D

 B
IT

/W
O

R
D

)

F
R

A
M

E
 S

Y
N

C
 L

E
N

G
T

H
 (B

IT
/W

O
R

D
)

S
Y

N
C

/A
S

Y
N

C
 C

O
N

T
R

O
L

G
AT

E
D

 C
LO

C
K

 C
O

N
T

R
O

L

R
E

S
E

T
 V

A
LU

E
 =

 $
40

R
E

S
E

T
 V

A
LU

E
 =

 $
00

00

W
O

R
D

-L
E

N
G

T
H

C
O

N
T

R
O

L
F

R
A

M
E

 R
AT

E
 D

IV
ID

E
R

 C
O

N
T

R
O

L

P
R

E
S

C
A

LE
R

A
N

G
E

P
R

E
S

C
A

LE
 M

O
D

U
LU

S
 S

E
LE

C
T

R
E

S
E

T
 V

A
LU

E
 =

 $
00

00

F
ig

u
re

 1
1-

43
 S

S
I P

ro
g

ra
m

m
in

g
 M

o
d

el
 —

 C
o

n
tr

o
l a

n
d

 S
ta

tu
s

R
eg

is
te

rs
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 73

SRD

X:$FFEF

23 16 15 8 7 0

7 0 7 0 7 0

RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE
SERIAL RECEIVE DATA REGISTER
(READ ONLY)

SERIAL
RECEIVE

SHIFT
REGISTER

23 16 15 8 7 0

7 0 7 0 7 0

RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE

24 BIT

WL1, WL0

24-BIT DATA

000

16-BIT DATA

12-BIT DATA

8-BIT DATA

LSB

LSB

LSB

LSBMSB

MSB

MSB

MSB

LEAST SIGNIFICANT
ZERO FILL

NOTES:
1. Data is received MSB first if SHFD = 0.
2. Compatible with fractional format.

16 BIT

12 BIT

8 BIT

(a) Receive Registers for SHFD = 0

STD

X:$FFEF

23 16 15 8 7 0

7 0 7 0 7 0

TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE

SERIAL TRANSMIT DATA
REGISTER
(WRITE ONLY)

SERIAL RECEIVE SHIFT REGISTER

SERIAL TRANSMIT
 SHIFT REGISTER

23 16 15 8 7 0

7 0 7 0 7 0

TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE

24-BIT DATA

000

16-BIT DATA

12-BIT DATA

8-BIT DATA

LSB

LSB

LSB

LSBMSB

MSB

MSB

MSB

LEAST SIGNIFICANT
ZERO FILL

NOTES:
1. Data is sent MSB first if SHFD = 0.
2. Compatible with fractional format.

(b) Transmit Registers for SHFD = 0

Figure 11-44 SSI Programming Model (Sheet 1 of 2)
11- 74 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SRD

X:$FFEF

23 16 15 8 7 0

7 0 7 0 7 0

RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE
SERIAL RECEIVE DATA REGISTER
(READ ONLY)

SERIAL RECEIVE
 SHIFT REGISTER

23 16 15 8 7 0

7 0 7 0 7 0

RECEIVE HIGH BYTE RECEIVE MIDDLE BYTE RECEIVE LOW BYTE

24-BIT DATA

000

16-BIT DATA

12-BIT DATA

8-BIT DATA

LSB

LSB

LSB

LSBMSB

MSB

MSB

MSB

LEAST SIGNIFICANT
ZERO FILL

NOTES:
1. Data is received LSB first if SHFD = 1.
2. Compatible with fractional format.

(c) Receive Registers for SHFD = 1

STD

X:$FFEF

23 16 15 8 7 0

7 0 7 0 7 0

TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE
SERIAL TRANSMIT DATA
 REGISTER
(READ ONLY)

SERIAL TRANSMITSHIFT
 REGISTER

23 16 15 8 7 0

7 0 7 0 7 0

TRANSMIT HIGH BYTE TRANSMIT MIDDLE BYTE TRANSMIT LOW BYTE

24 BIT

WL1, WL0

24-BIT DATA

000

16-BIT DATA

12-BIT DATA

8-BIT DATA

LSB

LSB

LSB

LSBMSB

MSB

MSB

MSB

LEAST SIGNIFICANT
ZERO FILL

NOTES:
1. Data is received LSB first if SHFD = 1.
2. compatible with fractional format.

16 BIT

12 BIT

8 BIT

(d) Transmit Registers for SHFD = 1

Figure 11-44 SSI Programming Model (Sheet 2 of 2)
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 75

for the serial control pins are in the SSI CRB. Interrupt enable bits for each data register interrupt
are provided in this control register. When read by the DSP, CRB appears on the two low-order
bytes of the 24-bit word, and the high-order byte reads as zeros. Operating modes are also
selected in this register. Hardware and software reset clear all the bits in the CRB. The relation-
ships between the SSI pins (SC0, SC1, SC2, and SCK) and some of the CRB bits are summa-
rized in Tables 11-4, 11-6, and 11-7. The SSI CRB bits are described in the following
paragraphs.

11.3.2.2.1 CRB Serial Output Flag 0 (OF0) Bit 0. When the SSI is in the synchronous clock
mode and the serial control direction zero bit (SCD0) is set, indicating that the SC0 pin is an out-
put, then data present in OF0 will be written to SC0 at the beginning of the frame in normal mode
or at the beginning of the next time slot in network mode. Hardware and software reset clear
OF0.

11.3.2.2.2 CRB Serial Output Flag 1 (OF1) Bit 1. When the SSI is in the synchronous clock
mode and the serial control direction one (SCD1) bit is set, indicating that the SC1 pin is an out-
put, then data present in OF1 will be written to the SC1 pin at the beginning of the frame in nor-
mal mode or at the beginning of the next time slot in network mode (see 11.3.7 Operating Modes
– Normal, Network, and On-Demand).

The normal sequence for setting output flags when transmitting data is to poll TDE (TX empty), to
first write the flags, and then write the transmit data to the TX register. OF0 and OF1 are double
buffered so that the flag states appear on the pins when the TX data is transferred to the transmit
shift register (i.e., the flags are synchronous with the data). Hardware and software reset clear
OF1.

NOTE

The optional serial output pins (SC0, SC1, and SC2) are controlled by the frame
timing and are not affected by TE or RE.

11.3.2.2.3 CRB Serial Control 0 Direction (SCD0) Bit 2. SCD0 controls the direction of the
SC0 I/O line. When SCD0 is cleared, SC0 is an input; when SCD0 is set, SC0 is an output (see
Tables 11-4, 11-5, and Figure 11-45). Hardware and software reset clear SCD0.

11.3.2.2.4 CRB Serial Control 1 Direction (SCD1) Bit 3. SCD1 controls the direction of the
SC1 I/O line. When SCD1 is cleared, SC1 is an input; when SCD1 is set, SC1 is an output (see
Tables 11-4, 11-5 and Figure 11-45). Hardware and software reset clear SCD1.

11.3.2.2.5 CRB Serial Control 2 Direction (SCD2) Bit 4. SCD2 controls the direction of the
SC2 I/O line. When SCD2 is cleared, SC2 is an input; when SCD2 is set, SC2 is an output (see
Tables 11-4, 11-5, and Figure 11-45). Hardware and software reset clear SCD2.
11- 76 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

X
:$

F
F

E
D

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

R
IE

S
C

K
D

S
C

D
2

S
C

D
1

S
C

D
0

(0
)

(0
)

(0
)

(0
)

S
S

I C
O

N
T

R
O

L
R

E
G

IS
T

E
R

 B
 (C

R
B

)
(R

E
A

D
/W

R
IT

E
)

T
IE

1
=

O
U

T
P

U
T

0
=

IN
P

U
T

R
E

T
E

M
O

D
G

C
K

S
Y

N
F

S
L1

F
S

L0
S

H
F

D
O

F
1

O
F

0

P O R T

C

S
C

0
S

C
1

S
C

2
S

C
K

S
R

D
S

T
D

S
C

D
0

S
C

D
1

S
C

D
2

S
C

K
D

— —

D
IR

E
C

T
IO

N
C

O
N

T
R

O
LL

E
D

 B
Y

R
E

C
E

IV
E

 C
LO

C
K

/F
LA

G
 0

R
E

C
E

IV
E

 F
R

A
M

E
 S

Y
N

C
/F

LA
G

 1
T

R
A

N
S

M
IT

 F
R

A
M

E
 S

Y
N

C
/T

X
 A

N
D

 R
X

 F
R

A
M

E
 S

Y
N

C
T

R
A

N
S

M
IT

 C
LO

C
K

/T
X

 A
N

D
 R

X
 C

LO
C

K
S

S
I R

E
C

E
IV

E
 D

AT
A

S
S

I T
R

A
N

S
M

IT
 D

AT
AB

A
S

IC
 F

U
N

C
T

IO
N

N
O

T
E

: P
ar

en
th

es
es

 in
di

ca
te

 R
E

S
E

T
 c

on
di

tio
n.

F
ig

u
re

 1
1-

45
 S

er
ia

l C
o

n
tr

o
l,

D
ir

ec
ti

o
n

 B
it

s

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 7711.3.2.2.6 CRB Clock Source Direction (SCKD) Bit 5. SCKD selects the source of the

clock signal used to clock the transmit shift register in the asynchronous mode and both the
transmit shift register and the receive shift register in the synchronous mode. When SCKD is set,
the internal clock source becomes the bit clock for the transmit shift register and word length
divider and is the output on the SCK pin. When SCKD is cleared, the clock source is external; the
internal clock generator is disconnected from the SCK pin, and an external clock source may
drive this pin. Hardware and software reset clear SCKD.

11.3.2.2.7 CRB Shift Direction (SHFD) Bit 6. This bit causes the transmit shift register to
shift data out MSB first when SHFD equals zero or LSB first when SHFD equals one. Receive
data is shifted in MSB first when SHFD equals zero or LSB first when SHFD equals one. Hard-
ware reset and software reset clear SHFD.

11.3.2.2.8 CRB Frame Sync Length (FSL0 and FSL1) Bits 7 and 8. These bits select the
type of frame sync to be generated or recognized. If FSL1 equals zero and FSL0 equals zero, a
word-length frame sync is selected for both TX and RX that is the length of the data word defined
by bits WL1 and WL0. If FSL1 equals one and FSL0 equals zero, a 1-bit clock period frame sync
is selected for both TX and RX. When FSL0 equals one, the TX and RX frame syncs are different
lengths. Hardware reset and software reset clear FSL0 and FSL1.

11.3.2.2.9 CRB Sync/Async (SYN) Bit 9. SYN controls whether the receive and transmit
functions of the SSI occur synchronously or asynchronously with respect to each other. When
SYN is cleared, asynchronous mode is chosen and separate clock and frame sync signals are
used for the transmit and receive sections. When SYN is set, synchronous mode is chosen and
the transmit and receive sections use common clock and frame sync signals. Hardware reset
and software reset clear SYN.

11.3.2.2.10 CRB Gated Clock Control (GCK) Bit 10. GCK is used to select between a con-
tinuously running data clock or a clock that runs only when there is data to be sent in the transmit
shift register. When GCK is cleared, a continuous clock is selected; when GCK is set, the clock
will be gated. Hardware reset and software reset clear GCK.

NOTE

For gated clock mode with externally generated bit clock, internally generated
frame sync is not defined.

FSL1 FSL0 Frame Sync Length

0 0 WL bit clock for both TX/RX

0 1 One-bit clock for TX and WL bit clock for RX

1 0 One-bit clock for both TX/RX

1 1 One-bit clock for RX and WL bit clock for TX
11- 78 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

11.3.2.2.11 CRB SSI Mode Select (MOD) Bit 11
MOD selects the operational mode of the SSI. When MOD is cleared, the normal
mode is selected; when MOD is set, the network mode is selected. In the normal
mode, the frame rate divider determines the word transfer rate – one word is trans-
ferred per frame sync during the frame sync time slot. In network mode, a word is
(possibly) transferred every time slot. For more details, see 11.3.3 OPERATIONAL
MODES AND PIN DEFINITIONS. Hardware and software reset clear MOD.

11.3.2.2.12 CRB SSI Transmit Enable (TE) Bit 12
TE enables the transfer of data from TX to the transmit shift register. When TE is set
and a frame sync is detected, the transmit portion of the SSI is enabled for that frame.
When TE is cleared, the transmitter will be disabled after completing transmission of
data currently in the SSI transmit shift register. The serial output is three-stated, and
any data present in TX will not be transmitted (i.e., data can be written to TX with TE
cleared; TDE will be cleared, but data will not be transferred to the transmit shift reg-
ister).

The normal mode transmit enable sequence is to write data to TX or TSR before set-
ting TE. The normal transmit disable sequence is to clear TE and TIE after TDE
equals one.

In the network mode, the operation of clearing TE and setting it again will disable the
transmitter after completing transmission of the current data word until the beginning
of the next frame. During that time period, the STD pin will remain in the high-imped-
ance state. Hardware reset and software reset clear TE.

The on-demand mode transmit enable sequence can be the same as the normal
mode, or TE can be left enabled.

Note: TE does not inhibit TDE or transmitter interrupts. TE does not affect the gen-
eration of frame sync or output flags.

11.3.2.2.13 CRB SSI Receive Enable (RE) Bit 13
When RE is set, the receive portion of the SSI is enabled. When this bit is cleared,
the receiver will be disabled by inhibiting data transfer into RX. If data is being
received while this bit is cleared, the remainder of the word will be shifted in and
transferred to the SSI receive data register.

RE must be set in the normal mode and on-demand mode to receive data. In network
mode, the operation of clearing RE and setting it again will disable the receiver after
reception of the current data word until the beginning of the next data frame. Hard-
ware and software reset clear RE.

Note: RE does not inhibit RDF or receiver interrupts. RE does not affect the gener-
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 79

ation of a frame sync.

11.3.2.2.14 CRB SSI Transmit Interrupt Enable (TIE) Bit 14
The DSP will be interrupted when TIE and the TDE flag in the SSI status register is set.
When TIE is cleared, this interrupt is disabled. However, the TDE bit will always indicate
the transmit data register empty condition even when the transmitter is disabled with the
TE bit. Writing data to TX or TSR will clear TDE, thus clearing the interrupt. Hardware
and software reset clear RE.

There are two transmit data interrupts that have separate interrupt vectors:

1. Transmit data with exceptions – This interrupt is generated on the following
condition:
 TIE=1, TDE=1, and TUE=1

2. Transmit data without exceptions – This interrupt is generated on the following
condition:
 TIE=1, TDE=1, and TUE=0

See SECTION 8 PROCESSING STATES for more information on exceptions.

11.3.2.2.15 CRB SSI Receive Interrupt Enable (RIE) Bit 15
When RIE is set, the DSP will be interrupted when RDF in the SSI status register is set.
When RIE is cleared, this interrupt is disabled. However, the RDF bit still indicates the
receive data register full condition. Reading the receive data register will clear RDF, thus
clearing the pending interrupt. Hardware and software reset clear RIE.

There are two receive data interrupts that have separate interrupt vectors:

1. Receive data with exceptions – This interrupt is generated on the following
condition:
 RIE=1, RDF=1, and ROE=1

2. Receive data without exceptions – This interrupt is generated on the following
condition:
 RIE=1, RDF=1, and ROE=0

See SECTION 8 PROCESSING STATES for more information on exceptions.

11.3.2.3 SSI Status Register (SSISR)
The SSISR is an 8-bit read-only status register used by the DSP to interrogate the status
and serial input flags of the SSI. When the SSISR is read to the internal data bus, the
register contents occupy the low-order byte of the data bus, and the high-order portion is
zero filled. The status bits are described in the following paragraphs.
11- 80 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

11.3.2.3.1 SSISR Serial Input Flag 0 (IF0) Bit 0
The SSI latches data present on the SC0 pin during reception of the first received bit
after frame sync is detected. IF0 is updated with this data when the receive shift register
is transferred into the receive data register. The IF0 bit is enabled only when SCD0 is
cleared and SYN is set, indicating that SC0 is an input and the synchronous mode is
selected (see Table 11-4); otherwise, IF0 reads as a zero when it is not enabled. Hard-
ware, software, SSI individual, and STOP reset clear IF0.

11.3.2.3.2 SSISR Serial Input Flag 1 (IF1) Bit 1
The SSI latches data present on the SC1 pin during reception of the first received bit
after frame sync is detected. The IF1 flag is updated with the data when the receiver shift
register is transferred into the receive data register. The IF1 bit is enabled only when
SCD1 is cleared and SYN is set, indicating that SC1 is an input and the synchronous
mode is selected (see Table 11- 4); otherwise, IF1 reads as a zero when it is not
enabled. Hardware, software, SSI individual, and STOP reset clear IF1.

11.3.2.3.3 SSISR TRANSMIT FRAME SYNC FLAG (TFS) Bit 2
When set, TFS indicates that a transmit frame sync occurred in the current time slot. TFS
is set at the start of the first time slot in the frame and cleared during all other time slots.
Data written to the transmit data register during the time slot when TFS is set will be
transmitted (in network mode) during the second time slot in the frame. TFS is useful in
network mode to identify the start of a frame.

Note: In normal mode, TFS will always read as a one when transmitting data because
there is only one time slot per frame – the “frame sync” time slot.

TFS, which is cleared by hardware, software, SSI individual, or STOP reset, is not
affected by TE.

11.3.2.3.4 SSISR Receive Frame Sync Flag (RFS) Bit 3
When set, RFS indicates that a receive frame sync occurred during reception of the word
in the serial receive data register. This indicates that the data word is from the first time
slot in the frame. When RFS is clear and a word is received, it indicates (only in the net-
work mode) that the frame sync did not occur during reception of that word.

Note: In normal mode, RFS will always read as a one when reading data because there
is only one time slot per frame – the “frame sync” time slot.

RFS, which is cleared by hardware, software, SSI individual, or STOP reset, is not
affected by RE.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 81

11.3.2.3.5 SSISR Transmitter Underrun Error Flag (TUE) Bit 4
TUE is set when the serial transmit shift register is empty (no new data to be transmitted)
and a transmit time slot occurs. When a transmit underrun error occurs, the previous
data (which is still present in the TX) will be retransmitted.

In the normal mode, there is only one transmit time slot per frame. In the network mode,
there can be up to 32 transmit time slots per frame.

TUE does not cause any interrupts; however, TUE does cause a change in the interrupt
vector used for transmit interrupts so that a different interrupt handler may be used for a
transmit underrun condition. If a transmit interrupt occurs with TUE set, the transmit data
with exception status interrupt will be generated; if a transmit interrupt occurs with TUE
clear, the transmit data without errors interrupt will be generated.

Hardware, software, SSI individual, and STOP reset clear TUE. TUE is also cleared by
reading the SSISR with TUE set, followed by writing TX or TSR.

11.3.2.3.6 SSISR Receiver Overrun Error Flag (ROE) Bit 5
This flag is set when the serial receive shift register is filled and ready to transfer to the
receiver data register (RX) and RX is already full (i.e., RDF=1). The receiver shift register
is not transferred to RX. ROE does not cause any interrupts; however, ROE does cause
a change in the interrupt vector used for receive interrupts so that a different interrupt
handler may be used for a receive error condition. If a receive interrupt occurs with ROE
set, the receive data with exception status interrupt will be generated; if a receive inter-
rupt occurs with ROE clear, the receive data without errors interrupt will be generated.

Hardware, software, SSI individual, and STOP reset clear ROE. ROE is also cleared by
reading the SSISR with ROE set, followed by reading the RX. Clearing RE does not
affect ROE.

11.3.2.3.7 SSISR SSI Transmit Data Register Empty (TDE) Bit 6
This flag is set when the contents of the transmit data register are transferred to the
transmit shift register; it is also set for a disabled time slot period in network mode (as if
data were being transmitted after the TSR was written). Thirdly, it can be set by the hard-
ware, software, SSI individual, or STOP reset. When set, TDE indicates that data should
be written to the TX or to the time slot register (TSR). TDE is cleared when the DSP
writes to the transmit data register or when the DSP writes to the TSR to disable trans-
mission of the next time slot. If TIE is set, a DSP transmit data interrupt request will be
issued when TDE is set. The vector of the interrupt will depend on the state of the trans-
mitter underrun bit.
11- 82 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

11.3.2.3.8 SSISR SSI Receive Data Register Full (RDF) Bit 7
RDF is set when the contents of the receive shift register are transferred to the receive
data register. RDF is cleared when the DSP reads the receive data register or cleared by
hardware, software, SSI individual, or STOP reset. If RIE is set, a DSP receive data
interrupt request will be issued when RDF is set. The vector of the interrupt request will
depend on the state of the receiver overrun bit.

11.3.2.3.9 SSI Receive Shift Register
This 24-bit shift register receives the incoming data from the serial receive data pin. Data
is shifted in by the selected (internal/external) bit clock when the associated frame sync I/
O (or gated clock) is asserted. Data is assumed to be received MSB first if SHFD equals
zero and LSB first if SHFD equals one. Data is transferred to the SSI receive data regis-
ter after 8, 12, 16, or 24 bits have been shifted in, depending on the word-length control
bits in the CRA (see Figure 11-46).

11.3.2.3.10 SSI Receive Data Register (RX)
RX is a 24-bit read-only register that accepts data from the receive shift register as it
becomes full. The data read will occupy the most significant portion of the receive data
register (see Figure 11-46). The unused bits (least significant portion) will read as zeros.
The DSP is interrupted whenever RX becomes full if the associated interrupt is enabled.

11.3.2.3.11 SSI Transmit Shift Register
This 24-bit shift register contains the data being transmitted. Data is shifted out to the
serial transmit data pin by the selected (internal/external) bit clock when the associated
frame sync I/O (or gated clock) is asserted. The number of bits shifted out before the
shift register is considered empty and may be written to again can be 8, 12, 16, or 24 bits
(determined by the word-length control bits in CRA). The data to be transmitted occupies
the most significant portion of the shift register. The unused portion of the register is
ignored. Data is shifted out of this register MSB first if SHFD equals zero and LSB first if
SHFD equals one (see Figure 11-47).

11.3.2.3.12 SSI Transmit Data Register (TX)
TX is a 24-bit write-only register. Data to be transmitted is written into this register and is
automatically transferred to the transmit shift register. The data written (8, 12, 16, or 24
bits) should occupy the most significant portion of TX (see Figure 11-47). The unused
bits (least significant portion) of TX are don’t care bits. The DSP is interrupted whenever
TX becomes empty if the transmit data register empty interrupt has been enabled.

11.3.2.3.13 Time Slot Register (TSR)
TSR is effectively a null data register that is used when the data is not to be transmitted
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 83

in the available transmit time slot. For the purposes of timing, TSR is a write-only register

16 BITS12 BITS8 BITS

SRD

GDB

23 16 15 12 11 8 7 0

RX

24 BITS

SHFD = 0

RECEIVE SHIFT
REGISTER

(a) SHFD = 0

SRD

GDB

23 16 15 12 11 8 7 0

RX

SHFD = 1

RECEIVE SHIFT
REGISTER

(b) SHFD = 1

Figure 11-46 Receive Data Path
11- 84 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

STD

SHFD = 0

12 11

GDB

23 16 15 8 7 0

TX

TRANSMIT SHIFT
REGISTER

23 16 15 8 7 0

12 11

16 BIT12 BIT8 BIT

STD

GDB

TX

24 BITS

SHFD = 1

TRANSMIT SHIFT
REGISTER

(a) SHFD = 0

(b) SHFD = 1

Figure 11-47 Transmit Data Path
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 85

that behaves like an alternative transmit data register, except that, rather than transmit-
ting data, the transmit data pin is in the high-impedance state for that time slot.

11.3.3 Operational Modes and Pin Definitions
Tables 11-6 and 11-7 completely describe the SSI operational modes and pin definitions
(Table 11-4 is a simplified version of these tables). The operational modes are as fol-
lows:

1. Continuous Clock
 Mode 1 – Normal with Internal Frame Sync

Control Bits Mode SC0 SC1 SC2 SCK

MOD GCLK SYN SCD2 SCD1 SCD0 SCKD DC4-
DC0 TX RX In Out In Out In Out In Out

0 0 0 1 1 X X X 1 1 RXC RXC — FSR — FST TXC TXC

0 0 1 1 X X X X 1 1 F0 F0 F1 F1 — FS* *XC *XC

1 0 0 1 1 X X 1 2 2 RXC RXC — FSR — FST TXC TXC

1 0 1 1 X X X 1 2 2 F0 F0 F1 F1 — FS* *XC *XC

0 0 0 0 1 X X X 3 1 RXC RXC — FSR FST — TXC TXC

0 0 0 1 0 X X X 1 3 RXC RXC FSR — — FST TXC TXC

0 0 0 0 0 X X X 3 3 RXC RXC FSR — FST — TXC TXC

0 0 1 0 X X X X 3 3 F0 F0 F1 F1 FS* — *XC *XC

1 0 0 0 1 X X X 4 2 RXC RXC — FSR FST — TXC TXC

1 0 0 1 0 X X 1 2 4 RXC RXC FSR — — FST TXC TXC

1 0 0 0 0 X X X 4 4 RXC RXC FSR — FST — TXC TXC

1 0 1 0 X X X X 4 4 F0 F0 F1 F1 FS* — *XC *XC

1 0 0 1 1 X X 0 8 2 RXC RXC — FSR — FST TXC TXC

1 0 1 1 X X X 0 8 9 F0 F0 F1 F1 — FS* *XC *XC

1 0 0 1 0 X X 0 8 4 RXC RXC FSR — — FST TXC TXC

DC4-DC0 = 0 means that bits DC4 = 0, DC3 = 0, DC2 = 0, DC1 = 0, and DC0 = 0.
DC4-DC0 = 1 means that bits DC4-DC0≠0.
TXC — Transmitter Clock
RXC — Receiver Clock
*XC — Transmitter/Receiver Clock (Synchronous Operation)
FST — Transmitter Frame Sync
FSR — Receiver Frame Sync
FS* — Transmitter/Receiver Frame Sync (Synchronous Operation)
F0 — Flag 0
F1 — Flag 1

Table 11-6 Mode and Pin Definition Table — Continuous Clock
11- 86 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

 Mode 2 – Network with Internal Frame Sync
 Mode 3 – Normal with External Frame Sync
 Mode 4 – Network with External Frame Sync

2. Gated Clock
 Mode 5 – External Gated Clock
 Mode 6 – Normal with Internal Gated Clock
 Mode 7 – Network with Internal Gated Clock

3. Special Case (Both Gated and Continuous Clock)
 Mode 8 – On-Demand Mode (Transmitter Only)
 Mode 9 – Receiver Follows Transmitter Clocking

11.3.4 Registers After Reset
Hardware or software reset clears the port control register bits, which configure all I/O as
general-purpose input. The SSI will remain in reset while all SSI pins are programmed as
general-purpose I/O (CC8–CC3=0) and will become active only when at least one of the
SSI I/O pins is programmed as not general-purpose I/O. Table 11-8 shows how each
type of reset affects each SSI register bit.

Control Bits Mode SC0 SC1 SC2 SCK

MOD GCLK SYN SCD2 SCD1 SCD0 SCKD DC4-
DC0 TX RX In Out In Out In Out In Out

0 1 0 X X 1 1 X 6 6 — RXC ? FSR ? FST — TXC

0 1 1 X X X 1 X 6 6 F0 F0 F0 F1 ? FS* — *XC

0 1 0 X X 1 0 X 5 6 — RXC ? FSR ? ? TXC —

0 1 0 X X 0 0 X 5 5 RXC — ? ? ? ? TXC —

0 1 1 X X X 0 X 5 5 F0 F0 F1 F1 ? ? *XC —

1 1 0 X X 1 1 0 8 7 — RXC ? FSR ? FST — TXC

1 1 0 X X 0 1 0 8 5 RXC — ? ? ? FST — TXC

1 1 1 X X X 1 0 8 9 F0 F0 F1 F1 ? FS* — *XC

0 1 0 X X 0 1 X 6 5 RXC — ? ? ? FST — TXC

Table 11-7 Mode and Pin Definition Table — Gated Clock

DC4–DC0=0 means that bits DC4=0, DC3=0, DC2=0, DC1=0, and DC0=0.
TXC – Transmitter Clock
RXC – Receiver Clock
*XC – Transmitter/Receiver Clock (Synchronous Operation)
FST – Transmitter Frame Sync
FSR – Receiver Frame Sync
FS* – Transmitter/Receiver Frame Sync (Synchronous Operation)
F0 – Flag 0
F1 – Flag 1
? – Undefined
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 87

Register
 Name

Register
Data

Bit Number
Reset

HW Reset SW Reset Individual Reset ST Reset

CRA

PSR 15 0 0 – –

WL(2–0) 13,14 0 0 – –

DC(4–0) 8–12 0 0 – –

PM(7–0) 0–7 0 0 – –

CRB

RIE 15 0 0 – –

TIE 14 0 0 – –

RE 13 0 0 – –

TE 12 0 0 – –

MOD 11 0 0 – –

GCK 10 0 0 – –

SYN 9 0 0 – –

FSL1 8 0 0 – –

FSL0 7 0 0 – –

SHFD 6 0 0 – –

SCKD 5 0 0 – –

SCD(2–0) 2–4 0 0 – –

OF(1–0) 0,1 0 0 – –

SSISR

RDF 7 0 0 0 0

TDE 6 1 1 1 1

ROE 5 0 0 0 0

TUE 4 0 0 0 0

RFS 3 0 0 0 0

TFS 2 0 0 0 0

IF(1–0) 0,1 0 0 0 0

RDR RDR (23–0) 23–0 – – – –

TDR TDR (23–0) 23–0 – – – –

RSR RDR (23–0) 23–0 – – – –

TSR RDR (23–0) 23–0 – – – –

Table 11-8 SSI Registers After Reset

NOTES:
 1. RSR – SSI receive shift register
 2. TSR – SSI transmit shift register
 3. HW – Hardware reset is caused by asserting the external pin RESET.
 4. SW – Software reset is caused by executing the RESET instruction.
 5. IR – Individual reset is caused by SSI peripheral pins (i.e., PCC(3–8)) being

configured as general-purpose I/O.
 6. ST – Stop reset is caused by executing the STOP instruction.
11- 88 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

11.3.5 SSI Initialization
The correct way to initialize the SSI is as follows:

1. Hardware, software, SSI individual, or STOP reset

2. Program SSI control registers

3. Configure SSI pins (at least one) as not general-purpose I/O

During program execution, CC8–CC3 may be cleared, causing the SSI to stop serial
activity and enter the individual reset state. All status bits of the interface will be set to
their reset state; however, the contents of CRA and CRB are not affected. This proce-
dure allows the DSP program to reset each interface separately from the other internal
peripherals.

The DSP program must use an SSI reset when changing the MOD, GCK, SYN, SCKD,
SCD2, SCD1, or SCD0 bits to ensure proper operation of the interface. Figure 11-48 is a
flowchart illustrating the three initialization steps previously listed. Figure 11-49, Figure
11-50, and Figure 11-51 provide additional detail to the flowchart.

Figure 11-51 shows the six control bits in the PCC, which select the six SSI pins as either
general-purpose I/O or as SSI pins. The STD pin can only transmit data; the SRD pin
can only receive data. The other four pins can be inputs or outputs, depending on how
they are programmed. This programming is accomplished by setting bits in CRA and
CRB as shown in Figure 11-45. The CRA (see Figure 11-49) sets the SSI bit rate clock
with PSR and PM0–PM7, sets the word length with WL1 and WL0, and sets the number
of words in a frame with DC0–DC4. There is a special case where DC4–DC0 equals
zero (one word per frame). Depending on whether the normal or network mode is
selected (MOD=0 or MOD=1, respectively), either the continuous periodic data mode is
selected, or the on-demand data driven mode is selected. The continuous periodic mode
requires that FSL1 equals one and FSL0 equals zero. Figure 11-50 shows the meaning
of each individual bit in the CRB. These bits should be set according to the application
requirements.

HARDWARE OR SOFTWARE REST

PROGRAM CRA AND CRB

SELECT PINS TO BE USED
PORT C CONTROL REGISTER

Figure 11-48 SSI Initialization Block Diagram
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 89

W
L

1
W

L
0

B
it

s/
W

o
rd

0
0

8

0
1

12

X
:$

F
F

E
C

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

P
S

R
P

M
5

P
M

4
P

M
3

P
M

2
S

S
I C

O
N

T
R

O
L

R
E

G
IS

T
E

R
 A

 (C
R

A
)

(R
E

A
D

/W
R

IT
E

)
W

L1
W

L0
D

C
4

D
C

3
D

C
2

D
C

1
D

C
0

P
M

7
P

M
6

P
M

1
P

M
0

X
:$

F
F

E
D

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

R
IE

S
C

K
D

S
C

D
2

S
C

D
1

S
C

D
0

S
S

I C
O

N
T

R
O

L
R

E
G

IS
T

E
R

 B
 (C

R
B

)
(R

E
A

D
/W

R
IT

E
)

T
IE

(S
E

E
 N

O
T

E
 3

)

R
E

T
E

M
O

D
G

C
K

S
Y

N
F

S
L1

F
S

L0
S

H
F

D
O

F
1

O
F

0

P
R

E
S

C
A

LE
R

IF
 P

S
R

 =
 1

, T
H

E
N

 D
IV

ID
E

 B
Y

 8
IF

 P
S

R
 =

 0
, T

H
E

N
 D

IV
ID

E
 B

Y
 1

D
IV

ID
E

B
Y

 2

S
S

I B
IT

 R
AT

E
 C

LO
C

K
D

C
4-

D
C

0
W

or
d

Tr
an

sf
er

 R
at

e
(S

ee
 N

ot
e

1)
W

or
ds

/F
ra

m
e

(S
ee

 N
ot

e
2)

0
0

0
0

0
C

on
tin

uo
us

 P
er

io
di

c
(S

ee
 N

ot
e

3)
O

n-
D

em
an

d
D

at
a

D
riv

en

0
0

0
0

1
2

2

0
0

0
1

0
3

3

0
0

0
1

1
4

4

• • •

• • •

• • •

D
IV

ID
E

B
Y

 2
f o

sc
D

IV
ID

E
 B

Y
 1

TO

 2
56

(S
E

E
 N

O
T

E
S

 1
 A

N
D

 2
)

N
O

T
E

S
:

1.
 N

O
R

M
A

L
—

 M
O

D
 =

 0
2.

N
E

T
W

O
R

K
 —

 M
O

D
 =

 1
3.

 F
S

L1
 =

 1
, F

S
L0

 =
 0

F
ig

u
re

 1
1-

49
 S

S
I C

R
A

 In
it

ia
liz

at
io

n
 P

ro
ce

d
u

re
11- 90 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Tables 11-9(a) and 11-9(b) provide a convenient listing of PSR and PM0–PM7 settings
for the common data communication rates and the highest rate possible for the SSI for
the chosen crystal frequencies. The crystal frequency selected for Table 11-9(a) is the
one used by the DSP56000ADS board; the one selected for Table 11-9(b) is the closest
one to 27 MHz that divides down to exactly 128 kHz. If an exact baud rate is required,
the crystal frequency may have to be selected. Table 11-10 gives the PSR and PM0–

15 14 13 12 1 0

RIE SCKD SCD2 SCD1 SCD0TIE RE TE MOD GCK SYN FSL1 FSL0 SHFD OF1 OF0

11 10 9 8 7 6 5 4 3 2

FRAME SYNC LENGTH 1
0 = RX IS WORD LENGTH
1 = RX IS BIT LENGTH

SYNC/ASYNC CONTROL
0 = ASYNCHRONOUS
1 = SYNCHRONOUS

GATED CLOCK CONTROL
0 = CONTINUOUS CLOCK
1 = GATED CLOCK

SSI MODE SELECT
0 = NORMAL
1 = NETWORK

FRAME SYNC LENGTH 0
0 = RX AND TX SAME

LENGTH
1 = RX AND TX DIFFERENT

LENGTH

SHIFT DIRECTION
0 = MSB FIRST
1 = LSB FIRST

CLOCK SOURCE DIRECTION
0 = INPUT (EXTERNAL)
1 = OUTPUT (INTERNAL)

SERIAL CONTROL
DIRECTION BITS

0 = INPUT
1 = OUTPUT

TRANSMIT ENABLE
0 = DISABLE
1 = ENABLE

RECEIVE ENABLE
0 = DISABLE
1 = ENABLE

TRANSMIT INTERRUPT ENABLE
0 = DISABLE
1 = ENABLE

RECEIVE INTERRUPT ENABLE
0 = DISABLE
1 = ENABLE

OUTPUT FLAG 1
IF SYN = 1, SCD1 = 1
OF SC1 PIN

OUTPUT FLAG 0
IF SYN = 1, SCD0 = 1
OF SC0 PIN

Figure 11-50 SSI CRB Initialization Procedure
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 91

PM7 settings in addition to the required crystal frequency for three common telecommu-
nication frequencies.

11.3.6 SSI Exceptions
The SSI can generate four different exceptions (see Figure 11-52 and Figure 11-53):

1. SSI Receive Data – occurs when the receive interrupt is enabled, the receive
data register is full, and no receive error conditions exist. Reading RX clears
the pending interrupt. This error-free interrupt can use a fast interrupt service
routine for minimum overhead.

2. SSI Receive Data with Exception Status – occurs when the receive interrupt is
enabled, the receive data register is full, and a receiver overrun error has
occurred. ROE is cleared by first reading the SSISR and then reading RX.

3. SSI Transmit Data – occurs when the transmit interrupt is enabled, the trans-
mit data register is empty, and no transmitter error conditions exist. Writing to
TX or the TSR will clear this interrupt. This error-free interrupt may use a fast
interrupt service routine for minimum overhead.

4. SSI Transmit Data with Exception Status – occurs when the transmit interrupt
is enabled, the transmit data register is empty, and a transmitter underrun
error has occurred. TUE is cleared by first reading the SSISR and then writing
to TX or the TSR to clear the pending interrupt.

23 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CC CC CC CC CC CC CC CC CC
8 7 6 5 4 3 2 1 0

X:$FFE1 PORT C CONTROL
REGISTER (PCC)

STD

SRD

SCK

SC2

SC1

SC0

CCx Function

0 Parallel I/O

1 Serial Interface

P
O
R
T

C

PC0
PC1
PC2
SC0
SC1
SC2
SCK
SRD
STD

SERIAL CONTROL PIN 0
SERIAL CONTROL PIN 1
SERIAL CONTROL PIN 2
SERIAL CLOCK PIN
SERIAL RECEIVE DATA PIN
SERIAL TRANSMIT DATA PIN

Figure 11-51 SSI Initialization Procedure
11- 92 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

11.3.7 Operating Modes – Normal, Network, and On-Demand
The SSI has three basic operating modes and many data/operation formats. These modes can be programmed by several bits in the SSI control registers. Table 11-11 lists the SSI operating modes and some of the typical applications in which they may be used.

The data/operation formats are selected by choosing between gated and continuous clocks, synchronization of transmitter and receiver, selection of word or bit frame sync, and whether the LSB is transferred first or last. The following paragraphs describe how to

select a particular data/operation format and describe examples of normal-mode and network-mode applications. The on-demand mode is selected as a special case of the network mode.

The SSI can function as an SPI master or SPI slave, using additional logic for arbitration, which is required because the SSI interface does not perform SPI master/slave arbitration. An SPI master device always uses an internally generated clock; whereas, an SPI

slave device always uses an external clock.

11.3.7.1 Data/Operation Formats
The data/operation formats available to the SSI are selected by setting or clearing con-

Baud Rate (BPS) PSR PM

1000 1 $27F

2000 1 $13F

4000 1 $9F

8000 1 $4F

16K 1 $27

32K 1 $13

64K 0 $4F

128K 0 $27

5.12M 0 $00

Table 11-9(a) SSI Baud Rates
for a 20.48-MHz Crystal

Baud Rate (BPS) PSR PM

1000 1 $33F

2000 1 $19F

4000 1 $CF

8000 1 $67

16K 1 $33

32K 1 $19

64K 0 $67

128K 0 $33

6.656M 0 $00

Table 11-9(b) SSI Baud Rates
for a 26.624-MHz Crystal

BPS = fosc ÷ (4 × (7(PSR) +1) × (PM + 1))
where fosc=20.48 MHz

PSR = 0 or 1
PM = 0 to $FFF

BPS = fosc ÷ (4 × (7(PSR) +1) × (PM + 1))
where fosc=26.624 MHz

PSR = 0 or 1
PM = 0 to $FFF

Baud Rate (BPS) PSR PM
Crystal

Frequency

1.536M 0 $03 24.576 MHz

1.544M 0 $03 24.707 MHz

2.048M 0 $02 24.576 MHz

Table 11-10 Crystal Frequencies Required for Codecs

BPS = fosc ÷ (4 × (7(PSR) +1) × (PM + 1))
PSR = 0 or 1
PM = 0 to $FFF
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 93

$0000

$0002

$0004

$0006

$0008

$000A

$000C

$000E

$0010

$0012

$0014

$0016

$0018

$001A

$001C

$001E

$0020

$0022

$0024

$0026

$0028

$002A

$002C

$002E

$0030

$0032

$0034

$0038

$003A

$003C

$003E

HARDWARE RESET

STACK ERROR

TRACE

SWI (SOFTWARE INTERRUPT)

IRQA EXTERNAL HARDWARE INTERRUPT

IRQB EXTERNAL HARDWARE INTERRUPT

SSI RECEIVE DATA

SSI RECEIVE DATA WITH EXCEPTION STATUS

SSI TRANSMIT DATA

SSI TRANSMIT DATA WITH EXCEPTION STATUS

SCI RECEIVE DATA

SCI RECEIVE DTA WITH EXCEPTION STATUS

SCI TRANSMIT DATA

SCI IDLE LINE

SCI TIMER

RESERVED FOR HARDWARE DEVELOPEMENT

HOST RECEIVE DATA

HOST TRANSMIT DATA

HOST COMMAND (DEFAULT)

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

AVAILABLE FOR HOST COMMAND

ILLEGAL INSTRUCTION

EXCEPTION
STARTING
ADDRESS

PROGRAM MEMORY SPACE

EXCEPTION SOURCE

SERIAL
COMMUNICATIONS

INTERFACE

TWO WORDS PER VECTOR

EXTERNAL
INTERRUPTS

INTERNAL
INTERRUPTS

INTERNAL
INTERRUPTS

HOST
INTERFACE

SYNCHRONOUS
SERIAL

INTERFACE

Figure 11-52 SSI Exception Vector Locations
11- 94 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SSI EXCEPTION MASK

EXCEPTION VECTOR TABLE

15 14 13 12 11 10 9 8

RIE TIE RE TE MOD GCK SYN FSL1

X:$FFED
SSI CONTROL REGISTER (CRB)
(READ/WRITE)

SSI
EXCEPTION

MASK

EXCEPTION
STARTING
ADDRESS

$0000

$000C

$000E

$0010

$0012

SSI RECEIVE DATA

SSI RECEIVE DATA WITH EXCEPTIONS STATUS

SSI TRANSMIT DATA

SSI TRANSMIT DATA WITH EXCEPTION STATUS

7 6 5 4 3 2 1 0

RDF TDE ROE TUE RFS TFS IF1 IF0

X:$FFFE
SSI STATUS REGISTER (SSISR)
(READ ONLY)

SSI STATUS BITS

RECEIVE
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
RIE = 1, RDF = 1, AND ROE = 0.

2. PENDING INTERRUPT IS CLEARED
BY READING RX.

RECEIVE WITH EXCEPTION STATUS
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
RIE = 1, RDF = 1, AND ROE = 1.

2. ROE IS CLEARED BY READING
SSISR FOLLOWED BY:

3. READING RX TO CLEAR PENDING
INTERRUPT.

4. APLICATION-SPECIFIC CODE.

TRANSMIT
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
TIE = 1, TDF = 1, AND TUE = 0.

2. PENDING INTERRUPT IS CLEARED
BY WRITING TO TX OR TSR.

TRANSMIT WITH EXCEPTION STATUS
INTERRUPT SERVICE ROUTINE

1. INTERRUPT IS GENERATED WHEN
TIE = 1, TDF = 1, AND TUE = 1.

2. TUE IS CLEARED BY READING
SSISR FOLLOWED BY:

3. WRITING TO TX OR TSR TO CLEAR
PENDING INTERRUPT.

4. APPLICATION-SPECIFIC CODE.

Figure 11-53 SSI Exceptions
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 95

11.3.7.1.1 Normal/Network Mode Selection
Selecting between the normal mode and network mode is accomplished by clearing or setting the MOD bit in the CRB (see Figure 11-54). For normal mode, the SSI functions with one data word of I/O per frame (see Figure 11-55). For the network mode, 2 to 32 data

words of I/O may be used per frame. In either case, the transfers are periodic. The normal mode is typically used to transfer data to/from a single device. Network mode is typically used in time division multiplexed (TDM) networks of codecs or DSPs with multiple words

per frame (see Figure 11-56, which shows two words in a frame with either word-length or bit-length frame sync). The frame sync shown in Figure 11-54 is the word-length frame sync. A bit-length frame sync can be chosen by setting FSL1 and FSL0 for the configu-

ration desired.

11.3.7.1.2 Continuous/Gated Clock Selection
The TX and RX clocks may be programmed as either continuous or gated clock signals by the GCK bit in the CRB. A continuous TX and RX clock is required in applications such as communicating with some codecs where the clock is used for more than just data

transfer. A gated clock, in which the clock only toggles while data is being transferred, is useful for many applications and is required for SPI compatibility. The frame sync outputs may be used as a start conversion signal by some A/D and D/A devices.

Figure 11-57 illustrates the difference between continuous clock and gated clock systems. A separate frame-sync signal is required in continuous clock systems to delimit the active clock transitions. Although the word-length frame sync is shown in Figure 11-57, a bit-

length frame sync can be used (see Figure 11-58). In gated clock systems, frame synchronization is inherent in the clock signal; thus a separate sync signal is not required (see Figure 11-59 and Figure 11-60). The SSI can be programmed to generate frame sync out-

puts in gated clock mode but does not use frame sync inputs.

Input flags (see Figure 11-59 and Figure 11-60) are latched on the negative edge of the first data bit of a frame. Output flags are valid during the entire frame.

11.3.7.1.3 Synchronous/Asynchronous Operating Modes
The transmit and receive sections of this interface may be synchronous or asynchronous – i.e., the transmitter and receiver may use common clock and synchronization signals (synchronous operating mode, see Figure 11-61) or they may have their own separate

clock and sync signals (asynchronous operating mode). The SYN bit in CRB selects synchronous or asynchronous operation. Since the SSI is designed to operate either synchronously or asynchronously, separate receive and transmit interrupts are provided.

Figure 11-62 illustrates the operation of the SYN bit in the CRB. When SYN equals zero,
the SSI TX and RX clocks and frame sync sources are independent. If SYN equals one,
the SSI TX and RX clocks and frame sync come from the same source (either external or
internal).

Data clock and frame sync signals can be generated internally by the DSP or may be
obtained from external sources. If internally generated, the SSI clock generator is used
to derive bit clock and frame sync signals from the DSP internal system clock. The SSI
clock generator consists of a selectable fixed prescaler and a programmable prescaler
for bit rate clock generation and also a programmable frame-rate divider and a word-
length divider for frame-rate sync-signal generation.

Figures 11-63, 11-64, 11-65, and 11-66 show the definitions of the SSI pins during each

Operating
 Format

Serial
Clock

TX, RX
Sections

Typical Applications

Normal Continuous Asynchronous Single Asynchronous Codec; Stream-Mode Channel Interface

Normal Continuous Synchronous Multiple Synchronous Codecs

Normal Gated Asynchronous DSP-to-DSP; Serial Peripherals (A/D,D/A)

Normal Gated Synchronous SPI-Type Devices; DSP to MCU

Network Continuous Asynchronous TDM Networks

Network Continuous Synchronous TDM Codec Networks, TDM DSP Networks

On-Demand Gated Asynchronous Parallel-to-Serial and Serial-to-Parallel Conversion

On-Demand Gated Synchronous DSP to SPI Peripherals

Table 11-11 SSI Operating Modes
11- 96 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

X
:$

F
F

E
D

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

R
IE

S
C

K
D

S
C

D
2

S
C

D
1

S
C

D
0

S
S

I C
O

N
T

R
O

L
R

E
G

IS
T

E
R

 B
 (C

R
B

)
(R

E
A

D
/W

R
IT

E
)

T
IE

R
E

T
E

M
O

D
G

C
K

S
Y

N
F

S
L1

F
S

L0
S

H
F

D
O

F
1

O
F

0

*
*

N
O

R
M

A
L

 M
O

D
 =

 0

S
E

R
IA

L
C

LO
C

K

F
R

A
M

E
 S

Y
N

C

S
E

R
IA

L
D

AT
A

D
AT

A
D

AT
A

T
R

A
N

S
M

IT
T

E
R

 IN
T

E
R

R
U

P
T

 A
N

D
 F

LA
G

S
 S

E
T

R
E

C
E

IV
E

R
 IN

T
E

R
R

U
P

T
 A

N
D

 F
LA

G
S

 S
E

T

N
O

T
E

: I
nt

er
ru

pt
s

oc
cu

r a
nd

 d
at

a
is

 tr
an

sf
er

re
d

on
ce

 p
er

 fr
am

e
sy

nc
.

*
N

E
T

W
O

R
K

 M
O

D
 =

 1

S
E

R
IA

L
C

LO
C

K

F
R

A
M

E
 S

Y
N

C

T
R

A
N

S
M

IT
T

E
R

 IN
T

E
R

R
U

P
T

S
 A

N
D

 F
LA

G
S

 S
E

T

S
LO

T
 1

S
LO

T
 2

S
LO

T
 3

S
LO

T
 1

S
LO

T
 2

S
E

R
IA

L
D

AT
A

R
E

C
E

IV
E

R
 IN

T
E

R
R

U
P

T
 A

N
D

 F
LA

G
S

 S
E

T

N
O

T
E

: I
nt

er
ru

pt
s

oc
cu

r e
ve

ry
 ti

m
e

sl
ot

 a
nd

 a
 w

or
d

m
ay

 b
e

tra
ns

fe
rr

ed
.

F
ig

u
re

 1
1-

54
 C

R
B

 M
O

D
 B

it
 O

p
er

at
io

n

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 97

of the four main operating modes of the SSI I/O interface. Figure 11-63 uses a gated

FRAME SYNC
(FSL0 = 0, FSL1 = 0)

FRAME SYNC
(FSL0 = 0, FSL1 = 1)

DATA OUT

FLAGS

SLOT 0 SLOT 0WAIT

Figure 11-55 Normal Mode, External Frame Sync (8 Bit, 1 Word in Frame)

SLOT 0 SLOT 1SLOT 1 SLOT 0

FRAME SYNC
(FSL0 = 0, FSL1 = 0)

FRAME SYNC
(FSL0 = 0, FSL1 = 1)

FLAGS

DATA

Figure 11-56 Network Mode, External Frame Sync (8 Bit, 2 Words in Frame)
11- 98 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

X
:$

F
F

E
D

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

R
IE

S
C

K
D

S
C

D
2

S
C

D
1

S
C

D
0

S
S

I C
O

N
T

R
O

L
R

E
G

IS
T

E
R

 B
 (C

R
B

)
(R

E
A

D
/W

R
IT

E
)

T
IE

R
E

T
E

M
O

D
G

C
K

S
Y

N
F

S
L1

F
S

L0
S

H
F

D
O

F
1

O
F

0

* *
C

O
N

T
IN

U
O

U
S

 C
L

O
C

K
 G

C
K

 =
 0

S
E

R
IA

L
C

LO
C

K

F
R

A
M

E
 S

Y
N

C

S
E

R
IA

L
D

AT
A

D
AT

A
D

AT
A

N
O

T
E

: F
ra

m
e

sy
nc

 is
 re

qu
ire

d
to

 te
ll

w
he

n
da

ta
 is

 p
re

se
nt

.

S
E

R
IA

L
C

LO
C

K

S
E

R
IA

L
D

AT
A

N
O

T
E

S
:

1.
W

or
d

sy
nc

hr
on

iz
at

io
n

is
 in

he
re

nt
 in

 th
e

se
ria

l c
lo

ck
 s

ig
na

l.
2.

Fr
am

e
S

yn
c

ge
ne

ra
tio

n
is

 o
pt

io
na

l.

D
AT

A
 C

H
A

N
G

E
S

D
AT

A
 S

TA
B

LE

*
G

A
T

E
D

 C
L

O
C

K
 G

C
K

 =
 1

D
AT

A
 C

H
A

N
G

E
S

D
AT

A
 S

TA
B

LE

D
AT

A
D

AT
A

F
ig

u
re

 1
1-

57
 C

R
B

 G
C

K
 B

it
 O

p
er

at
io

n

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 99

clock (from either an external source or the internal clock), which means that frame sync

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

C
O

N
T

IN
U

O
U

S
 C

LO
C

K

N
O

T
E

S
:

1.
Fo

r F
S

L1
 -

0
th

e
fra

m
e

sy
nc

 is
 la

tc
he

d
an

d
en

ab
le

s
th

e
S

T
D

 o
ut

pu
t b

uf
fe

r,
bu

t d
at

a
m

ay
 n

ot
 b

e
va

lid
 u

nt
il

ris
in

g
ed

ge
 o

f b
it

cl
oc

k.
2.

W
L

bi
t f

ra
m

e
sy

nc
 (F

S
L0

 =
 0

, F
S

L1
 =

 0
) i

s
no

t d
efi

ne
d

fo
r D

C
 =

 0
 in

 c
on

tin
uo

us
 c

lo
ck

 m
od

e.
3.

D
at

a
an

d
fla

gs
 tr

an
si

tio
n

af
te

r e
xt

er
na

l f
ra

m
e

sy
nc

 b
ut

 n
ot

 b
ef

or
e

ris
in

g
ed

ge
 o

f c
lo

ck
.

0
D

AT
A

 O
U

T
 (

F
O

R
 D

C
 =

 0
, O

R
N

E
T

W
O

R
K

 M
O

D
E

S
)

D
AT

A
 O

U
T

 (
F

O
R

 D
C

 >
 0

)

D
AT

A
 IN

 L
AT

C
H

E
D

IN
P

U
T

 F
LA

G
S

 L
AT

C
H

E
D

(D
C

 =
 0

) (D
C

 =
 0

)

D
AT

A
 N

O
T

 D
E

F
IN

E
D

F
R

A
M

E
 S

Y
N

C
 O

U
T

:
F

S
L0

 =
 0

, F
S

L1
 =

 1

F
S

L0
 =

 0
, F

S
L1

 =
 0

O
U

T
P

U
T

 F
LA

G
S

F
R

A
M

E
 S

Y
N

C
 IN

:
F

S
L0

 =
 0

, F
S

L1
 =

 1

F
S

L0
 =

 0
, F

S
L1

 =
 0

D
AT

A
 O

U
T

 F
O

R
:

F
S

L1
 =

 0
, F

S
L0

 =
 0

O
U

T
P

U
T

 F
LA

G
S

F
ig

u
re

 1
1-

58
 C

o
n

ti
n

u
o

u
s

C
lo

ck
 T

im
in

g
 D

ia
g

ra
m

 (
8-

B
it

 E
xa

m
p

le
)

11- 100 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

is inherent in the clock. Since both the transmitter and receiver use the same clock

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

G
AT

E
D

 C
LO

C
K

O
U

T
P

U
T

 (
D

C
>

0)

G
AT

E
D

 C
LO

C
K

(D
C

 =
 0

)

D
AT

A
 O

U
T

(D
C

 >
 0

)

D
AT

A
 IN

 L
AT

C
H

E
D

IN
P

U
T

 F
LA

G
S

 L
AT

C
H

E
D

(D
C

 =
 0

)

F
R

A
M

E
 S

Y
N

C
 O

U
T

:
F

S
L0

 =
 0

, F
S

L1
 =

 1

O
U

T
P

U
T

 F
LA

G
S

 (
D

C
 >

 0
)

D
AT

A
 O

U
T

(D
C

 =
 0

)

F
R

A
M

E
 S

Y
N

C
 O

U
T

:
F

S
L0

 =
 0

, F
S

L1
 =

 0

O
U

T
P

U
T

 F
LA

G
S

 (
D

C
 =

 0
)

7
6

0

F
ig

u
re

 1
1-

59
 I

n
te

rn
al

ly
 G

en
er

at
ed

 C
lo

ck
 T

im
in

g
 (

8-
B

it
 E

xa
m

p
le

)

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 101

(synchronous configuration), both use the SCK pin. SC0 and SC1 are designated as

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

G
AT

E
D

 C
LO

C
K

IN
P

U
T

 (
D

C
>

0)

G
AT

E
D

 C
LO

C
K

(D
C

 =
 0

)

D
AT

A
 O

U
T

(D
C

 >
 0

)

D
AT

A
 IN

 L
AT

C
H

E
D

D
AT

A
 O

U
T

(D
C

 =
 0

)

7
6

0

t d
hg

c
>

 =
 5

 n
s

IN
P

U
T

 F
LA

G
S

 L
AT

C
H

E
D

N
O

T
E

S
:

1.
O

ut
pu

t e
na

bl
ed

 o
n

ris
in

g
ed

ge
 o

f fi
rs

t c
lo

ck
 in

pu
t.

2.
O

ut
pu

t d
is

ab
le

d
on

 fa
lli

ng
 e

dg
e

of
 la

st
 c

lo
ck

 p
ul

se
.

3.

t d
hg

c
is

 g
ua

ra
nt

ee
d

by
 c

irc
ui

t d
es

ig
n.

4.
Fr

am
e

sy
nc

s
(in

 o
r o

ut
) a

re
 n

ot
 d

efi
ne

d
fo

r e
xt

er
na

l g
at

ed
 c

lo
ck

 m
od

e.

F
ig

u
re

 1
1-

60
 E

xt
er

n
al

ly
 G

en
er

at
ed

 C
lo

ck
 T

im
in

g
 (

8-
B

it
 E

xa
m

p
le

)

11- 102 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

flags or can be used as general purpose-parallel I/O. SC2 is not defined if it is an input;
SC2 is the transmit and receive frame sync if it is an output.

Figure 11-64 shows a gated clock (from either an external source or the internal clock),
which means that frame sync is inherent in the clock. Since this configuration is asyn-
chronous, SCK is the transmitter clock pin (input or output) and SC0 is the receiver clock
pin (input or output). SC1 and SC2 are designated as receive or transmit frame sync,
respectively, if they are selected to be outputs; these bits are undefined if they are
selected to be inputs. SC1 and SC2 can also be used as general-purpose parallel I/O.

Figure 11-65 shows a continuous clock (from either an external source or the internal
clock), which means that frame sync must be a separate signal. SC2 is used for frame
sync, which can come from an internal or external source. Since both the transmitter and
receiver use the same clock (synchronous configuration), both use the SCK pin. SC0
and SC1 are designated as flags or can be used as general-purpose parallel I/O.

Figure 11-66 shows a continuous clock (from either an external source or the internal
clock), which means that frame sync must be a separate signal. SC1 is used for the
receive frame sync, and SC2 is used for the transmit frame sync. Either frame sync can
come from an internal or external source. Since the transmitter and receiver use different
clocks (asynchronous configuration), SCK is used for the transmit clock, and SC0 is

XMIT DATA XMIT DATA

ONE FRAME

WORD TRANSFER FATE (=3)
3 WORDS PER FRAME

START OF
FRAME

WORD WORD WORD WORD

SERIAL CLOCK

FRAME SYNC

TRANSMIT DATA

TRANSMITTER EMPTY
INTERNAL INTERRUPTS AND FLAGS

REC DATA REC DATARECEIVE DATA

RECEIVER FULL
INTERNAL INTERRUPTS AND FLAGS

3-STATE 3-STATE

Figure 11-61 Synchronous Communication
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 103

EXTERNAL FRAME SYNC

SC1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RIE SCKD SCD2 SCD1 SCD0TIE RE TE MOD GCK SYN FSL1 FSL0 SHFD OF1 OF0

SSI CONTROL REGISTER B (CRB)
(READ/WRITE)

*

*ASYNCHRONOUS SYN = 0

TRANSMITTER

CLOCK
FRAME
SYNC

RECEIVER

CLOCK FRAME
SYNC

SRD

STD

SC2
EXTERNAL TRANSMIT FRAME SYNC

EXTERNAL RECEIVE FRAME SYNC

INTERNAL FRAME SYNC

SC0

SCK
EXTERNAL TRANSMIT CLOCK

EXTERNAL RECEIVE CLOCK

INTERNAL CLOCKSSI BIT
CLOCK

NOTE: Transmitter and receiver may have different clocks and frame syncs.

* SYNCHRONOUS SYN = 1

TRANSMITTER

CLOCK
FRAME
SYNC

RECEIVER

CLOCK FRAME
SYNC

SRD

STD

SC2

INTERNAL FRAME SYNC

SCK
EXTERNAL CLOCK

INTERNAL CLOCKSSI BIT
CLOCK

NOTE: Transmitter and receiver may have the same clock frame syncs.

X:$FFED

Figure 11-62 CRB SYN Bit Operation
11- 104 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

used for the receive clock.

11.3.7.1.4 Frame Sync Selection
The transmitter and receiver can operate totally independent of each other. The transmit-
ter can have either a bit-long or word-long frame-sync signal format, and the receiver can
have the same or opposite format. The selection is made by programming FSL0 and
FSL1 in the CRB as shown in Figure 11-67.

1. If FSL1 equals zero (see Figure 11-68), the RX frame sync is asserted during
the entire data transfer period. This frame sync length is compatible with
Motorola codecs, SPI serial peripherals, serial A/D and D/A converters, shift
registers, and telecommunication PCM serial I/O.

2. If FSL1 equals one (see Figure 11-69), the RX frame sync pulses active for
one bit clock immediately before the data transfer period. This frame sync
length is compatible with Intel and National components, codecs, and telecom-
munication PCM serial I/O.

The ability to mix frame sync lengths is useful in configuring systems in which data is
received from one type device (e.g., codec) and transmitted to a different type device.

FSL0 controls whether RX and TX have the same frame sync length (see Figure 11-67).
If FSL0 equals zero, RX and TX have the same frame sync length, which is selected by
FSL1. If FSL0 equals one, RX and TX have different frame sync lengths, which are
selected by FSL1.

The SSI receiver looks for a receive frame sync leading edge only when the previous
frame is completed. If the frame sync goes high before the frame is completed (or before
the last bit of the frame is received in the case of a bit frame sync), the current frame
sync will not be recognized, and the receiver will be internally disabled until the next
frame sync. Frames do not have to be adjacent – i.e., a new frame sync does not have to
immediately follow the previous frame. Gaps of arbitrary periods can occur between
frames. The transmitter will be three-stated during these gaps.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 105

SSI

PC8

PC7

PC6

PC3

PC4

PC5

SC0

SC1

SC2

STD

SRD

SCK (TXC and RXC)

FLAG0

FLAG1

? FSt and FSr

SSI

PC8

PC7

PC6

PC3

PC4

PC5

SC0

SC1

SC2

STD

SRD

SCK (TXC)

RXC

?

? FSt

FSr

Figure 11-63 Gated Clock — Synchronous Operation

Figure 11-64 Gated Clock — Asynchronous Operation

STD

SRD

SCK (TXC and RXC)

FLAG 0

FLAG 1

FSr and FSt

SSI

PC8

PC7

PC6

PC3

PC4

PC5

SC0

SC1

SC2

Figure 11-65 Continuous Clock — Synchronous Operation

STD

SRD

SCK (TXC)

RXC

FSr

FSt

SSI

PC8

PC7

PC6

PC3

PC4

PC5

SC0

SC1

SC2

Figure 11-66 Continuous Clock — Asynchronous Operation
11- 106 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

DATA DATA

SERIAL CLOCK

RX, TX FRAME SYNC

SSI CONTROL REGISTER B (CRB)
(READ/WRITE)

* *
* WORD LENGTH: FSL1 = 0, FSL0 = 0

RX, TX SERIAL DATA

NOTE: Frame sync occurs while data is valid.

DATA DATA

SERIAL CLOCK

RX, TX FRAME SYNC

* ONE BIT: FSL1 = 1, FSL0 = 0

RX, TX SERIAL DATA

NOTE: Frame sync occurs for one bit time preceding the data.

DATA DATA

SERIAL CLOCK

TX FRAME SYNC

* MIXED FRAME LENGTH: FSL1 = 0, FSL0 = 1

TX SERIAL DATA

RX FRAME SYNC

DATA DATA
RX SERIAL DATA

DATA DATA

SERIAL CLOCK

TX FRAME SYNC

* MIXED FRAME LENGTH: FSL1 = 1, FSL0 = 1

TX SERIAL DATA

RX FRAME SYNC

DATA DATA
RX SERIAL DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RIE SCKD SCD2 SCD1 SCD0TIE RE TE MOD GCK SYN FSL1 FSL0 SHFD OF1 OF0X:$FFED

Figure 11-67 CRB FSL0 and FSL1 Bit Operation
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 107

X
:$

F
F

E
C

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

P
S

R
P

M
5

P
M

4
P

M
3

P
M

2
S

S
I C

O
N

T
R

O
L

R
E

G
IS

T
E

R
 A

 (C
R

A
)

(R
E

A
D

/W
R

IT
E

)
0

0
0

0
0

0
0

P
M

7
P

M
6

P
M

1
P

M
0

X
:$

F
F

E
C

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

R
IE

1
1

S
C

D
1

S
C

D
0

T
IE

R
E

T
E

0
0

1
0

0
S

H
F

D
O

F
1

O
F

0

W
L1

W
L0

D
C

4
D

C
3

D
C

2
D

C
1

D
C

0

8-
B

IT
 W

O
R

D
 L

E
N

G
T

H
3

W
O

R
D

 F
R

A
M

E
 R

AT
E

M
O

D
S

S
I M

O
D

E
 S

E
LE

C
T

0
=

 N
O

R
M

A
L

G
C

K
G

AT
E

D
 C

LO
C

K
 C

O
N

T
R

O
L

0
=

 C
O

N
T

IN
U

O
U

S
 C

LO
C

K

S
Y

N
S

Y
N

C
/A

S
Y

N
C

 C
O

N
T

R
O

L
1

=
 S

Y
N

C
H

R
O

N
O

U
S

S
C

D
2

S
E

R
IA

L
C

O
N

T
R

O
L

2
D

IR
E

C
T

IO
N

1
=

O
U

T
P

U
T

S
C

K
D

C
LO

C
K

 S
O

U
R

C
E

 D
IR

E
C

T
IO

N
1

=
O

U
T

P
U

T

F
S

L0
F

R
A

M
E

 S
Y

N
C

 L
E

N
G

T
H

0
=

S
A

M
E

 L
E

N
G

T
H

S

F
S

L1
 F

R
A

M
E

S
Y

N
C

 L
E

N
G

T
H

0
=

W
O

R
D

 C
LO

C
K

D
S

P
 D

AT
A

D
S

P
 D

AT
A

S
E

R
IA

L
C

LO
C

K

F
R

A
M

E
 S

Y
N

C

T
R

A
N

S
M

IT
 D

AT
A

IN
T

E
R

N
A

L
IN

T
E

R
R

U
P

T
S

 A
N

D
 F

LA
G

S

C
O

D
E

C
 D

AT
A

R
E

C
E

IV
E

 D
AT

A
C

O
D

E
C

 D
AT

A

IN
T

E
R

N
A

L
IN

T
E

R
R

U
P

T
S

 A
N

D
 F

LA
G

S

F
ig

u
re

 1
1-

68
 N

o
rm

al
 M

o
d

e
In

it
ia

liz
at

io
n

 f
o

r
F

L
S

1=
0

an
d

 F
S

L
0=

0

S
S

I C
O

N
T

R
O

L
R

E
G

IS
T

E
R

 B
 (C

R
B

)
(R

E
A

D
/W

R
IT

E
)

11- 108 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

X
:$

F
F

E
C

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

P
S

R
P

M
5

P
M

4
P

M
3

P
M

2
S

S
I C

O
N

T
R

O
L

R
E

G
IS

T
E

R
 A

 (C
R

A
)

(R
E

A
D

/W
R

IT
E

)
0

0
0

0
0

0
0

P
M

7
P

M
6

P
M

1
P

M
0

X
:$

F
F

E
D

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

R
IE

1
1

S
C

D
1

S
C

D
0

T
IE

R
E

T
E

0
0

1
1

0
S

H
F

D
O

F
1

O
F

0

W
L1

W
L0

D
C

4
D

C
3

D
C

2
D

C
1

D
C

0

8-
B

IT
 W

O
R

D
 L

E
N

G
T

H

C
O

N
T

IN
U

O
U

S
 P

E
R

IO
D

IC

M
O

D
S

S
I M

O
D

E
 S

E
LE

C
T

0
=

 N
O

R
M

A
L

G
C

K
G

AT
E

D
 C

LO
C

K
 C

O
N

T
R

O
L

0
=

 C
O

N
T

IN
U

O
U

S

S
Y

N
S

Y
N

C
/A

S
Y

N
C

 C
O

N
T

R
O

L
1

=
 S

Y
N

C
H

R
O

N
O

U
S

S
C

D
2

S
E

R
IA

L
C

O
N

T
R

O
L

2
D

IR
E

C
T

IO
N

1
=

O
U

T
P

U
T

S
C

K
D

C
LO

C
K

 S
O

U
R

C
E

 D
IR

E
C

T
IO

N
1

=
O

U
T

P
U

T

F
S

L0
F

R
A

M
E

 S
Y

N
C

 L
E

N
G

T
H

0
=

D
IF

F
E

R
E

N
T

 L
E

N
G

T
H

S

F
S

L1
 F

R
A

M
E

S
Y

N
C

 L
E

N
G

T
H

1
=

W
L

C
LO

C
K

 F
O

R
 R

X

S
E

R
IA

L
C

LO
C

K

F
R

A
M

E
 S

Y
N

C

S
E

R
IA

L
D

AT
A

S
S

I C
O

N
T

R
O

L
R

E
G

IS
T

E
R

 B
 (C

R
B

)
(R

E
A

D
/W

R
IT

E
)

D
AT

A
 1

D
AT

A
 2

D
AT

A
 3

D
AT

A
 4

D
AT

A
 5

T
R

A
N

S
M

IT
 A

N
D

 R
E

C
E

IV
E

F
ig

u
re

 1
1-

69
 N

o
rm

al
 M

o
d

e
In

it
ia

liz
at

io
n

 f
o

r
F

S
L

1=
1

an
d

 F
S

L
0=

0

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 109

X
:$

F
F

E
D

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

R
IE

S
C

K
D

S
C

D
2

S
C

D
1

S
C

D
0

T
IE

R
E

T
E

M
O

D
G

C
K

S
Y

N
F

S
L1

F
S

L0
S

H
F

D
O

F
1

O
F

0
S

S
I C

O
N

T
R

O
L

R
E

G
IS

T
E

R
 B

 (C
R

B
)

(R
E

A
D

/W
R

IT
E

) S
R

D

X
:$

F
F

E
F

23
16

15
8

7
0

7
0

7
0

7
0

R
E

C
E

IV
E

 H
IG

H
 B

Y
T

E
R

E
C

E
IV

E
 M

ID
D

LE
 B

Y
T

E
R

E
C

E
IV

E
 L

O
W

 B
Y

T
E

S
E

R
IA

L
R

E
C

E
IV

E
 D

AT
A

 R
E

G
IS

T
E

R
 (R

X
)

(R
E

A
D

 O
N

LY
)

S
E

R
IA

L
R

E
C

E
IV

E
 S

H
IF

T
 R

E
G

IS
T

E
R

 (R
X

)

23
16

15
8

7
0

7
0

7
0

7
0

R
E

C
E

IV
E

 H
IG

H
 B

Y
T

E
R

E
C

E
IV

E
 M

ID
D

LE
 B

Y
T

E
R

E
C

E
IV

E
 L

O
W

 B
Y

T
E

*

8
B

IT
12

 B
IT

16
 B

IT
24

 B
IT

S
T

D

X
:$

F
F

E
F

23
16

15
8

7
0

7
0

7
0

7
0

R
E

C
E

IV
E

 H
IG

H
 B

Y
T

E
R

E
C

E
IV

E
 M

ID
D

LE
 B

Y
T

E
R

E
C

E
IV

E
 L

O
W

 B
Y

T
E

23
16

15
8

7
0

7
0

7
0

7
0

T
R

A
N

S
M

IT
 H

IG
H

 B
Y

T
E

T
R

A
N

S
M

IT
 M

ID
D

LE
 B

Y
T

E
T

R
A

N
S

M
IT

 L
O

W
 B

Y
T

E

S
E

R
IA

L
R

E
C

E
IV

E
 D

AT
A

 R
E

G
IS

T
E

R
 (R

X
)

(R
E

A
D

 O
N

LY
)

S
E

R
IA

L
T

R
A

N
S

M
IT

 S
H

IF
T

 R
E

G
IS

T
E

R

(a
)

S
H

F
D

 =
 0

F
ig

u
re

 1
1-

70
 C

R
B

 S
H

F
D

 B
it

 O
p

er
at

io
n

 (
S

h
ee

t
1

o
f

2)
11- 110 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

11.3.7.1.5 Shift Direction Selection
Some data formats, such as those used by codecs, specify MSB first other data for-
mats, such as the AES-EBU digital audio, specify LSB first. To interface with devices
from both systems, the shift registers in the SSI are bidirectional. The MSB/LSB
selection is made by programming SHFD in the CRB.

Figure 11-70 illustrates the operation of the SHFD bit in the CRB. If SHFD equals
zero (see Figure 11-70(a)), data is shifted into the receive shift register MSB first and
shifted out of the transmit shift register MSB first. If SHFD equals one (see Figure 11-
71(b)), data is shifted into the receive shift register LSB first and shifted out of the
transmit shift register LSB first.

11.3.7.2 Normal Mode Examples
The normal SSI operating mode characteristically has one time slot per serial frame,
and data is transferred every frame sync. When the SSI is not in the normal mode, it
is in the network mode. The MSB is transmitted first (SHFD=0), with overrun and
underrun errors detected by the SSI hardware. Transmit flags are set when data is
transferred from the transmit data register to the transmit shift register. The receive
flags are set when data is transferred from the receive shift register to the receive
data register.

Figure 11-72 shows an example of using the SSI to connect an MC15500 codec with
a DSP56000/DSP56001. No glue logic is needed. The serial clock, which is gener-
ated internally by the DSP, provides the transmit and receive clocks (synchronous
operation) for the codec. SC2 provides all the necessary handshaking. Data transfer
begins when the frame sync is asserted. Transmit data is clocked out and receive
data is clocked in with the serial clock while the frame sync is asserted (word-length
frame sync). At the end of the data transfer, DSP internal interrupts programmed to
transfer data to/from will occur, and the SSISR will be updated.

11.3.7.2.1 Normal Mode Transmit
The conditions for data transmission from the SSI are as follows:

1. Transmitter is Enabled (TE=1).

2. Frame sync (or clock in gated clock mode) is active.

When these conditions occur in normal mode, the next data word will be transferred
from TX to the transmit shift register, the TDE flag will be set (transmitter empty), and
the transmit interrupt will occur if TIE equals one (transmit interrupt enabled.) The
new data word will be transmitted immediately.

The transmit data output (STD) is three-stated, except during the data transmission
period. The optional frame sync output, flag outputs, and clock outputs are not three-
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 111

stated even if both receiver and transmitter are disabled.

S
T

D

$X
:$

F
F

E
F

23
16

15
8

7
0

7
0

7
0

7
0

T
R

A
N

S
M

IT
 H

IG
H

 B
Y

T
E

T
R

A
N

S
M

IT
 M

ID
D

LE
 B

Y
T

E
T

R
A

N
S

M
IT

 L
O

W
 B

Y
T

E
S

E
R

IA
L

T
R

A
N

S
M

IT
 D

AT
A

 R
E

G
IS

T
E

R
 (T

X
)

(W
R

IT
E

 O
N

LY
)

S
E

R
IA

L
R

E
C

E
IV

E
 S

H
IF

T
 R

E
G

IS
T

E
R

 (R
X

)

23
16

15
8

7
0

7
0

7
0

7
0

T
R

A
N

S
M

IT
 H

IG
H

 B
Y

T
E

T
R

A
N

S
M

IT
 M

ID
D

LE
 B

Y
T

E
T

R
A

N
S

M
IT

 L
O

W
 B

Y
T

E

8
B

IT
12

 B
IT

16
 B

IT
24

 B
IT

S
R

D

$X
:$

F
F

E
F

23
16

15
8

7
0

7
0

7
0

7
0

R
E

C
E

IV
E

 H
IG

H
 B

Y
T

E
R

E
C

E
IV

E
 M

ID
D

LE
 B

Y
T

E
R

E
C

E
IV

E
 L

O
W

 B
Y

T
E

23
16

15
8

7
0

7
0

7
0

7
0

R
E

C
E

IV
E

 H
IG

H
 B

Y
T

E
R

E
C

E
IV

E
 M

ID
D

LE
 B

Y
T

E
R

E
C

E
IV

E
 L

O
W

 B
Y

T
E

S
E

R
IA

L
R

E
C

E
IV

E
 D

AT
A

 R
E

G
IS

T
E

R
 (R

X
)

(R
E

A
D

 O
N

LY
)

S
E

R
IA

L
T

R
A

N
S

M
IT

 S
H

IF
T

 R
E

G
IS

T
E

R

(b
)

S
H

F
D

=1

F
ig

u
re

 1
1-

71
 C

R
B

 S
H

F
D

 B
it

 O
p

er
at

io
n

 (
S

h
ee

t
2

o
f

2)
11- 112 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

The optional output flags are always updated at the beginning of the frame, regardless of
TE. The state of the flag does not change for the entire frame.

Figure 11-72 is an example of transmitting data using the SSI in the normal mode with a
continuous clock, a bit-length frame sync, and 16-bit data words. The purpose of the pro-
gram is to interleave and transmit right and left channels in a compact disk player. Four
SSI pins are used: SC0 is used as an output flag to indicate right-channel data (OF0=1)
or left-channel data (OF0=0); SC2 is TX and RX frame sync out; STD is transmit data
out; and SCK clocks the transmit data out. Equates are set for convenience and read-
ability. Test data is then put in the low X: memory locations. The transmit interrupt vector
contains a JSR instruction (which forms a long interrupt). The data pointer and channel
flag are initialized before initializing CRA and CRB. It is assumed that the DSP CPU and
SSI have been previously reset. At this point, the SSI is ready to transmit except that the
interrupt is masked because the MR was cleared on reset and port C is still configured a
general-purpose I/O. Unmasking the interrupt and enabling the SSI pins allows transmis-
sion to begin. A “jump to self” instruction causes the DSP to hang and wait for interrupts
to transmit the data. When an interrupt occurs, a JSR instruction at the interrupt vector
location causes the XMT routine to be executed. Data is then moved to the TX register,
and the data pointer is incremented. The flag is tested by the JSET instruction and, if it is
set, a jump to left occurs, and the code for the left channel is executed. If the flag is not

DSP DATA DSP DATA

SERIAL CLOCK

SERIAL SYNC

TRANSMIT DATA

CODEC DATA
RECEIVE DATA

MC1550x
CODEC FILTER

DSP56000

TDD
RDD
TDC
RDC
TDE
RCE
MSI

TXI

RXO

SRD
STD
SCK

SC2

ANALOG
INPUT

ANALOG
OUTPUT

CODEC DATA

Figure 11-72 Normal Mode Example
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 113

set, the code for the right channel is executed. In either case, the channel flag in X0 and
then the output flag are set to reflect the channel being transmitted. Control is then
returned to the main program, which will wait for the next interrupt.

;***
; SSI and other I/O EQUATES *

;***

IPR EQU $FFFF
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFE1
TX EQU $FFEF
FLG EQU $0010

ORG X:0
DC $AAAA00 ;Data to transmit.
DC $333300
DC $CCCC00
DC $F0F000

;***
; INTERRUPT VECTOR *

;***

ORG P:$0010
JSR XMT

;***
; MAIN PROGRAM *

;***

ORG P:$40
MOVE #0,R0 ;Pointer to data buffer.
MOVE #3,M0 ;Set modulus to 4.
MOVE #0,X0 ;Initialize channel flag for SSI flag.
MOVE X0,X:FLG ;Start with right channel first.

;***
; Initialize SSI Port *

;***

MOVEP #$3000,X:IPR ;Set interrupt priority register for SSI.
MOVEP #$401F,X:CRA ;Set continuous clock=5.12/32 MHz
11- 114 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

;word length=16.
MOVEP #$5334,X:CRB ;Enable TIE and TE; make clock and

;frame sync outputs; frame
;sync=bit mode; synchronous mode;
;make SC0 an output.

;***
; Init SSI Interrupt *

;***

ANDI #$FC,MR ;Unmask interrupts.
MOVEP #$01F8,X:PCC ;Turn on SSI port.

JMP * ;Wait for interrupt.

;***
; MAIN INTERRUPT ROUTINE *

;***

XMT MOVEP X:(R0);pl,X:TX ;Move data to TX register.
JSET #0,X:FLG,LEFT ;Check channel flag.

RIGHT BCLR #0,X:CRB ;Clear SC0 indicating right channel
;data

MOVE #>$01,X0 ;Set channel flag to 1 for next data.
MOVE X0,X:FLG
RTI

LEFT BSET #0,X:CRB ;Set SC0 indicating left channel data.
MOVE #>$00,X0 ;Clear channel flag for next data.
MOVE X0,X:FLG
RTI

END
Figure 11-72 Normal Mode Transmit Example

11.3.7.2.2 Normal Mode Receive
If the receiver is enabled, a data word will be clocked in each time the frame sync signal
is generated (internal) or detected (external). After receiving the data word, it will be
transferred from the SSI receive shift register to the receive data register (RX), RDF will
be set (receiver full), and the receive interrupt will occur if it is enabled (RIE=1).

The DSP program has to read the data from RX before a new data word is transferred
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 115

from the receive shift register; otherwise, the receiver overrun error will be set (ROE=1).

Figure 11-73 illustrates the program that receives the data transmitted by the program
shown in Figure 11-72. Using the flag to identify the channel, the receive program
receives the right- and left-channel data and separates the data into a right data buffer
and a left data buffer. The program shown in Figure 11-73 begins by setting equates and
then using a JSR instruction at the receive interrupt vector location to form a long inter-
rupt. The main program starts by initializing pointers to the right and left data buffers. The
IPR, CRA, and CRB are then initialized. The clock divider bits in the CRA do not have to
be set since an external receive clock is specified (SCKD=0). Pin SC0 is specified as an
input flag (SYN=1, SCD0=0); pin SC2 is specified as TX and RX frame sync (SYN=1,
SCD2=0). The SSI port is then enabled and interrupts are unmasked, which allows the
SSI port to begin data reception. A jump-to-self instruction is then used to hang the pro-
cessor and allow interrupts to receive the data. Normally, the processor would execute
useful instructions while waiting for the receive interrupts. When an interrupt occurs, the
JSR instruction at the interrupt vector location transfers control to the RCV subroutine.
The input flag is tested, and data is put in the left or right data buffer depending on the
results of the test. The RTI instruction then returns control to the main program, which
will wait for the next interrupt.

;***
; SSI and other I/O EQUATES *

;***

IPR EQU $FFFF
SSISR EQU $FFEE
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFE1
RX EQU $FFEF
FLG EQU $0010

;***
; INTERRUPT VECTOR *

;***

ORG P:$000C
JSR RCV

;***
; MAIN PROGRAM *

;***
11- 116 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

ORG P:$40
MOVE #0,R0 ;Pointer to memory buffer for
MOVE #$08,R1 ;received data. Note data will be
MOVE #1,M0 ;split between two buffers which are
MOVE #1,M1 ;modulus 2.

;***
; Initialize SSI Port *

;***

MOVEP #$3000,X:IPR ;Set interrupt priority register for SSI.
MOVEP #$4000,X:CRA ;Set word length = 16 bits.
MOVEP #$A300,X:CRB ;Enable RIE and RE; synchronous

;mode with bit frame sync;
;clock and frame sync are
;external; SC0 is an output.

;***
; Init SSI Interrupt *

;***

ANDI #$FC,MR ;Unmask interrupts.
MOVEP #$01F8,X:PCC ;Turn on SSI port.
JMP * ;Wait for interrupt.

;***
; MAIN INTERRUPT ROUTINE *

;***

RCV JSET #0,X:SSISR, RIGHT ;Test SCO flag.
LEFT MOVEP X:RX,X:(RO)+ ;If SCO clear, receive data

RTI ;into left buffer (R0).
RIGHT MOVEP X:RX,X:(R1)+ ;If SCO set, receive data

RTI ;into right buffer (R1).
END

Figure 11-73 Normal Mode Receive Example

11.3.7.3 Network Mode Examples
The network mode, the typical mode in which the DSP would interface to a TDM codec
network or a network of DSPs, is compatible with Bell and CCITT PCM data/operation
formats. The DSP may be a master device (see Figure 11-74) that controls its own pri-
vate network or a slave device that is connected to an existing TDM network, occupying
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 117

one or more time slots. The key characteristic of the network mode is that each time slot
(data word time) is identified by an interrupt or by polling status bits, which allows the
option of ignoring the time slot or transmitting data during the time slot. The receiver
operates in the same manner except that data is always being shifted into the receive
shift register and transferred to the RX. The DSP reads the receive data register and
uses or discards the contents. Overrun and underrun errors are detected.

The frame sync signal indicates the beginning of a new data frame. Each data frame is
divided into time slots; transmission or reception can occur in each time slot (rather than
in just the frame sync time slot as in normal mode). The frame rate dividers (controlled by
DC4, DC3, DC2, DC1, and DC0) control the number of time slots per frame from 2 to 32.
Time-slot assignment is totally under software control. Devices can transmit on multiple
time slots, receive multiple time slots, and the time-slot assignment can be changed
dynamically.

A simplified flowchart showing operation of the network mode is shown in Figure 11-75.
Two counters are used to track the current transmit and receive time slots. Slot counter
one (SLOTCT1) is used to track the transmit time slot; slot counter two (SLOTCT2) is
used for receive. When the transmitter is empty, it generates an interrupt; a test is then
made to see if it is the beginning of a frame. If it is the beginning of a frame, SLOTCT1 is
cleared to start counting the time slots. If it is not the beginning of a frame, SLOTCT1 is
incremented. The next test checks to see if the SSI should transmit during this time slot.
If it is time to transmit, data is written to the TX; otherwise, dummy data is written to the
TSR, which prevents a transmit underrun error from occurring and three-states the STD
pin. The DSP can then return to what it was doing before the interrupt and wait for the
next interrupt to occur. SLOTCT1 should reflect the data in the shift registers to coincide
with TFS. Software must recognize that the data being written to TX will be transmitted in
time slot SLOTCT1 plus one.

The receiver operates in a similar manner. When the receiver is full, an interrupt is gen-

DSP56000 MASTER

TIME SLOT 1

STD

SRD

SCK

SC2

DSP56000 SLAVE 1

TIME SLOT 2

STD

SRD

SCK

SC2

DSP56000 SLAVE 2

TIME SLOT 3

STD

SRD

SCK

SC2

DSP56000 SLAVE 3

TIME SLOT 4

STD

SRD

SCK

SC2

MASTER TRANSMIT

MASTER RECEIVE

MASTER CLOCK

MASTER SYNC

Figure 11-74 Network Mode Example
11- 118 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

erated, and a test is made to see if this is the beginning of a frame. If it is the beginning of

T
R

A
N

S
M

IT
T

E
R

E
M

P
T

Y
IN

T
E

R
R

U
P

T

T
E

S
T

 F
O

R
F

R
A

M
E

 S
Y

N
C

T
F

S
 =

 1
?

C
LE

A
R

 S
LO

T
N

U
M

B
E

R
S

LO
T

C
T

1

IN
C

R
E

M
E

N
T

 S
LO

T
 N

U
M

B
E

R
S

LO
T

C
T

1
=

 S
LO

T
C

T
1

+
 1

M
Y

 T
U

R
N

TO
 T

R
A

N
S

M
IT

?
S

LO
T

C
T

1
=

M

Y
S

LO
T

W
R

IT
E

 D
AT

A
TO

 T
X

W
R

IT
E

D

U
M

M
Y

 D
AT

A

TO
 T

S
R

E
X

IT

Y
E

S
N

O

N
O

Y
E

S

R
E

C
E

IV
E

R
F

U
LL

IN
T

E
R

R
U

P
T

T
E

S
T

 F
O

R
F

R
A

M
E

 S
Y

N
C

R
F

S
 =

 1
?

C
LE

A
R

 S
LO

T
N

U
M

B
E

R
S

LO
T

C
T

2
=

 0

IN
C

R
E

M
E

N
T

 S
LO

T
 N

U
M

B
E

R
S

LO
T

C
T

2
=

 S
LO

T
C

T
2

+
 1

IS
 D

AT
A

F
O

R
 M

E
?

S
LO

T
C

T
2

=

M
Y

S
LO

T

K
E

E
P

 D
AT

A
D

IS
C

A
R

D
D

AT
A

E
X

IT

Y
E

S
N

O

N
O

Y
E

S

R
E

A
D

 D
AT

A
F

R
O

M
 R

X

F
ig

u
re

 1
1-

75
 T

D
M

 N
et

w
o

rk
 S

o
ft

w
ar

e
F

lo
w

ch
ar

t

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 119

a frame, SLOTCT2 is cleared to start counting the time slots. If it is not the beginning of a
frame, SLOTCT2 is incremented. The next test checks to see if the data received is
intended for this DSP. If the current time slot is the one assigned to the DSP receiver, the
data is kept; otherwise, the data is discarded, and the DSP can then return to what it was
doing before the interrupt. SLOTCT2 should reflect the data in the receive shift register
to coincide with the RFS flag. Software must recognize that the data being read from RX
is for time slot SLOTCT2 minus two.

Initializing the network mode is accomplished by setting the bits in CRA and CRB as fol-
lows (see Figure 11-76):

12.The word length must be selected by setting WL1 and WL0. In this example,
an 8-bit word length was chosen (WL1=0 and WL0=0).

13.The number of time slots is selected by setting DC4–DC0. Four time slots
were chosen for this example (DC4–DC0=$03).

14.The serial clock rate must be selected by setting PSR and PM7–PM0 (see
Tables 11-9 and 11-10).

15. RE and TE must be set to activate the transmitter and receiver. If interrupts
are to be used, RIE and TIE should be set. RIE and TIE are usually set after
everything else is configured and the DSP is ready to receive interrupts.

16.The network mode must be selected (MOD=1).

17.A continuous clock is selected in this example by setting GCK=0.

18.Although it is not required for the network mode, synchronous clock control
was selected (SYN=1).

19.The frame sync length was chosen in this example as word length (FSL1=0)
for both transmit and receive frame sync (FSL0=0). Any other combinations
could have been selected, depending on the application.

20.Control bits SHFD, SCKD, SCD2, SCD1, SCD0, and the flag bits (OF1 and
OF0) should be set as needed for the application.

11.3.7.3.1 Network Mode Transmit
When TE is set, the transmitter will be enabled only after detection of a new data frame
sync. This procedure allows the SSI to synchronize to the network timing.

Normal startup sequence for transmission in the first time slot is to write the data to be
transmitted to TX, which clears the TDE flag. Then set TE and TIE to enable the trans-
mitter on the next frame sync and to enable transmit interrupts.
11- 120 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Alternatively, the DSP programmer may decide not to transmit in the first time slot by

SERIAL DATA 4

FRAME SYNC

X:$FFEC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSR PM5 PM4 PM3 PM20 0 0 0 0 0 0 PM7 PM6 PM1 PM0

WL1 WL0 DC4 DC3 DC2 DC1 DC0

8-BIT WORD LENGTH FOUR TIME SLOTS

SSI CONTROL REGISTER A (CRA)
(READ/WRITE)

X:$FFED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RIE SCKD SCD2 SCD1 SCD0TIE RE TE 1 0 1 0 0 SHFD OF1 OF0

MOD
SSI MODE SELECT

1 = NETWORK

GCK
GATED CLOCK CONTROL
0 = CONTINUOUS CLOCK

SYN
SYNC/ASYNC CONTROL

1 = SYNCHRONOUS

SCD2
SERIAL CONTROL 2 DIRECTION
1 = OUTPUT (MASTER)
0 = INPUT (SLAVE)

SCKD
CLOCK SOURCE DIRECTION
1 = OUTPUT (MASTER)
0 = INPUT (SLAVE)

FLS0
FRAME SYNC LENGTH 0
0 =TX, RX SYNC SAME LENGTH

FSL1
FRAME SYNC LENGTH 1
0 = WORD WIDTH

SSI CONTROL REGISTER B (CRB)
(READ/WRITE)

SERIAL CLOCK

SLOT 1SLOT 4SLOT 3SLOT 2SLOT 1 S

INTERNAL TX FLAGS AND INTERRUPTS

INTERNAL RX FLAGS AND INTERRUPTS

7 6 5 4 3 2 1 0

RDF TDE ROE TUE RFS TFS IF1 IF0

* * * * * * * *

X:$FFEE

X:$FFEE

SSI STATUS REGISTER (SR)
(READ)

SSI TIME SLOT REGISTER B (TSR)
(WRITE)

Figure 11-76 Network Mode Initialization
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 121

writing any data to the time slot register (TSR). This will clear the TDE flag just as if data
were going to be transmitted, but the STD pin will remain in the high-impedance state for
the first time slot. The programmer then sets TE and TIE.

When the frame sync is detected (or generated), the first data word will be transferred
from TX to the transmit shift register and will be shifted out (transmitted). TX being empty
will cause TDE to be set, which will cause a transmitter interrupt. Software can poll TDE
or use interrupts to reload the TX register with new data for the next time slot. Software
can also write to TSR to prevent transmitting in the next time slot. Failing to reload TX (or
writing to the TSR) before the transmit shift register is finished shifting (empty) will cause
a transmitter underrun. The TUE error bit will be set, causing the previous data to be
retransmitted.

The operation of clearing TE and setting it again will disable the transmitter after comple-
tion of transmission of the current data word until the beginning of the next frame sync
period. During that time, the STD pin will be three-stated. When it is time to disable the
transmitter, TE should be cleared after TDE is set to ensure that all pending data is
transmitted.

The optional output flags are updated every time slot regardless of TE.

To summarize, the network mode transmitter generates interrupts every time slot and
requires the DSP program to respond to each time slot. These responses can be

1. Write data register with data to enable transmission in the next time slot.

2. Write the time slot register to disable transmission in the next time slot.

3. Do nothing – transmit underrun will occur the at beginning of the next time slot,
and the previous data will be transmitted.

Figure 11-77 is essentially the same program shown in Figure 11-72 except that this pro-
gram uses the network mode to transmit only right-channel data. A time slot is assigned
for the left-channel data, which could be inserted by another DSP using the network
mode. In the “Initialize SSI Port” section of the program, two words per frame are
selected using CRA, and the network mode is selected by setting MOD to one in the
CRB. The main interrupt routine, which waits to move the data to TX, only transmits data
if the current time slot is for the right channel. If the current time slot is for the left chan-
nel, the TSR is written, which three-states the output to allow another DSP to transmit
the left channel during the time slot.

;***
; SSI and other I/O EQUATES *

;***
11- 122 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

IPR EQU $FFFF
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFE1
TX EQU $FFEF
TSR EQU $FFEE
FLG EQU $0010

ORG X:0
DC $AAAA00 ;Data to transmit.
DC $333300
DC $CCCC00
DC $F0F000

;***
; INTERRUPT VECTOR *

;***

ORG P:$0010
JSR XMT

;***
; MAIN PROGRAM *

;***

ORG P:$40

MOVE #0,R0 ;Pointer to data buffer.
MOVE #3,M0 ;Set modulus to 4.
MOVE #0,X0 ;Initialize user flag for SSI flag.
MOVE X0,X:FLG ;Start with the right channel.

;***
; Initialize SSI Port *

;***

MOVEP #$3000,X:IPR ;Set interrupt priority register for SSI.
MOVEP #$411F,X:CRA ;Set continuous clock=5.12/32 MHz

;word length=16.
MOVEP #$5B34,X:CRB ;Enable TIE and TE; make clock and

;frame sync outputs; frame
;sync=bit mode; synchronous mode;
;make SC0 an output.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 123

;***
; Init SSI Interrupt *

;***

ANDI #$FC,MR ;Unmask interrupts.
MOVEP #$01F8,X:PCC ;Turn on SSI port.
JMP * ;Wait for interrupt.

;***
; MAIN INTERRUPT ROUTINE *

;***

XMT
JSET #0,X:FLG,LEFT ;Check user flag.

RIGHT BCLR #0,X:CRB ;Clear SC0 indicating right channel
;data

MOVEP X:(R0)+,X:TX Move data to TX register.
MOVE #>$01,X0 ;Set user flag to 1
MOVE X0,X:FLG ;for next data.
RTI

LEFT BSET #0,X:CRB ;Set SC0 indicating left channel data.
MOVEP X0,X:TSR ;Write to TSR register.
MOVE #>$00,X0 ;Clear user flag
MOVE X0,X:FLG ;for next data.
RTI

END
Figure 11-77 Network Mode Transmit Example Program

;***
; SSI and other I/O EQUATES *

;***

IPR EQU $FFFF
SSISR EQU $FFEE
CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFE1
RX EQU $FFEF
11- 124 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

;***
; INTERRUPT VECTOR *

;***

ORG P:$000C
JSR RCV

;***
; MAIN PROGRAM *

;***

ORG P:$40
MOVE #0,R0 ;Pointer to memory buffer for
MOVE #$08,R1 ;received data. Note data will be
MOVE #3,M0 ;split between two buffers which are
MOVE #3,M1 ;modulus 4.

;***
; Initialize SSI Port *

;***

MOVEP #$3000,X:IPR ;Set interrupt priority register for SSI.
MOVEP #$4100,X:CRA ;Set word length = 16 bits.
MOVEP #$AB00,X:CRB ;Enable RIE and RE; synchronous

;mode with bit frame sync;
;clock and frame sync are
;external; SC0 is an input.

;***
; Init SSI Interrupt *

;***

ANDI #$FC,MR ;Unmask interrupts.
MOVEP #$01F8,X:PCC ;Turn on SSI port.
JMP * ;Wait for interrupt.

;***
; MAIN INTERRUPT ROUTINE *

;***

RCV JSET #0,X:SSISR, RIGHT ;Test SCO flag.

LEFT MOVEP X:RX,X:(RO)+ ;If SCO clear, receive data
RTI ;into left buffer (R0).
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 125

RIGHT MOVEP X:RX,X:(R1)+ ;If SCO set, receive data
RTI ;into right buffer (R1).

END

Figure 11-78 Network Mode Receive Example Program

11.3.7.3.2 Network Mode Receive
The receive enable will occur only after detection of a new data frame with RE set. The first data word is shifted into the receive shift register and is transferred to the RX, which sets RDF if a frame sync was received (i.e., this is the start of a new frame). Setting RDF

will cause a receive interrupt to occur if the receiver interrupt is enabled (RIE=1).

The second data word (second time slot in the frame) begins shifting in immediately after the transfer of the first data word to the RX. The DSP program has to read the data from RX (which clears RDF) before the second data word is completely received (ready to

transfer to RX), or a receive overrun error will occur (ROE=1), and the data in the receiver shift register will not be transferred and will be lost.

If RE is cleared and set again by the DSP program, the receiver will be disabled after receiving the current time slot in progress until the next frame sync (first time slot). This mechanism allows the DSP programmer to ignore data in the last portion of a data frame.

Note: The optional frame sync output and clock output signals are not affected, even if
the transmitter and/or receiver are disabled. TE and RE do not disable bit clock and frame
sync generation.

To summarize, the network mode receiver receives every time slot data word unless the receiver is disabled. An interrupt can occur after the reception of each data word, or the programmer can poll RDF. The DSP program response can be

1. Read RX and use the data.

2. Read RX and ignore the data.

3. Do nothing – the receiver overrun exception will occur at the end of the current
time slot.

4. Toggle RE to disable the receiver until the next frame, and read RX to clear
RDF.

Figure 11-78 is essentially the same program shown in Figure 11-73 except that this program uses the network mode to receive only right-channel data. In the “Initialize SSI Port” section of the program, two words per frame are selected using the DC bits in the CRA,

and the network mode is selected by setting MOD to one in the CRB. If the program in Figure 11-77 is used to transmit to the program in Figure 11-78, the correct data will appear in the data buffer for the right channel, but the buffer for the left channel will probably

contain $000000 or $FFFFFF, depending on whether the transmitter output was high or low when TSR was written and whether the output was three-stated.

11.3.7.4 On-Demand Mode Examples
A divide ratio of one (DC=00000) in the network mode is defined as the on-demand mode of the SSI because it is the only data-driven mode of the SSI – i.e., data is transferred whenever data is present (see Figure 11-79 and Figure 11-80). STD and SCK from DSP1

are connected to DSP2 – SRD and SC0, respectively. SC0 is used as an input clock pin in this application. Receive data and receive data clock are separate from the transmit signals. On-demand data transfers are nonperiodic, and no time slots are defined. When

there is a clock in the gated clock mode, data is transferred. Although they are not necessarily needed, frame sync and flags are generated when data is transferred. Transmitter underruns (TUE) are impossible in this mode and are therefore disabled. In the on-

demand transmit mode, two additional SSI clock cycles are automatically inserted between each data word transmitted. This procedure guarantees that frame sync will be low between every transmitted data word or that the clock will not be continuous between two

consecutive words in the gated clock mode. The on-demand mode is similar to the SCI shift register mode with SSFTD equals one and SCKP equals one. The receiver should be configured to receive the bit clock and, if continuous clock is used, to receive an external

frame sync. Therefore, for all full-duplex communication in on-demand mode, the asynchronous mode should be used. The on-demand mode is SPI compatible.

Initializing the on-demand mode for the example illustrated in Figure 11-80 is accom-
plished by setting the bits in CRA and CRB as follows:

1. The word length must be selected by setting WL1 and WL0. In this example, a
24-bit word length was chosen (WL1=1 and WL0=1).

2. The on-demand mode is selected by clearing DC4–DC0.

3. The serial clock rate must be selected by setting PSR and PM7–PM0 (see
Tables 11-9 and 11-10).
11- 126 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

4. RE and TE must be set to activate the transmitter and receiver. If interrupts
are to be used, RIE and TIE should be set. RIE and TIE are usually set after
everything else is configured and the DSP is ready to receive interrupts.

5. The network mode must be selected (MOD=1).

6. A gated clock (GCK=1) is selected in this example. A continuous clock exam-
ple is shown in Figure 11-77.

7. Asynchronous clock control was selected (SYN=0) in this example.

8. Since gated clock is used, the frame sync is not necessary. FSL1 and FSL0
can be ignored.

9. SCKD must be an output (SCKD=1).

10.SCD0 must be an input (SCD0=0).

11.Control bit SHFD should be set as needed for the application. Pins SC1 and
SC2 are undefined in this mode (see Table 11-7) and should be programmed
as general-purpose I/O pins.

11.3.7.4.1 On-Demand Mode – Continuous Clock
This special case will not generate a periodic frame sync. A frame sync pulse will be generated only when data is available to transmit (see Figure 11-81(a)). The frame sync signal indicates the first time slot in the frame. The on-demand mode requires that the transmit

frame sync be internal (output) and the receive frame sync be external (input). Therefore, for simplex operation, the synchronous mode could be used; however, for full-duplex operation, the asynchronous mode must be used. Data transmission that is data driven is

enabled by writing data into TX. Although the SSI is double buffered, only one word can be written to TX, even if the transmit shift register is empty. The receive and transmit interrupts function as usual using TDE and RDF; however, transmit and receive underruns

are impossible for on-demand transmission and are disabled. This mode is useful for interfacing to codecs requiring a continuous clock.

DSP56000
DSP1

STD

SCK

SRD

SC0

DSP56000
DSP2

SRD

SCO

STD

SCK

Figure 11-79 On Demand Example
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 127

TRANSMIT DATA

X:$FFEC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSR PM5 PM4 PM3 PM21 1 0 0 0 0 0 PM7 PM6 PM1 PM0

WL1 WL0 DC4 DC3 DC2 DC1 DC0

24-BIT WORD LENGTH ON-DEMAND

SSI CONTROL REGISTER A (CRA)
(READ/WRITE)

X:$FFED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RIE 1 SCD2 SCD1 0TIE RE TE 1 1 0 FSL1 FSL0 SHFD OF1 OF0

MOD
SSI MODE SELECT

1 = NETWORK

GCK
GATED CLOCK CONTROL

1=GATED CL0CK

SYN
SYNC/ASYNC CONTROL

0 = ASYNCHRONOUS

SCD0
SERIAL CONTROL 2
DIRECTION
0 = INPUT

SCKD
CLOCK SOURCE
DIRECTION
1 = OUTPUT

SSI CONTROL REGISTER B (CRB)
(READ/WRITE)

TRANSMIT CLOCK

Figure 11-80 Network Mode Initialization

RECEIVE DATA

RECEIVE CLOCK

24-BIT DATA FROM DSP1 TO DSP2

TWO SSI BIT CLOCKS (MIN.)

24-BIT DATA FROM DSP2 TO DSP1DSP2 TO DSP1

NOTE: Two SSI bit clock times are automatically inserted between each data word. This guarantees frame sync will be low between
every data word transmitted and the clock will not be continuous for two consecutive data words.
11- 128 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

DATA DATA

SERIAL CLOCK

FRAME SYNC

(a) Continuous

SERIAL DATA

DATA CHANGES

DATA STABLE

SERIAL CLOCK

DATA DATA
SERIAL DATA

(b) Gated

Figure 11-81 Clock Modes

DSP1

MASTER SLAVE

DSP2

SHIFT REGISTER SHIFT REGISTER

SPI
CLOCK GENERATOR

Figure 11-82 SPI Configuration
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 129

11.3.7.4.2 On-Demand Mode – Gated Clock
Gated clock mode (see Figure 11-81(b)) is defined for on-demand mode, but the gated
clock mode is considered a frame sync source; therefore, in gated clock mode, the trans-
mit clock must be internal (output) and the receive clock must be external (input). For on-
demand mode, with internal (output) synchronous gated clock, output clock is enabled
for the transmitter and receiver when TX data is transferred to the transmit data shift reg-
ister. This SPI master operating mode is shown in Figure 11-82. Word sync is inherent in
the clock signal, and the operation format must provide frame synchronization.

Figure 11-83 is the block diagram for the program presented in Figure 11-84. This pro-
gram contains a transmit test program that was written as a scoping loop (providing a
repetitive sync) using the on-demand, gated, synchronous mode with no interrupts (poll-
ing) to transmit data to the program shown in Figure 11-85. The program also demon-
strates using parallel I/O pins as general-purpose control lines. PC3 is used as an
external strobe or enable for hardware such as an A/D converter. The transmit program
sets equates for convenience and readability. Test data is then written to X: memory,
and the data pointer is initialized. Setting M0 to two makes the buffer circular (modulo 3),
which saves the step of resetting the pointer each loop. PC3 is configured as a general-
purpose output for use as a scope sync, and CRA and CRB are then initialized. Setting
the PCC bits begins SSI operation; however, no data will be transmitted until data is writ-
ten to TX. PC3 is set high at the beginning of data transmission; data is then moved to
TX to begin transmission. A JCLR instruction is then used to form a wait loop until TDE
equals one and the SSI is ready for another data word to be transmitted. Two more data
words are transmitted in this fashion (this is an arbitrary number chosen for this test
loop). An additional wait is included to make sure that the frame sync has gone low
before PC3 is cleared, indicating on the scope that transmission is complete. A wait of
100 NOPs is implemented by using the REP instruction before starting the loop again.

;***
; SSI and other I/O EQUATES *

;***

CRA EQU $FFEC
CRB EQU $FFED
PCC EQU $FFE1
PCD EQU $FFE5
SSISR EQU $FFEE
TX EQU $FFEF
PCDDR EQU $FFE3
11- 130 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

ORG X:0
DC $AA0000 ;Data to transmit.
DC $330000
DC $F00000

;***
; MAIN PROGRAM *

;***

ORG P:$40

MOVE #0,R0 ;Pointer to data buffer
MOVE #2,M0 ;Length off buffer is 3

MOVEP #$08,X:PCDDR ;SC0 (PC3) as general
;purpose output.

MOVEP #$001F,X:CRA ;Set Word Length=8, CLK=5.12/32
;MHz.

MOVEP #$1E30,X:CRB ;Enable transmitter, Mode=On-
;Demand,
;Gated clock on, synchronous mode,
;Word frame sync selected, frame
;sync and clock are internal and
;output to port pins.

MOVEP #$1F0,X:PCC ;Set PCC for SSI and

DSP56001

PC3

SC2

STD

SCK

DSP56001

SRD

SCK

15K

Figure 11-83 On-Demand Mode Example — Hardware Configuration
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 131

LOOP0 BSET #3,X:PCD ;Set PC3 high (this is example enable
;or strobe for an external device
;such as an ADC).

MOVEP X:(R0);pl,X:TX ;Move data to TX register
TDE1 JCLR #6,X:SSISR,TDE1 ;Wait for TDE (transmit data register

;empty) to go high.
MOVEP X:(R0);pl,X:TX ;Move next data to TX.

TDE2 JCLR #6,X:SSISR,TDE2 ;Wait for TDE to go high.
MOVEP X:(R0);pl,X:TX ;Move data to TX.

TDE3 JCLR #6,X:SSISR,TDE3 ;Wait for TDE=1.

FSC JSET #5,X:PCD,FSC ;Wait for frame sync to go low. NOTE:
;State of frame sync is directly
;determined by reading PC5.

BCLR #3,X:PCD ;Set PC3 lo (example external
;enable).

;anything goes here (i.e., any processing)

REP #100
NOP

JMP LOOP0 ;Continue sequence forever.

END
Figure 11-84 On-Demand Mode Transmit Example Program

Figure 11-85 is the receive program for the scoping loop program presented in Figure
11-84. The receive program also uses the on-demand, gated, synchronous mode with
no interrupts (polling). Initialization for the receiver is slightly different than for the trans-
mitter. In CRB, RE is set rather than TE, and SCKD and SCD2 are inputs rather than out-
puts. After initialization, a JCLR instruction is used to wait for a data word to be received
(RDF=1). When a word is received, it is put into the circular buffer and loops to wait for
another data word. The data in the circular buffer will be overwritten after three words are
received (does not matter in this application).

;***
; SSI and other I/O EQUATES *

;***

CRA EQU $FFEC
CRB EQU $FFED
11- 132 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

PCC EQU $FFE1
PCD EQU $FFE5
SSISR EQU $FFEE
RX EQU $FFEF
PCDDR EQU $FFE3

;***
; MAIN PROGRAM *

;***

ORG P:$40

MOVE #0,R0 ;Pointer to data buffer
MOVE #2,M0 ;Length of buffer is 3

MOVEP #$001F,X:CRA ;Set Word Length=8, CLK=5.12/32
;MHz.

MOVEP #$1E30,X:CRB ;Enable receiver, Mode=On-
;Demand, gated clock on,
synchronous mode,
;Word frame sync selected, frame
;sync and clock are external.

MOVEP #$1F0,X:PCC ;Set PCC for SSI

LOOP0

RDF1 JCLR #7,X:SSISR,RDF1 ;Wait for RDF (receive data register
;Full) go to high.

MOVEP X:RX,X:(R0)+ ;Read data from RX into memory.

JMP LOOP ;Continue sequence forever.

END
Figure 11-85 On-Demand Mode Receive Example Program

11.3.8 Flags
Two SSI pins (SC1 and SC0) are available in the synchronous mode for use as serial I/O
flags. The control bits (OF1 and OF0) and status bits (IF1 and IF0) are double buffered
to/from SC1 and SC0. Double buffering the flags keeps them in sync with TX and RX.
The direction of SC1 and SC0 is controlled by SCD1 and SCD0 in CRB.

Figure 11-86 shows the flag timing for a network mode example. Initially, neither TIE nor
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 133

TE is set, and the flag outputs are the last flag output value. When TIE is set, a TDE

F
R

A
M

E
 S

Y
N

C

S
TA

R
T

T
IE T
E

T
D

E
 IN

T
E

R
R

U
P

T
S

D
1

D
2

D
3

LO
A

D
 T

S
R

D
1

D
2

D
AT

A
 W

O
R

D

D
1

D
2

W
O

R
D

T
IM

E

T
IM

E
 S

LO
T

*
F

1
F

2

O
U

T
P

U
T

 F
LA

G
S

N
O

T
E

S
:

1.
F

n
=

fla
gs

 a
ss

oc
ia

te
d

w
ith

 D
n

da
ta

.
2.

O
ut

pu
t fl

ag
s

ar
e

do
ub

le
 b

uf
fe

re
d

w
ith

 tr
an

sm
it

da
ta

.
3.

O
ut

pu
t fl

ag
s

ch
an

ge
 w

he
n

da
ta

 is
 tr

an
sf

er
re

d
fro

m
 T

X
 to

 th
e

tra
ns

m
it

da
ta

 s
hi

ft
re

gi
st

er
.

4.
In

iti
al

 fl
ag

 o
ut

pu
ts

 (*
) =

 la
st

 fl
ag

 o
ut

pu
t v

al
ue

.
5.

D
at

a
an

d
fla

gs
 tr

an
si

tio
n

af
te

r e
xt

er
na

l f
ra

m
e

sy
nc

 b
ut

 n
ot

 b
ef

or
e

ris
in

g
ed

ge
 o

f c
lo

ck
.

F
ig

u
re

 1
1-

86
 O

u
tp

u
t

F
la

g
 T

im
in

g

11- 134 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

interrupt occurs (the transmitter does not have to be enabled for this interrupt to occur).
Data (D1) is written to TX, which clears TDE, and the transmitter is enabled by software.
When the frame sync occurs, data (D1) is transferred to the transmit shift register, setting
TDE. Data (D1) is shifted out during the first word time, and the output flags are updated.
These flags will remain stable until the next frame sync. The TDE interrupt is then ser-
viced by writing data (D2) to TX, clearing TDE. After the TSR completes transmission,
the transmit pin is three-stated until the next frame sync

Figure 11-87 shows a speaker phone example that uses a DSP56000 and two codecs.
No additional logic is required to connect the codecs to the DSP. The two serial output
flags in this example (OF1 and OF0) are used as chip selects to enable the appropriate
codec for I/O. This procedure allows the transmit lines to be ORed together. The appro-
priate output flag pin changes at the same time as the first bit of the transmit word and
remains stable until the next transmit word (see Figure 11-88). Applications include
serial-device chip selects, implementing multidrop protocols, generating Bell PCM sig-
naling frame syncs, and outputting status information.

Initializing the flags (see Figure 11-88) is accomplished by setting SYN, SCD1, and

MC15500
CODEC FILTER 1

TDD

RDD

TDC

RDC

TDE

RCE

MSI

TXI

RXO

MC15500
CODEC FILTER 2

TDD

RDD

TDC

RDC

TDE

RCE

MSI

TXI

RXO

DSP5000

SRD

STD

SCK

SC0

SC1

MICROPHONE

SPEAKER

PHONE LINE INPUT

PHONE LINE OUTPUT
OUTPUT
FLAG 1

OUT-
PUT

OF0

OF1

SPEAKER PHONE

Figure 11-87 Output Flag Example

NOTE: SC0 and SC1 are output flag 0 and 1 used to software select either filter 1 or 2.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 135

SCD0. No other control bits affect the flags. The synchronous control bit must be set

T
R

A
N

S
M

IT
 C

LO
C

K15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

R
IE

1
S

C
D

2
1

1
T

IE
R

E
T

E
0

1
1

F
S

L1
F

S
L0

S
H

F
D

O
F

1
O

F
0

M
O

D
S

S
I M

O
D

E
 S

E
LE

C
T

0
=

 N
O

R
M

A
L

G
C

K
G

AT
E

D
 C

LO
C

K
 C

O
N

T
R

O
L

1
=

 G
AT

E
D

 C
LO

C
K

S
Y

N
S

Y
N

C
/A

S
Y

N
C

 C
O

N
T

R
O

L
1

=
 S

Y
N

C
H

R
O

N
O

U
S

S
C

K
D

C
LO

C
K

 S
O

U
R

C
E

 D
IR

E
C

T
IO

N
1

=
 O

U
T

P
U

T

S
C

D
1

A
N

D
 S

C
D

0
S

E
R

IA
L

C
O

N
T

R
O

L
1

A
N

D
 0

 D
IR

E
C

T
IO

N
1

=
 O

U
T

P
U

T

0
1

=
 F

IL
T

E
R

 1
1

0
=

 F
IL

T
E

R
 2

T
R

A
N

S
M

IT
 D

AT
A

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

O
U

T
P

U
T

 F
LA

G
V

A
LI

D
 O

U
T

P
U

T
 F

LA
G

O
F

0
A

N
D

 L
F

1
A

R
E

 C
LO

C
K

E
D

 O
U

T
 O

N
 T

H
E

R
IS

IN
G

 E
D

G
E

 O
F

 T
H

E
 T

R
A

N
S

M
IT

 C
LO

C
K

.
O

U
T

P
U

T
 F

LA
G

S
 A

R
E

 A
LW

AY
S

 V
A

LI
D

 U
N

T
IL

T

H
E

 N
E

X
T

 W
O

R
D

 T
R

A
N

S
M

IT
T

E
D

.

F
ig

u
re

 1
1-

88
 O

u
tp

u
t

F
la

g
 In

it
ia

liz
at

io
n

11- 136 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

(SYN=1) to select the SC1 and SC0 pins as flags. SCD1 and SCD0 select whether SC1
and SC0 are inputs or outputs (input=0, output=1). The other bits selected in Figure 11-
88 are chosen for the speaker phone example in Figure 11-87. In this example, the
codecs require that the SSI be set for normal mode (MOD=0) with a gated clock
(GCK=1) out (SCKD=1).

Serial input flags, IF1 and IF0, are latched at the same time as the first bit is sampled in
the receive data word (see Figure 11-89). Since the input was latched, the signal on the
input flag pin can change without affecting the input flag until the first bit of the next
receive data word. To initialize SC1 or SC0 as input flags, the synchronous control bit in
CRB must be set to one (SYN=1) and SCD1 set to zero for pin SC1, and SCD0 must be
set to zero for pin SC0. The input flags are bits 1 and 0 in the SSISR (at X:$FFEE).

11.3.9 Example Circuits
The DSP-to-DSP serial network shown in Figure 11-90 uses no additional logic chips for
the network connection. All serial data is synchronized to the data source (all serial
clocks and serial syncs are common). This basic configuration is useful for decimation
and data reduction when more processing power is needed than one DSP can provide.
Cascading DSPs in this manner is useful in several network topologies including star and
ring networks.

TDM networks are useful to reduce the wiring needed for connecting multiple proces-
sors. A TDM parallel topology, such as the one shown in Figure 11-91, is useful for inter-
polating filters. Serial data can be received simultaneously by all DSPs, processing can
occur in parallel, and the results are then multiplexed to a single serial data out line. This
configuration can be cascaded and/or looped back on itself as needed to fit a particular
application (see Figure 11-92). The serial and parallel configurations can be combined to
form the array processor shown in Figure 11-93. A nearest neighbor array, which is

RECEIVE CLOCK

RECEIVE DATA B7 B6 B5 B4 B3 B2 B1 B0

7 6 5 4 3 2 1 0

RDF TDE ROE TUE RFS TFS IF1 IF0X:$FFEE
SSI STATUS REGISTER (SSISR)
(READ)

INPUT FLAGS

SAMPLE

INPUT FLAG

Figure 11-89 Input Flags
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 137

applicable to matrix relaxation processing, is shown in Figure 11-94. To simplify the
drawing, only the center DSP is connected in this illustration. In use, all DSPs would
have four three-state buffers connected to their STD pin. The flags (SC0 and SC1) on
the control master operate the three-state buffers, which control the direction that data is
transferred in the matrix (north, south, east, or west).

The bus architecture shown in Figure 11-97 allows data to be transferred between any
two DSPs. However, the bus must be arbitrated by hardware or a software protocol to
prevent collisions. The master/slave configuration shown in Figure 11-96 also allows
data to be transferred between any two DSPs but simplifies network control.

DATA
 IN

DSP56000/DSP56001

SRD STD

SCK

SC2

SERIAL CLOCK

SERIAL SYNC

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DATA
 OUT

Figure 11-90 SSI Cascaded Multi-DSP System
11- 138 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

DSP56000/DSP56001

SRD STD

SCK

SC2

SERIAL CLOCK

SERIAL SYNC

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

SERIAL
DATA IN

SERIAL
DATA OUT

Figure 11-91 SSI TDM Parallel DSP Network
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 139

DSP56000/DSP56001

SRD STD

SCK

SC2

FRAME SYNC

SERIAL CLOCK

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

Figure 11-92 SSI TDM Connected Parallel Processing Array
11- 140 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SERIAL SYNC

SERIAL CLOCK

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

SERIAL
IN

SERIAL
OUT

Figure 11-93 SSI TDM Serial/Parallel Processing Array

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 141

DSP56000/DSP56001

SRD

SC0

SC1

STD

SCK

SC2

FRAME SYNC

SERIALCLOCK

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

DSP56000/DSP56001

SRD STD

SCK

SC2

Figure 11-94 SSI Parallel Processing — Nearest Neighbor Array
11- 142 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

D
S

P
56

00
0/

D
S

P
56

00
1

M
A

S
T

E
R

S
T

D

S
R

D

S
C

K

S
C

2

S
C

1

S
C

0

D
S

P
56

00
0/

D
S

P
56

00
1

S
LA

V
E

 1

S
T

D

S
R

D

S
C

K

S
C

2

S
C

1

S
C

0

D
S

P
56

00
0/

D
S

P
56

00
1

S
LA

V
E

 2

S
T

D

S
R

D

S
C

K

S
C

2

S
C

1

S
C

0

D
S

P
56

00
0/

D
S

P
56

00
1

S
LA

V
E

 3

S
T

D

S
R

D

S
C

K

S
C

2

S
C

1

S
C

0

M
A

S
T

E
R

 T
R

A
N

S
M

IT

M
A

S
T

E
R

 R
E

C
E

IV
E

M
A

S
T

E
R

 C
LO

C
K

M
A

S
T

E
R

 S
Y

N
C

F
LA

G
 1

F
LA

G
 0

N
O

T
E

: F
la

gs
 c

an
 s

pe
ci

fy
 d

at
a

ty
pe

s:
 c

on
tro

l,
ad

dr
es

s,
 a

nd
 d

at
a.

F
ig

u
re

 1
1-

96
 S

S
I T

D
M

 M
as

te
r-

S
la

ve
 D

S
P

 N
et

w
o

rk
MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 143

DSP56000/DSP56001

STD

SRD

SCK

SC2

SERIAL DATA BUS

SERIAL CLOCK

DSP56000/DSP56001

STD

SRD

SCK

SC2

DSP56000/DSP56001

STD

SRD

SCK

SC2

DSP56000/DSP56001

STD

SRD

SCK

SC2

SERIAL SYNC

Figure 11-97 SSI TDM Bus DSP Network
11- 144 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 145

11- 146 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 147

11- 148 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

MOTOROLA DSP56000/DSP56001 USER’S MANUAL 11 - 149

11- 150 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

APPENDIX A
INSTRUCTION SET DETAILS

This appendix contains detailed information about each instruction in the DSP56000/
DSP56001 instruction set. An instruction guide is presented first to help understand the
individual instruction descriptions. This guide is followed by sections on notation and
addressing modes. Since parallel moves are allowed with many of the instructions, they
are discussed before the instructions. The instructions are then discussed in alphabetical
order.

A.1 INSTRUCTION GUIDE
The following information is included in each instruction description with the goal of mak-
ing each description self-contained:

1. Name and Mnemonic: The mnemonic is highlighted in bold type for easy refer-
ence.

2. Assembler Syntax and Operation: For each instruction syntax, the corresponding
operation is symbolically described. If there are several operations indicated on a
single line in the operation field, those operations do not necessarily occur in the
order shown but are generally assumed to occur in parallel. If a parallel data move
is allowed, it will be indicated in parenthesis in both the assembler syntax and oper-
ation fields. If a letter in the mnemonic is optional, it will be shown in parenthesis in
the assembler syntax field.

3. Description: A complete text description of the instruction is given together with
any special cases and/or condition code anomalies of which the user should be
aware when using that instruction.

4. Example: An example of the use of the instruction is given. The example is shown
in DSP56000/DSP56001 assembler source code format. Most arithmetic and logi-
cal instruction examples include one or two parallel data moves to illustrate the
many types of parallel moves that are possible. The example includes a complete
explanation, which discusses the contents of the registers referenced by the
instruction (but not those referenced by the parallel moves) both before and after
the execution of the instruction. Most examples are designed to be easily under-
stood without the use of a calculator.

5. Condition Codes: The status register is depicted with the condition code bits which
can be affected by the instruction highlighted in bold type. Not all bits in the status
register are used. Those which are reserved are indicated with a double asterisk
and are read as zeros.

6. Instruction Format: The instruction fields, the instruction opcode, and the instruc-
tion extension word are specified for each instruction syntax. When the extension
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 1

word is optional, it is so indicated. The values which can be assumed by each of the
variables in the various instruction fields are shown under the instruction field’s
heading. Note that the symbols used in decoding the various opcode fields of an
instruction are completely arbitrary. Furthermore, the opcode symbols used in
one instruction are completely independent of the opcode symbols used in a dif-
ferent instruction.

7. Timing: The number of oscillator clock cycles required for each instruction syntax is
given. This information provides the user a basis for comparison of the execution
times of the various instructions in oscillator clock cycles. Refer to Table A-1 and
A.7 INSTRUCTION TIMING for a complete explanation of instruction timing, includ-
ing the meaning of the symbols ‘‘aio’’, ‘‘ap’’, ‘‘ax’’, ‘‘ay’’, ‘‘axy’’, ‘‘ea’’, ‘‘jx’’, ‘‘mv’’,
‘‘mvb’’, ‘‘mvc’’, ‘‘mvm’’, ‘‘mvp’’, ‘‘rx’’, ‘‘wio’’, ‘‘wp’’, ‘‘wx’’, and ‘‘wy’’.

8. Memory: The number of program memory words required for each instruction syn-
tax is given. This information provides the user a basis for comparison of the num-
ber of program memory locations required for each of the various instructions in 24-
bit program memory words. Refer to Table A-1 and A.7 INSTRUCTION TIMING for
a complete explanation of instruction memory requirements, including the meaning
of the symbols ‘‘ea’’ and ‘‘mv’’.

A.2 NOTATION
Each instruction description contains symbols used to abbreviate certain operands and
operations. Table A-1 lists the symbols used and their respective meanings. Depending
on the context, registers refer to either the register itself or the contents of the register.

A.3 ADDRESSING MODES
The addressing modes are grouped into three categories: register direct, address regis-
ter indirect, and special. These addressing modes are summarized in Table A-2. All
address calculations are performed in the address ALU to minimize execution time and
loop overhead. Addressing modes, which specify whether the operands are in registers,
in memory, or in the instruction itself (such as immediate data), provide the specific
address of the operands.

The register direct addressing mode can be subclassified according to the specific regis-
ter addressed. The data registers include X1, X0, Y1, Y0, X, Y, A2, A1, A0, B2, B1, B0,
A, and B. The control registers include SR, OMR, SP, SSH, SSL, LA, LC, CCR, and MR.

Address register indirect modes use an address register Rn (R0–R7) to point to locations
in X, Y, and P memory. The contents of the Rn address register (Rn) is the effective
address (ea) of the specified operand, except in the ‘‘indexed by offset’’ mode where the
effective address (ea) is (Rn+Nn). Address register indirect modes use an address mod-
ifier register Mn to specify the type of arithmetic to be used to update the address regis-
ter Rn. If an addressing mode specifies an address offset register Nn, the given address
offset register is used to update the corresponding address register Rn. The Rn address
register may only use the corresponding address offset register Nn and the correspond-
ing address modifier register Mn. For example, the address register R0 may only use the
A - 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

N0 address offset register and the M0 address modifier register during actual address
computation and address register update operations. This unique implementation is
extremely powerful and allows the user to easily address a wide variety of DSP-oriented
data structures. All address register indirect modes use at least one set of address regis-
ters (Rn, Nn, and Mn), and the XY memory reference uses two sets of address registers,
one for the X memory space and one for the Y memory space.

The special addressing modes include immediate and absolute addressing modes as
well as implied references to the program counter (PC), the system stack (SSH or SSL),
and program (P) memory.

Addressing modes may also be categorized by the ways in which they may be used.

Xn Input Register X1 or X0 (24 Bits)

Yn Input Register Y1 or Y0 (24 Bits)

An Accumulator Registers A2, A1, A0 (A2 — 8 Bits, A1 and A0 — 24 Bits)

Bn Accumulator Registers B2, B1, B0 (B2 — 8 Bits, B1 and B0 — 24 Bits)

X Input Register X = X1: X0 (48 Bits)

Y Input Register Y = Y1: Y0 (48 Bits)

A Accumulator A = A2: A1: A0 (56 Bits)*

B Accumulator B = B2: B1: B0 (56 BIts)*

AB Accumulators A and B = A1: B1 (48 Bits)*

BA Accumulators B and A = B1: A1 (48 Bits)*

A10 Accumulator A = A1: A0 (48 Bits)

B10 Accumulator B= B1:B0 (48 bits)

* NOTE: In data move operations, shifting and limiting are performed when this register is specified
as a source operand. When specified as a destination operand, sign extension and possibly
zeroing are performed.

Data ALU Registers Operands

Table A-1 Instruction Description Notation

Rn Address Registers R0 - R7 (16 Bits)

Nn Address Offset Registers N0 - N7 (16 Bits)

Mn Address Modifier Registers M0 - M7 (16 Bits)

Address ALU Registers Operands
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 3

Table A-3 shows the various categories to which each addressing mode belongs. The
following classifications will be used in the instruction descriptions.

Table A-3. DSP56000/DSP56001 Addressing Mode Encoding

These addressing mode categories may be combined so that additional, more restrictive
classifications may be defined. For example, the instruction descriptions may use a

ea Effective Address

eax Effective Address for X Bus

eay Effective Address for Y Bus

xxxx Absolute Address (16 Bits)

xxx Short Jump Address (12 Bits)

aa Absolute Short Address (6 Bits, Zero Extended)

pp I/O Short Address (6 Bits, Ones Extended)

<. . .> Specifiies the Contents of the Specified Address

X: X Memory Reference

Y: Y Memory Reference

L: Long Memory Reference = X:Y

P: Program Memory Reference

Address Operands

PC Program Counter Register (16 Bits)

MR Mode Register (8 Bits)

CCR Condition Code Register (8 Bits)

SR Status Register = MR:CCR (16 Bits)

OMR Operating Mode Register (8 Bits)

LA Hardware Loop Address Register (16 Bits)

LC Hardware Loop Counter Register (16 Bits)

SP System Stack Pointer Register (6 Bits)

SSH Upper Portion of the Current Top of the Stack (16 Bits)

SSL Lower Portion of the Current Top of the Stack (16 Bits)

SS System Stack RAM = SSH: SSL (15 Locations by 32 Bits)

Program Controller Registers Operands

Table A-1 Instruction Description Notation (Continued)
A - 4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

memory alterable classification, which refers to addressing modes that are both mem-

S, Sn Source Operand Register

D, Dn Destination Operand Register

D [n] Bit n of D Destination Operand Register

#n Immediate Short Data (5 Bits)

#xx Immediate Short Data (8 Bits)

#xxx Immediate Short Data (12 Bits)

#xxxxxx Immediate Data (24 Bits)

Miscellaneous Operands

- Negation Operator

— Logical NOT Operator

PUSH Push Specified Value onto the System Stack (SS) Operator

PULL Pull Specified Value from the System Stack (SS) Operator

READ Read the Top of the System Stack (SS) Operator

PURGE Delete the Top Value on the System Stack (SS) Operator

| | Absolute Value Operator

Unary Operators

+ Addition Operator

- Subtraction Operator

* Multiplication Operator

÷, / Division Operator

+ Logical Inclusive OR Operator

• Logical AND Operator

⊕ Logical Exclusive OR Operator

➨ “Is Transferred To” Operator

: Concatenation Operator

Binary Operators

Table A-1 Instruction Description Notation (Continued)
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 5

ory addressing modes and alterable addressing modes. Thus, memory alterable
addressing modes use address register indirect and absolute addressing modes.

The address register indirect addressing modes require that the offset register number
be the same as the address register number. However, future family members may allow
the offset register number to be different from the address register number. The assem-
bler syntax ‘‘Nn’’ supports the future feature. The assembler syntax ‘‘N’’ may be used

<< I/O Short Addressing Mode Force Operator

< Short Addressing Mode Force Operator

> Long Addressing Mode Force Operator

Immediate Addressing Mode Operator

#> Immediate Long Addressing Mode Force Operator

#< Immediate Short Addressing Mode Force Operator

Addressing Mode Operators

LF Loop Flag Bit Indicating When a DO Loop is in Progress

T Trace Mode Bit Indicating if the Tracing Function has been Enabled

S1, S0 Scaling Mode Bits Indicating the Current Scaling Mode

I1, I0 Interrupt Mask Bits Indicating the Current Interrupt Priority Level

Mode Register (MR) Symbols

L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting

E Extension Bit Indicating if the Integer Portion of A or B is in Use

U Unnormalized Bit Indicating if the A or B Result is Unnormalized

N Negative Bit Indicating if Bit 55 of the A or B Result is Set

Z Zero Bit Indicating if the A or B Result Equals Zero

V Overflow Bit Indicating if Arithmetic Overflow has Occurred in A or B

C Carry Bit Indicating if a Carry or Borrow Occurred in A or B Result

Condition Code Register (CCR) Symbols
Standard Definitions (Table A - 3 Describes Exceptions)

Table A-1 Instruction Description Notation (Continued)
A - 6 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

aio Time Required to Access an I/O Operand

ap Time Required to Access a P Memory Operand

ax Time Required to Access an X Memory Operand

ay Time Required to Access a Y Memory Operand

axy Time Required to Access XY Memory Operands

ea Time or Number of Words Required for an Effective Address

jx Time Required to Execute Part of a Jump-Type Instruction

mv Time or Number of Words Required for a Move-Type Operation

mvb Time Required to Execute Part of a Bit Manipulation Instruction

mvc Time Required to Execute Part of a MOVEC Instruction

mvm Time Required to Execute Part of a MOVEM Instruction

mvp Time Required to Execute Part of a MOVEP Instruction

rx Time Required to Execute Part of an TRTI or RTS Instruction

wio Number of Wait States Used in Accessing External I/O

wp Number of Wait States Used in Accessing External P Memory

wx Number of Wait States Used in Accessing External X Memory

wy Number of Wait States Used in Accessing External Y Memory

Instruction Timing Symbols

() Optional Letter, Operand, or Operation

(.) Any Arithmetic or Logical Instruction Which Allows Parallel Moves

EXT Extension Register Portion of an Accumulator (A2 or B2)

LS Least Significant

LSP Least Significant Portion of an Accumulator (A0 or B0)

MS Most Significant

MSP Most Significant Portion of a n Accumulator (A1 or B1)

r Rounding constant

S/L Shifting and/or Limiting on a Data ALU Register

Sign Ext Sign Externsion of a Data ALU Register

Zero Zeroing of a Data ALU Register

Other Symbols

Table A-1 Instruction Description Notation (Continued)
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 7

instead of ‘‘Nn’’ in the address register indirect memory addressing modes. If ‘‘N’’ is
specified, the offset register number is the same as the address register number.

Addressing Mode
Uses Mn
Modifier

Operand Reference

S C D A P X Y L XY

Register Direct

Data or Control Register No X X X

Address Register Rn No X

Address Modifier Register
Mn

No X

Address Offset Register Nn No X

Address Register Indirect

No Update Yes X X X X X

Postincrement by 1 Yes X X X X X

Postdecrement by 1 Yes X X X X X

Postincrement by Offset Nn Yes X X X X X

Postdecrement by Offset Nn Yes X X X X

Indexed by Offset Nn Yes X X X X

Predecrement by 1 Yes X X X X

Special

Immediate Data No X

Absolute Address No X X X X

Immediate Short Data No X

Short Jump Address No X

Absolute Short Address No X X X X

I/O Short Address No X X

Implicit No X X X

NOTE:S = System Stack Reference X = X Memory Reference
C = Program Controller Register Reference Y = Y Memory Reference
D = Data ALU Register Reference L = L Memory Reference
A = Address ALU Register Reference XY = XY Memory Reference
P = Program Memory Reference

Table A-2 DSP 56000/56001 Addressing Modes
A - 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Addressing Mode
Mode
MMM

Reg
RRR

Addressing Categories Assembler
SyntaxU P M A

Register Direct

Data or Control Register — — X (SeeTable A-1)

Address Register — — X Rn

Address Offset Register — — X Nn

Address Modifier Register — — X Mn

Address Register Indirect

No Update 100 Rn X X X (Rn)

Postincrement by 1 011 Rn X X X X (Rn) +

Postdecrement by 1 010 Rn X X X X (Rn) -

Postincrement by Offset Nn 001 Rn X X X X (Rn) + Nn

Postdecrement by Offset Nn 000 Rn X X X (RN) - Nn

Indexed by Offset Nn 101 Rn X X (Rn + Nn)

Predecrement by 1 111 Rn X X - (Rn)

Special

Immediate Data 110 100 X #xxxxxx

Absolute Address 110 000 X X xxxx

Immediate Short Data — — #xx

Short Jump Address — — X xxx

Absolute Short Address — — X aa

I/O Short Address — — X pp

Implicit — — X

Update Mode (U) The update addressing mode is used to modify address registers without any
associated data move.

Parallel Mode (P) The parallel addressing mode is used in instructions where two effective
addresses are required.

Memory Mode (M) The memory addressing mode is used to refer to operands in memory using an
effective addressing field.

Alterable Mode (A) The alterable addressing mode is used to refer to alterable or writable registers or
memory.

Table A-3 DSP56000/56001 Addressing Mode Encoding
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 9

A.3.1 Addressing Mode Modifiers
The addressing mode selected in the instruction word is further specified by the contents
of the address modifier register Mn. The addressing mode update modifiers (M0–M7)
are shown in Table A-4. There are no restrictions on the use of modifier types with any
address register indirect addressing mode.

A.4 CONDITION CODE COMPUTATION

The condition code register (CCR) portion of the status register (SR) consists of seven
defined bits:

L — Limit Bit Z — Zero Bit

E — Extension Bit V — Overflow Bit

U — Unnormalized Bit C — Carry Bit

N — Negative Bit
The E, U, N, Z, V, and C bits are true condition code bits that reflect the condition of the result of a data ALU operation. These condition code bits are not latched and are not affected by address ALU calculations or by data transfers over the X, Y, or global

data buses. The L bit is a latching overflow bit which indicates that an overflow has occurred in the data ALU or that data limiting has occurred when moving the contents of the Aand/or[lz B accumulators.

The standard definition of the condition code bits is as follows. Exceptions to these standard definitions are given in Table A-5.

16-Bit Modifier Reg. (M0 - M7)
MMMMMMMMMMMMMMMM*

Address Calculation Arithmetic

0000000000000000 Reverse Carry (Bit Reversed)

0000000000000001 Modulo 2

0000000000000010 Modulo 3

• • •

• • •

0111111111111110 Modulo 32767

0111111111111111 Modulo 32768

1000000000000000 Undefined

• • •

1111111111111110 Undefined

1111111111111111 Linear (Modulo 65536)

*MMMMMMMMMMMMMMMM = 16-Bit Modifier Reg. Contents

Table A-4 Addressing Mode Modifier Summary

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

 L (Limit Bit) Set if the overflow bit V is set or if the data shifter/limiters perform a limiting operation. Not affected otherwise. This bit is latched and must be reset by the user.

 E (Extension Bit) Cleared if all the bits of the signed integer portion of the A or B result are the same =m i.e., the bit patterns are either 00 . . . 00 or 11 . . . 11. Set otherwise. The signed integer portion is defined

by the scaling mode as shown in the following table:

S1 S0 Scaling Mode Signed Integer Portion

0 0 No Scaling Bits 55, 54, 48, 47
0 1 Scale Down Bits 55, 54, 49, 48
1 0 Scale Up Bits 55, 54, 47, 46

Note that the signed integer portion of an accumulator IS NOT necessarily the same as the extension register portion of that accumulator. The signed integer portion of an accumulator consists of the MS 8, 9, or 10 bits of that accumulator, depending on the scal-

ing mode being used. The extension register portion of an accumulator (A2 or B2) is always the MS 8 bits of that accumulator. The E bit refers to the signed integer portion of an accumulator and NOT the extension register portion of that accumulator. For

example, if the current scaling mode is set for no scaling (i.e., S1=S0=0), the signed integer portion of the A or B accumulator consists of bits 47 through 55. If the A accumulator contained the signed 56-bit value $00:800000:000000 as a result of a data ALU oper-

ation, the E bit would be set (E=1) since the 9 MS bits of that accumulator were not all the same (i.e., neither 00 . . 00 nor 11 . . 11). This means that data limiting will occur if that 56-bit value is specified as a source operand in a move-type operation. This limiting

operation will result in either a positive or negative, 24-bit or 48-bit saturation constant being stored in the specified destination. The only situation in which the signed integer portion of an accumulator and the extension register portion of an accumulator are the same

is in the ‘‘Scale Down’’ scaling mode (i.e., S1=0 and S0=1).

U (Unnormalized Bit) Set if the two MS bits of the MSP portion of the A or B result are the same. Cleared otherwise. The MSP portion is defined by the scaling mode. The U bit is computed as follows:

S1 S0 Scaling Mode U Bit Computation

0 0 No Scaling U=(Bit 47 ⊕ Bit 46)
0 1 Scale Down U=(Bit 48 ⊕ Bit 47)
1 0 Scale Up U=(Bit 46 ⊕ Bit 45)

N (Negative Bit) Set if the MS bit 55 of the A or B result is set. Cleared otherwise.

Z (Zero Bit) Set if the A or B result equals zero. Cleared otherwise.

V (Overflow Bit) Set if an arithmetic overflow occurs in the 56-bit A or B result. This indicates that the result cannot be represented in the 56-bit accumulator; thus, the accumulator has overflowed. Cleared other-

wise.

C (Carry Bit) Set if a carry is generated out of the MS bit of the A or B result of an addition or if a borrow is generated out of the MS bit of the A or B result of a subtraction. The carry or borrow is generated out

of bit 55 of the A or B result. Cleared otherwise.

Table A-5 details how each instruction affects the condition codes. The convention for the notation that is used is shown at the bottom of Table A-5.

A.5 PARALLEL MOVE DESCRIPTIONS
Many of the instructions in the DSP56000/DSP56001 instruction set allow optional parallel data bus movement. A.6 INSTRUCTION DESCRIPTIONS indicates the parallel move option in the instruction syntax with the statement ‘‘(parallel move)’’. The MOVE instruc-

tion is equivalent to a NOP with parallel moves. Therefore, a detailed description of each parallel move is given with the MOVE instruction details in A.6 INSTRUCTION DESCRIPTIONS.

A.6 INSTRUCTION DESCRIPTIONS
The following section describes each instruction in the DSP56000/DSP56001 instruction set in complete detail. The format of each instruction description is given in A.1 INSTRUCTION GUIDE. Instructions which allow parallel moves include the notation ‘‘(parallel

move)’’ in both the Assembler Syntax and the Operation fields. The example given with each instruction discusses the contents of all the registers and memory locations referenced by the opcode-operand portion of that instruction but not those referenced by the

parallel move portion of that instruction. Refer to A.5 PARALLEL MOVE DESCRIPTIONS for a complete discussion of parallel moves, including examples which discuss the contents of all the registers and memory locations referenced by the parallel move portion of

an instruction.

Whenever an instruction uses an accumulator as both a destination operand for a data ALU operation and as a source for a parallel move operation, the parallel move operation will use the value in the accumulator prior to execution of any data ALU operation.

Whenever a bit in the condition code register is defined according to the standard definition given in A.4 CONDITION CODE COMPUTATION, a brief definition will be given in normal text in the Condition Code section of that instruction description. Whenever a bit

in the condition code register is defined according to a special definition for some particular instruction, the complete special definition of that bit will be given in the Condition Code section of that instruction in bold text to alert the user to any special conditions con-

cerning its use.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 11

NOTES:
1 V Set if an arithmetic overflow occurs in the 56-bit result. Also set if the MS bit of the destination operand is changed as a result of

the left shift. Cleared otherwise.
2 ? Cleared if the corresponding bit in the immediate data is cleared when the operand is the CCR. Not affected otherwise.
3 C Set if bit 55 of the source operand is set. Cleared otherwise.
4 C Set if bit 0 of the source operand is set. Cleared otherwise.
5 C Set if bit #n of the source operand is set. Cleared otherwise.
6 ? Set if the corresponding bit in the immediate data is set when the operand is the CCR. Not affected otherwise.
7 C Set if bit 55 of the result is cleared. Cleared otherwise.
8 N Set if bit 47 of the result is set. Cleared otherwise.
9 Z Set if bits 47 - 24 of the result are zero. Cleared otherwise.
10 C Set if bit 47 of the source operand is set. Cleared otherwise.
11 C Set if bit 24 of the source operand is set. Cleared otherwise.
12 ? Set according to the value pulled from the stack.
13 ? If the status register (SR) is specified as a destination operand, set according to the corresponding bit of the source operand. If

SR is not specified as a destination operand, the L bit is set if data limiting occurred. All ? bits are not affected otherwise.
14 ? Set if limiting occurs, not affected otherwise.

Mnemonic L E U N Z V C Notes Mnemonic L E U N Z V C Notes

ABS * * * * * * — MAC * * * * * * —

ADC * * * * * * * MACR * * * * * * —

ADD * * * * * * * MOVE * — — — — — —

ADDL * * * * * ? * 1 MOVEC ? ? ? ? ? ? ? 13

ADDR * * * * * * * MOVEM ? ? ? ? ? ? ? 13

AND * — — ? ? 0 — 8, 9 MOVEP ? ? ? ? ? ? ? 13

ANDI ? ? ? ? ? ? ? 2 MPY * * * * * * —

ASL * * * * * ? ? 1, 3 MPYR * * * * * * —

ASR * * * * * 0 ? 4 NEG * * * * * * —

BCHG ? — — — — — ? 5, 14 NOP — — — — — — —

BCLR ? — — — — — ? 5, 14 NORM * * * * * ? — 1

BSET ? — — — — — ? 5, 14 NOT * — — ? ? 0 — 8, 9

BTST ? — — — — — ? 5, 14 OR * — — ? ? 0 — 8, 9

CLR * * * * * 0 — ORI ? ? ? ? ? ? ? 6

CMP * * * * * * * REP * — — — — — —

CMPM * * * * * * * RESET — — — — — — —

DIV * — — — — ? ? 1, 7 RND * * * * * * —

DO * — — — — — — ROL * — — ? ? 0 ? 8, 9, 10

ENDDO — — — — — — — ROR * — — ? ? 0 ? 8, 9, 11

EOR * — — ? ? 0 — 8, 9 RTI ? ? ? ? ? ? ? 12

Jcc — — — — — — — RTS * — — — — — —

JCLR — — — — — — — SBC * * * * * * *

JMP — — — — — — — STOP — — — — — — —

JScc — — — — — — — SUB * * * * * * *

JSCLR — — — — — — — SUBL * * * * * ? * 1

JSET — — — — — — — SUBR * * * * * * *

JSR — — — — — — — SWI — — — — — — —

JSSET — — — — — — — Tcc — — — — — — —

LSL * — — ? ? 0 ? 8, 9, 10 TFR * — — — — — —

LSR * — — ? ? 0 ? 8, 9, 11 TST * * * * * 0 —

LUA — — — — — — — WAIT — — — — — — —

where: * Set according to the standard definition of the operation
— Not affected by the operation
? Set according to a special definition and can be a 0 or 1
0 The V bit is cleared

Table A-5 Condition Code Computations
A - 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

The definition and thus the computation of both the E (extension) and U (unnormalized) bits
of the condition code register (CCR) varies according to the scaling mode being used. Refer
to A.4 CONDITION CODE COMPUTATION for complete details.

NOTE

The signed integer portion of an accumulator is NOT necessarily the same as
either the A2 or B2 extension register portion of that accumulator. The signed
integer portion of an accumulator is defined according to the scaling mode be-
ing used and can consist of the MS 8, 9, or 10 bits of an accumulator. Refer to
A.4 CONDITION CODE COMPUTATION for complete details.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 13

Operation: Assembler Syntax:
| D | ➞ D (parallel move) ABS D (parallel move)

Description: Take the absolute value of the destination operand D and store the result
in the destination accumulator.

Example:

:
ABS A #$123456,X0 A,Y0 ;take abs. value, set up X0, save value

:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $FF:FFFFFF:FFFFF2. Since this is a negative number, the execution of the ABS
instruction takes the twos complement of that value and returns $00:000000:00000E.

Note: For the case in which the D operand equals $80:000000:000000 (-256.0), the
ABS instruction will cause an overflow to occur since the result cannot be correctly ex-
pressed using the standard 56-bit, fixed-point, twos-complement data representation.
Data limiting does not occur (i.e., A is not set to the limiting value of
$7F:FFFFFF:FFFFFF).

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

ABS Absolute Value ABS

Before Execution After Execution

A A$FF:FFFFFF:FFFFF2 $00:000000:00000E

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 14 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
ABS D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ABS Absolute Value ABS
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 15

Operation: Assembler Syntax:
S+C+D ➞ D (parallel move) ADC S,D (parallel move)

Description: Add the source operand S and the carry bit C of the condition code register
to the destination operand D and store the result in the destination accumulator. Long
words (48 bits) may be added to the (56-bit) destination accumulator.

Note: The carry bit is set correctly for multiple precision arithmetic using long-word op-
erands if the extension register of the destination accumulator (A2 or B2) is the sign
extension of bit 47 of the destination accumulator (A or B).

Example:
:

MOVE L:<$0,X ;get a 48-bit LS long-word operand in X
MOVE L:<$1,A ;get other LS long word in A (sign ext.)
MOVE L:<$2,Y ;get a 48-bit MS long-word operand in Y
ADD X,A L:<$3,B ;add LS words; get other MS word in B
ADC Y,B A10,L:<$4 ;add MS words with carry, save LS sum
MOVE B10,L:<$5 ;save MS sum

:

Explanation of Example: This example illustrates long-word double-precision (96-bit)
addition using the ADC instruction. Prior to execution of the ADD and ADC instructions,
the double-precision 96-bit value $000000:000001:800000:000000 is loaded into the Y
and X registers (Y:X), respectively. The other double-precision 96-bit value
$000000:000001:800000:000000 is loaded into the B and A accumulators (B:A), respec-
tively. Since the 48-bit value loaded into the A accumulator is automatically sign
extended to 56 bits and the other 48-bit long-word operand is internally sign extended to
56 bits during instruction execution, the carry bit will be set correctly after the execution
of the ADD X,A instruction. The ADC Y,B instruction then produces the correct MS 56-bit
result. The actual 96-bit result is stored in memory using the A10 and B10 operands
(instead of A and B) because shifting and limiting is not desired.

ADC Add Long with Carry ADC

Before Execution After Execution

A A$FF:800000:000000 $FF:000000:000000

X X$800000:000000 $800000:000000

B B$00:000000:000001 $00:000000:000003

Y Y$000000:000001 $000000:000001
A - 16 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
ADC S,D

Opcode:

Instruction Fields:
S,D J d

X,A 0 0
X,B 0 1
Y,A 1 0
Y,B 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ADC Add Long with Carry ADC
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 17

Operation: Assembler Syntax:
S+D➞D (parallel move ADD S,D (parallel move)

Description: Add the source operand S to the destination operand D and store the
result in the destination accumulator. Words (24 bits), long words (48 bits), and accumu-
lators (56 bits) may be added to the destination accumulator.

Note: The carry bit is set correctly using word or long-word source operands if the ex-
tension register of the destination accumulator (A2 or B2) is the sign extension of bit 47
of the destination accumulator (A or B). Thus, the carry bit is always set correctly using
accumulator source operands, but can be set incorrectly if A1, B1, A10, or B10 are used
as source operands and A2 and B2 are not replicas of bit 47.

Example:
:

ADD X0,A A,X1 A,Y:(R1)+l ;24-bit add, set up X1, save prev. result
:

Explanation of Example: Prior to execution, the 24-bit X0 register contains the value
$FFFFFF and the 56-bit A accumulator contains the value $00:000100:000000. The
ADD instruction automatically appends the 24-bit value in the X0 register with 24 LS
zeros, sign extends the resulting 48-bit long word to 56 bits, and adds the result to the
56-bit A accumulator. Thus, 24-bit operands are added to the MSP portion of A or B (A1
or B1) because all arithmetic instructions assume a fractional, twos complement data
representation. Note that 24-bit operands can be added to the LSP portion of A or B (A0
or B0) by loading the 24-bit operand into X0 or Y0, forming a 48-bit word by loading X1 or
Y1 with the sign extension of X0 or Y0 and executing an ADD X,A or ADD Y,A instruc-
tion.

Condition Codes:

ADD Add ADD

Before Execution After Execution

X0 X0$FFFFFF

A A$00:000100:000000 $00:0000FF:000000

$FFFFFF

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 18 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
ADD S,D

Opcode:

Instruction Fields:
S,D J J J d S,D J J J d S,D J J J d

B,A 0 0 1 0 X0,A 1 0 0 0 Y1,A 1 1 1 0
A,B 0 0 1 1 X0,B 1 0 0 1 Y1,B 1 1 1 1
X,A 0 1 0 0 Y0,A 1 0 1 0
X,B 0 1 0 1 Y0,B 1 0 1 1
Y,A 0 1 1 0 X1,A 1 1 0 0
Y,B 0 1 1 1 X1,B 1 1 0 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ADD Add ADD
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 19

Operation: Assembler Syntax:
S+2∗ D➞D (parallel move) ADDL S,D (parallel move)

Description: Add the source operand S to two times the destination operand D and
store the result in the destination accumulator. The destination operand D is arithmeti-
cally shifted one bit to the left, and a zero is shifted into the LS bit of D prior to the addi-
tion operation. The carry bit is set correctly if the source operand does not overflow as a
result of the left shift operation. The overflow bit may be set as a result of either the shift-
ing or addition operation (or both). This instruction is useful for efficient divide and deci-
mation in time (DIT) FFT algorithms.

Example:
:

ADDL A,B #$0,R0 ;A+2∗ B➞B, set up addr. reg. R0
:

Explanation of Example: Prior to execution, the 56-bit accumulator contains the value
$00:000000:000123, and the 56-bit B accumulator contains the value
$00:005000:000000. The ADDL A,B instruction adds two times the value in the B accu-
mulator to the value in the A accumulator and stores the 56-bit result in the B accumula-
tor.

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result or if the MS bit of the destination

operand is changed as a result of the instruction’s left shift
C — Set if a carry (or borrow) occurs from bit 55 of A or B result.

ADDL Shift Left and Add Accumulators ADDL

Before Execution After Execution

A A$00:000000:000123

B B$00:005000:000000 $00:00A000:000123

$00:000000:000123

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 20 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Note: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
ADDL S,D

Opcode:

Instruction Fields:
S,D d

B,A 0
A,B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ADDL Shift Left and Add Accumulators ADDL
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 21

Operation: Assembler Syntax:
S+D / 2➞D (parallel move) ADDR S,D (parallel move)

Description: Add the source operand S to one-half the destination operand D and store
the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the right while the MS bit of D is held constant prior to the addition oper-
ation. In contrast to the ADDL instruction, the carry bit is always set correctly, and the
overflow bit can only be set by the addition operation and not by an overflow due to the
initial shifting operation. This instruction is useful for efficient divide and decimation in
time (DIT) FFT algorithms.

Example:
:

ADDR B,A X0,X:(R1)+N1 Y0,Y:(R4)– ;B+A / 2➞A, save X0 and Y0
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $80:000000:2468AC, and the 56-bit B accumulator contains the value
$00:013570:000000. The ADDR B,A instruction adds one-half the value in the A accu-
mulator to the value in the B accumulator and stores the 56-bit result in the A accumula-
tor.

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result.

ADDR Shift Right and Add Accumulators ADDR

Before Execution After Execution

A A$80:000000:2468AC

B B$00:013570:000000 $00:013570:000000

$C0:013570:123456

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 22 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Note: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
ADDR S,D

Opcode:

Instruction Fields:
S,D d

B,A 0
A,B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ADDR Shift Right and Add Accumulators ADDR
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 23

Operation: Assembler Syntax:
S • D[47:24]➞D[47:24] (parallel move) AND S,D (parallel move)
where •denotes the logical AND operator

Description: Logically AND the source operand S with bits 47–24 of the destination
operand D and store the result in bits 47–24 of the destination accumulator. This instruc-
tion is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

Example:
:

AND X0,A (R5)–N5 ;AND X0 with A1, update R5 using N5
:

Explanation of Example: Prior to execution, the 24-bit X0 register contains the value
$FF0000, and the 56-bit A accumulator contains the value $00:123456:789ABC. The
AND X0,A instruction logically ANDs the 24-bit value in the X0 register with bits 47–24 of
the A accumulator (A1) and stores the result in the A accumulator with bits 55–48 and
23–0 unchanged.

Condition Codes:

L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z— Set if bits 47–24 of A or B result are zero
V — Always cleared

Instruction Format:
AND S,D

AND Logical AND AND

Before Execution After Execution

X0 X0$FF0000

A A$00:123456:789ABC $00:120000:789ABC

$FF0000

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 24 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Opcode:

Instruction Fields:
S J J D d

X,0 0 0 A 0 (only A1 is changed)
X,1 1 0 B 1 (only B1 is changed)
Y,0 0 1
Y,1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 1 J J d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

AND Logical AND AND
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 25

Operation: Assembler Syntax:
#xx • D➞D AND(I) #xx,D
where • denotes the logical AND operator

Description: Logically AND the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The
condition codes are affected only when the condition code register (CCR) is specified as
the destination operand.

Restrictions:The ANDI #xx,MR instruction cannot be used immediately before an
ENDDO or RTI instruction and cannot be one of the last three instructions in a DO loop
(at LA-2, LA-1, or LA).

The ANDI #xx,CCR instruction cannot be used immediately before an RTI instruction.

Example:
:

AND #$FE,CCR ;clear carry bit C in cond. code register
:

Explanation of Example: Prior to execution, the 8-bit condition code register (CCR)
contains the value $31. The AND #$FE,CCR instruction logically ANDs the immediate 8-
bit value $FE with the contents of the condition code register and stores the result in the
condition code register.

Condition Codes:

For CCR Operand:
L — Cleared if bit 6 of the immediate operand is cleared
E — Cleared if bit 5 of the immediate operand is cleared
U — Cleared if bit 4 of the immediate operand is cleared
N — Cleared if bit 3 of the immediate operand is cleared
Z— Cleared if bit 2 of the immediate operand is cleared

ANDI AND Immediate with Control Register ANDI

Before Execution After Execution

CCR CCR$31 $30

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 26 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

V — Cleared if bit 1 of the immediate operand is cleared
C — Cleared if bit 0 of the immediate operand is cleared

For MR and OMR Operands: The condition codes are not affected using these oper-
ands.

Instruction Format:
AND(I) #xx,D

Opcode:

Instruction Fields:
#xx=8-bit Immediate Short Data — i i i i i i i i

D E E

MR 0 0
CCR 0 1
OMR 1 0

Timing: 2 oscillator clock cycles

Memory: 1 program word

23 16 15 8 7 0

0 0 0 0 0 0 0 0 i i i i i i i i 1 0 1 1 1 0 E E

ANDI AND Immediate with Control Register ANDI
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 27

Assembler Syntax: ASL D (parallel move)

Description: Arithmetically shift the destination operand D one bit to the left and store
the result in the destination accumulator. The MS bit of D prior to instruction execution is
shifted into the carry bit C and a zero is shifted into the LS bit of the destination accumu-
lator D. If a zero shift count is specified, the carry bit is cleared. The difference between
ASL and LSL is that ASL operates on the entire 56 bits of the accumulator and therefore
sets the V bit if the number overflowed.

Example:
:

ASL A (R3)– ;multiply A by 2, update R3
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $A5:012345:012345. The execution of the ASL A instruction shifts the 56-bit value
in the A accumulator one bit to the left and stores the result back in the A accumulator.

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if bit 55 of A or B result is changed due to left shift
C — Set if bit 55 of A or B was set prior to instruction execution

ASL Arithmetic Shift Accumulator Left ASL

55 47 23 0

C 0 (parallel move)Operation:

Before Execution After Execution

A A$A5:012345:012345

SR SR$0300 $0373

$4A:02468A:02468A

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 28 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Note: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
ASL D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ASL Arithmetic Shift Accumulator Left ASL
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 29

Assembler Syntax: ASR D (parallel move)

Description: Arithmetically shift the destination operand D one bit to the right and store
the result in the destination accumulator. The LS bit of D prior to instruction execution is
shifted into the carry bit C, and the MS bit of D is held constant.

Example:
:

ASR B X:–(R3),R3 ;divide B by 2, update R3, load R3
:

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $A8:A86420:A86421. The execution of the ASR B instruction shifts the 56-bit
value in the B accumulator one bit to the right and stores the result back in the B accu-
mulator.

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Always cleared
C — Set if bit 0 of A or B was set prior to instruction execution

Note: The definition of the E and U bits varies according to the scaling mode being used.

ASR Arithmetic Shift Accumulator Right ASR

55 47 23 0

C (parallel move)Operation:

Before Execution After Execution

B B$A8:A86420:A86421

SR SR$0300 $0329

$D4:543210:543210

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 30 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
ASR D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ASR Arithmetic Shift Accumulator Right ASR
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 31

Operation: Assembler Syntax:
D[n] ➞ C; BCHG #n,X:ea
D[n] ➞ D[n]

D[n] ➞ C; BCHG #n,X:aa
D[n] ➞ D[n]

D[n] ➞ C; BCHG #n,X:pp
D[n] ➞ D[n]

D[n] ➞ C; BCHG #n,Y:ea
D[n] ➞ D[n]

D[n] ➞ C; BCHG #n,Y:aa
D[n] ➞ D[n]

D[n] ➞ C; BCHG #n,Y:pp
D[n] ➞ D[n]

D[n] ➞ C; BCHG #n,D
D[n] ➞ D[n]

Description: Test the nth bit of the destination operand D, complement it, and store the
result in the destination location. The state of the nth bit is stored in the carry bit C of the
condition code register. After the test, the nth bit of the destination location is comple-
mented. The bit to be tested is selected by an immediate bit number from 0–23. This
instruction performs a read-modify-write operation on the destination location using two
destination accesses before releasing the bus. This instruction provides a test-and-
change capability which is useful for synchronizing multiple processors using a shared
memory. This instruction can use all memory alterable addressing modes.

Example:
:

BCHG #$7,X:<<$FFE2 ;test and change bit 7 in I/O Port B DDR
:

BCHG Bit Test and Change BCHG

Before Execution After Execution

X:$FFE2 X;$FFE2$000000

SR SR$0300 $0300

$000080
A - 32 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Explanation of Example: Prior to execution, the 24-bit X location X:$FFE2 (I/O port B
data direction register) contains the value $000000. The execution of the BCHG
#$7,X:<<$FFE2 instruction tests the state of the 7th bit in X:$FFE2, sets the carry bit C
accordingly, and then complements the 7th bit in X:$FFE2.

Condition Codes:

CCR Condition Codes:
For destination operand SR:

C — Changed if bit 0 is specified. Not affected otherwise.
V — Changed if bit 1 is specified. Not affected otherwise.
Z — Changed if bit 2 is specified. Not affected otherwise.
N — Changed if bit 3 is specified. Not affected otherwise.
U — Changed if bit 4 is specified. Not affected otherwise.
E — Changed if bit 5 is specified. Not affected otherwise.
L — Changed if bit 6 is specified. Not affected otherwise.

For other destination operands:
C — Set if bit tested is set. Cleared otherwise.
V — Not affected
Z — Not affected
N — Not affected
U — Not affected
E —Not affected
L —Not affected

MR Status Bits:
For destination operand SR:

I0 — Changed if bit 8 is specified. Not affected otherwise.
I1 — Changed if bit 9 is specified. Not affected otherwise.
S0 — Changed if bit 10 is specified. Not affected otherwise.
S1 — Changed if bit 11 is specified. Not affected otherwise.
T — Changed if bit 13 is specified. Not affected otherwise.
LF — Changed if bit 15 is specified. Not affected otherwise.

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

BCHG Bit Test and Change BCHG
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 33

For other destination operands:
I0 — Not affected
I1 — Not affected
S0 — Not affected
S1 — Not affected
T — Not affected
LF — Not affected

Instruction Format:
BCHG #n,X:ea
BCHG #n,Y:ea

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 0 1 M M M R R R 0 S 0 b b b b b

BCHG Bit Test and Change BCHG
A - 34 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
BCHG #n,X:aa
BCHG #n,Y:aa

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
BCHG #n,X:pp
BCHG #n,Y:pp

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit I/O Short Address=pppppp

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

BCHG Bit Test and Change BCHG

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 0 b b b b b
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 35

Memory: 1+ea program words
Instruction Format:

BCHG #n,D

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
D=destination register=DDDDDD
xxxx=16-bit Absolute Address in extension word

Destination Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 0 1 G G G

See A.9 INSTRUCTION ENCODING and Table A-18 for specific register encodings.

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 0 b b b b b

BCHG Bit Test and Change BCHG
A - 36 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
D[n] ➞ C; BCLR #n,X:ea

0 ➞ D[n]

D[n] ➞ C; BCLR #n,X:aa
0 ➞ D[n]

D[n] ➞ C; BCLR #n,X:pp
0 ➞ D[n]

D[n] ➞ C; BCLR #n,Y:ea
0 ➞ D[n]

D[n] ➞ C; BCLR #n,Y:aa
0 ➞ D[n]

D[n] ➞ C; BCLR #n,Y:pp
0 ➞ D[n]

D[n] ➞ C; BCLR #n,D
0 ➞ D[n]

Description: Test the nth bit of the destination operand D, clear it and store the result in
the destination location. The state of the nth bit is stored in the carry bit C of the condition
code register. After the test, the nth bit of the destination location is cleared. The bit to be
tested is selected by an immediate bit number from 0–23. This instruction performs a
read-modify-write operation on the destination location using two destination accesses
before releasing the bus. This instruction provides a test-and-clear capability which is
useful for synchronizing multiple processors using a shared memory. This instruction can
use all memory alterable addressing modes.

Example:
:

BCLR #$E,X:<<$FFE4 ;test and clear bit 14 in I/O Port B Data Reg.
:

BCLR Bit Test and Clear BCLR

Before Execution After Execution

X:$FFE4 X:$FFE4$FFFFFF

SR SR$0300 $0301

$FFBFFF
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 37

Explanation of Example: Prior to execution, the 24-bit X location X:$FFE4 (I/O port B
data register) contains the value $FFFFFF. The execution of the BCLR #$E,X:<<$FFE4
instruction tests the state of the 14th bit in X:$FFE4, sets the carry bit C accordingly, and
then clears the 14th bit in X:$FFE4.

Condition Codes:

CCR Condition Codes:
For destination operand SR:

C — Changed if bit 0 is specified. Not affected otherwise.
V — Changed if bit 1 is specified. Not affected otherwise.
Z — Changed if bit 2 is specified. Not affected otherwise.
N — Changed if bit 3 is specified. Not affected otherwise.
U — Changed if bit 4 is specified. Not affected otherwise.
E — Changed if bit 5 is specified. Not affected otherwise.
L — Changed if bit 6 is specified. Not affected otherwise.

For other destination operands:
C — Set if bit tested is set. Cleared otherwise.
V — Not affected
Z — Not affected
N — Not affected
U — Not affected
E —Not affected
L —Not affected

MR Status Bits:
For destination operand SR:

I0 — Changed if bit 8 is specified. Not affected otherwise.
I1 — Changed if bit 9 is specified. Not affected otherwise.
S0 — Changed if bit 10 is specified. Not affected otherwise.
S1 — Changed if bit 11 is specified. Not affected otherwise.
T — Changed if bit 13 is specified. Not affected otherwise.
LF — Changed if bit 15 is specified. Not affected otherwise.

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

BCLR Bit Test and Clear BCLR
A - 38 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

For other destination operands:
I0 — Not affected
I1 — Not affected
S0 — Not affected
S1 — Not affected
T — Not affected
LF — Not affected

Instruction Format:
BCLR #n,X:ea
BCLR #n,Y:ea

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 0 b b b b b

BCLR Bit Test and Clear BCLR
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 39

Instruction Format:
BCLR #n,X:aa
BCLR #n,Y:aa

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
BCLR #n,X:pp
BCLR #n,Y:pp

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit I/O Short Address=pppppp

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BCLR Bit Test and Clear BCLR

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 0 p p p p p p 0 S 0 b b b b b
A - 40 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
BCLR #n,D

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
D=destination register=DDDDDD
xxxx=16-bit Absolute Address in extension word

Destination Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 0 1 G G G

See A.9 INSTRUCTION ENCODING and Table A-18 for specific register encodings.

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 0 b b b b b

BCLR Bit Test and Clear BCLR
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 41

Operation: Assembler Syntax:
D[n] ➞ C; BSET #n,X:ea

1 ➞ D[n]

D[n] ➞ C; BSET #n,X:aa
1 ➞ D[n]

D[n] ➞ C; BSET #n,X:pp
1 ➞ D[n]

D[n] ➞ C; BSET #n,Y:ea
1 ➞ D[n]

D[n] ➞ C; BSET #n,Y:aa
1 ➞ D[n]

D[n] ➞ C; BSET #n,Y:pp
1 ➞ D[n]

D[n] ➞ C; BSET #n,D
1 ➞ D[n]

Description: Test the nth bit of the destination operand D, set it, and store the result in the
destination location. The state of the nth bit is stored in the carry bit C of the condition
code register. After the test, the nth bit of the destination location is set. The bit to be
tested is selected by an immediate bit number from 0–23. This instruction performs a
read-modify-write operation on the destination location using two destination accesses
before releasing the bus. This instruction provides a test-and-set capability which is use-
ful for synchronizing multiple processors using a shared memory. This instruction can use
all memory alterable addressing modes.

Example:
:

BSET #$0,X:<<$FFE5;test and clear bit 14 in I/O Port B Data Reg.
:

BSET Bit Test and Clear BSET

Before Execution After Execution

X:$FFE5 X:$FFE5$000000

SR SR$0300 $0300

$000001
A - 42 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Explanation of Example: Prior to execution, the 24-bit X location X:$FFE5 (I/O port C
data register) contains the value $000000. The execution of the BSET #$0,X:<<$FFE5
instruction tests the state of the 0th bit in X:$FFE5, sets the carry bit C accordingly, and
then sets the 0th bit in X:$FFE5.

Condition Codes:

CCR Condition Codes:
For destination operand SR:

C — Changed if bit 0 is specified. Not affected otherwise.
V — Changed if bit 1 is specified. Not affected otherwise.
Z — Changed if bit 2 is specified. Not affected otherwise.
N — Changed if bit 3 is specified. Not affected otherwise.
U — Changed if bit 4 is specified. Not affected otherwise.
E — Changed if bit 5 is specified. Not affected otherwise.
L — Changed if bit 6 is specified. Not affected otherwise.

For other destination operands:
C — Set if bit tested is set. Cleared otherwise.
V — Not affected
Z — Not affected
N — Not affected
U — Not affected
E —Not affected
L —Not affected

MR Status Bits:
For destination operand SR:

I0 — Changed if bit 8 is specified. Not affected otherwise.
I1 — Changed if bit 9 is specified. Not affected otherwise.
S0 — Changed if bit 10 is specified. Not affected otherwise.
S1 — Changed if bit 11 is specified. Not affected otherwise.
T — Changed if bit 13 is specified. Not affected otherwise.
LF — Changed if bit 15 is specified. Not affected otherwise.

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

BSET Bit Test and Clear BSET
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 43

For other destination operands:
I0 — Not affected
I1 — Not affected
S0 — Not affected
S1 — Not affected
T — Not affected
LF — Not affected

Instruction Format:
BSET #n,X:ea
BSET #n,Y:ea

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 1 b b b b b

BSET Bit Test and Clear BSET
A - 44 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
BSET #n,X:aa
BSET #n,Y:aa

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
BSET #n,X:pp
BSET #n,Y:pp

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit I/O Short Address=pppppp

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BSET Bit Test and Clear BSET

23 16 15 8 7 0

0 0 0 0 1 0 1 0 01 0 a a a a a a 0 S 1 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 1 b b b b b
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 45

Instruction Format:
BSET #n,D

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
D=destination register=DDDDDD
xxxx=16-bit Absolute Address in extension word

Destination Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 0 1 G G G

See A.9 INSTRUCTION ENCODING and Table A-18 for specific register encodings.

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 1 b b b b b

BSET Bit Test and Set BSET
A - 46 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
D[n] ➞ C; BTST #n,X:ea

D[n] ➞ C; BTST #n,X:aa

D[n] ➞ C; BTST #n,X:pp

D[n] ➞ C; BTST #n,Y:ea

D[n] ➞ C; BTST #n,Y:aa

D[n] ➞ C; BTST #n,Y:pp

D[n] ➞ C; BTST #n,D

Description: Test the nth bit of the destination operand D. The state of the nth bit is
stored in the carry bit C of the condition code register. The bit to be tested is selected by
an immediate bit number from 0–23. This instruction is useful for performing serial to par-
allel conversion when used with the appropriate rotate instructions. This instruction can
use all memory alterable addressing modes.

Example:
:

BTST #$0,X:<<$FFEE ;read SSI serial input flag IF1 into C bit
ROL A ;rotate carry bit C into LSB of A1

:

Explanation of Example: Prior to execution, the 24-bit X location X:$FFEE (I/O SSI sta-
tus register) contains the value $000002. The execution of the BTST #$1,X:<<$FFEE
instruction tests the state of the 1st bit (serial input flag IF1) in X:$FFEE and sets the
carry bit C accordingly. This instruction sequence illustrates serial to parallel conversion
using the carry bit C and the 24-bit A1 register.

BTST Bit Test and Set BTST

Before Execution After Execution

X:$FFEE X:$FFEE$000002

SR SR$0300 $0301

$000002
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 47

Condition Codes:

CCR Condition Codes:
C — Set if bit tested is set. Cleared otherwise.
V — Not affected
Z — Not affected
N — Not affected
U — Not affected
E —Not affected
L —Not affected

MR Status bits are not affected.

SP — Stack Pointer:
For destination operand SSH: SP — Decrement by 1.
For other destination operands:

Instruction Format:
BTST #n,X:ea
BTST #n,Y:ea

Opcode:

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

BTST Bit Test and Set BTST

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 0 1 M M M R R R 0 S 1 b b b b b
A - 48 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
BTST #n,X:aa
BTST #n,Y:aa

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BTST Bit Test BTST

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 1 b b b b b
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 49

Instruction Format:
BTST #n,X:pp
BTST #n,Y:pp

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit I/O Short Address=pppppp

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
BTST #n,D

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
D=destination register=DDDDDD,
xxxx=16-bit Absolute Address in extension word

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 1 b b b b b

BTST Bit Test BTST

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 1 b b b b b
A - 50 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Destination Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 0 1 G G G

See A.9 INSTRUCTION ENCODING and Table A-18 for specific register encodings.

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BTST Bit Test BTST
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 51

Operation: Assembler Syntax:
 0 ➞D (parallel move) CLR D (parallel move)

Description: Clear the destination accumulator. This is a 56-bit clear instruction.

Example:
:

CLR A #$7F,N ;clear A, set up N0 addr. reg.
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $12:345678:9ABCDE. The execution of the CLR A instruction clears the 56-bit A
accumulator to zero.

Condition Codes:

L — Set if data limiting has occurred during parallelmove
E — Always cleared
U — Always set
N — Always cleared
Z— Always set
V — Always cleared

CLR Clear Accumulator CLR

Before Execution After Execution

A A$12:345678:9ABCDE $00:000000:000000

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 52 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
CLR D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

CLR Clear Accumulator CLR
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 53

Operation: Assembler Syntax:
S2 – S1(parallel move) CMP S1, S2 (parallel move)

Description: Subtract the source one operand, S1, from the source two accumulator,
S2, and update the condition code register. The result of the subtraction operation is not
stored.

Note: This instruction subtracts 56-bit operands. When a word is specified as S1, it is
sign extended and zero filled to form a valid 56-bit operand. For the carry to be set cor-
rectly as a result of the subtraction, S2 must be properly sign extended. S2 can be
improperly sign extended by writing A1 or B1 explicitly prior to executing the compare so
that A2 or B2, respectively, may not represent the correct sign extension. This note par-
ticularly applies to the case where it is extended to compare 24-bit operands such as X0
with A1.

Example:
:

CMP Y0,B X0,X:(R6)+N6 Y1,Y:(R0)– ;comp. Y0 and B, save X0, Y1
:

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $00:000020:000000 and the 24-bit Y0 register contains the value $000024. The
execution of the CMP Y0,B instruction automatically appends the 24-bit value in the Y0
register with 24 LS zeros, sign extends the resulting 48-bit long word to 56 bits, subtracts
the result from the 56-bit B accumulator and updates the condition code register.

CMP Compare CMP

Before Execution After Execution

B B$00:000020:000000

Y0 Y0$000024 $000024

$00:000020:000000

SR SR$0300 $0319
A - 54 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
CMP S1, S2

Opcode:

Instruction Fields:
S1,S2 J J J d S1,S2 J J J d

B,A 0 0 0 0 Y0,B 1 0 1 1
A,B 0 0 0 1 X1,A 1 1 0 0
X0,A 1 0 0 0 X1,B 1 1 0 1
X0,B 1 0 0 1 Y1,A 1 1 1 0
Y0,A 1 0 1 0 Y1,B 1 1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

CMP Compare CMP
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 55

Operation: Assembler Syntax:
|S2| – |S1|(parallel move) CMPM S1, S2 (parallel move)

Description: Subtract the absolute value (magnitude) of the source one operand, S1,
from the absolute value of the source two accumulator, S2, and update the condition
code register. The result of the subtraction operation is not stored.

Note: This instruction subtracts 56-bit operands. When a word is specified as S1, it is
sign extended and zero filled to form a valid 56-bit operand. For the carry to be set cor-
rectly as a result of the subtraction, S2 must be properly sign extended. S2 can be
improperly sign extended by writing A1 or B1 explicitly prior to executing the compare so
that A2 or B2, respectively, may not represent the correct sign extension. This note par-
ticularly applies to the case where it is extended to compare 24-bit operands such as X0
with A1.

Example:

:
CMPM X1,A BA,L:–(R4) ;comp. Y0 and B, save X0, Y1

:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000006:000000, and the 24-bit X1 register contains the value $FFFFF7. The
execution of the CMPM X1,A instruction automatically appends the 24-bit value in the X1
register with 24 LS zeros, sign extends the resulting 48-bit long word to 56 bits, takes the
absolute value of the resulting 56-bit number, subtracts the result from the absolute
value of the contents of the 56-bit A accumulator, and updates the condition code regis-
ter.

CMPM Compare Magnitude CMPM

Before Execution After Execution

A A$00:000006:000000

X1 X1$FFFFF7 $FFFFF7

$00:000006:000000

SR SR$0300 $0319
A - 56 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definition of the E and U bits varies according to the scaling mode being
used. Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
CMPM S1, S2

Opcode:

Instruction Fields:
S1,S2 J J J d S1,S2 J J J d S1,S2 J J J d

B,A 0 0 0 0 X0,B 1 0 0 1 X1,A 1 1 0 0
A,B 0 0 0 1 Y0,A 1 0 1 0 X1,B 1 1 0 1
X0,A 1 0 0 0 Y0,B 1 0 1 1 Y1,A 1 1 1 0

Y1,B 1 1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

CMPM Compare Magnitude CMPM
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 57

Operation: If D[55]⊕ S[23]=1,

Assembler Syntax: DIV S,D

Description:
Divide the destination operand D by the source operand S and store the result in the
destination accumulator D. The 48-bit dividend must be a positive fraction which has
been sign extended to 56-bits and is stored in the full 56-bit destination accumula-
tor D. The 24-bit divisor is a signed fraction and is stored in the source operand S.
Each DIV iteration calculates one quotient bit using a nonrestoring fractional division
algorithm (see description on the next page). After the execution of the first DIV instruc-
tion, the destination operand holds both the partial remainder and the formed quotient.
The partial remainder occupies the high-order portion of the destination accumulator D
and is a signed fraction. The formed quotient occupies the low-order portion of the desti-
nation accumulator D (A0 or B0) and is a positive fraction. One bit of the formed quotient
is shifted into the LS bit of the destination accumulator at the start of each DIV iteration.
The formed quotient is the true quotient if the true quotient is positive. If the true quotient
is negative, the formed quotient must be negated. Valid results are obtained only
when |D| < |S| and the operands are interpreted as fractions. Note that this condition
ensures that the magnitude of the quotient is less than one (i.e., is fractional) and pre-
cludes division by zero.

The DIV instruction calculates one quotient bit based on the divisor and the previous par-
tial remainder. To produce an N-bit quotient, the DIV instruction is executed N times
where N is the number of bits of precision desired in the quotient, 1;leN;le24. Thus, for a
full-precision (24 bit) quotient, 24 DIV iterations are required. In general, executing the
DIV instruction N times produces an N-bit quotient and a 48-bit remainder which has
(48–N) bits of precision and whose N MS bits are zeros. The partial remainder is not a
true remainder and must be corrected due to the nonrestoring nature of the division algo-

DIV Divide Interation DIV

55 47 23 0

C+Sthen

55 47 23 0

C–Selse

Destination Accumulator D

Destination Accumulator D

where ⊕ denotes the logical exclusive OR operator

D

D

A - 58 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

rithm before it may be used. Therefore, once the divide is complete, it is necessary to
reverse the last DIV operation and restore the remainder to obtain the true remainder.

The DIV instruction uses a nonrestoring fractional division algorithm which consists of
the following operations (see the previous Operation diagram):

1. Compare the source and destination operand sign bits: An exclusive OR
operation is performed on bit 55 of the destination operand D and bit 23 of the
source operand S;

2. Shift the partial remainder and the quotient: The 55-bit destination accumu-
lator D is shifted one bit to the left. The carry bit C is moved into the LS bit (bit
0) of the accumulator;

3. Calculate the next quotient bit and the new partial remainder: The 24-bit
source operand S (signed divisor) is either added to or subtracted from the
MSP portion of the destination accumulator (A1 or B1), and the result is stored
back into the MSP portion of that destination accumulator. If the result of the
exclusive OR operation previously described was a ‘‘1’’ (i.e., the sign bits were
different), the source operand S is added to the accumulator. If the result of
the exclusive OR operation was a ‘‘0’’ (i.e., the sign bits were the same), the
source operand S is subtracted from the accumulator. Due to the automatic
sign extension of the 24-bit signed divisor, the addition or subtraction opera-
tion correctly sets the carry bit C of the condition code register with the next
quotient bit.

Example: (4-Quadrant division, 24-bit signed quotient, 48-bit signed remainder)
ABS A A,B ;make dividend positive, copy A1 to B1
EOR X0,B B,X:$0 ;save rem. sign in X:$0, quo. sign in N
AND #$FE,CCR ;clear carry bit C (quotient sign bit)
REP #$18 ;form a 24-bit quotient
DIV X0,A ;form quotient in A0, remainder in A1
TFR A,B ;save quotient and remainder in B1,B0
JPL SAVEQUO ;go to SAVEQUO if quotient is positive
NEG B ;complement quotient if N bit set

SAVEQUO TFR X0,B B0,X1 ;save quo. in X1, get signed divisor
ABS B ;get absolute value of signed divisor
ADD A,B ;restore remainder in B1
JCLR #23,X:$0,DONE ;go to DONE if remainder is positive
MOVE #$0,B0 ;clear LS 24 bits of B
NEG B ;complement remainder if negative

DONE

DIV Divide Interation DIV
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 59

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 56-
bit, sign-extended fractional dividend D (D=$00.0E66D7:F2832C=0.112513535894635
approx.) and the 24-bit X0 register contains the 24-bit, signed fractional divisor S
(S=$123456=0.142222166061401). Since |D|<|S|, the execution of the previous divide
routine stores the correct 24-bit signed quotient in the 24-bit X1 register (A/
X0=0.79111111164093=$654321=X1). The partial remainder is restored by reversing
the last DIV operation and adding back the absolute value of the signed divisor in X0 to
the partial remainder in A1. This produces the correct LS 24 bits of the 48-bit signed
remained in the 24-bit B1 register. Note that the remainder is really a 48-bit value which
has 24 bits of precision. Thus, the correct 48-bit remainder is $000000:000100 which
equals 0.0000000000018190 approximately.

Note that the divide routine used in the previous example assumes that the sign-
extended 56-bit signed fractional dividend is stored in the A accumulator and that the 24-
bit signed fractional divisor is stored in the X0 register. This routine produces a full 24-bit
signed quotient and a 48-bit signed remainder.

This routine may be greatly simplified for the case in which only positive, fractional oper-
ands are used to produce a 24-bit positive quotient and a 48-bit positive remainder, as
shown in the following example:

1-Quadrant division, 24-bit unsigned quotient, 48-bit unsigned remainder
AND #$FE,CCR ;clear carry bit C (quotient sign bit)
REP #$18 ;form a 24-bit quotient and remainder
DIV X0,A ;form quotient in A0, remainder in A1
ADD X0,A ;restore remainder in A1

Note that this routine assumes that the 56-bit positive, fractional, sign-extended dividend
is stored in the A accumulator and that the 24-bit positive, fractional divisor is stored in

Before Execution After Execution

A A$00:0E66D7:F2832C

X0 X0$123456 $123456

$FF:EDCCAA:654321

X1 X1$000000 $654321

B B$00:000000:000000 $00:000100:654321

DIV Divide Interation DIV
A - 60 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

the X0 register. After execution, the 24-bit positive fractional quotient is stored in the A0
register; the LS 24 bits of the 48-bit positive fractional remainder are stored in the A1 reg-
ister.

There are many variations possible when choosing a suitable division routine for a given
application. The selection of a suitable division routine normally involves specification of
the following items:

1. the number of bits of precision in the dividend;

2. the number of bits of precision N in the quotient;

3. whether the value of N is fixed or is variable;

4. whether the operands are unsigned or signed;

5. whether or not the remainder is to be calculated.

A complete discussion of the various division routines is beyond the scope of this man-
ual. For a more complete discussion of these routines, refer to the application note enti-
tled Fractional and Interger Arithmetic Using the DSP56001.

For extended precision division (i.e., for N-bit quotients where N>24), the DIV instruction
is no longer applicable, and a user-defined N-bit division routine is required. For further
information on division algorithms, refer to pages 524–530 of Theory and Application of
Digital Signal Processing by Rabiner and Gold (Prentice-Hall, 1975), pages 190–199 of
Computer Architecture and Organization by John Hayes (McGraw-Hill, 1978), pages
213–223 of Computer Arithmetic: Principles, Architecture, and Design by Kai Hwang
(John Wiley and Sons, 1979), or other references as required.

Condition Codes:

L — Set if overflow bit V is set
V — Set if the MS bit of the destination operand is changed as a result of the instruction’s

left shift operation
C — Set if bit 55 of the result is cleared.

DIV Divide Interation DIV

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 61

Instruction Format:
DIV S,D

Opcode:

Instruction Fields:
S,D J J d S,D J J d

X0,A 0 0 0 X1,A 1 0 0
X0,B 0 0 1 X1,B 1 0 1
Y0,A 0 1 0 Y1,A 1 1 0
Y0,B 0 1 1 Y1,B 1 1 1

Timing: 2 oscillator clock cycles

Memory: 1 program word

23 16 15 8 7 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 J J d 0 0 0

DIV Divide Iteration DIV
A - 62 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;X:ea ➞ LC DO X:ea,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;X:aa ➞ LC DO X:aa,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;Y:ea ➞ LC DO Y:ea,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;Y:aa ➞ LC DO Y:aa,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;#xxx ➞ LC DO #xxx,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;S ➞ LC DO S,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

End of Loop:
SSL(LF) ➞ SR;SP–1 ➞ SP
SSH ➞ LA;SSL ➞ LC;SP – 1 ➞ SP

Description: Begin a hardware DO loop that is to be repeated the number of times spec-
ified in the instruction’s source operand and whose range of execution is terminated by
the destination operand (previously shown as ‘‘expr’’). No overhead other than the exe-
cution of this DO instruction is required to set up this loop. DO loops can be nested and
the loop count can be passed as a parameter.

During the first instruction cycle, the current contents of the loop address (LA) and the
loop counter (LC) registers are pushed onto the system stack. The DO instruction’s
source operand is then loaded into the loop counter (LC) register. The LC register con-
tains the remaining number of times the DO loop will be executed and can be accessed
from inside the DO loop subject to certain restrictions. If LC equals zero, the DO loop is
executed 65,536 times. All address register indirect addressing modes may be used to
generate the effective address of the source operand. If immediate short data is speci-

DO Start Hardware Loop DO
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 63

fied, the 12 LS bits of LC are loaded with the 12-bit immediate value, and the four MS
bits of LC are cleared.

During the second instruction cycle, the current contents of the program counter (PC)
register and the status register (SR) are pushed onto the system stack. The stacking of
the LA, LC, PC, and SR registers is the mechanism which permits the nesting of DO
loops. The DO instruction’s destination operand (shown as ‘‘expr’’) is then loaded into
the loop address (LA) register. This 16-bit operand is located in the instruction’s 24-bit
absolute address extension word as shown in the opcode section. The value in the pro-
gram counter (PC) register pushed onto the system stack is the address of the first
instruction following the DO instruction (i.e., the first actual instruction in the DO loop).
This value is read (i.e., copied but not pulled) from the top of the system stack to return to
the top of the loop for another pass through the loop.

During the third instruction cycle, the loop flag (LF) is set. This results in the PC being
repeatedly compared with LA to determine if the last instruction in the loop has been
fetched. If LA equals PC, the last instruction in the loop has been fetched and the loop
counter (LC) is tested. If LC is not equal to one, it is decremented by one and SSH is
loaded into the PC to fetch the first instruction in the loop again. If LC equals one, the
‘‘end-of-loop’’ processing begins.

When executing a DO loop, the instructions are actually fetched each time through the
loop. Therefore, a DO loop can be interrupted. DO loops can also be nested. When DO
loops are nested, the end-of-loop addresses must also be nested and are not allowed to
be equal. The assembler generates an error message when DO loops are improperly
nested. Nested DO loops are illustrated in the example.

Note: The assembler calculates the end-of-loop address to be loaded into LA (the abso-
lute address extension word) by evaluating the end-of-loop expression ‘‘expr’’ and sub-
tracting one. This is done to accommodate the case where the last word in the DO loop
is a two-word instruction. Thus, the end-of-loop expression ‘‘expr’’ in the source code
must represent the address of the instruction AFTER the last instruction in the loop as
shown in the example.

During the ‘‘end-of-loop’’ processing, the loop flag (LF) from the lower portion (SSL) of
SP is written into the status register (SR), the contents of the loop address (LA) register
are restored from the upper portion (SSH) of (SP–1), the contents of the loop counter
(LC) are restored from the lower portion (SSL) of (SP–1) and the stack pointer (SP) is
decremented by two. Instruction fetches now continue at the address of the instruction
following the last instruction in the DO loop. Note that LF is the only bit in the status reg-
ister (SR) that is restored after a hardware DO loop has been exited.

Note: The loop flag (LF) is cleared by a hardware reset.

DO Start Hardware Loop DO
A - 64 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Restrictions: The ‘‘end-of-loop’’ comparison previously described actually occurs at
instruction fetch time. That is, LA is being compared with PC when the instruction at LA–
2 is being executed. Therefore, instructions which access the program controller regis-
ters and/or change program flow cannot be used in locations LA–2, LA–1, or LA.

Proper DO loop operation is not guaranteed if an instruction starting at address LA–2,
LA–1, or LA specifies one of the program controller registers SR, SP, SSL, LA, LC, or
(implicitly) PC as a destination register. Similarly, the SSH program controller register
may not be specified as a source or destination register in an instruction starting at
address LA–2, LA–1, or LA. Additionally, the SSH register cannot be specified as a
source register in the DO instruction itself and LA cannot be used as a target for jumps
to subroutine (i.e., JSR, JScc, JSSET, or JSCLR to LA). A DO instruction cannot be
repeated using the REP instruction.

The following instructions cannot begin at the indicated position(s) near the end of a DO
loop:

At LA–2, LA–1, and LA DO
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
MOVEC to LA, LC, SR, SP, SSH, or SSL
MOVEM to LA, LC, SR, SP, SSH, or SSL
MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI MR
ORI MR
Two-word instructions which read LC, SP, or SSL

At LA–1 Single-word instructions (except REP) which read LC,
SP, or SSL, JCLR, JSET, two-word JMP, two-word Jcc

At LA any two-word instruction*
Jcc REP
JCLR RESET
JSET RTI
JMP RTS
JScc STOP
JSR WAIT

*This restriction applies to the situation in which the
DSP56000/DSP56001 simulator’s single-line
assembler is used to change the last instruction in a
DO loop from a one-word instruction to a two-word
instruction.

DO Start Hardware Loop DO
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 65

Other Restrictions: DO SSH,xxxx
JSR to (LA) whenever the loop flag (LF) is set
JScc to (LA) whenever the loop flag (LF) is set
JSCLR to (LA) whenever the loop flag (LF) is set
JSSET to (LA) whenever the loop flag (LF) is set

A DO instruction cannot be repeated using the REP instruction.

Note: Due to pipelining, if an address register (R0–R7, N0–N7, or M0–M7) is changed
using a move-type instruction (LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel
move), the new contents of the destination address register will not be available for use
during the following instruction (i.e., there is a single instruction cycle pipeline delay).
This restriction also applies to the situation in which the last instruction in a DO loop
changes an address register and the first instruction at the top of the DO loop uses that
same address register. The top instruction becomes the following instruction because
of the loop construct.

Similarly, since the DO instruction accesses the program controller registers, the DO
instruction must not be immediately preceded by any of the following instructions:

Immediately before DO MOVEC to LA, LC, SSH, SSL, or SP
MOVEM to LA, LC, SSH, SSL, or SP
MOVEP to LA, LC, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

Example:
:

DO #cnt1, END1 ;begin outer DO loop
:

DO #cnt2, END2 ;begin inner DO loop
:
:

MOVE A,X:(R0);p ;last instruction in inner loop
: ;(in outer loop)

END2 ;last instruction in outer loop
ADD A,B X:(R1)+,X0 first instruction after outer loop

END1 :
:

DO Start Hardware Loop DO
A - 66 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Explanation of Example: This example illustrates a nested DO loop. The outer DO loop
will be executed ‘‘cnt1’’ times while the inner DO loop will be executed (‘‘cnt1’’ * ‘‘cnt2’’)
times. Note that the labels END1 and END2 are located at the first instruction past the end
of the DO loop, as mentioned above, and are nested properly.

Condition Codes:

LF — Set when a DO loop is in progress
L— Set if data limiting occurred [see Note 2]

Instruction Format:
DO X:ea, expr
DO Y:ea, expr

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR,
expr=16-bit Absolute Address in 24-bit extension word

Effective
Addressing Mode M M M R R R Memory SpaceS

(Rn)-Nn 0 0 0 r r r X Memory 0
(Rn)+Nn 0 0 1 r r r Y Memory 1
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: 6+mv oscillator clock cycles

Memory: 2 program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

DO Start Hardware Loop DO

23 20 19 16 15 8 7 0

0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 67

Instruction Format:
DO X:aa, expr
DO Y:aa, expr

Opcode:

Instruction Fields:
ea=6-bit Effective Short Address=aaaaaa,
expr=16-bit Absolute Address in 24-bit extension word

Absolute Short Address aaaaaa Memory SpaceS

000000 X Memory 0
• Y Memory 1
•

111111

Timing: 6+mv oscillator clock cycles

Memory: 2 program words
Instruction Format:

DO #xxx, expr

Opcode:

Instruction Fields:
#xxx=12-bit Immediate Short Data = hhhhiiiiiiii,
expr=16-bit Absolute Address in 24-bit extension word

Immediate Short Data hhhh i i i i i i i i

000000000000
•
•

111111111111

Timing: 6+mv oscillator clock cycles

DO Start Hardware Loop DO

23 20 19 16 15 8 7 0

0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION

23 20 19 16 15 8 7 0

0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 0 h h h h

ABSOLUTE ADDRESS EXTENSION
A - 68 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Memory: 2 program words

Instruction Format:
DO S, expr

Opcode:

Instruction Fields:
S=6-bit Source operand = DDDDDD,
expr=16-bit Absolute Address in 24-bit extension word

S
Source D D D D D D S/L Source D D D D D D

X0 0 0 0 1 0 0 no SR 1 1 1 0 0 1
X1 0 0 0 1 0 1 no OMR 1 1 1 0 1 0
Y0 0 0 0 1 1 0 no SP 1 1 1 0 1 1 [see Note 1]
Y1 0 0 0 1 1 1 no SSL 1 1 1 1 0 1 [see Note 1]
A0 0 0 1 0 0 0 no LA 1 1 1 1 1 0
B0 0 0 1 0 0 1 no LC 1 1 1 1 1 1
A2 o o 1 o 1 o no R0-R7 0 1 0 r r r
B2 0 0 1 1 0 0 no N0-N7 0 1 1 n n n
A1 0 0 1 1 0 1 no M0-M7 1 0 0 m m m
A 0 0 1 1 1 0 yes [see Note 2]
B 0 0 1 1 1 1 yes [see Note 2]

where rrr=Rn register
where nnn=Nn register
where mmm=Mn register

Note 1:
For DO SP, expr The actual value that will be loaded into the loop

counter (LC) is the value of the stack pointer (SP)
before the execution of the DO instruction, incre-
mented by 1.

Thus, if SP=3, the execution of the DO SP,expr instruction will load the loop
counter (LC) with the value LC=4.

DO Start Hardware Loop DO

23 20 19 16 15 8 7 0

0 0 0 0 0 1 1 0 1 1 D D D D D D D 0 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 69

For DO SSL, expr The loop counter (LC) will be loaded with its previous
value which was saved on the stack by the DO instruc-
tion itself.

Note 2:
If A or B is specified as a source operand, the accumulator value is optionally shifted
according to the scaling mode bits in the status register. If the data out of the shifter indi-
cates that the accumulator extension is in use, the 24-bit data is limited to a maximum
positive or negative saturation constant. The shifted and limited value is loaded into LC,
although A or B remain unchanged.

Timing: 6+mv oscillator clock cycles

Memory: 2 program words

DO Start Hardware Loop DO
A - 70 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
SSL(LF) ➞ SR;SP – 1➞ SP ENDDO
SSH ➞ LA; SSL ➞ LC;SP –1 ➞ SP

Description: Terminate the current hardware DO loop before the current loop counter (LC)
equals one. If the value of the current DO loop counter (LC) is needed, it must be read
before the execution of the ENDDO instruction. Initially, the loop flag (LF) is restored from
the system stack and the remaining portion of the status register (SR) and the program
counter (PC) are purged from the system stack. The loop address (LA) and the loop
counter (LC) registers are then restored from the system stack.

Restrictions: Due to pipelining and the fact that the ENDDO instruction accesses the pro-
gram controller registers, the ENDDO instruction must not be immediately preceded by
any of the following instructions:

Immediately before ENDDO MOVEC to LA, LC, SR, SSH, SSL, or SP
MOVEM to LA, LC, SR, SSH, SSL, or SP
MOVEP to LA, LC, SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ORI MR
ANDI MR

Also, the ENDDO instruction cannot be the last (LA) instruction in a DO loop.

Example:
:

DO Y0,NEXT ;exec. loop ending at NEXT (Y0) times
:

MOVEC LC,A ;get current value of loop counter (LC)
CMP Y1,A ;compare loop counter with value in Y1
JNE ONWARD ;go to ONWARD if LC not equal to Y1
ENDDO ;LC equal to Y1, restore all DO registers
JMP NEXT ;go to NEXT

ONWARD : ;LC not equal to Y1, continue DO loop
: ;(last instruction in DO loop)

NEXT MOVE #$123456,X1 ;(first instruction AFTER DO loop)

ENDDO End Current DO Loop ENDDO
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 71

Explanation of Example: This example illustrates the use of the ENDDO instruction to
terminate the current DO loop. The value of the loop counter (LC) is compared with the
value in the Y1 register to determine if execution of the DO loop should continue. Note
that the ENDDO instruction updates certain program controller registers but does not
automatically jump past the end of the DO loop. Thus, if this action is desired, a JMP
instruction (i.e., JMP NEXT as previously shown) must be included after the ENDDO
instruction to transfer program control to the first instruction past the end of the DO loop.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
ENDDO

Opcode:

Instruction Fields:
None

Timing: 2 oscillator clock cycles

Memory: 1 program word

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

ENDDO End Current DO Loop ENDDO
A - 72 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
S ⊕ D[47:24] ➞D[47:24] (parallel move) EOR S,D (parallel move)

where ⊕ denotes the logical Exclusive OR operator

Description: Logically exclusive OR the source operand S with bits 47–24 of the desti-
nation operand D and store the result in bits 47–24 of the destination accumulator. This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

Example:
:

EOR Y1,B (R2)+ ;Exclusive OR Y1 with B1, update R2
:

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value
$000003, and the 56-bit B accumulator contains the value $00:000005:000000. The
EOR Y1,B instruction logically exclusive ORs the 24-bit value in the Y1 register with bits
47–24 of the B accumulator (B1) and stores the result in the B accumulator with bits 55–
48 and 23–0 unchanged.

Condition Codes:

I — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z— Set if bits 47 - 24 of A or B result are zero
V — Always cleared

EOR Logical Exclusive OR EOR

Before Execution After Execution

Y1 Y1$000003

B B$00:000005:000000 $00:000006:000000

$000003

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 73

Instruction Format:
EOR S,D

Opcode:

Instruction Fields:Instruction Fields:
S J J D d

X0 0 0 A 0
X1 1 0 B 1
Y0 0 1
Y1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 1 J J d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

EOR Logical Exclusive OR EOR
A - 74 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
Begin Illegal Instruction ILLEGAL

exception processing

Description: The ILLEGAL instruction is executed as if it were a NOP instruction. Nor-
mal instruction execution is suspended and illegal instruction exception processing is ini-
tiated. The interrupt vector address is located at address P:$3E. The interrupt priority
level (I1, I0) is set to 3 in the status register if a long interrupt service routine is used. The
purpose of the ILLEGAL instruction is to force the DSP into an illegal instruction excep-
tion for test purposes. If a fast interrupt is used with the ILLEGAL instruction, an infinite
loop will be formed (an illegal instruction interrupt normally returns to the illegal instruc-
tion) which can only be broken by a hardware reset. Therefore, only long interrupts
should be used. Exiting an illegal instruction is a fatal error. The long exception routine
should indicate this condition and cause the system to be restarted.

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA–1 is being inter-
rupted, then LC will be decremented twice due to the same mechanism that causes LC
to be decremented twice if JSR, REP, etc. are located at LA. This is why JSR, REP, etc.
at LA are restricted. Clearly restrictions cannot be imposed on illegal instructions.

Since REP is uninterruptable, repeating an ILLEGAL instruction results in the interrupt
not being initiated until after completion of the REP. After servicing the interrupt, program
control will return to the address of the second word following the ILLEGAL instruction.
Of course, the ILLEGAL interrupt service routine should abort further processing, and the
processor should be reinitialized.

Example:
:

ILLEGAL ;begin ILLEGAL exception processing
:

Explanation of Example: The ILLEGAL instruction suspends normal instruction execu-
tion and initiates ILLEGAL exception processing.

Condition Codes:

The condition codes are not affected by this instruction.

ILLEGAL Illegal Instruction Interrupt ILLEGAL

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 75

Instruction Format:
ILLEGAL

Opcode:

Instruction Fields:
None

Timing: 8 oscillator clock cycles

Memory: 1 program word

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

ILLEGAL Illegal Instruction Interrupt ILLEGAL
A - 76 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
If cc, then 0xxx ➞PC Jcc xxx

else PC+1 ➞PC

If cc, then ea ➞PC Jcc xxx
 else PC+1 ➞PC

Description: Jump to the location in program memory given by the instruction’s effective
address if the specified condition is true. If the specified condition is false, the program
counter (PC) is incremented and the effective address is ignored. However, the address
register specified in the effective address field is always updated independently of the
specified condition. All memory alterable addressing modes may be used for the effec-
tive address. A Fast Short Jump addressing mode may also be used. The 12-bit data is
zero extended to form the effective address. See A.8 INSTRUCTION SEQUENCE
RESTRICTIONS for restrictions. The term ‘‘cc’’ may specify the following conditions:

‘‘cc’’ Mnemonic Condition
CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set (lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

where
U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator, and
⊕ denotes the logical Exclusive OR operator

Jcc Jump Conditionally Jcc
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 77

Restrictions: A Jcc instruction used within a DO loop cannot begin at the address LA
within that DO loop.

A Jcc instruction cannot be repeated using the REP instruction.

Example:
:

JNN – (R4) ;jump to P:(R4) –1 if not normalized
:

Explanation of Example: In this example, program execution is transferred to the
address P:(R4)–1 if the result is not normalized. Note that the contents of address regis-
ter R4 are predecremented by 1, and the resulting address is then loaded into the pro-
gram counter (PC) if the specified condition is true. If the specified condition is not true,
no jump is taken, and the program counter is incremented by one.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
Jcc xxx

Opcode:

Jcc Jump Conditionally Jcc

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

0 0 0 0 1 1 1 0 C C C C a a a a a a a a a a a a
A - 78 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Fields:
cc=4-bit condition code=CCCC,
xxx=12-bit Short Jump Address=aaaaaaaaaaaa

Mnemonic C C C C Mnemonic C C C C

CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
GE 0 0 0 1 LT 1 0 0 1
NE 0 0 1 0 EQ 1 0 1 0
PL 0 0 1 1 MI 1 0 1 1
NN 0 1 0 0 NR 1 1 0 0
EC 0 1 0 1 ES 1 1 0 1
LC 0 1 1 0 LS 1 1 1 0
GT 0 1 1 1 LE 1 1 1 1

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
Jcc ea

Opcode:

Instruction Fields:
cc=4-bit condition code=CCCC,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute Address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Jcc Jump Conditionally Jcc

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 79

Mnemonic C C C C Mnemonic C C C C

CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
GE 0 0 0 1 LT 1 0 0 1
NE 0 0 1 0 EQ 1 0 1 0
PL 0 0 1 1 MI 1 0 1 1
NN 0 1 0 0 NR 1 1 0 0
EC 0 1 0 1 ES 1 1 0 1
LC 0 1 1 0 LS 1 1 1 0
GT 0 1 1 1 LE 1 1 1 1

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

Jcc Jump Conditionally Jcc
A - 80 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
If S[n]=0, then xxxx➞PC JCLR #n,X:ea,xxxx

else PC+1➞PC

If S[n]=0, then xxxx ➞PC JCLR #n,X:aa,xxxx
else PC+1 ➞PC

If S[n]=0, then xxxx ➞PC JCLR #n,X:pp,xxxx
else PC+1 ➞PC

If S[n]=0, then xxxx ➞PC JCLR #n,Y:ea,xxxx
else PC+1 ➞PC

If S[n]=0, then xxxx ➞PC JCLR #n,Y:aa,xxxx
else PC+1 ➞PC

If S[n]=0, then xxxx ➞PC JCLR #n,Y:pp,xxxx
else PC+1 ➞PC

If S[n]=0, then xxxx ➞PC JCLR #n,S,xxxx
else PC+1 ➞PC

Description: Jump to the 16-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if the nth bit of the source operand S is clear. The bit to
be tested is selected by an immediate bit number from 0–23. If the specified memory bit
is not clear, the program counter (PC) is incremented and the absolute address in the
extension word is ignored. However, the address register specified in the effective
address field is always updated independently of the state of the nth bit. All address reg-
ister indirect addressing modes may be used to reference the source operand S. Abso-
lute Short and I/O Short addressing modes may also be used.

Restrictions: A JCLR instruction cannot be repeated using the REP instruction.

A JCLR located at LA, LA–1, or LA–2 of the DO loop cannot specify the program control-
ler registers SR, SP, SSH, SSL, LA, or LC as its target.

JCLR SSH or JCLR SSL cannot follow an instruction that changes the SP.

JCLR Jump if Bit Clear JCLR
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 81

Example:
:

JCLR #$5,X:<<$FFF1,$1234 ;go to P:$1234 if bit 5 in SCI SSR is clear
:

Explanation of Example: In this example, program execution is transferred to the
address P:$1234 if bit 5 (PE) of the 8-bit read-only X memory location X:$FFF1 (I/O SCI
interface status register) is a zero. If the specified bit is not clear, no jump is taken, and
the program counter (PC) is incremented by one.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
JCLR #n,X:ea,xxxx
JCLR #n,Y:ea,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR
xxxx=16-bit Absolute Address in extension word

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: 6+jx oscillator clock cycles
Memory: 2 program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 0 b b b b b

JCLR Jump if Bit Clear JCLR
A - 82 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
JCLR #n,X:aa,xxxx
JCLR #n,Y:aa,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa
xxxx=16-bit Absolute Address in extension word

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JCLR #n,X:pp,xxxx
JCLR #n,Y:pp,xxxx

Opcode:

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 0 b b b b b

JCLR Jump if Bit Clear JCLR

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 0 b b b b b
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 83

Instruction Fields:
#n=bit number=bbbbb,
pp=6-bit I/O Short Address=pppppp
xxxx=16-bit Absolute Address in extension word

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JCLR #n,S,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
S=source register=DDDDDD
xxxx=16-bit Absolute Address in extension word

Destination Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 1 G G G

See A.9 INSTRUCTION ENCODING and Table A-18 for specific register encodings.

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

JCLR Jump if Bit Clear JCLR

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 0 b b b b b
A - 84 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
0xxx ➞ PC JMP xxx

ea ➞ PC JMP ea

Description: Jump to the location in program memory given by the instruction’s effective
address. All memory alterable addressing modes may be used for the effective address.
A Fast Short Jump addressing mode may also be used. The 12-bit data is zero extended
to form the effective address.

Restrictions: A JMP instruction used within a DO loop cannot begin at the address LA
within that DO loop.

A JMP instruction cannot be repeated using the REP instruction.

Example:
:

JMP (R1+N1) ;jump to program address P:(R1+N1)
:

Explanation of Example: In this example, program execution is transferred to the pro-
gram address P:(R1+N1).

Condition Codes:

The condition codes are not affected by this instruction.

JMP Jump JMP

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 85

Instruction Format:
JMP xxx

Opcode:

Instruction Fields:
xxx=12-bit Short Jump Address=aaaaaaaaaaaa

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
JMP ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

JMP Jump JMP

23 16 15 8 7 0

0 0 0 0 1 1 0 0 0 0 0 0 a a a a a a a a a a a a

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 86 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
If cc, then SP+1➞SP; PC➞SSH; SR➞SSL; 0xxx➞PC JScc xxx

else PC+1➞PC

If cc, then SP+1➞SP; PC➞SSH; SR➞SSL; ea➞PC JScc ea
else PC+1➞PC

Description: Jump to the subroutine whose location in program memory is given by the
instruction’s effective address if the specified condition is true. If the specified condition is
true, the address of the instruction immediately following the JScc instruction (PC) and
the system status register (SR) are pushed onto the system stack. Program execution
then continues at the specified effective address in program memory. If the specified
condition is false, the program counter (PC) is incremented, and any extension word is
ignored. However, the address register specified in the effective address field is always
updated independently of the specified condition. All memory alterable addressing
modes may be used for the effective address. A fast short jump addressing mode may
also be used. The 12-bit data is zero extended to form the effective address. The term
‘‘cc’’ may specify the following conditions:

‘‘cc’’ Mnemonic Condition
CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set (lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

where
U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator, and
⊕ denotes the logical Exclusive OR operator

JScc Jump to Subroutine Conditionally JScc
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 87

Restrictions: A JScc instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JScc instruction used within in a DO loop cannot begin at the address LA within that
DO loop.

A JScc instruction cannot be repeated using the REP instruction.

Example:
:

JSLS (R3+N3) ;jump to subroutine at P:(R3+N3) if limit set (L=1)
:

Explanation of Example: In this example, program execution is transferred to the sub-
routine at address P:(R3+N3) in program memory if the limit bit is set (L=1). Both the
return address (PC) and the status register (SR) are pushed onto the system stack prior
to transferring program control to the subroutine if the specified condition is true. If the
specified condition is not true, no jump is taken and the program counter is incremented
by 1.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
JScc xxx

Opcode:

JScc Jump to Subroutine Conditionally JScc

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

0 0 0 0 1 1 1 1 C C C C a a a a a a a a a a a a
A - 88 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Fields:
cc=4-bit condition code=CCCC,
xxx=12-bit Short Jump Address=aaaaaaaaaaaa

Mnemonic C C C C Mnemonic C C C C

CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
GE 0 0 0 1 LT 1 0 0 1
NE 0 0 1 0 EQ 1 0 1 0
PL 0 0 1 1 MI 1 0 1 1
NN 0 1 0 0 NR 1 1 0 0
EC 0 1 0 1 ES 1 1 0 1
LC 0 1 1 0 LS 1 1 1 0
GT 0 1 1 1 LE 1 1 1 1

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
JScc ea

Opcode:

Instruction Fields:
cc=4-bit condition code=CCCC,
ea=6-bit Effective Address=MMMRRR

 Effective
Addressing Mode M M M R R R Mnemonic C C C C Mnemonic C C C C

(Rn)–Nn 0 0 0 r r r CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
(Rn)+Nn0 0 0 1 r r r GE 0 0 0 1 LT 1 0 0 1
(Rn)– 0 1 0 r r r NE 0 0 1 0 EQ 1 0 1 0
(Rn)+ 0 1 1 r r r PL 0 0 1 1 MI 1 0 1 1
(Rn) 1 0 0 r r r NN 0 1 0 0 NR 1 1 0 0
(Rn+Nn) 1 0 1 r r r EC 0 1 0 1 ES 1 1 0 1
–(Rn) 1 1 1 r r r LC 0 1 1 0 LS 1 1 1 0
Absolute address 1 1 0 0 0 0 GT 0 1 1 1 LE 1 1 1 1

where ‘‘rrr’’ refers to an address register R0–R7

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

JScc Jump to Subroutine Conditionally JScc

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 89

Operation: Assembler Syntax
If S[n]=0, JSCLR #n,X:ea,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx ➞PC
else PC+1 ➞PC

I f S[n]=0, JSCLR #n,X:aa,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=0, JSCLR #n,X:pp,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=0, JSCLR #n,Y:ea,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=0, JSCLR #n,Y:aa,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=0, JSCLR #n,Y:pp,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=0, JSCLR #n,S,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

Description: Jump to the subroutine at the 16-bit absolute address in program memory
specified in the instruction’s 24-bit extension word if the nth bit of the source operand S is
clear. The bit to be tested is selected by an immediate bit number from 0–23. If the nth bit
of the source operand S is clear, the address of the instruction immediately following the
JSCLR instruction (PC) and the system status register (SR) are pushed onto the system
stack. Program execution then continues at the specified absolute address in the instruc-
tion’s 24-bit extension word. If the sepcified memory bit is not clear, the program counter
(PC) is incremented and the extension word is ignored. However, the address register
specified in the effective address field is always updated independently of the state of the
nth bit. All address register indirect addressing modes may be used to reference the

JSCLR Jump to Subroutine if Bit Clear JSCLR
A - 90 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

source operand S. Absolute short and I/O short addressing modes may also be used.

Restrictions: A JSCLR instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JSCLR located at LA, LA–1, or LA–2 of a DO loop, cannot specify the program control-
ler registers SR, SP, SSH, SSL, LA, or LC as its target.

JSCLR SSH or JSCLR SSL cannot follow an instruction that changes the SP.

A JSCLR instruction cannot be repeated using the REP instruction.

Example:
:

JSCLR #$1,Y:<<$FFE3,$1357 ;go sub. at P:$1357 if bit 1 in Y:$FFE3 is clear
:

Explanation of Example: In this example, program execution is transferred to the sub-
routine at absolute address P:$1357 in program memory if bit 1 of the external I/O loca-
tion Y:<<$FFE3 is a zero. If the specified bit is not clear, no jump is taken and the
program counter (PC) is incremented by 1.

Condition Codes:

The condition codes are not affected by this instruction.

JSCLR Jump to Subroutine if Bit Clear JSCLR

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 91

Instruction Format:
JSCLR #n,X:ea,xxxx
JSCLR #n,Y:ea,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR,
xxxx=16-bit Absolute Address in extension word

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JSCLR #n,X:aa,xxxx
JSCLR #n,Y:aa,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa,
xxxx=16-bit Absolute Address in extension word

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 0 b b b b b

JSCLR Jump to Subroutine if Bit Clear JSCLR

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 0 b b b b b
A - 92 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JSCLR #n,X:pp,xxxx
JSCLR #n,Y:pp,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
pp=6-bit I/O Short Address=pppppp,
xxxx=16-bit Absolute Address in extension word

I/O Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

JSCLR Jump to Subroutine if Bit Clear JSCLR

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 0 b b b b b
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 93

Instruction Format:
JSCLR #n,S,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
S=source register=DDDDDD,
xxxx=16-bit Absolute Address in extension word

Destination Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 1 G G G

See A.9 INSTRUCTION ENCODING and Table A-18 for specific register encodings.

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 0 b b b b b

JSCLR Jump to Subroutine if Bit Clear JSCLR
A - 94 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
If S[n]=0, then xxxx➞PC JSET #n,X:ea,xxxx

else PC+1➞PC

If S[n]=1, then xxxx➞PC JSET #n,X:ea,xxxx
else PC+1➞PC

If S[n]=1, then xxxx➞PC JSET #n,X:aa,xxxx
else PC+1➞PC

If S[n]=1, then xxxx ➞PC JSET #n,X:pp,xxxx
else PC+1➞PC

If S[n]=1, then xxxx➞PC JSET #n,Y:ea,xxxx
else PC+1➞PC

If S[n]=1, then xxxx ➞PC JSET #n,Y:aa,xxxx
else PC+1➞PC

If S[n]=1, then xxxx➞PC JSET #n,Y:pp,xxxx
else PC+1➞PC

If S[n]=1, then xxxx➞PC JSET #n,S,xxxx
else PC+1➞PC

Description: Jump to the 16-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if the nth bit of the source operand S is set. The bit to
be tested is selected by an immediate bit number from 0–23. If the specified memory bit
is not set, the program counter (PC) is incremented, and the absolute address in the
extension word is ignored. However, the address register specified in the effective
address field is always updated independently of the state of the nth bit. All address reg-
ister indirect addressing modes may be used to reference the source operand S. Abso-
lute short and I/O short addressing modes may also be used.

Restrictions: A JSET instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JSET located at LA, LA–1, or LA–2 of a DO loop cannot specify the program controller
registers SR, SP, SSH, SSL, LA, or LC as its target.

JSET SSH or JSET SSL cannot follow an instruction that changes the SP.

A JSET instruction cannot be repeated using the REP instruction.

JSET Jump if Bit Set JSET
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 95

Example:
:

JSET #12,X:<<$FFF2,$4321 ;$4321➞(PC) if bit 12 (SCI COD) is set
:

Explanation of Example: In this example, program execution is transferred to the
address P:$4321 if bit 12 (SCI COD) of the 16-bit read/write I/O register X:$FFF2 is a
one. If the specified bit is not set, no jump is taken and the program counter (PC) is incre-
mented by 1.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
JSET #n,X:ea,xxxx
JSET #n,Y:ea,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR
xxxx=16-bit Absolute Address in extension word

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0-R7

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 1 b b b b b

JSET Jump if Bit Set JSET
A - 96 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JSET #n,X:aa,xxxx
JSET #n,Y:aa,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa,
xxxx=16-bit Absolute Address in extension word

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JSET #n,X:pp,xxxx
JSET #n,Y:pp,xxxx

Opcode:

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 1 b b b b b

JSET Jump if Bit Set JSET

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 1 b b b b b
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 97

Instruction Fields:
#n=bit number=bbbbb,
pp=6-bit I/O Short Address=pppppp,
xxxx=16-bit Absolute Address in extension word

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JSET #n,S,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
S=source register=DDDDDD,
xxxx=16-bit Absolute Address in extension word

Destination Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 1 G G G

See A.9 Instruction Encoding and Table A-18 for specific register encodings.

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 1 b b b b b

JSET Jump if Bit Set JSET
A - 98 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
SP+1➞SP; PC➞SSH; SR➞SSL; 0xxx➞PC JSR xxx

SP+➞SP; PC➞SSH; SR➞SSL; ea➞PC JSR ea

Description: Jump to the subroutine whose location in program memory is given by the
instruction’s effective address. The address of the instruction immediately following the
JSR instruction (PC) and the system status register (SR) is pushed onto the system
stack. Program execution then continues at the specified effective address in program
memory. All memory alterable addressing modes may be used for the effective address.
A fast short jump addressing mode may also be used. The 12-bit data is zero extended
to form the effective address.

Restrictions: A JSR instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JSR instruction used within a DO loop cannot begin at the address LA within that DO
loop.

A JSR instruction cannot be repeated using the REP instruction.

Example:
:

JSR (R5)+ ;jump to subroutine at (R5), update R5
:

Explanation of Example: In this example, program execution is transferred to the sub-
routine at address P:(R5) in program memory, and the contents of the R5 address regis-
ter are then updated.

Condition Codes:

The condition codes are not affected by this instruction.

JSR Jump to Subroutine JSR

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 99

Instruction Format:
JSR xxx

Opcode:

Instruction Fields:
xxx=12-bit Short Jump Address=aaaaaaaaaaaa

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
JSR ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

23 16 15 8 7 0

0 0 0 0 1 1 0 1 0 0 0 0 a a a a a a a a a a a a

JSR Jump to Subroutine JSR

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0
A - 100 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax
If S[n]=1, JSSET #n,X:ea,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=1, JSSET #n,X:aa,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=1, JSSET #n,X:pp,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=1, JSSET #n,Y:ea,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=1, JSSET #n,Y:aa,xxxx
then SP+1➞SP; PC➞SSH; SR ➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=1, JSSET #n,Y:pp,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx ➞PC
else PC+1➡PC

If S[n]=1, JSSET #n,S,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

Description: Jump to the subroutine at the 16-bit absolute address in program memory
specified in the instruction’s 24-bit extension word if the nth bit of the source operand S is
set. The bit to be tested is selected by an immediate bit number from 0–23. If the nth bit
of the source operand S is set, the address of the instruction immediately following the
JSSET instruction (PC) and the system status register (SR) are pushed onto the system
stack. Program execution then continues at the specified absolute address in the instruc-
tion’s 24-bit extension word. If the specified memory bit is not set, the program counter
(PC) is incremented, and the extension word is ignored. However, the address register
specified in the effective address field is always updated independently of the state of the
nth bit. All address register indirect addressing modes may be used to reference the
source operand S. Absolute short and I/O short addressing modes may also be used.

JSSET Jump to Subroutine if Bit Set JSSET
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 101

Restrictions: A JSSET instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JSSET located at LA, LA–1, or LA–2 of a DO loop, cannot specify the program control-
ler registers SR, SP, SSH, SSL, LA, or LC as its target.

JSSET SSH or JSSET SSL cannot follow an instruction that changes the SP.

A JSSET instruction cannot be repeated using the REP instruction.

Example:
:

JSSET #$17,Y:<$3F,$100 ;go to sub. at P:$0100 if bit 23 in Y:$3F is set
:

Explanation of Example: In this example, program execution is transferred to the sub-
routine at absolute address P:$0100 in program memory if bit 23 of Y memory location
Y:$003F is a one. If the specified bit is not set, no jump is taken and the program counter
(PC) is incremented by 1.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
JSSET #n,X:ea,xxxx
JSSET #n,Y:ea,xxxx

Opcode:

JSSET Jump to Subroutine if Bit Set JSSET

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTEN-

0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 1 b b b b b
A - 102 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR,
xxxx=16-bit Absolute Address in extension word

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

Instruction Format:
JSSET #n,X:aa,xxxx
JSSET #n,Y:aa,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa,
xxxx=16-bit Absolute Address in extension word

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

JSSET Jump to Subroutine if Bit Set JSSET

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 1 b b b b b
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 103

Instruction Format:
JSSET #n,X:pp,xxxx
JSSET #n,Y:pp,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
pp=6-bit I/O Short Address=pppppp,
xxxx=16-bit Absolute Address in extension word

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 1 b b b b b

JSSET Jump to Subroutine if Bit Set JSSET
A - 104 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
JSSET #n,S,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
S=source register=DDDDDD,
xxxx=16-bit Absolute Address in extension word

Destination Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 1 G G G

See A.9 Instruction Encoding and Table A-18 for specific register encodings.

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 1 b b b b b

JSSET Jump to Subroutine if Bit Set JSSET
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 105

Assembler Syntax: LSL D (parallel move)

Description: Logically shift bits 47–24 of the destination operand D one bit to the left
and store the result in the destination accumulator. Prior to instruction execution, bit 47
of D is shifted into the carry bit C, and a zero is shifted into bit 24 of the destination accu-
mulator D. This instruction is a 24-bit operation. The remaining bits of the destination
operand D are not affected. If a zero shift count is specified, the carry bit is cleared. The
difference between LSL and ASL is that LSL operates on only A1 or B1 and always
clears the V bit.

Example:
:

LSL B #$7F,R0 ;shift B1 one bit to the left, set up R0
:

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $00:F01234:13579B. The execution of the LSL B instruction shifts the 24-bit value
in the B1 register one bit to the left and stores the result back in the B1 register.

Condition Codes:

L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z— Set if bits 47–24 of A or B result are zero
V — Always cleared
C — Set if bit 47 of A or B was set prior to instruction execution

LSL Logical Shift Left LSL

47 24

C 0 (parallel move)Operation:

Before Execution After Execution

B B$00:F01234:13579B

SR SR$0300 $0309

$00:E02468:13579B

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 106 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
LSL D

Opcode:

Instruction Fields:
D d
A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

LSL Logical Shift Left LSL
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 107

Assembler Syntax: LSR D (parallel move)

Description: Logically shift bits 47–24 of the destination operand D one bit to the right
and store the result in the destination accumulator. Prior to instruction execution, bit 24
of D is shifted into the carry bit C, and a zero is shifted into bit 47 of the destination accu-
mulator D. This instruction is a 24-bit operation. The remaining bits of the destination
operand D are not affected.

Example:
:

LSR AA1,N4 ;shift A1 one bit to the right, set up N4
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $37:444445:828180. The execution of the LSR A instruction shifts the 24-bit value
in the A1 register one bit to the right and stores the result back in the A1 register.

Condition Codes:

L — Set if data limiting has occurred during parallel move
N — Always cleared
Z— Set if bits 47–24 of A or B result are zero
V — Always cleared
C — Set if bit 24 of A or B was set prior to instruction execution

LSR Logical Shift Right LSR

47 24

0 C (parallel move)Operation:

Before Execution After Execution

A A$37:444445:828180

SR SR$0300 $0301

$37:222222:828180

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 108 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
LSR D

Opcode:

Instruction Fields:
D d
A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

LSR Logical Shift Right LSR
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 109

Operation: Assembler Syntax:
ea➞d LUA ea,D

Description: Load the updated address into the destination address register D. The source
address register and the update mode used to compute the updated address are speci-
fied by the effective address (ea). Note that the source address register specified in
the effective address is not updated. All update addressing modes may be used.

Note: This instruction is considered to be a move-type instruction. Due to pipelining, the
new contents of the destination address register (R0–R7 or N0–N7) will not be available
for use during the following instruction (i.e., there is a single instruction cycle pipeline
delay).

Example: :
LUA (R0)+N0,R1;update R1 using (R0)+N0

:

Explanation of Example: Prior to execution, the 16-bit address register R0 contains the
value $0003, the 16-bit address register N0 contains the value $0005, and the 16-bit
address register R1 contains the value $0004. The execution of the LUA (R0)+N0,R1
instruction adds the contents of the R0 register to the contents of the N0 register and
stores the resulting updated address in the R1 address register. Note that normally N0
would be added to R0 and deposited in R0; however, for an LUA instruction, the contents
of both the R0 and N0 address registers are not affected.

Condition Codes:

The condition codes are not affected by this instruction.

LUA Load Updated Address LUA

Before Execution After Execution

R0 R0

N0 N0

M0 M0$FFFF $FFFF

$0005

$0003

$0005

$0003

R1 R1$0004 $0008

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 110 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
LUA ea,D

Opcode:

IInstruction Fields:
ea=5-bit Effective Address=MMRRR,
D=4-bit destination address register=dddd

Effective
Addressing Mode M M M R R R Dest. Addr. Reg. D d d d d

(Rn)-Nn 0 0 0 r r r R0–R7 0 n n n
(Rn)+Nn 0 0 1 r r r N0–N7 1 n n n
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r

where ‘‘rrr’’ refers to a source address register R0–R7
where ‘‘nnn’’ refers to a destination address register R0–R7 or N0–N7

Timing: 4 oscillator clock cycles

Memory: 1 program word

23 16 15 8 7 0

0 0 0 0 0 1 0 0 0 1 0 M M R R R 0 0 0 1 d d d d

LUA Load Updated Address LUA
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 111

Operation: Assembler Syntax:
D±S1∗ S2➞D (parallel move) MAC (±)S1,S2,D (parallel move)

D±S1∗ S2➞D (parallel move) MAC (±)S2,S1,D (parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2 and add/sub-
tract the product to/from the specified 56-bit destination accumulator D. The ‘‘–’’ sign
option is used to negate the specified product prior to accumulation. The default sign
option is ‘‘+’’.

Example:
:

MAC X0,X0,A X:(R2)+N2,Y1 ;square X0 and store in A, update Y1 and R2
:

Explanation of Example: Prior to execution, the 24-bit X0 register contains the value of
$123456 (0.142222166), and the 56-bit A accumulator contains the value
$00:100000:000000 (0.125). The execution of the MAC X0,X0,A instruction squares the
24-bit signed value in the X0 register and adds the resulting 48-bit product to the 56-bit A
accumulator (X0∗ X0+lA=0.145227144519197 approximately= $00:1296CD:9619C8=A).

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:

MAC Signed Multiply-Accumulate MAC

Before Execution After Execution

X0 X0$123456

A A$00:100000:00000 $00:1296CD:9619C8

$123456

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 112 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

MAC (±)S1,S2,D
MAC (±)S2,S1,D

Opcode:

Instruction Fields:
S1∗ S2 Q Q Q Sign k D d

X0 X0 0 0 0 + 0 A 0
Y0 Y0 0 0 1 – 1 B 1
X1 X0 0 1 0
Y1 Y0 0 1 1
X0 Y1 1 0 0
Y0 X0 1 0 1
X1 Y0 1 1 0
Y1 X1 1 1 1

Note: Only the indicated S1∗ S2 combinations are valid. X1∗ X1 and Y1∗ Y1 are not valid.

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MAC Signed Multiply-Accumulate MAC
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 113

Operation: Assembler Syntax:
D±S1∗ S2+r➞D (parallel move) MACR (±)S1,S2,D (parallel move)

D±S1∗ S2+r➞ D (parallel move) MACR (±)S2,S1,D (parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2, add/subtract
the product to/from the specified 56-bit destination accumulator D, and then round the
result using convergent rounding. The rounded result is stored in the destination accu-
mulator D. The ‘‘–’’ sign option is used to negate the specified product prior to accumula-
tion. The default sign option is “+’’. The contribution of the LS bits of the result is rounded
into the upper portion of the destination accumulator (A1 or B1) by adding a constant to
the LS bits of the lower portion of the accumulator (A0 or B0). The value of the constant
added is determined by the scaling mode bits S0 and S1 in the status register. Once
rounding has been completed, the LS bits of the destination accumulator D (A0 or B0)
are loaded with zeros to maintain an unbiased accumulator value which may be reused
by the next instruction. The upper portion of the accumulator (A1 or B1) contains the
rounded result which may be read out to the data buses. Refer to the RND instruction for
more complete information on the convergent rounding process.

Example:
:

MACR X0,Y0,B B,X0 Y:(R4)+N4,Y0 ;X0∗ Y0+B➞B, rnd B, update X0,Y0,R4
:

Explanation of Example: Prior to execution, the 24-bit X0 register contains the value
$123456 (0.142222166), the 24-bit Y0 register contains the value $123456
(0.142222166), and the 56-bit B accumulator contains the value $00:100000:000000
(0.125). The execution of the MACR X0,Y0,B instruction multiples the 24-bit signed
value in the X0 register by the 24-bit signed value in the Y0 register, adds the resulting
product to the 56-bit B accumulator, rounds the result into the B1 portion of the accumu-
lator, and then zeros the B0 portion of the accumulator (X0∗ Y0+B=0.145227144519197
approximately =$00:1296CD:9619C8, which is rounded to the value
$00:1296CE:000000=0.145227193832397=B).

MACR Signed Multiply-Accumulate and Round MACR

Before Execution After Execution

X0 X0

Y0 Y0

B B$00:100000:000000 $00:1296CE:000000

$987654

$100000

$123456

$123456
A - 114 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
MACR (±)S1,S2,D
MACR (±)S2,S1,D

Opcode:

Instruction Fields:
S1∗ S2 Q Q Q Sign k D d

X0 X0 0 0 0 + 0 A 0
Y0 Y0 0 0 1 – 1 B 1
X1 X0 0 1 0
Y1 Y0 0 1 1
X0 Y1 1 0 0
Y0 X0 1 0 1
X1 Y0 1 1 0
Y1 X1 1 1 1

Note: Only the indicated S1∗ S2 combinations are valid. X1∗ X1 and Y1∗ Y1 are not valid.

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

MACR Signed Multiply-Accumulate and Round MACR

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 115

Operation: Assembler Syntax:
S➞D MOVE S,D

Description: Move the contents of the specified data source S to the specified destina-
tion D. This instruction is equivalent to a data ALU NOP with a parallel data move.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits S0 and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24- or 48-bit destination, the value
stored in the destination D is limited to a maximum positive or negative saturation con-
stant to minimize truncation error. Limiting does not occur if an individual 24-bit accumu-
lator register (A1, A0, B1, or B0) is specified as a source operand instead of the full 56-bit
accumulator (A or B). This limiting feature allows block floating-point operations to be
performed with error detection since the L bit in the condition code register is latched.

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 23) and appending the source oper-
and with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit accu-
mulator is automatically sign extended to 56 bits. Note that for 24-bit source operands
both the automatic sign-extension and zeroing features may be disabled by specifying
the destination register to be one of the individual 24-bit accumulator registers (A1 or
B1). Similarly, for 48-bit source operands, the automatic sign-extension feature may be
disabled by using the long memory move addressing mode and specifying A10 or B10
as the destination operand.

Example:
:

MOVE X0,A1 ;move X0 to A1 without sign ext. or zeroing
:

MOVE Move Data MOVE

A A$FF:FFFFFF:FFFFFF $FF:234567:FFFFFF

Before Execution After Execution

X0 X0$234567 $234567
A - 116 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $FF:FFFFFF:FFFFFF, and the 24-bit X0 register contains the value $234567. The
execution of the MOVE X0,A1 instruction moves the 24-bit value in the X0 register into
the 24-bit A1 register without automatic sign extension and without automatic zeroing.

Condition Codes:

L — Set if data limiting has occurred during parallel move

Instruction Format:
MOVE S,D

Opcode:

Instruction Fields:
See Parallel Move Descriptions for data bus move field encoding.

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVE Move Data MOVE
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 117

Parallel Move Descriptions: Thirty of the sixty-two instructions provide the capability to
specifiy an optional parallel data bus movement over the X and/or Y data bus. This
allows a data ALU operation to be executed in parallel with up to two data bus moves
during the instruction cycle. Ten types of parallel moves are permitted, including register
to register moves, register to memory moves, and memory to register moves. However,
not all addressing modes are allowed for each type of memory reference. Addressing
mode restrictions which apply to specific types of moves are noted in the individual move
operation descriptions. The following section contains detailed descriptions about each
type of parallel move operation.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits S0 and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24- or 48-bit destination, the value
stored in the destination D is limited to a maximum positive or negative saturation con-
stant to minimize truncation error. Limiting does not occur if an individual 24-bit accumu-
lator register (A1, A0, B1, or B0) is specified as a source operand instead of the full 56-bit
accumulator (A or B). This limiting feature allows block floating-point operations to be
performed with error detection since the L bit in the condition code register is latched.

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 23) and appending the source oper-
and with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit accu-
mulator is automatically sign extended to 56 bits. Note that for 24-bit source operands
both the automatic sign-extension and zeroing features may be disabled by specifying
the destination register to be one of the individual 24-bit accumulator registers (A1 or
B1). Similarly, for 48-bit source operands, the automatic sign-extension feature may be
disabled by using the long memory move addressing mode and specifying A10 or B10
as the destination operand.

Note that the symbols used in decoding the various opcode fields of an instruction or par-
allel move are completely arbitrary. Furthermore, the opcode symbols used in one
instruction or parallel move are completely independent of the opcode symbols used in
a different instruction or parallel move.

MOVE Move Data MOVE
A - 118 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
(.) (.)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Many (30 of the total 62) instructions in the DSP56000/DSP56001 instruc-
tion set allow parallel moves. The parallel moves have been divided into 10 opcode cate-
gories. This category is a parallel move NOP and does not involve data bus move
activity.

Example:
:

ADD X0,A ;add X0 to A (no parallel move)
:

Explanation of Example: This is an example of an instruction which allows parallel
moves but does not have one.

Condition Codes:

The condition codes are not affected by this type of parallel move.

Instruction Format:
(.)

Opcode:

Instruction Format:
(defined by instruction)

Timing: mv oscillator clock cycles

Memory: mv program words

No Parallel Data Move

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 INSTRUCTION OPCODE
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 119

Operation: Assembler Syntax:
(.), #xx➞D (.) #xx,D

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the 8-bit immediate data value (#xx) into the destination operand D.

If the destination register D is A0, A1, A2, B0, B1, B2, R0–R7, or N0–N7, the 8-bit imme-
diate short operand is interpreted as an unsigned integer and is stored in the specified
destination register. That is, the 8-bit data is stored in the eight LS bits of the destination
operand, and the remaining bits of the destination operand D are zeroed.

If the destination register D is X0, X1, Y0, Y1, A, or B, the 8-bit immediate short operand
is interpreted as a signed fraction and is stored in the specified destination register.
That is, the 8-bit data is stored in the eight MS bits of the destination operand, and the
remaining bits of the destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti-
nation, the parallel data bus move portion of the instruction may not specify A0, A1, A2,
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci-
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B0, B1, B2, or B as its destination D. That is, duplicate des-
tinations are NOT allowed within the same instruction.

Note: This parallel data move is considered to be a move-type instruction. Due to pipe-
lining, if an address register (R or N) is changed using a move-type instruction, the new
contents of the destination address register will not be available for use during the follow-
ing instruction (i.e., there is a single instruction cycle pipeline delay).

Example:
:

ABS B #$18,R1 ;take absolute value of B, #$18➞R1
:

I Immediate Short Data Move I

Before Execution After Execution

R1 R1$0000 $0018
A - 120 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Explanation of Example: Prior to execution, the 16-bit address register R1 contains the
value $0000. The execution of the parallel move portion of the instruction, #$18,R1,
moves the 8-bit immediate short operand into the eight LS bits of the R1 register and
zeros the remaining eight MS bits of that register. The 8-bit value is interpreted as an
unsigned integer since its destination is the R1 address register.

Condition Codes:

The condition codes are not affected by this type of parallel move.

Instruction Format:
(.) #xx,D

Opcode:

Instruction Fields:
#xx=8-bit Immediate Short Data=iiiiiiii

D D
D d d d d d Sign Ext Zero

X0 0 0 1 0 0 no no
X1 0 0 1 0 1 no no
Y0 0 0 1 1 0 no no
Y1 0 0 1 1 1 no no
A0 0 1 0 0 0 no no
B0 0 1 0 0 1 no no
A2 0 1 0 1 0 no no
B2 0 1 0 1 1 no no
A1 0 1 1 0 0 no no
B1 0 1 1 0 1 no no
A 0 1 1 1 0 A2 A0
B 0 1 1 1 1 B2 B0
R0-R7 1 0 r r r
N0-N7 1 1 n n n

where “rrr”=Rn number
where “nnn”=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

I Immediate Short Data Move I

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

0 0 1 d d d d d i i i i i i i i INSTRUCTION OPCODE
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 121

Operation: Assembler Syntax:
(.); S➞D (.) S,D

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the source register S to the destination register D.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti-
nation, the parallel data bus move portion of the instruction may not specify A0, A1, A2,
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci-
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B0, B1, B2, or B as its destination D. That is, duplicate des-
tinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS bits
of the 24-bit source operand are stored in the 16-bit destination register. When a 16-bit
source operand is moved into a 24-bit destination register, the 16 LS bits of the destina-
tion register are loaded with the contents of the 16-bit source operand, and the eight MS
bits of the 24-bit destination register are zeroed.

Note: The MOVE A,B operation will result in a 24-bit positive or negative saturation con-
stant being stored in the B1 portion of the B accumulator if the signed integer portion of
the A accumulator is in use.

Note: This parallel data move is considered to be a move-type instruction. Due to pipe-
lining, if an address register (R or N) is changed using a move-type instruction, the new
contents of the destination address register will not be available for use during the follow-
ing instruction (i.e., there is a single instruction cycle pipeline delay).

R Register to Register Data Move R
A - 122 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Example:
:

MACR–X0,Y0,A Y1,N5 ;–X0∗ Y0+A➞A, move Y1➞N5
:

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value
$001234 and the 16-bit address offset register N5 contains the value $0000. The execu-
tion of the parallel move portion of the instruction, Y1,N5, moves the 16 LS bits of the 24-
bit value in the Y1 register into the 16-bit N5 register.

Condition Codes:

L — Set if data limiting has occurred during parallel move

N5 N5$0000 $1234

Before Execution After Execution

Y1 Y1$001234 $001234

R Register to Register Data Move R

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 123

Instruction Format:
(.) S,D

Opcode:

Instruction Fields:
e e e e e S D D

S or D d d d d d S/L Sign Ext Zero

X0 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
Y0 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
A0 0 1 0 0 0 no no no
B0 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
B2 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
B1 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 A0
B 0 1 1 1 1 yes B2 B0
R0-R7 1 0 r r r
N0-N7 1 1 n n n

where “rrr”=Rn number
where “nnn”=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

23 16 15 8 7 0

0 0 1 0 0 0 e e e e e d d d d d INSTRUCTION OPCODE

R Register to Register Data Move R
A - 124 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 125

A - 126 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
(.); ea➞Rn (.) ea

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Update the specified address register according to the specified effective
addressing mode. All update addressing modes may be used.

Example:
:
RND B (R3)+N3;round value in B into B1, R3+N3➞R3

:

Explanation of Example: Prior to execution, the 16-bit address register R3 contains the
value $0007, and the 16-bit address offset register N3 contains the value $0004. The
execution of the parallel move portion of the instruction, (R3)+N3, updates the R3
address register according to the specified effective addressing mode by adding the
value in the R3 register to the value in the N3 register and storing the 16-bit result back in
the R3 address register.

Condition Codes:

The condition codes are not affected by this type of parallel move.

U Address Register Update U

N3 N3$0004 $0004

Before Execution After Execution

R3 R3$0007 $000B

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 125

Instruction Format:
(.) ea

Opcode:

Instruction Fields:
ea=5-bit Effective Address=MMRRR

Effective
Addressing Mode M M R R R

(Rn)-Nn 0 0 r r r
(Rn)+Nn 0 1 r r r
(Rn)- 1 0 r r r
(Rn)+ 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: mv oscillator clock cycles

Memory: mv program words

23 16 15 8 7 0

0 0 1 0 0 0 0 0 0 1 0 M M R R R INSTRUCTION OPCODE

U Address Register Update U
A - 126 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
(.); X:ea➞D (.) X:ea,D

(.); X:aa➞D (.) X:aa,D

(.); S➞X:ea (.) S,X:ea

(.); S➞X:aa (.) S,X:aa

(.); #xxxxxx➞D (.) #xxxxxx,D

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the specified word operand from/to X memory. All memory address-
ing modes, including absolute addressing and 24-bit immediate data, may be used.
Absolute short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti-
nation, the parallel data bus move portion of the instruction may not specify A0, A1, A2,
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci-
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B0, B1, B2, or B as its destination D. That is, duplicate des-
tinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS bits
of the 24-bit source operand are stored in the 16-bit destination register. When a 16-bit
source operand is moved into a 24-bit destination register, the 16 LS bits of the destina-
tion register are loaded with the contents of the 16-bit source operand, and the eight MS
bits of the 24-bit destination register are zeroed.

Note: This parallel data move is considered to be a move-type instruction. Due to pipe-

X: X Memory Data Move X:
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 127

lining, if an address register (R or N) is changed using a move-type instruction, the new
contents of the destination address register will not be available for use during the follow-
ing instruction (i.e., there is a single instruction cycle pipeline delay).

Example:
:

ASL A R2,X:–(R2) ;A∗ 2➞A, save updated R2 in X:(R2)
:

Explanation of Example: Prior to execution, the 16-bit R2 address register contains the
value $1001, and the 24-bit X memory location X:$1000 contains the value $000000.
The execution of the parallel move portion of the instruction, R2,X:–(R2), predecrements
the R2 address register and then uses the R2 address register to move the updated con-
tents of the R2 address register into the 24-bit X memory location X:$1000.

Condition Codes:

L — Set if data limiting has occurred during parallel move.

Note: The MOVE A,X:ea operation will result in a 24-bit positive or negative saturation
constant being stored in the specified 24-bit X memory location if the signed integer por-
tion of the A accumulator is in use.

Instruction Format:
(.) X:ea,D
(.) S,X:ea
(.) #xxxxxx,D

X:$1000 X:$1000$000000 $001000

Before Execution After Execution

R2 R2$1001 $1000

X: X Memory Data Move X:

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 128 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

S D D
S,D d d d d d S/L Sign Ext Zero

X0 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
Y0 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
A0 0 1 0 0 0 no no no
B0 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
B2 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
B1 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 A0
B 0 1 1 1 1 yes B2 B0
R0-R7 1 0 r r r
N0-N7 1 1 n n n

where “rrr”=Rn number
where “nnn”=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 1 d d 0 d d d W 1 M M M R R R INSTRUCTION OPCODE

X: X Memory Data Move X:
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 129

Instruction Format:
(.) X:aa,D
(.) S,X:aa

Opcode:

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Register W Absolute Short Address a a a a a a

Read S 0 0 0 0 0 0 0
Write D 1 •

1 1 1 1 1 1

S D D
S,D d d d d d S/L Sign Ext Zero

X0 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
Y0 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
A0 0 1 0 0 0 no no no
B0 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
B2 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
B1 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 A0
B 0 1 1 1 1 yes B2 B0
R0-R7 1 0 r r r
N0-N7 1 1 n n n

where “rrr”=Rn number
where “nnn”=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

23 16 15 8 7 0

0 1 d d 0 d d d W 0 a a a a a a INSTRUCTION OPCODE

X: X Memory Data Move X:
A - 130 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
Class I Class I

(.); X:ea➞D1; S2➞D2 (.) X:ea,D1 S2,D2

(.); S1➞X:ea; S2➞D2 (.) S1,X:ea S2,D2

(.); #xxxxxx➞D1; S2➞D2 (.) #xxxxxx,D1 S2,D2

Class II Class II
(.); A➞X:ea; X0➞A (.) A,X:ea X0,A

(.); B➞X:ea; X0➞B (.) B,X:ea X0,B

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Class I: Move a one-word operand from/to X memory and move another
word operand from an accumulator (S2) to an input register (D2). All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. The reg-
ister to register move (S2,D2) allows a data ALU accumulator to be moved to a data ALU
input register for use as a data ALU operand in the following instruction.

Class II: Move one-word operand from a data ALU accumulator to X memory and one-
word operand from data ALU register X0 to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute addressing
and long immediate data, may be used.

For both Class I and Class II X:R parallel data moves, if the arithmetic or logical opcode-
operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination D1 in
the parallel data bus move operation. Thus, if the opcode-operand portion of the instruc-
tion specifies the 56-bit A accumulator as its destination, the parallel data bus move por-
tion of the instruction may not specify A0, A1, A2, or A as its destination D1. Similarly, if
the opcode-operand portion of the instruction specifies the 56-bit B accumulator as its
destination, the parallel data bus move portion of the instruction may not specify B0, B1,
B2, or B as its destination D1. That is, duplicate destinations are NOT allowed within
the same instruction.

X:R X Memory and Register Data Move X:R
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 131

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1 and/or
S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That
is, duplicate sources are allowed within the same instruction. Note that S1 and S2
may specify the same register.

Class I Example:
:

CMPM Y0,A A,X:$1234 A,Y0 ;compare A,Y0 mag., save A, update Y0
:

Explanation of the Class I Example: Prior to execution, the 56-bit A accumulator con-
tains the value $00:800000:000000, the 24-bit X memory location X:$1234 contains the
value $000000, and the 24-bit Y0 register contains the value $000000. The execution of
the parallel move portion of the instruction, A,X:$1234 A,Y0, moves the 24-bit limited
positive saturation constant $7FFFFF into both the X:$1234 memory location and the Y0
register since the signed portion of the A accumulator was in use.

Class II Example:
:

MAC X0,Y0,A B,X:(R1)+ X0,B ;multiply X0 and Y0 and accumulate in A
: ;move B to X memory location pointed to

;by R1 and postincrement R1
;move X0 to B

Before Execution After Execution

Y0 Y0

$000000 $7FFFFF

A A$00:800000:000000 $00:800000:000000

X:$1234 X:$1234

$000000 $7FFFFF
A - 132 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Explanation of the Class II Example: Prior to execution, the 24-bit registers X0 and Y0
contain $400000 and $600000, respectively. The 56-bit accumulators A and B contain
the values $00:000000:000000 and $FF:7FFFFF:000000, respectively. The 24-bit X
memory location X:$1234 contains the value $000000, and the 16-bit R1 register con-
tains the value $1234. Execution of the parallel move portion of the instruction
(B,X:(R1)+X0,B) moves the 24-bit limited value of B ($800000) into the X:$1234 memory
location and the X0 register ($400000) into accumulator B1 ($400000), sign extends B1
into B2 ($00), and zero fills B0 ($000000). It also increments R1 to $1235.

Condition Codes:

L — Set if data limiting has occurred during parallel move

X:R X Memory and Register Data Move X:R

Before Execution After Execution

X0 X0$400000 $400000

Y0 Y0$600000 $600000

A A$00:000000:000000 $00:300000:000000

B B$FF:7FFFFF:000000 $00:400000:000000

X:$1234 X:$1234$000000 $800000

R1 R1$1234 $1235

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 133

Class I Instruction Format:
(.) X:ea,D1 S2,D2
(.) S1,X:ea S2, D2
(.) #xxxxxx, S2,D2

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

where ‘‘rrr’’ refers to an address register R0–R7

S1 D1 D1 S2 D2 D2
S1,D1 f f S/L Sign Ext Zero S2 d S/L D2 f Sign Ext Zero

X0 0 0 no no no A 0 yes Y0 0 no no
X1 0 0 no no no B 1 yes Y1 1 no no
A 0 1 yes A2 A0
B 0 1 yes B2 B0

Timing: mv oscillator clock cycles

Memory: mv program words

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 1 f f d f W 0 M M M R R R INSTRUCTION OPCODE

X:R X Memory and Register Data Move X:R
A - 134 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Class II Instruction Format:
(.) A➞X:ea X0➞A
(.) B➞X:ea X0➞B

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode MMMRRR

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where ‘‘rrr’’ refers to an address register R0–R7

S D D
S D S/L Sign Ext Zero d MOVE Opcode

X0 no N/A N/A 0 A➞X:ea X0➞A
Y0 no N/A N/A 1 B➞X:ea X0➞B
A yes A2 A0
B yes B2 B0

Timing: mv oscillator clock cycles

Memory: mv program words

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 0 d 0 0 M M M R R R INSTRUCTION OPCODE

X:R X Memory and Register Data Move X:R
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 135

Operation: Assembler Syntax:
(.); Y:ea➞D (.) Y:ea,D

(.); Y:aa➞D (.) Y:aa,D

(.); S➞Y:ea (.) S,Y:ea

(.); S➞Y:aa (.) S,Y:aa

(.); #xxxxxx➞D (.) #xxxxxx,D

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the specified word operand from/to Y memory. All memory address-
ing modes, including absolute addressing and 24-bit immediate data, may be used.
Absolute short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti-
nation, the parallel data bus move portion of the instruction may not specify A0, A1, A2,
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci-
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B0, B1, B2, or B as its destination D. That is, duplicate des-
tinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS bits
of the 12-bit source operand are stored in the 16-bit destination register. When a 16-bit
source operand is moved into a 24-bit destination register, the 16 LS bits of the destina-
tion register are loaded with the contents of the 16-bit source operand, and the eight MS
bits of the 24-bit destination register are zeroed.

Y: Y Memory Data Move Y:
A - 136 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Note: This parallel data move is considered to be a move-type instruction. Due to pipe-
lining, if an address register (R or N) is changed using a move-type instruction, the new
contents of the destination address register will not be available for use during the follow-
ing instruction (i.e., there is a single instruction cycle pipeline delay).

Example:
:

EOR X0,B #$123456,A ;exclusive OR X0 and B, update A accumulator
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $FF:FFFFFF:FFFFFF. The execution of the parallel move portion of the instruc-
tion, #$123456,A, moves the 24-bit immediate value $123456 into the 24-bit A1 register,
then sign extends that value into the A2 portion of the accumulator, and zeros the lower
24-bit A0 portion of the accumulator.

Condition Codes:

L — Set if data limiting has occurred during parallel move

Note: The MOVE A,Y:ea operation will result in a 24-bit positive or negative saturation
constant being stored in the specified 24-bit Y memory location if the signed integer por-
tion of the A accumulator is in use.

Instruction Format:
(.) Y:ea,D
(.) S,Y:ea
(.) #xxxxxx,D

Y: Y Memory Data Move Y:

Before Execution After Execution

A $FF:FFFFFF:FFFFFF A $00:123456:000000

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 137

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

where ‘‘rrr’’ refers to an address register R0–R7

S D D
S,D d d d d d S/L Sign Ext Zero

X0 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
Y0 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
A0 0 1 0 0 0 no no no
B0 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
B2 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
B1 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 A0
B 0 1 1 1 1 yes B2 B0
R0-R7 1 0 r r r
N0-N7 1 1 n n n

where “rrr”=Rn number
where “nnn”=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

Y: Y Memory Data Move Y:

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 1 d d 1 d d d W 1 M M M R R R INSTRUCTION OPCODE
A - 138 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
(.) Y:aa,D
(.) S,Y:aa

Opcode:

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Register W Absolute Short Address aaaaaa

Read S 0 000000
Write D 1 •

111111

S D D
S,D d d d d d S/L Sign Ext Zero

X0 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
Y0 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
A0 0 1 0 0 0 no no no
B0 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
B2 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
B1 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 A0
B 0 1 1 1 1 yes B2 B0
R0-R7 1 0 r r r
N0-N7 1 1 n n n

where “rrr”=Rn number
where “nnn”=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

Y: Y Memory Data Move Y:

23 16 15 8 7 0

0 1 d d 1 d d d W 0 a a a a a a INSTRUCTION OPCODE
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 139

Operation: Assembler Syntax:
Class I Class I

(.); S1➞D1; Y:ea➞D2 (.) S1,D1 Y:ea,D2

(.); S1➞D1; S2➞Y:ea (.) S1,D1 S2,Y:ea

(.); S1➞D1; #xxxxxx➞D2 (.) S1,D1 #xxxxxx,D2

Class II Class II
(.); Y0 ➞A; A➞Y:ea (.) Y0,A A,Y:ea

(.); Y0➞B; B➞Y:ea (.) Y0,B B,Y:ea

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Class I: Move a one-word operand from an accumulator (S1) to an input
register (D1) and move another word operand from/to Y memory. All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. The reg-
ister to register move (S1,D1) allows a data ALU accumulator to be moved to a data ALU
input register for use as a data ALU operand in the following instruction.

Class II: Move one-word operand from a data ALU accumulator to Y memory and one-
word operand from data ALU register Y0 to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute addressing
and long immediate data, may be used. Class II move operations have been added to
the R:Y parallel move (and a similar feature has been added to the X:R parallel move) as
an added feature available in the first quarter of 1989.

For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode-
operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination D2 in
the parallel data bus move operation. Thus, if the opcode-operand portion of the instruc-
tion specifies the 56-bit A accumulator as its destination, the parallel data bus move por-
tion of the instruction may not specify A0, A1, A2, or A as its destination D2. Similarly, if
the opcode-operand portion of the instruction specifies the 56-bit B accumulator as its
destination, the parallel data bus move portion of the instruction may not specify B0, B1,
B2, or B as its destination D2. That is, duplicate destinations are NOT allowed within the
same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination

R:Y Register and Y Memory Data Move R:Y
A - 140 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

register, that same register or portion of that register may be used as a source S1 and/or
S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That
is, duplicate sources are allowed within the same instruction. Note that S1 and S2
may specify the same register.

Class I Example:
:

ADDL B,A B,X1 Y:(R6)–N6,B ;2∗ A+B ➞ A, update X1,B and R6
:

Explanation of the Class I Example: Prior to execution, the 56-bit B accumulator con-
tains the value $80:123456:789ABC, the 24-bit X1 register contains the value $000000,
the 16-bit R6 address register contains the value $2020, the 16-bit N6 address offset
register contains the value $0020 and the 24-bit Y memory location Y:$2020 contains the
value $654321. The execution of the parallel move portion of the instruction, B,X1
Y:(R6)–N6,B, moves the 24-bit limited negative saturation constant $800000 into the X1
register since the signed integer portion of the B accumulator was in use, uses the value
in the 16-bit R6 address register to move the 24-bit value in the Y memory location
Y:$2020 into the 56-bit B accumulator with automatic sign extension of the upper portion
of the accumulator (B2) and automatic zeroing of the lower portion of the accumulator
(B0), and finally uses the contents of the 16-bit N6 address offset register to update the
value in the 16-bit R6 address register. The contents of the N6 address offset register
are not affected.

R:Y Register and Y Memory Data Move R:Y

Before Execution After Execution

B B$80:123456:789ABC $00:654321:000000

X1 X1$000000 $800000

R6 R6$2020 $2000

N6 N6$0020 $0020

Y:$2020 Y:$2020$654321 $654321
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 141

Class II Example:
:

MAC X0,Y0,A Y0,B B,Y:(R1)+ ;multiply X0 and Y0 and accumulate in A
: ;move B to Y memory location pointed to

;by R1 and postincrement R1
;move Y0 to B

Explanation of the Class II Example: Prior to execution, the 24-bit registers, X0 and
Y0, contain $400000 and $600000, respectively. The 56-bit accumulators A and B con-
tain the values $00:000000:000000 and $00:800000:000000 (+1.0000), respectively.
The 24-bit Y memory location Y:$1234 contains the value $000000, and the 16-bit R1
register contains the value $1234. Execution of the parallel move portion of the instruc-
tion (Y0,B B,Y:(R1)+) moves the Y0 register ($600000) into accumulator B1 ($600000),
sign extends B1 into B2 ($00), and zero fills B0 ($000000). It also moves the 24-bit lim-
ited value of B ($7FFFFF) into the Y:$1234 memory location and increments R1 to
$1235.

Condition Codes:

L — Set if data limiting has occurred during parallel move

R:Y Register and Y Memory Data Move R:Y

Before Execution After Execution

X0 X0$400000 $400000

Y0 Y0$600000 $600000

A A$00:000000:000000 $00:300000:000000

B B$00:800000:000000 $00:600000:000000

Y:$1234 Y:$1234$000000 $7FFFFF

R1 R1$1234 $1235

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 142 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Class I Instruction Format:
(.) S1,D1 Y:ea,D2
(.) S1,D1 S2,Y:ea
(.) S1,D1 #xxxxxx,D2

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S2 0 (Rn)-Nn 0 0 0 r r r
Write D2 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

where ‘‘rrr’’ refers to an address register R0–R7

S1 D1 D1 S2 D2 D2
S1 d S/L D1 e Sign Ext Zero S2,D2 f f S/L Sign Ext Zero

A 0 yes X0 0 no no Y0 0 0 no no no
B 0 yes X1 1 no no Y1 0 1 no no no

A 1 0 yes A2 A0
B 1 1 yes B2 B0

Timing: mv oscillator clock cycles

Memory: mv program words

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 1 d e f f W 1 M M M R R R INSTRUCTION OPCODE

R:Y Register and Y Memory Data Move R:Y
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 143

Class II Instruction Format:
(.) Y0 ➞ A A ➞ Y:ea
(.) Y0 ➞ B B ➞ Y:ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode MMMRRR

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0–R7

SRC DEST DEST
S, D S/L Sign Ext Zero d MOVE Opcode

X0 no N/A N/A 0 Y0 ➞ A A ➞ Y:ea
Y0 no N/A N/A 1 Y0 ➞ B B ➞ Y:ea
A yes A2 A0
B yes B2 B0

Timing: mv oscillator clock cycles

Memory: mv program words

R:Y Register and Y Memory Data Move R:Y

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 0 d 1 0 M M M R R R INSTRUCTION OPCODE
A - 144 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
(.); X:ea ➞ D1; Y:ea ➞ D2 (.) L:ea,D

(.); X:aa ➞ D1; Y:aa ➞ D2 (.) L:aa,D

(.); S1 ➞ X:ea; S2 ➞ Y:ea (.) S,L:ea

(.); S1 ➞ X:aa; S2 ➞ Y:aa (.) S,L:aa

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move one 48-bit long-word operand from/to X and Y memory. Two data
ALU registers are concatenated to form the 48-bit long-word operand. This allows effi-
cient moving of both double-precision (high:low) and complex (real:imaginary) data from/
to one effective address in L (X:Y) memory. The same effective address is used for both
the X and Y memory spaces; thus, only one effective address is required. Note that the
A, B, A10, and B10 operands reference a single 48-bit signed (double-precision) quantity
while the X, Y, AB, and BA operands reference two separate (i.e., real and imaginary)
24-bit signed quantities. All memory alterable addressing modes may be used. Absolute
short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti-
nation, the parallel data bus move portion of the instruction may not specify A, A10, AB,
or BA as destination D. Similarly, if the opcode-operand portion of the instruction speci-
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B, B10, AB, or BA as its destination D. That is, duplicate des-
tinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

Note: The operands A10, B10, X, Y, AB, and BA may be used only for a 48-bit long
memory move as previously described. These operands may not be used in any other
type of instruction or parallel move.

L: Long Memory Data Move L:
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 145

Example:
:

CMP Y0,B A,L:$1234 ;compare Y0 and B, save 48-bit A1:A0 value
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01:234567:89ABCD, the 24-bit X memory location X:$1234 contains the value
$000000, and the 24-bit Y memory location Y:$1234 contains the value $000000. The
execution of the parallel move portion of the instruction, A,L:$1234, moves the 48-bit lim-
ited positive saturation constant $7FFFFF:FFFFFF into the specified long memory loca-
tion by moving the MS 24 bits of the 48-bit limited positive saturation constant ($7FFFFF)
into the 24-bit X memory location X:$1234 and by moving the LS 24 bits of the 48-bit lim-
ited positive saturation constant ($FFFFFF) into the 24-bit Y memory location Y:$1234
since the signed integer portion of the A accumulator was in use.

Condition Codes:

L — Set if data limiting has occurred during parallel move

Note: The MOVE A,L:ea operation will result in a 48-bit positive or negative saturation
constant being stored in the specified 24-bit X and Y memory locations if the signed inte-
ger portion of the A accumulator is in use. The MOVE AB,L:ea operation will result in
either one or two 24-bit positive and/or negative saturation constant(s) being stored in the
specified 24-bit X and/or Y memory location(s) if the signed integer portion of the A and/
or B accumulator(s) is in use.

L: Long Memory Data Move L:

Before Execution After Execution

A $01:234567:89ABCD

X:$1234 X:$1234$000000 $7FFFFF

$01:234567:89ABCDA

Y:$1234 $:000000 $FFFFFFY:$1234

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 146 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
(.) L:ea,D
(.) S,L:ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 0 r r r
Absolute address 1 1 0 0 0 0

where ‘‘rrr’’ refers to an address register R0–R7

S D D
S S1 S2 S/L D D1 D2 Sign Ext Zero L L L

A10 A1 A0 no A10 A1 A0 no no 0 0 0
B10 B1 B0 no B10 B1 B0 no no 0 0 1
X X1 X0 no X X1 X0 no no 0 1 0
Y Y1 Y0 no Y Y1 Y0 no no 0 1 1
A A1 A0 yes A A1 A0 A2 no 1 0 0
B B1 B0 yes B B1 B0 B2 no 1 0 1

AB A B yes AB A B A2,B2 A0,B0 1 1 0
BA B A yes BA B A B2,A2 B0,A0 1 1 1

Timing: mv oscillator clock cycles

Memory: mv program words

L: Long Memory Data Move L:

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 1 0 0 L 0 L L W 1 M M M R R R INSTRUCTION OPCODE
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 147

Instruction Format:
(.) L:aa,D
(.) S,L:aa

Opcode:

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Register W Absolute Short Address aaaaaa

Read S 0 000000
Write D 1 •

•
111111

S D D
S S1 S2 S/L D D1 D2 Sign Ext Zero L L L

A10 A1 A0 no A10 A1 A0 no no 0 0 0
B10 B1 B0 no B10 B1 B0 no no 0 0 1
X X1 X0 no X X1 X0 no no 0 1 0
Y Y1 Y0 no Y Y1 Y0 no no 0 1 1
A A1 A0 yes A A1 A0 A2 no 1 0 0
B B1 B0 yes B B1 B0 B2 no 1 0 1

AB A B yes AB A B A2,B2 A0,B0 1 1 0
BA B A yes BA B A B2,A2 B0,A0 1 1 1

Timing: mv oscillator clock cycles

Memory: mv program words

L: Long Memory Data Move L:

23 16 15 8 7 0

0 1 0 0 L 0 L L W 0 a a a a a a INSTRUCTION OPCODE
A - 148 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
(.); X:<eax> ➞ D1; Y:<eay> ➞ D2 (.) X:<eax>,D1 Y:<eay>,D2

(.); X:<eax> ➞ D1; S2 ➞ Y:<eay> (.) X:<eax>,D1 S2,Y:<eay>

(.); S1 ➞ X:<eax>; Y:<eay> ➞ D2 (.) S1,X:<eax> Y:<eay>,D2

(.); S1 ➞ X:<eax>; S2 ➞ Y:<eay> (.) S1,X:<eax> S2,Y:<eay>

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move a one-word operand from/to X memory and move another word
operand from/to Y memory. Note that two independent effective addresses are specified
(<eax> and <eay>) where one of the effective addresses uses the lower bank of address
registers (R0–R3) while the other effective address uses the upper bank of address reg-
isters (R4–R7). All parallel addressing modes may be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D1 or D2 in the parallel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction may not specify A as its
destination D1 or D2. Similarly, if the opcode-operand portion of the instruction specifies
the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B as its destination D1 or D2. That is, duplicate destina-
tions are NOT allowed within the same instruction. D1 and D2 may not specify the
same register.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1 and/or
S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That
is, duplicate sources are allowed within the same instruction. Note that S1 and S2
may specify the same register.

X: Y: XY Memory Data Move X: Y:
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 149

Example:
:

MPYR X1,Y0,A X1,X:(R0)+ Y0,Y:(R4)+N4 ;X1∗ Y0 ➞ A,save X1 and Y0
:

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value
$123123, the 24-bit Y0 register contains the value $456456, the 16-bit R0 address regis-
ter contains the value $1000, the 16-bit R4 address register contains the value $0100,
the 16-bit N4 address offset register contains the value $0023, the 24-bit X memory loca-
tion X:$1000 contains the value $000000, and the 24-bit Y memory location Y:$0100
contains the value $000000. The execution of the parallel move portion of the instruction,
X1,X:(R0)+ Y0,Y:(R4)+N4, moves the 24-bit value in the X1 register into the 24-bit X
memory location X:$1000 using the 16-bit R0 address register, moves the 24-bit value in
the Y0 register into the 24-bit Y memory location Y:$0100 using the 16-bit R4 address
register, updates the 16-bit value in the R0 address register, and updates the 16-bit R4
address register using the 16-bit N4 address offset register. The contents of the N4
address offset register are not affected.

Condition Codes:

L — Set if data limiting has occurred during parallel move

Note: The MOVE A,X:<eax> B,Y:<eay> operation will result in one or two 24-bit positive
and/or negative saturation constant(s) being stored in the specified 24-bit X and/or Y
memory location(s) if the signed integer portion of the A and/or B accumulator(s) is in use.

X: Y: XY Memory Data Move X: Y:

Before Execution After Execution

X1 X1$123123 $123123

Y0 Y0$456456 $456456

R0 R0$1000 $1001

R4 R4$0100 $0123

X:$1000 X:$1000$000000 $123123

N4 N4$0023 $0023

Y:$0100 Y:$0100$000000 $456456

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 150 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
(.) X:<eax>,D1 Y:<eay>,D2
(.) X:<eax>,D1 S2,Y:<eay>
(.) S1,X:<eax> Y:<eay>,D2
(.) S1,X:<eax> S2,Y:<eay>

Opcode:

Instruction Fields:
X:<eax>=6-bit X Effective Address=WMMRRR (R0–R3 or R4–R7)
X:<eay>=5-bit Y Effective Address=wmmrr (R4–R7 or R0–R3)

 X Effective
Addressing Mode M M R R R

(Rn)+Nn 0 1 s s s
(Rn)- 1 0 s s s
(Rn)+ 1 1 s s s
(Rn) 0 0 s s s

where “sss” refers to an address register R0–R7

S1 D1 D1 Y Effective
Register W S1, D1 e e S/L Sign Ext Zero Addressing Mode m m r r

Read S1 0 X0 0 0 no no no (Rn) +Nn 0 1 t t
Write D1 1 X1 0 1 no no no (Rn) - 1 0 t t

A 1 0 yes A2 A0 (Rn) + 1 1 t t
B 1 1 yes B2 B0 (Rn) 0 0 t t

where “tt” refers to an address register R4 - R7 or R0 - R3 which is in the opposite
address register bank from the one used in the X effective address, previously described

S2 D2 D2
Register W S2, D2 f f S/L Sign Ext Zero

Read S2 0 Y0 0 0 no no no
Write D2 1 Y1 0 1 no no no

A 1 0 yes A2 A0
B 1 1 yes B2 B0

Timing: mv oscillator clock cycles

Memory: mv program words

X: Y: XY Memory Data Move X: Y:

23 16 15 8 7 0

1 W m m e e f f W r r M M R R R INSTRUCTION OPCODE
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 151

Operation: Assembler Syntax:
X:ea➞D1 MOVE(C) X:ea,D1

X:aa➞D1 MOVE(C) X:aa,D1

S1➞X:ea MOVE(C) S1,X:ea

S1➞X:aa MOVE(C) S1,X:aa

Y:ea➞D1 MOVE(C) Y:ea,D1

Y:aa➞D1 MOVE(C) Y:aa,D1

S1➞Y:ea MOVE(C) S1,Y:ea

S1➞Y:aa MOVE(C) S1,Y:aa

S1➞D2 MOVE(C) S1,D2

S2➞D1 MOVE(C) S2,D1

#xxxx➞D1 MOVE(C) #xxxx,D1

#xx➞D1 MOVE(C) #xx,D1

Description: Move the contents of the specified source control register S1 or S2 to the
specified destination ormove the specified source to the specified destination control
register D1 or D2. The control registers S1 and D1 are a subset of the S2 and D2 regis-
ter set and consist of the address ALU modifier registers and theprogram controller reg-
istes. These registers may be moved to or from any other register or memory space. Al
memory addressing modes, as well as an immediate short addressing mode, may be
usedl

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack reg-
ister SSH is specified as a destination operand, the system stack pointer (SP) is prein-
cremented by 1 before SSH is written . This allows the system stack to be efficiently
extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand, the accumulator
value is optionally shifted according to the scaling mode bits S0 and S1 int he system
status register (SR). If the data our of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24-bit destination, the value stored in
the destination is limited to a maximum positive or negative saturation constand to mini-

MOVEC Move Control Register MOVEC
A - 152 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

mize truncation error. If the data is to be moved into a 16-bit destination and the accumu-
lator extension register is in use, the value is limited to a maximum positive or negative
saturation constand whose LS 16 bits are then stored in the 16-bit destination register.
Limiting does not occur if an individual 24-bit accumulator register (A1, A0, B1, or B0) is
specified as a source operand instead of the full 56-bit accumulator (A or B). This limiting
feature allows block floating-point operations to be performed with error detection since
the L bit in the condition code register is latched.

When a 56-bit accumulator (A or B) is specified as a destination operand, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 23) and appending the source oper-
and with 24 LS zeros. Whenever a 16-bit source operand is to be moved into a 24-bit
destination, the 16-bit value is stored in the LS 16 bits of the 24-bit destination, and the
MS 8 bits of that destination are zeroed. Similarly, whenever a 16-bit source operand is
to be moved into a 56-bit accumulator, the 16-bit value is moved into the LS 16 bits of the
MSP portion of the accumulator (A1 or B1), the MS 8 bits of the MSP portion of that
accumulator are zeroed, and the resulting 24-bit value is extended to 56 bits by sign
extending the MS bit and appending the result with 24 LS zeros. Note that for 24-bit
source operands both the automatic sign-extension and zeroing features may be dis-
abled by specifying the destination register to be one of the individual 24-bit accumulator
registers (A1 or B1).

Note: Due to pipelining, if an address register (R, N, or M) is changed using a move-type
instruction, the new contents of the destination address register will not be available for
use during the following instruction (i.e., there is a single instruction cycle pipeline delay).

Restrictions: The following restrictions represent very unusual operations which proba-
bly would never be used but are listed only for completeness.

A MOVEC instruction used within a DO loop which specifies SSH as the source oper-
and or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the
address LA – 2, LA – 1, or LA within that DO loop.

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SSH, SSL,
or SP as the destination operand cannot be used immediately before a DO instruc-
tion.

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SR, SSH,
SSL, or SP as the destination operand cannot be used immediately before an
ENDDO instruction.

MOVEC Move Control Register MOVEC
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 153

A MOVEC instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEC instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEC instruction which specified SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH or
SSL as the source operand.

A MOVEC SSH, SSH instruction is illegal and cannot be used.

Example:
:

MOVEC LC,X0 ;move LC into X0
:

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con-
tains the value $0100, and the 24-bit X0 register contains the value $123456. The execu-
tion of the MOVEC LC,X0 instruction moves the contents of the 16-bit LC register into
the 16 LS bits of the 24-bit X0 regiser and zeros the 8 MS bits of the X0 register.

Condition Codes:

For D1 or D2=SR operand:
L — Set according to bit 6 of the source operand
E — Set according to bit 5 of the source operand
U — Set according to bit 4 of the source operand
N — Set according to bit 3 of the source operand
Z — Set according to bit 2 of the source operand

MOVEC Move Control Register MOVEC

Before Execution After Execution

LC $0100

X0 X0$123456 $000100

LC $0100

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 154 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

V — Set according to bit 1 of the source operand
C — Set according to bit 0 of the source operand

For D1 and D2≠SR operand:
L — Set if data limiting has occurred during the move
Instruction Format:

MOVE(C) X:ea,D1
MOVE(C) S1,X:ea
MOVE(C) Y:ea,D1
MOVE(C) S1,Y:ea
MOVE(C) #xxxx,D1

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate Data 1 1 0 1 0 0

where ‘‘rrr’’ refers to an address register R0–R7

MOVEC Move Control Register MOVEC

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 0 1 0 1 W 1 M M M R R R 0 s 1 d d d d d
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 155

Memory Space s S1, D1 d d d d d
X Memory 0 M0–M7 0 0 n n n
Y Memory 1 SR 1 1 0 0 1

OMR 1 1 0 1 0
SP 1 1 0 1 1
SSH 1 1 1 0 0
SSL 1 1 1 0 1
LA 1 1 1 1 0
LC 1 1 1 1 1

where “nnn” = Mn number (M0–M7)

Timing: 2+mvc oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
MOVE(C) X:aa,D1
MOVE(C) S1,X:aa
MOVE(C) Y:aa,D1
MOVE(C) S1,Y:aa

Opcode:

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Register W Absolute Short Address aaaaaa
Read S 0 000000
Write D 1 •

•
111111

Memory Space s S1, D1 d d d d d
X Memory 0 M0–M7 0 0 n n n
Y Memory 1 SR 1 1 0 0 1

OMR 1 1 0 1 0
SP 1 1 0 1 1
SSH 1 1 1 0 0
SSL 1 1 1 0 1
LA 1 1 1 1 0
LC 1 1 1 1 1

where “nnn” = Mn number (M0–M7)

MOVEC Move Control Register MOVEC

23 16 15 8 7 0

0 0 0 0 0 1 0 1 W 0 a a a a a a 0 s 1 d d d d d
A - 156 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Timing: 2+mvc oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
MOVE(C) S1,D2
MOVE(C) S2,D1

Opcode:

Instruction Fields:

Register W S1, D1 d d d d d
Read S1 0 M0–M7 0 0 n n n
Write D1 1 SR 1 1 0 0 1

OMR 1 1 0 1 0
SP 1 1 0 1 1

Memory Space s SSH 1 1 1 0 0
X Memory 0 SSL 1 1 1 0 1
Y Memory 1 LA 1 1 1 1 0

LC 1 1 1 1 1

where “nnn” = Mn number (M0–M7)

S2 D2 D2
S2, D2 e e e e e e S/L Sign Ext Zero S2, D2 e e e e e e
X0 0 0 0 1 0 0 no no no R0 - R7 0 1 0 n n n
X1 0 0 0 1 0 1 no no no N0 - N7 0 1 1 n n n
Y0 0 0 0 1 1 0 no no no M0 - M7 1 0 0 n n n
Y1 0 0 0 1 1 1 no no no SR 1 1 1 0 0 1
A0 0 0 1 0 0 0 no no no OMR 1 1 1 0 1 0
B0 0 0 1 0 0 1 no no no SP 1 1 1 0 1 1
A2 0 0 1 0 1 0 no no no SSH 1 1 1 1 0 0
B2 0 0 1 0 1 1 no no no SSL 1 1 1 1 0 1
A1 0 0 1 1 0 0 no no no LA 1 1 1 1 1 0
B1 0 0 1 1 0 1 no no no LC 1 1 1 1 1 1
A 0 0 1 1 1 0 yes A2 A0
B 0 0 1 1 1 1 yes B2 B0

where “nnn” = Rn number (R0 - R7)
Nn number (N0 - N7)
Mn number (M0 - M7)

MOVEC Move Control Register MOVEC

23 16 15 8 7 0

0 0 0 0 0 1 0 0 W 1 e e e e e e 1 0 1 d d d d d
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 157

Timing: 2+mvc oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
MOVE(C) #xx,D1

Opcode:

Instruction Fields:
#xx=8-bit Immediate Short Data=i i i i i i i i

D1 d d d d d
M0–M7 0 0 n n n
SR 1 1 0 0 1
OMR 1 1 0 1 0
SP 1 1 0 1 1
SSH 1 1 1 0 0
SSL 1 1 1 0 1
LA 1 1 1 1 0
LC 1 1 1 1 1

where “nnn” = Mn number (M0–M7)

Timing: 2+mvc oscillator clock cycles

Memory: 1+ea program words

MOVEC Move Control Register MOVEC

23 16 15 8 7 0

0 0 0 0 0 1 0 1 i i i i i i i i 1 0 1 d d d d d
A - 158 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
S➞P:ea MOVE(M) S,P:ea

S➞P:aa MOVE(M) S,P:aa

P:ea➞D MOVE(M) P:ea,D

P:aa➞D MOVE(M) P:aa,D

Description: Move the specified operand from/to the specified program (P) memory
location. This is a powerful move instruction in that the source and destination registers
S and D may be any register. All memory alterable addressing modes may be used as
well as the absolute short addressing mode.

If the system stack register SSH is specified as a source operand, the system stadk
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack reg-
ister SSH is specified as a destination operand, the system stack pointer (SP) is prein-
cremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits S0 and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24-bit destination, the value stored in
the destination is limited to a maximum positive or negative saturation constant to mini-
mize truncation error. If a 24-bit source operand is to be moved into a 16-bit destination
register D, the 8 MS bits of the 24-bit source operand are discarded, and the 16 LS bits
are stored in the 16-bit destination register. Limiting does not occur if an individual 24-bit
accumulator register (A1, A0, B1, or B0) is specified as a source operand instead of the
full 56-bit accumulator (A or B). This limiting feature allows block floating-point opera-
tions to be performed with error detection since the L bit in the condition code register is
latched.

When a 56-bit accumulator (A) is specified as a destination operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 24) and appending the source oper-
and with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into a 24-bit
destination, the 16-bit source is loaded into the LS 16 bits of the destination operand,
and the remaining 8 MS bits of the destination are zeroed. Note that for 24-bit source
operands, both the automatic sign-extension and zeroing features may be disabled by
specifying the destination register to be one of the individual 24-bit accumulator registers
(A1 or B1).

MOVEM Move Program Memory MOVEM
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 159

Note: Due to pipelining, if an adderss register (R, N, or M) is changed using a move-type
instruction, the new contents of the destination address register will not be avaiolable for
use during the following instruction (i.e., there is a single instruction cycle pipeline delay).

Restrictions: The following restrictions represent very unusual operations, which proba-
bly would never be used but are listed only for completeness.

A MOVEM instruction used within a DO loop which specifies SSH as the source oper-
and or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the
address LA–2, LA–1, or LA within that DO loop.

A MOVEM instruction which specifies SSH as the source operand or LA, LC, SSH,
SSL, or SP as the destination operand cannot be used immediately before a DO
instruction.

A MOVEM instruction which specifies SSH as the source operand or LA, LC, SR, SSH,
SL, or SP as the destination operand cannot be used immediately before an ENDDO
instruction.

A MOVEM instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEM instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEM instruction which specifies SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH or
SSL as the source operand.

Example:
:

MOVEM P:(R5+N5), LC :move P:(R5+N5) into the loop counter (LC)
:

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con-
tains the value $0000, and the 24-bit program (P) memory location P:(R5+N5) contains
the value $000116. The execution of the MOVEM P:(R5+N5), LC instruction moves the
16 LS bits of the 24-bit program (P) memory location P:(R5+N5) into the 16-bit LC regis-
ter.

MOVEM Move Program Memory MOVEM

Before Execution After Execution

P:(R5 + N5) $000116

LC LC$0000 $0116

$000116P:(R5 + N5)
A - 160 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Condition Codes:

For D=SR operand:
L — Set according to bit 6 of the source operand
E — Set according to bit 5 of the source operand
U — Set according to bit 4 of the source operand
N — Set according to bit 3 of the source operand
Z — Set according to bit 2 of the source operand
V — Set according to bit 1 of the source operand
C — Set according to bit 0 of the source operand

For D≠SR operand:
L — Set if data limiting has occurred during the move

Instruction Format:
MOVE(M) S,P:ea
MOVE(M) P:ea,D

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where ‘‘rrr’’ refers to an address register R0–R7

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

MOVEM Move Program Memory MOVEM

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 0 1 1 1 W 1 M M M R R R 1 0 d d d d d d
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 161

S D D
S,D d d d d d d S/L Sign Ext Zero S,D d d d d d d
X0 0 0 0 1 0 0 no no no R0 - R7 0 1 0 n n n
X1 0 0 0 1 0 1 no no no N0 - N7 0 1 1 n n n
Y0 0 0 0 1 1 0 no no no M0 - M7 1 0 0 n n n
Y1 0 0 0 1 1 1 no no no SR 1 1 1 0 0 1
A0 0 0 1 0 0 0 no no no OMR 1 1 1 0 1 0
B0 0 0 1 0 0 1 no no no SP 1 1 1 0 1 1
A2 0 0 1 0 1 0 no no no SSH 1 1 1 1 0 0
B2 0 0 1 0 1 1 no no no SSL 1 1 1 1 0 1
A1 0 0 1 1 0 0 no no no LA 1 1 1 1 1 0
B1 0 0 1 1 0 1 no no no LC 1 1 1 1 1 1
A 0 0 1 1 1 0 yes A2 A0
B 0 0 1 1 1 1 yes B2 B0

where “nnn” = Rn number (R0 - R7)
Nn number (N0 - N7)
Mn number (M0 - M7)

Timing: 2+mvm oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
MOVE(M) S,P:aa
MOVE(M) P:aa,D

Opcode:

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaa

Register W Absolute Short Address aaaaaa
Read S 0 000000
Write D 1 •

•
111111

MOVEM Move Program Memory MOVEM

23 16 15 8 7 0

0 0 0 0 0 1 1 1 W 0 a a a a a a 0 0 d d d d d d
A - 162 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

S D D
S,D d d d d d d S/L Sign Ext Zero S,D d d d d d d
X0 0 0 0 1 0 0 no no no R0 - R7 0 1 0 n n n
X1 0 0 0 1 0 1 no no no N0 - N7 0 1 1 n n n
Y0 0 0 0 1 1 0 no no no M0 - M7 1 0 0 n n n
Y1 0 0 0 1 1 1 no no no SR 1 1 1 0 0 1
A0 0 0 1 0 0 0 no no no OMR 1 1 1 0 1 0
B0 0 0 1 0 0 1 no no no SP 1 1 1 0 1 1
A2 0 0 1 0 1 0 no no no SSH 1 1 1 1 0 0
B2 0 0 1 0 1 1 no no no SSL 1 1 1 1 0 1
A1 0 0 1 1 0 0 no no no LA 1 1 1 1 1 0
B1 0 0 1 1 0 1 no no no LC 1 1 1 1 1 1
A 0 0 1 1 1 0 yes A2 A0
B 0 0 1 1 1 1 yes B2 B0

where “nnn” = Rn number (R0 - R7)
Nn number (N0 - N7)
Mn number (M0 - M7)

Timing: 2+mvm oscillator clock cycles

Memory: 1+ea program words

MOVEM Move Program Memory MOVEM
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 163

Operation: Assembler Syntax:
X:pp ➞ D MOVEP X:pp,D

X:pp ➞ X:ea MOVEP X:pp,X:ea

X:pp ➞ Y:ea MOVEP X:pp,Y:ea

X:pp ➞ P:ea MOVEP X:pp,P:ea

S ➞ X:pp MOVEP S,X:pp

#xxxxxx ➞ X:pp MOVEP #xxxxxx,X:pp

X:ea ➞ X:pp MOVEP X:ea,X:pp

Y:ea ➞ X:pp MOVEP Y:ea,X:pp

P:ea ➞ X:pp MOVEP P:ea,X:pp

Y:pp ➞ D MOVEP Y:pp,D

Y:pp ➞ X:ea MOVEP Y:pp,X:ea

Y:pp ➞ Y:ea MOVEP Y:pp,Y:ea

Y:pp ➞ P:ea MOVEP Y:pp,P:ea

S ➞ Y:pp MOVEP S,Y:pp

#xxxxxx ➞ Y:pp MOVEP #xxxxxx,Y:pp

X:ea ➞ Y:pp MOVEP X:ea,Y:pp

Y:ea ➞ Y:pp MOVEP Y:ea,Y:pp

P:ea ➞ Y:pp MOVEP P:ea,Y:pp

Description: Move the specified operand from/to the specified X or Y I/O peripheral.
The I/O short addressing mode is used for the I/O peripheral address. All memory
addressing modes may be used for the X or Y memory effective address; all memory
alterable addressing modes may be used for the P memory effective address.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack reg-
ister SSH is specified as a destination operand, the system stack pointer (SP) is prein-
cremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

MOVEP Move Peripheral Data MOVEP
A - 164 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits S0 and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24-bit destination, the value stored in
the destination is limited to a maximum positive or negative saturation constant to mini-
mize truncation error. If a 24-bit source operand is to be moved into a 16-bit destination
register D, the 8 MS bits of the 24-bit source operand are discarded, and the 16 LS bits
are stored in the 16-bit destination register. Limiting does not occur if an individual 24-bit
accumulator register (A1, A0, B1, or B0) is specified as a source operand instead of the
full 56-bit accumulator (A or B). This limiting feature allows block floating-point opera-
tions to be performed with error detection since the L bit in the condition code register is
latched.

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 23) and appending the source oper-
and with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into a 24-bit
destination, the 16-bit source is loaded into the LS 16 bits of the destination operand,
and the remaining 8 MS bits of the destination are zeroed. Note that for 24-bit source
operands both the automatic sign-extension and zeroing features may be disabled by
specifying the destination register to be one of the individual 24-bit accumulator registers
(A1 or B1).

Note: Due to pipelining, if an address register (R, N, or M) is changed using a move-type
instruction, the new contents of the destination address register will not be available for
use during the following instruction (i.e, there is a single instuction cycle pipeline delay).

Restrictions: The following restrictions represent very unusual operations, which proba-
bly would never be used but are listed only for completeness.

A MOVEP instruction used within a DO loop which specifies SSH as the source oper-
and or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the
address LA–2, LA–1, or LA within that DO loop.

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SSH, SSL,
or SP as the destination operand cannot be used immediately before a DO instruc-
tion.

MOVEP Move Peripheral Data MOVEP
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 165

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SR, SSH,
SSL, or SP as the destination operand cannot be used immediately before an
ENDDO instruction.

A MOVEP instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEP instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEP instruction which specifies SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH or
SSL as the source operand.

Example:
:

MOVEP #1113,X:<<$FFFE :initialize Bus Control Register wait states
:

Explanation of Example: Prior to execution, the 16-bit, X memory-mapped, I/O bus
control register (BCR) contains the value $FFFF. The execution of the MOVEP
#$1113,X:<<$FFFE instruction moves the value $1113 into the 16-bit bus control regis-
ter X:$FFFE, resulting in one wait state for all external X, external Y, and external pro-
gram memory accesses and three wait states for all external I/O accesses.

Condition Codes:

For D=SR operand:
L — Set according to bit 6 of the source operand
E — Set according to bit 5 of the source operand
U — Set according to bit 4 of the source operand
N — Set according to bit 3 of the source operand
Z — Set according to bit 2 of the source operand
V — Set according to bit 1 of the source operand
C — Set according to bit 0 of the source operand

MOVEP Move Peripheral Data MOVEP

Before Execution After Execution
X:$FFFE

(BCR)
$FFFF $1113

X:$FFFE
(BCR)

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 166 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

For D≠SR operand:
L — Set if data limiting has occurred during the move

Instruction Format (X: or Y: Reference):
MOVEP X:ea,X:pp
MOVEP Y:ea,X:pp
MOVEP #xxxxxx,X:pp
MOVEP X:pp,X:ea
MOVEP X:pp,Y:ea
MOVEP X:ea,Y:pp
MOVEP Y:ea,Y:pp
MOVEP #xxxxxx,Y:pp
MOVEP Y:pp,Y:ea
MOVEP Y:pp,Y:ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR,
pp=6-bit I/O Short Address=pppppp

Effective
Memory Space S Addressing Mode M M M R R R

X Memory 0 (Rn)-Nn 0 0 0 r r r
Y Memory 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
Peripheral Space s (Rn)+ 0 1 1 r r r
X Memory 0 (Rn) 1 0 0 r r r
Y Memory 1 (Rn+Nn) 1 0 1 r r r

–(Rn) 1 1 1 r r r
Peripheral W Absolute address 1 1 0 0 0 0
Read 0 Immediate data 1 1 0 1 0 0
Write 1

where ‘‘rrr’’ refers to an address register R0–R7

Timing: 4+mvp oscillator clock cycles

Memory: 1+ea program words

MOVEP Move Peripheral Data MOVEP

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 0 s W 1 M M M R R R 1 S p p p p p p
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 167

Instruction Format (P: Reference):
MOVEP P:ea,X:pp
MOVEP X:pp,P:ea
MOVEP P:ea,Y:pp
MOVEP Y:pp,P:ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR
pp=6-bit I/O Short Address=pppppp

Effective
Peripheral Space S Addressing Mode M M M R R R

X Memory 0 (Rn)-Nn 0 0 0 r r r
Y Memory 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
Peripheral W (Rn)+ 0 1 1 r r r
Read 0 (Rn) 1 0 0 r r r
Write 1 (Rn+Nn) 1 0 1 r r r

–(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where ‘‘rrr’’ refers to an address register R0–R7

Timing: 4+mvp oscillator clock cycles

Memory: 1+ea program words

MOVEP Move Peripheral Data MOVEP

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 0 S W 1 M M M R R R 0 1 p p p p p p
A - 168 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format (Register Reference):
MOVEP S,X:pp
MOVEP X:pp,D
MOVEP S,Y:pp
MOVEP Y:pp,D

Opcode:

Instruction Fields:
pp=6-bit I/O Short Address=pppppp

Peripheral Space S Peripheral W
X Memory 0 Read 0
Y Memory 1 Write 1

S D D
S,D d d d d d d S/L Sign Ext Zero S,D d d d d d d
X0 0 0 0 1 0 0 no no no R0 - R7 0 1 0 n n n
X1 0 0 0 1 0 1 no no no N0 - N7 0 1 1 n n n
Y0 0 0 0 1 1 0 no no no M0 - M7 1 0 0 n n n
Y1 0 0 0 1 1 1 no no no SR 1 1 1 0 0 1
A0 0 0 1 0 0 0 no no no OMR 1 1 1 0 1 0
B0 0 0 1 0 0 1 no no no SP 1 1 1 0 1 1
A2 0 0 1 0 1 0 no no no SSH 1 1 1 1 0 0
B2 0 0 1 0 1 1 no no no SSL 1 1 1 1 0 1
A1 0 0 1 1 0 0 no no no LA 1 1 1 1 1 0
B1 0 0 1 1 0 1 no no no LC 1 1 1 1 1 1
A 0 0 1 1 1 0 yes A2 A0
B 0 0 1 1 1 1 yes B2 B0

where “nnn” = Rn number (R0 - R7)
Nn number (N0 - N7)
Mn number (M0 - M7)

Timing: 4+mvp oscillator clock cycles

Memory: 1+ea program words

MOVEP Move Peripheral Data MOVEP

23 16 15 8 7 0

0 0 0 0 1 0 0 S W 1 d d d d d d 0 0 p p p p p p
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 169

Operation: Assembler Syntax:
±S1∗ S2 ➞ D (parallel move) MPY (±)S1,S2,D (parallel move)

±S1∗ S2 ➞ D (parallel move) MPY (±)S2,S1,D (parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2 and store the
resulting product in the specified 56-bit destination accumulator D. The ‘‘–’’ sign option is
used to negate the specified product. The default sign option is ‘‘+’’.

Example:
:

MPY –X1,Y1,A #$543210,Y0 ;–(X1∗ Y1) ➞ A, update Y0
:

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value
$800000 (–1.0), the 24-bit Y1 register contains the value $C00000, (–0.5), and the 56-bit
A accumulator contains the value $00:000000:000000 (0.0). The execution of the MPY –
X1,Y1,A instruction multiples the 24-bit signed value in the X1 register by the 24-bit
signed value in the Y1 register, negates the 48-bit product, and stores the result in the
56-bit A accumulator (–X1∗ Y1=–0.5=$FF:C00000:000000=A).

Condition Codes:

L — Set if data limiting has occurred during parallel move
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Always cleared

MPY Signed Multiply MPY

Before Execution After Execution

X1 $800000

Y1 Y1$C00000 $C00000

$800000X1

A $00:000000:000000 $FF:C00000:000000A

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 170 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Note: The definition of the E and U bits varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
MPY (±)S1,S2,D
MPY (±)S2,S1,D

Opcode:

Instruction Fields:
S1∗ S2 Q Q Q Sign k D d

X0 X0 0 0 0 + 0 A 0
Y0 Y0 0 0 1 – 1 B 1
X1 X0 0 1 0
Y1 Y0 0 1 1
X0 Y1 1 0 0
Y0 X0 1 0 1
X1 Y0 1 1 0
Y1 X1 1 1 1

Note: Only the indicated S1∗ S2 combinations are valid. X1∗ X1 and Y1∗ Y1 are not valid.

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MPY Signed Multiply MPY

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 171

Operation: Assembler Syntax:
±S1∗ S2+r ➞ D (parallel move) MPYR (±)S1,S2,D (parallel move)

±S1∗ S2+r ➞ D (parallel move) MPYR (±)S2,S1,D (parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2, round the result
using convergent rounding, and store it in the specified 56-bit destination accumulator D.
The ‘‘–’’ sign option is used to negate the product prior to rounding. The default sign
option is ‘‘+’’. The contribution of the LS bits of the result is rounded into the upper por-
tion of the destination accumulator (A1 or B1) by adding a constant to the LS bits of the
lower portion of the accumulator (A0 or B0). The value of the constant added is deter-
mined by the scaling mode bits S0 and S1 in the status register. Once the rounding has
been completed, the LS bits of the destination accumulator D (A0 or B0) are loaded with
zeros to maintain an unbiased accumulator value which may be reused by the next
instruction. The upper portion of the accumulator (A1 or B1) contains the rounded result
which may be read out to the data buses. Refer to the RND instruction for more complete
information on the convergent rounding process.

Example:
:

MPYR –Y0,Y0,B (R3)–N3 ;square and negate Y0, update R3
:

Explanation of Example: Prior to execution, the 24-bit Y0 register contains the value
$654321 (0.791111112), and the 56-bit B accumulator contains the value
$00:000000:000000 (0.0). The execution of the MPYR –Y0,Y0,B instruction squares the
24-bit signed value in the Y0 register, negates the resulting 48-bit product, rounds the
result into B1, and zeros B0 (–Y0∗ Y0=–0.625856790961748 approximately=
$FF:AFE3EC:B76B7E, which is rounded to the value $FF:AFE3ED:000000=
–0.625856757164002=B).

MPYR Signed Multiply and Round MPYR

Before Execution After Execution

Y0 $654321

B B$00:000000:000000 $FF:AFE3ED:000000

$654321Y0
A - 172 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Condition Codes:

L — Set if data limiting has occurred during parallel move
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Always cleared

Note: The definition of the E and U bits varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
MPYR (±)S1,S2,D
MPYR (±)S2,S1,D

Opcode:

Instruction Fields:
S1∗ S2 Q Q Q Sign k D d

X0 X0 0 0 0 + 0 A 0
Y0 Y0 0 0 1 – 1 B 1
X1 X0 0 1 0
Y1 Y0 0 1 1
X0 Y1 1 0 0
Y0 X0 1 0 1
X1 Y0 1 1 0
Y1 X1 1 1 1

Note: Only the indicated S1∗ S2 combinations are valid. X1∗ X1 and Y1∗ Y1 are not valid.

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

MPYR Signed Multiply and Round MPYR

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 173

Operation: Assembler Syntax:
0–D ➞ D (parallel move) NEG D (parallel move)

Description: Negate the destination operand D and store the result in the destination
accumulator. This is a 56-bit, twos-complement operation.

Example:
:

NEG B X1,X:(R3)+ Y:(R6)–,A ;0–B ➞ B, update A,X1,R3,R6
:

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $00:123456:789ABC. The NEG B instruction takes the twos complement of the
value in the B accumulator and stores the 56-bit result back in the B accumulator.

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

NEG Negate Accumulator NEG

Before Execution After Execution

B $00:123456:789ABC $FF:EDCBA9:876544B

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 174 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
NEG D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

NEG Negate Accumulator NEG

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 175

Operation: Assembler Syntax:
PC+1➞PC NOP

Description: Increment the program counter (PC). Pending pipeline actions, if any, are
completed. Execution continues with the instruction following the NOP.

Example:
:

NOP ;increment the program counter
:

Explanation of Example: The NOP instruction increments the program counter and
completes any pending pipeline actions.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
NOP

Opcode:

Instruction Fields:
None

Timing: 2 oscillator clock cycles

Memory: 1 program word

NOP No Operation NOP

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

0 0
A - 176 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
If E • U • Z=1, then ASL D and Rn–1➞Rn NORM Rn,D
else if E=1, then ASR D and Rn+1➞Rn
else NOP

where E denotes the logical complement of E, and
where • denotes the logical AND operator

Description: Perform one normalization iteration on the specified destination operand
D, update the specified address register Rn based upon the results of that iteration, and
store the result back in the destination accumulator. This is a 56-bit operation. If the
accumulator extension is not in use, the accumulator is unnormalized, and the accumu-
lator is not zero, the destination operand is arithmetically shifted one bit to the left, and
the specified address register is decremented by 1. If the accumulator extension register
is in use, the destination operand is arithmetically shifted one bit to the right, and the
specified address register is incremented by 1. If the accumulator is normalized or zero,
a NOP is executed and the specified address register is not affected. Since the operation
of the NORM instruction depends on the E, U, and Z condition code register bits, these
bits must correctly reflect the current state of the destination accumulator prior to execut-
ing the NORM instruction. Note that the L and V bits in the condition code register will be
cleared unless they have been improperly set up prior to executing the NORM instruc-
tion.

Example:
:

REP #$2F ;maximum number of iterations needed
NORM R3,A ;perform 1 normalization iteration

:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000000:000001, and the 16-bit R3 address register contains the value $0000.
The repetition of the NORM R3,A instruction normalizes the value in the 56-bit accumu-
lator and stores the resulting number of shifts performed during that normalization pro-
cess in the R3 address register. A negative value reflects the number of left shifts
performed; a positive value reflects the number of right shifts performed during the nor-
malization process.

NORM Normalize Accumulator Iteration NORM

Before Execution After Execution

A $00:000000:000001

R3 R3$0000 $FFD2

$00:400000:000000A
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 177

Condition Codes:

L — Set if overflow has occurred in A or B result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if bit 55 is changed as a result of a left shift

Note: The definition of the E and U bits varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
NORM Rn,D

Opcode:

Instruction Fields:
D d Rn R R R

A 0 Rn n n n
B 1

where “nnn” = Rn number

Timing: 2 oscillator clock cycles

Memory: 1 program word

NORM Normalize Accumulator Iteration NORM

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

0 0 0 0 0 0 0 1 1 1 0 1 1 R R R 0 0 0 1 d 1 0 1
A - 178 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
D[47:24] ➞ D[47:24] (parallel move) NOT D (parallel move)
where “—” denotes the logical NOT operator

Description: Take the ones complement of bits 47–24 of the destination operand D and
store the result back in bits 47–24 of the destination accumulator. This is a 24-bit opera-
tion. The remaining bits of D are not affected.

Example:
NOT A AB,L:(R2)+ ;save A1,B1, take the ones complement of A1

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:123456:789ABC. The NOT A instruction takes the ones complement of bits
47–24 of the A accumulator (A1) and stores the result back in the A1 register. The
remaining bits of the A accumulator are not affected.

Condition Codes:

L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z — Set if bits 47-24 of A or B result are zero
V — Always cleared

NOT Logical Complement NOT

Before Execution After Execution

A $00:123456:789ABC $00:EDCBA9:789ABA

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 179

Instruction Format:
NOT D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

NOT Logical Complement NOT

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 180 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
S+D[47:24] ➞ D[47:24] (parallel move) OR S,D (parallel move)
where + denotes the logical inclusive OR operator

Description: Logically inclusive OR the source operand S with bits 47–24 of the destina-
tion operand D and store the result in bits 47–24 of the destination accumulator. This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

Example:
:

OR Y1,B BA,L:$1234 ;save A1,B1, OR Y1 with B
:

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value
$FF0000, and the 56-bit B accumulator contains the value $00:123456:789ABC. The OR
Y1,B instruction logically ORs the 24-bit value in the Y1 register with bits 47–24 of the B
accumulator (B1) and stores the result in the B accumulator with bits 55–48 and 23–0
unchanged.

Condition Codes:

L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z — Set if bits 47-24 of A or B result are zero
V — Always cleared

OR Logical Inclusive OR OR

Before Execution After Execution

Y1 $FF0000

B B$00:123456:789ABC $00:FF3456:789ABC

$FF0000Y1

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 181

Instruction Format:
OR S.D

Opcode:

Instruction Fields:
S J J D d

X0 0 0 A 0
X1 1 0 B 1
Y0 0 1
Y1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

OR Logical Inclusive OR OR

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 1 J J d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 182 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
#xx+D ➞ D OR(I) #xx,D
where + denotes the logical inclusive OR operator

Description: Logically OR the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The
condition codes are affected only when the condition code register is specified as the
destination operand.

Restrictions: The ORI #xx,MR instruction cannot be used immediately before an
ENDDO or RTI instruction and cannot be one of the last three instructions in a DO loop
(at LA–2, LA–1, or LA).

Example:
:

OR #$8,MR ;set scaling mode bit S1 to scale up
:

Explanation of Example: Prior to execution, the 8-bit mode register (MR) contains the
value $03. The OR #$8,MR instruction logically ORs the immediate 8-bit value $8 with
the contents of the mode register and stores the result in the mode register.

Condition Codes:

For CCR operand:
L — Set if bit 6 of the immediate operand is set
E — Set if bit 5 of the immediate operand is set
U — Set if bit 4 of the immediate operand is set
N — Set if bit 3 of the immediate operand is set
Z — Set if bit 2 of the immediate operand is set
V — Set if bit 1 of the immediate operand is set
C — Set if bit 0 of the immediate operand is set

ORI OR Immediate with Control Register ORI

Before Execution After Execution

MR $03 $0BMR

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 183

For MR and OMR operands:
The condition codes are not affected using these operands.

Instruction Format:
OR(I) #xx,D

Opcode:

Instruction Fields:
#xx=8-bit Immediate Short Data = i i i i i i i i

D E E

MR 0 0
CCR 0 1
OMR 1 0

Timing: 2 oscillator clock cycles

Memory: 1 program words

ORI OR Immediate with Control Register ORI

23 16 15 8 7 0

0 0 0 0 0 0 0 0 i i i i i i i i 1 1 1 1 1 0 E E
A - 184 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
LC ➞ TEMP; X:ea ➞ LC REP X:ea
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP; X:aa ➞ LC REP X:aa
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP; Y:ea ➞ LC REP Y:ea
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP; Y:aa ➞ LC REP Y:aa
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP; S ➞ LC REP S
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP; #xxx ➞ LC REP #xxx
Repeat next instruction until LC=1
TEMP ➞ LC

Description: Repeat the single-word instruction immediately following the REP
instruction the specified number of times. The value specifying the number of times the
given instruction is to be repeated is loaded into the 16-bit loop counter (LC) register.
The single-word instruction is then executed the specified number of times, decrement-
ing the loop counter (LC) after each execution until LC=1. When the REP instruction is in
effect, the repeated instruction is fetched only one time, and it remains in the instruction
register for the duration of the loop count. Thus, the REP instruction is not interrupt-
ible (sequential repeats are also not interruptible). The current loop counter (LC) value is
stored in an internal temporary register. If LC is set equal to zero, the instruction is
repeated 65,536 times. The instruction’s effective address specifies the address of the
value which is to be loaded into the loop counter (LC). All address register indirect
addressing modes may be used. The absolute short and the immediate short addressing
modes may also be used. The four MS bits of the 12-bit immediate value are zeroed to
form the 16-bit value that is to be loaded into the loop counter (LC).

REP Repeat Next Instruction REP
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 185

If the A or B accumulator is specified as a source operand, the accumulator value is
optionally shifted according to the scaling mode bits S0 and S1 in the system status reg-
ister (SR). If the data out of the shifter indicates that the accumulator extension is in use,
the value to be loaded into the loop counter (LC) register will be limited to a 24-bit maxi-
mum positive or negative saturation constant to minimize the error due to truncation. The
LS 16 bits of the resulting 24-bit value are then stored in the 16-bit loop counter (LC) reg-
ister.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read.

Restrictions: The REP instruction can repeat any single-word instruction except the REP
instruction itself and any instruction that changes program flow. The following instructions
are not allowed to follow an REP instruction:

Immediately after REP
DO JSSET
Jcc REP
JCLR RTI
JMP RTS
JSET STOP
JScc SWI
JSCLR WAIT
JSR ENDDO

Also, a REP instruction cannot be the last instruction in a DO loop (at LA). The assembler
will generate an error if any of the previous instructions are found immediately following a
REP instruction.

Example:
:
REP X0 ;repeat (X0) times
MAC X1,Y1,A X:(R1)+,X1 Y:(R4)+,Y1 ;X1∗ Y1+A ➞ A, update X1,Y1
:

REP Repeat Next Instruction REP

Before Execution After Execution

X0 $000100

LC LC$0000 $0000

$000100X0
A - 186 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Explanation of Example: Prior to execution, the 24-bit X0 register contains the value
$000100, and the 16-bit loop counter (LC) register contains the value $0000. The execu-
tion of the REP X0 instruction takes the 24-bit value in the X0 register, truncates the MS
8 bits, and stores the 16 LS bits in the 16-bit loop counter (LC) register. Thus, the single-
word MAC instruction immediately following the REP instruction is repeated $100 times.

Condition Codes:

L — Set if data limiting occurred using A or B as source operands

Instruction Format:
REP X:ea
REP Y:ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR,

Effective
Addressing Mode M M M R R R Memory Space s

(Rn)-Nn 0 0 0 r r r X Memory 0
(Rn)+Nn 0 0 1 r r r Y Memory 1
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: 4+mv oscillator clock cycles

Memory: 1 program word

REP Repeat Next Instruction REP

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

0 0 0 0 0 1 1 0 0 1 M M M R R R 0 s 1 0 0 0 0 0
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 187

Instruction Format:
REP X:ea
REP Y:ea

Opcode:

Instruction Fields:
ea=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa Memory Space s

000000 X Memory 0
• Y Memory 1
•

111111

Timing: 4+mv oscillator clock cycles

Memory: 1 program word

Instruction Format:
REP #xxx

Opcode:

Instruction Fields:
#xxx=12-bit Immediate Short Data = hhhh i i i i i i i i

Immediate Short Data hhhh i i i i i i i i i

000000000000
•
•

111111111111

Timing: 4+mv oscillator clock cycles

Memory: 1 program word

REP Repeat Next Instruction REP

23 16 15 8 7 0

0 0 0 0 0 1 1 0 0 0 a a a a a a 0 s 1 0 0 0 0 0

23 16 15 8 7 0

0 0 0 0 0 1 1 0 i i i i i i i i 1 0 1 0 h h h h
A - 188 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
REP S

Opcode:

Instruction Fields:
S

S d d d d d d S/L S d d d d d d
X0 0 0 0 1 0 0 no R0 - R7 0 1 0 n n n
X1 0 0 0 1 0 1 no N0 - N7 0 1 1 n n n
Y0 0 0 0 1 1 0 no M0 - M7 1 0 0 n n n
Y1 0 0 0 1 1 1 no SR 1 1 1 0 0 1
A0 0 0 1 0 0 0 no OMR 1 1 1 0 1 0
B0 0 0 1 0 0 1 no SP 1 1 1 0 1 1
A2 0 0 1 0 1 0 no SSH 1 1 1 1 0 0
B2 0 0 1 0 1 1 no SSL 1 1 1 1 0 1
A1 0 0 1 1 0 0 no LA 1 1 1 1 1 0
B1 0 0 1 1 0 1 no LC 1 1 1 1 1 1
A 0 0 1 1 1 0 yes
B 0 0 1 1 1 1 yes

where “nnn” = Rn number (R0 - R7)
Nn number (N0 - N7)
Mn number (M0 - M7)

Timing: 4 oscillator clock cycles

Memory: 1 program word

REP Repeat Next Instruction REP

23 16 15 8 7 0

0 0 0 0 0 1 1 0 1 1 d d d d d d 0 0 1 0 0 0 0 0
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 189

Operation: Assembler Syntax:
Reset the interrupt priority register RESET

and all on-chip peripherals

Description: Reset the interrupt priority register and all on-chip peripherals. This is a
software reset which is NOT equivalent to a hardware reset since only on-chip peripher-
als and the interrupt structure are affected. The processor state is not affected, and exe-
cution continues with the next instruction. All interrupt sources are disabled except for
the trace, stack error, NMI, illegal instruction, and hardware reset interrupts.

Restrictions: A RESET instruction cannot be the last instruction in a DO loop (at LA).

Example:
:

RESET ;reset all on-chip peripherals and IPR
:

Explanation of Example: The execution of the RESET instruction resets all on-chip
peripherals and the interrupt priority register (IPR).

Condition Codes:

The condition codes are not affected by this instruction

Instruction Format:
RESET

Opcode:

Instruction Fields:
None

Timing: 4 oscillator clock cycles

Memory: 1 program word

RESET Reset On-Chip Peripheral Devices RESET

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
A - 190 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
D+r ➞ D (parallel move) RND D (parallel move)

Description: Round the 56-bit value in the specified destination operand D and store the
result in the MSP portion of the destination accumulator (A1 or B1). This instruction uses
a convergent rounding technique. The contribution of the LS bits of the result (A0 and
B0) is rounded into the upper portion of the result (A1 or B1) by adding a rounding con-
stant to the LS bits of the result. The MSP portion of the destination accumulator con-
tains the rounded result which may be read out to the data buses.

The value of the rounding constant added is determined by the scaling mode bits S0 and
S1 in the system status register (SR). A ‘‘1’’ is added in the rounding position as shown
below:

Normal or ‘‘standard’’ rounding consists of adding a rounding constant to a given
number of LS bits of a value to produce a rounded result. The rounding constant
depends on the scaling mode being used as previously shown. Unfortunately, when
using a twos-complement data representation, this process introduces a positive bias in
the statistical distribution of the roundoff error.

Convergent rounding differs from ‘‘standard’’ rounding in that convergent rounding
attempts to remove the aforementioned positive bias by equally distributing the round-off
error. The convergent rounding technique initially performs ‘‘standard’’ rounding as previ-
ously described. Again, the rounding constant depends on the scaling mode being used.
Once ‘‘standard’’ rounding has been done, the convergent rounding method tests the
result to determine if all bits including and to the right of the rounding position are
zero. If, and only if, this special condition is true, the convergent rounding method will
clear the bit immediately to the left of the rounding position. When this special condition
is true, numbers which have a ‘‘1’’ in the bit immediately to the left of the rounding posi-
tion are rounded up; numbers with a ‘‘0’’ in the bit immediately to the left of the rounding
position are rounded down. Thus, these numbers are rounded up half the time and
rounded down the rest of the time. Therefore, the roundoff error averages out to zero.
The LS bits of the convergently rounded result are then cleared so that the rounded
result may be immediately used by the next instruction.

RND Round Accumulator RND

Rounding Rounding Constant
S1 S0 Scaling Mode Position 55 - 25 24 23 22 21 - 0

0 0 No Scaling 23 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 24 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 22 0. . . .0 0 0 1 0. . . .0
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 191

Example:
:

RND A #$123456,X1 B,Y1 ;round A accumulator into A1, zero A0
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:123456:789ABC for Case I, the value $00:123456:800000 for Case II, and the
value $00:123455:800000 for Case III. The execution of the RND A instruction rounds
the value in the A accumulator into the MSP portion of the A accumulator (A1), using
convergent rounding, and then zeros the LSP portion of the A accumulator (A0). Note
that Case II is the special case that distinguishes convergent rounding from standard or
biased rounding.

Condition Codes:

L — Set if data limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

RND Round Accumulator RND

Before Execution After Execution

Case I: A $00:123456:789AB

Case II: A A$00:123456:800000 $00:123456:000000

$00:123456:000000A

Case III: A $00:123456:800000 $00:123456:000000A

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 192 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
RND D

Opcode:

Instruction Fields:
D D

A 0
B 1

Timing: 4 oscillator clock cycles

Memory: 1 program word

RND Round Accumulator RND

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 193

Assembler Syntax: ROL D (parallel move)

Description: Rotate bits 47–24 of the destination operand D one bit to the left and store
the result in the destination accumulator. Prior to instruction execution, bit 47 of D is
shifted into the carry bit C, and, prior to instruction execution, the value in the carry bit C
is shifted into bit 24 of the destination accumulator D. This instruction is a 24-bit opera-
tion. The remaining bits of the destination operand D are not affected.

Example:
:

ROL A #314,N2 ;rotate A1 one left bit, update N2
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000000:000000. The execution of the ROL A instruction shifts the 24-bit value
in the A1 register one bit to the left, shifting bit 47 into the carry bit C, rotating the carry bit
C into bit 24, and storing the result back in the A1 register.

Condition Codes:

L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z — Set if bits 47–24 of A or B result are zero
V — Always cleared
C — Set if bit 47 of A or B was set prior to instruction execution

ROL Rotate Left ROL

47 24

C (parallel move)Operation:

Before Execution After Execution

A A$00:000000:000000

SR SR$0301 $0300

$00:000001:000000

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 194 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
ROL D

Opcode:

Instruction Fields:
D d
A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ROL Rotate Left ROL
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 195

Assembler Syntax: ROR D (parallel move)

Description: Rotate bits 47–24 of the destination operand D one bit to the right and
store the result in the destination accumulator. Prior to instruction execution, bit 24 of D
is shifted into the carry bit C, and, prior to instruction execution, the value in the carry bit
C is shifted into bit 47 of the destination accumulator D. This instruction is a 24-bit opera-
tion. The remaining bits of the destination operand D are not affected.

Example:
:

ROR B #$1234,R2 ;rotate B1 right one bit, update R2
:

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $00:000001:222222. The execution of the ROR B instruction shifts the 24-bit value
in the B1 register one bit to the right, shifting bit 24 into the carry bit C, rotating the carry
bit C into bit 47, and storing the result back in the B1 register.

Condition Codes:

L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z — Set if bits 47–24 of A or B result are zero
V — Always cleared
C — Set if bit 47 of A or B was set prior to instruction execution

ROR Rotate Right ROR

47 24

C (parallel move)Operation:

Before Execution After Execution

B B$00:000001:222222

SR SR$0300 $0305

$00:000000:222222

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 196 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
ROR D

Opcode:

Instruction Fields:
D d
A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ROR Rotate Right ROR
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 197

Operation: Assembler Syntax:
SSH ➞ PC; SSL ➞ SR; SP–1 ➞ SP RTI

Description: Pull the program counter (PC) and the status register (SR) from the system
stack. The previous program counter and status register are lost.

Restrictions: Due to pipelining in the program controller and the fact that the RTI
instruction accesses certain program controller registers, the RTI instruction must not be
immediately preceded by any of the following instructions:

Immediately before RTI MOVEC to SR, SSH, SSL, or SP
MOVEM to SR, SSH, SSL, or SP
MOVEP to SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

An RTI instruction cannot be the last instruction in a DO loop (at LA).

An RTI instruction cannot be repeated using the REP instruction.

Example:
:

RTI ;pull PC and SR from system stack
:

Explanation of Example: The RTI instruction pulls the 16-bit program counter (PC) and
the 16-bit status register (SR) from the system stack and updates the system stack
pointer (SP).

RTI Return from Interrupt RTI
A - 198 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Condition Codes:

L — Set according to the value pulled from the stack
E — Set according to the value pulled from the stack
U — Set according to the value pulled from the stack
N — Set according to the value pulled from the stack
Z — Set according to the value pulled from the stack
V — Set according to the value pulled from the stack
C — Set according to the value pulled from the stack

Instruction Format:
RTI

Opcode:

Instruction Fields:
None

Timing: 4+rx oscillator clock cycles

Memory: 1 program word

RTI Return from Interrupt RTI

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

0 1 0 0
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 199

Operation: Assembler Syntax:
SSH ➞ PC; SP–1 ➞ SP RTS

Description: Pull the program counter (PC) from the system stack. The previous pro-
gram counter is lost. The status register (SR) is not affected.

Restrictions: Due to pipelining in the program controller and the fact that the RTS
instruction accesses certain controller registers, the RTS instruction must not be immedi-
ately preceded by any of the following instructions:

Immediately before RTS MOVEC to SSH, SSL, or SP
MOVEM to SSH, SSL, or SP
MOVEP to SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

An RTS instruction cannot be the last instruction in a DO loop (at LA).

An RTS instruction cannot be repeated using the REP instruction.

Example:
:

RTS ;pull PC from system stack
:

Explanation of Example: The RTS instruction pulls the 16-bit program counter (PC)
from the system stack and updates the system stack pointer (SP).

Condition Codes:

The condition codes are not affected by this instruction.

RTS Return from Subroutine RTS

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 200 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
RTI

Opcode:

Instruction Fields:
None

Timing: 4+rx oscillator clock cycles

Memory: 1 program word

RTS Return from Subroutine RTS

23 16 15 8 7 0

0 1 1 0 0
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 201

Operation: Assembler Syntax:
D–S–C ➞ D (parallel move) SBC S,D (parallel move)

Description: Subtract the source operand S and the carry bit C of the condition code
register from the destination operand D and store the result in the destination accumula-
tor. Long words (48 bits) may be subtracted from the (56-bit) destination accumulator.

Note: The carry bit is set correctly for multiple-precision arithmetic using long-word oper-
ands if the extension register of the destination accumulator (A2 or B2) is the sign exten-
sion of bit 47 of the destination accumulator (A or B).

Example:
:

MOVE L:<$0,X ;get a 48-bit LS long-word operand in X
MOVE L:<$1,A ;get other LS long word in A (sign ext.)
MOVE L:<$2,Y ;get a 48-bit MS long-word operand in Y
SUB X,A L:<$3,B ;sub. LS words; get other MS word in B
SBC YB A10,L:<$4 ;sub. MS words with carry; save LS dif.
MOVE B10,L:<$5 ;save MS difference

:

Explanation of Example: This example illustrates long-word double-precision (96-bit)
subtraction using the SBC instruction. Prior to execution of the SUB and SBC instruc-
tions, the 96-bit value $000000:000001:800000:000000 is loaded into the Y and X regis-
ters (X:Y), respectively. The other double-precision 96-bit value
$000000:000003:000000:000000 is loaded into the B and A accumulators (B:A), respec-
tively. Since the 48-bit value loaded into the A accumulator is automatically sign
extended to 56 bits and the other 48-bit long-word operand is internally sign extended to
56 bits during instruction execution, the carry bit will be set correctly after the execution

SBC Subtract Long with Carry SBC

Before Execution After Execution

A $00:000000:000000

X X$800000:000000 $800000:000000

$00:800000:000000A

B B$00:000000:000003 $00:000000:000001

Y Y$000000:000001 $000000:000001
A - 202 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

of the SUB X,A instruction. The SBC Y,B instruction then produces the correct MS 56-bit
result. The actual 96-bit result is stored in memory using the A10 and B10 operands
(instead of A and B) because shifting and limiting is not desired.

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SBC S,D

Opcode:

Instruction Fields:
S,D J d

X,A 0 0
X,B 0 1
Y,A 1 0
Y,B 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

SBC Subtract Long with Carry SBC
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 203

Operation: Assembler Syntax:
Enter the stop processing state and STOP

stop the clock oscillator

Description: Enter the STOP processing state. All activity in the processor is suspended
until the RESET or IRQA pin is asserted. The clock oscillator is gated off internally. The
STOP processing state is a low-power standby state.

During the STOP state, port A is in an idle state with the control signals held inactive (i.e.,
RD=WR=VCC etc.), the data pins (D0–D23) are high impedance, and the address pins
(A1–A15) are unchanged from the previous instruction. If the bus grant was asserted
when the STOP instruction was executed, port A will remain three-stated until the DSP
exits the STOP state.

If the exit from the STOP state was caused by a low level on the RESET pin, then the
processor will enter the reset processing state. The time to recover from the STOP state
using RESET will depend on the oscillator used. Consult the DSP56001 Advance Infor-
mation Data Sheet (ADI1290) for details.

If the exit from the STOP state was caused by a low level on the IRQA pin, then the pro-
cessor will service the highest priority pending interrupt and will not service the IRQA
interrupt unless it is highest priority. The interrupt will be serviced after an internal delay
counter counts 65,536 clock cycles (or a three clock cycle delay if the stop delay bit in
the OMR is set to one) plus 17T (see the DSP56001 Advance Information Data Sheet
(ADI1290) for details). During this clock stabilization count delay, all peripherals and
external interrupts are cleared and re-enabled/arbitrated at the start of the 17T period fol-
lowing the count interval. The processor will resume program execution at the instruction
following the STOP instruction that caused the entry into the STOP state after the inter-
rupt has been serviced or, if no interrupt was pending, immediately after the delay count
plus 17T. If the IRQA pin is asserted when the STOP instruction is executed, the clock
will not be gated off, and the internal delay counter will be started.

Restrictions:
A STOP instruction cannot be used in a fast interrupt routine.

A STOP instruction cannot be the last instruction in a DO loop (i.e., at LA).

A STOP instruction cannot be repeated using the REP instruction.

STOP Stop Instruction Processing STOP
A - 204 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Example:
:

STOP ;enter low-power standby mode
:

Explanation of Example: The STOP instruction suspends all processor activity until the
processor is reset or interrupted as previously described. The STOP instruction puts the
processor in a low-power standby state.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
STOP

Opcode:

Instruction Fields:
None

Timing: The STOP instruction disables the internal clock oscillator and internal distribu-
tion of the external clock.

Memory: 1 program word

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

STOP Stop Instruction Processing STOP

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 205

Operation: Assembler Syntax:
D–S ➞ D (parallel move) SUB S,D (parallel move)

Description: Subtract the source operand S from the destination operand D and store
the result in the destination operand D. Words (24 bits), long words (48 bits), and accu-
mulators (56 bits) may be subtracted from the destination accumulator.

Note: The carry bit is set correctly using word or long-word source operands if the exten-
sion register of the destination accumulator (A2 or B2) is the sign extension of bit 47 of
the destination accumulator (A or B). The carry bit is always set correctly using accumu-
lator source operands.

Example:
:

SUB X1,A X:(R2)+N2,R0 ;24-bit subtract, load R0, update R2
:

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value
$000003, and the 56-bit A accumulator contains the value $00:000058:242424. The
SUB instruction automatically appends the 24-bit value in the X1 register with 24 LS
zeros, sign extends the resulting 48-bit long word to 56 bits, and subtracts the result from
the 56-bit A accumulator. Thus, 24-bit operands are subtracted from the MSP portion of
A or B (A1 or B1) because all arithmetic instructions assume a fractional, twos comple-
ment data representation. Note that 24-bit operands can be subtracted from the LSP por-
tion of A or B (A0 or B0) by loading the 24-bit operand into X0 or Y0, forming a 48-bit
word by loading X1 or Y1 with the sign extension of X0 or Y0, and executing a SUB X,A
or SUB Y,A instruction.

SUB Subtract SUB

Before Execution After Execution

X1 $000003

A A$00:000058:242424 $00:000055:242424

$000003X1
A - 206 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUB S,D

Opcode:

Instruction Fields:
S,D J J J d S,D J J J d S,D J J J d

B,A 0 0 1 0 X0,A 1 0 0 0 Y1,A 1 1 1 0
A,B 0 0 1 1 X0,B 1 0 0 1 Y1,B 1 1 1 1
X,A 0 1 0 0 Y0,A 1 0 1 0
X,B 0 1 0 1 Y0,B 1 0 1 1
Y,A 0 1 1 0 X1,A 1 1 0 0
Y,B 0 1 1 1 X1,B 1 1 0 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

SUB Subtract SUB

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 1 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 207

Operation: Assembler Syntax:
2∗ D–S ➞ D (parallel move) SUBL SD (parallel move)

Description: Subtract the source operand S from two times the destination operand D
and store the result in the destination accumulator. The destination operand D is arith-
metically shifted one bit to the left, and a zero is shifted into the LS bit of D prior to the
subtraction operation. The carry bit is set correctly if the source operand does not over-
flow as a result of the left shift operation. The overflow bit may be set as a result of either
the shifting or subtraction operation (or both). This instruction is useful for efficient divide
and decimation in time (DIT) FFT algorithms.

Example:
:

SUBL A,B Y:(R5+N5),R7 ;2∗ B–A ➞ B, load R7, no R5 update
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:004000:000000, and the 56-bit B accumulator contains the value
$00:005000:000000. The SUBL A,B instruction subtracts the value in the A accumulator
from two times the value in the B accumulator and stores the 56-bit result in the B accu-
mulator.

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result or if the MS bit of the destination

operand is changed as a result of the instruction’s left shift
C — Set if a carry (or borrow) occurs from bit 55 of A or B result

SUBL Shift Left and Subtract Accumulators SUBL

Before Execution After Execution

A $00:004000:000000

B B$00:005000:000000 $00:006000:000000

$00:004000:000000A

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 208 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Note: The definition of the E and U bits varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUBL S,D

Opcode:

Instruction Fields:
S,D d

B,A 0
A,B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

SUBL Shift Left and Subtract Accumulators SUBL

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 209

Operation: Assembler Syntax:
D/2–S ➞ D (parallel move) SUBR S,D (parallel move)

Description: Subtract the source operand S from one-half the destination operand D
and store the result in the destination accumulator. The destination operand D is arith-
metically shifted one bit to the right while the MS bit of D is held constant prior to the sub-
traction operation. In contrast to the SUBL instruction, the carry bit is always set
correctly, and the overflow bit can only be set by the subtraction operation, and not by an
overflow due to the initial shifting operation. This instruction is useful for efficient divide
and decimation in time (DIT) FFT algorithms.

Example:
:

SUBR B,A N5,Y:–(R5) ;A/2–B ➞ A, update R5, save N5
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $80:000000:2468AC, and the 56-bit B accumulator contains the value
$00:000000:123456. The SUBR B,A instruction subtracts the value in the B accumulator
from one-half the value in the A accumulator and stores the 56-bit result in the A accu-
mulator.

Condition Codes:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result

SUBR Shift Right and Subtract Accumulators SUBR

Before Execution After Execution

A $80:000000:2468AC

B B$00:000000:123456 $00:000000:123456

$C0:000000:000000A

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 210 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Note: The definition of the E and U bits varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUBR S,D

Opcode:

Instruction Fields:
S,D d

B,A 0
A,B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

SUBR Shift Right and Subtract Accumulators SUBR

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 211

Operation: Assembler Syntax:
Begin SWI exception processing SWI

Description: Suspend normal instruction execution and begin SWI exception process-
ing. The interrupt priority level (I1,I0) is set to 3 in the status register (SR) if a long inter-
rupt service routine is used.

Restrictions:
An SWI instruction cannot be used in a fast interrupt routine.

An SWI instruction cannot be repeated using the REP instruction.

Example:
:

SWI ;begin SWI exception processing
:

Explanation of Example: The SWI instruction suspends normal instruction execution
and initiates SWI exception processing.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
SWI

Opcode:

Instruction Fields:
None

Timing: 8 oscillator clock cycles

Memory: 1 program word

SWI Software Interrupt SWI

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

0 1 1 0
A - 212 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Operation: Assembler Syntax:
If cc, then S1 ➞ D1 Tcc S1,D1

 If cc, then S1 ➞ D1 and S2 ➞ D2 Tcc S1,D1 S2,D2

Description: Transfer data from the specified source register S1 to the specified desti-
nation accumulator D1 if the specified condition is true. If a second source register S2
and a second destination register D2 are also specified, transfer data from address reg-
ister S2 to address register D2 if the specified condition is true. If the specified condition
is false, a NOP is executed. The term ‘‘cc’’ may specify the following conditions:

‘‘cc’’ Mnemonic Condition
CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set (lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

where
U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator, and
⊕ denotes the logical Exclusive OR operator

When used after the CMP or CMPM instructions, the Tcc instruction can perform many
useful functions such as a ‘‘maximum value,’’ ‘‘minimum value,’’ ‘‘maximum absolute
value,’’ or ‘‘minimum absolute value’’ function. The desired value is stored in the destina-
tion accumulator D1. If address register S2 is used as an address pointer into an array of
data, the address of the desired value is stored in the address register D2. The Tcc

Tcc Transfer Conditionally Tcc
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 213

instruction may be used after any instruction and allows efficient searching and sorting
algorithms.

The Tcc instruction uses the internal data ALU paths and internal address ALU paths.
The Tcc instruction does not affect the condition code bits.

Note: This instruction is considered to be a move-type instruction. Due to pipelining, if an
address register (R0–R7) is changed using a move-type instruction, the new contents of
the destination address register will not be available for use during the following instruc-
tion (i.e., there is a single instruction cycle pipeline delay).

Example:
:

CMP X0,A ;compare X0 and A (sort for minimum)
TGT X0,A R0,R1 ;transfer X0 ➞ A and R0 ➞ R1 if X0<A

:

Explanation of Example: In this example, the contents of the 24-bit X0 register are
transferred to the 56-bit A accumulator, and the contents of the 16-bit R0 address regis-
ter are transferred to the 16-bit R1 address register if the specified condition is true. If the
specified condition is not true, a NOP is executed.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
Tcc S1,D1

Opcode:

Tcc Transfer Conditionally Tcc

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C

23 16 15 8 7 0

0 0 0 0 0 0 1 0 C C C C 0 0 0 0 0 J J J D 0 0 0
A - 214 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Fields:
cc=4=bit condition code=CCCC

S1,D1 J J J D Mnemonic C C C C Mnemonic C C C C
B,A 0 0 0 0 CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
A,B 0 0 0 1 GE 0 0 0 1 LT 1 0 0 1
X0,A 1 0 0 0 NE 0 0 1 0 EQ 1 0 1 0
X0,B 1 0 0 1 PL 0 0 1 1 MI 1 0 1 1
X1,A 1 1 0 0 NN 0 1 0 0 NR 1 1 0 0
X1,B 1 1 0 1 EC 0 1 0 1 ES 1 1 0 1
Y0,A 1 0 1 0 LC 0 1 1 0 LS 1 1 1 0
Y0,B 1 0 1 1 GT 0 1 1 1 LE 1 1 1 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

Timing: 2 oscillator clock cycles

Memory: 1 program word

Instruction Format:
Tcc S1,D1 S2,D2

Opcode:

Instruction Fields:
cc=4=bit condition code=CCCC

S1,D1 J J J D S2 t t t Mnemonic C C C C Mnemonic C C C C
B,A 0 0 0 0 Rn n n n CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
A,B 0 0 0 1 GE 0 0 0 1 LT 1 0 0 1
X0,A 1 0 0 0 NE 0 0 1 0 EQ 1 0 1 0
X0,B 1 0 0 1 PL 0 0 1 1 MI 1 0 1 1
X1,A 1 1 0 0 D2 T T T NN 0 1 0 0 NR 1 1 0 0
X1,B 1 1 0 1 Rn n n n EC 0 1 0 1 ES 1 1 0 1
Y0,A 1 0 1 0 LC 0 1 1 0 LS 1 1 1 0
Y0,B 1 0 1 1 GT 0 1 1 1 LE 1 1 1 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

where ‘‘nnn’’=Rn number (R0–R7)

Timing: 2 oscillator clock cycles

Memory: 1 program word

Tcc Transfer Conditionally Tcc

23 16 15 8 7 0

0 0 0 0 0 0 1 1 C C C C 0 t t t 0 J J J D T T T
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 215

Operation: Assembler Syntax:
S➞D (parallel move) TFR S,D (parallel move)

Description: Transfer data from the specified source data ALU register S to the speci-
fied destination data ALU accumulator D. TFR uses the internal data ALU data paths;
thus, data does not pass through the data shifter/limiters. This allows the full 56-bit con-
tents of one of the accumulators to be transferred into the other accumulator without
data shifting and/or limiting. Moreover, since TFR uses the internal data ALU data paths,
parallel moves are possible. The TFR instruction only affects the L condition code bit
which can be set by data limiting associated with the instruction’s parallel move opera-
tions.

Example:
:

TFR A,B A,X1 Y:(R4+N4),Y0 ;move A to B and X1, update Y0
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01:234567:89ABCD, and the 56-bit B accumulator contains the value
$ff:FFFFFF:FFFFFF. The execution of the TFR A,B instruction moves the 56-bit value in
the A accumulator into the 56-bit B accumulator using the internal data ALU data paths
without any data shifting and/or limiting. The value in the B accumulator would have
been limited if a MOVE A,B instruction had been used. Note, however, that the parallel
move portion of the TFR instruction does use the data shifter/limiters. Thus, the value
stored in the 24-bit X1 register (not shown) would have been limited in this example.
This example illustrates a triple move instruction.

Condition Codes:

L — Set if data limiting has occurred during parallel move

TFR Transfer Data ALU Register TFR

Before Execution After Execution

A $01:234567:89ABCD

B B$FF:FFFFFF:FFFFFF $01:234567:89ABCD

$01:234567:89ABCDA

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 216 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
TFR S,D

Opcode:

Instruction Fields:

S,D J J J D
B,A 0 0 0 0
A,B 0 0 0 1
X0,A 1 0 0 0
X0,B 1 0 0 1
X1,A 1 1 0 0
X1,B 1 1 0 1
Y0,A 1 0 1 0
Y0,B 1 0 1 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

TFR Transfer Data ALU Register TFR

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 217

Operation: Assembler Syntax:
S–0 (parallel move) TST S (parallel move)

Description: Compare the specified source accumulator S with zero and set the condi-
tion codes accordingly. No result is stored although the condition codes are updated.

Example:
:

TST A #$345678,B ;set CCR bits for value in A, update B
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01:020304:000000, and the 16-bit condition code register contains the value
$0300. The execution of the TST A instruction compares the value in the A register with
zero and updates the condition code register accordingly. The contents of the A accumu-
lator are not affected.

Condition Codes:

L — Set if data limiting has occurred during parallel move
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Always cleared

Note: The definition of the E and U bits varies according to the scaling mode being used.
Refer to A.4 CONDITION CODE COMPUTATION for complete details.

TST Test Accumulator TST

Before Execution After Execution

A $01:020304:000000

CCR CCR$0300 $0330

$01:020304:000000A

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 218 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
TST S

Opcode:

Instruction Fields:
S d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

TST Test Accumulator TST

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 219

Operation: Assembler Syntax:
Disable clocks to the processor core and WAIT

enter the WAIT processing state.

Description: Enter the WAIT processing state. The internal clocks to the processor core
and memories are gated off, and all activity in the processor is suspended until an
unmasked interrupt occurs. The clock oscillator and the internal I/O peripheral clocks
remain active. If WAIT is executed when an interrupt is pending, the interrupt will be pro-
cessed; the effect will be the same as if the processor never entered the WAIT state and
three NOPs followed the WAIT instruction. When an unmasked interrupt or external
(hardware) processor RESET occurs, the processor leaves the WAIT state and begins
exeption processing of the unmasked interrupt or RESET condition. The BR/BG circuits
remain active during the WAIT state. The WAIT state is a low-power standby state. The
processor always leaves the WAIT state in the T2 clock phase (see the DSP56001
Advance Information Data Sheet (ADI1290)). Therefore, multiple processors may be
synchronized by having them all enter the WAIT state and then interrupting them with a
common interrupt.

Restrictions: A WAIT instruction cannot be used in a fast interrupt routine.

A WAIT instruction cannot be the last instruction in a DO loop (at LA).

A WAIT instruction cannot be repeated using the REP instruction.

Example:
:

WAIT ;enter low power mode, wait for interrupt
:

Explanation of Example: The WAIT instruction suspends normal instruction execution
and waits for an unmasked interrupt or external RESET to occur.

Condition Codes:

The condition codes are not affected by this instruction.

WAIT Wait for Interrupt WAIT

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF ** T ** S1 S0 I1 I0 ** L E U N Z V C
A - 220 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Instruction Format:
WAIT

Opcode:

Instruction Fields:
None

Timing: The WAIT instruction takes a minumum of 16 cycles to execute when an inter-
nal interrupt is pending during the execution of the WAIT instruction

Memory: 1 program word

WAIT Wait for Interrupt WAIT

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 221

A - 222 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

A.7 INSTRUCTION TIMING

This section describes how one can calculate DSP56000/DSP56001 instruction timing man-
ually using the tables provided in this section. Three complete examples are presented to
illustrate the ‘‘layered’’ nature of the tables. Alternatively, the user can obtain the number of
instruction program words and the number of oscillator clock cycles required for a given
instruction by using the DSP56000/DSP56001 simulator. This method of determining instruc-
tion timing information is much faster and much simpler than using the aforementioned
tables. This powerful software package is available for the IBM PC, Apple Macintosh , and
SUN-4 workstation.

Table A-6 gives the number of instruction program words and the number of oscillator clock
cycles for each instruction mnemonic. Table A-7 gives the number of additional (if any)
instruction words and additional (if any) clock cycles for each type of parallel move operation.
Table A-8 gives the number of additional (if any) clock cycles for each type of MOVEC opera-
tion. Table A-9 gives the number of additional (if any) clock cycles for each type of MOVEP
operation. Table A-10 gives the number of additional (if any) clock cycles for each type of bit
manipulation (BCHG, BCLR, BSET, and BTST) operation. Table A-11 gives the number of
additional (if any) clock cycles for each type of jump (Jcc, JCLR, JMP, JScc, JSCLR, JSET,
JSR, and JSSET) operation. Table A-12 gives the number of additional (if any) clock cycles
for the RTI and RTS instructions. Table A-13 gives the number of additional (if any) instruc-
tion words and additional (if any) clock cycles for each effective addressing mode. Table A-
14 gives the number of additional (if any) clock cycles for external data, external program,
and external I/O memory accesses.

The number of words per instruction is dependent on the addressing mode and the type of
parallel data bus move operation specified. The symbols used reference subsequent tables
to complete the instruction word count.

The number of oscillator clock cycles per instruction is dependent on many factors, including
the number of words per instruction, the addressing mode, whether the instruction fetch pipe
is full or not, the number of external bus accesses, and the number of wait states inserted in
each external access. The symbols used reference subsequent tables to complete the exe-
cution clock cycle count.

All tables are based on the following assumptions:

1. All instruction cycles are counted in oscillator clock cycles.

2. The instruction fetch pipeline is full.

IBM is a trademark of International Business Machines.
Macintosh is a trademark of Apple Computer Corporation
SUN-4 is a trademark of Sun Microsystems, Inc.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 222

3. There is no contention for instruction fetches. Thus, external program
instruction fetches are assumed not to have to contend with external data
memory accesses.

4. There are no wait states for instruction fetches done sequentially (as for non-
change-of-flow instructions), but they are taken into account for change-of-
flow instructions which flush the pipeline such as JMP, Jcc, RTI, etc.

To better understand and use the aforementioned tables, three examples are presented
prior to the actual tables. These examples attempt to illustrate the ‘‘layered’’ nature of the
tables.

Example 1: Arithmetic Instruction with Two Parallel Moves

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction (located in internal program memory):

MACR –X0,X0,A X1,X:(R6)– Y0,Y:(R0)+

where Operating Mode Register (OMR) = $02 (normal expanded memory map)
Bus Control Register (BCR) = $1135
R6 Address Register = $0052 (internal X memory)
R0 Address Register = $0523 (external Y memory)

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol-
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the MACR instruction will require (1+mv) instruction program
words and will execute in (2+mv) oscillator clock cycles. The term ‘‘mv’’ represents the
additional (if any) instruction program words and the additional (if any) oscillator clock
cycles that may be required over and above those needed for the basic MACR instruction
due to the parallel move portion of the instruction.

2. Evaluate the ‘‘mv’’ term using Table A-7.

The parallel move portion of the MACR instruction consists of an XY memory move.
According to Table A-7, the parallel move portion of the instruction will require mv=0 addi-
tional instruction program words and mv=(ea+axy) additional oscillator clock cycles. The
term ‘‘ea’’ represents the number of additional (if any) oscillator clock cycles that are
required for the effective addressing move specified in the parallel move portion of the
instruction. The term ‘‘axy’’ represents the number of additional (if any) oscillator clock
cycles that are required to access an XY memory operand.
A - 223 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

3. Evaluate the ‘‘ea’’ term using Table A-13.

The parallel move portion of the MACR instruction consists of an XY memory move
which uses both address register banks (R0–R3 and R4–R7) in generating the effective
addresses of the XY memory operands. Thus, the two effective address operations
occur in parallel, and the larger of the two ‘‘ea’’ terms should be used. The X memory
move operation uses the ‘‘postdecrement by 1’’ effective addressing mode. According to
Table A-13, this operation will require ea=0 additional oscillator clock cycles. The Y
memory move operation uses the ‘‘postincrement by 1’’ effective addressing mode.
According to Table A-13, this operation will also require ea=0 additional oscillator clock
cycles. Thus, using the maximum value of ‘‘ea’’, the effective addressing modes used in
the parallel move portion of the MACR instruction will require ea=0 additional oscillator
clock cycles.

4. Evaluate the ‘‘axy’’ term using Table A-14.

The parallel move portion of the MACR instruction consists of an XY memory move.
According to Table A-14, the term ‘‘axy’’ depends upon where the referenced X and Y
memory locations are located in the DSP56000/DSP56001 memory space. External
memory accesses require additional oscillator clock cycles according to the number of
wait states programmed into the DSP56000/DSP56001 bus control register (BCR).
Thus, assuming that the 16-bit bus control register contains the value $1135, external X
memory accesses require wx=1 wait state of additional oscillator clock cycle while exter-
nal Y memory accesses require wy=1 wait state or additional oscillator clock cycle. For
this example, the X memory reference is assumed to be an internal reference; the Y
memory reference is assumed to be an external reference. Thus, according to Table A-
14, the XY memory reference in the parallel move portion of the MACR instruction will
require axy=wy=1 additional oscillator clock cycle.

5. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 1, the instruction

MACR –X0,X0,A X1,X:(R6)– Y0,Y:(R0)+

will require
(1+mv)
=(1+0)
=1 instruction program word

and will execute in
=(2+mv)
=(2+ea+axy)
=(2+ea+wy)
=(2+0+1) oscillator clock cycles.
= 3

Note that if a similar calculation were to be made for a MOVEC, MOVEM, MOVEP, or

MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 224

one of the bit manipulation (BCHG, BCLR, BSET, or BTST) instructions, the use of Table
A-7 would no longer be appropriate. For one of these cases, the user would refer to
Table A-8, Table A-9, or Table A-10, respectively.

Example 2: Jump Instruction

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

JLC (R2+N2)

where Operating Mode Register (OMR) =$02 (normal expanded memory map),
Bus Control Register (BCR) =$2246,
R2 Address Register =$1000 (external P memory), and
N2 Address Register =$0037.

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol-
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the Jcc instruction will require (1+ea) instruction program words
and will execute in (4+jx) oscillator clock cycles. The term ‘‘ea’’ represents the number of
additional (if any) instruction program words that are required for the effective address of
the Jcc instruction. The term ‘‘jx’’ represents the number of additional (if any) oscillator
clock cycles required for a jump-type instruction.

2. Evaluate the ‘‘jx’’ term using Table A-11.

According to Table A-11, the Jcc instruction will require jx=ea+(2 ∗ ap) additional oscilla-
tor clock cycles. The term ‘‘ea’’ represents the number of additional (if any) oscillator
clock cycles that are required for the effective addressing mode specified in the Jcc
instruction. The term ‘‘ap’’ represents the number of additional (if any) oscillator clock
cycles that are required to access a P memory operand. Note that the ‘‘+(2 ∗ ap)’’ term
represents the two program memory instruction fetches executed at the end of a one-
word jump instruction to refill the instruction pipeline.

3. Evaluate the ‘‘ea’’ term using Table A-13.

The JLC (R2+N2) instruction uses the ‘‘indexed by offset Nn’’ effective addressing mode.
According to Table A-13, this operation will require ea=0 additional instruction program
words and ea=2 additional oscillator clock cycles.

4. Evaluate the ‘‘ap’’ term using Table A-14.
A - 225 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

According to Table A-14, the term ‘‘ap’’ depends upon where the referenced P memory
location is located in the DSP56000/DSP56001 memory space. External memory
accesses require additional oscillator clock cycles according to the number of wait states
programmed into the DSP56000/DSP56001 bus control register (BCR). Thus, assuming
that the 16-bit bus control register contains the value $2246, external P memory
accesses require wp=4 wait states or additional oscillator clock cycles. For this example,
the P memory reference is assumed to be an external reference. Thus, according to
Table A-14, the Jcc instruction will use the value ap=wp=4 oscillator clock cycles.

5. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 2, the instruction

JLC (R2+N2)

will require
=(1+ea)
=(1+0)
= 1 instruction program word

and will execute in
=(4+jx)
=(4+ea+(2 ∗ ap))
=(4+ea+(2 ∗ wp))
=(4+2+(2 ∗ 4)) oscillator clock cycles.
= 14

Example 3: RTI Instruction

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

RTI

where Operating Mode Register (OMR) =$02 (normal expanded memory map),
Bus Control Register (BCR) =$0012, and,
Return Address (on the stack) =$0100 (internal P memory).

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol-
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the RTI instruction will require one instruction program word and
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 226

will execute in (4+rx) oscillator clock cycles. The term ‘‘rx’’ represents the number of
additional (if any) oscillator clock cycles required for an RTI or RTS instruction.

2. Evaluate the ‘‘rx’’ term using Table A-12.

According to Table A-12, the RTI instruction will require rx=(2 ∗ ap) additional oscillator
clock cycles. The term ‘‘ap’’ represents the number of additional (if any) oscillator clock
cycles that are required to access a P memory operand. Note that the term ‘‘(2 ∗ ap)’’
represents the two program memory instruction fetches executed at the end of an RTI or
RTS instruction to refill the instruction pipeline.

3. Evaluate the ‘‘ap’’ term using Table A-14.

According to Table A-14, the term ‘‘ap’’ depends upon where the referenced P memory
location is located in the DSP56000/DSP56001 memory space. External memory
accesses require additional oscillator clock cycles according to the number of wait states
programmed into the DSP56000/DSP56001 bus control register (BCR). Thus, assuming
that the 16-bit bus control register contains the value $0012, external P memory
accesses require wp=1 wait state or additional oscillator clock cycles. For this example,
the P memory reference is assumed to be an internal reference. This means that the
return address ($0100) pulled from the system stack by the RTI instruction is in internal P
memory. Thus, according to Table A-14, the RTI instruction will use the value ap=0 addi-
tional oscillator clock cycles.

4. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 3, the instruction

RTI

will require

1 instruction program word
and will execute in

(4+rx)
=(4+(2 ∗ ap))
=(4+(2 ∗ 0))
= 4 oscillator clock cycles

Note that the ‘‘ap’’ term present in Table A-8 for the P memory move entry represents the
wait state spent when accessing the program memory during DATA read or write and
does not refer to instruction fetches.
A - 227 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Note 1: The STOP instruction disables the internal clock oscillator. After clock turn on, an internal counter counts
65,536 clock cycles (if bit 6 in the OMR is clear) before enabling the clock to the internal DSP circuits. If
bit 6 in the OMR is set, only six clock cycles are counted before enabling the clock to the external
DSP circuits.

Note 2: The WAIT instruction takes a minimum of 16 cycles to execute when an internal interrupt is pending
during the execution of the WAIT instruction.

Note 3: If assumption 4 is not applicable, then to each one-word instruction timing, a “+ap” term should be
added, and, to each two-word instruction, a “+(2*ap)” term should be added to account for the program
memory wait states spent to fetch an instruction word to fill the pipeline.

Mnemonic
Instruction
Program
Words

Osc.
Clock
Cycles

Notes Mnemonic
Instruction
Program
Words

Osc.
Clock
Cycles

Notes

ABS 1 + mv 2 + mv MAC 1 + mv 2 + mv

ADC 1 + mv 2 + mv MACR 1 + mv 2 + mv

ADD 1 + mv 2 + mv MOVE 1 + mv 2 + mv

ADDL 1 + mv 2 + mv MOVEC 1 + ea 2 + mvc

ADDR 1 + mv 2 + mv MOVEM 1 + ea 6 + ea + ap

AND 1 + mv 2 + mv MOVEP 1 + ea 4 + mvp

ANDI 1 2 MPY 1 + mv 2 + mv

ASL 1 + mv 2 + mv MPYR 1 + mv 2 + mv

ASR 1 + mv 2 + mv NEG 1 + mv 2 + mv

BCHG 1 + ea 4 + mvb NOP 1 2

BCLR 1 + ea 4 + mvb NORM 1 2

BSET 1 + ea 4 + mvb NOT 1 + mv 2 + mv

BTST 1 + ea 4 + mvb OR 1 + mv 2 + mv

CLR 1 + mv 2 + mv ORI 1 2

CMP 1 + mv 2 + mv REP 1 4 + mv

CMPM 1 + mv 2 + mv RESET 1 4

DIV 1 2 RND 1 + mv 2 + mv

DO 2 6 + mv ROL 1 + mv 2 + mv

ENDDO 1 2 ROR 1 + mv 2 + mv

EOR 1 + mv 2 + mv RTI 1 4 + rx

Jcc 1 + ea 4 + jx RTS 1 4 + rx

JCLR 2 6 + jx SBC 1 + mv 2 + mv

JMP 1 + ea 4 + jx STOP 1 n/a 1

JScc 1 + ea 4 + jx SUB 1 + mv 2 + mv

JSCLR 2 6 + jx SUBL 1 + mv 2 + mv

JSET 2 6 + jx SUBR 1 + mv 2 + mv

JSR 1 + ea 4 + jx SWI 1 8

JSSET 2 6 + jx Tcc 1 2

LSL 1 + mv 2 + mv TFR 1 + mv 2 + mv

LSR 1 + mv 2 + mv TST 1 + mv 2 + mv

LUA 1 4 WAIT 1 n/a 2

Table A-6 Instruction Timing Summary (see Note 3)
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 228

Parallel Move Operation
+ mv
Words

+ mv
Cycles

Comments

No Parallel Data Move 0 0

I Immediate Short Data 0 0

R Register to Register 0 0

U Address Register Update 0 0

X: X Memory Move ea ea + ax See Note 1

X:R X Memory and Register ea ea + ax See Note 1

Y: Y Memory Move ea ea + ay See Note 1

R:Y Y Memory and Register ea ea + ay See Note 1

L: Long Memory Move ea ea + axy

X:Y: XY Memory Move 0 ea + axy

LMS(X) LMS X Memory Moves 0 ea + ax See Notes 1,2

LMS(Y) LMS Y Memory Moves 0 ea + ay See Notes 1,2

Table A-7 Parallel Data Move Timing

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: The ea term does not apply to ABSOLUTE ADDRESS and IMMEDIATE DATA.

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: If assumption 4 is not applicable, then to each one-word instruction timing,

a “+ ap” term should be added, and to each two-word instruction, a “+ (2 * ap)”
term should be added to account for the program memory wait states spent to
fetch an instruction word to fill the pipeline.

MOVEC Operaltion
+ mvc
Cycles

Comments

Immediate Short → Register 0

Register ➞ Register 0

X Memory ➞ Register ea + ax See Note 1

Y Memory ➞ Register ea + ay See Note 1

P Memory ➞ Register 4 + ea + ap

Table A-8 MOVEC Timing Summary (see Note 2)

↕
↕

↕
↕

A - 229 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Note that the “ap” term present in Table A-9 for the P memory move entry represents the
wait states spent when accessing the program memory during DATA read or writer oper-
ations and does not refer to instruction fetches.

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: If assumption 4 is not applicable, then to each one-word instruction timing,

a “+ ap” term should be added, and to each two-word instruction, a “+ (2 * ap)”
term should be added to account for the program memory wait states spent to
fetch an instruction word to fill the pipeline.

MOVEP Operaltion
+ mvp
Cycles

Comments

Register ➞ Peripheral aio

X Memory ➞ Peripheral ea + ax + aio See Note 1

Y Memory ➞ Peripheral ea + ay + aio See Note 1

P Memory ➞ Peripheral 2 + ea + ap + aio

Table A-9 MOVEP Timing Summary (see Note 2)

↕
↕

↕
↕

Note 1: Bxxx = BCHG, BCLR, or BSET.
Note 2: If assumption 4 is not applicable, then to each one-word instruction timing,

a “+ ap” term should be added, and to each two-word instruction, a “+ (2 * ap)”
term should be added to account for the program memory wait states spent to
fetch an instruction word to fill the pipeline.

Bit Manipulation Operaltion
+ mvb
Cycles

Comments

Bxxx Peripheral 2 ∗ aio See Note 1

Bxxx X Memory ea + (2 ∗ ax) See Note 1

Bxxx Y Memory ea + (2 ∗ ay) See Note 1

Bxxx Register Direct 0 See Note 1

BTST Peripheral aio

BTST X Memory ea + ax

BTST Y Memory ea + ay

Table A-10 Bit Manipulation Timing Summary (see Note 2)

Note 1: Jbit = JCLR, JSCLR, JSET , and JSSET
Note 2: Jxxx = Jcc, JMP, JScc, and JSR

Jump Instruction Operaltion
+ jx
Cycles

Comments

Jbit Register Direct 2 ∗ ap See Note 1

Jbit Peripheral aio + (2 ∗ ap) See Note 1

Jbit X Memory ea + ax + (2 ∗ ap) See Note 1

Jbit Y Memory ea + ay + (2 ∗ ap) See Note 1

Jxxx ea + (2 ∗ ap) See Note 2

Table A-11 Jump Instruction Timing Summary
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 230

All one-word jump instructions execute TWO program memory fetches to refill the pipe-
line, which is represented by the ‘‘+(2 ∗ ap)’’ term.

All two-word jumps execute THREE program memory fetches to refill the pipeline, but
one of those fetches is sequential (the instruction word located at the jump instruction
2nd word address+1), so it is not counted as per assumption 4. If the jump instruction
was fetched from a program memory segment with wait states, another ‘‘ap’’ should be
added to account for that third fetch.

The term ‘‘2 ∗ ap’’ come from the two instruction fetches done by the RTI/RTS instruction
to refill the pipeline.

Operation
+ rx
Cycles

RTI 2 ∗ ap

RTS 2 ∗ ap

Table A-12 RTI/RTS Timing Summary

Effective Addressing
Mode

+ ea
Words

+ ea
Cycles

Address Register Indirect

No Update 0 0

Postincrement by 1 0 0

Postdecrement by 1 0 0

Postincrement by Offset Nn 0 0

Postdecrement by Offset Nn 0 0

Indexed by Offset Nn 0 2

Predecrement by 1 0 2

Special

Immediate Data 1 2

Absolute Address 1 2

Immediate Short Data 0 0

Short Jump Address 0 0

Absolute Sort Address 0 0

I/O Short Address 0 0

Implicit 0 0

Table A-13 Addressing Mode Timing Summary
A - 231 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

A.8 INSTRUCTION SEQUENCE RESTRICTIONS
Due to the pipelined nature of the DSP core processor, there are certain instruction
sequences that are forbidden and will cause undefined operation. Most of these
restricted sequences would cause contention for an internal resource, such as the stack
register. The DSP assembler will flag these as assembly errors.

Most of the following restrictions represent very unusual operations which probably
would never be used but are listed only for completeness.

Note: The DSP56000/DSP56001 macro assembler is designed to recognize all restric-
tions and flag them as errors at the source code level. Since many of these are instruc-
tion sequence restrictions, they cannot be flagged as errors at the object code level such
as when using the DSP56000/DSP56001 simulator’s single-line assembler. Therefore, if
any changes are made at the object code level using the simulator, the user should
always re-assemble his program at the source code level using the DSP56000/
DSP56001 macro assembler to verify that no restricted instruction sequences have been
generated.

A.8.1 Restrictions Near the End of DO Loops
Proper DO loop operation is not guaranteed if an instruction starting at address LA–2,
LA–1, or LA specifies one of the program controller registers SR, SP, SSL, LA, LC, or
(implicitly) PC as a destination register. Similarly, the SSH register may not be specified

Note 1: wx = external X memory access wait states
wy = external Y memory access wait states
wp = external P memory access wait states
wio = external I/O memory access wait states

Note 2: wx, wy, wp, and wio are programmable from 0 - 15 wait states in the port A bus control register (BCR).

Access
Type

X Mem
Access

Y Mem
Access

P Mem
Access

I/O
Access

+ ax
Cycle

+ ay
Cycle

+ ap
Cycle

+ aio
Cycle

+ axy
Cycle

X: Int — — — 0 — — — —

X: Ext — — — wx — — — —

Y: — Int — — — 0 — — —

Y: — Ext — — — wy — — —

P: — — Int — — — 0 — —

P: — — Ext — — — wp — —

I/O: — — — Int — — — 0 —

I/O: — — — Ext — — — wio —

L: XY: Int — — — — — — 0

L: XY: Int Ext — — — — — — wy

L: XY: Ext Int — — — — — — wx

L: XY: Ext Ext — — — — — — 2 + wx + wy

Table A-14 Memory Access Timing Summary
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 232

as a source or destination register in an instruction starting at address LA–2, LA–1, or
LA. Additionally, the SSH register cannot be specified as a source register in the DO
instruction itself, and LA cannot be used as a target for jumps to subroutine (i.e., JSR,
JScc, JSSET, or JSCLR to LA). The following instructions cannot begin at the indicated
position(s) near the end of a DO loop:

At LA–2, LA–1, and LA DO
BCHG LA, LC, SR, SP, SSH, or SSL
BCLR LA, LC, SR, SP, SSH, or SSL
BSET LA, LC, SR, SP, SSH, or SSL
BTST SSH
JCLR/JSET/JSCLR/JSSET SSH
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
MOVEC to LA, LC, SR, SP, SSH, or SSL
MOVEM to LA, LC, SR, SP, SSH, or SSL
MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI MR
ORI MR

At LA any two-word instruction
Jcc
JMP
JScc
JSR
REP
RESET
RTI
RTS
STOP
WAIT

Other Restrictions DO SSH,xxxx
JSR to (LA) whenever the loop flag (LF) is set
JScc to (LA) whenever the loop flag (LF) is set
JSCLR to (LA) whenever the loop flag (LF) is set
JSSET to (LA) whenever the loop flag (LF) is set

This restriction applies to the situation in which the DSP56000/DSP56001 simulator’s
single-line assembler is used to change the last instruction in a DO loop from a one-word
instruction to a two-word instruction. All changes made using the simulator should be
reassembled at the source code level using the DSP56000/DSP56001 macro assem-
bler to verify that no restricted instruction sequences have been generated.
A - 233 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Note: Due to pipelining, if an address register (R0–R7, N0–N7, or M0–M7) is changed using
a move-type instruction (LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel move), the
new contents of the destination address register will not be available for use during the fol-
lowing instruction (i.e., there is a single instruction cycle pipeline delay). This restriction also
applies to the situation in which the last instruction in a DO loop changes an address register
and the first instruction at the top of the DO loop uses that same address register. The top
instruction becomes the following instruction because of the loop construct. The assembler
will generate a warning if this condition is detected.

A.8.2 Other DO Restrictions

Due to pipelining, the DO instruction must not be immediately preceded by any of the fol-
lowing instructions:

Immediately before DO BCHG LA, LC, SSH, SSL, or SP
BCLR LA, LC, SSH, SSL, or SP
BSET LA, LC, SSH, SSL, or SP
MOVEC to LA, LC, SSH, SSL, or SP
MOVEM to LA, LC, SSH, SSL, or SP
MOVEP to LA, LC, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

A.8.3 ENDDO Restrictions

Due to pipelining, the ENDDO instruction must not be immediately preceded by any of the
following instructions:

Immediately before ENDDO BCHG LA, LC, SR, SSH, SSL, or SP
BCLR LA, LC, SR, SSH, SSL, or SP
BSET LA, LC, SR, SSH, SSL, or SP
MOVEC to LA, LC, SR, SSH, SSL, or SP
MOVEM to LA, LC, SR, SSH, SSL, or SP
MOVEP to LA, LC, SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR
ORI MR
REP
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 234

A.8.4 RTI and RTS Restrictions
Due to pipelining, the RTI and RTS instructions must not be immediately preceded by
any of the following instructions:

Immediately before RTI BCHG SR, SSH, SSL, or SP
BCLR SR, SSH, SSL, or SP
BSET SR, SSH, SSL, or SP
MOVEC to SR, SSH, SSL, or SP
MOVEM to SR, SSH, SSL, or SP
MOVEP to SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

Immediately before RTS BCHG SSH, SSL, or SP
BCLR SSH, SSL, or SP
BSET SSH, SSL, or SP
MOVEC to SSH, SSL, or SP
MOVEM to SSH, SSL, or SP
MOVEP to SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

A.8.5 SP and SSH/SSL Manipulation Restrictions
In addition to all the above restrictions concerning MOVEC, MOVEM, MOVEP, SP, SSH,
and SSL, the following MOVEC, MOVEM, and MOVEP restrictions apply:

Immediately before MOVEC from SSH or SSL BCHG to SP
BCLR to SP
BSET to SP

Immediately before MOVEM from SSH or SSL BCHG to SP
BCLR to SP
BSET to SP

Immediately before MOVEP from SSH or SSL BCHG to SP
BCLR to SP
BSET to SP
A - 235 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Immediately before MOVEC from SSH or SSL MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before MOVEM from SSH or SSL MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before MOVEP from SSH or SSL MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JCLR #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JSET #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JSCLR #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JSSET #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JCLR #n,SSH or SSL,xxxx BCHG to SP
BCLR to SP
BSET to SP

Immediately before JSET #n,SSH or SSL,xxxx BCHG to SP
BCLR to SP
BSET to SP

Immediately before JSCLR from SSH or SSL,xxxx BCHG to SP
BCLR to SP
BSET to SP

Immediately before JSSET from SSH or SSL,xxxx BCHG to SP
BCLR to SP
BSET to SP

Also, the instruction MOVEC SSH,SSH is illegal.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 236

A.8.6 R, N, and M Register Restrictions
If an address register (R0–R7, N0–N7, or M0–M7) is changed with a move-type instruc-
tion (LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel move), the new contents
of the destination address register will not be available for use as a pointer during the
following instruction (i.e., there is a single instruction cycle pipeline delay). This does
not apply to address registers that are updated as part of an addressing mode update.

Note: This restriction also applies to the situation in which the last instruction in a DO
loop changes an address register using a move-type instruction and the first instruction
at the top of the DO loop uses that same address register. The top instruction becomes
the following instruction because of the loop construct. The DSP assembler will gener-
ate a warning if this condition is detected.

A.8.7 Fast Interrupt Routines
The following instructions may not be used in a fast interrupt routine:

In a fast interrupt routine DO
ENDDO
RTI
RTS
MOVEC to LA, LC, SSH, SSL, SP, or SR
MOVEM to LA, LC, SSH, SSL, SP, or SR
MOVEP to LA, LC, SSH, SSL, SP, or SR
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ORI MR or ORI CCR
ANDI MR or ANDI CCR
STOP
SWI
WAIT
A - 237 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

A.8.8 REP Restrictions

The REP instruction can repeat any single-word instruction except the REP instruction itself
and any instruction that changes program flow. The following instructions are not allowed to
follow an REP instruction:

Immediately after REP DO
Jcc
JCLR
JMP
JSET
JScc
JSCLR
JSR
JSSET
REP
RTI
RTS
STOP
SWI
WAIT
ENDDO

Also, an REP instruction cannot be the last instruction in a DO loop (at LA).

A.9 INSTRUCTION ENCODING

This section summarizes instruction encoding for the DSP56000/DSP56001 instruction set.
The instruction codes are listed in nominally descending order. The symbols used in decod-
ing the various fields of an instruction are identical to those used in the Opcode section of the
individual instruction descriptions. The user should always refer to the actual instruction
description for complete information on the encoding of the various fields of that instruction.

Section A.9.1 gives the encodings for (1) various groupings of registers used in the instruc-
tion encodings, (2) condition code combinations, (3) addressing, and (4) addressing modes.

Section A.9.2 gives the encoding for the parallel move portion of an instruction. These 16-bit
partial instruction codes may be combined with the 8-bit data ALU opcodes listed in Section
A.9.3 to form a complete 24-bit instruction word.

Section A.9.3 gives the complete 24-bit instruction encoding for those instructions which do
not allow parallel moves.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 238

Section A.9.4 gives the encoding for the data ALU portion of those instructions which
allow parallel data moves. These 8-bit partial instruction codes may be combined with the
16-bit parallel move opcodes listed in Section A.9.1 to form a complete 24-bit instruction
word.

Section A.9.5 contains instruction encodings for nonsensical instructions (called insane
instructions) for which encodings exist but which cause problems such as writing two
sources to one destination.

A.9.1 Partial Encodings for Use in Instruction Encoding

* For class II encodings for R:Y and X:R, see Table A - 16

Code d* e f Where:

0 A X0 Y0 d = 2 Accumulators in Data ALU

1 B X1 Y1 e = 2 Registers in Data ALU

f = 2 Registers in Data ALU

Table A-15 Single-Bit Register Encodings

d X:R Class II Opcode R:Y Class II Opcode

0 A ➞ X:<ea> X0 ➞ A Y0 ➞ A A ➞ Y:<ea>

1 B ➞ X:<ea> X0 ➞ B Y0 ➞ B B ➞ Y:<ea>

Table A-16 Single-Bit Special Register Encodings

Code DD ee ff

00 X0 X0 Y0

01 X1 X1 Y1

10 Y0 A A

11 Y1 B B

Where: DD = 4 registers in data ALU
ee = 4 XDB registers in data ALU
ff = 4 YDB registers in data ALU

Table A-17 Double-Bit Register Encodings
A - 239 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Code DDD LLL FFF NNN TTT GGG

000 A0 A10 M0 N0 R0 *

001 B0 B10 M1 N1 R1 SR

010 A2 X M2 N2 R2 OMR

011 B2 Y M3 N3 R3 SP

100 A1 A M4 N4 R4 SSH

101 B1 B M5 N5 R5 SSL

110 A AB M6 N6 R6 LA

111 B BA M7 N7 R7 LC

* Reserved
Where: DDD : 8 accumulators in data ALU

LLL: 8 extended-precision registers in data ALU; LLL field is encoded as L0LL
FFF: 8 address modifier registers in address ALU
NNN: 8 address offset registers in address ALU
TTT: 8 address registers in address
FFF: 8 program controller registers

Table A-18 Triple-Bit Register Encodings

D D D D Description

0 0 X X Reserved

0 1 D D Data ALU Register

1 D D D Data ALU Register

Table A-19(a) Four-Bit Register Encodings for 12 Registers in Data ALU

Mnemonic C C C C Mnemonic C C C C

CC(HS) 0 0 0 0 CS(LO) 1 0 0 0

GE 0 0 0 1 LT 1 0 0 1

NE 0 0 1 0 EQ 1 0 1 0

PL 0 0 1 1 MI 1 0 1 1

NN 0 1 0 0 NR 1 1 0 0

EC 0 1 0 1 ES 1 1 0 1

LC 0 1 1 0 LS 1 1 1 0

GT 0 1 1 1 LE 1 1 1 1

Table A-19(b) Four-Bit Register Encodings for 16 Condition Codes
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 240

e e e e e
or

d d d d d Description

0 0 0 0 X Reserved

0 0 0 1 X Reserved

0 0 1 D D Data ALU Register

0 1 D D D Data ALU Register

1 0 T T T Address ALU Register

1 1 N N N Address Offset Register

Where: eeeee = source
ddddd = destination

Table A-20 Five-Bit Register Encodings for
28 Registers in Data ALU and Address ALU

d d d d d d Description

0 0 0 0 X X Reserved

0 0 0 1 D D Data ALU Register

0 0 1 D D D Data ALU Register

0 1 0 T T T Address ALU Register

0 1 1 N N N Address Offset Register

1 0 0 F F F Address Modifier Register

1 0 1 X X X Reserved

1 1 0 X X X Reserved

1 1 1 G G G Program Controller Register

Table A-21 Six-Bit Register Encodings
for 43 Registers On-Chip

W Operation

0 Read Register or Peripheral

1 Write Register or Peripheral

Table A-22 Write Control Encoding

S Operation

0 X Memory

1 Y Memory

Table A-23 Memory Space Bit Encoding
A - 241 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

E E Register

0 0 MR Mode Register

0 1 CCR Condition Code Register

1 0 OMR Operating Mode Register

1 1 — Reserved

Table A-24 Program Controller Register Encoding

Code Code Definition

c c c c 16 Condition Code Combinations

b b b b b 5-Bit Immediate Data

i i i i i i i i 8-Bit Immediate Data (int, frac, mask)

i i i i i i i i x x x x h h h h 12-Bit Immediate Data (iiii iiii hhhh)

a a a a a a 6-Bit Absolute Short (Low) Address

p p p p p p 6-Bit Absolute I/O (High) Address

a a a a a a a a a a a a 12-Bit Fast Absolute Short (Low) Address

Table A-25 Condition Code and Address Encoding

M M M R R R Code Definition

0 0 0 r r r Post - N

0 0 1 r r r Post + N

0 1 0 r r r Post - 1

0 1 1 r r r Post + 1

1 0 0 r r r No Update

1 0 1 r r r Indexed + N

1 1 1 r r r Pre - 1

1 1 0 0 0 0 Absolute Address

1 1 0 1 0 0 Immediate Data

RRR = three unencoded bits R0, R!, R2
MMM = three unencoded bits M0, m1, m2
NOTES:

(1) R2 is 0 for low register bank and 1 for the high
register bank.

(2) M2 is 0 for all post update modes and 1 other-
wise.

(3) M1 is 0 for update by register offset and 1 for
update by one.

(4) M0 is 0 for minus and 1 for plus.
(5) For X and Y moves, rr is a subfield or rrr with

equations: r2: = R2.
(6) For rr field, r1 is bit 14; r0 is bit 13.
(7) For X and Y moves, mm is a subfield of mmm with

equations: M2: = (M1 v M0) m2: = (m1 v m0).
(8) For mm field, m1 is bit 21; m0 is bit 20. For MM

field, M1 is bit 12; M0 is bit 11.

Table A-26 Effective Addressing Mode Encoding
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 242

A - 243 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

A.9.2 Instruction Encoding for the Parallel Move Portion of an Instruction

X: Y: Parallel Data Move

X: Parallel Data Move

Y: Parallel Data Move

L: Parallel Data Move

I: Immediate Short Parallel Data Move

R: Register to Register Parallel Data Move

23 16 15 8 7 0

1 W m m e e f f W r r M M R R R INSTRUCTION OPCODE

23 16 15 8 7 0

0 1 d d 0 d d d W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 1 d d 0 d d d W 0 a a a a a a INSTRUCTION OPCODE

23 16 15 8 7 0

0 1 d d 1 d d d W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 1 d d 1 d d d W 0 a a a a a a INSTRUCTION OPCODE

23 16 15 8 7 0

0 1 0 0 L 0 L L W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 1 0 0 L 0 L L W 0 a a a a a a INSTRUCTION OPCODE

23 16 15 8 7 0

0 0 1 d d d d d i i i i i i i i INSTRUCTION OPCODE

23 16 15 8 7 0

0 0 1 0 0 0 e e e e e d d d d d INSTRUCTION OPCODE

U: Address Register Update Parallel Data Move

Parallel Data Move NOP

R:Y Parallel Data Move

X:R Parallel Data Move

A.9.3 Instruction Encoding for the Parallel Move Portion of an Instruction

Note: For following bit class instructions bbbbb = 11bbb is reserved:
JSSET, JSCLR, JSET, JCLR, BTST, BCHG, BSET, and BCLR.

JScc xxx

Jcc xxx

JSR xxx

JMP xxx

23 16 15 8 7 0

0 0 1 0 0 0 0 0 0 1 0 M M R R R INSTRUCTION OPCODE

23 16 15 8 7 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 INSTRUCTION OPCODE

23 16 15 8 7 0

0 0 0 1 d e f f W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 1 f f d f W 0 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 1 1 1 C C C C a a a a a a a a a a a a

23 16 15 8 7 0

0 0 0 0 1 1 1 0 C C C C a a a a a a a a a a a a

23 16 15 8 7 0

0 0 0 0 1 1 0 1 0 0 0 0 a a a a a a a a a a a a

23 16 15 8 7 0

0 0 0 0 1 1 0 0 0 0 0 0 a a a a a a a a a a a a
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 244

JScc ea

JSR ea

Jcc ea

JMP ea

JSSET #n,X:pp,xxxx
JSSET #n,Y:pp,xxxx

JSCLR #n,X:pp,xxxx
JSCLR #n,Y:pp,xxxx

JSET #n,X:pp,xxxx
JSET #n,Y:pp,xxxx

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION
A - 245 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

JCLR #n,X:pp,xxxx
JCLR #n,Y:pp,xxxx

JSSET #n,X:ea,xxxx
JSSET #n,Y:ea,xxxx

JSCLR #n,X:ea,xxxx
JSCLR #n,Y:ea,xxxx

JSET #n,X:ea,xxxx
JSET #n,Y:ea,xxxx

JCLR #n,X:ea,xxxx
JCLR #n,Y:ea,xxxx

JSSET #n,X:aa,xxxx
JSSET #n,Y:aa,xxxx

JSCLR #n,X:aa,xxxx

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 246

JSCLR #n,Y:aa,xxxx

JSET #n,X:aa,xxxx
JSET #n,Y:aa,xxxx

JCLR #n,X:aa,xxxx
JCLR #n,Y:aa,xxxx

JSSET #n,S,xxxx

JSCLR #n,S,xxxx

JSET #n,S,xxxx

JCLR #n,S,xxxx

BTST #n,X:pp

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 d d d d d d 0 0 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 d d d d d d 0 0 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 d d d d d d 0 0 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 d d d d d d 0 0 0 b b b b b

ABSOLUTE ADDRESS EXTENSION
A - 247 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

BTST #n,Y:pp

BCHG #n,X:pp
BCHG #n,Y:pp

BSET #n,X:pp
BSET #n,Y:pp

BCLR #n,X:pp
BCLR #n,Y:pp

BTST #n,X:ea
BTST #n,Y:ea

BCHG #n,X:ea
BCHG #n,Y:ea

BSET #n,X:ea
BSET #n,Y:ea

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 1 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 1 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 1 M M M R R R 0 S 1 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 1 M M M R R R 0 S 0 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 1 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 248

BCLR #n,X:ea
BCLR #n,Y:ea

BTST #n,X:aa
BTST #n,Y:aa

BCHG #n,X:aa
BCHG #n,Y:aa

BSET #n,X:aa
BSET #n,Y:aa

BCLR #n,X:aa
BCLR #n,Y:aa

BTST #n,D

BCHG #n,D

BSET #n,D

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 0 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 1 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 1 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 d d d d d d 0 1 1 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 d d d d d d 0 1 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 d d d d d d 0 1 1 b b b b b
A - 249 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

BCLR #n,D

MOVEP X:ea,X:pp
MOVEP Y:ea,X:pp
MOVEP #xxxxxx,X:pp
MOVEP X:pp,X:ea
MOVEP X:pp,Y:ea
MOVEP X:ea,Y:pp
MOVEP Y:ea,Y:pp
MOVEP #xxxxxx,Y:pp
MOVEP Y:pp,X:ea
MOVEP Y:pp,Y:ea

MOVEP P:ea,X:pp
MOVEP X:pp,P:ea
MOVEP P:ea,Y:pp
MOVEP Y:pp,P:ea

MOVEP S,X:pp
MOVEP X:pp,D
MOVEP S,Y:pp
MOVEP Y:pp,D

MOVE(M) S,P:ea
MOVE(M) P:ea,D

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 d d d d d d 0 1 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 0 S W 1 M M M R R R 1 s p p p p p p

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 0 S W 1 M M M R R R 0 1 p p p p p p

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 0 S W 1 d d d d d d 0 0 p p p p p p

23 16 15 8 7 0

0 0 0 0 0 1 1 1 W 1 M M M R R R 1 0 d d d d d d

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 250

MOVE(M) S,P:aa
MOVE(M) P:aa,D

REP #xxx

REP S

REP X:ea
REP Y:ea

REP X:aa
REP Y:aa

DO #xxx,expr

DO S,expr

DO X:ea,expr
DO Y:ea,expr

DO X:aa,expr

23 16 15 8 7 0

0 0 0 0 0 1 1 1 W 0 a a a a a a 0 0 d d d d d d

23 16 15 8 7 0

0 0 0 0 0 1 1 0 i i i i i i i i 1 0 1 0 h h h h

23 16 15 8 7 0

0 0 0 0 0 1 1 0 1 1 d d d d d d 0 0 1 0 0 0 0 0

23 16 15 8 7 0

0 0 0 0 0 1 1 0 0 1 M M M R R R 0 s 1 0 0 0 0 0

23 16 15 8 7 0

0 0 0 0 0 1 1 0 0 0 a a a a a a 0 s 1 0 0 0 0 0

23 16 15 8 7 0

0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 0 h h h h

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION
A - 251 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

DO Y:aa,expr

MOVE(C) #xx,D1

MOVE(C) X:ea,D1
MOVE(C) S1,X:ea
MOVE(C) Y:ea,D1
MOVE(C) S1,Y:ea
MOVE(C) #xxxx,D1

MOVE(C) X:aa,D1
MOVE(C) S1,X:aa
MOVE(C) Y:aa,D1
MOVE(C) S1,Y:aa

MOVE(C) S1,D2
MOVE(C) S2,D1

LUA ea,D

Tcc S1,D1 S2,D2

23 16 15 8 7 0

0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 0 1 0 1 i i i i i i i i 1 0 1 d d d d d

23 16 15 8 7 0

0 0 0 0 0 1 0 1 W 1 M M M R R R 0 s 1 d d d d d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 0 1 0 1 W 0 a a a a a a 0 s 1 d d d d d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 0 1 0 0 W 1 e e e e e e 1 0 1 d d d d d

23 16 15 8 7 0

0 0 0 0 0 1 0 0 0 1 0 M M R R R 0 0 0 1 d d d d

23 16 15 8 7 0

0 0 0 0 0 0 1 1 C C C C 0 t t t 0 J J J D T T T
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 252

Tcc S1,D1

NORM Rn,D

DIV S,D

OR(I) #xx,D

AND(I) #xx,D

ENDDO

STOP

WAIT

RESET

23 16 15 8 7 0

0 0 0 0 0 0 1 0 C C C C 0 0 0 0 0 J J J D 0 0 0

23 16 15 8 7 0

0 0 0 0 0 0 0 1 1 1 0 1 1 R R R 0 0 0 1 d 1 0 1

23 16 15 8 7 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 J J d 0 0 0

23 16 15 8 7 0

0 0 0 0 0 0 0 0 i i i i i i i i 1 1 1 1 1 0 E E

23 16 15 8 7 0

0 0 0 0 0 0 0 0 i i i i i i i i 1 0 1 1 1 0 E E

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
A - 253 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

RTS

SWI

RTI

NOP

A.9.4 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions which allow parallel moves is divided
into the multiply and nonmultiply instruction encodings shown in the following subsection.

Multiply Instruction Encoding

The 8-bit operation code for multiply instructions allowing parallel moves has different
fields than the nonmultiply instruction’s operation code.

The 8-bit operation code=1QQQ dkkk where QQQ=selects the inputs to the multiplier
kkk = three unencoded bits k2, k1, k0
d = destination accumulator
d = 0 ➞ A
d = 1 ➞ B

23 16 15 8 7 0

0 1 1 0 0

23 16 15 8 7 0

0 1 1 0

23 16 15 8 7 0

0 1 0 0

23 16 15 8 7 0

0 0

Code k2 k1 k0

0 positive mpy only don’t round

1 negative mpy and acc round

Table A-27 Operation Code K0-2 Decode
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 254

MACR (±) S1,S2,D
MACR (±) S2,S1,D

MAC (±) S1,S2,D
MAC (±) S2,S1,D

MPYR (±) S1,S2,D
MPYR (±) S2,S1,D

MPY (±) S1,S2,D
MPY (±) S2,S1,D

Q Q Q S1 S2

0 0 0 X0 X0

0 0 1 Y0 Y0

0 1 0 X1 X0

0 1 1 Y1 Y0

1 0 0 X0 Y1

1 0 1 Y0 X0

1 1 0 X1 Y0

1 1 1 Y1 X1

NOTE: S1 and S2 are the inputs to the multiplier.

Table A-28 Operation Code QQQ Decode

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 255 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Nonmultiply Instruction Encoding

The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields
defining which instruction the operation code represents and one bit defining the destina-
tion accumulator register.

The 8-bit operation code = 0JJJ Dkkk where JJJ=1/2 instruction number
kkk=1/2 instruction number
D=0 ➞ A
D=1 ➞ B

For JJJ=010 and 011, k1 qualifies source register selection:

JJJ
D = 0
Src

Oper

D = 1
Src

Oper

kkk

000 001 010 011 100 101 110 111

000 B A MOVE1 TFR ADDR TST * CMP SUBR CMPM

001 B A ADD RND ADDL CLR SUB * SUBL NOT

0102 B A — — ASR LSR — — ABS ROR

0112 B A — — ASL LSL — — NEG ROL

0102 X1X0 X1X0 ADD ADC — — SUB SBC

0112 Y1Y0 Y1Y0 ADD ADC — — SUB SBC

100 X0_0 X0_0 ADD TFR OR EOR SUB CMP AND CMPM

101 Y0_0 Y0_0 ADD TFR OR EOR SUB CMP AND CMPM

110 X1_0 X1_0 ADD TFR OR EOR SUB CMP AND CMPM

111 Y1_0 Y1_0 ADD TFR OR EOR SUB CMP AND CMPM

NOTES:
* = Reserved
1 = Special Case #1 (See Table A - 30)
2 = Special Case #2 (See Table A - 31)

Table A-29 Nonmultiply Instruction Encoding

O P E R C O D E Operation

0 0 0 0 0 0 0 0 MOVE

0 0 0 0 1 0 0 0 Reserved

Table A-30 Special Case #1

0 J J J d k k k Operation

0 0 1 0 x x 0 x Selects X1X0

0 0 1 1 x x 0 x Selects Y1Y0

0 0 1 x x x 1 x Selects A/B

Table A-31 Special Case #2
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 256

CMPM S1,S2

AND S,D

CMP S1,S2

SUB S,D

EOR S,D

OR S,D

TFR S,D

ADD S,D

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 1 J J d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 1 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 1 J J d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 1 J J d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 257 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SBC S,D

ADC S,D

ROL D

NEG D

LSL D

ASL D

ROR D

ABS D

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 258

LSR D

ASR D

NOT D

SUBL S,D

CLR D

ADDL S,D

RND D

SUBR S,D

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 259 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

TST D

ADDR S,D

ILLEGAL

MOVE S,D

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 4 3 0

0 1 0 1

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA DSP56000/DSP56001 USER’S MANUAL A - 260

A - 261 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

APPENDIX B
BENCHMARK PROGRAMS

Table B-1 and Table B-2 provide benchmark numbers for 18 common DSP programs.
The two tables are identical except that Table B-1 is for the 20.5-MHz DSP56001 and
Table B-2 is for the 27-MHz DSP56001. The following four code examples (Figures B-1
to B-4) are representative of the benchmark programs shown in Tables B-1 and B-2. The
code for these and other programs is free and available through the Dr. BuB electronic
bulletin board. Figure B-1 is the code for the 20-tap FIR filter shown in Tables B-1 and B-
2. Figure B-2 is the code for an FFT using a triple nested DO LOOP. Although this code
is easier to understand and very compact, it is not as fast as the code used for the
benchmarks shown in Tables B-1 and B-2, which are highly optimized using the symme-
try of the FFT and the parallelism of the DSP. Figure B-3 is the code for the 8-pole cas-
caded canonic biquad IIR filter, which uses four coefficients (see Tables B-1 and B-2).
Figure B-4 is the code for a 2N delayed least mean square (LMS) FIR adaptive filter,
which is useful for echo cancelation and other adaptive filtering applications.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL B - 1

Benchmark Program
Sample Rate

(Hz) or
Execution Time

Memory
Size

(Words)

Number of
Clock
Cycles

20 - Tap FIR Filter 379.6 kHz 50 54

64 - Tap FIR Filter 144.4 kHz 138 142

67 - Tap FIR Filter 138.5 kHz 144 148

8 - Pole Cascaded Canonic
Biquad IIR Filter (4x)

410.0 kHz 40 50

8 - Pole Cascaded Canonic
Biquad IIR Filter (5x)

353.5 kHz 45 58

8 - Pole Cascaded Transpose
Biquad IIR Filter

292.9 kHz 48 70

Dot Product 585.4 ns 10 12

Matrix Multiply 2x2
times 2x2

2.049 µs 33 42

Matrix Multiply 3x3
times 3x1

1.659 µs 29 34

M - to - M FFT
64 Point

129.5 µs 489 2655

M - to - M FFT
256 Point

645.1 µs 1641 13255

M - to - M FFT
1024 Point

3.231 ms 6793 66240

P - to - M FFT
64 Point

121.9 µs 704 2499

P - to - M FFT
256 Point

458.2 µs 2048 9394

P - to - M FFT
1024 Point

1.958 ms 7424 40144

Table B-1 20.5-MHz Benchmark Results for the DSP56001R20
B - 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Benchmark Program
Sample Rate

(Hz) or
Execution Time

Memory
Size

(Words)

Number of
Clock
Cycles

20 - Tap FIR Filter 500.0 kHz 50 54

64 - Tap FIR Filter 190.1 kHz 138 142

67 - Tap FIR Filter 182.4 kHz 144 148

8 - Pole Cascaded Canonic
Biquad IIR Filter (4x)

540.0 kHz 40 50

8 - Pole Cascaded Canonic
Biquad IIR Filter (5x)

465.5 kHz 45 58

8 - Pole Cascaded Transpose
Biquad IIR Filter

385.7 kHz 48 70

Dot Product 444.4 ns 10 12

Matrix Multiply 2x2
times 2x2

1.556 µs 33 42

Matrix Multiply 3x3
times 3x1

1.259 µs 29 34

M-to-M FFT
64 Point

98.33 µs 489 2655

M-to-M FFT
256 Point

489.8 µs 1641 13255

M-to-M FFT
1024 Point

2.453 ms 6793 66240

P-to-M FFT
64 Point

92.56 µs 704 2499

P-to-M FFT
256 Point

347.9 µs 2048 9394

P-to-M FFT
1024 Point

1.489 ms 7424 40144

Table B-2 27-MHz Benchmark Results for the DSP56001R27
MOTOROLA DSP56000/DSP56001 USER’S MANUAL B - 3

page 132,66,0,6
opt rc

;**
;Motorola Austin DSP Operation June 30, 1988
;**
;DSP56000/1
;20 - tap FIR filter
;File name: 1-56.asm
;***
; Maximum sample rate: 379.6 kHz at 20.5 MHz/500.0 kHz at 27.0 MHz
; Memory Size: Prog: 4+6 words; Data: 2x20 words
; Number of clock cycles: 54 (27 instruction cycles)
; Clock Frequency: 20.5 MHz/27.0 MHz
; Instruction cycle time: 97.6 ns/74.1 ns
;***
; This FIR filter reads the input sample
; from the memory location Y:input
; and writes the filtered output sample
; to the memory location Y:output
;
; The samples are stored in the X memory
; The coefficients are stored in the Y memory
;**
; X MEMORY Y MEMORY
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

R0
X(n)

X(n-1)
t

t+T
X(n-k+1) X(n+1)

t,t+T
c(0)

c(1)

c(k-1)

C(0)

X
x(n)

X

C(1)

X

C(2)

X

C(K-1)

FIR

T

T

T

y n() c p() n p–()×
p 0=

k 1–

∑=

+
y(n)

Figure B-1 20-Tap FIR Filter Example (Sheet 1 of 2)
B - 4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

;
;
;
;***
;
; initialization
;**
n equ 20
start equ $40
wddr equ $0
cddr equ $0
input equ $ffe0
output equ $ffe1
;

org p:start
move #wddr,r0 ;r0 ➡ samples
move #cddr,r4 ;r1 ➡ coefficients
move #n-1,m0 ;set modulo arithmetic
move m0,m4 ;for the 2 circular buffers

;
opt cc

; filter loop :8+(n-1) cycles
;**

movep y:input,x: (r0) ;input sample in memory
clr a x:(r0)+,x0 y: (r4)+,y0

rep #n-1
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0
macr x0,x0,a (r0)-

movep a,y:output ;output filtered sample
;***

end

Figure B-1 20-Tap FIR Filter Example (Sheet 2 of 2)
MOTOROLA DSP56000/DSP56001 USER’S MANUAL B - 5

;This program originally available on the Motorola DSP bulletin board.
;It is provided under a DISCLAIMER OF WARRANTY available from
;Motorola DSP Operation, 6501 William Cannon Drive, Austin, TX, 78735
;
;Radix-2, In-Place, Decimation-In-Time FFT (smallest code size).
;
;Last Update 30 Sep 86 Version 1.1
;
fftr2a macro points,data,coef
fftr2a ident 1,1
;
;Radix-2 Decimation-In-Time In-Place FFT Routine
;
; Complex input and output data
; Real data in X memory
; Imaginary data in Y memory
; Normally ordered input data
; Bit reversed output data
; Coefficient lookup table
; -Cosine values in X memory
; -Sine values in Y memory
;
;Macro Call — ffr2a points,data,coef
;
; points number of points (2-32768, power of 2)
; data start of data buffer
; coef start of sine/cosine table
;
;Alters Data ALU Registers
; x1 x0 y1 y0
; a2 a1 a0 a
; b2 b1 b0 b
;
;Alters Address Registers
; r0 n0 m0
; r1 n1 m1
; n2
;
; r4 n4 m4
; r5 n5 m5
; r6 n6 m6
‘
‘Alters Program Control Registers
; pc sr
;
;Uses 6 locations on System Stack
;

Figure B-2 Radix 2, In-Place, Decimation-In-Time FFT (Sheet 1 of 2)
B - 6 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

;Latest Revision — September 30, 1986
;

move #points/2,n0 ;initialize butterflies per group
move #1,n2 ;initialize groups per pass
move #points/4,n6 ;initialize C pointer offset
move #-1,m0 ;initialize A and B address modifiers
move m0,m1 ;for linear addressing
move m0,m4
move m0,m5
move #0,m6 ;initialize C address modifier for

;reverse carry (bit-reversed) addressing
;
;Perform all FFT passes with triple nested DO loop
;

do #@cvi (@log(points)/@log(2)+0.5),_end_pass
move #data,r0 ;initialize A input pointer
move r0,r4 ;initialize A output pointer
lua (r0)+n0,r1 ;initialize B input pointer
move #coef,r6 ;initialize C input pointer
lua (r1)-,r5 ;initialize B output pointer
move n0,n1 ;initialize pointer offsets
move n0,n4
move n0,n5

do n2,_end_grp
move x:(r1),X1 y:(r6),y0 ;lookup -sine and

; -cosine values
move x:(r5),a y:(r0),b ;preload data
move x:(r6)+n6,x0 ;update C pointer

do n0,_end_bfy
mac x1,y0,b y:(r1)+,y1 ;Radx 2 DIT

;butterfly kernel
macr -x0,y1,b a,x:(r5)+ y:(r0),a
subl b,a x:(r0),b b,y:(r4)
mac -x1,x0,b x:(r0)+,a a,y:(r5)
macr -y1,y0,b x:(r1),x1
subl b,a b,x:(r4)+ y:(r0),b

_end_bfy
move a,x:(r5)+n5 y:(r1)+n1,y1 ;update A and B pointers
move x:(r0)+n0,x1 y:(r4)+n4,y1

_end_grp
move n0,b1 ;divide butterflies per group by two
Isr b n2,a1 ;multiply groups per pass by two
IsI a b1,n0
move a1,n2

_end_pass
endm

Figure B-2 Radix 2, In-Place, Decimation-In-Time FFT (Sheet 2 of 2)
MOTOROLA DSP56000/DSP56001 USER’S MANUAL B - 7

;
;
*
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

page 132,66,0,6
opt rc

**
Motorola Austin DSP Operation June 30, 1988
**
DSP56000/1
8-pole 4-multiply cascaded canonic IIR filter
File name: 4-56.asm
**

Maximum sample rate: 410.0 kHz at 20.5 MHz/540.0 kHz at 27.0 MHz
Memory Size: Prog: 6+10 words; Data: 4(2+4) words
Number of clock cycles: 50 (25 instruction cycles)
Clock Frequency: 20.5 MHz/27.0 MHz
Instruction cycle time: 97.5 ns/74.1 ns

**
This IIR filter reads the input sample
from the memory location Y:input
and writes the filtered output sample
to the memory location Y:output

The samples are stored in the X memory
The coefficients are stored in the Y memory

The equations of the filter are:
w(n)= x(n)-ai1*w(n-1)-ai2*w(n-2)
y(n)= w(n)+bi1*w(n-1)+bi2*w(n-2)

(-) (+)x(n) y(n)
w(n)

ai1

ai2

bi1

bi2

w(n-1)

w(n-2)

1/z

1/z

Figure B-3 8-Pole 4-Multiply Cascaded Canonic IIR Filter (Sheet 1 of 2)
B - 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

; All coefficients are divided by 2:
; w(n)/2=x(n)/2-ai1/2*w(n-1)-ai2/2*w(n-2)
; y(n)/2=w(n)/2+bi1/2*w(n-1)+bi2/2*w(n-2)
;
; X Memory Organization Y Memory Organization
; b1N/2 Coef. + 4*nsec - 1
; b2N/2
; a1N/2
; a2N/2
; wN(n-1) Data + 2*nsec - 1 •
; wN(n-2) •
; • b11/2
; • b21/2
; w1(n-1) a11/2
; R0 ➡ w1(n-2) Data R4 ➡ a21/2 Coef.
;
;
;**

;
; initialization
;*************************************
nsec equ 4
start equ $40
data equ 0
coef equ 0
input equ $ffe0
output equ $ffe1
igain equ 0.5

ori #$08,mr ;set scaling mode
move #data,r0 ;point to filter states
move #coef,r4 ;point to filter coefficients
move #2*nsec - 1,m0
move #4*nsec - 1,m4
move #igain,y1 ;y1=initial gain

opt cc
; filter loop: 4*nsec + 9
;***

movep y:input,y0 ;get sample
mpy y0,y1,a x:(r0) +,x0 y:(r4)+,y0 ;x0=1st section w(n-2),y0=ai2/2

;
do #nsec,end_cell ;do each section
mac -x0,y0,a x:(r0) -,x1 y:(r4) +,y0 ;x1=w(n-1),y0=ai1/2
macr -x1,y0,a x1,x:(r0) + y:(r4) +,y0 ;push w(n-1) to w(n-2),y0=bi2/2
mac x0,y0,a a,x:(r0)+ y:(r4) +,y0 ;push w(n) to w(n-1),y0=bi1/2
mac x1,y0,a x:(r0) +,x0 y:(r4) +,y0 ;next iter:x0=w(n-2),y0=ai2/2

end_cell
rnd a ;round result
movep a,y:output ;output sample

;**
end

Figure B-3 8-Pole 4-Multiply Cascaded Canonic IIR Filter (Sheet 2 of 2)
MOTOROLA DSP56000/DSP56001 USER’S MANUAL B - 9

B - 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

page 132,60,1,1
;newlms2n.asm
; New Implementation of the delayed LMS on the DSP56000 Revision C
;Memory map:
; Initial X H
; x(n) x(n-1) x(n-2) x(n-3) x(n-4) hx h0 h1 h2 h3
;]]]
; r0 r5 r4
;hx is an unused value to make the calculations faster.
;

opt cc
ntaps equ 4
input equ $FFC0
output equ $FFC1

org x:$0
state ds 5

org y:$0
coef ds 5
;

org p:$40
move #state,r0 ;start of X
move #2,n0
move #ntaps,m0 ;mod 5
move #coef +1,r4 ;coefficients
move #ntaps,m4 ;mod 5
move #coef,r5 ;coefficients
move m4,m5 ;mod 5

_smploop ; Prog Icyc
movep y:input,a ;get input sample word
move a,x:(r0) ;save input sample 1 1

;error signal is in y1
;FIR sum in a=a+h(k) old*x(n-k)
;h(k)new in b=h(k)old + error*x(n-k-1)

cir a x:(r0)+,x0 ;x0=x(n) 1 1
move x:(r0)+,x1 y:(r4)+,y0 ;x1=x(n-1),y0=h(0) 1 1
do #taps/2,_lms ; 2 3
mac x0,y0,a y0,b b,y:(r5)+ ;a=h(0)*x(n),b=h(0) 1 1
macr x1,y1,b x:(r0)+,x0 y:(r4)+,y0 ;b=h(0)+e*x(n-1)=h(0)new 1 1

;x0=x(n-2) y0=h(1)
mac x1,y0,a y0,b b,y:(r5)+ ;a=a+h(1)*x(n-1) b=h(1) 1 1
macr x0,y1,b x:(r0)+,x1 y:(r4)+,y0 ;b=h(1)+e*x(n-2) 1 1

; ;x1=x(n-3) y0=H(2)
_lms

move b,y:(r5)+ ;save last new c() 1 1
move (r0) -n0 ;pointer update 1 1

;(Get d(n), subtract fir output (reg a), multiply by “u”, put
;the result in y1. This section is application dependent.)

movep a,y:output ;output fir if desired
jmp _smploop
end ; ___________

; Totals: 11 2N+8

Figure B-4 LMS FIR Adaptive Filter
MOTOROLA DSP56000/DSP56001 USER’S MANUAL B - 11

B - 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

APPENDIX C
ADDITIONAL SUPPORT

User support from the conception of a design through completion is available from Motor-
ola and third-party companies as shown in the following list:

Motorola Third Party

Design Data Sheets Data Acquisition Packages
Application Notes Filter Design Packages
Application Bulletins Operating System Software
Software Examples
Simulator

Prototyping Assembler Logic Analyzer with
Linker DSP56000/DSP56001 ROM Packages
C Compiler In-Circuit Emulators
Simulator Data Acquisition Cards
Application Development DSP Development System Cards

System (ADS) Operating System Software
In-Circuit Emulator Debug Software

Cable for ADS

Design Application Development Data Acquisition Packages
Verification System (ADS) Logic Analyzer with

In-Circuit Emulator DSP56000/DSP56001 ROM Packages
Simulator Data Acquisition Cards

DSP Development System Cards
Application-Specific Development Tools
Debug Software
MOTOROLA DSP56000/DSP56001 USER’S MANUAL C - 1

The following is a partial list of the support available for the DSP56000/DSP56001. Additional
information can be obtained through Dr. BuB or the appropriate support telephone service.

Motorola DSP Product Support

• DSP56000CLASx Design-In Software Package which includes:

Relocatable Macro Assembler

Linker

Simulator (simulates single or multiple DSP56000/DSP56001s)

Librarian

• DSP56KCCx Full Kernighan and Ritchie C Compiler

• DSP320to56001 Translator Software

• DSP56000/DSP56001 Applications Development System (ADS)

• Support Integrated Circuits

• DSP Bulletin Board (Dr. BuB)

• Motorola DSP Newsletter

• Motorola Field Application Engineers (FAEs)
See your local telephone directory for the Motorola Semiconductor Sector
sales office telephone number.

• Design Hotline

• Applications Assistance

• Marketing Information

• Third-Party Support Information

• University Support Information

DSP56000CLASx Assembler/Simulator

The macro cross assembler and simulator run on:

1. IBM PCs (386 or better)

2. Macintosh under MAC OS 4.1 or later

3. SUN-4 under UNIX BSD 4.2

IBM is a trademark of International Business Machines.
Macintosh is a trademark of Apple Computer, Inc.
SUN-4 is a trademark of SUN Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Labratories.
C - 2 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Macro Cross Assembler Features:

• Production of relocatable object modules compatible with linker program when in
relocatable mode

• Production of absolute files compatible with simulator program when in absolute
mode

• Supports full instruction set, memory spaces, and parallel data transfer fields of
the DSP56000/DSP56001

• Modular programming features: local labels, sections, and external definition/ref-
erence directives

• Nested macro processing capability with support for macro libraries

• Complex expression evaluation including boolean operators

• Built-in functions for data conversion, string comparison, and common transcen-
dental math functions

• Directives to define circular and bit-reversed buffers

• Extensive error checking and reporting

Simulator Features:

• Simulation of all DSP56001 (default) or DSP56000

• Simulation of multiple DSP56000/DSP560001s

• Linkable object code modules:
–Nondisplay simulator library
–Display simulator library

• C language source code for:
–Screen management functions
–Terminal I/O functions
–Simulation examples

• Single stepping through object programs

• Up to 99 conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Instruction, clock cycle, and histogram counters

• Session and/or command logging for later reference

• ASCII input/output files for peripherals

• Help-file and help-line display of simulator commands

• Loading and saving of files to/from simulator memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Hexadecimal/decimal/binary calculator
MOTOROLA DSP56000/DSP56001 USER’S MANUAL C - 3

C Language Compiler

DSP56KCCx Language Compiler Features:

• Full Kernighan and Ritchie C

• Structures/Unions

• Floating Point

• In-line assembler language code compatibility

• Full Function preprocessor for:
— Macro definition/expansion
— File Inclusion
— Conditional compilation

• Full error detection and reporting

DSP320to56001 Translator

DSP320to56001 Translator Features:

• Translates any TMS32010 linked object code to DSP56001 source
 assembler code

• Two modes of operation:
— Translates to DSP56001 source assembler code for optimization and

assembly using DSP56000CLASx
— Translates and runs “as is” directly and immediately on the DSP56000ADSx

• C language DSP320to56001 source code is provided in addition to IBM PC/XT/AT
object code to allow:

— User modification for TMS32020 or TMS320C25 translation
— User compilation to accommodate different host platforms

DSP56000ADSx Application Development System

DSP56000ADS Application Development System Hardware Features:

• Full-speed 20.48 MHz operation (upgradeable to 27 MHz)

• Multiple application development module (ADM) support with programmable ADM
addresses

• 8K/32Kx24 user-configurable RAM for DSP56000/DSP56001 code development

• 1Kx24 monitor ROM expandable to 4Kx24

• 96-pin Euro-card connector making all DSP56001 pins accessible

• In-circuit emulation capabilities when used with the DSP56KEMULTRCABL cable

• Separate berg pin connectors for alternate accessing of serial or host/DMA ports

• ADM can be used in stand-alone configuration

• No external power supply needed when connected to a host platform
C - 4 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

DSP56000ADSx Application Development System Software Features:

• Single/multiple stepping through DSP56000/DSP56001 object programs

• Up to 99 conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Session and/or command logging for later reference

• Loading and saving files to/from ADM memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Debug commands supporting multiple ADMs

• Hexadecimal/decimal/binary calculator

• Host operating system commands from within ADS user interface program

• Multiple OS I/O file access from DSP56000/DSP56001 object programs

• Fully compatible with the DSP56000CLASx design-in software package

• On-line help screens for each command and DSP56000/DSP56001 register

Support Integrated Circuits:

• 8Kx24 Static RAM

• DSP56ADC16 16-bit, 100-kHz analog-to-digital converter

Dr. BuB Electronic Bulletin Board

Dr. BuB is an electronic bulletin board which provides free source code for a large variety
of topics that can be used to develop applications with Motorola DSP products. The
software library contains files including FFTs, FIR filters, IIR filters, lattice filters, matrix
algebra routines, companding routines, floating-point routines, a software debug monitor,
and others. In addition, the latest product information and documentation (including
information on new products and improvements to existing products) is posted. Questions
about Motorola DSP products posted on Dr. BuB are answered promptly. The following
phone numbers provide access to Dr. BuB:

(212A – 300/1200 Baud) . (512) 891-DSP1

(V.22 – 1200 Baud) . (512) 891-DSP2

(V.22bis – 2400 Baud) . (512) 891-DSP3

Format: 7 data bits, even parity, 1 stop bit

User ID=guest
MOTOROLA DSP56000/DSP56001 USER’S MANUAL C - 5

The following is a partial list of the software available on Dr. BuB.

Codec Routines:

loglin.asm 1.0 Companded CODEC to linear PCM data 4572
conversion

loglin.hlp Help for loglin.asm 1479

loglint.asm 1.0 Test program for loglin.asm 2184
loglint.hlp Help for loglint.asm 1993

linlog.asm 1.1 Linear PCM to companded CODEC data 4847
conversion

linlog.hlp Help for linlog.asm 1714

Fast Fourier Transforms:

sincos.asm 1.2 Sine-Cosine Table Generator for FFTs 1185
sincos.hlp Help for sincos.asm 887

sinewave.asm 1.1 Full-Cycle Sine wave Table Generator Macro 1029
sinewave.hlp Help for sinewave.asm 1395

fftr2a.asm 1.1 Radix 2, In-Place, DIT FFT (smallest) 3386
fftr2a.hlp Help for fftr2a.asm 2693

fftr2at.asm 1.1 Test Program for FFTs (fftr2a.asm) 999
fftr2at.hlp Help for fftr2at.asm 563

fftr2b.asm 1.1 Radix 2, In-Place, DIT FFT (faster) 4290
fftr2b.hlp Help for fftr2b.asm 3680

fftr2c.asm 1.2 Radix 2, In-Place, DIT FFT (even faster) 5991
fftr2c.hlp Help for fftr2c.asm 3231

fftr2d.asm 1.0 Radix 2, In-Place, DIT FFT 3727 (using 3727
DSP56001 sine-cosine ROM tables)

fftr2d.hlp Help for fftr2d.asm 3457

fftr2dt.asm 1.0 Test program for fftr2d.asm 1287
fftr2dt.hlp Help for fftr2dt.asm 614

Document ID Version Synopsis Size
C - 6 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

fftr2e.asm 1.0 1024 Point, Non-In-Place, FFT (3.39ms) 8976
fftr2e.hlp Help for fftr2e.asm 5011

fftr2et.asm 1.0 Test program for fftr2e.asm 984
fftr2et.hlp Help for fftr2et.asm 408

dct1.asm 1.2 Discrete Cosine Transform using FFT 5471
dct1.hlp 1.1 Help file for dct1.asm 970

fftr2cc.asm 1.0 Radix 2, In-place Decimation-in-time 6524
complex FFT macro

fftr2cc.hlp 1.0 Help file for fftr2cc.asm 3533

fftr2cn.asm 1.0 Radix 2, Decimation-in-time complex FFT 6584
macro with normally ordered input/output

fftr2cn.hlp 1.0 Help file for fftr2cn.asm 2468

fftr2en.asm 1.0 1024 point, not-in-place, complex FFT 9723
macro with normally ordered input/output

fftr2en.hlp 1.0 Help file for fftr2en.asm 4886

dhit1.asm 1.0 Routine to compute Hilbert transform 1851
in the frequency domain

Filters:

fir.asm 1.0 Direct Form FIR Filter 545
fir.hlp Help for fir.asm 2161

firt.asm 1.0 Test program for fir.asm 1164

iir1.asm 1.0 Direct Form Second Order All-Pole 656
IIR Filter

iir1.hlp Help for iir1.asm 1786

iir1t.asm 1.0 Test program for iir1.asm 1157

iir2.asm 1.0 Direct Form Second Order All-Pole 801
IIR Filter with Scaling

iir2.hlp Help for iir2.asm 2286

Document ID Version Synopsis Size
MOTOROLA DSP56000/DSP56001 USER’S MANUAL C - 7

iir2t.asm 1.0 Test program for iir2.asm 1311

iir3.asm 1.0 Direct Form Arbitrary Order All-Pole 776
IIR Filter

iir3.hlp Help for iir3.asm 2605

iir3t.asm 1.0 Test program for iir3.asm 1309

iir4.asm 1.0 Second Order Direct Canonic IIR Filter 713
(Biquad IIR Filter)

iir4.hlp Help for iir4.asm 2255

iir4t.asm 1.0 Test program for iir4.asm 1202

iir5.asm 1.0 Second Order Direct Canonic IIR Filter 842
with Scaling (Biquad IIR Filter)

iir5.hlp Help for iir5.asm 2803

iir5t.asm 1.0 Test program for iir5.asm 1289

iir6.asm 1.0 Arbitrary-Order Direct Canonic IIR Filter 923
iir6.hlp Help for iir6.asm 3020

iir6t.asm 1.0 Test program for iir6.asm 1377

iir7.asm 1.0 Cascaded Biquad IIR Filters 900
iir7.hlp Help for iir7.asm 3947

iir7t.asm 1.0 Test program for iir7.asm 1432

lms.hlp 1.0 LMS Adaptive Filter Algorithm 5818

transiir.asm 1.0 Implements the transposed IIR filter 1981

transiir.hlp 1.0 Help file for transiir.asm 974

Floating-Point Routines:

fpdef.hlp 2.0 Storage format and arithmetic 10600
representation definition

fpcalls.hlp 2.1 Subroutine calling conventions 11876

fplist.asm 2.0 Test file that lists all subroutines 1601

fprevs.hlp 2.0 Latest revisions of floating-point lib 1799

Document ID Version Synopsis Size
C - 8 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

fpinit.asm 2.0 Library initialization subroutine 2329

fpadd.asm 2.0 Floating-point add 3860

fpsub.asm 2.1 Floating-point subtract 3072

fpcmp.asm 2.1 Floating-point compare 2605

fpmpy.asm 2.0 Floating-point multiply 2250

fpmac.asm 2.1 Floating-point multiply-accumulate 2712

fpdiv.asm 2.0 Floating-point divide 3835

fpsqrt.asm 2.0 Floating-point square root 2873

fpneg.asm 2.0 Floating-point negate 2026

fpabs.asm 2.0 Floating-point absolute value 1953

fpscale.asm 2.0 Floating-point scaling 2127

fpfix.asm 2.0 Floating- to fixed-point conversion 3953

fpfloat.asm 2.0 Fixed- to floating-point conversion 2053

fpceil.asm 2.0 Floating-point CEIL subroutine 1771

durbin.asm 1.0 Solution for LPC coefficients 5615

durbin.hlp 1.0 Help file for DURBIN.ASM 2904

fpfrac.asm 2.0 Floating-point FRACTION subroutine 1862

Functions:

log2.asm 1.0 Log base 2 by polynomial approximation 1118
log2.hlp Help for log2.asm 719

log2t.asm 1.0 Test program for log2.asm 1018

log2nrm.asm 1.0 Normalizing base 2 logarithm macro 2262
log2nrm.hlp Help for log2nrm.asm 676

log2nrmt.asm 1.0 Test program for log2nrm.asm 1084

exp2.asm 1.0 Exponential base 2 by polynomial 926
approximation

exp2.hlp Help for exp2.asm 759

exp2t.asm 1.0 Test program for exp2.asm 1019

sqrt1.asm 1.0 Square Root by polynomial 991
approximation, 7 bit accuracy

sqrt1.hlp Help for sqrt1.asm 779

Document ID Version Synopsis Size
MOTOROLA DSP56000/DSP56001 USER’S MANUAL C - 9

sqrt1t.asm 1.0 Test program for sqrt1.asm 1065

sqrt2.asm 1.0 Square Root by polynomial 899
approximation, 10 bit accuracy

sqrt2.hlp Help for sqrt2.asm 776

sqrt2t.asm 1.0 Test program for sqrt2.asm 1031

sqrt3.asm 1.0 Full precision Square Root Macro 1388
sqrt3.hlp Help for sqrt3.asm 794

sqrt3t.asm 1.0 Test program for sqrt3.asm 1053

tli.asm 1.1 Linear table lookup/interpolation 3253
routine for function generation

tli.hlp 1.1 Help for tli.asm 1510

bingray.asm 1.0 Binary to Gray code conversion macro 601

bingrayt.asm 1.0 Test program for bingray.asm 991

rand1.asm 1.1 Pseudo Random Sequence Generator 2446
rand1.hlp Help for rand1.asm 704

Lattice Filters:

latfir1.asm 1.0 Lattice FIR Filter Macro 1156
latfir1.hlp Help for latfir1.asm 6327

latfir1t.asm 1.0 Test program for latfir1.asm 1424

latfir2.asm 1.0 Lattice FIR Filter Macro 1174
(modified modulo count)

latfir2.hlp Help for latfir2.asm 1295

latfir2t.asm 1.0 Test program for latfir2.asm 1423

latiir.asm 1.0 Lattice IIR Filter Macro 1257
latiir.hlp Help for latiir.asm 6402

latiirt.asm 1.0 Test program for latiir.asm 1407
C - 10 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

latgen.asm 1.0 Generalized Lattice FIR/IIR Filter Macro 1334
latgen.hlp Help for latgen.asm 5485

latgent.asm 1.0 Test program for latgen.asm 1269

latnrm.asm 1.0 Normalized Lattice IIR Filter Macro 1407
latnrm.hlp Help for latnrm.asm 7475

latnrmt.asm 1.0 Test program for latnrm.asm 1595

Matrix Operations:

matmul1.asm 1.0 [1x3][3x3]=[1x3] Matrix Multiplication 1817
matmul1.hlp Help for matmul1.asm 527

matmul2.asm 1.0 General Matrix Multiplication, C=AB 2650
matmul2.hlp Help for matmul2.asm 780

matmul3.asm 1.0 General Matrix Multiply-Accumulate, 2815
C=AB+Q

matmul3.hlp 1.0 Help for matmul3.asm 865

Reed-Solomon Encoder:

readme.rs 1.0 Instructions for Reed-Solomon coding 5200
rscd.asm 1.0 Reed-Solomon coder for DSP56000 simulator 5822

newc.c 1.0 Reed-Solomon coder coded in C 4075
table1.asm 1.0 Include file for R-S coder 7971
table2.asm 1.0 Include file for R-S coder 4011

Sorting Routines:

sort1.asm 1.0 Array Sort by Straight Selection 1312
sort1.hlp Help for sort1.asm 1908

sort1t.asm 1.0 Test program for sort1.asm 689

sort2.asm 1.1 Array Sort by Heapsort Method 2183
sort2.hlp Help for sort2.asm 2004

sort2t.asm 1.0 Test program for sort2.asm 700

Document ID Version Synopsis Size
MOTOROLA DSP56000/DSP56001 USER’S MANUAL C - 11

Speech:

lgsol1.asm 2.0 Leroux-Gueguen solution for PARCOR 4861
(LPC) coefficients

lgsol1.hlp Help for lgsol1.asm 3971

durbin1.asm 1.2 Durbin Solution for PARCOR 6360
(LPC) coefficients

durbin1.hlp Help for durbin1.asm 3616

Standard I/O Equates:

ioequ.asm 1.1 Motorola Standard I/O Equate File 8774

ioequlc.asm 1.1 Lower Case Version of ioequ.asm 8788

intequ.asm 1.0 Standard Interrupt Equate File 1082

intequlc.asm 1.0 Lower Case Version of intequ.asm 1082

Motorola DSP News

The Motorola DSP News is a quarterly newsletter providing information on new products,
application briefs, questions and answers, DSP product information, third-party product news,
etc. This newsletter is free and is available upon request by calling the marketing information
phone number listed below.

Motorola Field Application Engineers

Information and assistance for DSP applications is available through the local Motorola field
office. See your local telephone directory for telephone numbers.

Design Help Line – 1-800-521-6274

This is the Motorola number for information about any Motorola product.

Document ID Version Synopsis Size
C - 12 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Applications Assistance – (512) 891-3230

Design assistance for specific DSP applications is available by calling this number.

Sales Information

Sales information, including brochures, application notes, manuals, price quotes, etc., for
Motorola DSP-related products is available by calling your local Motorola field office or dealer.

Third-Party Support Information – (512) 891-3098

Information about third-party manufacturers who use and support Motorola DSP products is
available by calling this number. Third-party support includes:

 Filter design software
 Logic analyzer support
 Boards for VME, IBM-PC/XT/AT, MACII boards
 Development systems
 Data conversion cards
 Operating system software
 Debug software
Additional information is available on Dr. BuB and in DSP News.

University Support – (512) 891-3098

Information concerning university support programs and university discounts for all Motorola
DSP products is available by calling this number.

Training Courses – (602) 897-3665

There are two DSP56000 Family training courses available:

1. Introduction to the DSP56000/DSP56001 (MTTA5) is a 4.5-hour audio-tape course on
the DSP56000/DSP56001 architecture and programming.

2. Introduction to the DSP56000/DSP56001 (MTT31) is a four-day instructor-led course
and laboratory which covers the details of the DSP56000/DSP56001 architecture and
programming.

Additional information is available by writing to:

Motorola SPS Training and Technical Operations
Mail Drop EL524
P. O. Box 21007
Phoenix, Arizona 85036

or by calling the number above. A technical training catalog is available which describes these
courses and gives the current training schedule and prices.
MOTOROLA DSP56000/DSP56001 USER’S MANUAL C - 13

Reference Books and Manuals
A list of DSP-related books is included here as an aid for the engineer who is new to the
field of DSP. This is a partial list of DSP references intended to help the new user find
useful information in some of the many areas of DSP applications. Many of the books
could be included in several categories but are not repeated.

General DSP:

ADVANCED TOPICS IN SIGNAL PROCESSING
 Jae S. Lim and Alan V. Oppenheim
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

APPLICATIONS OF DIGITAL SIGNAL PROCESSING
 A. V. Oppenheim
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978

DISCRETE-TIME SIGNAL PROCESSING
 A. V. Oppenheim and R. W. Schafer
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989

DIGITAL PROCESSING OF SIGNALS THEORY AND PRACTICE
 Maurice Bellanger
 New York, NY: John Wiley and Sons, 1984

DIGITAL SIGNAL PROCESSING
 Alan V. Oppenheim and Ronald W. Schafer
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

DIGITAL SIGNAL PROCESSING: A SYSTEM DESIGN APPROACH
 David J. DeFatta, Joseph G. Lucas, and William S. Hodgkiss
 New York, NY: John Wiley and Sons, 1988

FOUNDATIONS OF DIGITAL SIGNAL PROCESSING AND DATA ANALYSIS
 J. A. Cadzow
 New York, NY: MacMillan Publishing Company, 1987

HANDBOOK OF DIGITAL SIGNAL PROCESSING
 D. F. Elliott
 San Diego, CA: Academic Press, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
 John G. Proakis and Dimitris G. Manolakis
 New York, NY: Macmillan Publishing Company, 1988

MULTIRATE DIGITAL SIGNAL PROCESSING
 R. E. Crochiere and L. R. Rabiner
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983
C - 14 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

SIGNAL PROCESSING ALGORITHMS
 S. Stearns and R. Davis
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

SIGNAL PROCESSING HANDBOOK
 C.H. Chen
 New York, NY: Marcel Dekker, Inc., 1988

SIGNAL PROCESSING – THE MODERN APPROACH
 James V. Candy
 New York, NY: McGraw-Hill Company, Inc., 1988

THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING
 Rabiner, Lawrence R., Gold and Bernard
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

Digital Audio and Filters:

ADAPTIVE FILTER AND EQUALIZERS
 B. Mulgrew and C. Cowan
 Higham, MA: Kluwer Academic Publishers, 1988

ADAPTIVE SIGNAL PROCESSING
 B. Widrow and S. D. Stearns
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

ART OF DIGITAL AUDIO, THE
 John Watkinson
 Stoneham. MA: Focal Press, 1988

DESIGNING DIGITAL FILTERS
 Charles S. Williams
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

DIGITAL AUDIO SIGNAL PROCESSING AN ANTHOLOGY
 John Strawn
 William Kaufmann, Inc., 1985

DIGITAL CODING OF WAVEFORMS
 N. S. Jayant and Peter Noll
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL FILTERS: ANALYSIS AND DESIGN
 Andreas Antoniou
 New York, NY: McGraw-Hill Company, Inc., 1979

DIGITAL FILTERS AND SIGNAL PROCESSING
 Leland B. Jackson
 Higham, MA: Kluwer Academic Publishers, 1986
MOTOROLA DSP56000/DSP56001 USER’S MANUAL C - 15

DIGITAL SIGNAL PROCESSING
 Richard A. Roberts and Clifford T. Mullis
 New York, NY: Addison-Welsey Publishing Company, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
 Roman Kuc
 New York, NY: McGraw-Hill Company, Inc., 1988

INTRODUCTION TO ADAPTIVE FILTERS
 Simon Haykin
 New York, NY: MacMillan Publishing Company, 1984

MUSICAL APPLICATIONS OF MICROPROCESSORS (Second Edition)
 H. Chamberlin
 Hasbrouck Heights, NJ: Hayden Book Co., 1985

Controls:

ADAPTIVE CONTROL
 K. Astrom and B. Wittenmark
 New York, NY: Addison-Welsey Publishing Company, Inc., 1989

ADAPTIVE FILTERING PREDICTION & CONTROL
 G. Goodwin and K. Sin
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

AUTOMATIC CONTROL SYSTEMS
 B. C. Kuo
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987

COMPUTER CONTROLLED SYSTEMS: THEORY & DESIGN
 K. Astrom and B. Wittenmark
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL CONTROL SYSTEMS
 B. C. Kuo
 New York, NY: Holt, Reinholt, and Winston, Inc., 1980

DIGITAL CONTROL SYSTEM ANALYSIS & DESIGN
 C. Phillips and H. Nagle
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

ISSUES IN THE IMPLEMENTATION OF DIGITAL FEEDBACK COMPENSATORS
 P. Moroney
 Cambridge, MA: The MIT Press, 1983

Graphics:

CGM AND CGI
C - 16 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

 D. B. Arnold and P. R. Bono
 New York, NY: Springer-Verlag, 1988

COMPUTER GRAPHICS (Second Edition)
 D. Hearn and M. Pauline Baker
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

FUNDAMENTALS OF INTERACTIVE COMPUTER GRAPHICS
 J. D. Foley and A. Van Dam
 Reading MA: Addison-Wesley Publishing Company Inc., 1984

GEOMETRIC MODELING
 Michael E. Morteson
 New York, NY: John Wiley and Sons, Inc.

GKS THEORY AND PRACTICE
 P. R. Bono and I. Herman (Eds.)
 New York, NY: Springer-Verlag, 1987

ILLUMINATION AND COLOR IN COMPUTER GENERATED IMAGERY
 Roy Hall
 New York, NY: Springer-Verlag

POSTSCRIPT LANGUAGE PROGRAM DESIGN
 Glenn C. Reid - Adobe Systems, Inc.
 Reading MA: Addison-Wesley Publishing Company, Inc., 1988

MICROCOMPUTER DISPLAYS, GRAPHICS, AND ANIMATION
 Bruce A. Artwick
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS
 William M. Newman and Roger F. Sproull
 New York, NY: McGraw-Hill Company, Inc., 1979

PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
 David F. Rogers
 New York, NY: McGraw-Hill Company, Inc., 1985

RENDERMAN INTERFACE, THE
 Pixar
 San Rafael, CA. 94901

Image Processing:

DIGITAL IMAGE PROCESSING
 William K. Pratt
 New York, NY: John Wiley and Sons, 1978
MOTOROLA DSP56000/DSP56001 USER’S MANUAL C - 17

DIGITAL IMAGE PROCESSING (Second Edition)
 Rafael C. Gonzales and Paul Wintz
 Reading, MA: Addison-Wesley Publishing Company, Inc., 1977

DIGITAL IMAGE PROCESSING TECHNIQUES
 M. P. Ekstrom
 New York, NY: Academic Press, Inc., 1984

DIGITAL PICTURE PROCESSING
 Azriel Rosenfeld and Avinash C. Kak
 New York, NY: Academic Press, Inc., 1982

SCIENCE OF FRACTAL IMAGES, THE
 M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen,
 D. Saupe, and R. F. Voss
 New York, NY: Springer-Verlag

????Motorola DSP Manuals:

MOTOROLA DSP56000 LINKER/LIBRARIAN REFERENCE MANUAL
Motorola, Inc., 1991.

MOTOROLA DSP56000 MACRO ASSEMBLER REFERENCE MANUAL
Motorola, Inc., 1991.

MOTOROLA DSP56000 SIMULATOR REFERENCE MANUAL
Motorola, Inc., 1991.

MOTOROLA DSP56000/DSP56001 USER’S MANUAL
Motorola, Inc.,1990.

Numerical Methods:

ALGORITHMS (THE CONSTRUCTION, PROOF, AND ANALYSIS OF
PROGRAMS)
 P. Berliout and P. Bizard
 New York, NY: John Wiley and Sons, 1986

MATRIX COMPUTATIONS
 G. H. Golub and C. F. Van Loan
 John Hopkins Press, 1983
C - 18 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

NUMERICAL RECIPES IN C - THE ART OF SCIENTIFIC PROGRAMMING
 William H. Press, Brian P. Flannery,
 Saul A. Teukolsky, and William T. Vetterling
 Cambridge University Press, 1988

NUMBER THEORY IN SCIENCE AND COMMUNICATION
 Manfred R. Schroeder
 New York, NY: Springer-Verlag, 1986

Pattern Recognition:

PATTERN CLASSIFICATION AND SCENE ANALYSIS
 R. O. Duda and P. E. Hart
 New York, NY: John Wiley and Sons, 1973

CLASSIFICATION ALGORITHMS
 Mike James
 New York, NY: Wiley-Interscience, 1985
Spectral Analysis:

Spectral Analysis:

STATISTICAL SPECTRAL ANALYSIS, A NONPROBABILISTIC THEORY
 William A. Gardner
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
 E. Oran Brigham
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
 R. N. Bracewell
 New York, NY: McGraw-Hill Company, Inc., 1986

Speech:

ADAPTIVE FILTERS – STRUCTURES, ALGORITHMS, AND APPLICATIONS
 Michael L. Honig and David G. Messerschmitt
 Higham, MA: Kluwer Academic Publishers, 1984

DIGITAL CODING OF WAVEFORMS
 N. S. Jayant and P. Noll
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL PROCESSING OF SPEECH SIGNALS
 Lawrence R. Rabiner and R. W. Schafer
 Englwood Cliffs, NJ: Prentice-Hall, Inc., 1978

LINEAR PREDICTION OF SPEECH
MOTOROLA DSP56000/DSP56001 USER’S MANUAL C - 19

 J. D. Markel and A. H. Gray, Jr.
 New York, NY: Springer-Verlag, 1976

SPEECH ANALYSIS, SYNTHESIS, AND PERCEPTION
 J. L. Flanagan
 New York, NY: Springer-Verlag, 1972

SPEECH COMMUNICATION – HUMAN AND MACHINE
 D. O’Shaughnessy
 Reading, MA: Addison-Wesley Publishing Company, Inc., 1987

Telecommunications:

DIGITAL COMMUNICATION
 Edward A. Lee and David G. Messerschmitt
 Higham, MA: Kluwer Academic Publishers, 1988

DIGITAL COMMUNICATIONS
 John G. Proakis
 New York, NY: McGraw-Hill Publishing Co., 1983
C - 20 DSP56000/DSP56001 USER’S MANUAL MOTOROLA

Order this document by DSP56000UM/AD

Motorola reserves the right to make changes without further notice to any products herein to im-
prove reliability, function or design. Motorola does not assume any liability arising out of the appli-
cation or use of any product or circuit described herein; neither does it convey any license under its
patent rights nor the rights of others. Motorola products are not authorized for use as components
in life support devices or systems intended for surgical implant into the body or intended to support
or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola
shall determine availability and suitability of its product or products for the use intended. Motorola
and M are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Oppor-
tunity /Affirmative Action Employer.

OnCE is a trade mark of Motorola, Inc.

 Motorola Inc., 1994

	Cover
	SECTION 1 INTRODUCTION
	1.1 ORIGIN OF THE DSP56000 ARCHITECTURE
	Figure 1-1 Analog Signal Processing
	Figure 1-2 Digital Signal Processing
	Table 1-1 Benchmark Summary in Instruction Cycles

	1.2 SUMMARY OF DSP56000 FAMILY FEATURES
	Figure 1-3 DSP Hardware Origins
	Figure 1-4 DSP56000 Block Diagram

	1.3 MANUAL ORGANIZATION

	SECTION 2 ARCHITECTURAL OVERVIEW AND BUS...
	2.2 ADDRESS BUSES
	2.2.1 Internal Bus Switch
	2.2.2 Bit Manipulation Unit

	2.3 Data ALU
	2.4 ADDRESS GENERATION UNIT
	2.5 X DATA MEMORY
	2.6 Y DATA MEMORY
	2.7 PROGRAM MEMORY
	2.8 PROGRAM CONTROL UNIT
	2.9 INPUT/OUTPUT
	2.9.1 Expansion Port (Port A)
	2.9.2 General-Purpose I/O (Ports B and C)
	2.9.3 Host Interface
	2.9.4 Serial Communication Interface
	2.9.5 Synchronous Serial Interface

	2.10 SIGNAL DESCRIPTION
	1. Port A Address and Data Buses
	2. Port A Bus Control
	3. Interrupt and Mode Control
	4. Power and Clock
	5. Host Interface or Port B I/O
	6. SCI or Port C I/O
	7. SSI or Port C I/O
	Figure 2-1 DSP56000/DSP56001 Functional Signal Gro...

	2.10.1 Port A Address and Data Bus
	2.10.1.1 Address (A0–A15)
	2.10.1.2 Data (D0–D23) These pins provide the bidi...

	2.10.2 Port A Bus Control The Port A bus control s...
	2.10.2.1 Program Memory Select (PS) This three-sta...
	Table 2-1 Program and Data Memory Select Encoding

	2.10.2.2 Data Memory Select (DS) This three-state ...
	2.10.2.3 X/Y Select (X/Y) This three-state output ...
	2.10.2.4 Read Enable (RD) This three-state output ...
	2.10.2.5 Write Enable (WR) This three-state output...
	2.10.2.6 Bus Request/Wait (BR/WT) The bus request ...
	2.10.2.7 Bus Grant/Bus Strobe (BG/BS) If OMR bit 7...

	2.10.3 Interrupt and Mode Control
	2.10.3.1 Mode Select A/External Interrupt Request ...
	2.10.3.2 Reset (RESET) This Schmitt-trigger input ...

	2.10.4 Power and Clock
	2.10.4.1 Power (VCC), Ground (GND)
	2.10.4.2 External Clock/Crystal Input (EXTAL)
	2.10.4.3 Crystal Output (XTAL)

	2.10.5 Host Interface
	2.10.5.1 Host Data Bus (H0–H7)
	2.10.5.2 Host Address (HA0–HA2)
	2.10.5.3 Host Read/Write (HR/W)
	2.10.5.4 Host Enable (HEN)
	2.10.5.5 Host Request (HREQ)
	2.10.5.6 Host Acknowledge (HACK)

	2.10.6 Serial Communications Interface
	2.10.6.1 Receive Data (RXD)
	2.10.6.2 Transmit Data (TXD)
	2.10.6.3 SCI Serial Clock (SCLK)

	2.10.7 Synchronous Serial Interface
	2.10.7.1 Serial Clock Zero (SC0)
	2.10.7.2 Serial Control One (SC1)
	2.10.7.3 Serial Control Two (SC2)
	2.10.7.4 SSI Serial Clock (SCK)
	2.10.7.5 SSI Receive Data (SRD)
	2.10.7.6 SSI Transmit Data (STD)

	Figure 2-1 DSP56000 Block Diagram
	Figure 2-2 DSP56001 Block Diagram

	SECTION 3 MEMORY SPACES
	3.1 OVERVIEW
	3.2 DSP56000 MEMORY INTRODUCTION
	Figure 3-1 DSP56000 Memory Map
	3.2.1 X Data Memory
	3.2.2 Y Data Memory
	Table 3-1 Initial DSP56000 Operating Mode Summary

	3.2.3 Program Memory
	3.2.4 Chip Operating Modes
	3.2.4.1 Single-Chip Mode (Mode 0). In the single-c...
	Figure 3-2 Memory Map for DSP56000 Mode 0: Single-...

	3.2.4.2 Mode 1. Mode 1 is the same as Mode 0 on th...
	Figure 3-3 Memory Map for DSP56000 Mode 2: Normal ...

	3.2.4.3 Normal Expanded Mode (Mode 2). Mode 2 is a...
	3.2.4.4 Development Mode (Mode 3). The development...
	Figure 3-4 Memory Map for DSP56000 Mode 3: Develop...

	3.2.5 Security ROM Version (DSP56000)

	3.3 DSP56001 MEMORY INTRODUCTION
	Figure 3-5 DSP56001 Memory Map
	3.3.1 X Data Memory
	3.3.2 Y Data Memory
	3.3.3 Program Memory
	3.3.4 Bootstrap ROM (DSP56001 Only)
	3.3.5 Chip Operating Modes
	Table 3-2 Initial DSP56001 Operating Mode Summary
	3.3.5.1 Single-Chip Mode (Mode 0)
	Figure 3-6 Memory Map for DSP56001 Mode 0: Single-...

	3.3.5.2 Special Bootstrap Mode (Mode 1)
	Figure 3-7 Memory Map for DSP56001 Mode 2: Normal ...
	1. The control logic maps the bootstrap ROM into t...
	2. The control logic causes program reads to come ...
	3. Program execution begins at location $0000 in t...
	4. The bootstrap ROM program executes the followin...

	Table 3-3 Organization of EPROM Data Contents

	3.3.5.3 Normal Expanded Mode (Mode 2)
	3.3.5.4 Development Mode (Mode 3). The development...
	Figure 3-8 Memory Map for DSP56001 Mode 3: Develop...

	SECTION 4 DATA ALU
	Figure 4-1 DSP56001 Block Diagram
	Figure 4-2 Data ALU
	4.1.1 Data ALU Input Registers (X1, X0, Y1, Y0)
	4.1.2 MAC and Logic Unit
	Figure 4-3 MAC Unit

	4.1.3 Data ALU Accumulator Registers (A2, A1, A0, ...
	4.1.4 Accumulator Shifter
	4.1.5 Data Shifter/Limiter
	4.1.5.1 Limiting (Saturation Arithmetic)
	Figure 4-4 Saturation Arithmetic

	Table 4-1 Limited Data Values
	4.1.5.2 Scaling
	4.2 DATA REPRESENTATION AND ROUNDING
	Figure 4-5 Bit Weighting and Alignment of Operands...
	Figure 4-6 Integer-to-Fractional Data Conversion
	Figure 4-7 Integer/Fractional Number Comparison
	Figure 4-8 Integer/Fractional Multiplication Compa...
	Figure 4-9 Convergent Rounding

	4.3 DATA ALU PROGRAMMING MODEL
	Figure 4-10 DSP56000/DSP56001 Programming Model

	4.4 DATA ALU SUMMARY

	SECTION 5 ADDRESS GENERATION UNIT AND SE...
	5.1 AGU ARCHITECTURE
	Figure 5-1 DSP56001 Block Diagram
	Figure 5-2 AGU Block Diagram
	5.1.1 Address Register Files (Rn)
	5.1.2 Offset Register Files (Nn)
	5.1.3 Modifier Register Files (Mn)
	5.1.4 Address ALU
	5.1.5 Address Output Multiplexers

	5.2 PROGRAMMING MODEL
	Figure 5-3 AGU Programming Model
	5.2.1 Address Register Files (R0 - R3 and R4 - R7)...
	5.2.2 Offset Register Files (N0 - N3 and N4 - N7)
	5.2.3 Modifier Register Files (M0 - M3 and M4 - M7...

	5.3 ADDRESSING
	Table 5-1 Address Register Indirect Summary
	5.3.1 Address Register Indirect Modes
	5.3.1.1 No Update
	Figure 5-4 Address Register Indirect — No Update

	5.3.1.2 Postincrement By 1
	Figure 5-5 Address Register Indirect — Postincreme...

	5.3.1.3 Postdecrement By 1
	Figure 5-6 Address Register Indirect — Postdecreme...

	5.3.1.4 Postincrement By Offset Nn
	Figure 5-7 Address Register Indirect — Postincreme...

	5.3.1.5 Postdecrement By Offset Nn
	Figure 5-8 Address Register Indirect — Postdecreme...

	5.3.1.6 Indexed By Offset Nn
	Figure 5-9 Address Register Indirect — Indexed by ...

	5.3.1.7 Predecrement By 1
	Figure 5-10 Address Register Indirect — Predecreme...

	5.3.2 Address Modifier Types
	5.3.2.1 Linear Modifier (Mn=$FFFF)

	Table 5-2 Linear Address Modifiers
	5.3.2.2 Modulo Modifier (Mn=MODULUS–1)

	Table 5-3 Modulo Address Modifiers
	Figure 5-11 Circular Buffer
	Figure 5-12 Linear Addressing with a Modulo Modifi...
	Figure 5-13 Modulo Modifier Example
	5.3.2.3 Reverse-Carry Modifier (Mn=$0000)

	Table 5-4 Reverse-Carry Address Modifiers
	Table 5-5 Bit-Reverse Addressing SeTable 5-5 quenc...
	Figure 5-14 Bit-Reverse Address Calculation Exampl...
	5.3.2.4 Address-Modifier-Type Encoding Summary

	Table 5-6 Address-Modifier-Type Encoding Summary
	Figure 5-15 Address Modifier Summary

	SECTION 6 PROGRAM CONTROL UNIT
	6.1 OVERVIEW
	Figure 6-1 DSP56001 Block Diagram
	Figure 6-2 DSP56000/DSP56001 Program Control Unit

	6.2 PROGRAM CONTROL UNIT ARCHITECTURE
	6.2.1 Program Decode Controller
	6.2.2 Program Address Generator
	6.2.3 Program Interrupt Controller

	Table 6-1 Interrupt Sources
	Figure 6-3 Fast and Long Interrupt Examples
	6.2.4 Instruction Pipeline
	Figure 6-4 Three-Stage Pipeline

	6.3 CLOCK OSCILLATOR
	6.4 PROGRAMMING MODEL
	Figure 6-5 Program Control Unit Programming Model
	6.4.1 Program Counter
	6.4.2 Status Register
	Figure 6-6 Status Register Format
	6.4.2.1 Carry (Bit 0)
	6.4.2.2 Overflow (Bit 1)
	6.4.2.3 Zero (Bit 2)
	6.4.2.4 Negative (Bit 3)
	6.4.2.5 Unnormalized (Bit 4)
	6.4.2.6 Extension (Bit 5)
	6.4.2.7 Limit (Bit 6)
	6.4.2.8 Interrupt Masks (Bits 8 and 9)
	6.4.2.9 Scaling Mode (Bits 10 and 11)
	6.4.2.10 Trace Mode (Bit 13)
	6.4.2.11 Reserved Status (Bits 7, 12, 14)
	6.4.2.12 Loop Flag (Bit 15)

	6.4.3 Operating Mode Register
	Figure 6-7 OMR Format

	Table 6-4 DSP56000/56001 DE Memory Control
	Table 6-5 DSP56000/DSP56001 Operating Mode Summary...
	6.4.3.1 Chip Operating Mode (Bits 0 and 1)
	6.4.3.2 Data ROM Enable (Bit 2)

	Table 6-6 DSP56001 Operating Mode Summary
	6.4.3.3 Stop Delay (Bit 6)
	6.4.3.4 External Memory Access (Bit 7)
	6.4.3.5 Reserved OMR Bits (Bits 3–5 and 8–23)
	6.4.4 Loop Address Register
	6.4.5 Loop Counter Register
	6.4.6 System Stack
	Figure 6-8 SP Register Format

	6.4.7 Stack Pointer Register
	Figure 6-9 SP Register Values
	6.4.7.1 Stack Pointer (Bits 0–3)
	6.4.7.2 Stack Error Flag (Bit 4)
	Note: When SP is zero (stack empty), instructions ...

	6.4.7.3 Underflow Flag (Bit 5)
	6.4.7.4 Reserved Stack Pointer Registration (Bits ...

	6.4.8 DSP56000/DSP56001 Programming Model Summary
	Figure 6-10 DSP56000/DSP56001 Central Processor Pr...

	SECTION 7 INSTRUCTION SET INTRODUCTION
	Figure 7-1 DSP56000/DSP56001 Central Processor Pro...
	7.1 SYNTAX
	7.2 INSTRUCTION FORMATS
	Figure 7-2 General Format of an Instruction Operat...
	7.2.1 Operand Sizes
	Figure 7-3 Operand Sizes

	7.2.2 Data Organization in Registers
	7.2.2.1 Data ALU Registers
	Figure 7-4 Reading and Writing the ALU Extension R...

	7.2.2.2 AGU Registers
	Figure 7-5 Reading and Writing the Address ALU Reg...

	7.2.2.3 Program Control Registers
	Figure 7-6 Reading and Writing Control Registers

	7.2.3 Data Organization in Memory
	7.2.4 Operand References
	7.2.4.1 Program References
	7.2.4.2 Stack References
	7.2.4.3 Register References
	7.2.4.4 Memory References
	7.2.4.4.1 X Memory References
	7.2.4.4.2 Y Memory References
	7.2.4.4.3 L Memory References
	7.2.4.4.4 YX Memory References

	7.2.5 Addressing Modes
	7.2.5.1 Register Direct Modes
	7.2.5.1.1 Data or Control Register Direct
	7.2.5.1.2 Address Register Direct

	7.2.5.2 ADDRESS REGISTER INDIRECT MODES
	7.2.5.3 SPECIAL ADDRESSING MODES
	7.2.5.3.1 Immediate Data
	Figure 7-7 Special Addressing – Immediate Data

	7.2.5.3.2 Absolute Address
	7.2.5.3.3 Immediate Short
	Figure 7-8 Special Addressing – Absolute Addressin...
	Figure 7-9 Special Addressing – Immediate Short Da...

	7.2.5.3.4 Short Jump Address
	Figure 7-10 Special Addressing – Short Jump Addres...

	7.2.5.3.5 Absolute Short
	Figure 7-11 Special Addressing – Absolute Short Ad...

	7.2.5.3.6 I/O Short
	Figure 7-12 Special Addressing – I/O Short Address...

	7.2.5.3.7 Implicit Reference

	7.2.5.4 Addressing Modes Summary. Table 7-1 is a s...

	Table 7-1 Addressing Modes Summary
	7.3 INSTRUCTION GROUPS
	7.3.1 Arithmetic Instructions
	7.3.2 Logical Instructions
	7.3.3 Bit Manipulation Instructions
	7.3.4 Loop Instructions
	1. The stack is pushed.
	A. The SP is incremented.
	B. The current 16-bit LA and 16-bit LC registers a...
	C. The LC register is initiated with the loop coun...

	2. The stack is pushed again.
	H. The SP is incremented.
	I. The address of the first instruction in the pro...
	J. The LA register is initialized with the value s...

	3. The LF bit in the SR is set. The LF bit is set ...
	Figure 7-13 Hardware DO Loop
	1. Reading the previous LF bit from the top locati...
	2. Purging the SS (pulling the top location and di...
	3. Incrementing the PC

	Figure 7-14 Nested DO Loops

	7.3.5 Move Instructions
	Note: Due to instruction pipelining, if an address...
	Figure 7-15 Classifications of Parallel Data Moves...
	Figure 7-16 Parallel Move Examples

	7.3.6 Program Control Instructions

	SECTION 8 PROCESSING STATES
	8.1 NORMAL PROCESSING STATE
	8.1.1 Instruction Pipeline

	Table 8-1 Instruction Pipelining
	8.1.2 Summary of Pipeline-Related Restrictions
	8.2 EXCEPTION PROCESSING STATE (INTERRUPT PROCESSI...
	8.2.1 Interrupt Sources

	Table 8-2 Interrupt Sources
	8.2.1.1 Hardware Interrupt Source
	Figure 8-1 Interrupting an SWI

	8.2.1.2 Software Interrupt Source
	Figure 8-2 Illegal Instruction Interrupt Serviced ...
	Figure 8-3 Repeated Illegal Instruction

	8.2.1.3 Other Interrupt Sources
	Figure 8-4 Trace Exception

	8.2.2 Interrupt Priority Structure

	Table 8-3 Status Register Interrupt Mask Bits
	8.2.2.1 Interrupt Priority Levels
	Figure 8-5 Interrupt Priority Register (Addr X:$FF...

	Table 8-4 Interrupt Priority Level Table 8-4 Bits
	8.2.2.2 Exception Priorities within an IPL

	Table 8-6 Exception Priorities within an IPL
	8.2.3 Instructions Preceding the Interrupt Instruc...
	8.2.4 Interrupt Types
	8.2.5 Interrupt Arbitration
	8.2.6 Interrupt Instruction Fetch
	8.2.7 Interrupt Instruction Execution
	Figure 8-6 Fast Interrupt Service Routine
	Figure 8-7 Two Consecutive Fast Interrupts
	Figure 8-8 Long Interrupt Service Routine
	Figure 8-9 JSR First Instruction of a Fast Interru...
	Figure 8-10 JSR Second Instruction of a Fast Inter...
	Figure 8-11 Interrupting an REP Instruction
	Figure 8-12 Interrupting Sequential REP Instructio...

	8.3 RESET PROCESSING STATE
	Figure 8-13 Reset Sequence
	Figure 8-14 Reset When OMR=0

	Table 8-7 HI Reset Effects — DSP56000/ Table 8-7 D...
	Table 8-8 HI Reset Effects — Host Processor Progra...
	Table 8-9 SSI Reset Effects
	Table 8-10 SCI Reset Effects
	Table 8-11 Ports A, B, and C Reset Effects
	8.4 WAIT PROCESSING STATE
	Figure 8-15 Wait Instruction Timing
	Figure 8-16 Simultaneous Wait Instruction and Inte...

	Table 8-12 BR/BG During WAIT
	8.5 STOP PROCESSING STATE
	Figure 8-17 Simultaneous Wait Instruction and Inte...
	Figure 8-18 STOP Instruction Sequence
	Figure 8-19 STOP Instruction Sequence Recovering w...

	SECTION 9 PORT A
	9.1 PORT A INTERFACE
	Figure 9-1 Port A Signals
	Figure 9-2 External Program Space
	Figure 9-3 External X and Y Data Space
	Figure 9-4 Memory Segmentation
	Figure 9-5 Port A Bootstrap Circuit
	Figure 9-6 Port A Bootstrap ROM with X and Y RAM

	9.2 PORT A TIMING
	Figure 9-7 Port A Bus Operation with No Wait State...
	Figure 9-8 Port A Bus Operation with Two Wait Stat...
	1. The external memory address is defined by the a...

	Table 9-1 Program and Data Memory Select Encoding
	2. When the address and memory reference signals a...
	3. Wait states are inserted into the bus cycle by ...
	4. When RD or WR are deasserted at the start of T3...
	Figure 9-9 Mixed-Speed Expanded System

	Table 9-2 Power Requirements for Minimum and Table...
	9.2.1 Port A Wait States
	9.2.2 Bus Control Register
	Figure 9-10 Bus Control Register

	9.2.3 Bus Strobe/Wait Pins
	Figure 9-11 Port A Access Control
	Figure 9-12 Bus Strobe/Wait Sequence
	Table 9-3 Wait State Control

	9.3 BUS ARBITRATION
	9.3.1 Bus Request/Bus Grant
	Figure 9-13 Bus Request/Bus Grant Sequence

	9.3.2 Shared Memory
	9.3.2.1 Bus Arbitration Using Only BR/BG With Inte...
	Figure 9-14 Bus Arbitration Using Only BR/BG with ...
	1. DSP# 2 sets OUT1=0 (BR#1=0).
	2. DSP# 2 waits for IN1=0 (BG#1=0 and DSP#1 off th...
	3. DSP#2 sets OUT2=1 (BR#2=1 to let DSP#2 on the b...
	4. DSP#2 accesses the bus for block transfers, etc...
	5. To release the bus, DSP#2 sets OUT2=0 (BR#2=0) ...
	6. DSP#2 then sets OUT1=1 (BR#1=1) to return contr...
	7. DSP#1 then acknowledges mastership by deasserti...

	Figure 9-15 Two DSPs with External Bus Arbitration...

	9.3.2.2 Bus Arbitration Using Only BR/BG With Exte...
	Figure 9-16 Bus Arbitration Using Only BR/BG with ...

	9.3.2.3 Bus Arbitration Using BR/BG and BS/WT With...
	1. DSP#1 makes an external access, thereby asserti...
	2. When DSP#2 finishes its present bus cycle, it t...
	Figure 9-17 Bus Arbitration Using BR/BG and BS/WT ...
	3. When DSP#1’s memory cycle is complete, it relea...

	Figure 9-18 Two DSPs with External Bus Arbitration...

	9.3.2.4 Signaling Using Semaphores
	Figure 9-19 Signaling Using Semaphores

	SECTION 10 PORT B
	Figure 10-1 Port B Interface
	10.1 GENERAL PURPOSE I/O
	Figure 10-2 Parallel Port B Registers
	Figure 10-3 Parallel Port B Pinout
	Figure 10-4 Port B I/O Pin Control Logic
	10.1.1 Programming Parallel I/O
	Figure 10-5 On-Chip Peripheral Memory Map
	Figure 10-6 Write/Read Parallel Data with Port B
	Figure 10-7 Port B Configuration Flowchart
	Figure 10-8 I/O Port B Configuration

	10.1.2 Port B Parallel I/O Timing

	10.2 HOST INTERFACE (HI)
	10.2.1 Host Interface – DSP CPU Viewpoint
	10.2.2 Programming Model – DSP CPU Viewpoint
	Figure 10-9 HI Block Diagram
	Figure 10-10 Host Interface Programming Model – DS...

	10.2.2.1 Host Control Register (HCR)
	10.2.2.1.1 HCR Host Receive Interrupt Enable (HRIE...
	10.2.2.1.2 HCR Host Transmit Interrupt Enable (HTI...
	10.2.2.1.3 HCR Host Command Interrupt Enable (HCIE...
	10.2.2.1.4 HCR Host Flag 2 (HF2) Bit 3
	10.2.2.1.5 HCR Host Flag 3 (HF3) Bit 4
	10.2.2.1.6 HCR Reserved Control (Bits 5, 6, and 7)...
	Figure 10-11 Host Flag Operation

	10.2.2.2 Host Status Register (HSR). The HSR is an...
	10.2.2.2.1 HSR Host Receive Data Full (HRDF) Bit 0...
	10.2.2.2.2 HSR Host Transmit Data Empty (HTDE) Bit...
	10.2.2.2.3 HSR Host Command Pending (HCP) Bit 2
	10.2.2.2.4 HSR Host Flag 0 (HF0) Bit 3
	10.2.2.2.5 HSR Host Flag 1 (HF1) Bit 4
	10.2.2.2.6 HSR Reserved Status (Bits 5 and 6)
	10.2.2.2.7 HSR DMA Status (DMA) Bit 7
	10.2.2.3 Host Receive Data Register (HRX)
	10.2.2.4 Host Transmit Data Register (HTX)
	10.2.2.5 Register Contents After Reset
	Table 10-1 Host Registers after Table 10-1 Reset–D...
	10.2.2.6 Host Interface DSP CPU Interrupts
	Figure 10-12 HSR–HCR Operation

	10.2.2.7 Host Port Usage Considerations – DSP Side...
	10.2.3 Host Interface – Host Processor Viewpoint
	10.2.3.1 Programming Model – Host Processor Viewpo...
	Figure 10-13 Host Processor Programming Model–Host...
	Figure 10-14 HI Register Map

	10.2.3.2 Interrupt Control Register (ICR)
	10.2.3.2.1 ICR Receive Request Enable (RREQ) Bit 0...
	10.2.3.2.2 ICR Transmit Request Enable (TREQ) Bit ...
	Table 10-2 HREQ Pin Definition
	10.2.3.2.3 ICR Reserved Bit (Bit 2)
	10.2.3.2.4 ICR Host Flag 0 (HF0) Bit 3
	10.2.3.2.5 ICR Host Flag 1 (HF1) Bit 4
	10.2.3.2.6 ICR Host Mode Control (HM1 and HM0 bits...
	Table 10-3 Host Mode Bit Definition
	10.2.3.2.7 ICR Initialize Bit (INIT) Bit 7
	Table 10-4 HREQ Pin Definition
	10.2.3.3 Command Vector Register (CVR). The CVR is...
	10.2.3.3.1 CVR Host Vector (HV) Bits 0–4. The five...
	10.2.3.3.2 CVR Reserved Bits (Bits 5 and 6). Reser...
	10.2.3.3.3 CVR Host Command Bit (HC) Bit 7. The HC...
	10.2.3.4 Interrupt Status Register (ISR)
	10.2.3.4.1 ISR Receive Data Register Full (RXDF) B...
	10.2.3.4.2 ISR Transmit Data Register Empty (TXDE)...
	10.2.3.4.3 ISR Transmitter Ready (TRDY) Bit 2
	10.2.3.4.4 ISR Host Flag 2 (HF2) Bit 3
	10.2.3.4.5 ISR Host Flag 3 (HF3) Bit 4
	10.2.3.4.6 ISR Reserved Bit (Bit 5)
	10.2.3.4.7 ISR DMA Status (DMA) Bit 6
	10.2.3.4.8 ISR Host Request (HREQ) Bit 7
	10.2.3.5 Interrupt Vector Register (IVR)
	10.2.3.6 Receive Byte Registers (RXH, RXM, RXL)
	10.2.3.7 Transmit Byte Registers (TXH, TXM, TXL)
	10.2.3.8 Registers After Reset
	Table 10-5 Host Registers after Reset Table 10-5 (...
	10.2.4 Host Interface Pins
	10.2.4.1 Host Data Bus (H0-H7)
	10.2.4.2 Host Address (HA0–HA2)
	10.2.4.3 Host Read/Write (HR/W)
	10.2.4.4 Host Enable (HEN)
	10.2.4.5 Host Request (HREQ)
	10.2.4.6 Host Acknowledge (HACK)
	10.2.5 Servicing the Host Interface
	1. Polling, or
	2. Interrupts, which can be either
	a. non-DMA or
	b. DMA.

	10.2.5.1 HI Host Processor Data Transfer
	1. asserts the HI address (HA0, HA1, HA2) to selec...
	2. asserts HR/W to select the direction of the dat...
	3. strobes the data transfer using HEN. When data ...
	Figure 10-15 Host Processor Transfer Timing

	10.2.5.2 HI Interrupts Host Request (HREQ)
	Figure 10-16 Interrupt Vector Register Read Timing...

	10.2.5.3 Polling
	1. RXDF=1, signifying the receive data register is...
	2. TXDE=1, signifying the transmit data register i...
	3. TRDY=1, signifying the transmit data register i...
	4. HF2 · HF3 ¹ 0, signifying an application-specif...
	5. DMA=1, signifying the HI is currently being use...
	6. If HREQ=1, the HREQ pin has been asserted, and ...
	Figure 10-17 HI Interrupt Structure

	10.2.5.4 Servicing Non-DMA Interrupts
	Figure 10-18 DMA Transfer Logic and Timing

	10.2.5.5 Servicing DMA Interrupts
	10.2.6 HI Application Examples
	10.2.6.1 HI Initialization
	Figure 10-19 HI Initialization Flowchart
	Figure 10-20 HI Initialization–DSP Side

	10.2.6.2 Polling/Interrupt Controlled Data Transfe...
	Figure 10-21(a) HI Configuration–Host Side
	Figure 10-21(b) HI Initialization–Host Side, Polli...
	Figure 10-21(c) HI Initialization–Host Side, Inter...
	Figure 10-21(d) HI Initialization–Host Side, DMA M...
	Figure 10-22 Host Mode and INIT Bits
	1. Assert HREQ when the HI is ready to transfer da...
	2. Assert HACK If the interface is using HACK.
	3. Assert HR/W to select whether this operation wi...
	4. Assert the HI address (HA2, HA1, and HA0) to se...
	5. Assert HEN to enable the HI.
	6. When HEN is deasserted, the data can be latched...
	7. HREQ will be deasserted if the operation is com...

	10.2.6.2.1 Host to DSP - Data Transfer
	Figure 10-23 Bits Used for Host-to-DSP Transfer
	Figure 10-24 Data Transfer from Host to DSP
	1. When the TXDE bit in the ISR is set, it indicat...
	2. The host processor can either poll or
	3. use interrupts to determine the status of this ...
	4. Once the TXDE bit is set, the host can write da...
	5. Writing data to TXL clears TXDE in the ISR.
	6. From the DSP’s viewpoint, the HRDF bit (when se...
	7. When the DSP reads the HRX, the HRDF bit is aut...
	8. When TXDE=0 and HRDF=0, data is automatically t...
	9. The DSP can poll HRDF to see when data has arri...
	10. If HRIE (in the HCR) and HRDF are set, excepti...

	Figure 10-25 Receive Data from Host–Main Program

	10.2.6.2.2 Host to DSP – Command Vector
	Figure 10-26 Vector Table of Exception Sources
	Figure 10-28 Host Command
	1. The host processor writes the CVR with the desi...
	2. The HC is then set.
	3. The HCP bit in the HSR is set when HC is set.
	4. If the HCIE bit in the HCR has been set by the ...
	5. When the HC exception is acknowledged, the HC b...

	Figure 10-26 Receive Data from Host Interrupt Rout...

	10.2.6.2.3 Host to DSP - Bootstrap Loading Using t...
	Figure 10-27 Bootstrap Using the HI
	Figure 10-30 Transmit/Receive Byte Registers
	Figure 10-31 Bootstrap Code Fragment

	10.2.6.2.4 DSP-to-Host Data Transfer
	Figure 10-32 Bits Used for DSP to Host Transfer
	Figure 10-33 Data Transfer from DSP to Host
	Figure 10-34 Main Program - Transmit 24-Bit Data t...
	Figure 10-35 Transmit to HI Routine

	10.2.6.3 DMA Data Transfer
	10.2.6.3.1 Host To DSP Internal Processing
	Figure 10-36 HI Hardware–DMA Mode
	11. HI asserts the HREQ pin (see Figure 10-36 and ...

	Figure 10-37 DMA Transfer and Host Interrupts
	12. DMA controller enables data on H0-H7 and asser...
	13. When HACK is asserted, the HI deasserts HREQ.
	14. When the DMA controller deasserts HACK, the da...
	15. If the byte register written was not TXL (i.e....
	16. If TXL ($7) was written, TXDE will be set to z...
	17. When the transfer to HRX occurs within the HI,...

	10.2.6.3.2 Host-to-DSP DMA Procedure
	Figure 10-38 Host-to-DSP DMA Procedure
	1. Set up the external DMA controller (1) source a...
	2. Initialize the HI (2) by writing the ICR to sel...

	Figure 10-39 Host Bits with TREQ and RREQ
	3. The DSP’s destination pointer (3) used in the D...
	4. Perform other tasks (5) while the DMA controlle...
	5. Terminate the DMA controller channel (8) to dis...
	6. Terminate the DSP HI DMA mode (9) in the ICR by...

	10.2.6.3.3 DSP-to-Host Internal Processing
	1. On the DSP side of the HI, a host transmit exce...
	2. If RXDF=0 and HTDE=0, the contents of HTX will ...
	3. When RXDF is set to one, the HI’s internal DMA ...
	4. The DMA controller enables the data from the ap...
	5. The DMA controller latches the data presented o...
	6. If RXL was read, RXDF will be set to zero and, ...

	10.2.6.3.4 DSP-to-Host DMA Procedure
	1. Set up the DMA controller (1) destination addre...
	2. Initialize the HI (2) by writing the ICR to sel...
	Figure 10-40 DSP to Host DMA Procedure
	3. The DSP’s source pointer (3) used in the DMA ex...
	4. Perform other tasks (5) while the DMA controlle...
	5. Terminate the DMA controller channel (8) to dis...
	6. Terminate the DSP HI DMA mode (9) in the Interr...

	10.2.6.4 Example Circuits
	Figure 10-41 MC68HC11 to DSP56000 Host Interface
	Figure 10-42 Multi-DSP Network Example

	10.2.6.5 Host Port Usage Considerations–Host Side....
	1. Unsynchronized Reading of Receive Byte Register...
	Figure 10-43 MC68000 to DSP56000 Host Interface
	2. Overwriting Transmit Byte Registers:
	3. Synchronization of Status Bits from DSP to Host...
	4. Overwriting the Host Vector:
	5. Cancelling a Pending Host Command Exception:
	6. When using the HREQ pin for handshaking, wait u...
	7. All unused input pins should be terminated. Als...

	SECTION 11 PORT C
	Figure 11-1 Port C Interface
	11.1 GENERAL-PURPOSE I/O (PORT C)
	Figure 11-2 Parallel Port C Pinout
	Figure 11-3 Parallel Port C Registers
	Figure 11-4 Port C I/O Pin Control Logic
	Figure 11-5 On-Chip Peripheral Memory Map
	Figure 11-6 Write/Read Parallel Data with Port C
	Figure 11-7 Port C Configuration Flowchart
	Figure 11-8 I/O Port C Configuration
	11.1.1 Port C Parallel I/O Timing

	11.2 SERIAL COMMUNICATION INTERFACE (SCI)
	 Three-Pin Interface:
	 422 Kbps NRZ Asynchronous Communications Interfa...
	 3.375 Mbps Synchronous Serial Mode (27-MHz Syste...
	 Multidrop Mode for Multiprocessor Systems:
	 On-Chip or External Baud Rate Generation/Interru...
	 Four Interrupt Priority Levels
	 Fast or Long Interrupts
	11.2.1 SCI I/O Pins
	11.2.1.1 Receive Data (RXD). This input receives b...
	11.2.1.2 Transmit Data (TXD). This output transmit...
	11.2.1.3 SCI Serial Clock (SCLK). This bidirection...

	11.2.2 Programming Model
	Figure 11-9 SCI Programming Model – Control and St...
	11.2.2.1 SCI Control Register (SCR)
	Figure 11-10 SCI Programming Model

	11.2.2.1.1 SCR Word Select (WDS0, WDS1, WDS2) Bits...

	8-Bit Synchronous Data (shift register mode)
	10-Bit Asynchronous (1 start, 8 data, 1 stop)
	11-Bit Asynchronous (1 start, 8 data, 1 even parit...
	11-Bit Asynchronous (1 start, 8 data, 1 odd parity...
	11-Bit Multidrop (1 start, 8 data, 1 data type, 1 ...

	APPENDIX A INSTRUCTION SET DETAILS
	A.1 INSTRUCTION GUIDE
	1. Name and Mnemonic: The mnemonic is highlighted ...
	2. Assembler Syntax and Operation: For each instru...
	3. Description: A complete text description of the...
	4. Example: An example of the use of the instructi...
	5. Condition Codes: The status register is depicte...
	6. Instruction Format: The instruction fields, the...
	7. Timing: The number of oscillator clock cycles r...
	8. Memory: The number of program memory words requ...

	A.2 NOTATION
	A.3 ADDRESSING MODES
	A.3.1 Addressing Mode Modifiers

	A.4 CONDITION CODE COMPUTATION
	L — Limit Bit Z — Zero Bit
	E — Extension Bit V — Overflow Bit
	U — Unnormalized Bit C — Carry Bit
	N — Negative Bit
	L (Limit Bit) Set if the overflow bit V is set or ...
	E (Extension Bit) Cleared if all the bits of the s...
	U (Unnormalized Bit) Set if the two MS bits of the...
	N (Negative Bit) Set if the MS bit 55 of the A or ...
	Z (Zero Bit) Set if the A or B result equals zero....
	V (Overflow Bit) Set if an arithmetic overflow occ...
	C (Carry Bit) Set if a carry is generated out of t...

	A.5 PARALLEL MOVE DESCRIPTIONS
	A.6 INSTRUCTION DESCRIPTIONS
	1. Compare the source and destination operand sign...
	2. Shift the partial remainder and the quotient: T...
	3. Calculate the next quotient bit and the new par...
	1. the number of bits of precision in the dividend...
	2. the number of bits of precision N in the quotie...
	3. whether the value of N is fixed or is variable;...
	4. whether the operands are unsigned or signed;
	5. whether or not the remainder is to be calculate...

	A.7 INSTRUCTION TIMING
	1. All instruction cycles are counted in oscillato...
	2. The instruction fetch pipeline is full.
	3. There is no contention for instruction fetches....
	4. There are no wait states for instruction fetche...
	Example 1: Arithmetic Instruction with Two Paralle...
	1. Look up the number of instruction program words...
	2. Evaluate the ‘‘mv’’ term using Table A-7.
	3. Evaluate the ‘‘ea’’ term using Table A-13.
	4. Evaluate the ‘‘axy’’ term using Table A-14.
	5. Compute final results.

	Example 2: Jump Instruction
	1. Look up the number of instruction program words...
	2. Evaluate the ‘‘jx’’ term using Table A-11.
	3. Evaluate the ‘‘ea’’ term using Table A-13.
	4. Evaluate the ‘‘ap’’ term using Table A-14.
	5. Compute final results.

	Example 3: RTI Instruction
	1. Look up the number of instruction program words...
	2. Evaluate the ‘‘rx’’ term using Table A-12.
	3. Evaluate the ‘‘ap’’ term using Table A-14.
	4. Compute final results.

	Table A-6 Instruction Timing Summary (see Note 3)
	Table A-7 Parallel Data Move Timing
	Table A-8 MOVEC Timing Summary (see Note 2)
	Table A-9 MOVEP Timing Summary (see Note 2)
	Table A-10 Bit Manipulation Timing Summary (see No...
	Table A-11 Jump Instruction Timing Summary
	Table A-12 RTI/RTS Timing Summary
	Table A-13 Addressing Mode Timing Summary
	A.8 INSTRUCTION SEQUENCE RESTRICTIONS

	Table A-14 Memory Access Timing Summary
	A.8.1 Restrictions Near the End of DO Loops
	A.8.2 Other DO Restrictions
	A.8.3 ENDDO Restrictions
	A.8.4 RTI and RTS Restrictions
	A.8.5 SP and SSH/SSL Manipulation Restrictions
	A.8.6 R, N, and M Register Restrictions
	A.8.7 Fast Interrupt Routines
	A.8.8 REP Restrictions
	A.9 INSTRUCTION ENCODING

	A.9.1 Partial Encodings for Use in Instruction Enc...
	Table A-15 Single-Bit Register Encodings
	Table A-16 Single-Bit Special Register Encodings
	Table A-17 Double-Bit Register Encodings
	Table A-18 Triple-Bit Register Encodings
	Table A-19(a) Four-Bit Register Encodings for 12 R...
	Table A-19(b) Four-Bit Register Encodings for 16 C...
	Table A-20 Five-Bit Register Encodings for Table A...
	Table A-21 Six-Bit Register Encodings Table A-21 f...
	Table A-22 Write Control Encoding
	Table A-23 Memory Space Bit Encoding
	Table A-24 Program Controller Register Encoding
	Table A-25 Condition Code and Address Encoding
	Table A-26 Effective Addressing Mode Encoding
	A.9.2 Instruction Encoding for the Parallel Move P...
	X: Y: Parallel Data Move
	X: Parallel Data Move
	Y: Parallel Data Move
	L: Parallel Data Move
	I: Immediate Short Parallel Data Move
	R: Register to Register Parallel Data Move
	U: Address Register Update Parallel Data Move
	Parallel Data Move NOP
	R:Y Parallel Data Move
	A.9.3 Instruction Encoding for the Parallel Move P...
	A.9.4 Parallel Instruction Encoding of the Operati...
	Table A-27 Operation Code K0-2 Decode
	Table A-28 Operation Code QQQ Decode
	Table A-29 Nonmultiply Instruction Encoding
	Table A-30 Special Case #1
	Table A-31 Special Case #2

	APPENDIX B BENCHMARK PROGRAMS
	Table B-1 20.5-MHz Benchmark Results for the DSP56...
	Table B-2 27-MHz Benchmark Results for the DSP5600...
	Figure B-1 20-Tap FIR Filter Example (Sheet 1 of 2...
	Figure B-1 20-Tap FIR Filter Example (Sheet 2 of 2...
	Figure B-2 Radix 2, In-Place, Decimation-In-Time F...
	Figure B-3 8-Pole 4-Multiply Cascaded Canonic IIR ...
	Figure B-4 LMS FIR Adaptive Filter

	APPENDIX C ADDITIONAL SUPPORT
	The following is a partial list of the support ava...
	Motorola DSP Product Support
	DSP56000CLASx Assembler/Simulator

	The macro cross assembler and simulator run on:
	1. IBM‰ PCs (386 or better)
	2. Macintosh‰ under MAC OS 4.1 or later
	3. SUN-4‰ under UNIX‰ BSD 4.2
	Macro Cross Assembler Features:
	Simulator Features:
	C Language Compiler
	DSP56KCCx Language Compiler Features:

	DSP320to56001 Translator
	DSP320to56001 Translator Features:

	DSP56000ADSx Application Development System
	DSP56000ADS Application Development System Hardwar...
	DSP56000ADSx Application Development System Softwa...
	Support Integrated Circuits:

	Dr. BuB Electronic Bulletin Board

	Dr. BuB is an electronic bulletin board which prov...
	(212A – 300/1200 Baud) (512) 891-DSP1 (V.22 – 1200...
	Document ID Version Synopsis Size
	Codec Routines:
	Fast Fourier Transforms:
	Filters:
	Document ID Version Synopsis Size

	Floating-Point Routines:
	Document ID Version Synopsis Size

	Functions:
	Document ID Version Synopsis Size

	Lattice Filters:
	Document ID Version Synopsis Size

	Matrix Operations:
	Reed-Solomon Encoder:
	Sorting Routines:
	Speech:
	Document ID Version Synopsis Size

	Standard I/O Equates:
	Motorola DSP News

	The Motorola DSP News is a quarterly newsletter pr...
	Motorola Field Application Engineers

	Information and assistance for DSP applications is...
	Design Help Line – 1-800-521-6274

	This is the Motorola number for information about ...
	Applications Assistance – (512) 891-3230

	Design assistance for specific DSP applications is...
	Sales Information

	Sales information, including brochures, applicatio...
	Third-Party Support Information – (512) 891-3098

	Information about third-party manufacturers who us...
	Additional information is available on Dr. BuB and...
	University Support – (512) 891-3098

	Information concerning university support programs...
	Training Courses – (602) 897-3665

	There are two DSP56000 Family training courses ava...
	1. Introduction to the DSP56000/DSP56001 (MTTA5) i...
	2. Introduction to the DSP56000/DSP56001 (MTT31) i...

	Additional information is available by writing to:...
	or by calling the number above. A technical traini...
	Reference Books and Manuals

	A list of DSP-related books is included here as an...
	General DSP:
	Digital Audio and Filters:
	Controls:
	Graphics:
	Image Processing:
	????Motorola DSP Manuals:
	Numerical Methods:
	Pattern Recognition:
	Spectral Analysis:
	Speech:
	Telecommunications:

